shrink-wrap.h: #define SHRINK_WRAPPING_ENABLED.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "dbgcnt.h"
45 #include "shrink-wrap.h"
46
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
59
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
65
66 #define IFCVT_MULTIPLE_DUMPS 1
67
68 #define NULL_BLOCK ((basic_block) NULL)
69
70 /* True if after combine pass. */
71 static bool ifcvt_after_combine;
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx_insn *first_active_insn (basic_block);
90 static rtx_insn *last_active_insn (basic_block, int);
91 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
92 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
95 int);
96 static rtx cond_exec_get_condition (rtx_insn *);
97 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
98 static int noce_operand_ok (const_rtx);
99 static void merge_if_block (ce_if_block *);
100 static int find_cond_trap (basic_block, edge, edge);
101 static basic_block find_if_header (basic_block, int);
102 static int block_jumps_and_fallthru_p (basic_block, basic_block);
103 static int noce_find_if_block (basic_block, edge, edge, int);
104 static int cond_exec_find_if_block (ce_if_block *);
105 static int find_if_case_1 (basic_block, edge, edge);
106 static int find_if_case_2 (basic_block, edge, edge);
107 static int dead_or_predicable (basic_block, basic_block, basic_block,
108 edge, int);
109 static void noce_emit_move_insn (rtx, rtx);
110 static rtx_insn *block_has_only_trap (basic_block);
111 \f
112 /* Count the number of non-jump active insns in BB. */
113
114 static int
115 count_bb_insns (const_basic_block bb)
116 {
117 int count = 0;
118 rtx_insn *insn = BB_HEAD (bb);
119
120 while (1)
121 {
122 if (active_insn_p (insn) && !JUMP_P (insn))
123 count++;
124
125 if (insn == BB_END (bb))
126 break;
127 insn = NEXT_INSN (insn);
128 }
129
130 return count;
131 }
132
133 /* Determine whether the total insn_rtx_cost on non-jump insns in
134 basic block BB is less than MAX_COST. This function returns
135 false if the cost of any instruction could not be estimated.
136
137 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
138 as those insns are being speculated. MAX_COST is scaled with SCALE
139 plus a small fudge factor. */
140
141 static bool
142 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
143 {
144 int count = 0;
145 rtx_insn *insn = BB_HEAD (bb);
146 bool speed = optimize_bb_for_speed_p (bb);
147
148 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
149 applied to insn_rtx_cost when optimizing for size. Only do
150 this after combine because if-conversion might interfere with
151 passes before combine.
152
153 Use optimize_function_for_speed_p instead of the pre-defined
154 variable speed to make sure it is set to same value for all
155 basic blocks in one if-conversion transformation. */
156 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
157 scale = REG_BR_PROB_BASE;
158 /* Our branch probability/scaling factors are just estimates and don't
159 account for cases where we can get speculation for free and other
160 secondary benefits. So we fudge the scale factor to make speculating
161 appear a little more profitable when optimizing for performance. */
162 else
163 scale += REG_BR_PROB_BASE / 8;
164
165
166 max_cost *= scale;
167
168 while (1)
169 {
170 if (NONJUMP_INSN_P (insn))
171 {
172 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
173 if (cost == 0)
174 return false;
175
176 /* If this instruction is the load or set of a "stack" register,
177 such as a floating point register on x87, then the cost of
178 speculatively executing this insn may need to include
179 the additional cost of popping its result off of the
180 register stack. Unfortunately, correctly recognizing and
181 accounting for this additional overhead is tricky, so for
182 now we simply prohibit such speculative execution. */
183 #ifdef STACK_REGS
184 {
185 rtx set = single_set (insn);
186 if (set && STACK_REG_P (SET_DEST (set)))
187 return false;
188 }
189 #endif
190
191 count += cost;
192 if (count >= max_cost)
193 return false;
194 }
195 else if (CALL_P (insn))
196 return false;
197
198 if (insn == BB_END (bb))
199 break;
200 insn = NEXT_INSN (insn);
201 }
202
203 return true;
204 }
205
206 /* Return the first non-jump active insn in the basic block. */
207
208 static rtx_insn *
209 first_active_insn (basic_block bb)
210 {
211 rtx_insn *insn = BB_HEAD (bb);
212
213 if (LABEL_P (insn))
214 {
215 if (insn == BB_END (bb))
216 return NULL;
217 insn = NEXT_INSN (insn);
218 }
219
220 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
221 {
222 if (insn == BB_END (bb))
223 return NULL;
224 insn = NEXT_INSN (insn);
225 }
226
227 if (JUMP_P (insn))
228 return NULL;
229
230 return insn;
231 }
232
233 /* Return the last non-jump active (non-jump) insn in the basic block. */
234
235 static rtx_insn *
236 last_active_insn (basic_block bb, int skip_use_p)
237 {
238 rtx_insn *insn = BB_END (bb);
239 rtx_insn *head = BB_HEAD (bb);
240
241 while (NOTE_P (insn)
242 || JUMP_P (insn)
243 || DEBUG_INSN_P (insn)
244 || (skip_use_p
245 && NONJUMP_INSN_P (insn)
246 && GET_CODE (PATTERN (insn)) == USE))
247 {
248 if (insn == head)
249 return NULL;
250 insn = PREV_INSN (insn);
251 }
252
253 if (LABEL_P (insn))
254 return NULL;
255
256 return insn;
257 }
258
259 /* Return the active insn before INSN inside basic block CURR_BB. */
260
261 static rtx_insn *
262 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
263 {
264 if (!insn || insn == BB_HEAD (curr_bb))
265 return NULL;
266
267 while ((insn = PREV_INSN (insn)) != NULL_RTX)
268 {
269 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
270 break;
271
272 /* No other active insn all the way to the start of the basic block. */
273 if (insn == BB_HEAD (curr_bb))
274 return NULL;
275 }
276
277 return insn;
278 }
279
280 /* Return the active insn after INSN inside basic block CURR_BB. */
281
282 static rtx_insn *
283 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
284 {
285 if (!insn || insn == BB_END (curr_bb))
286 return NULL;
287
288 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
289 {
290 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
291 break;
292
293 /* No other active insn all the way to the end of the basic block. */
294 if (insn == BB_END (curr_bb))
295 return NULL;
296 }
297
298 return insn;
299 }
300
301 /* Return the basic block reached by falling though the basic block BB. */
302
303 static basic_block
304 block_fallthru (basic_block bb)
305 {
306 edge e = find_fallthru_edge (bb->succs);
307
308 return (e) ? e->dest : NULL_BLOCK;
309 }
310
311 /* Return true if RTXs A and B can be safely interchanged. */
312
313 static bool
314 rtx_interchangeable_p (const_rtx a, const_rtx b)
315 {
316 if (!rtx_equal_p (a, b))
317 return false;
318
319 if (GET_CODE (a) != MEM)
320 return true;
321
322 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
323 reference is not. Interchanging a dead type-unsafe memory reference with
324 a live type-safe one creates a live type-unsafe memory reference, in other
325 words, it makes the program illegal.
326 We check here conservatively whether the two memory references have equal
327 memory attributes. */
328
329 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
330 }
331
332 \f
333 /* Go through a bunch of insns, converting them to conditional
334 execution format if possible. Return TRUE if all of the non-note
335 insns were processed. */
336
337 static int
338 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
339 /* if block information */rtx_insn *start,
340 /* first insn to look at */rtx end,
341 /* last insn to look at */rtx test,
342 /* conditional execution test */int prob_val,
343 /* probability of branch taken. */int mod_ok)
344 {
345 int must_be_last = FALSE;
346 rtx_insn *insn;
347 rtx xtest;
348 rtx pattern;
349
350 if (!start || !end)
351 return FALSE;
352
353 for (insn = start; ; insn = NEXT_INSN (insn))
354 {
355 /* dwarf2out can't cope with conditional prologues. */
356 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
357 return FALSE;
358
359 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
360 goto insn_done;
361
362 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
363
364 /* dwarf2out can't cope with conditional unwind info. */
365 if (RTX_FRAME_RELATED_P (insn))
366 return FALSE;
367
368 /* Remove USE insns that get in the way. */
369 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
370 {
371 /* ??? Ug. Actually unlinking the thing is problematic,
372 given what we'd have to coordinate with our callers. */
373 SET_INSN_DELETED (insn);
374 goto insn_done;
375 }
376
377 /* Last insn wasn't last? */
378 if (must_be_last)
379 return FALSE;
380
381 if (modified_in_p (test, insn))
382 {
383 if (!mod_ok)
384 return FALSE;
385 must_be_last = TRUE;
386 }
387
388 /* Now build the conditional form of the instruction. */
389 pattern = PATTERN (insn);
390 xtest = copy_rtx (test);
391
392 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
393 two conditions. */
394 if (GET_CODE (pattern) == COND_EXEC)
395 {
396 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
397 return FALSE;
398
399 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
400 COND_EXEC_TEST (pattern));
401 pattern = COND_EXEC_CODE (pattern);
402 }
403
404 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
405
406 /* If the machine needs to modify the insn being conditionally executed,
407 say for example to force a constant integer operand into a temp
408 register, do so here. */
409 #ifdef IFCVT_MODIFY_INSN
410 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
411 if (! pattern)
412 return FALSE;
413 #endif
414
415 validate_change (insn, &PATTERN (insn), pattern, 1);
416
417 if (CALL_P (insn) && prob_val >= 0)
418 validate_change (insn, &REG_NOTES (insn),
419 gen_rtx_INT_LIST ((enum machine_mode) REG_BR_PROB,
420 prob_val, REG_NOTES (insn)), 1);
421
422 insn_done:
423 if (insn == end)
424 break;
425 }
426
427 return TRUE;
428 }
429
430 /* Return the condition for a jump. Do not do any special processing. */
431
432 static rtx
433 cond_exec_get_condition (rtx_insn *jump)
434 {
435 rtx test_if, cond;
436
437 if (any_condjump_p (jump))
438 test_if = SET_SRC (pc_set (jump));
439 else
440 return NULL_RTX;
441 cond = XEXP (test_if, 0);
442
443 /* If this branches to JUMP_LABEL when the condition is false,
444 reverse the condition. */
445 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
446 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
447 {
448 enum rtx_code rev = reversed_comparison_code (cond, jump);
449 if (rev == UNKNOWN)
450 return NULL_RTX;
451
452 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
453 XEXP (cond, 1));
454 }
455
456 return cond;
457 }
458
459 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
460 to conditional execution. Return TRUE if we were successful at
461 converting the block. */
462
463 static int
464 cond_exec_process_if_block (ce_if_block * ce_info,
465 /* if block information */int do_multiple_p)
466 {
467 basic_block test_bb = ce_info->test_bb; /* last test block */
468 basic_block then_bb = ce_info->then_bb; /* THEN */
469 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
470 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
471 rtx_insn *then_start; /* first insn in THEN block */
472 rtx_insn *then_end; /* last insn + 1 in THEN block */
473 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
474 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
475 int max; /* max # of insns to convert. */
476 int then_mod_ok; /* whether conditional mods are ok in THEN */
477 rtx true_expr; /* test for else block insns */
478 rtx false_expr; /* test for then block insns */
479 int true_prob_val; /* probability of else block */
480 int false_prob_val; /* probability of then block */
481 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
482 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
483 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
484 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
485 int then_n_insns, else_n_insns, n_insns;
486 enum rtx_code false_code;
487 rtx note;
488
489 /* If test is comprised of && or || elements, and we've failed at handling
490 all of them together, just use the last test if it is the special case of
491 && elements without an ELSE block. */
492 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
493 {
494 if (else_bb || ! ce_info->and_and_p)
495 return FALSE;
496
497 ce_info->test_bb = test_bb = ce_info->last_test_bb;
498 ce_info->num_multiple_test_blocks = 0;
499 ce_info->num_and_and_blocks = 0;
500 ce_info->num_or_or_blocks = 0;
501 }
502
503 /* Find the conditional jump to the ELSE or JOIN part, and isolate
504 the test. */
505 test_expr = cond_exec_get_condition (BB_END (test_bb));
506 if (! test_expr)
507 return FALSE;
508
509 /* If the conditional jump is more than just a conditional jump,
510 then we can not do conditional execution conversion on this block. */
511 if (! onlyjump_p (BB_END (test_bb)))
512 return FALSE;
513
514 /* Collect the bounds of where we're to search, skipping any labels, jumps
515 and notes at the beginning and end of the block. Then count the total
516 number of insns and see if it is small enough to convert. */
517 then_start = first_active_insn (then_bb);
518 then_end = last_active_insn (then_bb, TRUE);
519 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
520 n_insns = then_n_insns;
521 max = MAX_CONDITIONAL_EXECUTE;
522
523 if (else_bb)
524 {
525 int n_matching;
526
527 max *= 2;
528 else_start = first_active_insn (else_bb);
529 else_end = last_active_insn (else_bb, TRUE);
530 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
531 n_insns += else_n_insns;
532
533 /* Look for matching sequences at the head and tail of the two blocks,
534 and limit the range of insns to be converted if possible. */
535 n_matching = flow_find_cross_jump (then_bb, else_bb,
536 &then_first_tail, &else_first_tail,
537 NULL);
538 if (then_first_tail == BB_HEAD (then_bb))
539 then_start = then_end = NULL;
540 if (else_first_tail == BB_HEAD (else_bb))
541 else_start = else_end = NULL;
542
543 if (n_matching > 0)
544 {
545 if (then_end)
546 then_end = find_active_insn_before (then_bb, then_first_tail);
547 if (else_end)
548 else_end = find_active_insn_before (else_bb, else_first_tail);
549 n_insns -= 2 * n_matching;
550 }
551
552 if (then_start
553 && else_start
554 && then_n_insns > n_matching
555 && else_n_insns > n_matching)
556 {
557 int longest_match = MIN (then_n_insns - n_matching,
558 else_n_insns - n_matching);
559 n_matching
560 = flow_find_head_matching_sequence (then_bb, else_bb,
561 &then_last_head,
562 &else_last_head,
563 longest_match);
564
565 if (n_matching > 0)
566 {
567 rtx_insn *insn;
568
569 /* We won't pass the insns in the head sequence to
570 cond_exec_process_insns, so we need to test them here
571 to make sure that they don't clobber the condition. */
572 for (insn = BB_HEAD (then_bb);
573 insn != NEXT_INSN (then_last_head);
574 insn = NEXT_INSN (insn))
575 if (!LABEL_P (insn) && !NOTE_P (insn)
576 && !DEBUG_INSN_P (insn)
577 && modified_in_p (test_expr, insn))
578 return FALSE;
579 }
580
581 if (then_last_head == then_end)
582 then_start = then_end = NULL;
583 if (else_last_head == else_end)
584 else_start = else_end = NULL;
585
586 if (n_matching > 0)
587 {
588 if (then_start)
589 then_start = find_active_insn_after (then_bb, then_last_head);
590 if (else_start)
591 else_start = find_active_insn_after (else_bb, else_last_head);
592 n_insns -= 2 * n_matching;
593 }
594 }
595 }
596
597 if (n_insns > max)
598 return FALSE;
599
600 /* Map test_expr/test_jump into the appropriate MD tests to use on
601 the conditionally executed code. */
602
603 true_expr = test_expr;
604
605 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
606 if (false_code != UNKNOWN)
607 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
608 XEXP (true_expr, 0), XEXP (true_expr, 1));
609 else
610 false_expr = NULL_RTX;
611
612 #ifdef IFCVT_MODIFY_TESTS
613 /* If the machine description needs to modify the tests, such as setting a
614 conditional execution register from a comparison, it can do so here. */
615 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
616
617 /* See if the conversion failed. */
618 if (!true_expr || !false_expr)
619 goto fail;
620 #endif
621
622 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
623 if (note)
624 {
625 true_prob_val = XINT (note, 0);
626 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
627 }
628 else
629 {
630 true_prob_val = -1;
631 false_prob_val = -1;
632 }
633
634 /* If we have && or || tests, do them here. These tests are in the adjacent
635 blocks after the first block containing the test. */
636 if (ce_info->num_multiple_test_blocks > 0)
637 {
638 basic_block bb = test_bb;
639 basic_block last_test_bb = ce_info->last_test_bb;
640
641 if (! false_expr)
642 goto fail;
643
644 do
645 {
646 rtx_insn *start, *end;
647 rtx t, f;
648 enum rtx_code f_code;
649
650 bb = block_fallthru (bb);
651 start = first_active_insn (bb);
652 end = last_active_insn (bb, TRUE);
653 if (start
654 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
655 false_prob_val, FALSE))
656 goto fail;
657
658 /* If the conditional jump is more than just a conditional jump, then
659 we can not do conditional execution conversion on this block. */
660 if (! onlyjump_p (BB_END (bb)))
661 goto fail;
662
663 /* Find the conditional jump and isolate the test. */
664 t = cond_exec_get_condition (BB_END (bb));
665 if (! t)
666 goto fail;
667
668 f_code = reversed_comparison_code (t, BB_END (bb));
669 if (f_code == UNKNOWN)
670 goto fail;
671
672 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
673 if (ce_info->and_and_p)
674 {
675 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
676 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
677 }
678 else
679 {
680 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
681 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
682 }
683
684 /* If the machine description needs to modify the tests, such as
685 setting a conditional execution register from a comparison, it can
686 do so here. */
687 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
688 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
689
690 /* See if the conversion failed. */
691 if (!t || !f)
692 goto fail;
693 #endif
694
695 true_expr = t;
696 false_expr = f;
697 }
698 while (bb != last_test_bb);
699 }
700
701 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
702 on then THEN block. */
703 then_mod_ok = (else_bb == NULL_BLOCK);
704
705 /* Go through the THEN and ELSE blocks converting the insns if possible
706 to conditional execution. */
707
708 if (then_end
709 && (! false_expr
710 || ! cond_exec_process_insns (ce_info, then_start, then_end,
711 false_expr, false_prob_val,
712 then_mod_ok)))
713 goto fail;
714
715 if (else_bb && else_end
716 && ! cond_exec_process_insns (ce_info, else_start, else_end,
717 true_expr, true_prob_val, TRUE))
718 goto fail;
719
720 /* If we cannot apply the changes, fail. Do not go through the normal fail
721 processing, since apply_change_group will call cancel_changes. */
722 if (! apply_change_group ())
723 {
724 #ifdef IFCVT_MODIFY_CANCEL
725 /* Cancel any machine dependent changes. */
726 IFCVT_MODIFY_CANCEL (ce_info);
727 #endif
728 return FALSE;
729 }
730
731 #ifdef IFCVT_MODIFY_FINAL
732 /* Do any machine dependent final modifications. */
733 IFCVT_MODIFY_FINAL (ce_info);
734 #endif
735
736 /* Conversion succeeded. */
737 if (dump_file)
738 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
739 n_insns, (n_insns == 1) ? " was" : "s were");
740
741 /* Merge the blocks! If we had matching sequences, make sure to delete one
742 copy at the appropriate location first: delete the copy in the THEN branch
743 for a tail sequence so that the remaining one is executed last for both
744 branches, and delete the copy in the ELSE branch for a head sequence so
745 that the remaining one is executed first for both branches. */
746 if (then_first_tail)
747 {
748 rtx_insn *from = then_first_tail;
749 if (!INSN_P (from))
750 from = find_active_insn_after (then_bb, from);
751 delete_insn_chain (from, BB_END (then_bb), false);
752 }
753 if (else_last_head)
754 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
755
756 merge_if_block (ce_info);
757 cond_exec_changed_p = TRUE;
758 return TRUE;
759
760 fail:
761 #ifdef IFCVT_MODIFY_CANCEL
762 /* Cancel any machine dependent changes. */
763 IFCVT_MODIFY_CANCEL (ce_info);
764 #endif
765
766 cancel_changes (0);
767 return FALSE;
768 }
769 \f
770 /* Used by noce_process_if_block to communicate with its subroutines.
771
772 The subroutines know that A and B may be evaluated freely. They
773 know that X is a register. They should insert new instructions
774 before cond_earliest. */
775
776 struct noce_if_info
777 {
778 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
779 basic_block test_bb, then_bb, else_bb, join_bb;
780
781 /* The jump that ends TEST_BB. */
782 rtx_insn *jump;
783
784 /* The jump condition. */
785 rtx cond;
786
787 /* New insns should be inserted before this one. */
788 rtx_insn *cond_earliest;
789
790 /* Insns in the THEN and ELSE block. There is always just this
791 one insns in those blocks. The insns are single_set insns.
792 If there was no ELSE block, INSN_B is the last insn before
793 COND_EARLIEST, or NULL_RTX. In the former case, the insn
794 operands are still valid, as if INSN_B was moved down below
795 the jump. */
796 rtx_insn *insn_a, *insn_b;
797
798 /* The SET_SRC of INSN_A and INSN_B. */
799 rtx a, b;
800
801 /* The SET_DEST of INSN_A. */
802 rtx x;
803
804 /* True if this if block is not canonical. In the canonical form of
805 if blocks, the THEN_BB is the block reached via the fallthru edge
806 from TEST_BB. For the noce transformations, we allow the symmetric
807 form as well. */
808 bool then_else_reversed;
809
810 /* Estimated cost of the particular branch instruction. */
811 int branch_cost;
812 };
813
814 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
815 static int noce_try_move (struct noce_if_info *);
816 static int noce_try_store_flag (struct noce_if_info *);
817 static int noce_try_addcc (struct noce_if_info *);
818 static int noce_try_store_flag_constants (struct noce_if_info *);
819 static int noce_try_store_flag_mask (struct noce_if_info *);
820 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
821 rtx, rtx, rtx);
822 static int noce_try_cmove (struct noce_if_info *);
823 static int noce_try_cmove_arith (struct noce_if_info *);
824 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
825 static int noce_try_minmax (struct noce_if_info *);
826 static int noce_try_abs (struct noce_if_info *);
827 static int noce_try_sign_mask (struct noce_if_info *);
828
829 /* Helper function for noce_try_store_flag*. */
830
831 static rtx
832 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
833 int normalize)
834 {
835 rtx cond = if_info->cond;
836 int cond_complex;
837 enum rtx_code code;
838
839 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
840 || ! general_operand (XEXP (cond, 1), VOIDmode));
841
842 /* If earliest == jump, or when the condition is complex, try to
843 build the store_flag insn directly. */
844
845 if (cond_complex)
846 {
847 rtx set = pc_set (if_info->jump);
848 cond = XEXP (SET_SRC (set), 0);
849 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
850 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
851 reversep = !reversep;
852 if (if_info->then_else_reversed)
853 reversep = !reversep;
854 }
855
856 if (reversep)
857 code = reversed_comparison_code (cond, if_info->jump);
858 else
859 code = GET_CODE (cond);
860
861 if ((if_info->cond_earliest == if_info->jump || cond_complex)
862 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
863 {
864 rtx tmp;
865
866 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
867 XEXP (cond, 1));
868 tmp = gen_rtx_SET (VOIDmode, x, tmp);
869
870 start_sequence ();
871 tmp = emit_insn (tmp);
872
873 if (recog_memoized (tmp) >= 0)
874 {
875 tmp = get_insns ();
876 end_sequence ();
877 emit_insn (tmp);
878
879 if_info->cond_earliest = if_info->jump;
880
881 return x;
882 }
883
884 end_sequence ();
885 }
886
887 /* Don't even try if the comparison operands or the mode of X are weird. */
888 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
889 return NULL_RTX;
890
891 return emit_store_flag (x, code, XEXP (cond, 0),
892 XEXP (cond, 1), VOIDmode,
893 (code == LTU || code == LEU
894 || code == GEU || code == GTU), normalize);
895 }
896
897 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
898 X is the destination/target and Y is the value to copy. */
899
900 static void
901 noce_emit_move_insn (rtx x, rtx y)
902 {
903 enum machine_mode outmode;
904 rtx outer, inner;
905 int bitpos;
906
907 if (GET_CODE (x) != STRICT_LOW_PART)
908 {
909 rtx seq, insn, target;
910 optab ot;
911
912 start_sequence ();
913 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
914 otherwise construct a suitable SET pattern ourselves. */
915 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
916 ? emit_move_insn (x, y)
917 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
918 seq = get_insns ();
919 end_sequence ();
920
921 if (recog_memoized (insn) <= 0)
922 {
923 if (GET_CODE (x) == ZERO_EXTRACT)
924 {
925 rtx op = XEXP (x, 0);
926 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
927 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
928
929 /* store_bit_field expects START to be relative to
930 BYTES_BIG_ENDIAN and adjusts this value for machines with
931 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
932 invoke store_bit_field again it is necessary to have the START
933 value from the first call. */
934 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
935 {
936 if (MEM_P (op))
937 start = BITS_PER_UNIT - start - size;
938 else
939 {
940 gcc_assert (REG_P (op));
941 start = BITS_PER_WORD - start - size;
942 }
943 }
944
945 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
946 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
947 return;
948 }
949
950 switch (GET_RTX_CLASS (GET_CODE (y)))
951 {
952 case RTX_UNARY:
953 ot = code_to_optab (GET_CODE (y));
954 if (ot)
955 {
956 start_sequence ();
957 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
958 if (target != NULL_RTX)
959 {
960 if (target != x)
961 emit_move_insn (x, target);
962 seq = get_insns ();
963 }
964 end_sequence ();
965 }
966 break;
967
968 case RTX_BIN_ARITH:
969 case RTX_COMM_ARITH:
970 ot = code_to_optab (GET_CODE (y));
971 if (ot)
972 {
973 start_sequence ();
974 target = expand_binop (GET_MODE (y), ot,
975 XEXP (y, 0), XEXP (y, 1),
976 x, 0, OPTAB_DIRECT);
977 if (target != NULL_RTX)
978 {
979 if (target != x)
980 emit_move_insn (x, target);
981 seq = get_insns ();
982 }
983 end_sequence ();
984 }
985 break;
986
987 default:
988 break;
989 }
990 }
991
992 emit_insn (seq);
993 return;
994 }
995
996 outer = XEXP (x, 0);
997 inner = XEXP (outer, 0);
998 outmode = GET_MODE (outer);
999 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1000 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1001 0, 0, outmode, y);
1002 }
1003
1004 /* Return sequence of instructions generated by if conversion. This
1005 function calls end_sequence() to end the current stream, ensures
1006 that are instructions are unshared, recognizable non-jump insns.
1007 On failure, this function returns a NULL_RTX. */
1008
1009 static rtx_insn *
1010 end_ifcvt_sequence (struct noce_if_info *if_info)
1011 {
1012 rtx_insn *insn;
1013 rtx_insn *seq = get_insns ();
1014
1015 set_used_flags (if_info->x);
1016 set_used_flags (if_info->cond);
1017 set_used_flags (if_info->a);
1018 set_used_flags (if_info->b);
1019 unshare_all_rtl_in_chain (seq);
1020 end_sequence ();
1021
1022 /* Make sure that all of the instructions emitted are recognizable,
1023 and that we haven't introduced a new jump instruction.
1024 As an exercise for the reader, build a general mechanism that
1025 allows proper placement of required clobbers. */
1026 for (insn = seq; insn; insn = NEXT_INSN (insn))
1027 if (JUMP_P (insn)
1028 || recog_memoized (insn) == -1)
1029 return NULL;
1030
1031 return seq;
1032 }
1033
1034 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1035 "if (a == b) x = a; else x = b" into "x = b". */
1036
1037 static int
1038 noce_try_move (struct noce_if_info *if_info)
1039 {
1040 rtx cond = if_info->cond;
1041 enum rtx_code code = GET_CODE (cond);
1042 rtx y;
1043 rtx_insn *seq;
1044
1045 if (code != NE && code != EQ)
1046 return FALSE;
1047
1048 /* This optimization isn't valid if either A or B could be a NaN
1049 or a signed zero. */
1050 if (HONOR_NANS (GET_MODE (if_info->x))
1051 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1052 return FALSE;
1053
1054 /* Check whether the operands of the comparison are A and in
1055 either order. */
1056 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1057 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1058 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1059 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1060 {
1061 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1062 return FALSE;
1063
1064 y = (code == EQ) ? if_info->a : if_info->b;
1065
1066 /* Avoid generating the move if the source is the destination. */
1067 if (! rtx_equal_p (if_info->x, y))
1068 {
1069 start_sequence ();
1070 noce_emit_move_insn (if_info->x, y);
1071 seq = end_ifcvt_sequence (if_info);
1072 if (!seq)
1073 return FALSE;
1074
1075 emit_insn_before_setloc (seq, if_info->jump,
1076 INSN_LOCATION (if_info->insn_a));
1077 }
1078 return TRUE;
1079 }
1080 return FALSE;
1081 }
1082
1083 /* Convert "if (test) x = 1; else x = 0".
1084
1085 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1086 tried in noce_try_store_flag_constants after noce_try_cmove has had
1087 a go at the conversion. */
1088
1089 static int
1090 noce_try_store_flag (struct noce_if_info *if_info)
1091 {
1092 int reversep;
1093 rtx target;
1094 rtx_insn *seq;
1095
1096 if (CONST_INT_P (if_info->b)
1097 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1098 && if_info->a == const0_rtx)
1099 reversep = 0;
1100 else if (if_info->b == const0_rtx
1101 && CONST_INT_P (if_info->a)
1102 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1103 && (reversed_comparison_code (if_info->cond, if_info->jump)
1104 != UNKNOWN))
1105 reversep = 1;
1106 else
1107 return FALSE;
1108
1109 start_sequence ();
1110
1111 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1112 if (target)
1113 {
1114 if (target != if_info->x)
1115 noce_emit_move_insn (if_info->x, target);
1116
1117 seq = end_ifcvt_sequence (if_info);
1118 if (! seq)
1119 return FALSE;
1120
1121 emit_insn_before_setloc (seq, if_info->jump,
1122 INSN_LOCATION (if_info->insn_a));
1123 return TRUE;
1124 }
1125 else
1126 {
1127 end_sequence ();
1128 return FALSE;
1129 }
1130 }
1131
1132 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1133
1134 static int
1135 noce_try_store_flag_constants (struct noce_if_info *if_info)
1136 {
1137 rtx target;
1138 rtx_insn *seq;
1139 int reversep;
1140 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1141 int normalize, can_reverse;
1142 enum machine_mode mode;
1143
1144 if (CONST_INT_P (if_info->a)
1145 && CONST_INT_P (if_info->b))
1146 {
1147 mode = GET_MODE (if_info->x);
1148 ifalse = INTVAL (if_info->a);
1149 itrue = INTVAL (if_info->b);
1150
1151 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1152 /* Make sure we can represent the difference between the two values. */
1153 if ((diff > 0)
1154 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1155 return FALSE;
1156
1157 diff = trunc_int_for_mode (diff, mode);
1158
1159 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1160 != UNKNOWN);
1161
1162 reversep = 0;
1163 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1164 normalize = 0;
1165 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1166 && (STORE_FLAG_VALUE == 1
1167 || if_info->branch_cost >= 2))
1168 normalize = 1;
1169 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1170 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1171 normalize = 1, reversep = 1;
1172 else if (itrue == -1
1173 && (STORE_FLAG_VALUE == -1
1174 || if_info->branch_cost >= 2))
1175 normalize = -1;
1176 else if (ifalse == -1 && can_reverse
1177 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1178 normalize = -1, reversep = 1;
1179 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1180 || if_info->branch_cost >= 3)
1181 normalize = -1;
1182 else
1183 return FALSE;
1184
1185 if (reversep)
1186 {
1187 tmp = itrue; itrue = ifalse; ifalse = tmp;
1188 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1189 }
1190
1191 start_sequence ();
1192 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1193 if (! target)
1194 {
1195 end_sequence ();
1196 return FALSE;
1197 }
1198
1199 /* if (test) x = 3; else x = 4;
1200 => x = 3 + (test == 0); */
1201 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1202 {
1203 target = expand_simple_binop (mode,
1204 (diff == STORE_FLAG_VALUE
1205 ? PLUS : MINUS),
1206 gen_int_mode (ifalse, mode), target,
1207 if_info->x, 0, OPTAB_WIDEN);
1208 }
1209
1210 /* if (test) x = 8; else x = 0;
1211 => x = (test != 0) << 3; */
1212 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1213 {
1214 target = expand_simple_binop (mode, ASHIFT,
1215 target, GEN_INT (tmp), if_info->x, 0,
1216 OPTAB_WIDEN);
1217 }
1218
1219 /* if (test) x = -1; else x = b;
1220 => x = -(test != 0) | b; */
1221 else if (itrue == -1)
1222 {
1223 target = expand_simple_binop (mode, IOR,
1224 target, gen_int_mode (ifalse, mode),
1225 if_info->x, 0, OPTAB_WIDEN);
1226 }
1227
1228 /* if (test) x = a; else x = b;
1229 => x = (-(test != 0) & (b - a)) + a; */
1230 else
1231 {
1232 target = expand_simple_binop (mode, AND,
1233 target, gen_int_mode (diff, mode),
1234 if_info->x, 0, OPTAB_WIDEN);
1235 if (target)
1236 target = expand_simple_binop (mode, PLUS,
1237 target, gen_int_mode (ifalse, mode),
1238 if_info->x, 0, OPTAB_WIDEN);
1239 }
1240
1241 if (! target)
1242 {
1243 end_sequence ();
1244 return FALSE;
1245 }
1246
1247 if (target != if_info->x)
1248 noce_emit_move_insn (if_info->x, target);
1249
1250 seq = end_ifcvt_sequence (if_info);
1251 if (!seq)
1252 return FALSE;
1253
1254 emit_insn_before_setloc (seq, if_info->jump,
1255 INSN_LOCATION (if_info->insn_a));
1256 return TRUE;
1257 }
1258
1259 return FALSE;
1260 }
1261
1262 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1263 similarly for "foo--". */
1264
1265 static int
1266 noce_try_addcc (struct noce_if_info *if_info)
1267 {
1268 rtx target;
1269 rtx_insn *seq;
1270 int subtract, normalize;
1271
1272 if (GET_CODE (if_info->a) == PLUS
1273 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1274 && (reversed_comparison_code (if_info->cond, if_info->jump)
1275 != UNKNOWN))
1276 {
1277 rtx cond = if_info->cond;
1278 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1279
1280 /* First try to use addcc pattern. */
1281 if (general_operand (XEXP (cond, 0), VOIDmode)
1282 && general_operand (XEXP (cond, 1), VOIDmode))
1283 {
1284 start_sequence ();
1285 target = emit_conditional_add (if_info->x, code,
1286 XEXP (cond, 0),
1287 XEXP (cond, 1),
1288 VOIDmode,
1289 if_info->b,
1290 XEXP (if_info->a, 1),
1291 GET_MODE (if_info->x),
1292 (code == LTU || code == GEU
1293 || code == LEU || code == GTU));
1294 if (target)
1295 {
1296 if (target != if_info->x)
1297 noce_emit_move_insn (if_info->x, target);
1298
1299 seq = end_ifcvt_sequence (if_info);
1300 if (!seq)
1301 return FALSE;
1302
1303 emit_insn_before_setloc (seq, if_info->jump,
1304 INSN_LOCATION (if_info->insn_a));
1305 return TRUE;
1306 }
1307 end_sequence ();
1308 }
1309
1310 /* If that fails, construct conditional increment or decrement using
1311 setcc. */
1312 if (if_info->branch_cost >= 2
1313 && (XEXP (if_info->a, 1) == const1_rtx
1314 || XEXP (if_info->a, 1) == constm1_rtx))
1315 {
1316 start_sequence ();
1317 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1318 subtract = 0, normalize = 0;
1319 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1320 subtract = 1, normalize = 0;
1321 else
1322 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1323
1324
1325 target = noce_emit_store_flag (if_info,
1326 gen_reg_rtx (GET_MODE (if_info->x)),
1327 1, normalize);
1328
1329 if (target)
1330 target = expand_simple_binop (GET_MODE (if_info->x),
1331 subtract ? MINUS : PLUS,
1332 if_info->b, target, if_info->x,
1333 0, OPTAB_WIDEN);
1334 if (target)
1335 {
1336 if (target != if_info->x)
1337 noce_emit_move_insn (if_info->x, target);
1338
1339 seq = end_ifcvt_sequence (if_info);
1340 if (!seq)
1341 return FALSE;
1342
1343 emit_insn_before_setloc (seq, if_info->jump,
1344 INSN_LOCATION (if_info->insn_a));
1345 return TRUE;
1346 }
1347 end_sequence ();
1348 }
1349 }
1350
1351 return FALSE;
1352 }
1353
1354 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1355
1356 static int
1357 noce_try_store_flag_mask (struct noce_if_info *if_info)
1358 {
1359 rtx target;
1360 rtx_insn *seq;
1361 int reversep;
1362
1363 reversep = 0;
1364 if ((if_info->branch_cost >= 2
1365 || STORE_FLAG_VALUE == -1)
1366 && ((if_info->a == const0_rtx
1367 && rtx_equal_p (if_info->b, if_info->x))
1368 || ((reversep = (reversed_comparison_code (if_info->cond,
1369 if_info->jump)
1370 != UNKNOWN))
1371 && if_info->b == const0_rtx
1372 && rtx_equal_p (if_info->a, if_info->x))))
1373 {
1374 start_sequence ();
1375 target = noce_emit_store_flag (if_info,
1376 gen_reg_rtx (GET_MODE (if_info->x)),
1377 reversep, -1);
1378 if (target)
1379 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1380 if_info->x,
1381 target, if_info->x, 0,
1382 OPTAB_WIDEN);
1383
1384 if (target)
1385 {
1386 if (target != if_info->x)
1387 noce_emit_move_insn (if_info->x, target);
1388
1389 seq = end_ifcvt_sequence (if_info);
1390 if (!seq)
1391 return FALSE;
1392
1393 emit_insn_before_setloc (seq, if_info->jump,
1394 INSN_LOCATION (if_info->insn_a));
1395 return TRUE;
1396 }
1397
1398 end_sequence ();
1399 }
1400
1401 return FALSE;
1402 }
1403
1404 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1405
1406 static rtx
1407 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1408 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1409 {
1410 rtx target ATTRIBUTE_UNUSED;
1411 int unsignedp ATTRIBUTE_UNUSED;
1412
1413 /* If earliest == jump, try to build the cmove insn directly.
1414 This is helpful when combine has created some complex condition
1415 (like for alpha's cmovlbs) that we can't hope to regenerate
1416 through the normal interface. */
1417
1418 if (if_info->cond_earliest == if_info->jump)
1419 {
1420 rtx tmp;
1421
1422 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1423 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1424 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1425
1426 start_sequence ();
1427 tmp = emit_insn (tmp);
1428
1429 if (recog_memoized (tmp) >= 0)
1430 {
1431 tmp = get_insns ();
1432 end_sequence ();
1433 emit_insn (tmp);
1434
1435 return x;
1436 }
1437
1438 end_sequence ();
1439 }
1440
1441 /* Don't even try if the comparison operands are weird. */
1442 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1443 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1444 return NULL_RTX;
1445
1446 #if HAVE_conditional_move
1447 unsignedp = (code == LTU || code == GEU
1448 || code == LEU || code == GTU);
1449
1450 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1451 vtrue, vfalse, GET_MODE (x),
1452 unsignedp);
1453 if (target)
1454 return target;
1455
1456 /* We might be faced with a situation like:
1457
1458 x = (reg:M TARGET)
1459 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1460 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1461
1462 We can't do a conditional move in mode M, but it's possible that we
1463 could do a conditional move in mode N instead and take a subreg of
1464 the result.
1465
1466 If we can't create new pseudos, though, don't bother. */
1467 if (reload_completed)
1468 return NULL_RTX;
1469
1470 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1471 {
1472 rtx reg_vtrue = SUBREG_REG (vtrue);
1473 rtx reg_vfalse = SUBREG_REG (vfalse);
1474 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1475 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1476 rtx promoted_target;
1477
1478 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1479 || byte_vtrue != byte_vfalse
1480 || (SUBREG_PROMOTED_VAR_P (vtrue)
1481 != SUBREG_PROMOTED_VAR_P (vfalse))
1482 || (SUBREG_PROMOTED_GET (vtrue)
1483 != SUBREG_PROMOTED_GET (vfalse)))
1484 return NULL_RTX;
1485
1486 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1487
1488 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1489 VOIDmode, reg_vtrue, reg_vfalse,
1490 GET_MODE (reg_vtrue), unsignedp);
1491 /* Nope, couldn't do it in that mode either. */
1492 if (!target)
1493 return NULL_RTX;
1494
1495 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1496 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1497 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1498 emit_move_insn (x, target);
1499 return x;
1500 }
1501 else
1502 return NULL_RTX;
1503 #else
1504 /* We'll never get here, as noce_process_if_block doesn't call the
1505 functions involved. Ifdef code, however, should be discouraged
1506 because it leads to typos in the code not selected. However,
1507 emit_conditional_move won't exist either. */
1508 return NULL_RTX;
1509 #endif
1510 }
1511
1512 /* Try only simple constants and registers here. More complex cases
1513 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1514 has had a go at it. */
1515
1516 static int
1517 noce_try_cmove (struct noce_if_info *if_info)
1518 {
1519 enum rtx_code code;
1520 rtx target;
1521 rtx_insn *seq;
1522
1523 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1524 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1525 {
1526 start_sequence ();
1527
1528 code = GET_CODE (if_info->cond);
1529 target = noce_emit_cmove (if_info, if_info->x, code,
1530 XEXP (if_info->cond, 0),
1531 XEXP (if_info->cond, 1),
1532 if_info->a, if_info->b);
1533
1534 if (target)
1535 {
1536 if (target != if_info->x)
1537 noce_emit_move_insn (if_info->x, target);
1538
1539 seq = end_ifcvt_sequence (if_info);
1540 if (!seq)
1541 return FALSE;
1542
1543 emit_insn_before_setloc (seq, if_info->jump,
1544 INSN_LOCATION (if_info->insn_a));
1545 return TRUE;
1546 }
1547 else
1548 {
1549 end_sequence ();
1550 return FALSE;
1551 }
1552 }
1553
1554 return FALSE;
1555 }
1556
1557 /* Try more complex cases involving conditional_move. */
1558
1559 static int
1560 noce_try_cmove_arith (struct noce_if_info *if_info)
1561 {
1562 rtx a = if_info->a;
1563 rtx b = if_info->b;
1564 rtx x = if_info->x;
1565 rtx orig_a, orig_b;
1566 rtx insn_a, insn_b;
1567 rtx tmp, target;
1568 int is_mem = 0;
1569 int insn_cost;
1570 enum rtx_code code;
1571
1572 /* A conditional move from two memory sources is equivalent to a
1573 conditional on their addresses followed by a load. Don't do this
1574 early because it'll screw alias analysis. Note that we've
1575 already checked for no side effects. */
1576 /* ??? FIXME: Magic number 5. */
1577 if (cse_not_expected
1578 && MEM_P (a) && MEM_P (b)
1579 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1580 && if_info->branch_cost >= 5)
1581 {
1582 enum machine_mode address_mode = get_address_mode (a);
1583
1584 a = XEXP (a, 0);
1585 b = XEXP (b, 0);
1586 x = gen_reg_rtx (address_mode);
1587 is_mem = 1;
1588 }
1589
1590 /* ??? We could handle this if we knew that a load from A or B could
1591 not trap or fault. This is also true if we've already loaded
1592 from the address along the path from ENTRY. */
1593 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1594 return FALSE;
1595
1596 /* if (test) x = a + b; else x = c - d;
1597 => y = a + b;
1598 x = c - d;
1599 if (test)
1600 x = y;
1601 */
1602
1603 code = GET_CODE (if_info->cond);
1604 insn_a = if_info->insn_a;
1605 insn_b = if_info->insn_b;
1606
1607 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1608 if insn_rtx_cost can't be estimated. */
1609 if (insn_a)
1610 {
1611 insn_cost
1612 = insn_rtx_cost (PATTERN (insn_a),
1613 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1614 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1615 return FALSE;
1616 }
1617 else
1618 insn_cost = 0;
1619
1620 if (insn_b)
1621 {
1622 insn_cost
1623 += insn_rtx_cost (PATTERN (insn_b),
1624 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1625 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1626 return FALSE;
1627 }
1628
1629 /* Possibly rearrange operands to make things come out more natural. */
1630 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1631 {
1632 int reversep = 0;
1633 if (rtx_equal_p (b, x))
1634 reversep = 1;
1635 else if (general_operand (b, GET_MODE (b)))
1636 reversep = 1;
1637
1638 if (reversep)
1639 {
1640 code = reversed_comparison_code (if_info->cond, if_info->jump);
1641 tmp = a, a = b, b = tmp;
1642 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1643 }
1644 }
1645
1646 start_sequence ();
1647
1648 orig_a = a;
1649 orig_b = b;
1650
1651 /* If either operand is complex, load it into a register first.
1652 The best way to do this is to copy the original insn. In this
1653 way we preserve any clobbers etc that the insn may have had.
1654 This is of course not possible in the IS_MEM case. */
1655 if (! general_operand (a, GET_MODE (a)))
1656 {
1657 rtx set;
1658
1659 if (is_mem)
1660 {
1661 tmp = gen_reg_rtx (GET_MODE (a));
1662 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1663 }
1664 else if (! insn_a)
1665 goto end_seq_and_fail;
1666 else
1667 {
1668 a = gen_reg_rtx (GET_MODE (a));
1669 tmp = copy_rtx (insn_a);
1670 set = single_set (tmp);
1671 SET_DEST (set) = a;
1672 tmp = emit_insn (PATTERN (tmp));
1673 }
1674 if (recog_memoized (tmp) < 0)
1675 goto end_seq_and_fail;
1676 }
1677 if (! general_operand (b, GET_MODE (b)))
1678 {
1679 rtx set, last;
1680
1681 if (is_mem)
1682 {
1683 tmp = gen_reg_rtx (GET_MODE (b));
1684 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1685 }
1686 else if (! insn_b)
1687 goto end_seq_and_fail;
1688 else
1689 {
1690 b = gen_reg_rtx (GET_MODE (b));
1691 tmp = copy_rtx (insn_b);
1692 set = single_set (tmp);
1693 SET_DEST (set) = b;
1694 tmp = PATTERN (tmp);
1695 }
1696
1697 /* If insn to set up A clobbers any registers B depends on, try to
1698 swap insn that sets up A with the one that sets up B. If even
1699 that doesn't help, punt. */
1700 last = get_last_insn ();
1701 if (last && modified_in_p (orig_b, last))
1702 {
1703 tmp = emit_insn_before (tmp, get_insns ());
1704 if (modified_in_p (orig_a, tmp))
1705 goto end_seq_and_fail;
1706 }
1707 else
1708 tmp = emit_insn (tmp);
1709
1710 if (recog_memoized (tmp) < 0)
1711 goto end_seq_and_fail;
1712 }
1713
1714 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1715 XEXP (if_info->cond, 1), a, b);
1716
1717 if (! target)
1718 goto end_seq_and_fail;
1719
1720 /* If we're handling a memory for above, emit the load now. */
1721 if (is_mem)
1722 {
1723 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1724
1725 /* Copy over flags as appropriate. */
1726 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1727 MEM_VOLATILE_P (tmp) = 1;
1728 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1729 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1730 set_mem_align (tmp,
1731 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1732
1733 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1734 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1735
1736 noce_emit_move_insn (if_info->x, tmp);
1737 }
1738 else if (target != x)
1739 noce_emit_move_insn (x, target);
1740
1741 tmp = end_ifcvt_sequence (if_info);
1742 if (!tmp)
1743 return FALSE;
1744
1745 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1746 return TRUE;
1747
1748 end_seq_and_fail:
1749 end_sequence ();
1750 return FALSE;
1751 }
1752
1753 /* For most cases, the simplified condition we found is the best
1754 choice, but this is not the case for the min/max/abs transforms.
1755 For these we wish to know that it is A or B in the condition. */
1756
1757 static rtx
1758 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1759 rtx_insn **earliest)
1760 {
1761 rtx cond, set;
1762 rtx_insn *insn;
1763 int reverse;
1764
1765 /* If target is already mentioned in the known condition, return it. */
1766 if (reg_mentioned_p (target, if_info->cond))
1767 {
1768 *earliest = if_info->cond_earliest;
1769 return if_info->cond;
1770 }
1771
1772 set = pc_set (if_info->jump);
1773 cond = XEXP (SET_SRC (set), 0);
1774 reverse
1775 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1776 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1777 if (if_info->then_else_reversed)
1778 reverse = !reverse;
1779
1780 /* If we're looking for a constant, try to make the conditional
1781 have that constant in it. There are two reasons why it may
1782 not have the constant we want:
1783
1784 1. GCC may have needed to put the constant in a register, because
1785 the target can't compare directly against that constant. For
1786 this case, we look for a SET immediately before the comparison
1787 that puts a constant in that register.
1788
1789 2. GCC may have canonicalized the conditional, for example
1790 replacing "if x < 4" with "if x <= 3". We can undo that (or
1791 make equivalent types of changes) to get the constants we need
1792 if they're off by one in the right direction. */
1793
1794 if (CONST_INT_P (target))
1795 {
1796 enum rtx_code code = GET_CODE (if_info->cond);
1797 rtx op_a = XEXP (if_info->cond, 0);
1798 rtx op_b = XEXP (if_info->cond, 1);
1799 rtx prev_insn;
1800
1801 /* First, look to see if we put a constant in a register. */
1802 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1803 if (prev_insn
1804 && BLOCK_FOR_INSN (prev_insn)
1805 == BLOCK_FOR_INSN (if_info->cond_earliest)
1806 && INSN_P (prev_insn)
1807 && GET_CODE (PATTERN (prev_insn)) == SET)
1808 {
1809 rtx src = find_reg_equal_equiv_note (prev_insn);
1810 if (!src)
1811 src = SET_SRC (PATTERN (prev_insn));
1812 if (CONST_INT_P (src))
1813 {
1814 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1815 op_a = src;
1816 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1817 op_b = src;
1818
1819 if (CONST_INT_P (op_a))
1820 {
1821 rtx tmp = op_a;
1822 op_a = op_b;
1823 op_b = tmp;
1824 code = swap_condition (code);
1825 }
1826 }
1827 }
1828
1829 /* Now, look to see if we can get the right constant by
1830 adjusting the conditional. */
1831 if (CONST_INT_P (op_b))
1832 {
1833 HOST_WIDE_INT desired_val = INTVAL (target);
1834 HOST_WIDE_INT actual_val = INTVAL (op_b);
1835
1836 switch (code)
1837 {
1838 case LT:
1839 if (actual_val == desired_val + 1)
1840 {
1841 code = LE;
1842 op_b = GEN_INT (desired_val);
1843 }
1844 break;
1845 case LE:
1846 if (actual_val == desired_val - 1)
1847 {
1848 code = LT;
1849 op_b = GEN_INT (desired_val);
1850 }
1851 break;
1852 case GT:
1853 if (actual_val == desired_val - 1)
1854 {
1855 code = GE;
1856 op_b = GEN_INT (desired_val);
1857 }
1858 break;
1859 case GE:
1860 if (actual_val == desired_val + 1)
1861 {
1862 code = GT;
1863 op_b = GEN_INT (desired_val);
1864 }
1865 break;
1866 default:
1867 break;
1868 }
1869 }
1870
1871 /* If we made any changes, generate a new conditional that is
1872 equivalent to what we started with, but has the right
1873 constants in it. */
1874 if (code != GET_CODE (if_info->cond)
1875 || op_a != XEXP (if_info->cond, 0)
1876 || op_b != XEXP (if_info->cond, 1))
1877 {
1878 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1879 *earliest = if_info->cond_earliest;
1880 return cond;
1881 }
1882 }
1883
1884 cond = canonicalize_condition (if_info->jump, cond, reverse,
1885 earliest, target, false, true);
1886 if (! cond || ! reg_mentioned_p (target, cond))
1887 return NULL;
1888
1889 /* We almost certainly searched back to a different place.
1890 Need to re-verify correct lifetimes. */
1891
1892 /* X may not be mentioned in the range (cond_earliest, jump]. */
1893 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1894 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1895 return NULL;
1896
1897 /* A and B may not be modified in the range [cond_earliest, jump). */
1898 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1899 if (INSN_P (insn)
1900 && (modified_in_p (if_info->a, insn)
1901 || modified_in_p (if_info->b, insn)))
1902 return NULL;
1903
1904 return cond;
1905 }
1906
1907 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1908
1909 static int
1910 noce_try_minmax (struct noce_if_info *if_info)
1911 {
1912 rtx cond, target;
1913 rtx_insn *earliest, *seq;
1914 enum rtx_code code, op;
1915 int unsignedp;
1916
1917 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1918 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1919 to get the target to tell us... */
1920 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1921 || HONOR_NANS (GET_MODE (if_info->x)))
1922 return FALSE;
1923
1924 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1925 if (!cond)
1926 return FALSE;
1927
1928 /* Verify the condition is of the form we expect, and canonicalize
1929 the comparison code. */
1930 code = GET_CODE (cond);
1931 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1932 {
1933 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1934 return FALSE;
1935 }
1936 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1937 {
1938 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1939 return FALSE;
1940 code = swap_condition (code);
1941 }
1942 else
1943 return FALSE;
1944
1945 /* Determine what sort of operation this is. Note that the code is for
1946 a taken branch, so the code->operation mapping appears backwards. */
1947 switch (code)
1948 {
1949 case LT:
1950 case LE:
1951 case UNLT:
1952 case UNLE:
1953 op = SMAX;
1954 unsignedp = 0;
1955 break;
1956 case GT:
1957 case GE:
1958 case UNGT:
1959 case UNGE:
1960 op = SMIN;
1961 unsignedp = 0;
1962 break;
1963 case LTU:
1964 case LEU:
1965 op = UMAX;
1966 unsignedp = 1;
1967 break;
1968 case GTU:
1969 case GEU:
1970 op = UMIN;
1971 unsignedp = 1;
1972 break;
1973 default:
1974 return FALSE;
1975 }
1976
1977 start_sequence ();
1978
1979 target = expand_simple_binop (GET_MODE (if_info->x), op,
1980 if_info->a, if_info->b,
1981 if_info->x, unsignedp, OPTAB_WIDEN);
1982 if (! target)
1983 {
1984 end_sequence ();
1985 return FALSE;
1986 }
1987 if (target != if_info->x)
1988 noce_emit_move_insn (if_info->x, target);
1989
1990 seq = end_ifcvt_sequence (if_info);
1991 if (!seq)
1992 return FALSE;
1993
1994 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1995 if_info->cond = cond;
1996 if_info->cond_earliest = earliest;
1997
1998 return TRUE;
1999 }
2000
2001 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2002 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2003 etc. */
2004
2005 static int
2006 noce_try_abs (struct noce_if_info *if_info)
2007 {
2008 rtx cond, target, a, b, c;
2009 rtx_insn *earliest, *seq;
2010 int negate;
2011 bool one_cmpl = false;
2012
2013 /* Reject modes with signed zeros. */
2014 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
2015 return FALSE;
2016
2017 /* Recognize A and B as constituting an ABS or NABS. The canonical
2018 form is a branch around the negation, taken when the object is the
2019 first operand of a comparison against 0 that evaluates to true. */
2020 a = if_info->a;
2021 b = if_info->b;
2022 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2023 negate = 0;
2024 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2025 {
2026 c = a; a = b; b = c;
2027 negate = 1;
2028 }
2029 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2030 {
2031 negate = 0;
2032 one_cmpl = true;
2033 }
2034 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2035 {
2036 c = a; a = b; b = c;
2037 negate = 1;
2038 one_cmpl = true;
2039 }
2040 else
2041 return FALSE;
2042
2043 cond = noce_get_alt_condition (if_info, b, &earliest);
2044 if (!cond)
2045 return FALSE;
2046
2047 /* Verify the condition is of the form we expect. */
2048 if (rtx_equal_p (XEXP (cond, 0), b))
2049 c = XEXP (cond, 1);
2050 else if (rtx_equal_p (XEXP (cond, 1), b))
2051 {
2052 c = XEXP (cond, 0);
2053 negate = !negate;
2054 }
2055 else
2056 return FALSE;
2057
2058 /* Verify that C is zero. Search one step backward for a
2059 REG_EQUAL note or a simple source if necessary. */
2060 if (REG_P (c))
2061 {
2062 rtx set, insn = prev_nonnote_insn (earliest);
2063 if (insn
2064 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2065 && (set = single_set (insn))
2066 && rtx_equal_p (SET_DEST (set), c))
2067 {
2068 rtx note = find_reg_equal_equiv_note (insn);
2069 if (note)
2070 c = XEXP (note, 0);
2071 else
2072 c = SET_SRC (set);
2073 }
2074 else
2075 return FALSE;
2076 }
2077 if (MEM_P (c)
2078 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2079 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2080 c = get_pool_constant (XEXP (c, 0));
2081
2082 /* Work around funny ideas get_condition has wrt canonicalization.
2083 Note that these rtx constants are known to be CONST_INT, and
2084 therefore imply integer comparisons. */
2085 if (c == constm1_rtx && GET_CODE (cond) == GT)
2086 ;
2087 else if (c == const1_rtx && GET_CODE (cond) == LT)
2088 ;
2089 else if (c != CONST0_RTX (GET_MODE (b)))
2090 return FALSE;
2091
2092 /* Determine what sort of operation this is. */
2093 switch (GET_CODE (cond))
2094 {
2095 case LT:
2096 case LE:
2097 case UNLT:
2098 case UNLE:
2099 negate = !negate;
2100 break;
2101 case GT:
2102 case GE:
2103 case UNGT:
2104 case UNGE:
2105 break;
2106 default:
2107 return FALSE;
2108 }
2109
2110 start_sequence ();
2111 if (one_cmpl)
2112 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2113 if_info->x);
2114 else
2115 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2116
2117 /* ??? It's a quandary whether cmove would be better here, especially
2118 for integers. Perhaps combine will clean things up. */
2119 if (target && negate)
2120 {
2121 if (one_cmpl)
2122 target = expand_simple_unop (GET_MODE (target), NOT, target,
2123 if_info->x, 0);
2124 else
2125 target = expand_simple_unop (GET_MODE (target), NEG, target,
2126 if_info->x, 0);
2127 }
2128
2129 if (! target)
2130 {
2131 end_sequence ();
2132 return FALSE;
2133 }
2134
2135 if (target != if_info->x)
2136 noce_emit_move_insn (if_info->x, target);
2137
2138 seq = end_ifcvt_sequence (if_info);
2139 if (!seq)
2140 return FALSE;
2141
2142 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2143 if_info->cond = cond;
2144 if_info->cond_earliest = earliest;
2145
2146 return TRUE;
2147 }
2148
2149 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2150
2151 static int
2152 noce_try_sign_mask (struct noce_if_info *if_info)
2153 {
2154 rtx cond, t, m, c;
2155 rtx_insn *seq;
2156 enum machine_mode mode;
2157 enum rtx_code code;
2158 bool t_unconditional;
2159
2160 cond = if_info->cond;
2161 code = GET_CODE (cond);
2162 m = XEXP (cond, 0);
2163 c = XEXP (cond, 1);
2164
2165 t = NULL_RTX;
2166 if (if_info->a == const0_rtx)
2167 {
2168 if ((code == LT && c == const0_rtx)
2169 || (code == LE && c == constm1_rtx))
2170 t = if_info->b;
2171 }
2172 else if (if_info->b == const0_rtx)
2173 {
2174 if ((code == GE && c == const0_rtx)
2175 || (code == GT && c == constm1_rtx))
2176 t = if_info->a;
2177 }
2178
2179 if (! t || side_effects_p (t))
2180 return FALSE;
2181
2182 /* We currently don't handle different modes. */
2183 mode = GET_MODE (t);
2184 if (GET_MODE (m) != mode)
2185 return FALSE;
2186
2187 /* This is only profitable if T is unconditionally executed/evaluated in the
2188 original insn sequence or T is cheap. The former happens if B is the
2189 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2190 INSN_B which can happen for e.g. conditional stores to memory. For the
2191 cost computation use the block TEST_BB where the evaluation will end up
2192 after the transformation. */
2193 t_unconditional =
2194 (t == if_info->b
2195 && (if_info->insn_b == NULL_RTX
2196 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2197 if (!(t_unconditional
2198 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2199 < COSTS_N_INSNS (2))))
2200 return FALSE;
2201
2202 start_sequence ();
2203 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2204 "(signed) m >> 31" directly. This benefits targets with specialized
2205 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2206 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2207 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2208 : NULL_RTX;
2209
2210 if (!t)
2211 {
2212 end_sequence ();
2213 return FALSE;
2214 }
2215
2216 noce_emit_move_insn (if_info->x, t);
2217
2218 seq = end_ifcvt_sequence (if_info);
2219 if (!seq)
2220 return FALSE;
2221
2222 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2223 return TRUE;
2224 }
2225
2226
2227 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2228 transformations. */
2229
2230 static int
2231 noce_try_bitop (struct noce_if_info *if_info)
2232 {
2233 rtx cond, x, a, result;
2234 rtx_insn *seq;
2235 enum machine_mode mode;
2236 enum rtx_code code;
2237 int bitnum;
2238
2239 x = if_info->x;
2240 cond = if_info->cond;
2241 code = GET_CODE (cond);
2242
2243 /* Check for no else condition. */
2244 if (! rtx_equal_p (x, if_info->b))
2245 return FALSE;
2246
2247 /* Check for a suitable condition. */
2248 if (code != NE && code != EQ)
2249 return FALSE;
2250 if (XEXP (cond, 1) != const0_rtx)
2251 return FALSE;
2252 cond = XEXP (cond, 0);
2253
2254 /* ??? We could also handle AND here. */
2255 if (GET_CODE (cond) == ZERO_EXTRACT)
2256 {
2257 if (XEXP (cond, 1) != const1_rtx
2258 || !CONST_INT_P (XEXP (cond, 2))
2259 || ! rtx_equal_p (x, XEXP (cond, 0)))
2260 return FALSE;
2261 bitnum = INTVAL (XEXP (cond, 2));
2262 mode = GET_MODE (x);
2263 if (BITS_BIG_ENDIAN)
2264 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2265 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2266 return FALSE;
2267 }
2268 else
2269 return FALSE;
2270
2271 a = if_info->a;
2272 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2273 {
2274 /* Check for "if (X & C) x = x op C". */
2275 if (! rtx_equal_p (x, XEXP (a, 0))
2276 || !CONST_INT_P (XEXP (a, 1))
2277 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2278 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2279 return FALSE;
2280
2281 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2282 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2283 if (GET_CODE (a) == IOR)
2284 result = (code == NE) ? a : NULL_RTX;
2285 else if (code == NE)
2286 {
2287 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2288 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2289 result = simplify_gen_binary (IOR, mode, x, result);
2290 }
2291 else
2292 {
2293 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2294 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2295 result = simplify_gen_binary (AND, mode, x, result);
2296 }
2297 }
2298 else if (GET_CODE (a) == AND)
2299 {
2300 /* Check for "if (X & C) x &= ~C". */
2301 if (! rtx_equal_p (x, XEXP (a, 0))
2302 || !CONST_INT_P (XEXP (a, 1))
2303 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2304 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2305 return FALSE;
2306
2307 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2308 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2309 result = (code == EQ) ? a : NULL_RTX;
2310 }
2311 else
2312 return FALSE;
2313
2314 if (result)
2315 {
2316 start_sequence ();
2317 noce_emit_move_insn (x, result);
2318 seq = end_ifcvt_sequence (if_info);
2319 if (!seq)
2320 return FALSE;
2321
2322 emit_insn_before_setloc (seq, if_info->jump,
2323 INSN_LOCATION (if_info->insn_a));
2324 }
2325 return TRUE;
2326 }
2327
2328
2329 /* Similar to get_condition, only the resulting condition must be
2330 valid at JUMP, instead of at EARLIEST.
2331
2332 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2333 THEN block of the caller, and we have to reverse the condition. */
2334
2335 static rtx
2336 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2337 {
2338 rtx cond, set, tmp;
2339 bool reverse;
2340
2341 if (! any_condjump_p (jump))
2342 return NULL_RTX;
2343
2344 set = pc_set (jump);
2345
2346 /* If this branches to JUMP_LABEL when the condition is false,
2347 reverse the condition. */
2348 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2349 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2350
2351 /* We may have to reverse because the caller's if block is not canonical,
2352 i.e. the THEN block isn't the fallthrough block for the TEST block
2353 (see find_if_header). */
2354 if (then_else_reversed)
2355 reverse = !reverse;
2356
2357 /* If the condition variable is a register and is MODE_INT, accept it. */
2358
2359 cond = XEXP (SET_SRC (set), 0);
2360 tmp = XEXP (cond, 0);
2361 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2362 && (GET_MODE (tmp) != BImode
2363 || !targetm.small_register_classes_for_mode_p (BImode)))
2364 {
2365 *earliest = jump;
2366
2367 if (reverse)
2368 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2369 GET_MODE (cond), tmp, XEXP (cond, 1));
2370 return cond;
2371 }
2372
2373 /* Otherwise, fall back on canonicalize_condition to do the dirty
2374 work of manipulating MODE_CC values and COMPARE rtx codes. */
2375 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2376 NULL_RTX, false, true);
2377
2378 /* We don't handle side-effects in the condition, like handling
2379 REG_INC notes and making sure no duplicate conditions are emitted. */
2380 if (tmp != NULL_RTX && side_effects_p (tmp))
2381 return NULL_RTX;
2382
2383 return tmp;
2384 }
2385
2386 /* Return true if OP is ok for if-then-else processing. */
2387
2388 static int
2389 noce_operand_ok (const_rtx op)
2390 {
2391 if (side_effects_p (op))
2392 return FALSE;
2393
2394 /* We special-case memories, so handle any of them with
2395 no address side effects. */
2396 if (MEM_P (op))
2397 return ! side_effects_p (XEXP (op, 0));
2398
2399 return ! may_trap_p (op);
2400 }
2401
2402 /* Return true if a write into MEM may trap or fault. */
2403
2404 static bool
2405 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2406 {
2407 rtx addr;
2408
2409 if (MEM_READONLY_P (mem))
2410 return true;
2411
2412 if (may_trap_or_fault_p (mem))
2413 return true;
2414
2415 addr = XEXP (mem, 0);
2416
2417 /* Call target hook to avoid the effects of -fpic etc.... */
2418 addr = targetm.delegitimize_address (addr);
2419
2420 while (addr)
2421 switch (GET_CODE (addr))
2422 {
2423 case CONST:
2424 case PRE_DEC:
2425 case PRE_INC:
2426 case POST_DEC:
2427 case POST_INC:
2428 case POST_MODIFY:
2429 addr = XEXP (addr, 0);
2430 break;
2431 case LO_SUM:
2432 case PRE_MODIFY:
2433 addr = XEXP (addr, 1);
2434 break;
2435 case PLUS:
2436 if (CONST_INT_P (XEXP (addr, 1)))
2437 addr = XEXP (addr, 0);
2438 else
2439 return false;
2440 break;
2441 case LABEL_REF:
2442 return true;
2443 case SYMBOL_REF:
2444 if (SYMBOL_REF_DECL (addr)
2445 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2446 return true;
2447 return false;
2448 default:
2449 return false;
2450 }
2451
2452 return false;
2453 }
2454
2455 /* Return whether we can use store speculation for MEM. TOP_BB is the
2456 basic block above the conditional block where we are considering
2457 doing the speculative store. We look for whether MEM is set
2458 unconditionally later in the function. */
2459
2460 static bool
2461 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2462 {
2463 basic_block dominator;
2464
2465 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2466 dominator != NULL;
2467 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2468 {
2469 rtx_insn *insn;
2470
2471 FOR_BB_INSNS (dominator, insn)
2472 {
2473 /* If we see something that might be a memory barrier, we
2474 have to stop looking. Even if the MEM is set later in
2475 the function, we still don't want to set it
2476 unconditionally before the barrier. */
2477 if (INSN_P (insn)
2478 && (volatile_insn_p (PATTERN (insn))
2479 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2480 return false;
2481
2482 if (memory_must_be_modified_in_insn_p (mem, insn))
2483 return true;
2484 if (modified_in_p (XEXP (mem, 0), insn))
2485 return false;
2486
2487 }
2488 }
2489
2490 return false;
2491 }
2492
2493 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2494 it without using conditional execution. Return TRUE if we were successful
2495 at converting the block. */
2496
2497 static int
2498 noce_process_if_block (struct noce_if_info *if_info)
2499 {
2500 basic_block test_bb = if_info->test_bb; /* test block */
2501 basic_block then_bb = if_info->then_bb; /* THEN */
2502 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2503 basic_block join_bb = if_info->join_bb; /* JOIN */
2504 rtx_insn *jump = if_info->jump;
2505 rtx cond = if_info->cond;
2506 rtx_insn *insn_a, *insn_b;
2507 rtx set_a, set_b;
2508 rtx orig_x, x, a, b;
2509
2510 /* We're looking for patterns of the form
2511
2512 (1) if (...) x = a; else x = b;
2513 (2) x = b; if (...) x = a;
2514 (3) if (...) x = a; // as if with an initial x = x.
2515
2516 The later patterns require jumps to be more expensive.
2517
2518 ??? For future expansion, look for multiple X in such patterns. */
2519
2520 /* Look for one of the potential sets. */
2521 insn_a = first_active_insn (then_bb);
2522 if (! insn_a
2523 || insn_a != last_active_insn (then_bb, FALSE)
2524 || (set_a = single_set (insn_a)) == NULL_RTX)
2525 return FALSE;
2526
2527 x = SET_DEST (set_a);
2528 a = SET_SRC (set_a);
2529
2530 /* Look for the other potential set. Make sure we've got equivalent
2531 destinations. */
2532 /* ??? This is overconservative. Storing to two different mems is
2533 as easy as conditionally computing the address. Storing to a
2534 single mem merely requires a scratch memory to use as one of the
2535 destination addresses; often the memory immediately below the
2536 stack pointer is available for this. */
2537 set_b = NULL_RTX;
2538 if (else_bb)
2539 {
2540 insn_b = first_active_insn (else_bb);
2541 if (! insn_b
2542 || insn_b != last_active_insn (else_bb, FALSE)
2543 || (set_b = single_set (insn_b)) == NULL_RTX
2544 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2545 return FALSE;
2546 }
2547 else
2548 {
2549 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2550 /* We're going to be moving the evaluation of B down from above
2551 COND_EARLIEST to JUMP. Make sure the relevant data is still
2552 intact. */
2553 if (! insn_b
2554 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2555 || !NONJUMP_INSN_P (insn_b)
2556 || (set_b = single_set (insn_b)) == NULL_RTX
2557 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2558 || ! noce_operand_ok (SET_SRC (set_b))
2559 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2560 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2561 /* Avoid extending the lifetime of hard registers on small
2562 register class machines. */
2563 || (REG_P (SET_SRC (set_b))
2564 && HARD_REGISTER_P (SET_SRC (set_b))
2565 && targetm.small_register_classes_for_mode_p
2566 (GET_MODE (SET_SRC (set_b))))
2567 /* Likewise with X. In particular this can happen when
2568 noce_get_condition looks farther back in the instruction
2569 stream than one might expect. */
2570 || reg_overlap_mentioned_p (x, cond)
2571 || reg_overlap_mentioned_p (x, a)
2572 || modified_between_p (x, insn_b, jump))
2573 {
2574 insn_b = NULL;
2575 set_b = NULL_RTX;
2576 }
2577 }
2578
2579 /* If x has side effects then only the if-then-else form is safe to
2580 convert. But even in that case we would need to restore any notes
2581 (such as REG_INC) at then end. That can be tricky if
2582 noce_emit_move_insn expands to more than one insn, so disable the
2583 optimization entirely for now if there are side effects. */
2584 if (side_effects_p (x))
2585 return FALSE;
2586
2587 b = (set_b ? SET_SRC (set_b) : x);
2588
2589 /* Only operate on register destinations, and even then avoid extending
2590 the lifetime of hard registers on small register class machines. */
2591 orig_x = x;
2592 if (!REG_P (x)
2593 || (HARD_REGISTER_P (x)
2594 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2595 {
2596 if (GET_MODE (x) == BLKmode)
2597 return FALSE;
2598
2599 if (GET_CODE (x) == ZERO_EXTRACT
2600 && (!CONST_INT_P (XEXP (x, 1))
2601 || !CONST_INT_P (XEXP (x, 2))))
2602 return FALSE;
2603
2604 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2605 ? XEXP (x, 0) : x));
2606 }
2607
2608 /* Don't operate on sources that may trap or are volatile. */
2609 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2610 return FALSE;
2611
2612 retry:
2613 /* Set up the info block for our subroutines. */
2614 if_info->insn_a = insn_a;
2615 if_info->insn_b = insn_b;
2616 if_info->x = x;
2617 if_info->a = a;
2618 if_info->b = b;
2619
2620 /* Try optimizations in some approximation of a useful order. */
2621 /* ??? Should first look to see if X is live incoming at all. If it
2622 isn't, we don't need anything but an unconditional set. */
2623
2624 /* Look and see if A and B are really the same. Avoid creating silly
2625 cmove constructs that no one will fix up later. */
2626 if (rtx_interchangeable_p (a, b))
2627 {
2628 /* If we have an INSN_B, we don't have to create any new rtl. Just
2629 move the instruction that we already have. If we don't have an
2630 INSN_B, that means that A == X, and we've got a noop move. In
2631 that case don't do anything and let the code below delete INSN_A. */
2632 if (insn_b && else_bb)
2633 {
2634 rtx note;
2635
2636 if (else_bb && insn_b == BB_END (else_bb))
2637 BB_END (else_bb) = PREV_INSN (insn_b);
2638 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2639
2640 /* If there was a REG_EQUAL note, delete it since it may have been
2641 true due to this insn being after a jump. */
2642 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2643 remove_note (insn_b, note);
2644
2645 insn_b = NULL;
2646 }
2647 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2648 x must be executed twice. */
2649 else if (insn_b && side_effects_p (orig_x))
2650 return FALSE;
2651
2652 x = orig_x;
2653 goto success;
2654 }
2655
2656 if (!set_b && MEM_P (orig_x))
2657 {
2658 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2659 for optimizations if writing to x may trap or fault,
2660 i.e. it's a memory other than a static var or a stack slot,
2661 is misaligned on strict aligned machines or is read-only. If
2662 x is a read-only memory, then the program is valid only if we
2663 avoid the store into it. If there are stores on both the
2664 THEN and ELSE arms, then we can go ahead with the conversion;
2665 either the program is broken, or the condition is always
2666 false such that the other memory is selected. */
2667 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2668 return FALSE;
2669
2670 /* Avoid store speculation: given "if (...) x = a" where x is a
2671 MEM, we only want to do the store if x is always set
2672 somewhere in the function. This avoids cases like
2673 if (pthread_mutex_trylock(mutex))
2674 ++global_variable;
2675 where we only want global_variable to be changed if the mutex
2676 is held. FIXME: This should ideally be expressed directly in
2677 RTL somehow. */
2678 if (!noce_can_store_speculate_p (test_bb, orig_x))
2679 return FALSE;
2680 }
2681
2682 if (noce_try_move (if_info))
2683 goto success;
2684 if (noce_try_store_flag (if_info))
2685 goto success;
2686 if (noce_try_bitop (if_info))
2687 goto success;
2688 if (noce_try_minmax (if_info))
2689 goto success;
2690 if (noce_try_abs (if_info))
2691 goto success;
2692 if (HAVE_conditional_move
2693 && noce_try_cmove (if_info))
2694 goto success;
2695 if (! targetm.have_conditional_execution ())
2696 {
2697 if (noce_try_store_flag_constants (if_info))
2698 goto success;
2699 if (noce_try_addcc (if_info))
2700 goto success;
2701 if (noce_try_store_flag_mask (if_info))
2702 goto success;
2703 if (HAVE_conditional_move
2704 && noce_try_cmove_arith (if_info))
2705 goto success;
2706 if (noce_try_sign_mask (if_info))
2707 goto success;
2708 }
2709
2710 if (!else_bb && set_b)
2711 {
2712 insn_b = NULL;
2713 set_b = NULL_RTX;
2714 b = orig_x;
2715 goto retry;
2716 }
2717
2718 return FALSE;
2719
2720 success:
2721
2722 /* If we used a temporary, fix it up now. */
2723 if (orig_x != x)
2724 {
2725 rtx_insn *seq;
2726
2727 start_sequence ();
2728 noce_emit_move_insn (orig_x, x);
2729 seq = get_insns ();
2730 set_used_flags (orig_x);
2731 unshare_all_rtl_in_chain (seq);
2732 end_sequence ();
2733
2734 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2735 }
2736
2737 /* The original THEN and ELSE blocks may now be removed. The test block
2738 must now jump to the join block. If the test block and the join block
2739 can be merged, do so. */
2740 if (else_bb)
2741 {
2742 delete_basic_block (else_bb);
2743 num_true_changes++;
2744 }
2745 else
2746 remove_edge (find_edge (test_bb, join_bb));
2747
2748 remove_edge (find_edge (then_bb, join_bb));
2749 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2750 delete_basic_block (then_bb);
2751 num_true_changes++;
2752
2753 if (can_merge_blocks_p (test_bb, join_bb))
2754 {
2755 merge_blocks (test_bb, join_bb);
2756 num_true_changes++;
2757 }
2758
2759 num_updated_if_blocks++;
2760 return TRUE;
2761 }
2762
2763 /* Check whether a block is suitable for conditional move conversion.
2764 Every insn must be a simple set of a register to a constant or a
2765 register. For each assignment, store the value in the pointer map
2766 VALS, keyed indexed by register pointer, then store the register
2767 pointer in REGS. COND is the condition we will test. */
2768
2769 static int
2770 check_cond_move_block (basic_block bb,
2771 hash_map<rtx, rtx> *vals,
2772 vec<rtx> *regs,
2773 rtx cond)
2774 {
2775 rtx_insn *insn;
2776
2777 /* We can only handle simple jumps at the end of the basic block.
2778 It is almost impossible to update the CFG otherwise. */
2779 insn = BB_END (bb);
2780 if (JUMP_P (insn) && !onlyjump_p (insn))
2781 return FALSE;
2782
2783 FOR_BB_INSNS (bb, insn)
2784 {
2785 rtx set, dest, src;
2786
2787 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2788 continue;
2789 set = single_set (insn);
2790 if (!set)
2791 return FALSE;
2792
2793 dest = SET_DEST (set);
2794 src = SET_SRC (set);
2795 if (!REG_P (dest)
2796 || (HARD_REGISTER_P (dest)
2797 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2798 return FALSE;
2799
2800 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2801 return FALSE;
2802
2803 if (side_effects_p (src) || side_effects_p (dest))
2804 return FALSE;
2805
2806 if (may_trap_p (src) || may_trap_p (dest))
2807 return FALSE;
2808
2809 /* Don't try to handle this if the source register was
2810 modified earlier in the block. */
2811 if ((REG_P (src)
2812 && vals->get (src))
2813 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2814 && vals->get (SUBREG_REG (src))))
2815 return FALSE;
2816
2817 /* Don't try to handle this if the destination register was
2818 modified earlier in the block. */
2819 if (vals->get (dest))
2820 return FALSE;
2821
2822 /* Don't try to handle this if the condition uses the
2823 destination register. */
2824 if (reg_overlap_mentioned_p (dest, cond))
2825 return FALSE;
2826
2827 /* Don't try to handle this if the source register is modified
2828 later in the block. */
2829 if (!CONSTANT_P (src)
2830 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2831 return FALSE;
2832
2833 vals->put (dest, src);
2834
2835 regs->safe_push (dest);
2836 }
2837
2838 return TRUE;
2839 }
2840
2841 /* Given a basic block BB suitable for conditional move conversion,
2842 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2843 the register values depending on COND, emit the insns in the block as
2844 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2845 processed. The caller has started a sequence for the conversion.
2846 Return true if successful, false if something goes wrong. */
2847
2848 static bool
2849 cond_move_convert_if_block (struct noce_if_info *if_infop,
2850 basic_block bb, rtx cond,
2851 hash_map<rtx, rtx> *then_vals,
2852 hash_map<rtx, rtx> *else_vals,
2853 bool else_block_p)
2854 {
2855 enum rtx_code code;
2856 rtx_insn *insn;
2857 rtx cond_arg0, cond_arg1;
2858
2859 code = GET_CODE (cond);
2860 cond_arg0 = XEXP (cond, 0);
2861 cond_arg1 = XEXP (cond, 1);
2862
2863 FOR_BB_INSNS (bb, insn)
2864 {
2865 rtx set, target, dest, t, e;
2866
2867 /* ??? Maybe emit conditional debug insn? */
2868 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2869 continue;
2870 set = single_set (insn);
2871 gcc_assert (set && REG_P (SET_DEST (set)));
2872
2873 dest = SET_DEST (set);
2874
2875 rtx *then_slot = then_vals->get (dest);
2876 rtx *else_slot = else_vals->get (dest);
2877 t = then_slot ? *then_slot : NULL_RTX;
2878 e = else_slot ? *else_slot : NULL_RTX;
2879
2880 if (else_block_p)
2881 {
2882 /* If this register was set in the then block, we already
2883 handled this case there. */
2884 if (t)
2885 continue;
2886 t = dest;
2887 gcc_assert (e);
2888 }
2889 else
2890 {
2891 gcc_assert (t);
2892 if (!e)
2893 e = dest;
2894 }
2895
2896 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2897 t, e);
2898 if (!target)
2899 return false;
2900
2901 if (target != dest)
2902 noce_emit_move_insn (dest, target);
2903 }
2904
2905 return true;
2906 }
2907
2908 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2909 it using only conditional moves. Return TRUE if we were successful at
2910 converting the block. */
2911
2912 static int
2913 cond_move_process_if_block (struct noce_if_info *if_info)
2914 {
2915 basic_block test_bb = if_info->test_bb;
2916 basic_block then_bb = if_info->then_bb;
2917 basic_block else_bb = if_info->else_bb;
2918 basic_block join_bb = if_info->join_bb;
2919 rtx_insn *jump = if_info->jump;
2920 rtx cond = if_info->cond;
2921 rtx_insn *seq, *loc_insn;
2922 rtx reg;
2923 int c;
2924 vec<rtx> then_regs = vNULL;
2925 vec<rtx> else_regs = vNULL;
2926 unsigned int i;
2927 int success_p = FALSE;
2928
2929 /* Build a mapping for each block to the value used for each
2930 register. */
2931 hash_map<rtx, rtx> then_vals;
2932 hash_map<rtx, rtx> else_vals;
2933
2934 /* Make sure the blocks are suitable. */
2935 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
2936 || (else_bb
2937 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
2938 goto done;
2939
2940 /* Make sure the blocks can be used together. If the same register
2941 is set in both blocks, and is not set to a constant in both
2942 cases, then both blocks must set it to the same register. We
2943 have already verified that if it is set to a register, that the
2944 source register does not change after the assignment. Also count
2945 the number of registers set in only one of the blocks. */
2946 c = 0;
2947 FOR_EACH_VEC_ELT (then_regs, i, reg)
2948 {
2949 rtx *then_slot = then_vals.get (reg);
2950 rtx *else_slot = else_vals.get (reg);
2951
2952 gcc_checking_assert (then_slot);
2953 if (!else_slot)
2954 ++c;
2955 else
2956 {
2957 rtx then_val = *then_slot;
2958 rtx else_val = *else_slot;
2959 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2960 && !rtx_equal_p (then_val, else_val))
2961 goto done;
2962 }
2963 }
2964
2965 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2966 FOR_EACH_VEC_ELT (else_regs, i, reg)
2967 {
2968 gcc_checking_assert (else_vals.get (reg));
2969 if (!then_vals.get (reg))
2970 ++c;
2971 }
2972
2973 /* Make sure it is reasonable to convert this block. What matters
2974 is the number of assignments currently made in only one of the
2975 branches, since if we convert we are going to always execute
2976 them. */
2977 if (c > MAX_CONDITIONAL_EXECUTE)
2978 goto done;
2979
2980 /* Try to emit the conditional moves. First do the then block,
2981 then do anything left in the else blocks. */
2982 start_sequence ();
2983 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2984 &then_vals, &else_vals, false)
2985 || (else_bb
2986 && !cond_move_convert_if_block (if_info, else_bb, cond,
2987 &then_vals, &else_vals, true)))
2988 {
2989 end_sequence ();
2990 goto done;
2991 }
2992 seq = end_ifcvt_sequence (if_info);
2993 if (!seq)
2994 goto done;
2995
2996 loc_insn = first_active_insn (then_bb);
2997 if (!loc_insn)
2998 {
2999 loc_insn = first_active_insn (else_bb);
3000 gcc_assert (loc_insn);
3001 }
3002 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3003
3004 if (else_bb)
3005 {
3006 delete_basic_block (else_bb);
3007 num_true_changes++;
3008 }
3009 else
3010 remove_edge (find_edge (test_bb, join_bb));
3011
3012 remove_edge (find_edge (then_bb, join_bb));
3013 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3014 delete_basic_block (then_bb);
3015 num_true_changes++;
3016
3017 if (can_merge_blocks_p (test_bb, join_bb))
3018 {
3019 merge_blocks (test_bb, join_bb);
3020 num_true_changes++;
3021 }
3022
3023 num_updated_if_blocks++;
3024
3025 success_p = TRUE;
3026
3027 done:
3028 then_regs.release ();
3029 else_regs.release ();
3030 return success_p;
3031 }
3032
3033 \f
3034 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3035 IF-THEN-ELSE-JOIN block.
3036
3037 If so, we'll try to convert the insns to not require the branch,
3038 using only transformations that do not require conditional execution.
3039
3040 Return TRUE if we were successful at converting the block. */
3041
3042 static int
3043 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3044 int pass)
3045 {
3046 basic_block then_bb, else_bb, join_bb;
3047 bool then_else_reversed = false;
3048 rtx_insn *jump;
3049 rtx cond;
3050 rtx_insn *cond_earliest;
3051 struct noce_if_info if_info;
3052
3053 /* We only ever should get here before reload. */
3054 gcc_assert (!reload_completed);
3055
3056 /* Recognize an IF-THEN-ELSE-JOIN block. */
3057 if (single_pred_p (then_edge->dest)
3058 && single_succ_p (then_edge->dest)
3059 && single_pred_p (else_edge->dest)
3060 && single_succ_p (else_edge->dest)
3061 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3062 {
3063 then_bb = then_edge->dest;
3064 else_bb = else_edge->dest;
3065 join_bb = single_succ (then_bb);
3066 }
3067 /* Recognize an IF-THEN-JOIN block. */
3068 else if (single_pred_p (then_edge->dest)
3069 && single_succ_p (then_edge->dest)
3070 && single_succ (then_edge->dest) == else_edge->dest)
3071 {
3072 then_bb = then_edge->dest;
3073 else_bb = NULL_BLOCK;
3074 join_bb = else_edge->dest;
3075 }
3076 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3077 of basic blocks in cfglayout mode does not matter, so the fallthrough
3078 edge can go to any basic block (and not just to bb->next_bb, like in
3079 cfgrtl mode). */
3080 else if (single_pred_p (else_edge->dest)
3081 && single_succ_p (else_edge->dest)
3082 && single_succ (else_edge->dest) == then_edge->dest)
3083 {
3084 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3085 To make this work, we have to invert the THEN and ELSE blocks
3086 and reverse the jump condition. */
3087 then_bb = else_edge->dest;
3088 else_bb = NULL_BLOCK;
3089 join_bb = single_succ (then_bb);
3090 then_else_reversed = true;
3091 }
3092 else
3093 /* Not a form we can handle. */
3094 return FALSE;
3095
3096 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3097 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3098 return FALSE;
3099 if (else_bb
3100 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3101 return FALSE;
3102
3103 num_possible_if_blocks++;
3104
3105 if (dump_file)
3106 {
3107 fprintf (dump_file,
3108 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3109 (else_bb) ? "-ELSE" : "",
3110 pass, test_bb->index, then_bb->index);
3111
3112 if (else_bb)
3113 fprintf (dump_file, ", else %d", else_bb->index);
3114
3115 fprintf (dump_file, ", join %d\n", join_bb->index);
3116 }
3117
3118 /* If the conditional jump is more than just a conditional
3119 jump, then we can not do if-conversion on this block. */
3120 jump = BB_END (test_bb);
3121 if (! onlyjump_p (jump))
3122 return FALSE;
3123
3124 /* If this is not a standard conditional jump, we can't parse it. */
3125 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3126 if (!cond)
3127 return FALSE;
3128
3129 /* We must be comparing objects whose modes imply the size. */
3130 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3131 return FALSE;
3132
3133 /* Initialize an IF_INFO struct to pass around. */
3134 memset (&if_info, 0, sizeof if_info);
3135 if_info.test_bb = test_bb;
3136 if_info.then_bb = then_bb;
3137 if_info.else_bb = else_bb;
3138 if_info.join_bb = join_bb;
3139 if_info.cond = cond;
3140 if_info.cond_earliest = cond_earliest;
3141 if_info.jump = jump;
3142 if_info.then_else_reversed = then_else_reversed;
3143 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3144 predictable_edge_p (then_edge));
3145
3146 /* Do the real work. */
3147
3148 if (noce_process_if_block (&if_info))
3149 return TRUE;
3150
3151 if (HAVE_conditional_move
3152 && cond_move_process_if_block (&if_info))
3153 return TRUE;
3154
3155 return FALSE;
3156 }
3157 \f
3158
3159 /* Merge the blocks and mark for local life update. */
3160
3161 static void
3162 merge_if_block (struct ce_if_block * ce_info)
3163 {
3164 basic_block test_bb = ce_info->test_bb; /* last test block */
3165 basic_block then_bb = ce_info->then_bb; /* THEN */
3166 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3167 basic_block join_bb = ce_info->join_bb; /* join block */
3168 basic_block combo_bb;
3169
3170 /* All block merging is done into the lower block numbers. */
3171
3172 combo_bb = test_bb;
3173 df_set_bb_dirty (test_bb);
3174
3175 /* Merge any basic blocks to handle && and || subtests. Each of
3176 the blocks are on the fallthru path from the predecessor block. */
3177 if (ce_info->num_multiple_test_blocks > 0)
3178 {
3179 basic_block bb = test_bb;
3180 basic_block last_test_bb = ce_info->last_test_bb;
3181 basic_block fallthru = block_fallthru (bb);
3182
3183 do
3184 {
3185 bb = fallthru;
3186 fallthru = block_fallthru (bb);
3187 merge_blocks (combo_bb, bb);
3188 num_true_changes++;
3189 }
3190 while (bb != last_test_bb);
3191 }
3192
3193 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3194 label, but it might if there were || tests. That label's count should be
3195 zero, and it normally should be removed. */
3196
3197 if (then_bb)
3198 {
3199 /* If THEN_BB has no successors, then there's a BARRIER after it.
3200 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3201 is no longer needed, and in fact it is incorrect to leave it in
3202 the insn stream. */
3203 if (EDGE_COUNT (then_bb->succs) == 0
3204 && EDGE_COUNT (combo_bb->succs) > 1)
3205 {
3206 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3207 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3208 end = NEXT_INSN (end);
3209
3210 if (end && BARRIER_P (end))
3211 delete_insn (end);
3212 }
3213 merge_blocks (combo_bb, then_bb);
3214 num_true_changes++;
3215 }
3216
3217 /* The ELSE block, if it existed, had a label. That label count
3218 will almost always be zero, but odd things can happen when labels
3219 get their addresses taken. */
3220 if (else_bb)
3221 {
3222 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3223 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3224 is no longer needed, and in fact it is incorrect to leave it in
3225 the insn stream. */
3226 if (EDGE_COUNT (else_bb->succs) == 0
3227 && EDGE_COUNT (combo_bb->succs) > 1)
3228 {
3229 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3230 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3231 end = NEXT_INSN (end);
3232
3233 if (end && BARRIER_P (end))
3234 delete_insn (end);
3235 }
3236 merge_blocks (combo_bb, else_bb);
3237 num_true_changes++;
3238 }
3239
3240 /* If there was no join block reported, that means it was not adjacent
3241 to the others, and so we cannot merge them. */
3242
3243 if (! join_bb)
3244 {
3245 rtx_insn *last = BB_END (combo_bb);
3246
3247 /* The outgoing edge for the current COMBO block should already
3248 be correct. Verify this. */
3249 if (EDGE_COUNT (combo_bb->succs) == 0)
3250 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3251 || (NONJUMP_INSN_P (last)
3252 && GET_CODE (PATTERN (last)) == TRAP_IF
3253 && (TRAP_CONDITION (PATTERN (last))
3254 == const_true_rtx)));
3255
3256 else
3257 /* There should still be something at the end of the THEN or ELSE
3258 blocks taking us to our final destination. */
3259 gcc_assert (JUMP_P (last)
3260 || (EDGE_SUCC (combo_bb, 0)->dest
3261 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3262 && CALL_P (last)
3263 && SIBLING_CALL_P (last))
3264 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3265 && can_throw_internal (last)));
3266 }
3267
3268 /* The JOIN block may have had quite a number of other predecessors too.
3269 Since we've already merged the TEST, THEN and ELSE blocks, we should
3270 have only one remaining edge from our if-then-else diamond. If there
3271 is more than one remaining edge, it must come from elsewhere. There
3272 may be zero incoming edges if the THEN block didn't actually join
3273 back up (as with a call to a non-return function). */
3274 else if (EDGE_COUNT (join_bb->preds) < 2
3275 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3276 {
3277 /* We can merge the JOIN cleanly and update the dataflow try
3278 again on this pass.*/
3279 merge_blocks (combo_bb, join_bb);
3280 num_true_changes++;
3281 }
3282 else
3283 {
3284 /* We cannot merge the JOIN. */
3285
3286 /* The outgoing edge for the current COMBO block should already
3287 be correct. Verify this. */
3288 gcc_assert (single_succ_p (combo_bb)
3289 && single_succ (combo_bb) == join_bb);
3290
3291 /* Remove the jump and cruft from the end of the COMBO block. */
3292 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3293 tidy_fallthru_edge (single_succ_edge (combo_bb));
3294 }
3295
3296 num_updated_if_blocks++;
3297 }
3298 \f
3299 /* Find a block ending in a simple IF condition and try to transform it
3300 in some way. When converting a multi-block condition, put the new code
3301 in the first such block and delete the rest. Return a pointer to this
3302 first block if some transformation was done. Return NULL otherwise. */
3303
3304 static basic_block
3305 find_if_header (basic_block test_bb, int pass)
3306 {
3307 ce_if_block ce_info;
3308 edge then_edge;
3309 edge else_edge;
3310
3311 /* The kind of block we're looking for has exactly two successors. */
3312 if (EDGE_COUNT (test_bb->succs) != 2)
3313 return NULL;
3314
3315 then_edge = EDGE_SUCC (test_bb, 0);
3316 else_edge = EDGE_SUCC (test_bb, 1);
3317
3318 if (df_get_bb_dirty (then_edge->dest))
3319 return NULL;
3320 if (df_get_bb_dirty (else_edge->dest))
3321 return NULL;
3322
3323 /* Neither edge should be abnormal. */
3324 if ((then_edge->flags & EDGE_COMPLEX)
3325 || (else_edge->flags & EDGE_COMPLEX))
3326 return NULL;
3327
3328 /* Nor exit the loop. */
3329 if ((then_edge->flags & EDGE_LOOP_EXIT)
3330 || (else_edge->flags & EDGE_LOOP_EXIT))
3331 return NULL;
3332
3333 /* The THEN edge is canonically the one that falls through. */
3334 if (then_edge->flags & EDGE_FALLTHRU)
3335 ;
3336 else if (else_edge->flags & EDGE_FALLTHRU)
3337 {
3338 edge e = else_edge;
3339 else_edge = then_edge;
3340 then_edge = e;
3341 }
3342 else
3343 /* Otherwise this must be a multiway branch of some sort. */
3344 return NULL;
3345
3346 memset (&ce_info, 0, sizeof (ce_info));
3347 ce_info.test_bb = test_bb;
3348 ce_info.then_bb = then_edge->dest;
3349 ce_info.else_bb = else_edge->dest;
3350 ce_info.pass = pass;
3351
3352 #ifdef IFCVT_MACHDEP_INIT
3353 IFCVT_MACHDEP_INIT (&ce_info);
3354 #endif
3355
3356 if (!reload_completed
3357 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3358 goto success;
3359
3360 if (reload_completed
3361 && targetm.have_conditional_execution ()
3362 && cond_exec_find_if_block (&ce_info))
3363 goto success;
3364
3365 if (HAVE_trap
3366 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3367 && find_cond_trap (test_bb, then_edge, else_edge))
3368 goto success;
3369
3370 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3371 && (reload_completed || !targetm.have_conditional_execution ()))
3372 {
3373 if (find_if_case_1 (test_bb, then_edge, else_edge))
3374 goto success;
3375 if (find_if_case_2 (test_bb, then_edge, else_edge))
3376 goto success;
3377 }
3378
3379 return NULL;
3380
3381 success:
3382 if (dump_file)
3383 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3384 /* Set this so we continue looking. */
3385 cond_exec_changed_p = TRUE;
3386 return ce_info.test_bb;
3387 }
3388
3389 /* Return true if a block has two edges, one of which falls through to the next
3390 block, and the other jumps to a specific block, so that we can tell if the
3391 block is part of an && test or an || test. Returns either -1 or the number
3392 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3393
3394 static int
3395 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3396 {
3397 edge cur_edge;
3398 int fallthru_p = FALSE;
3399 int jump_p = FALSE;
3400 rtx_insn *insn;
3401 rtx_insn *end;
3402 int n_insns = 0;
3403 edge_iterator ei;
3404
3405 if (!cur_bb || !target_bb)
3406 return -1;
3407
3408 /* If no edges, obviously it doesn't jump or fallthru. */
3409 if (EDGE_COUNT (cur_bb->succs) == 0)
3410 return FALSE;
3411
3412 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3413 {
3414 if (cur_edge->flags & EDGE_COMPLEX)
3415 /* Anything complex isn't what we want. */
3416 return -1;
3417
3418 else if (cur_edge->flags & EDGE_FALLTHRU)
3419 fallthru_p = TRUE;
3420
3421 else if (cur_edge->dest == target_bb)
3422 jump_p = TRUE;
3423
3424 else
3425 return -1;
3426 }
3427
3428 if ((jump_p & fallthru_p) == 0)
3429 return -1;
3430
3431 /* Don't allow calls in the block, since this is used to group && and ||
3432 together for conditional execution support. ??? we should support
3433 conditional execution support across calls for IA-64 some day, but
3434 for now it makes the code simpler. */
3435 end = BB_END (cur_bb);
3436 insn = BB_HEAD (cur_bb);
3437
3438 while (insn != NULL_RTX)
3439 {
3440 if (CALL_P (insn))
3441 return -1;
3442
3443 if (INSN_P (insn)
3444 && !JUMP_P (insn)
3445 && !DEBUG_INSN_P (insn)
3446 && GET_CODE (PATTERN (insn)) != USE
3447 && GET_CODE (PATTERN (insn)) != CLOBBER)
3448 n_insns++;
3449
3450 if (insn == end)
3451 break;
3452
3453 insn = NEXT_INSN (insn);
3454 }
3455
3456 return n_insns;
3457 }
3458
3459 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3460 block. If so, we'll try to convert the insns to not require the branch.
3461 Return TRUE if we were successful at converting the block. */
3462
3463 static int
3464 cond_exec_find_if_block (struct ce_if_block * ce_info)
3465 {
3466 basic_block test_bb = ce_info->test_bb;
3467 basic_block then_bb = ce_info->then_bb;
3468 basic_block else_bb = ce_info->else_bb;
3469 basic_block join_bb = NULL_BLOCK;
3470 edge cur_edge;
3471 basic_block next;
3472 edge_iterator ei;
3473
3474 ce_info->last_test_bb = test_bb;
3475
3476 /* We only ever should get here after reload,
3477 and if we have conditional execution. */
3478 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3479
3480 /* Discover if any fall through predecessors of the current test basic block
3481 were && tests (which jump to the else block) or || tests (which jump to
3482 the then block). */
3483 if (single_pred_p (test_bb)
3484 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3485 {
3486 basic_block bb = single_pred (test_bb);
3487 basic_block target_bb;
3488 int max_insns = MAX_CONDITIONAL_EXECUTE;
3489 int n_insns;
3490
3491 /* Determine if the preceding block is an && or || block. */
3492 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3493 {
3494 ce_info->and_and_p = TRUE;
3495 target_bb = else_bb;
3496 }
3497 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3498 {
3499 ce_info->and_and_p = FALSE;
3500 target_bb = then_bb;
3501 }
3502 else
3503 target_bb = NULL_BLOCK;
3504
3505 if (target_bb && n_insns <= max_insns)
3506 {
3507 int total_insns = 0;
3508 int blocks = 0;
3509
3510 ce_info->last_test_bb = test_bb;
3511
3512 /* Found at least one && or || block, look for more. */
3513 do
3514 {
3515 ce_info->test_bb = test_bb = bb;
3516 total_insns += n_insns;
3517 blocks++;
3518
3519 if (!single_pred_p (bb))
3520 break;
3521
3522 bb = single_pred (bb);
3523 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3524 }
3525 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3526
3527 ce_info->num_multiple_test_blocks = blocks;
3528 ce_info->num_multiple_test_insns = total_insns;
3529
3530 if (ce_info->and_and_p)
3531 ce_info->num_and_and_blocks = blocks;
3532 else
3533 ce_info->num_or_or_blocks = blocks;
3534 }
3535 }
3536
3537 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3538 other than any || blocks which jump to the THEN block. */
3539 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3540 return FALSE;
3541
3542 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3543 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3544 {
3545 if (cur_edge->flags & EDGE_COMPLEX)
3546 return FALSE;
3547 }
3548
3549 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3550 {
3551 if (cur_edge->flags & EDGE_COMPLEX)
3552 return FALSE;
3553 }
3554
3555 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3556 if (EDGE_COUNT (then_bb->succs) > 0
3557 && (!single_succ_p (then_bb)
3558 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3559 || (epilogue_completed
3560 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3561 return FALSE;
3562
3563 /* If the THEN block has no successors, conditional execution can still
3564 make a conditional call. Don't do this unless the ELSE block has
3565 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3566 Check for the last insn of the THEN block being an indirect jump, which
3567 is listed as not having any successors, but confuses the rest of the CE
3568 code processing. ??? we should fix this in the future. */
3569 if (EDGE_COUNT (then_bb->succs) == 0)
3570 {
3571 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3572 {
3573 rtx_insn *last_insn = BB_END (then_bb);
3574
3575 while (last_insn
3576 && NOTE_P (last_insn)
3577 && last_insn != BB_HEAD (then_bb))
3578 last_insn = PREV_INSN (last_insn);
3579
3580 if (last_insn
3581 && JUMP_P (last_insn)
3582 && ! simplejump_p (last_insn))
3583 return FALSE;
3584
3585 join_bb = else_bb;
3586 else_bb = NULL_BLOCK;
3587 }
3588 else
3589 return FALSE;
3590 }
3591
3592 /* If the THEN block's successor is the other edge out of the TEST block,
3593 then we have an IF-THEN combo without an ELSE. */
3594 else if (single_succ (then_bb) == else_bb)
3595 {
3596 join_bb = else_bb;
3597 else_bb = NULL_BLOCK;
3598 }
3599
3600 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3601 has exactly one predecessor and one successor, and the outgoing edge
3602 is not complex, then we have an IF-THEN-ELSE combo. */
3603 else if (single_succ_p (else_bb)
3604 && single_succ (then_bb) == single_succ (else_bb)
3605 && single_pred_p (else_bb)
3606 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3607 && !(epilogue_completed
3608 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3609 join_bb = single_succ (else_bb);
3610
3611 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3612 else
3613 return FALSE;
3614
3615 num_possible_if_blocks++;
3616
3617 if (dump_file)
3618 {
3619 fprintf (dump_file,
3620 "\nIF-THEN%s block found, pass %d, start block %d "
3621 "[insn %d], then %d [%d]",
3622 (else_bb) ? "-ELSE" : "",
3623 ce_info->pass,
3624 test_bb->index,
3625 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3626 then_bb->index,
3627 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3628
3629 if (else_bb)
3630 fprintf (dump_file, ", else %d [%d]",
3631 else_bb->index,
3632 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3633
3634 fprintf (dump_file, ", join %d [%d]",
3635 join_bb->index,
3636 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3637
3638 if (ce_info->num_multiple_test_blocks > 0)
3639 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3640 ce_info->num_multiple_test_blocks,
3641 (ce_info->and_and_p) ? "&&" : "||",
3642 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3643 ce_info->last_test_bb->index,
3644 ((BB_HEAD (ce_info->last_test_bb))
3645 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3646 : -1));
3647
3648 fputc ('\n', dump_file);
3649 }
3650
3651 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3652 first condition for free, since we've already asserted that there's a
3653 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3654 we checked the FALLTHRU flag, those are already adjacent to the last IF
3655 block. */
3656 /* ??? As an enhancement, move the ELSE block. Have to deal with
3657 BLOCK notes, if by no other means than backing out the merge if they
3658 exist. Sticky enough I don't want to think about it now. */
3659 next = then_bb;
3660 if (else_bb && (next = next->next_bb) != else_bb)
3661 return FALSE;
3662 if ((next = next->next_bb) != join_bb
3663 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3664 {
3665 if (else_bb)
3666 join_bb = NULL;
3667 else
3668 return FALSE;
3669 }
3670
3671 /* Do the real work. */
3672
3673 ce_info->else_bb = else_bb;
3674 ce_info->join_bb = join_bb;
3675
3676 /* If we have && and || tests, try to first handle combining the && and ||
3677 tests into the conditional code, and if that fails, go back and handle
3678 it without the && and ||, which at present handles the && case if there
3679 was no ELSE block. */
3680 if (cond_exec_process_if_block (ce_info, TRUE))
3681 return TRUE;
3682
3683 if (ce_info->num_multiple_test_blocks)
3684 {
3685 cancel_changes (0);
3686
3687 if (cond_exec_process_if_block (ce_info, FALSE))
3688 return TRUE;
3689 }
3690
3691 return FALSE;
3692 }
3693
3694 /* Convert a branch over a trap, or a branch
3695 to a trap, into a conditional trap. */
3696
3697 static int
3698 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3699 {
3700 basic_block then_bb = then_edge->dest;
3701 basic_block else_bb = else_edge->dest;
3702 basic_block other_bb, trap_bb;
3703 rtx_insn *trap, *jump;
3704 rtx cond, seq;
3705 rtx_insn *cond_earliest;
3706 enum rtx_code code;
3707
3708 /* Locate the block with the trap instruction. */
3709 /* ??? While we look for no successors, we really ought to allow
3710 EH successors. Need to fix merge_if_block for that to work. */
3711 if ((trap = block_has_only_trap (then_bb)) != NULL)
3712 trap_bb = then_bb, other_bb = else_bb;
3713 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3714 trap_bb = else_bb, other_bb = then_bb;
3715 else
3716 return FALSE;
3717
3718 if (dump_file)
3719 {
3720 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3721 test_bb->index, trap_bb->index);
3722 }
3723
3724 /* If this is not a standard conditional jump, we can't parse it. */
3725 jump = BB_END (test_bb);
3726 cond = noce_get_condition (jump, &cond_earliest, false);
3727 if (! cond)
3728 return FALSE;
3729
3730 /* If the conditional jump is more than just a conditional jump, then
3731 we can not do if-conversion on this block. */
3732 if (! onlyjump_p (jump))
3733 return FALSE;
3734
3735 /* We must be comparing objects whose modes imply the size. */
3736 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3737 return FALSE;
3738
3739 /* Reverse the comparison code, if necessary. */
3740 code = GET_CODE (cond);
3741 if (then_bb == trap_bb)
3742 {
3743 code = reversed_comparison_code (cond, jump);
3744 if (code == UNKNOWN)
3745 return FALSE;
3746 }
3747
3748 /* Attempt to generate the conditional trap. */
3749 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3750 copy_rtx (XEXP (cond, 1)),
3751 TRAP_CODE (PATTERN (trap)));
3752 if (seq == NULL)
3753 return FALSE;
3754
3755 /* Emit the new insns before cond_earliest. */
3756 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3757
3758 /* Delete the trap block if possible. */
3759 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3760 df_set_bb_dirty (test_bb);
3761 df_set_bb_dirty (then_bb);
3762 df_set_bb_dirty (else_bb);
3763
3764 if (EDGE_COUNT (trap_bb->preds) == 0)
3765 {
3766 delete_basic_block (trap_bb);
3767 num_true_changes++;
3768 }
3769
3770 /* Wire together the blocks again. */
3771 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3772 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3773 else if (trap_bb == then_bb)
3774 {
3775 rtx lab;
3776 rtx_insn *newjump;
3777
3778 lab = JUMP_LABEL (jump);
3779 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3780 LABEL_NUSES (lab) += 1;
3781 JUMP_LABEL (newjump) = lab;
3782 emit_barrier_after (newjump);
3783 }
3784 delete_insn (jump);
3785
3786 if (can_merge_blocks_p (test_bb, other_bb))
3787 {
3788 merge_blocks (test_bb, other_bb);
3789 num_true_changes++;
3790 }
3791
3792 num_updated_if_blocks++;
3793 return TRUE;
3794 }
3795
3796 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3797 return it. */
3798
3799 static rtx_insn *
3800 block_has_only_trap (basic_block bb)
3801 {
3802 rtx_insn *trap;
3803
3804 /* We're not the exit block. */
3805 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3806 return NULL;
3807
3808 /* The block must have no successors. */
3809 if (EDGE_COUNT (bb->succs) > 0)
3810 return NULL;
3811
3812 /* The only instruction in the THEN block must be the trap. */
3813 trap = first_active_insn (bb);
3814 if (! (trap == BB_END (bb)
3815 && GET_CODE (PATTERN (trap)) == TRAP_IF
3816 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3817 return NULL;
3818
3819 return trap;
3820 }
3821
3822 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3823 transformable, but not necessarily the other. There need be no
3824 JOIN block.
3825
3826 Return TRUE if we were successful at converting the block.
3827
3828 Cases we'd like to look at:
3829
3830 (1)
3831 if (test) goto over; // x not live
3832 x = a;
3833 goto label;
3834 over:
3835
3836 becomes
3837
3838 x = a;
3839 if (! test) goto label;
3840
3841 (2)
3842 if (test) goto E; // x not live
3843 x = big();
3844 goto L;
3845 E:
3846 x = b;
3847 goto M;
3848
3849 becomes
3850
3851 x = b;
3852 if (test) goto M;
3853 x = big();
3854 goto L;
3855
3856 (3) // This one's really only interesting for targets that can do
3857 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3858 // it results in multiple branches on a cache line, which often
3859 // does not sit well with predictors.
3860
3861 if (test1) goto E; // predicted not taken
3862 x = a;
3863 if (test2) goto F;
3864 ...
3865 E:
3866 x = b;
3867 J:
3868
3869 becomes
3870
3871 x = a;
3872 if (test1) goto E;
3873 if (test2) goto F;
3874
3875 Notes:
3876
3877 (A) Don't do (2) if the branch is predicted against the block we're
3878 eliminating. Do it anyway if we can eliminate a branch; this requires
3879 that the sole successor of the eliminated block postdominate the other
3880 side of the if.
3881
3882 (B) With CE, on (3) we can steal from both sides of the if, creating
3883
3884 if (test1) x = a;
3885 if (!test1) x = b;
3886 if (test1) goto J;
3887 if (test2) goto F;
3888 ...
3889 J:
3890
3891 Again, this is most useful if J postdominates.
3892
3893 (C) CE substitutes for helpful life information.
3894
3895 (D) These heuristics need a lot of work. */
3896
3897 /* Tests for case 1 above. */
3898
3899 static int
3900 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3901 {
3902 basic_block then_bb = then_edge->dest;
3903 basic_block else_bb = else_edge->dest;
3904 basic_block new_bb;
3905 int then_bb_index, then_prob;
3906 rtx else_target = NULL_RTX;
3907
3908 /* If we are partitioning hot/cold basic blocks, we don't want to
3909 mess up unconditional or indirect jumps that cross between hot
3910 and cold sections.
3911
3912 Basic block partitioning may result in some jumps that appear to
3913 be optimizable (or blocks that appear to be mergeable), but which really
3914 must be left untouched (they are required to make it safely across
3915 partition boundaries). See the comments at the top of
3916 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3917
3918 if ((BB_END (then_bb)
3919 && JUMP_P (BB_END (then_bb))
3920 && CROSSING_JUMP_P (BB_END (then_bb)))
3921 || (BB_END (test_bb)
3922 && JUMP_P (BB_END (test_bb))
3923 && CROSSING_JUMP_P (BB_END (test_bb)))
3924 || (BB_END (else_bb)
3925 && JUMP_P (BB_END (else_bb))
3926 && CROSSING_JUMP_P (BB_END (else_bb))))
3927 return FALSE;
3928
3929 /* THEN has one successor. */
3930 if (!single_succ_p (then_bb))
3931 return FALSE;
3932
3933 /* THEN does not fall through, but is not strange either. */
3934 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3935 return FALSE;
3936
3937 /* THEN has one predecessor. */
3938 if (!single_pred_p (then_bb))
3939 return FALSE;
3940
3941 /* THEN must do something. */
3942 if (forwarder_block_p (then_bb))
3943 return FALSE;
3944
3945 num_possible_if_blocks++;
3946 if (dump_file)
3947 fprintf (dump_file,
3948 "\nIF-CASE-1 found, start %d, then %d\n",
3949 test_bb->index, then_bb->index);
3950
3951 if (then_edge->probability)
3952 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3953 else
3954 then_prob = REG_BR_PROB_BASE / 2;
3955
3956 /* We're speculating from the THEN path, we want to make sure the cost
3957 of speculation is within reason. */
3958 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3959 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3960 predictable_edge_p (then_edge)))))
3961 return FALSE;
3962
3963 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3964 {
3965 rtx_insn *jump = BB_END (else_edge->src);
3966 gcc_assert (JUMP_P (jump));
3967 else_target = JUMP_LABEL (jump);
3968 }
3969
3970 /* Registers set are dead, or are predicable. */
3971 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3972 single_succ_edge (then_bb), 1))
3973 return FALSE;
3974
3975 /* Conversion went ok, including moving the insns and fixing up the
3976 jump. Adjust the CFG to match. */
3977
3978 /* We can avoid creating a new basic block if then_bb is immediately
3979 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3980 through to else_bb. */
3981
3982 if (then_bb->next_bb == else_bb
3983 && then_bb->prev_bb == test_bb
3984 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3985 {
3986 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3987 new_bb = 0;
3988 }
3989 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3990 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3991 else_bb, else_target);
3992 else
3993 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3994 else_bb);
3995
3996 df_set_bb_dirty (test_bb);
3997 df_set_bb_dirty (else_bb);
3998
3999 then_bb_index = then_bb->index;
4000 delete_basic_block (then_bb);
4001
4002 /* Make rest of code believe that the newly created block is the THEN_BB
4003 block we removed. */
4004 if (new_bb)
4005 {
4006 df_bb_replace (then_bb_index, new_bb);
4007 /* This should have been done above via force_nonfallthru_and_redirect
4008 (possibly called from redirect_edge_and_branch_force). */
4009 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4010 }
4011
4012 num_true_changes++;
4013 num_updated_if_blocks++;
4014
4015 return TRUE;
4016 }
4017
4018 /* Test for case 2 above. */
4019
4020 static int
4021 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4022 {
4023 basic_block then_bb = then_edge->dest;
4024 basic_block else_bb = else_edge->dest;
4025 edge else_succ;
4026 int then_prob, else_prob;
4027
4028 /* We do not want to speculate (empty) loop latches. */
4029 if (current_loops
4030 && else_bb->loop_father->latch == else_bb)
4031 return FALSE;
4032
4033 /* If we are partitioning hot/cold basic blocks, we don't want to
4034 mess up unconditional or indirect jumps that cross between hot
4035 and cold sections.
4036
4037 Basic block partitioning may result in some jumps that appear to
4038 be optimizable (or blocks that appear to be mergeable), but which really
4039 must be left untouched (they are required to make it safely across
4040 partition boundaries). See the comments at the top of
4041 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4042
4043 if ((BB_END (then_bb)
4044 && JUMP_P (BB_END (then_bb))
4045 && CROSSING_JUMP_P (BB_END (then_bb)))
4046 || (BB_END (test_bb)
4047 && JUMP_P (BB_END (test_bb))
4048 && CROSSING_JUMP_P (BB_END (test_bb)))
4049 || (BB_END (else_bb)
4050 && JUMP_P (BB_END (else_bb))
4051 && CROSSING_JUMP_P (BB_END (else_bb))))
4052 return FALSE;
4053
4054 /* ELSE has one successor. */
4055 if (!single_succ_p (else_bb))
4056 return FALSE;
4057 else
4058 else_succ = single_succ_edge (else_bb);
4059
4060 /* ELSE outgoing edge is not complex. */
4061 if (else_succ->flags & EDGE_COMPLEX)
4062 return FALSE;
4063
4064 /* ELSE has one predecessor. */
4065 if (!single_pred_p (else_bb))
4066 return FALSE;
4067
4068 /* THEN is not EXIT. */
4069 if (then_bb->index < NUM_FIXED_BLOCKS)
4070 return FALSE;
4071
4072 if (else_edge->probability)
4073 {
4074 else_prob = else_edge->probability;
4075 then_prob = REG_BR_PROB_BASE - else_prob;
4076 }
4077 else
4078 {
4079 else_prob = REG_BR_PROB_BASE / 2;
4080 then_prob = REG_BR_PROB_BASE / 2;
4081 }
4082
4083 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4084 if (else_prob > then_prob)
4085 ;
4086 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4087 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4088 else_succ->dest))
4089 ;
4090 else
4091 return FALSE;
4092
4093 num_possible_if_blocks++;
4094 if (dump_file)
4095 fprintf (dump_file,
4096 "\nIF-CASE-2 found, start %d, else %d\n",
4097 test_bb->index, else_bb->index);
4098
4099 /* We're speculating from the ELSE path, we want to make sure the cost
4100 of speculation is within reason. */
4101 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4102 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4103 predictable_edge_p (else_edge)))))
4104 return FALSE;
4105
4106 /* Registers set are dead, or are predicable. */
4107 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4108 return FALSE;
4109
4110 /* Conversion went ok, including moving the insns and fixing up the
4111 jump. Adjust the CFG to match. */
4112
4113 df_set_bb_dirty (test_bb);
4114 df_set_bb_dirty (then_bb);
4115 delete_basic_block (else_bb);
4116
4117 num_true_changes++;
4118 num_updated_if_blocks++;
4119
4120 /* ??? We may now fallthru from one of THEN's successors into a join
4121 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4122
4123 return TRUE;
4124 }
4125
4126 /* Used by the code above to perform the actual rtl transformations.
4127 Return TRUE if successful.
4128
4129 TEST_BB is the block containing the conditional branch. MERGE_BB
4130 is the block containing the code to manipulate. DEST_EDGE is an
4131 edge representing a jump to the join block; after the conversion,
4132 TEST_BB should be branching to its destination.
4133 REVERSEP is true if the sense of the branch should be reversed. */
4134
4135 static int
4136 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4137 basic_block other_bb, edge dest_edge, int reversep)
4138 {
4139 basic_block new_dest = dest_edge->dest;
4140 rtx_insn *head, *end, *jump;
4141 rtx_insn *earliest = NULL;
4142 rtx old_dest;
4143 bitmap merge_set = NULL;
4144 /* Number of pending changes. */
4145 int n_validated_changes = 0;
4146 rtx new_dest_label = NULL_RTX;
4147
4148 jump = BB_END (test_bb);
4149
4150 /* Find the extent of the real code in the merge block. */
4151 head = BB_HEAD (merge_bb);
4152 end = BB_END (merge_bb);
4153
4154 while (DEBUG_INSN_P (end) && end != head)
4155 end = PREV_INSN (end);
4156
4157 /* If merge_bb ends with a tablejump, predicating/moving insn's
4158 into test_bb and then deleting merge_bb will result in the jumptable
4159 that follows merge_bb being removed along with merge_bb and then we
4160 get an unresolved reference to the jumptable. */
4161 if (tablejump_p (end, NULL, NULL))
4162 return FALSE;
4163
4164 if (LABEL_P (head))
4165 head = NEXT_INSN (head);
4166 while (DEBUG_INSN_P (head) && head != end)
4167 head = NEXT_INSN (head);
4168 if (NOTE_P (head))
4169 {
4170 if (head == end)
4171 {
4172 head = end = NULL;
4173 goto no_body;
4174 }
4175 head = NEXT_INSN (head);
4176 while (DEBUG_INSN_P (head) && head != end)
4177 head = NEXT_INSN (head);
4178 }
4179
4180 if (JUMP_P (end))
4181 {
4182 if (!onlyjump_p (end))
4183 return FALSE;
4184 if (head == end)
4185 {
4186 head = end = NULL;
4187 goto no_body;
4188 }
4189 end = PREV_INSN (end);
4190 while (DEBUG_INSN_P (end) && end != head)
4191 end = PREV_INSN (end);
4192 }
4193
4194 /* Don't move frame-related insn across the conditional branch. This
4195 can lead to one of the paths of the branch having wrong unwind info. */
4196 if (epilogue_completed)
4197 {
4198 rtx_insn *insn = head;
4199 while (1)
4200 {
4201 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4202 return FALSE;
4203 if (insn == end)
4204 break;
4205 insn = NEXT_INSN (insn);
4206 }
4207 }
4208
4209 /* Disable handling dead code by conditional execution if the machine needs
4210 to do anything funny with the tests, etc. */
4211 #ifndef IFCVT_MODIFY_TESTS
4212 if (targetm.have_conditional_execution ())
4213 {
4214 /* In the conditional execution case, we have things easy. We know
4215 the condition is reversible. We don't have to check life info
4216 because we're going to conditionally execute the code anyway.
4217 All that's left is making sure the insns involved can actually
4218 be predicated. */
4219
4220 rtx cond;
4221
4222 cond = cond_exec_get_condition (jump);
4223 if (! cond)
4224 return FALSE;
4225
4226 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4227 int prob_val = (note ? XINT (note, 0) : -1);
4228
4229 if (reversep)
4230 {
4231 enum rtx_code rev = reversed_comparison_code (cond, jump);
4232 if (rev == UNKNOWN)
4233 return FALSE;
4234 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4235 XEXP (cond, 1));
4236 if (prob_val >= 0)
4237 prob_val = REG_BR_PROB_BASE - prob_val;
4238 }
4239
4240 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4241 && verify_changes (0))
4242 n_validated_changes = num_validated_changes ();
4243 else
4244 cancel_changes (0);
4245
4246 earliest = jump;
4247 }
4248 #endif
4249
4250 /* If we allocated new pseudos (e.g. in the conditional move
4251 expander called from noce_emit_cmove), we must resize the
4252 array first. */
4253 if (max_regno < max_reg_num ())
4254 max_regno = max_reg_num ();
4255
4256 /* Try the NCE path if the CE path did not result in any changes. */
4257 if (n_validated_changes == 0)
4258 {
4259 rtx cond;
4260 rtx_insn *insn;
4261 regset live;
4262 bool success;
4263
4264 /* In the non-conditional execution case, we have to verify that there
4265 are no trapping operations, no calls, no references to memory, and
4266 that any registers modified are dead at the branch site. */
4267
4268 if (!any_condjump_p (jump))
4269 return FALSE;
4270
4271 /* Find the extent of the conditional. */
4272 cond = noce_get_condition (jump, &earliest, false);
4273 if (!cond)
4274 return FALSE;
4275
4276 live = BITMAP_ALLOC (&reg_obstack);
4277 simulate_backwards_to_point (merge_bb, live, end);
4278 success = can_move_insns_across (head, end, earliest, jump,
4279 merge_bb, live,
4280 df_get_live_in (other_bb), NULL);
4281 BITMAP_FREE (live);
4282 if (!success)
4283 return FALSE;
4284
4285 /* Collect the set of registers set in MERGE_BB. */
4286 merge_set = BITMAP_ALLOC (&reg_obstack);
4287
4288 FOR_BB_INSNS (merge_bb, insn)
4289 if (NONDEBUG_INSN_P (insn))
4290 df_simulate_find_defs (insn, merge_set);
4291
4292 /* If shrink-wrapping, disable this optimization when test_bb is
4293 the first basic block and merge_bb exits. The idea is to not
4294 move code setting up a return register as that may clobber a
4295 register used to pass function parameters, which then must be
4296 saved in caller-saved regs. A caller-saved reg requires the
4297 prologue, killing a shrink-wrap opportunity. */
4298 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4299 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4300 && single_succ_p (new_dest)
4301 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4302 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4303 {
4304 regset return_regs;
4305 unsigned int i;
4306
4307 return_regs = BITMAP_ALLOC (&reg_obstack);
4308
4309 /* Start off with the intersection of regs used to pass
4310 params and regs used to return values. */
4311 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4312 if (FUNCTION_ARG_REGNO_P (i)
4313 && targetm.calls.function_value_regno_p (i))
4314 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4315
4316 bitmap_and_into (return_regs,
4317 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4318 bitmap_and_into (return_regs,
4319 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4320 if (!bitmap_empty_p (return_regs))
4321 {
4322 FOR_BB_INSNS_REVERSE (new_dest, insn)
4323 if (NONDEBUG_INSN_P (insn))
4324 {
4325 df_ref def;
4326
4327 /* If this insn sets any reg in return_regs, add all
4328 reg uses to the set of regs we're interested in. */
4329 FOR_EACH_INSN_DEF (def, insn)
4330 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4331 {
4332 df_simulate_uses (insn, return_regs);
4333 break;
4334 }
4335 }
4336 if (bitmap_intersect_p (merge_set, return_regs))
4337 {
4338 BITMAP_FREE (return_regs);
4339 BITMAP_FREE (merge_set);
4340 return FALSE;
4341 }
4342 }
4343 BITMAP_FREE (return_regs);
4344 }
4345 }
4346
4347 no_body:
4348 /* We don't want to use normal invert_jump or redirect_jump because
4349 we don't want to delete_insn called. Also, we want to do our own
4350 change group management. */
4351
4352 old_dest = JUMP_LABEL (jump);
4353 if (other_bb != new_dest)
4354 {
4355 if (JUMP_P (BB_END (dest_edge->src)))
4356 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4357 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4358 new_dest_label = ret_rtx;
4359 else
4360 new_dest_label = block_label (new_dest);
4361
4362 if (reversep
4363 ? ! invert_jump_1 (jump, new_dest_label)
4364 : ! redirect_jump_1 (jump, new_dest_label))
4365 goto cancel;
4366 }
4367
4368 if (verify_changes (n_validated_changes))
4369 confirm_change_group ();
4370 else
4371 goto cancel;
4372
4373 if (other_bb != new_dest)
4374 {
4375 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4376
4377 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4378 if (reversep)
4379 {
4380 gcov_type count, probability;
4381 count = BRANCH_EDGE (test_bb)->count;
4382 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4383 FALLTHRU_EDGE (test_bb)->count = count;
4384 probability = BRANCH_EDGE (test_bb)->probability;
4385 BRANCH_EDGE (test_bb)->probability
4386 = FALLTHRU_EDGE (test_bb)->probability;
4387 FALLTHRU_EDGE (test_bb)->probability = probability;
4388 update_br_prob_note (test_bb);
4389 }
4390 }
4391
4392 /* Move the insns out of MERGE_BB to before the branch. */
4393 if (head != NULL)
4394 {
4395 rtx_insn *insn;
4396
4397 if (end == BB_END (merge_bb))
4398 BB_END (merge_bb) = PREV_INSN (head);
4399
4400 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4401 notes being moved might become invalid. */
4402 insn = head;
4403 do
4404 {
4405 rtx note;
4406
4407 if (! INSN_P (insn))
4408 continue;
4409 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4410 if (! note)
4411 continue;
4412 remove_note (insn, note);
4413 } while (insn != end && (insn = NEXT_INSN (insn)));
4414
4415 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4416 notes referring to the registers being set might become invalid. */
4417 if (merge_set)
4418 {
4419 unsigned i;
4420 bitmap_iterator bi;
4421
4422 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4423 remove_reg_equal_equiv_notes_for_regno (i);
4424
4425 BITMAP_FREE (merge_set);
4426 }
4427
4428 reorder_insns (head, end, PREV_INSN (earliest));
4429 }
4430
4431 /* Remove the jump and edge if we can. */
4432 if (other_bb == new_dest)
4433 {
4434 delete_insn (jump);
4435 remove_edge (BRANCH_EDGE (test_bb));
4436 /* ??? Can't merge blocks here, as then_bb is still in use.
4437 At minimum, the merge will get done just before bb-reorder. */
4438 }
4439
4440 return TRUE;
4441
4442 cancel:
4443 cancel_changes (0);
4444
4445 if (merge_set)
4446 BITMAP_FREE (merge_set);
4447
4448 return FALSE;
4449 }
4450 \f
4451 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4452 we are after combine pass. */
4453
4454 static void
4455 if_convert (bool after_combine)
4456 {
4457 basic_block bb;
4458 int pass;
4459
4460 if (optimize == 1)
4461 {
4462 df_live_add_problem ();
4463 df_live_set_all_dirty ();
4464 }
4465
4466 /* Record whether we are after combine pass. */
4467 ifcvt_after_combine = after_combine;
4468 num_possible_if_blocks = 0;
4469 num_updated_if_blocks = 0;
4470 num_true_changes = 0;
4471
4472 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4473 mark_loop_exit_edges ();
4474 loop_optimizer_finalize ();
4475 free_dominance_info (CDI_DOMINATORS);
4476
4477 /* Compute postdominators. */
4478 calculate_dominance_info (CDI_POST_DOMINATORS);
4479
4480 df_set_flags (DF_LR_RUN_DCE);
4481
4482 /* Go through each of the basic blocks looking for things to convert. If we
4483 have conditional execution, we make multiple passes to allow us to handle
4484 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4485 pass = 0;
4486 do
4487 {
4488 df_analyze ();
4489 /* Only need to do dce on the first pass. */
4490 df_clear_flags (DF_LR_RUN_DCE);
4491 cond_exec_changed_p = FALSE;
4492 pass++;
4493
4494 #ifdef IFCVT_MULTIPLE_DUMPS
4495 if (dump_file && pass > 1)
4496 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4497 #endif
4498
4499 FOR_EACH_BB_FN (bb, cfun)
4500 {
4501 basic_block new_bb;
4502 while (!df_get_bb_dirty (bb)
4503 && (new_bb = find_if_header (bb, pass)) != NULL)
4504 bb = new_bb;
4505 }
4506
4507 #ifdef IFCVT_MULTIPLE_DUMPS
4508 if (dump_file && cond_exec_changed_p)
4509 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4510 #endif
4511 }
4512 while (cond_exec_changed_p);
4513
4514 #ifdef IFCVT_MULTIPLE_DUMPS
4515 if (dump_file)
4516 fprintf (dump_file, "\n\n========== no more changes\n");
4517 #endif
4518
4519 free_dominance_info (CDI_POST_DOMINATORS);
4520
4521 if (dump_file)
4522 fflush (dump_file);
4523
4524 clear_aux_for_blocks ();
4525
4526 /* If we allocated new pseudos, we must resize the array for sched1. */
4527 if (max_regno < max_reg_num ())
4528 max_regno = max_reg_num ();
4529
4530 /* Write the final stats. */
4531 if (dump_file && num_possible_if_blocks > 0)
4532 {
4533 fprintf (dump_file,
4534 "\n%d possible IF blocks searched.\n",
4535 num_possible_if_blocks);
4536 fprintf (dump_file,
4537 "%d IF blocks converted.\n",
4538 num_updated_if_blocks);
4539 fprintf (dump_file,
4540 "%d true changes made.\n\n\n",
4541 num_true_changes);
4542 }
4543
4544 if (optimize == 1)
4545 df_remove_problem (df_live);
4546
4547 #ifdef ENABLE_CHECKING
4548 verify_flow_info ();
4549 #endif
4550 }
4551 \f
4552 /* If-conversion and CFG cleanup. */
4553 static unsigned int
4554 rest_of_handle_if_conversion (void)
4555 {
4556 if (flag_if_conversion)
4557 {
4558 if (dump_file)
4559 {
4560 dump_reg_info (dump_file);
4561 dump_flow_info (dump_file, dump_flags);
4562 }
4563 cleanup_cfg (CLEANUP_EXPENSIVE);
4564 if_convert (false);
4565 }
4566
4567 cleanup_cfg (0);
4568 return 0;
4569 }
4570
4571 namespace {
4572
4573 const pass_data pass_data_rtl_ifcvt =
4574 {
4575 RTL_PASS, /* type */
4576 "ce1", /* name */
4577 OPTGROUP_NONE, /* optinfo_flags */
4578 TV_IFCVT, /* tv_id */
4579 0, /* properties_required */
4580 0, /* properties_provided */
4581 0, /* properties_destroyed */
4582 0, /* todo_flags_start */
4583 TODO_df_finish, /* todo_flags_finish */
4584 };
4585
4586 class pass_rtl_ifcvt : public rtl_opt_pass
4587 {
4588 public:
4589 pass_rtl_ifcvt (gcc::context *ctxt)
4590 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4591 {}
4592
4593 /* opt_pass methods: */
4594 virtual bool gate (function *)
4595 {
4596 return (optimize > 0) && dbg_cnt (if_conversion);
4597 }
4598
4599 virtual unsigned int execute (function *)
4600 {
4601 return rest_of_handle_if_conversion ();
4602 }
4603
4604 }; // class pass_rtl_ifcvt
4605
4606 } // anon namespace
4607
4608 rtl_opt_pass *
4609 make_pass_rtl_ifcvt (gcc::context *ctxt)
4610 {
4611 return new pass_rtl_ifcvt (ctxt);
4612 }
4613
4614
4615 /* Rerun if-conversion, as combine may have simplified things enough
4616 to now meet sequence length restrictions. */
4617
4618 namespace {
4619
4620 const pass_data pass_data_if_after_combine =
4621 {
4622 RTL_PASS, /* type */
4623 "ce2", /* name */
4624 OPTGROUP_NONE, /* optinfo_flags */
4625 TV_IFCVT, /* tv_id */
4626 0, /* properties_required */
4627 0, /* properties_provided */
4628 0, /* properties_destroyed */
4629 0, /* todo_flags_start */
4630 TODO_df_finish, /* todo_flags_finish */
4631 };
4632
4633 class pass_if_after_combine : public rtl_opt_pass
4634 {
4635 public:
4636 pass_if_after_combine (gcc::context *ctxt)
4637 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4638 {}
4639
4640 /* opt_pass methods: */
4641 virtual bool gate (function *)
4642 {
4643 return optimize > 0 && flag_if_conversion
4644 && dbg_cnt (if_after_combine);
4645 }
4646
4647 virtual unsigned int execute (function *)
4648 {
4649 if_convert (true);
4650 return 0;
4651 }
4652
4653 }; // class pass_if_after_combine
4654
4655 } // anon namespace
4656
4657 rtl_opt_pass *
4658 make_pass_if_after_combine (gcc::context *ctxt)
4659 {
4660 return new pass_if_after_combine (ctxt);
4661 }
4662
4663
4664 namespace {
4665
4666 const pass_data pass_data_if_after_reload =
4667 {
4668 RTL_PASS, /* type */
4669 "ce3", /* name */
4670 OPTGROUP_NONE, /* optinfo_flags */
4671 TV_IFCVT2, /* tv_id */
4672 0, /* properties_required */
4673 0, /* properties_provided */
4674 0, /* properties_destroyed */
4675 0, /* todo_flags_start */
4676 TODO_df_finish, /* todo_flags_finish */
4677 };
4678
4679 class pass_if_after_reload : public rtl_opt_pass
4680 {
4681 public:
4682 pass_if_after_reload (gcc::context *ctxt)
4683 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4684 {}
4685
4686 /* opt_pass methods: */
4687 virtual bool gate (function *)
4688 {
4689 return optimize > 0 && flag_if_conversion2
4690 && dbg_cnt (if_after_reload);
4691 }
4692
4693 virtual unsigned int execute (function *)
4694 {
4695 if_convert (true);
4696 return 0;
4697 }
4698
4699 }; // class pass_if_after_reload
4700
4701 } // anon namespace
4702
4703 rtl_opt_pass *
4704 make_pass_if_after_reload (gcc::context *ctxt)
4705 {
4706 return new pass_if_after_reload (ctxt);
4707 }