re PR rtl-optimization/54900 (write introduction incorrect wrt the C11 memory model...
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "vec.h"
46 #include "pointer-set.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
49
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
62
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
68
69 #define IFCVT_MULTIPLE_DUMPS 1
70
71 #define NULL_BLOCK ((basic_block) NULL)
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
110 \f
111 /* Count the number of non-jump active insns in BB. */
112
113 static int
114 count_bb_insns (const_basic_block bb)
115 {
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
118
119 while (1)
120 {
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
123
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
127 }
128
129 return count;
130 }
131
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
135
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
139
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
142 {
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146
147 /* Our branch probability/scaling factors are just estimates and don't
148 account for cases where we can get speculation for free and other
149 secondary benefits. So we fudge the scale factor to make speculating
150 appear a little more profitable. */
151 scale += REG_BR_PROB_BASE / 8;
152 max_cost *= scale;
153
154 while (1)
155 {
156 if (NONJUMP_INSN_P (insn))
157 {
158 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
159 if (cost == 0)
160 return false;
161
162 /* If this instruction is the load or set of a "stack" register,
163 such as a floating point register on x87, then the cost of
164 speculatively executing this insn may need to include
165 the additional cost of popping its result off of the
166 register stack. Unfortunately, correctly recognizing and
167 accounting for this additional overhead is tricky, so for
168 now we simply prohibit such speculative execution. */
169 #ifdef STACK_REGS
170 {
171 rtx set = single_set (insn);
172 if (set && STACK_REG_P (SET_DEST (set)))
173 return false;
174 }
175 #endif
176
177 count += cost;
178 if (count >= max_cost)
179 return false;
180 }
181 else if (CALL_P (insn))
182 return false;
183
184 if (insn == BB_END (bb))
185 break;
186 insn = NEXT_INSN (insn);
187 }
188
189 return true;
190 }
191
192 /* Return the first non-jump active insn in the basic block. */
193
194 static rtx
195 first_active_insn (basic_block bb)
196 {
197 rtx insn = BB_HEAD (bb);
198
199 if (LABEL_P (insn))
200 {
201 if (insn == BB_END (bb))
202 return NULL_RTX;
203 insn = NEXT_INSN (insn);
204 }
205
206 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
207 {
208 if (insn == BB_END (bb))
209 return NULL_RTX;
210 insn = NEXT_INSN (insn);
211 }
212
213 if (JUMP_P (insn))
214 return NULL_RTX;
215
216 return insn;
217 }
218
219 /* Return the last non-jump active (non-jump) insn in the basic block. */
220
221 static rtx
222 last_active_insn (basic_block bb, int skip_use_p)
223 {
224 rtx insn = BB_END (bb);
225 rtx head = BB_HEAD (bb);
226
227 while (NOTE_P (insn)
228 || JUMP_P (insn)
229 || DEBUG_INSN_P (insn)
230 || (skip_use_p
231 && NONJUMP_INSN_P (insn)
232 && GET_CODE (PATTERN (insn)) == USE))
233 {
234 if (insn == head)
235 return NULL_RTX;
236 insn = PREV_INSN (insn);
237 }
238
239 if (LABEL_P (insn))
240 return NULL_RTX;
241
242 return insn;
243 }
244
245 /* Return the active insn before INSN inside basic block CURR_BB. */
246
247 static rtx
248 find_active_insn_before (basic_block curr_bb, rtx insn)
249 {
250 if (!insn || insn == BB_HEAD (curr_bb))
251 return NULL_RTX;
252
253 while ((insn = PREV_INSN (insn)) != NULL_RTX)
254 {
255 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
256 break;
257
258 /* No other active insn all the way to the start of the basic block. */
259 if (insn == BB_HEAD (curr_bb))
260 return NULL_RTX;
261 }
262
263 return insn;
264 }
265
266 /* Return the active insn after INSN inside basic block CURR_BB. */
267
268 static rtx
269 find_active_insn_after (basic_block curr_bb, rtx insn)
270 {
271 if (!insn || insn == BB_END (curr_bb))
272 return NULL_RTX;
273
274 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
275 {
276 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
277 break;
278
279 /* No other active insn all the way to the end of the basic block. */
280 if (insn == BB_END (curr_bb))
281 return NULL_RTX;
282 }
283
284 return insn;
285 }
286
287 /* Return the basic block reached by falling though the basic block BB. */
288
289 static basic_block
290 block_fallthru (basic_block bb)
291 {
292 edge e = find_fallthru_edge (bb->succs);
293
294 return (e) ? e->dest : NULL_BLOCK;
295 }
296 \f
297 /* Go through a bunch of insns, converting them to conditional
298 execution format if possible. Return TRUE if all of the non-note
299 insns were processed. */
300
301 static int
302 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
303 /* if block information */rtx start,
304 /* first insn to look at */rtx end,
305 /* last insn to look at */rtx test,
306 /* conditional execution test */rtx prob_val,
307 /* probability of branch taken. */int mod_ok)
308 {
309 int must_be_last = FALSE;
310 rtx insn;
311 rtx xtest;
312 rtx pattern;
313
314 if (!start || !end)
315 return FALSE;
316
317 for (insn = start; ; insn = NEXT_INSN (insn))
318 {
319 /* dwarf2out can't cope with conditional prologues. */
320 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
321 return FALSE;
322
323 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
324 goto insn_done;
325
326 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
327
328 /* Remove USE insns that get in the way. */
329 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
330 {
331 /* ??? Ug. Actually unlinking the thing is problematic,
332 given what we'd have to coordinate with our callers. */
333 SET_INSN_DELETED (insn);
334 goto insn_done;
335 }
336
337 /* Last insn wasn't last? */
338 if (must_be_last)
339 return FALSE;
340
341 if (modified_in_p (test, insn))
342 {
343 if (!mod_ok)
344 return FALSE;
345 must_be_last = TRUE;
346 }
347
348 /* Now build the conditional form of the instruction. */
349 pattern = PATTERN (insn);
350 xtest = copy_rtx (test);
351
352 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
353 two conditions. */
354 if (GET_CODE (pattern) == COND_EXEC)
355 {
356 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
357 return FALSE;
358
359 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
360 COND_EXEC_TEST (pattern));
361 pattern = COND_EXEC_CODE (pattern);
362 }
363
364 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
365
366 /* If the machine needs to modify the insn being conditionally executed,
367 say for example to force a constant integer operand into a temp
368 register, do so here. */
369 #ifdef IFCVT_MODIFY_INSN
370 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
371 if (! pattern)
372 return FALSE;
373 #endif
374
375 validate_change (insn, &PATTERN (insn), pattern, 1);
376
377 if (CALL_P (insn) && prob_val)
378 validate_change (insn, &REG_NOTES (insn),
379 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
380 REG_NOTES (insn)), 1);
381
382 insn_done:
383 if (insn == end)
384 break;
385 }
386
387 return TRUE;
388 }
389
390 /* Return the condition for a jump. Do not do any special processing. */
391
392 static rtx
393 cond_exec_get_condition (rtx jump)
394 {
395 rtx test_if, cond;
396
397 if (any_condjump_p (jump))
398 test_if = SET_SRC (pc_set (jump));
399 else
400 return NULL_RTX;
401 cond = XEXP (test_if, 0);
402
403 /* If this branches to JUMP_LABEL when the condition is false,
404 reverse the condition. */
405 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
406 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
407 {
408 enum rtx_code rev = reversed_comparison_code (cond, jump);
409 if (rev == UNKNOWN)
410 return NULL_RTX;
411
412 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
413 XEXP (cond, 1));
414 }
415
416 return cond;
417 }
418
419 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
420 to conditional execution. Return TRUE if we were successful at
421 converting the block. */
422
423 static int
424 cond_exec_process_if_block (ce_if_block_t * ce_info,
425 /* if block information */int do_multiple_p)
426 {
427 basic_block test_bb = ce_info->test_bb; /* last test block */
428 basic_block then_bb = ce_info->then_bb; /* THEN */
429 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
430 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
431 rtx then_start; /* first insn in THEN block */
432 rtx then_end; /* last insn + 1 in THEN block */
433 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
434 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
435 int max; /* max # of insns to convert. */
436 int then_mod_ok; /* whether conditional mods are ok in THEN */
437 rtx true_expr; /* test for else block insns */
438 rtx false_expr; /* test for then block insns */
439 rtx true_prob_val; /* probability of else block */
440 rtx false_prob_val; /* probability of then block */
441 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
442 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
443 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
444 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
445 int then_n_insns, else_n_insns, n_insns;
446 enum rtx_code false_code;
447
448 /* If test is comprised of && or || elements, and we've failed at handling
449 all of them together, just use the last test if it is the special case of
450 && elements without an ELSE block. */
451 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
452 {
453 if (else_bb || ! ce_info->and_and_p)
454 return FALSE;
455
456 ce_info->test_bb = test_bb = ce_info->last_test_bb;
457 ce_info->num_multiple_test_blocks = 0;
458 ce_info->num_and_and_blocks = 0;
459 ce_info->num_or_or_blocks = 0;
460 }
461
462 /* Find the conditional jump to the ELSE or JOIN part, and isolate
463 the test. */
464 test_expr = cond_exec_get_condition (BB_END (test_bb));
465 if (! test_expr)
466 return FALSE;
467
468 /* If the conditional jump is more than just a conditional jump,
469 then we can not do conditional execution conversion on this block. */
470 if (! onlyjump_p (BB_END (test_bb)))
471 return FALSE;
472
473 /* Collect the bounds of where we're to search, skipping any labels, jumps
474 and notes at the beginning and end of the block. Then count the total
475 number of insns and see if it is small enough to convert. */
476 then_start = first_active_insn (then_bb);
477 then_end = last_active_insn (then_bb, TRUE);
478 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
479 n_insns = then_n_insns;
480 max = MAX_CONDITIONAL_EXECUTE;
481
482 if (else_bb)
483 {
484 int n_matching;
485
486 max *= 2;
487 else_start = first_active_insn (else_bb);
488 else_end = last_active_insn (else_bb, TRUE);
489 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
490 n_insns += else_n_insns;
491
492 /* Look for matching sequences at the head and tail of the two blocks,
493 and limit the range of insns to be converted if possible. */
494 n_matching = flow_find_cross_jump (then_bb, else_bb,
495 &then_first_tail, &else_first_tail,
496 NULL);
497 if (then_first_tail == BB_HEAD (then_bb))
498 then_start = then_end = NULL_RTX;
499 if (else_first_tail == BB_HEAD (else_bb))
500 else_start = else_end = NULL_RTX;
501
502 if (n_matching > 0)
503 {
504 if (then_end)
505 then_end = find_active_insn_before (then_bb, then_first_tail);
506 if (else_end)
507 else_end = find_active_insn_before (else_bb, else_first_tail);
508 n_insns -= 2 * n_matching;
509 }
510
511 if (then_start && else_start)
512 {
513 int longest_match = MIN (then_n_insns - n_matching,
514 else_n_insns - n_matching);
515 n_matching
516 = flow_find_head_matching_sequence (then_bb, else_bb,
517 &then_last_head,
518 &else_last_head,
519 longest_match);
520
521 if (n_matching > 0)
522 {
523 rtx insn;
524
525 /* We won't pass the insns in the head sequence to
526 cond_exec_process_insns, so we need to test them here
527 to make sure that they don't clobber the condition. */
528 for (insn = BB_HEAD (then_bb);
529 insn != NEXT_INSN (then_last_head);
530 insn = NEXT_INSN (insn))
531 if (!LABEL_P (insn) && !NOTE_P (insn)
532 && !DEBUG_INSN_P (insn)
533 && modified_in_p (test_expr, insn))
534 return FALSE;
535 }
536
537 if (then_last_head == then_end)
538 then_start = then_end = NULL_RTX;
539 if (else_last_head == else_end)
540 else_start = else_end = NULL_RTX;
541
542 if (n_matching > 0)
543 {
544 if (then_start)
545 then_start = find_active_insn_after (then_bb, then_last_head);
546 if (else_start)
547 else_start = find_active_insn_after (else_bb, else_last_head);
548 n_insns -= 2 * n_matching;
549 }
550 }
551 }
552
553 if (n_insns > max)
554 return FALSE;
555
556 /* Map test_expr/test_jump into the appropriate MD tests to use on
557 the conditionally executed code. */
558
559 true_expr = test_expr;
560
561 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
562 if (false_code != UNKNOWN)
563 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
564 XEXP (true_expr, 0), XEXP (true_expr, 1));
565 else
566 false_expr = NULL_RTX;
567
568 #ifdef IFCVT_MODIFY_TESTS
569 /* If the machine description needs to modify the tests, such as setting a
570 conditional execution register from a comparison, it can do so here. */
571 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
572
573 /* See if the conversion failed. */
574 if (!true_expr || !false_expr)
575 goto fail;
576 #endif
577
578 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
579 if (true_prob_val)
580 {
581 true_prob_val = XEXP (true_prob_val, 0);
582 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
583 }
584 else
585 false_prob_val = NULL_RTX;
586
587 /* If we have && or || tests, do them here. These tests are in the adjacent
588 blocks after the first block containing the test. */
589 if (ce_info->num_multiple_test_blocks > 0)
590 {
591 basic_block bb = test_bb;
592 basic_block last_test_bb = ce_info->last_test_bb;
593
594 if (! false_expr)
595 goto fail;
596
597 do
598 {
599 rtx start, end;
600 rtx t, f;
601 enum rtx_code f_code;
602
603 bb = block_fallthru (bb);
604 start = first_active_insn (bb);
605 end = last_active_insn (bb, TRUE);
606 if (start
607 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
608 false_prob_val, FALSE))
609 goto fail;
610
611 /* If the conditional jump is more than just a conditional jump, then
612 we can not do conditional execution conversion on this block. */
613 if (! onlyjump_p (BB_END (bb)))
614 goto fail;
615
616 /* Find the conditional jump and isolate the test. */
617 t = cond_exec_get_condition (BB_END (bb));
618 if (! t)
619 goto fail;
620
621 f_code = reversed_comparison_code (t, BB_END (bb));
622 if (f_code == UNKNOWN)
623 goto fail;
624
625 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
626 if (ce_info->and_and_p)
627 {
628 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
629 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
630 }
631 else
632 {
633 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
634 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
635 }
636
637 /* If the machine description needs to modify the tests, such as
638 setting a conditional execution register from a comparison, it can
639 do so here. */
640 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
641 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
642
643 /* See if the conversion failed. */
644 if (!t || !f)
645 goto fail;
646 #endif
647
648 true_expr = t;
649 false_expr = f;
650 }
651 while (bb != last_test_bb);
652 }
653
654 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
655 on then THEN block. */
656 then_mod_ok = (else_bb == NULL_BLOCK);
657
658 /* Go through the THEN and ELSE blocks converting the insns if possible
659 to conditional execution. */
660
661 if (then_end
662 && (! false_expr
663 || ! cond_exec_process_insns (ce_info, then_start, then_end,
664 false_expr, false_prob_val,
665 then_mod_ok)))
666 goto fail;
667
668 if (else_bb && else_end
669 && ! cond_exec_process_insns (ce_info, else_start, else_end,
670 true_expr, true_prob_val, TRUE))
671 goto fail;
672
673 /* If we cannot apply the changes, fail. Do not go through the normal fail
674 processing, since apply_change_group will call cancel_changes. */
675 if (! apply_change_group ())
676 {
677 #ifdef IFCVT_MODIFY_CANCEL
678 /* Cancel any machine dependent changes. */
679 IFCVT_MODIFY_CANCEL (ce_info);
680 #endif
681 return FALSE;
682 }
683
684 #ifdef IFCVT_MODIFY_FINAL
685 /* Do any machine dependent final modifications. */
686 IFCVT_MODIFY_FINAL (ce_info);
687 #endif
688
689 /* Conversion succeeded. */
690 if (dump_file)
691 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
692 n_insns, (n_insns == 1) ? " was" : "s were");
693
694 /* Merge the blocks! If we had matching sequences, make sure to delete one
695 copy at the appropriate location first: delete the copy in the THEN branch
696 for a tail sequence so that the remaining one is executed last for both
697 branches, and delete the copy in the ELSE branch for a head sequence so
698 that the remaining one is executed first for both branches. */
699 if (then_first_tail)
700 {
701 rtx from = then_first_tail;
702 if (!INSN_P (from))
703 from = find_active_insn_after (then_bb, from);
704 delete_insn_chain (from, BB_END (then_bb), false);
705 }
706 if (else_last_head)
707 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
708
709 merge_if_block (ce_info);
710 cond_exec_changed_p = TRUE;
711 return TRUE;
712
713 fail:
714 #ifdef IFCVT_MODIFY_CANCEL
715 /* Cancel any machine dependent changes. */
716 IFCVT_MODIFY_CANCEL (ce_info);
717 #endif
718
719 cancel_changes (0);
720 return FALSE;
721 }
722 \f
723 /* Used by noce_process_if_block to communicate with its subroutines.
724
725 The subroutines know that A and B may be evaluated freely. They
726 know that X is a register. They should insert new instructions
727 before cond_earliest. */
728
729 struct noce_if_info
730 {
731 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
732 basic_block test_bb, then_bb, else_bb, join_bb;
733
734 /* The jump that ends TEST_BB. */
735 rtx jump;
736
737 /* The jump condition. */
738 rtx cond;
739
740 /* New insns should be inserted before this one. */
741 rtx cond_earliest;
742
743 /* Insns in the THEN and ELSE block. There is always just this
744 one insns in those blocks. The insns are single_set insns.
745 If there was no ELSE block, INSN_B is the last insn before
746 COND_EARLIEST, or NULL_RTX. In the former case, the insn
747 operands are still valid, as if INSN_B was moved down below
748 the jump. */
749 rtx insn_a, insn_b;
750
751 /* The SET_SRC of INSN_A and INSN_B. */
752 rtx a, b;
753
754 /* The SET_DEST of INSN_A. */
755 rtx x;
756
757 /* True if this if block is not canonical. In the canonical form of
758 if blocks, the THEN_BB is the block reached via the fallthru edge
759 from TEST_BB. For the noce transformations, we allow the symmetric
760 form as well. */
761 bool then_else_reversed;
762
763 /* Estimated cost of the particular branch instruction. */
764 int branch_cost;
765 };
766
767 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
768 static int noce_try_move (struct noce_if_info *);
769 static int noce_try_store_flag (struct noce_if_info *);
770 static int noce_try_addcc (struct noce_if_info *);
771 static int noce_try_store_flag_constants (struct noce_if_info *);
772 static int noce_try_store_flag_mask (struct noce_if_info *);
773 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
774 rtx, rtx, rtx);
775 static int noce_try_cmove (struct noce_if_info *);
776 static int noce_try_cmove_arith (struct noce_if_info *);
777 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
778 static int noce_try_minmax (struct noce_if_info *);
779 static int noce_try_abs (struct noce_if_info *);
780 static int noce_try_sign_mask (struct noce_if_info *);
781
782 /* Helper function for noce_try_store_flag*. */
783
784 static rtx
785 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
786 int normalize)
787 {
788 rtx cond = if_info->cond;
789 int cond_complex;
790 enum rtx_code code;
791
792 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
793 || ! general_operand (XEXP (cond, 1), VOIDmode));
794
795 /* If earliest == jump, or when the condition is complex, try to
796 build the store_flag insn directly. */
797
798 if (cond_complex)
799 {
800 rtx set = pc_set (if_info->jump);
801 cond = XEXP (SET_SRC (set), 0);
802 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
803 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
804 reversep = !reversep;
805 if (if_info->then_else_reversed)
806 reversep = !reversep;
807 }
808
809 if (reversep)
810 code = reversed_comparison_code (cond, if_info->jump);
811 else
812 code = GET_CODE (cond);
813
814 if ((if_info->cond_earliest == if_info->jump || cond_complex)
815 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
816 {
817 rtx tmp;
818
819 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
820 XEXP (cond, 1));
821 tmp = gen_rtx_SET (VOIDmode, x, tmp);
822
823 start_sequence ();
824 tmp = emit_insn (tmp);
825
826 if (recog_memoized (tmp) >= 0)
827 {
828 tmp = get_insns ();
829 end_sequence ();
830 emit_insn (tmp);
831
832 if_info->cond_earliest = if_info->jump;
833
834 return x;
835 }
836
837 end_sequence ();
838 }
839
840 /* Don't even try if the comparison operands or the mode of X are weird. */
841 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
842 return NULL_RTX;
843
844 return emit_store_flag (x, code, XEXP (cond, 0),
845 XEXP (cond, 1), VOIDmode,
846 (code == LTU || code == LEU
847 || code == GEU || code == GTU), normalize);
848 }
849
850 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
851 X is the destination/target and Y is the value to copy. */
852
853 static void
854 noce_emit_move_insn (rtx x, rtx y)
855 {
856 enum machine_mode outmode;
857 rtx outer, inner;
858 int bitpos;
859
860 if (GET_CODE (x) != STRICT_LOW_PART)
861 {
862 rtx seq, insn, target;
863 optab ot;
864
865 start_sequence ();
866 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
867 otherwise construct a suitable SET pattern ourselves. */
868 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
869 ? emit_move_insn (x, y)
870 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
871 seq = get_insns ();
872 end_sequence ();
873
874 if (recog_memoized (insn) <= 0)
875 {
876 if (GET_CODE (x) == ZERO_EXTRACT)
877 {
878 rtx op = XEXP (x, 0);
879 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
880 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
881
882 /* store_bit_field expects START to be relative to
883 BYTES_BIG_ENDIAN and adjusts this value for machines with
884 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
885 invoke store_bit_field again it is necessary to have the START
886 value from the first call. */
887 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
888 {
889 if (MEM_P (op))
890 start = BITS_PER_UNIT - start - size;
891 else
892 {
893 gcc_assert (REG_P (op));
894 start = BITS_PER_WORD - start - size;
895 }
896 }
897
898 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
899 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
900 return;
901 }
902
903 switch (GET_RTX_CLASS (GET_CODE (y)))
904 {
905 case RTX_UNARY:
906 ot = code_to_optab (GET_CODE (y));
907 if (ot)
908 {
909 start_sequence ();
910 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
911 if (target != NULL_RTX)
912 {
913 if (target != x)
914 emit_move_insn (x, target);
915 seq = get_insns ();
916 }
917 end_sequence ();
918 }
919 break;
920
921 case RTX_BIN_ARITH:
922 case RTX_COMM_ARITH:
923 ot = code_to_optab (GET_CODE (y));
924 if (ot)
925 {
926 start_sequence ();
927 target = expand_binop (GET_MODE (y), ot,
928 XEXP (y, 0), XEXP (y, 1),
929 x, 0, OPTAB_DIRECT);
930 if (target != NULL_RTX)
931 {
932 if (target != x)
933 emit_move_insn (x, target);
934 seq = get_insns ();
935 }
936 end_sequence ();
937 }
938 break;
939
940 default:
941 break;
942 }
943 }
944
945 emit_insn (seq);
946 return;
947 }
948
949 outer = XEXP (x, 0);
950 inner = XEXP (outer, 0);
951 outmode = GET_MODE (outer);
952 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
953 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
954 0, 0, outmode, y);
955 }
956
957 /* Return sequence of instructions generated by if conversion. This
958 function calls end_sequence() to end the current stream, ensures
959 that are instructions are unshared, recognizable non-jump insns.
960 On failure, this function returns a NULL_RTX. */
961
962 static rtx
963 end_ifcvt_sequence (struct noce_if_info *if_info)
964 {
965 rtx insn;
966 rtx seq = get_insns ();
967
968 set_used_flags (if_info->x);
969 set_used_flags (if_info->cond);
970 unshare_all_rtl_in_chain (seq);
971 end_sequence ();
972
973 /* Make sure that all of the instructions emitted are recognizable,
974 and that we haven't introduced a new jump instruction.
975 As an exercise for the reader, build a general mechanism that
976 allows proper placement of required clobbers. */
977 for (insn = seq; insn; insn = NEXT_INSN (insn))
978 if (JUMP_P (insn)
979 || recog_memoized (insn) == -1)
980 return NULL_RTX;
981
982 return seq;
983 }
984
985 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
986 "if (a == b) x = a; else x = b" into "x = b". */
987
988 static int
989 noce_try_move (struct noce_if_info *if_info)
990 {
991 rtx cond = if_info->cond;
992 enum rtx_code code = GET_CODE (cond);
993 rtx y, seq;
994
995 if (code != NE && code != EQ)
996 return FALSE;
997
998 /* This optimization isn't valid if either A or B could be a NaN
999 or a signed zero. */
1000 if (HONOR_NANS (GET_MODE (if_info->x))
1001 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1002 return FALSE;
1003
1004 /* Check whether the operands of the comparison are A and in
1005 either order. */
1006 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1007 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1008 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1009 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1010 {
1011 y = (code == EQ) ? if_info->a : if_info->b;
1012
1013 /* Avoid generating the move if the source is the destination. */
1014 if (! rtx_equal_p (if_info->x, y))
1015 {
1016 start_sequence ();
1017 noce_emit_move_insn (if_info->x, y);
1018 seq = end_ifcvt_sequence (if_info);
1019 if (!seq)
1020 return FALSE;
1021
1022 emit_insn_before_setloc (seq, if_info->jump,
1023 INSN_LOCATION (if_info->insn_a));
1024 }
1025 return TRUE;
1026 }
1027 return FALSE;
1028 }
1029
1030 /* Convert "if (test) x = 1; else x = 0".
1031
1032 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1033 tried in noce_try_store_flag_constants after noce_try_cmove has had
1034 a go at the conversion. */
1035
1036 static int
1037 noce_try_store_flag (struct noce_if_info *if_info)
1038 {
1039 int reversep;
1040 rtx target, seq;
1041
1042 if (CONST_INT_P (if_info->b)
1043 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1044 && if_info->a == const0_rtx)
1045 reversep = 0;
1046 else if (if_info->b == const0_rtx
1047 && CONST_INT_P (if_info->a)
1048 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1049 && (reversed_comparison_code (if_info->cond, if_info->jump)
1050 != UNKNOWN))
1051 reversep = 1;
1052 else
1053 return FALSE;
1054
1055 start_sequence ();
1056
1057 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1058 if (target)
1059 {
1060 if (target != if_info->x)
1061 noce_emit_move_insn (if_info->x, target);
1062
1063 seq = end_ifcvt_sequence (if_info);
1064 if (! seq)
1065 return FALSE;
1066
1067 emit_insn_before_setloc (seq, if_info->jump,
1068 INSN_LOCATION (if_info->insn_a));
1069 return TRUE;
1070 }
1071 else
1072 {
1073 end_sequence ();
1074 return FALSE;
1075 }
1076 }
1077
1078 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1079
1080 static int
1081 noce_try_store_flag_constants (struct noce_if_info *if_info)
1082 {
1083 rtx target, seq;
1084 int reversep;
1085 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1086 int normalize, can_reverse;
1087 enum machine_mode mode;
1088
1089 if (CONST_INT_P (if_info->a)
1090 && CONST_INT_P (if_info->b))
1091 {
1092 mode = GET_MODE (if_info->x);
1093 ifalse = INTVAL (if_info->a);
1094 itrue = INTVAL (if_info->b);
1095
1096 /* Make sure we can represent the difference between the two values. */
1097 if ((itrue - ifalse > 0)
1098 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1099 return FALSE;
1100
1101 diff = trunc_int_for_mode (itrue - ifalse, mode);
1102
1103 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1104 != UNKNOWN);
1105
1106 reversep = 0;
1107 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1108 normalize = 0;
1109 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1110 && (STORE_FLAG_VALUE == 1
1111 || if_info->branch_cost >= 2))
1112 normalize = 1;
1113 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1114 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1115 normalize = 1, reversep = 1;
1116 else if (itrue == -1
1117 && (STORE_FLAG_VALUE == -1
1118 || if_info->branch_cost >= 2))
1119 normalize = -1;
1120 else if (ifalse == -1 && can_reverse
1121 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1122 normalize = -1, reversep = 1;
1123 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1124 || if_info->branch_cost >= 3)
1125 normalize = -1;
1126 else
1127 return FALSE;
1128
1129 if (reversep)
1130 {
1131 tmp = itrue; itrue = ifalse; ifalse = tmp;
1132 diff = trunc_int_for_mode (-diff, mode);
1133 }
1134
1135 start_sequence ();
1136 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1137 if (! target)
1138 {
1139 end_sequence ();
1140 return FALSE;
1141 }
1142
1143 /* if (test) x = 3; else x = 4;
1144 => x = 3 + (test == 0); */
1145 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1146 {
1147 target = expand_simple_binop (mode,
1148 (diff == STORE_FLAG_VALUE
1149 ? PLUS : MINUS),
1150 GEN_INT (ifalse), target, if_info->x, 0,
1151 OPTAB_WIDEN);
1152 }
1153
1154 /* if (test) x = 8; else x = 0;
1155 => x = (test != 0) << 3; */
1156 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1157 {
1158 target = expand_simple_binop (mode, ASHIFT,
1159 target, GEN_INT (tmp), if_info->x, 0,
1160 OPTAB_WIDEN);
1161 }
1162
1163 /* if (test) x = -1; else x = b;
1164 => x = -(test != 0) | b; */
1165 else if (itrue == -1)
1166 {
1167 target = expand_simple_binop (mode, IOR,
1168 target, GEN_INT (ifalse), if_info->x, 0,
1169 OPTAB_WIDEN);
1170 }
1171
1172 /* if (test) x = a; else x = b;
1173 => x = (-(test != 0) & (b - a)) + a; */
1174 else
1175 {
1176 target = expand_simple_binop (mode, AND,
1177 target, GEN_INT (diff), if_info->x, 0,
1178 OPTAB_WIDEN);
1179 if (target)
1180 target = expand_simple_binop (mode, PLUS,
1181 target, GEN_INT (ifalse),
1182 if_info->x, 0, OPTAB_WIDEN);
1183 }
1184
1185 if (! target)
1186 {
1187 end_sequence ();
1188 return FALSE;
1189 }
1190
1191 if (target != if_info->x)
1192 noce_emit_move_insn (if_info->x, target);
1193
1194 seq = end_ifcvt_sequence (if_info);
1195 if (!seq)
1196 return FALSE;
1197
1198 emit_insn_before_setloc (seq, if_info->jump,
1199 INSN_LOCATION (if_info->insn_a));
1200 return TRUE;
1201 }
1202
1203 return FALSE;
1204 }
1205
1206 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1207 similarly for "foo--". */
1208
1209 static int
1210 noce_try_addcc (struct noce_if_info *if_info)
1211 {
1212 rtx target, seq;
1213 int subtract, normalize;
1214
1215 if (GET_CODE (if_info->a) == PLUS
1216 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1217 && (reversed_comparison_code (if_info->cond, if_info->jump)
1218 != UNKNOWN))
1219 {
1220 rtx cond = if_info->cond;
1221 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1222
1223 /* First try to use addcc pattern. */
1224 if (general_operand (XEXP (cond, 0), VOIDmode)
1225 && general_operand (XEXP (cond, 1), VOIDmode))
1226 {
1227 start_sequence ();
1228 target = emit_conditional_add (if_info->x, code,
1229 XEXP (cond, 0),
1230 XEXP (cond, 1),
1231 VOIDmode,
1232 if_info->b,
1233 XEXP (if_info->a, 1),
1234 GET_MODE (if_info->x),
1235 (code == LTU || code == GEU
1236 || code == LEU || code == GTU));
1237 if (target)
1238 {
1239 if (target != if_info->x)
1240 noce_emit_move_insn (if_info->x, target);
1241
1242 seq = end_ifcvt_sequence (if_info);
1243 if (!seq)
1244 return FALSE;
1245
1246 emit_insn_before_setloc (seq, if_info->jump,
1247 INSN_LOCATION (if_info->insn_a));
1248 return TRUE;
1249 }
1250 end_sequence ();
1251 }
1252
1253 /* If that fails, construct conditional increment or decrement using
1254 setcc. */
1255 if (if_info->branch_cost >= 2
1256 && (XEXP (if_info->a, 1) == const1_rtx
1257 || XEXP (if_info->a, 1) == constm1_rtx))
1258 {
1259 start_sequence ();
1260 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1261 subtract = 0, normalize = 0;
1262 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1263 subtract = 1, normalize = 0;
1264 else
1265 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1266
1267
1268 target = noce_emit_store_flag (if_info,
1269 gen_reg_rtx (GET_MODE (if_info->x)),
1270 1, normalize);
1271
1272 if (target)
1273 target = expand_simple_binop (GET_MODE (if_info->x),
1274 subtract ? MINUS : PLUS,
1275 if_info->b, target, if_info->x,
1276 0, OPTAB_WIDEN);
1277 if (target)
1278 {
1279 if (target != if_info->x)
1280 noce_emit_move_insn (if_info->x, target);
1281
1282 seq = end_ifcvt_sequence (if_info);
1283 if (!seq)
1284 return FALSE;
1285
1286 emit_insn_before_setloc (seq, if_info->jump,
1287 INSN_LOCATION (if_info->insn_a));
1288 return TRUE;
1289 }
1290 end_sequence ();
1291 }
1292 }
1293
1294 return FALSE;
1295 }
1296
1297 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1298
1299 static int
1300 noce_try_store_flag_mask (struct noce_if_info *if_info)
1301 {
1302 rtx target, seq;
1303 int reversep;
1304
1305 reversep = 0;
1306 if ((if_info->branch_cost >= 2
1307 || STORE_FLAG_VALUE == -1)
1308 && ((if_info->a == const0_rtx
1309 && rtx_equal_p (if_info->b, if_info->x))
1310 || ((reversep = (reversed_comparison_code (if_info->cond,
1311 if_info->jump)
1312 != UNKNOWN))
1313 && if_info->b == const0_rtx
1314 && rtx_equal_p (if_info->a, if_info->x))))
1315 {
1316 start_sequence ();
1317 target = noce_emit_store_flag (if_info,
1318 gen_reg_rtx (GET_MODE (if_info->x)),
1319 reversep, -1);
1320 if (target)
1321 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1322 if_info->x,
1323 target, if_info->x, 0,
1324 OPTAB_WIDEN);
1325
1326 if (target)
1327 {
1328 if (target != if_info->x)
1329 noce_emit_move_insn (if_info->x, target);
1330
1331 seq = end_ifcvt_sequence (if_info);
1332 if (!seq)
1333 return FALSE;
1334
1335 emit_insn_before_setloc (seq, if_info->jump,
1336 INSN_LOCATION (if_info->insn_a));
1337 return TRUE;
1338 }
1339
1340 end_sequence ();
1341 }
1342
1343 return FALSE;
1344 }
1345
1346 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1347
1348 static rtx
1349 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1350 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1351 {
1352 rtx target ATTRIBUTE_UNUSED;
1353 int unsignedp ATTRIBUTE_UNUSED;
1354
1355 /* If earliest == jump, try to build the cmove insn directly.
1356 This is helpful when combine has created some complex condition
1357 (like for alpha's cmovlbs) that we can't hope to regenerate
1358 through the normal interface. */
1359
1360 if (if_info->cond_earliest == if_info->jump)
1361 {
1362 rtx tmp;
1363
1364 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1365 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1366 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1367
1368 start_sequence ();
1369 tmp = emit_insn (tmp);
1370
1371 if (recog_memoized (tmp) >= 0)
1372 {
1373 tmp = get_insns ();
1374 end_sequence ();
1375 emit_insn (tmp);
1376
1377 return x;
1378 }
1379
1380 end_sequence ();
1381 }
1382
1383 /* Don't even try if the comparison operands are weird. */
1384 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1385 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1386 return NULL_RTX;
1387
1388 #if HAVE_conditional_move
1389 unsignedp = (code == LTU || code == GEU
1390 || code == LEU || code == GTU);
1391
1392 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1393 vtrue, vfalse, GET_MODE (x),
1394 unsignedp);
1395 if (target)
1396 return target;
1397
1398 /* We might be faced with a situation like:
1399
1400 x = (reg:M TARGET)
1401 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1402 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1403
1404 We can't do a conditional move in mode M, but it's possible that we
1405 could do a conditional move in mode N instead and take a subreg of
1406 the result.
1407
1408 If we can't create new pseudos, though, don't bother. */
1409 if (reload_completed)
1410 return NULL_RTX;
1411
1412 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1413 {
1414 rtx reg_vtrue = SUBREG_REG (vtrue);
1415 rtx reg_vfalse = SUBREG_REG (vfalse);
1416 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1417 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1418 rtx promoted_target;
1419
1420 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1421 || byte_vtrue != byte_vfalse
1422 || (SUBREG_PROMOTED_VAR_P (vtrue)
1423 != SUBREG_PROMOTED_VAR_P (vfalse))
1424 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1425 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1426 return NULL_RTX;
1427
1428 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1429
1430 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1431 VOIDmode, reg_vtrue, reg_vfalse,
1432 GET_MODE (reg_vtrue), unsignedp);
1433 /* Nope, couldn't do it in that mode either. */
1434 if (!target)
1435 return NULL_RTX;
1436
1437 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1438 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1439 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1440 emit_move_insn (x, target);
1441 return x;
1442 }
1443 else
1444 return NULL_RTX;
1445 #else
1446 /* We'll never get here, as noce_process_if_block doesn't call the
1447 functions involved. Ifdef code, however, should be discouraged
1448 because it leads to typos in the code not selected. However,
1449 emit_conditional_move won't exist either. */
1450 return NULL_RTX;
1451 #endif
1452 }
1453
1454 /* Try only simple constants and registers here. More complex cases
1455 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1456 has had a go at it. */
1457
1458 static int
1459 noce_try_cmove (struct noce_if_info *if_info)
1460 {
1461 enum rtx_code code;
1462 rtx target, seq;
1463
1464 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1465 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1466 {
1467 start_sequence ();
1468
1469 code = GET_CODE (if_info->cond);
1470 target = noce_emit_cmove (if_info, if_info->x, code,
1471 XEXP (if_info->cond, 0),
1472 XEXP (if_info->cond, 1),
1473 if_info->a, if_info->b);
1474
1475 if (target)
1476 {
1477 if (target != if_info->x)
1478 noce_emit_move_insn (if_info->x, target);
1479
1480 seq = end_ifcvt_sequence (if_info);
1481 if (!seq)
1482 return FALSE;
1483
1484 emit_insn_before_setloc (seq, if_info->jump,
1485 INSN_LOCATION (if_info->insn_a));
1486 return TRUE;
1487 }
1488 else
1489 {
1490 end_sequence ();
1491 return FALSE;
1492 }
1493 }
1494
1495 return FALSE;
1496 }
1497
1498 /* Try more complex cases involving conditional_move. */
1499
1500 static int
1501 noce_try_cmove_arith (struct noce_if_info *if_info)
1502 {
1503 rtx a = if_info->a;
1504 rtx b = if_info->b;
1505 rtx x = if_info->x;
1506 rtx orig_a, orig_b;
1507 rtx insn_a, insn_b;
1508 rtx tmp, target;
1509 int is_mem = 0;
1510 int insn_cost;
1511 enum rtx_code code;
1512
1513 /* A conditional move from two memory sources is equivalent to a
1514 conditional on their addresses followed by a load. Don't do this
1515 early because it'll screw alias analysis. Note that we've
1516 already checked for no side effects. */
1517 /* ??? FIXME: Magic number 5. */
1518 if (cse_not_expected
1519 && MEM_P (a) && MEM_P (b)
1520 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1521 && if_info->branch_cost >= 5)
1522 {
1523 enum machine_mode address_mode = get_address_mode (a);
1524
1525 a = XEXP (a, 0);
1526 b = XEXP (b, 0);
1527 x = gen_reg_rtx (address_mode);
1528 is_mem = 1;
1529 }
1530
1531 /* ??? We could handle this if we knew that a load from A or B could
1532 not trap or fault. This is also true if we've already loaded
1533 from the address along the path from ENTRY. */
1534 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1535 return FALSE;
1536
1537 /* if (test) x = a + b; else x = c - d;
1538 => y = a + b;
1539 x = c - d;
1540 if (test)
1541 x = y;
1542 */
1543
1544 code = GET_CODE (if_info->cond);
1545 insn_a = if_info->insn_a;
1546 insn_b = if_info->insn_b;
1547
1548 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1549 if insn_rtx_cost can't be estimated. */
1550 if (insn_a)
1551 {
1552 insn_cost
1553 = insn_rtx_cost (PATTERN (insn_a),
1554 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1555 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1556 return FALSE;
1557 }
1558 else
1559 insn_cost = 0;
1560
1561 if (insn_b)
1562 {
1563 insn_cost
1564 += insn_rtx_cost (PATTERN (insn_b),
1565 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1566 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1567 return FALSE;
1568 }
1569
1570 /* Possibly rearrange operands to make things come out more natural. */
1571 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1572 {
1573 int reversep = 0;
1574 if (rtx_equal_p (b, x))
1575 reversep = 1;
1576 else if (general_operand (b, GET_MODE (b)))
1577 reversep = 1;
1578
1579 if (reversep)
1580 {
1581 code = reversed_comparison_code (if_info->cond, if_info->jump);
1582 tmp = a, a = b, b = tmp;
1583 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1584 }
1585 }
1586
1587 start_sequence ();
1588
1589 orig_a = a;
1590 orig_b = b;
1591
1592 /* If either operand is complex, load it into a register first.
1593 The best way to do this is to copy the original insn. In this
1594 way we preserve any clobbers etc that the insn may have had.
1595 This is of course not possible in the IS_MEM case. */
1596 if (! general_operand (a, GET_MODE (a)))
1597 {
1598 rtx set;
1599
1600 if (is_mem)
1601 {
1602 tmp = gen_reg_rtx (GET_MODE (a));
1603 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1604 }
1605 else if (! insn_a)
1606 goto end_seq_and_fail;
1607 else
1608 {
1609 a = gen_reg_rtx (GET_MODE (a));
1610 tmp = copy_rtx (insn_a);
1611 set = single_set (tmp);
1612 SET_DEST (set) = a;
1613 tmp = emit_insn (PATTERN (tmp));
1614 }
1615 if (recog_memoized (tmp) < 0)
1616 goto end_seq_and_fail;
1617 }
1618 if (! general_operand (b, GET_MODE (b)))
1619 {
1620 rtx set, last;
1621
1622 if (is_mem)
1623 {
1624 tmp = gen_reg_rtx (GET_MODE (b));
1625 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1626 }
1627 else if (! insn_b)
1628 goto end_seq_and_fail;
1629 else
1630 {
1631 b = gen_reg_rtx (GET_MODE (b));
1632 tmp = copy_rtx (insn_b);
1633 set = single_set (tmp);
1634 SET_DEST (set) = b;
1635 tmp = PATTERN (tmp);
1636 }
1637
1638 /* If insn to set up A clobbers any registers B depends on, try to
1639 swap insn that sets up A with the one that sets up B. If even
1640 that doesn't help, punt. */
1641 last = get_last_insn ();
1642 if (last && modified_in_p (orig_b, last))
1643 {
1644 tmp = emit_insn_before (tmp, get_insns ());
1645 if (modified_in_p (orig_a, tmp))
1646 goto end_seq_and_fail;
1647 }
1648 else
1649 tmp = emit_insn (tmp);
1650
1651 if (recog_memoized (tmp) < 0)
1652 goto end_seq_and_fail;
1653 }
1654
1655 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1656 XEXP (if_info->cond, 1), a, b);
1657
1658 if (! target)
1659 goto end_seq_and_fail;
1660
1661 /* If we're handling a memory for above, emit the load now. */
1662 if (is_mem)
1663 {
1664 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1665
1666 /* Copy over flags as appropriate. */
1667 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1668 MEM_VOLATILE_P (tmp) = 1;
1669 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1670 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1671 set_mem_align (tmp,
1672 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1673
1674 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1675 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1676
1677 noce_emit_move_insn (if_info->x, tmp);
1678 }
1679 else if (target != x)
1680 noce_emit_move_insn (x, target);
1681
1682 tmp = end_ifcvt_sequence (if_info);
1683 if (!tmp)
1684 return FALSE;
1685
1686 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1687 return TRUE;
1688
1689 end_seq_and_fail:
1690 end_sequence ();
1691 return FALSE;
1692 }
1693
1694 /* For most cases, the simplified condition we found is the best
1695 choice, but this is not the case for the min/max/abs transforms.
1696 For these we wish to know that it is A or B in the condition. */
1697
1698 static rtx
1699 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1700 rtx *earliest)
1701 {
1702 rtx cond, set, insn;
1703 int reverse;
1704
1705 /* If target is already mentioned in the known condition, return it. */
1706 if (reg_mentioned_p (target, if_info->cond))
1707 {
1708 *earliest = if_info->cond_earliest;
1709 return if_info->cond;
1710 }
1711
1712 set = pc_set (if_info->jump);
1713 cond = XEXP (SET_SRC (set), 0);
1714 reverse
1715 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1716 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1717 if (if_info->then_else_reversed)
1718 reverse = !reverse;
1719
1720 /* If we're looking for a constant, try to make the conditional
1721 have that constant in it. There are two reasons why it may
1722 not have the constant we want:
1723
1724 1. GCC may have needed to put the constant in a register, because
1725 the target can't compare directly against that constant. For
1726 this case, we look for a SET immediately before the comparison
1727 that puts a constant in that register.
1728
1729 2. GCC may have canonicalized the conditional, for example
1730 replacing "if x < 4" with "if x <= 3". We can undo that (or
1731 make equivalent types of changes) to get the constants we need
1732 if they're off by one in the right direction. */
1733
1734 if (CONST_INT_P (target))
1735 {
1736 enum rtx_code code = GET_CODE (if_info->cond);
1737 rtx op_a = XEXP (if_info->cond, 0);
1738 rtx op_b = XEXP (if_info->cond, 1);
1739 rtx prev_insn;
1740
1741 /* First, look to see if we put a constant in a register. */
1742 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1743 if (prev_insn
1744 && BLOCK_FOR_INSN (prev_insn)
1745 == BLOCK_FOR_INSN (if_info->cond_earliest)
1746 && INSN_P (prev_insn)
1747 && GET_CODE (PATTERN (prev_insn)) == SET)
1748 {
1749 rtx src = find_reg_equal_equiv_note (prev_insn);
1750 if (!src)
1751 src = SET_SRC (PATTERN (prev_insn));
1752 if (CONST_INT_P (src))
1753 {
1754 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1755 op_a = src;
1756 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1757 op_b = src;
1758
1759 if (CONST_INT_P (op_a))
1760 {
1761 rtx tmp = op_a;
1762 op_a = op_b;
1763 op_b = tmp;
1764 code = swap_condition (code);
1765 }
1766 }
1767 }
1768
1769 /* Now, look to see if we can get the right constant by
1770 adjusting the conditional. */
1771 if (CONST_INT_P (op_b))
1772 {
1773 HOST_WIDE_INT desired_val = INTVAL (target);
1774 HOST_WIDE_INT actual_val = INTVAL (op_b);
1775
1776 switch (code)
1777 {
1778 case LT:
1779 if (actual_val == desired_val + 1)
1780 {
1781 code = LE;
1782 op_b = GEN_INT (desired_val);
1783 }
1784 break;
1785 case LE:
1786 if (actual_val == desired_val - 1)
1787 {
1788 code = LT;
1789 op_b = GEN_INT (desired_val);
1790 }
1791 break;
1792 case GT:
1793 if (actual_val == desired_val - 1)
1794 {
1795 code = GE;
1796 op_b = GEN_INT (desired_val);
1797 }
1798 break;
1799 case GE:
1800 if (actual_val == desired_val + 1)
1801 {
1802 code = GT;
1803 op_b = GEN_INT (desired_val);
1804 }
1805 break;
1806 default:
1807 break;
1808 }
1809 }
1810
1811 /* If we made any changes, generate a new conditional that is
1812 equivalent to what we started with, but has the right
1813 constants in it. */
1814 if (code != GET_CODE (if_info->cond)
1815 || op_a != XEXP (if_info->cond, 0)
1816 || op_b != XEXP (if_info->cond, 1))
1817 {
1818 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1819 *earliest = if_info->cond_earliest;
1820 return cond;
1821 }
1822 }
1823
1824 cond = canonicalize_condition (if_info->jump, cond, reverse,
1825 earliest, target, false, true);
1826 if (! cond || ! reg_mentioned_p (target, cond))
1827 return NULL;
1828
1829 /* We almost certainly searched back to a different place.
1830 Need to re-verify correct lifetimes. */
1831
1832 /* X may not be mentioned in the range (cond_earliest, jump]. */
1833 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1834 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1835 return NULL;
1836
1837 /* A and B may not be modified in the range [cond_earliest, jump). */
1838 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1839 if (INSN_P (insn)
1840 && (modified_in_p (if_info->a, insn)
1841 || modified_in_p (if_info->b, insn)))
1842 return NULL;
1843
1844 return cond;
1845 }
1846
1847 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1848
1849 static int
1850 noce_try_minmax (struct noce_if_info *if_info)
1851 {
1852 rtx cond, earliest, target, seq;
1853 enum rtx_code code, op;
1854 int unsignedp;
1855
1856 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1857 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1858 to get the target to tell us... */
1859 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1860 || HONOR_NANS (GET_MODE (if_info->x)))
1861 return FALSE;
1862
1863 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1864 if (!cond)
1865 return FALSE;
1866
1867 /* Verify the condition is of the form we expect, and canonicalize
1868 the comparison code. */
1869 code = GET_CODE (cond);
1870 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1871 {
1872 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1873 return FALSE;
1874 }
1875 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1876 {
1877 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1878 return FALSE;
1879 code = swap_condition (code);
1880 }
1881 else
1882 return FALSE;
1883
1884 /* Determine what sort of operation this is. Note that the code is for
1885 a taken branch, so the code->operation mapping appears backwards. */
1886 switch (code)
1887 {
1888 case LT:
1889 case LE:
1890 case UNLT:
1891 case UNLE:
1892 op = SMAX;
1893 unsignedp = 0;
1894 break;
1895 case GT:
1896 case GE:
1897 case UNGT:
1898 case UNGE:
1899 op = SMIN;
1900 unsignedp = 0;
1901 break;
1902 case LTU:
1903 case LEU:
1904 op = UMAX;
1905 unsignedp = 1;
1906 break;
1907 case GTU:
1908 case GEU:
1909 op = UMIN;
1910 unsignedp = 1;
1911 break;
1912 default:
1913 return FALSE;
1914 }
1915
1916 start_sequence ();
1917
1918 target = expand_simple_binop (GET_MODE (if_info->x), op,
1919 if_info->a, if_info->b,
1920 if_info->x, unsignedp, OPTAB_WIDEN);
1921 if (! target)
1922 {
1923 end_sequence ();
1924 return FALSE;
1925 }
1926 if (target != if_info->x)
1927 noce_emit_move_insn (if_info->x, target);
1928
1929 seq = end_ifcvt_sequence (if_info);
1930 if (!seq)
1931 return FALSE;
1932
1933 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1934 if_info->cond = cond;
1935 if_info->cond_earliest = earliest;
1936
1937 return TRUE;
1938 }
1939
1940 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1941 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1942 etc. */
1943
1944 static int
1945 noce_try_abs (struct noce_if_info *if_info)
1946 {
1947 rtx cond, earliest, target, seq, a, b, c;
1948 int negate;
1949 bool one_cmpl = false;
1950
1951 /* Reject modes with signed zeros. */
1952 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1953 return FALSE;
1954
1955 /* Recognize A and B as constituting an ABS or NABS. The canonical
1956 form is a branch around the negation, taken when the object is the
1957 first operand of a comparison against 0 that evaluates to true. */
1958 a = if_info->a;
1959 b = if_info->b;
1960 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1961 negate = 0;
1962 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1963 {
1964 c = a; a = b; b = c;
1965 negate = 1;
1966 }
1967 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1968 {
1969 negate = 0;
1970 one_cmpl = true;
1971 }
1972 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1973 {
1974 c = a; a = b; b = c;
1975 negate = 1;
1976 one_cmpl = true;
1977 }
1978 else
1979 return FALSE;
1980
1981 cond = noce_get_alt_condition (if_info, b, &earliest);
1982 if (!cond)
1983 return FALSE;
1984
1985 /* Verify the condition is of the form we expect. */
1986 if (rtx_equal_p (XEXP (cond, 0), b))
1987 c = XEXP (cond, 1);
1988 else if (rtx_equal_p (XEXP (cond, 1), b))
1989 {
1990 c = XEXP (cond, 0);
1991 negate = !negate;
1992 }
1993 else
1994 return FALSE;
1995
1996 /* Verify that C is zero. Search one step backward for a
1997 REG_EQUAL note or a simple source if necessary. */
1998 if (REG_P (c))
1999 {
2000 rtx set, insn = prev_nonnote_insn (earliest);
2001 if (insn
2002 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2003 && (set = single_set (insn))
2004 && rtx_equal_p (SET_DEST (set), c))
2005 {
2006 rtx note = find_reg_equal_equiv_note (insn);
2007 if (note)
2008 c = XEXP (note, 0);
2009 else
2010 c = SET_SRC (set);
2011 }
2012 else
2013 return FALSE;
2014 }
2015 if (MEM_P (c)
2016 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2017 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2018 c = get_pool_constant (XEXP (c, 0));
2019
2020 /* Work around funny ideas get_condition has wrt canonicalization.
2021 Note that these rtx constants are known to be CONST_INT, and
2022 therefore imply integer comparisons. */
2023 if (c == constm1_rtx && GET_CODE (cond) == GT)
2024 ;
2025 else if (c == const1_rtx && GET_CODE (cond) == LT)
2026 ;
2027 else if (c != CONST0_RTX (GET_MODE (b)))
2028 return FALSE;
2029
2030 /* Determine what sort of operation this is. */
2031 switch (GET_CODE (cond))
2032 {
2033 case LT:
2034 case LE:
2035 case UNLT:
2036 case UNLE:
2037 negate = !negate;
2038 break;
2039 case GT:
2040 case GE:
2041 case UNGT:
2042 case UNGE:
2043 break;
2044 default:
2045 return FALSE;
2046 }
2047
2048 start_sequence ();
2049 if (one_cmpl)
2050 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2051 if_info->x);
2052 else
2053 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2054
2055 /* ??? It's a quandary whether cmove would be better here, especially
2056 for integers. Perhaps combine will clean things up. */
2057 if (target && negate)
2058 {
2059 if (one_cmpl)
2060 target = expand_simple_unop (GET_MODE (target), NOT, target,
2061 if_info->x, 0);
2062 else
2063 target = expand_simple_unop (GET_MODE (target), NEG, target,
2064 if_info->x, 0);
2065 }
2066
2067 if (! target)
2068 {
2069 end_sequence ();
2070 return FALSE;
2071 }
2072
2073 if (target != if_info->x)
2074 noce_emit_move_insn (if_info->x, target);
2075
2076 seq = end_ifcvt_sequence (if_info);
2077 if (!seq)
2078 return FALSE;
2079
2080 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2081 if_info->cond = cond;
2082 if_info->cond_earliest = earliest;
2083
2084 return TRUE;
2085 }
2086
2087 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2088
2089 static int
2090 noce_try_sign_mask (struct noce_if_info *if_info)
2091 {
2092 rtx cond, t, m, c, seq;
2093 enum machine_mode mode;
2094 enum rtx_code code;
2095 bool t_unconditional;
2096
2097 cond = if_info->cond;
2098 code = GET_CODE (cond);
2099 m = XEXP (cond, 0);
2100 c = XEXP (cond, 1);
2101
2102 t = NULL_RTX;
2103 if (if_info->a == const0_rtx)
2104 {
2105 if ((code == LT && c == const0_rtx)
2106 || (code == LE && c == constm1_rtx))
2107 t = if_info->b;
2108 }
2109 else if (if_info->b == const0_rtx)
2110 {
2111 if ((code == GE && c == const0_rtx)
2112 || (code == GT && c == constm1_rtx))
2113 t = if_info->a;
2114 }
2115
2116 if (! t || side_effects_p (t))
2117 return FALSE;
2118
2119 /* We currently don't handle different modes. */
2120 mode = GET_MODE (t);
2121 if (GET_MODE (m) != mode)
2122 return FALSE;
2123
2124 /* This is only profitable if T is unconditionally executed/evaluated in the
2125 original insn sequence or T is cheap. The former happens if B is the
2126 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2127 INSN_B which can happen for e.g. conditional stores to memory. For the
2128 cost computation use the block TEST_BB where the evaluation will end up
2129 after the transformation. */
2130 t_unconditional =
2131 (t == if_info->b
2132 && (if_info->insn_b == NULL_RTX
2133 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2134 if (!(t_unconditional
2135 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2136 < COSTS_N_INSNS (2))))
2137 return FALSE;
2138
2139 start_sequence ();
2140 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2141 "(signed) m >> 31" directly. This benefits targets with specialized
2142 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2143 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2144 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2145 : NULL_RTX;
2146
2147 if (!t)
2148 {
2149 end_sequence ();
2150 return FALSE;
2151 }
2152
2153 noce_emit_move_insn (if_info->x, t);
2154
2155 seq = end_ifcvt_sequence (if_info);
2156 if (!seq)
2157 return FALSE;
2158
2159 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2160 return TRUE;
2161 }
2162
2163
2164 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2165 transformations. */
2166
2167 static int
2168 noce_try_bitop (struct noce_if_info *if_info)
2169 {
2170 rtx cond, x, a, result, seq;
2171 enum machine_mode mode;
2172 enum rtx_code code;
2173 int bitnum;
2174
2175 x = if_info->x;
2176 cond = if_info->cond;
2177 code = GET_CODE (cond);
2178
2179 /* Check for no else condition. */
2180 if (! rtx_equal_p (x, if_info->b))
2181 return FALSE;
2182
2183 /* Check for a suitable condition. */
2184 if (code != NE && code != EQ)
2185 return FALSE;
2186 if (XEXP (cond, 1) != const0_rtx)
2187 return FALSE;
2188 cond = XEXP (cond, 0);
2189
2190 /* ??? We could also handle AND here. */
2191 if (GET_CODE (cond) == ZERO_EXTRACT)
2192 {
2193 if (XEXP (cond, 1) != const1_rtx
2194 || !CONST_INT_P (XEXP (cond, 2))
2195 || ! rtx_equal_p (x, XEXP (cond, 0)))
2196 return FALSE;
2197 bitnum = INTVAL (XEXP (cond, 2));
2198 mode = GET_MODE (x);
2199 if (BITS_BIG_ENDIAN)
2200 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2201 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2202 return FALSE;
2203 }
2204 else
2205 return FALSE;
2206
2207 a = if_info->a;
2208 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2209 {
2210 /* Check for "if (X & C) x = x op C". */
2211 if (! rtx_equal_p (x, XEXP (a, 0))
2212 || !CONST_INT_P (XEXP (a, 1))
2213 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2214 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2215 return FALSE;
2216
2217 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2218 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2219 if (GET_CODE (a) == IOR)
2220 result = (code == NE) ? a : NULL_RTX;
2221 else if (code == NE)
2222 {
2223 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2224 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2225 result = simplify_gen_binary (IOR, mode, x, result);
2226 }
2227 else
2228 {
2229 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2230 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2231 result = simplify_gen_binary (AND, mode, x, result);
2232 }
2233 }
2234 else if (GET_CODE (a) == AND)
2235 {
2236 /* Check for "if (X & C) x &= ~C". */
2237 if (! rtx_equal_p (x, XEXP (a, 0))
2238 || !CONST_INT_P (XEXP (a, 1))
2239 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2240 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2241 return FALSE;
2242
2243 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2244 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2245 result = (code == EQ) ? a : NULL_RTX;
2246 }
2247 else
2248 return FALSE;
2249
2250 if (result)
2251 {
2252 start_sequence ();
2253 noce_emit_move_insn (x, result);
2254 seq = end_ifcvt_sequence (if_info);
2255 if (!seq)
2256 return FALSE;
2257
2258 emit_insn_before_setloc (seq, if_info->jump,
2259 INSN_LOCATION (if_info->insn_a));
2260 }
2261 return TRUE;
2262 }
2263
2264
2265 /* Similar to get_condition, only the resulting condition must be
2266 valid at JUMP, instead of at EARLIEST.
2267
2268 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2269 THEN block of the caller, and we have to reverse the condition. */
2270
2271 static rtx
2272 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2273 {
2274 rtx cond, set, tmp;
2275 bool reverse;
2276
2277 if (! any_condjump_p (jump))
2278 return NULL_RTX;
2279
2280 set = pc_set (jump);
2281
2282 /* If this branches to JUMP_LABEL when the condition is false,
2283 reverse the condition. */
2284 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2285 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2286
2287 /* We may have to reverse because the caller's if block is not canonical,
2288 i.e. the THEN block isn't the fallthrough block for the TEST block
2289 (see find_if_header). */
2290 if (then_else_reversed)
2291 reverse = !reverse;
2292
2293 /* If the condition variable is a register and is MODE_INT, accept it. */
2294
2295 cond = XEXP (SET_SRC (set), 0);
2296 tmp = XEXP (cond, 0);
2297 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2298 && (GET_MODE (tmp) != BImode
2299 || !targetm.small_register_classes_for_mode_p (BImode)))
2300 {
2301 *earliest = jump;
2302
2303 if (reverse)
2304 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2305 GET_MODE (cond), tmp, XEXP (cond, 1));
2306 return cond;
2307 }
2308
2309 /* Otherwise, fall back on canonicalize_condition to do the dirty
2310 work of manipulating MODE_CC values and COMPARE rtx codes. */
2311 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2312 NULL_RTX, false, true);
2313
2314 /* We don't handle side-effects in the condition, like handling
2315 REG_INC notes and making sure no duplicate conditions are emitted. */
2316 if (tmp != NULL_RTX && side_effects_p (tmp))
2317 return NULL_RTX;
2318
2319 return tmp;
2320 }
2321
2322 /* Return true if OP is ok for if-then-else processing. */
2323
2324 static int
2325 noce_operand_ok (const_rtx op)
2326 {
2327 if (side_effects_p (op))
2328 return FALSE;
2329
2330 /* We special-case memories, so handle any of them with
2331 no address side effects. */
2332 if (MEM_P (op))
2333 return ! side_effects_p (XEXP (op, 0));
2334
2335 return ! may_trap_p (op);
2336 }
2337
2338 /* Return true if a write into MEM may trap or fault. */
2339
2340 static bool
2341 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2342 {
2343 rtx addr;
2344
2345 if (MEM_READONLY_P (mem))
2346 return true;
2347
2348 if (may_trap_or_fault_p (mem))
2349 return true;
2350
2351 addr = XEXP (mem, 0);
2352
2353 /* Call target hook to avoid the effects of -fpic etc.... */
2354 addr = targetm.delegitimize_address (addr);
2355
2356 while (addr)
2357 switch (GET_CODE (addr))
2358 {
2359 case CONST:
2360 case PRE_DEC:
2361 case PRE_INC:
2362 case POST_DEC:
2363 case POST_INC:
2364 case POST_MODIFY:
2365 addr = XEXP (addr, 0);
2366 break;
2367 case LO_SUM:
2368 case PRE_MODIFY:
2369 addr = XEXP (addr, 1);
2370 break;
2371 case PLUS:
2372 if (CONST_INT_P (XEXP (addr, 1)))
2373 addr = XEXP (addr, 0);
2374 else
2375 return false;
2376 break;
2377 case LABEL_REF:
2378 return true;
2379 case SYMBOL_REF:
2380 if (SYMBOL_REF_DECL (addr)
2381 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2382 return true;
2383 return false;
2384 default:
2385 return false;
2386 }
2387
2388 return false;
2389 }
2390
2391 /* Return whether we can use store speculation for MEM. TOP_BB is the
2392 basic block above the conditional block where we are considering
2393 doing the speculative store. We look for whether MEM is set
2394 unconditionally later in the function. */
2395
2396 static bool
2397 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2398 {
2399 basic_block dominator;
2400
2401 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2402 dominator != NULL;
2403 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2404 {
2405 rtx insn;
2406
2407 FOR_BB_INSNS (dominator, insn)
2408 {
2409 /* If we see something that might be a memory barrier, we
2410 have to stop looking. Even if the MEM is set later in
2411 the function, we still don't want to set it
2412 unconditionally before the barrier. */
2413 if (INSN_P (insn)
2414 && (volatile_insn_p (PATTERN (insn))
2415 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2416 return false;
2417
2418 if (memory_must_be_modified_in_insn_p (mem, insn))
2419 return true;
2420 if (modified_in_p (XEXP (mem, 0), insn))
2421 return false;
2422
2423 }
2424 }
2425
2426 return false;
2427 }
2428
2429 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2430 it without using conditional execution. Return TRUE if we were successful
2431 at converting the block. */
2432
2433 static int
2434 noce_process_if_block (struct noce_if_info *if_info)
2435 {
2436 basic_block test_bb = if_info->test_bb; /* test block */
2437 basic_block then_bb = if_info->then_bb; /* THEN */
2438 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2439 basic_block join_bb = if_info->join_bb; /* JOIN */
2440 rtx jump = if_info->jump;
2441 rtx cond = if_info->cond;
2442 rtx insn_a, insn_b;
2443 rtx set_a, set_b;
2444 rtx orig_x, x, a, b;
2445
2446 /* We're looking for patterns of the form
2447
2448 (1) if (...) x = a; else x = b;
2449 (2) x = b; if (...) x = a;
2450 (3) if (...) x = a; // as if with an initial x = x.
2451
2452 The later patterns require jumps to be more expensive.
2453
2454 ??? For future expansion, look for multiple X in such patterns. */
2455
2456 /* Look for one of the potential sets. */
2457 insn_a = first_active_insn (then_bb);
2458 if (! insn_a
2459 || insn_a != last_active_insn (then_bb, FALSE)
2460 || (set_a = single_set (insn_a)) == NULL_RTX)
2461 return FALSE;
2462
2463 x = SET_DEST (set_a);
2464 a = SET_SRC (set_a);
2465
2466 /* Look for the other potential set. Make sure we've got equivalent
2467 destinations. */
2468 /* ??? This is overconservative. Storing to two different mems is
2469 as easy as conditionally computing the address. Storing to a
2470 single mem merely requires a scratch memory to use as one of the
2471 destination addresses; often the memory immediately below the
2472 stack pointer is available for this. */
2473 set_b = NULL_RTX;
2474 if (else_bb)
2475 {
2476 insn_b = first_active_insn (else_bb);
2477 if (! insn_b
2478 || insn_b != last_active_insn (else_bb, FALSE)
2479 || (set_b = single_set (insn_b)) == NULL_RTX
2480 || ! rtx_equal_p (x, SET_DEST (set_b)))
2481 return FALSE;
2482 }
2483 else
2484 {
2485 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2486 /* We're going to be moving the evaluation of B down from above
2487 COND_EARLIEST to JUMP. Make sure the relevant data is still
2488 intact. */
2489 if (! insn_b
2490 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2491 || !NONJUMP_INSN_P (insn_b)
2492 || (set_b = single_set (insn_b)) == NULL_RTX
2493 || ! rtx_equal_p (x, SET_DEST (set_b))
2494 || ! noce_operand_ok (SET_SRC (set_b))
2495 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2496 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2497 /* Likewise with X. In particular this can happen when
2498 noce_get_condition looks farther back in the instruction
2499 stream than one might expect. */
2500 || reg_overlap_mentioned_p (x, cond)
2501 || reg_overlap_mentioned_p (x, a)
2502 || modified_between_p (x, insn_b, jump))
2503 insn_b = set_b = NULL_RTX;
2504 }
2505
2506 /* If x has side effects then only the if-then-else form is safe to
2507 convert. But even in that case we would need to restore any notes
2508 (such as REG_INC) at then end. That can be tricky if
2509 noce_emit_move_insn expands to more than one insn, so disable the
2510 optimization entirely for now if there are side effects. */
2511 if (side_effects_p (x))
2512 return FALSE;
2513
2514 b = (set_b ? SET_SRC (set_b) : x);
2515
2516 /* Only operate on register destinations, and even then avoid extending
2517 the lifetime of hard registers on small register class machines. */
2518 orig_x = x;
2519 if (!REG_P (x)
2520 || (HARD_REGISTER_P (x)
2521 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2522 {
2523 if (GET_MODE (x) == BLKmode)
2524 return FALSE;
2525
2526 if (GET_CODE (x) == ZERO_EXTRACT
2527 && (!CONST_INT_P (XEXP (x, 1))
2528 || !CONST_INT_P (XEXP (x, 2))))
2529 return FALSE;
2530
2531 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2532 ? XEXP (x, 0) : x));
2533 }
2534
2535 /* Don't operate on sources that may trap or are volatile. */
2536 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2537 return FALSE;
2538
2539 retry:
2540 /* Set up the info block for our subroutines. */
2541 if_info->insn_a = insn_a;
2542 if_info->insn_b = insn_b;
2543 if_info->x = x;
2544 if_info->a = a;
2545 if_info->b = b;
2546
2547 /* Try optimizations in some approximation of a useful order. */
2548 /* ??? Should first look to see if X is live incoming at all. If it
2549 isn't, we don't need anything but an unconditional set. */
2550
2551 /* Look and see if A and B are really the same. Avoid creating silly
2552 cmove constructs that no one will fix up later. */
2553 if (rtx_equal_p (a, b))
2554 {
2555 /* If we have an INSN_B, we don't have to create any new rtl. Just
2556 move the instruction that we already have. If we don't have an
2557 INSN_B, that means that A == X, and we've got a noop move. In
2558 that case don't do anything and let the code below delete INSN_A. */
2559 if (insn_b && else_bb)
2560 {
2561 rtx note;
2562
2563 if (else_bb && insn_b == BB_END (else_bb))
2564 BB_END (else_bb) = PREV_INSN (insn_b);
2565 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2566
2567 /* If there was a REG_EQUAL note, delete it since it may have been
2568 true due to this insn being after a jump. */
2569 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2570 remove_note (insn_b, note);
2571
2572 insn_b = NULL_RTX;
2573 }
2574 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2575 x must be executed twice. */
2576 else if (insn_b && side_effects_p (orig_x))
2577 return FALSE;
2578
2579 x = orig_x;
2580 goto success;
2581 }
2582
2583 if (!set_b && MEM_P (orig_x))
2584 {
2585 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2586 for optimizations if writing to x may trap or fault,
2587 i.e. it's a memory other than a static var or a stack slot,
2588 is misaligned on strict aligned machines or is read-only. If
2589 x is a read-only memory, then the program is valid only if we
2590 avoid the store into it. If there are stores on both the
2591 THEN and ELSE arms, then we can go ahead with the conversion;
2592 either the program is broken, or the condition is always
2593 false such that the other memory is selected. */
2594 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2595 return FALSE;
2596
2597 /* Avoid store speculation: given "if (...) x = a" where x is a
2598 MEM, we only want to do the store if x is always set
2599 somewhere in the function. This avoids cases like
2600 if (pthread_mutex_trylock(mutex))
2601 ++global_variable;
2602 where we only want global_variable to be changed if the mutex
2603 is held. FIXME: This should ideally be expressed directly in
2604 RTL somehow. */
2605 if (!noce_can_store_speculate_p (test_bb, orig_x))
2606 return FALSE;
2607 }
2608
2609 if (noce_try_move (if_info))
2610 goto success;
2611 if (noce_try_store_flag (if_info))
2612 goto success;
2613 if (noce_try_bitop (if_info))
2614 goto success;
2615 if (noce_try_minmax (if_info))
2616 goto success;
2617 if (noce_try_abs (if_info))
2618 goto success;
2619 if (HAVE_conditional_move
2620 && noce_try_cmove (if_info))
2621 goto success;
2622 if (! targetm.have_conditional_execution ())
2623 {
2624 if (noce_try_store_flag_constants (if_info))
2625 goto success;
2626 if (noce_try_addcc (if_info))
2627 goto success;
2628 if (noce_try_store_flag_mask (if_info))
2629 goto success;
2630 if (HAVE_conditional_move
2631 && noce_try_cmove_arith (if_info))
2632 goto success;
2633 if (noce_try_sign_mask (if_info))
2634 goto success;
2635 }
2636
2637 if (!else_bb && set_b)
2638 {
2639 insn_b = set_b = NULL_RTX;
2640 b = orig_x;
2641 goto retry;
2642 }
2643
2644 return FALSE;
2645
2646 success:
2647
2648 /* If we used a temporary, fix it up now. */
2649 if (orig_x != x)
2650 {
2651 rtx seq;
2652
2653 start_sequence ();
2654 noce_emit_move_insn (orig_x, x);
2655 seq = get_insns ();
2656 set_used_flags (orig_x);
2657 unshare_all_rtl_in_chain (seq);
2658 end_sequence ();
2659
2660 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2661 }
2662
2663 /* The original THEN and ELSE blocks may now be removed. The test block
2664 must now jump to the join block. If the test block and the join block
2665 can be merged, do so. */
2666 if (else_bb)
2667 {
2668 delete_basic_block (else_bb);
2669 num_true_changes++;
2670 }
2671 else
2672 remove_edge (find_edge (test_bb, join_bb));
2673
2674 remove_edge (find_edge (then_bb, join_bb));
2675 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2676 delete_basic_block (then_bb);
2677 num_true_changes++;
2678
2679 if (can_merge_blocks_p (test_bb, join_bb))
2680 {
2681 merge_blocks (test_bb, join_bb);
2682 num_true_changes++;
2683 }
2684
2685 num_updated_if_blocks++;
2686 return TRUE;
2687 }
2688
2689 /* Check whether a block is suitable for conditional move conversion.
2690 Every insn must be a simple set of a register to a constant or a
2691 register. For each assignment, store the value in the pointer map
2692 VALS, keyed indexed by register pointer, then store the register
2693 pointer in REGS. COND is the condition we will test. */
2694
2695 static int
2696 check_cond_move_block (basic_block bb,
2697 struct pointer_map_t *vals,
2698 VEC (rtx, heap) **regs,
2699 rtx cond)
2700 {
2701 rtx insn;
2702
2703 /* We can only handle simple jumps at the end of the basic block.
2704 It is almost impossible to update the CFG otherwise. */
2705 insn = BB_END (bb);
2706 if (JUMP_P (insn) && !onlyjump_p (insn))
2707 return FALSE;
2708
2709 FOR_BB_INSNS (bb, insn)
2710 {
2711 rtx set, dest, src;
2712 void **slot;
2713
2714 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2715 continue;
2716 set = single_set (insn);
2717 if (!set)
2718 return FALSE;
2719
2720 dest = SET_DEST (set);
2721 src = SET_SRC (set);
2722 if (!REG_P (dest)
2723 || (HARD_REGISTER_P (dest)
2724 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2725 return FALSE;
2726
2727 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2728 return FALSE;
2729
2730 if (side_effects_p (src) || side_effects_p (dest))
2731 return FALSE;
2732
2733 if (may_trap_p (src) || may_trap_p (dest))
2734 return FALSE;
2735
2736 /* Don't try to handle this if the source register was
2737 modified earlier in the block. */
2738 if ((REG_P (src)
2739 && pointer_map_contains (vals, src))
2740 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2741 && pointer_map_contains (vals, SUBREG_REG (src))))
2742 return FALSE;
2743
2744 /* Don't try to handle this if the destination register was
2745 modified earlier in the block. */
2746 if (pointer_map_contains (vals, dest))
2747 return FALSE;
2748
2749 /* Don't try to handle this if the condition uses the
2750 destination register. */
2751 if (reg_overlap_mentioned_p (dest, cond))
2752 return FALSE;
2753
2754 /* Don't try to handle this if the source register is modified
2755 later in the block. */
2756 if (!CONSTANT_P (src)
2757 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2758 return FALSE;
2759
2760 slot = pointer_map_insert (vals, (void *) dest);
2761 *slot = (void *) src;
2762
2763 VEC_safe_push (rtx, heap, *regs, dest);
2764 }
2765
2766 return TRUE;
2767 }
2768
2769 /* Given a basic block BB suitable for conditional move conversion,
2770 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2771 the register values depending on COND, emit the insns in the block as
2772 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2773 processed. The caller has started a sequence for the conversion.
2774 Return true if successful, false if something goes wrong. */
2775
2776 static bool
2777 cond_move_convert_if_block (struct noce_if_info *if_infop,
2778 basic_block bb, rtx cond,
2779 struct pointer_map_t *then_vals,
2780 struct pointer_map_t *else_vals,
2781 bool else_block_p)
2782 {
2783 enum rtx_code code;
2784 rtx insn, cond_arg0, cond_arg1;
2785
2786 code = GET_CODE (cond);
2787 cond_arg0 = XEXP (cond, 0);
2788 cond_arg1 = XEXP (cond, 1);
2789
2790 FOR_BB_INSNS (bb, insn)
2791 {
2792 rtx set, target, dest, t, e;
2793 void **then_slot, **else_slot;
2794
2795 /* ??? Maybe emit conditional debug insn? */
2796 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2797 continue;
2798 set = single_set (insn);
2799 gcc_assert (set && REG_P (SET_DEST (set)));
2800
2801 dest = SET_DEST (set);
2802
2803 then_slot = pointer_map_contains (then_vals, dest);
2804 else_slot = pointer_map_contains (else_vals, dest);
2805 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2806 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2807
2808 if (else_block_p)
2809 {
2810 /* If this register was set in the then block, we already
2811 handled this case there. */
2812 if (t)
2813 continue;
2814 t = dest;
2815 gcc_assert (e);
2816 }
2817 else
2818 {
2819 gcc_assert (t);
2820 if (!e)
2821 e = dest;
2822 }
2823
2824 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2825 t, e);
2826 if (!target)
2827 return false;
2828
2829 if (target != dest)
2830 noce_emit_move_insn (dest, target);
2831 }
2832
2833 return true;
2834 }
2835
2836 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2837 it using only conditional moves. Return TRUE if we were successful at
2838 converting the block. */
2839
2840 static int
2841 cond_move_process_if_block (struct noce_if_info *if_info)
2842 {
2843 basic_block test_bb = if_info->test_bb;
2844 basic_block then_bb = if_info->then_bb;
2845 basic_block else_bb = if_info->else_bb;
2846 basic_block join_bb = if_info->join_bb;
2847 rtx jump = if_info->jump;
2848 rtx cond = if_info->cond;
2849 rtx seq, loc_insn;
2850 rtx reg;
2851 int c;
2852 struct pointer_map_t *then_vals;
2853 struct pointer_map_t *else_vals;
2854 VEC (rtx, heap) *then_regs = NULL;
2855 VEC (rtx, heap) *else_regs = NULL;
2856 unsigned int i;
2857 int success_p = FALSE;
2858
2859 /* Build a mapping for each block to the value used for each
2860 register. */
2861 then_vals = pointer_map_create ();
2862 else_vals = pointer_map_create ();
2863
2864 /* Make sure the blocks are suitable. */
2865 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2866 || (else_bb
2867 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2868 goto done;
2869
2870 /* Make sure the blocks can be used together. If the same register
2871 is set in both blocks, and is not set to a constant in both
2872 cases, then both blocks must set it to the same register. We
2873 have already verified that if it is set to a register, that the
2874 source register does not change after the assignment. Also count
2875 the number of registers set in only one of the blocks. */
2876 c = 0;
2877 FOR_EACH_VEC_ELT (rtx, then_regs, i, reg)
2878 {
2879 void **then_slot = pointer_map_contains (then_vals, reg);
2880 void **else_slot = pointer_map_contains (else_vals, reg);
2881
2882 gcc_checking_assert (then_slot);
2883 if (!else_slot)
2884 ++c;
2885 else
2886 {
2887 rtx then_val = (rtx) *then_slot;
2888 rtx else_val = (rtx) *else_slot;
2889 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2890 && !rtx_equal_p (then_val, else_val))
2891 goto done;
2892 }
2893 }
2894
2895 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2896 FOR_EACH_VEC_ELT (rtx, else_regs, i, reg)
2897 {
2898 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2899 if (!pointer_map_contains (then_vals, reg))
2900 ++c;
2901 }
2902
2903 /* Make sure it is reasonable to convert this block. What matters
2904 is the number of assignments currently made in only one of the
2905 branches, since if we convert we are going to always execute
2906 them. */
2907 if (c > MAX_CONDITIONAL_EXECUTE)
2908 goto done;
2909
2910 /* Try to emit the conditional moves. First do the then block,
2911 then do anything left in the else blocks. */
2912 start_sequence ();
2913 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2914 then_vals, else_vals, false)
2915 || (else_bb
2916 && !cond_move_convert_if_block (if_info, else_bb, cond,
2917 then_vals, else_vals, true)))
2918 {
2919 end_sequence ();
2920 goto done;
2921 }
2922 seq = end_ifcvt_sequence (if_info);
2923 if (!seq)
2924 goto done;
2925
2926 loc_insn = first_active_insn (then_bb);
2927 if (!loc_insn)
2928 {
2929 loc_insn = first_active_insn (else_bb);
2930 gcc_assert (loc_insn);
2931 }
2932 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2933
2934 if (else_bb)
2935 {
2936 delete_basic_block (else_bb);
2937 num_true_changes++;
2938 }
2939 else
2940 remove_edge (find_edge (test_bb, join_bb));
2941
2942 remove_edge (find_edge (then_bb, join_bb));
2943 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2944 delete_basic_block (then_bb);
2945 num_true_changes++;
2946
2947 if (can_merge_blocks_p (test_bb, join_bb))
2948 {
2949 merge_blocks (test_bb, join_bb);
2950 num_true_changes++;
2951 }
2952
2953 num_updated_if_blocks++;
2954
2955 success_p = TRUE;
2956
2957 done:
2958 pointer_map_destroy (then_vals);
2959 pointer_map_destroy (else_vals);
2960 VEC_free (rtx, heap, then_regs);
2961 VEC_free (rtx, heap, else_regs);
2962 return success_p;
2963 }
2964
2965 \f
2966 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2967 IF-THEN-ELSE-JOIN block.
2968
2969 If so, we'll try to convert the insns to not require the branch,
2970 using only transformations that do not require conditional execution.
2971
2972 Return TRUE if we were successful at converting the block. */
2973
2974 static int
2975 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2976 int pass)
2977 {
2978 basic_block then_bb, else_bb, join_bb;
2979 bool then_else_reversed = false;
2980 rtx jump, cond;
2981 rtx cond_earliest;
2982 struct noce_if_info if_info;
2983
2984 /* We only ever should get here before reload. */
2985 gcc_assert (!reload_completed);
2986
2987 /* Recognize an IF-THEN-ELSE-JOIN block. */
2988 if (single_pred_p (then_edge->dest)
2989 && single_succ_p (then_edge->dest)
2990 && single_pred_p (else_edge->dest)
2991 && single_succ_p (else_edge->dest)
2992 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2993 {
2994 then_bb = then_edge->dest;
2995 else_bb = else_edge->dest;
2996 join_bb = single_succ (then_bb);
2997 }
2998 /* Recognize an IF-THEN-JOIN block. */
2999 else if (single_pred_p (then_edge->dest)
3000 && single_succ_p (then_edge->dest)
3001 && single_succ (then_edge->dest) == else_edge->dest)
3002 {
3003 then_bb = then_edge->dest;
3004 else_bb = NULL_BLOCK;
3005 join_bb = else_edge->dest;
3006 }
3007 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3008 of basic blocks in cfglayout mode does not matter, so the fallthrough
3009 edge can go to any basic block (and not just to bb->next_bb, like in
3010 cfgrtl mode). */
3011 else if (single_pred_p (else_edge->dest)
3012 && single_succ_p (else_edge->dest)
3013 && single_succ (else_edge->dest) == then_edge->dest)
3014 {
3015 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3016 To make this work, we have to invert the THEN and ELSE blocks
3017 and reverse the jump condition. */
3018 then_bb = else_edge->dest;
3019 else_bb = NULL_BLOCK;
3020 join_bb = single_succ (then_bb);
3021 then_else_reversed = true;
3022 }
3023 else
3024 /* Not a form we can handle. */
3025 return FALSE;
3026
3027 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3028 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3029 return FALSE;
3030 if (else_bb
3031 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3032 return FALSE;
3033
3034 num_possible_if_blocks++;
3035
3036 if (dump_file)
3037 {
3038 fprintf (dump_file,
3039 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3040 (else_bb) ? "-ELSE" : "",
3041 pass, test_bb->index, then_bb->index);
3042
3043 if (else_bb)
3044 fprintf (dump_file, ", else %d", else_bb->index);
3045
3046 fprintf (dump_file, ", join %d\n", join_bb->index);
3047 }
3048
3049 /* If the conditional jump is more than just a conditional
3050 jump, then we can not do if-conversion on this block. */
3051 jump = BB_END (test_bb);
3052 if (! onlyjump_p (jump))
3053 return FALSE;
3054
3055 /* If this is not a standard conditional jump, we can't parse it. */
3056 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3057 if (!cond)
3058 return FALSE;
3059
3060 /* We must be comparing objects whose modes imply the size. */
3061 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3062 return FALSE;
3063
3064 /* Initialize an IF_INFO struct to pass around. */
3065 memset (&if_info, 0, sizeof if_info);
3066 if_info.test_bb = test_bb;
3067 if_info.then_bb = then_bb;
3068 if_info.else_bb = else_bb;
3069 if_info.join_bb = join_bb;
3070 if_info.cond = cond;
3071 if_info.cond_earliest = cond_earliest;
3072 if_info.jump = jump;
3073 if_info.then_else_reversed = then_else_reversed;
3074 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3075 predictable_edge_p (then_edge));
3076
3077 /* Do the real work. */
3078
3079 if (noce_process_if_block (&if_info))
3080 return TRUE;
3081
3082 if (HAVE_conditional_move
3083 && cond_move_process_if_block (&if_info))
3084 return TRUE;
3085
3086 return FALSE;
3087 }
3088 \f
3089
3090 /* Merge the blocks and mark for local life update. */
3091
3092 static void
3093 merge_if_block (struct ce_if_block * ce_info)
3094 {
3095 basic_block test_bb = ce_info->test_bb; /* last test block */
3096 basic_block then_bb = ce_info->then_bb; /* THEN */
3097 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3098 basic_block join_bb = ce_info->join_bb; /* join block */
3099 basic_block combo_bb;
3100
3101 /* All block merging is done into the lower block numbers. */
3102
3103 combo_bb = test_bb;
3104 df_set_bb_dirty (test_bb);
3105
3106 /* Merge any basic blocks to handle && and || subtests. Each of
3107 the blocks are on the fallthru path from the predecessor block. */
3108 if (ce_info->num_multiple_test_blocks > 0)
3109 {
3110 basic_block bb = test_bb;
3111 basic_block last_test_bb = ce_info->last_test_bb;
3112 basic_block fallthru = block_fallthru (bb);
3113
3114 do
3115 {
3116 bb = fallthru;
3117 fallthru = block_fallthru (bb);
3118 merge_blocks (combo_bb, bb);
3119 num_true_changes++;
3120 }
3121 while (bb != last_test_bb);
3122 }
3123
3124 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3125 label, but it might if there were || tests. That label's count should be
3126 zero, and it normally should be removed. */
3127
3128 if (then_bb)
3129 {
3130 merge_blocks (combo_bb, then_bb);
3131 num_true_changes++;
3132 }
3133
3134 /* The ELSE block, if it existed, had a label. That label count
3135 will almost always be zero, but odd things can happen when labels
3136 get their addresses taken. */
3137 if (else_bb)
3138 {
3139 merge_blocks (combo_bb, else_bb);
3140 num_true_changes++;
3141 }
3142
3143 /* If there was no join block reported, that means it was not adjacent
3144 to the others, and so we cannot merge them. */
3145
3146 if (! join_bb)
3147 {
3148 rtx last = BB_END (combo_bb);
3149
3150 /* The outgoing edge for the current COMBO block should already
3151 be correct. Verify this. */
3152 if (EDGE_COUNT (combo_bb->succs) == 0)
3153 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3154 || (NONJUMP_INSN_P (last)
3155 && GET_CODE (PATTERN (last)) == TRAP_IF
3156 && (TRAP_CONDITION (PATTERN (last))
3157 == const_true_rtx)));
3158
3159 else
3160 /* There should still be something at the end of the THEN or ELSE
3161 blocks taking us to our final destination. */
3162 gcc_assert (JUMP_P (last)
3163 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3164 && CALL_P (last)
3165 && SIBLING_CALL_P (last))
3166 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3167 && can_throw_internal (last)));
3168 }
3169
3170 /* The JOIN block may have had quite a number of other predecessors too.
3171 Since we've already merged the TEST, THEN and ELSE blocks, we should
3172 have only one remaining edge from our if-then-else diamond. If there
3173 is more than one remaining edge, it must come from elsewhere. There
3174 may be zero incoming edges if the THEN block didn't actually join
3175 back up (as with a call to a non-return function). */
3176 else if (EDGE_COUNT (join_bb->preds) < 2
3177 && join_bb != EXIT_BLOCK_PTR)
3178 {
3179 /* We can merge the JOIN cleanly and update the dataflow try
3180 again on this pass.*/
3181 merge_blocks (combo_bb, join_bb);
3182 num_true_changes++;
3183 }
3184 else
3185 {
3186 /* We cannot merge the JOIN. */
3187
3188 /* The outgoing edge for the current COMBO block should already
3189 be correct. Verify this. */
3190 gcc_assert (single_succ_p (combo_bb)
3191 && single_succ (combo_bb) == join_bb);
3192
3193 /* Remove the jump and cruft from the end of the COMBO block. */
3194 if (join_bb != EXIT_BLOCK_PTR)
3195 tidy_fallthru_edge (single_succ_edge (combo_bb));
3196 }
3197
3198 num_updated_if_blocks++;
3199 }
3200 \f
3201 /* Find a block ending in a simple IF condition and try to transform it
3202 in some way. When converting a multi-block condition, put the new code
3203 in the first such block and delete the rest. Return a pointer to this
3204 first block if some transformation was done. Return NULL otherwise. */
3205
3206 static basic_block
3207 find_if_header (basic_block test_bb, int pass)
3208 {
3209 ce_if_block_t ce_info;
3210 edge then_edge;
3211 edge else_edge;
3212
3213 /* The kind of block we're looking for has exactly two successors. */
3214 if (EDGE_COUNT (test_bb->succs) != 2)
3215 return NULL;
3216
3217 then_edge = EDGE_SUCC (test_bb, 0);
3218 else_edge = EDGE_SUCC (test_bb, 1);
3219
3220 if (df_get_bb_dirty (then_edge->dest))
3221 return NULL;
3222 if (df_get_bb_dirty (else_edge->dest))
3223 return NULL;
3224
3225 /* Neither edge should be abnormal. */
3226 if ((then_edge->flags & EDGE_COMPLEX)
3227 || (else_edge->flags & EDGE_COMPLEX))
3228 return NULL;
3229
3230 /* Nor exit the loop. */
3231 if ((then_edge->flags & EDGE_LOOP_EXIT)
3232 || (else_edge->flags & EDGE_LOOP_EXIT))
3233 return NULL;
3234
3235 /* The THEN edge is canonically the one that falls through. */
3236 if (then_edge->flags & EDGE_FALLTHRU)
3237 ;
3238 else if (else_edge->flags & EDGE_FALLTHRU)
3239 {
3240 edge e = else_edge;
3241 else_edge = then_edge;
3242 then_edge = e;
3243 }
3244 else
3245 /* Otherwise this must be a multiway branch of some sort. */
3246 return NULL;
3247
3248 memset (&ce_info, 0, sizeof (ce_info));
3249 ce_info.test_bb = test_bb;
3250 ce_info.then_bb = then_edge->dest;
3251 ce_info.else_bb = else_edge->dest;
3252 ce_info.pass = pass;
3253
3254 #ifdef IFCVT_MACHDEP_INIT
3255 IFCVT_MACHDEP_INIT (&ce_info);
3256 #endif
3257
3258 if (!reload_completed
3259 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3260 goto success;
3261
3262 if (reload_completed
3263 && targetm.have_conditional_execution ()
3264 && cond_exec_find_if_block (&ce_info))
3265 goto success;
3266
3267 if (HAVE_trap
3268 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3269 && find_cond_trap (test_bb, then_edge, else_edge))
3270 goto success;
3271
3272 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3273 && (reload_completed || !targetm.have_conditional_execution ()))
3274 {
3275 if (find_if_case_1 (test_bb, then_edge, else_edge))
3276 goto success;
3277 if (find_if_case_2 (test_bb, then_edge, else_edge))
3278 goto success;
3279 }
3280
3281 return NULL;
3282
3283 success:
3284 if (dump_file)
3285 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3286 /* Set this so we continue looking. */
3287 cond_exec_changed_p = TRUE;
3288 return ce_info.test_bb;
3289 }
3290
3291 /* Return true if a block has two edges, one of which falls through to the next
3292 block, and the other jumps to a specific block, so that we can tell if the
3293 block is part of an && test or an || test. Returns either -1 or the number
3294 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3295
3296 static int
3297 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3298 {
3299 edge cur_edge;
3300 int fallthru_p = FALSE;
3301 int jump_p = FALSE;
3302 rtx insn;
3303 rtx end;
3304 int n_insns = 0;
3305 edge_iterator ei;
3306
3307 if (!cur_bb || !target_bb)
3308 return -1;
3309
3310 /* If no edges, obviously it doesn't jump or fallthru. */
3311 if (EDGE_COUNT (cur_bb->succs) == 0)
3312 return FALSE;
3313
3314 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3315 {
3316 if (cur_edge->flags & EDGE_COMPLEX)
3317 /* Anything complex isn't what we want. */
3318 return -1;
3319
3320 else if (cur_edge->flags & EDGE_FALLTHRU)
3321 fallthru_p = TRUE;
3322
3323 else if (cur_edge->dest == target_bb)
3324 jump_p = TRUE;
3325
3326 else
3327 return -1;
3328 }
3329
3330 if ((jump_p & fallthru_p) == 0)
3331 return -1;
3332
3333 /* Don't allow calls in the block, since this is used to group && and ||
3334 together for conditional execution support. ??? we should support
3335 conditional execution support across calls for IA-64 some day, but
3336 for now it makes the code simpler. */
3337 end = BB_END (cur_bb);
3338 insn = BB_HEAD (cur_bb);
3339
3340 while (insn != NULL_RTX)
3341 {
3342 if (CALL_P (insn))
3343 return -1;
3344
3345 if (INSN_P (insn)
3346 && !JUMP_P (insn)
3347 && !DEBUG_INSN_P (insn)
3348 && GET_CODE (PATTERN (insn)) != USE
3349 && GET_CODE (PATTERN (insn)) != CLOBBER)
3350 n_insns++;
3351
3352 if (insn == end)
3353 break;
3354
3355 insn = NEXT_INSN (insn);
3356 }
3357
3358 return n_insns;
3359 }
3360
3361 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3362 block. If so, we'll try to convert the insns to not require the branch.
3363 Return TRUE if we were successful at converting the block. */
3364
3365 static int
3366 cond_exec_find_if_block (struct ce_if_block * ce_info)
3367 {
3368 basic_block test_bb = ce_info->test_bb;
3369 basic_block then_bb = ce_info->then_bb;
3370 basic_block else_bb = ce_info->else_bb;
3371 basic_block join_bb = NULL_BLOCK;
3372 edge cur_edge;
3373 basic_block next;
3374 edge_iterator ei;
3375
3376 ce_info->last_test_bb = test_bb;
3377
3378 /* We only ever should get here after reload,
3379 and if we have conditional execution. */
3380 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3381
3382 /* Discover if any fall through predecessors of the current test basic block
3383 were && tests (which jump to the else block) or || tests (which jump to
3384 the then block). */
3385 if (single_pred_p (test_bb)
3386 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3387 {
3388 basic_block bb = single_pred (test_bb);
3389 basic_block target_bb;
3390 int max_insns = MAX_CONDITIONAL_EXECUTE;
3391 int n_insns;
3392
3393 /* Determine if the preceding block is an && or || block. */
3394 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3395 {
3396 ce_info->and_and_p = TRUE;
3397 target_bb = else_bb;
3398 }
3399 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3400 {
3401 ce_info->and_and_p = FALSE;
3402 target_bb = then_bb;
3403 }
3404 else
3405 target_bb = NULL_BLOCK;
3406
3407 if (target_bb && n_insns <= max_insns)
3408 {
3409 int total_insns = 0;
3410 int blocks = 0;
3411
3412 ce_info->last_test_bb = test_bb;
3413
3414 /* Found at least one && or || block, look for more. */
3415 do
3416 {
3417 ce_info->test_bb = test_bb = bb;
3418 total_insns += n_insns;
3419 blocks++;
3420
3421 if (!single_pred_p (bb))
3422 break;
3423
3424 bb = single_pred (bb);
3425 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3426 }
3427 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3428
3429 ce_info->num_multiple_test_blocks = blocks;
3430 ce_info->num_multiple_test_insns = total_insns;
3431
3432 if (ce_info->and_and_p)
3433 ce_info->num_and_and_blocks = blocks;
3434 else
3435 ce_info->num_or_or_blocks = blocks;
3436 }
3437 }
3438
3439 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3440 other than any || blocks which jump to the THEN block. */
3441 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3442 return FALSE;
3443
3444 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3445 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3446 {
3447 if (cur_edge->flags & EDGE_COMPLEX)
3448 return FALSE;
3449 }
3450
3451 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3452 {
3453 if (cur_edge->flags & EDGE_COMPLEX)
3454 return FALSE;
3455 }
3456
3457 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3458 if (EDGE_COUNT (then_bb->succs) > 0
3459 && (!single_succ_p (then_bb)
3460 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3461 || (epilogue_completed
3462 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3463 return FALSE;
3464
3465 /* If the THEN block has no successors, conditional execution can still
3466 make a conditional call. Don't do this unless the ELSE block has
3467 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3468 Check for the last insn of the THEN block being an indirect jump, which
3469 is listed as not having any successors, but confuses the rest of the CE
3470 code processing. ??? we should fix this in the future. */
3471 if (EDGE_COUNT (then_bb->succs) == 0)
3472 {
3473 if (single_pred_p (else_bb))
3474 {
3475 rtx last_insn = BB_END (then_bb);
3476
3477 while (last_insn
3478 && NOTE_P (last_insn)
3479 && last_insn != BB_HEAD (then_bb))
3480 last_insn = PREV_INSN (last_insn);
3481
3482 if (last_insn
3483 && JUMP_P (last_insn)
3484 && ! simplejump_p (last_insn))
3485 return FALSE;
3486
3487 join_bb = else_bb;
3488 else_bb = NULL_BLOCK;
3489 }
3490 else
3491 return FALSE;
3492 }
3493
3494 /* If the THEN block's successor is the other edge out of the TEST block,
3495 then we have an IF-THEN combo without an ELSE. */
3496 else if (single_succ (then_bb) == else_bb)
3497 {
3498 join_bb = else_bb;
3499 else_bb = NULL_BLOCK;
3500 }
3501
3502 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3503 has exactly one predecessor and one successor, and the outgoing edge
3504 is not complex, then we have an IF-THEN-ELSE combo. */
3505 else if (single_succ_p (else_bb)
3506 && single_succ (then_bb) == single_succ (else_bb)
3507 && single_pred_p (else_bb)
3508 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3509 && !(epilogue_completed
3510 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3511 join_bb = single_succ (else_bb);
3512
3513 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3514 else
3515 return FALSE;
3516
3517 num_possible_if_blocks++;
3518
3519 if (dump_file)
3520 {
3521 fprintf (dump_file,
3522 "\nIF-THEN%s block found, pass %d, start block %d "
3523 "[insn %d], then %d [%d]",
3524 (else_bb) ? "-ELSE" : "",
3525 ce_info->pass,
3526 test_bb->index,
3527 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3528 then_bb->index,
3529 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3530
3531 if (else_bb)
3532 fprintf (dump_file, ", else %d [%d]",
3533 else_bb->index,
3534 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3535
3536 fprintf (dump_file, ", join %d [%d]",
3537 join_bb->index,
3538 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3539
3540 if (ce_info->num_multiple_test_blocks > 0)
3541 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3542 ce_info->num_multiple_test_blocks,
3543 (ce_info->and_and_p) ? "&&" : "||",
3544 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3545 ce_info->last_test_bb->index,
3546 ((BB_HEAD (ce_info->last_test_bb))
3547 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3548 : -1));
3549
3550 fputc ('\n', dump_file);
3551 }
3552
3553 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3554 first condition for free, since we've already asserted that there's a
3555 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3556 we checked the FALLTHRU flag, those are already adjacent to the last IF
3557 block. */
3558 /* ??? As an enhancement, move the ELSE block. Have to deal with
3559 BLOCK notes, if by no other means than backing out the merge if they
3560 exist. Sticky enough I don't want to think about it now. */
3561 next = then_bb;
3562 if (else_bb && (next = next->next_bb) != else_bb)
3563 return FALSE;
3564 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3565 {
3566 if (else_bb)
3567 join_bb = NULL;
3568 else
3569 return FALSE;
3570 }
3571
3572 /* Do the real work. */
3573
3574 ce_info->else_bb = else_bb;
3575 ce_info->join_bb = join_bb;
3576
3577 /* If we have && and || tests, try to first handle combining the && and ||
3578 tests into the conditional code, and if that fails, go back and handle
3579 it without the && and ||, which at present handles the && case if there
3580 was no ELSE block. */
3581 if (cond_exec_process_if_block (ce_info, TRUE))
3582 return TRUE;
3583
3584 if (ce_info->num_multiple_test_blocks)
3585 {
3586 cancel_changes (0);
3587
3588 if (cond_exec_process_if_block (ce_info, FALSE))
3589 return TRUE;
3590 }
3591
3592 return FALSE;
3593 }
3594
3595 /* Convert a branch over a trap, or a branch
3596 to a trap, into a conditional trap. */
3597
3598 static int
3599 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3600 {
3601 basic_block then_bb = then_edge->dest;
3602 basic_block else_bb = else_edge->dest;
3603 basic_block other_bb, trap_bb;
3604 rtx trap, jump, cond, cond_earliest, seq;
3605 enum rtx_code code;
3606
3607 /* Locate the block with the trap instruction. */
3608 /* ??? While we look for no successors, we really ought to allow
3609 EH successors. Need to fix merge_if_block for that to work. */
3610 if ((trap = block_has_only_trap (then_bb)) != NULL)
3611 trap_bb = then_bb, other_bb = else_bb;
3612 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3613 trap_bb = else_bb, other_bb = then_bb;
3614 else
3615 return FALSE;
3616
3617 if (dump_file)
3618 {
3619 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3620 test_bb->index, trap_bb->index);
3621 }
3622
3623 /* If this is not a standard conditional jump, we can't parse it. */
3624 jump = BB_END (test_bb);
3625 cond = noce_get_condition (jump, &cond_earliest, false);
3626 if (! cond)
3627 return FALSE;
3628
3629 /* If the conditional jump is more than just a conditional jump, then
3630 we can not do if-conversion on this block. */
3631 if (! onlyjump_p (jump))
3632 return FALSE;
3633
3634 /* We must be comparing objects whose modes imply the size. */
3635 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3636 return FALSE;
3637
3638 /* Reverse the comparison code, if necessary. */
3639 code = GET_CODE (cond);
3640 if (then_bb == trap_bb)
3641 {
3642 code = reversed_comparison_code (cond, jump);
3643 if (code == UNKNOWN)
3644 return FALSE;
3645 }
3646
3647 /* Attempt to generate the conditional trap. */
3648 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3649 copy_rtx (XEXP (cond, 1)),
3650 TRAP_CODE (PATTERN (trap)));
3651 if (seq == NULL)
3652 return FALSE;
3653
3654 /* Emit the new insns before cond_earliest. */
3655 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3656
3657 /* Delete the trap block if possible. */
3658 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3659 df_set_bb_dirty (test_bb);
3660 df_set_bb_dirty (then_bb);
3661 df_set_bb_dirty (else_bb);
3662
3663 if (EDGE_COUNT (trap_bb->preds) == 0)
3664 {
3665 delete_basic_block (trap_bb);
3666 num_true_changes++;
3667 }
3668
3669 /* Wire together the blocks again. */
3670 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3671 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3672 else
3673 {
3674 rtx lab, newjump;
3675
3676 lab = JUMP_LABEL (jump);
3677 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3678 LABEL_NUSES (lab) += 1;
3679 JUMP_LABEL (newjump) = lab;
3680 emit_barrier_after (newjump);
3681 }
3682 delete_insn (jump);
3683
3684 if (can_merge_blocks_p (test_bb, other_bb))
3685 {
3686 merge_blocks (test_bb, other_bb);
3687 num_true_changes++;
3688 }
3689
3690 num_updated_if_blocks++;
3691 return TRUE;
3692 }
3693
3694 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3695 return it. */
3696
3697 static rtx
3698 block_has_only_trap (basic_block bb)
3699 {
3700 rtx trap;
3701
3702 /* We're not the exit block. */
3703 if (bb == EXIT_BLOCK_PTR)
3704 return NULL_RTX;
3705
3706 /* The block must have no successors. */
3707 if (EDGE_COUNT (bb->succs) > 0)
3708 return NULL_RTX;
3709
3710 /* The only instruction in the THEN block must be the trap. */
3711 trap = first_active_insn (bb);
3712 if (! (trap == BB_END (bb)
3713 && GET_CODE (PATTERN (trap)) == TRAP_IF
3714 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3715 return NULL_RTX;
3716
3717 return trap;
3718 }
3719
3720 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3721 transformable, but not necessarily the other. There need be no
3722 JOIN block.
3723
3724 Return TRUE if we were successful at converting the block.
3725
3726 Cases we'd like to look at:
3727
3728 (1)
3729 if (test) goto over; // x not live
3730 x = a;
3731 goto label;
3732 over:
3733
3734 becomes
3735
3736 x = a;
3737 if (! test) goto label;
3738
3739 (2)
3740 if (test) goto E; // x not live
3741 x = big();
3742 goto L;
3743 E:
3744 x = b;
3745 goto M;
3746
3747 becomes
3748
3749 x = b;
3750 if (test) goto M;
3751 x = big();
3752 goto L;
3753
3754 (3) // This one's really only interesting for targets that can do
3755 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3756 // it results in multiple branches on a cache line, which often
3757 // does not sit well with predictors.
3758
3759 if (test1) goto E; // predicted not taken
3760 x = a;
3761 if (test2) goto F;
3762 ...
3763 E:
3764 x = b;
3765 J:
3766
3767 becomes
3768
3769 x = a;
3770 if (test1) goto E;
3771 if (test2) goto F;
3772
3773 Notes:
3774
3775 (A) Don't do (2) if the branch is predicted against the block we're
3776 eliminating. Do it anyway if we can eliminate a branch; this requires
3777 that the sole successor of the eliminated block postdominate the other
3778 side of the if.
3779
3780 (B) With CE, on (3) we can steal from both sides of the if, creating
3781
3782 if (test1) x = a;
3783 if (!test1) x = b;
3784 if (test1) goto J;
3785 if (test2) goto F;
3786 ...
3787 J:
3788
3789 Again, this is most useful if J postdominates.
3790
3791 (C) CE substitutes for helpful life information.
3792
3793 (D) These heuristics need a lot of work. */
3794
3795 /* Tests for case 1 above. */
3796
3797 static int
3798 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3799 {
3800 basic_block then_bb = then_edge->dest;
3801 basic_block else_bb = else_edge->dest;
3802 basic_block new_bb;
3803 int then_bb_index, then_prob;
3804 rtx else_target = NULL_RTX;
3805
3806 /* If we are partitioning hot/cold basic blocks, we don't want to
3807 mess up unconditional or indirect jumps that cross between hot
3808 and cold sections.
3809
3810 Basic block partitioning may result in some jumps that appear to
3811 be optimizable (or blocks that appear to be mergeable), but which really
3812 must be left untouched (they are required to make it safely across
3813 partition boundaries). See the comments at the top of
3814 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3815
3816 if ((BB_END (then_bb)
3817 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3818 || (BB_END (test_bb)
3819 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3820 || (BB_END (else_bb)
3821 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3822 NULL_RTX)))
3823 return FALSE;
3824
3825 /* THEN has one successor. */
3826 if (!single_succ_p (then_bb))
3827 return FALSE;
3828
3829 /* THEN does not fall through, but is not strange either. */
3830 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3831 return FALSE;
3832
3833 /* THEN has one predecessor. */
3834 if (!single_pred_p (then_bb))
3835 return FALSE;
3836
3837 /* THEN must do something. */
3838 if (forwarder_block_p (then_bb))
3839 return FALSE;
3840
3841 num_possible_if_blocks++;
3842 if (dump_file)
3843 fprintf (dump_file,
3844 "\nIF-CASE-1 found, start %d, then %d\n",
3845 test_bb->index, then_bb->index);
3846
3847 if (then_edge->probability)
3848 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3849 else
3850 then_prob = REG_BR_PROB_BASE / 2;
3851
3852 /* We're speculating from the THEN path, we want to make sure the cost
3853 of speculation is within reason. */
3854 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3855 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3856 predictable_edge_p (then_edge)))))
3857 return FALSE;
3858
3859 if (else_bb == EXIT_BLOCK_PTR)
3860 {
3861 rtx jump = BB_END (else_edge->src);
3862 gcc_assert (JUMP_P (jump));
3863 else_target = JUMP_LABEL (jump);
3864 }
3865
3866 /* Registers set are dead, or are predicable. */
3867 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3868 single_succ_edge (then_bb), 1))
3869 return FALSE;
3870
3871 /* Conversion went ok, including moving the insns and fixing up the
3872 jump. Adjust the CFG to match. */
3873
3874 /* We can avoid creating a new basic block if then_bb is immediately
3875 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3876 through to else_bb. */
3877
3878 if (then_bb->next_bb == else_bb
3879 && then_bb->prev_bb == test_bb
3880 && else_bb != EXIT_BLOCK_PTR)
3881 {
3882 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3883 new_bb = 0;
3884 }
3885 else if (else_bb == EXIT_BLOCK_PTR)
3886 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3887 else_bb, else_target);
3888 else
3889 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3890 else_bb);
3891
3892 df_set_bb_dirty (test_bb);
3893 df_set_bb_dirty (else_bb);
3894
3895 then_bb_index = then_bb->index;
3896 delete_basic_block (then_bb);
3897
3898 /* Make rest of code believe that the newly created block is the THEN_BB
3899 block we removed. */
3900 if (new_bb)
3901 {
3902 df_bb_replace (then_bb_index, new_bb);
3903 /* Since the fallthru edge was redirected from test_bb to new_bb,
3904 we need to ensure that new_bb is in the same partition as
3905 test bb (you can not fall through across section boundaries). */
3906 BB_COPY_PARTITION (new_bb, test_bb);
3907 }
3908
3909 num_true_changes++;
3910 num_updated_if_blocks++;
3911
3912 return TRUE;
3913 }
3914
3915 /* Test for case 2 above. */
3916
3917 static int
3918 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3919 {
3920 basic_block then_bb = then_edge->dest;
3921 basic_block else_bb = else_edge->dest;
3922 edge else_succ;
3923 int then_prob, else_prob;
3924
3925 /* We do not want to speculate (empty) loop latches. */
3926 if (current_loops
3927 && else_bb->loop_father->latch == else_bb)
3928 return FALSE;
3929
3930 /* If we are partitioning hot/cold basic blocks, we don't want to
3931 mess up unconditional or indirect jumps that cross between hot
3932 and cold sections.
3933
3934 Basic block partitioning may result in some jumps that appear to
3935 be optimizable (or blocks that appear to be mergeable), but which really
3936 must be left untouched (they are required to make it safely across
3937 partition boundaries). See the comments at the top of
3938 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3939
3940 if ((BB_END (then_bb)
3941 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3942 || (BB_END (test_bb)
3943 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3944 || (BB_END (else_bb)
3945 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3946 NULL_RTX)))
3947 return FALSE;
3948
3949 /* ELSE has one successor. */
3950 if (!single_succ_p (else_bb))
3951 return FALSE;
3952 else
3953 else_succ = single_succ_edge (else_bb);
3954
3955 /* ELSE outgoing edge is not complex. */
3956 if (else_succ->flags & EDGE_COMPLEX)
3957 return FALSE;
3958
3959 /* ELSE has one predecessor. */
3960 if (!single_pred_p (else_bb))
3961 return FALSE;
3962
3963 /* THEN is not EXIT. */
3964 if (then_bb->index < NUM_FIXED_BLOCKS)
3965 return FALSE;
3966
3967 if (else_edge->probability)
3968 {
3969 else_prob = else_edge->probability;
3970 then_prob = REG_BR_PROB_BASE - else_prob;
3971 }
3972 else
3973 {
3974 else_prob = REG_BR_PROB_BASE / 2;
3975 then_prob = REG_BR_PROB_BASE / 2;
3976 }
3977
3978 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3979 if (else_prob > then_prob)
3980 ;
3981 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3982 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3983 else_succ->dest))
3984 ;
3985 else
3986 return FALSE;
3987
3988 num_possible_if_blocks++;
3989 if (dump_file)
3990 fprintf (dump_file,
3991 "\nIF-CASE-2 found, start %d, else %d\n",
3992 test_bb->index, else_bb->index);
3993
3994 /* We're speculating from the ELSE path, we want to make sure the cost
3995 of speculation is within reason. */
3996 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
3997 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3998 predictable_edge_p (else_edge)))))
3999 return FALSE;
4000
4001 /* Registers set are dead, or are predicable. */
4002 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4003 return FALSE;
4004
4005 /* Conversion went ok, including moving the insns and fixing up the
4006 jump. Adjust the CFG to match. */
4007
4008 df_set_bb_dirty (test_bb);
4009 df_set_bb_dirty (then_bb);
4010 delete_basic_block (else_bb);
4011
4012 num_true_changes++;
4013 num_updated_if_blocks++;
4014
4015 /* ??? We may now fallthru from one of THEN's successors into a join
4016 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4017
4018 return TRUE;
4019 }
4020
4021 /* Used by the code above to perform the actual rtl transformations.
4022 Return TRUE if successful.
4023
4024 TEST_BB is the block containing the conditional branch. MERGE_BB
4025 is the block containing the code to manipulate. DEST_EDGE is an
4026 edge representing a jump to the join block; after the conversion,
4027 TEST_BB should be branching to its destination.
4028 REVERSEP is true if the sense of the branch should be reversed. */
4029
4030 static int
4031 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4032 basic_block other_bb, edge dest_edge, int reversep)
4033 {
4034 basic_block new_dest = dest_edge->dest;
4035 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4036 bitmap merge_set = NULL;
4037 /* Number of pending changes. */
4038 int n_validated_changes = 0;
4039 rtx new_dest_label = NULL_RTX;
4040
4041 jump = BB_END (test_bb);
4042
4043 /* Find the extent of the real code in the merge block. */
4044 head = BB_HEAD (merge_bb);
4045 end = BB_END (merge_bb);
4046
4047 while (DEBUG_INSN_P (end) && end != head)
4048 end = PREV_INSN (end);
4049
4050 /* If merge_bb ends with a tablejump, predicating/moving insn's
4051 into test_bb and then deleting merge_bb will result in the jumptable
4052 that follows merge_bb being removed along with merge_bb and then we
4053 get an unresolved reference to the jumptable. */
4054 if (tablejump_p (end, NULL, NULL))
4055 return FALSE;
4056
4057 if (LABEL_P (head))
4058 head = NEXT_INSN (head);
4059 while (DEBUG_INSN_P (head) && head != end)
4060 head = NEXT_INSN (head);
4061 if (NOTE_P (head))
4062 {
4063 if (head == end)
4064 {
4065 head = end = NULL_RTX;
4066 goto no_body;
4067 }
4068 head = NEXT_INSN (head);
4069 while (DEBUG_INSN_P (head) && head != end)
4070 head = NEXT_INSN (head);
4071 }
4072
4073 if (JUMP_P (end))
4074 {
4075 if (head == end)
4076 {
4077 head = end = NULL_RTX;
4078 goto no_body;
4079 }
4080 end = PREV_INSN (end);
4081 while (DEBUG_INSN_P (end) && end != head)
4082 end = PREV_INSN (end);
4083 }
4084
4085 /* Disable handling dead code by conditional execution if the machine needs
4086 to do anything funny with the tests, etc. */
4087 #ifndef IFCVT_MODIFY_TESTS
4088 if (targetm.have_conditional_execution ())
4089 {
4090 /* In the conditional execution case, we have things easy. We know
4091 the condition is reversible. We don't have to check life info
4092 because we're going to conditionally execute the code anyway.
4093 All that's left is making sure the insns involved can actually
4094 be predicated. */
4095
4096 rtx cond, prob_val;
4097
4098 cond = cond_exec_get_condition (jump);
4099 if (! cond)
4100 return FALSE;
4101
4102 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4103 if (prob_val)
4104 prob_val = XEXP (prob_val, 0);
4105
4106 if (reversep)
4107 {
4108 enum rtx_code rev = reversed_comparison_code (cond, jump);
4109 if (rev == UNKNOWN)
4110 return FALSE;
4111 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4112 XEXP (cond, 1));
4113 if (prob_val)
4114 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4115 }
4116
4117 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4118 && verify_changes (0))
4119 n_validated_changes = num_validated_changes ();
4120 else
4121 cancel_changes (0);
4122
4123 earliest = jump;
4124 }
4125 #endif
4126
4127 /* If we allocated new pseudos (e.g. in the conditional move
4128 expander called from noce_emit_cmove), we must resize the
4129 array first. */
4130 if (max_regno < max_reg_num ())
4131 max_regno = max_reg_num ();
4132
4133 /* Try the NCE path if the CE path did not result in any changes. */
4134 if (n_validated_changes == 0)
4135 {
4136 rtx cond, insn;
4137 regset live;
4138 bool success;
4139
4140 /* In the non-conditional execution case, we have to verify that there
4141 are no trapping operations, no calls, no references to memory, and
4142 that any registers modified are dead at the branch site. */
4143
4144 if (!any_condjump_p (jump))
4145 return FALSE;
4146
4147 /* Find the extent of the conditional. */
4148 cond = noce_get_condition (jump, &earliest, false);
4149 if (!cond)
4150 return FALSE;
4151
4152 live = BITMAP_ALLOC (&reg_obstack);
4153 simulate_backwards_to_point (merge_bb, live, end);
4154 success = can_move_insns_across (head, end, earliest, jump,
4155 merge_bb, live,
4156 df_get_live_in (other_bb), NULL);
4157 BITMAP_FREE (live);
4158 if (!success)
4159 return FALSE;
4160
4161 /* Collect the set of registers set in MERGE_BB. */
4162 merge_set = BITMAP_ALLOC (&reg_obstack);
4163
4164 FOR_BB_INSNS (merge_bb, insn)
4165 if (NONDEBUG_INSN_P (insn))
4166 df_simulate_find_defs (insn, merge_set);
4167
4168 #ifdef HAVE_simple_return
4169 /* If shrink-wrapping, disable this optimization when test_bb is
4170 the first basic block and merge_bb exits. The idea is to not
4171 move code setting up a return register as that may clobber a
4172 register used to pass function parameters, which then must be
4173 saved in caller-saved regs. A caller-saved reg requires the
4174 prologue, killing a shrink-wrap opportunity. */
4175 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4176 && ENTRY_BLOCK_PTR->next_bb == test_bb
4177 && single_succ_p (new_dest)
4178 && single_succ (new_dest) == EXIT_BLOCK_PTR
4179 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4180 {
4181 regset return_regs;
4182 unsigned int i;
4183
4184 return_regs = BITMAP_ALLOC (&reg_obstack);
4185
4186 /* Start off with the intersection of regs used to pass
4187 params and regs used to return values. */
4188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4189 if (FUNCTION_ARG_REGNO_P (i)
4190 && targetm.calls.function_value_regno_p (i))
4191 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4192
4193 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4194 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4195 if (!bitmap_empty_p (return_regs))
4196 {
4197 FOR_BB_INSNS_REVERSE (new_dest, insn)
4198 if (NONDEBUG_INSN_P (insn))
4199 {
4200 df_ref *def_rec;
4201 unsigned int uid = INSN_UID (insn);
4202
4203 /* If this insn sets any reg in return_regs.. */
4204 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4205 {
4206 df_ref def = *def_rec;
4207 unsigned r = DF_REF_REGNO (def);
4208
4209 if (bitmap_bit_p (return_regs, r))
4210 break;
4211 }
4212 /* ..then add all reg uses to the set of regs
4213 we're interested in. */
4214 if (*def_rec)
4215 df_simulate_uses (insn, return_regs);
4216 }
4217 if (bitmap_intersect_p (merge_set, return_regs))
4218 {
4219 BITMAP_FREE (return_regs);
4220 BITMAP_FREE (merge_set);
4221 return FALSE;
4222 }
4223 }
4224 BITMAP_FREE (return_regs);
4225 }
4226 #endif
4227 }
4228
4229 no_body:
4230 /* We don't want to use normal invert_jump or redirect_jump because
4231 we don't want to delete_insn called. Also, we want to do our own
4232 change group management. */
4233
4234 old_dest = JUMP_LABEL (jump);
4235 if (other_bb != new_dest)
4236 {
4237 if (JUMP_P (BB_END (dest_edge->src)))
4238 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4239 else if (new_dest == EXIT_BLOCK_PTR)
4240 new_dest_label = ret_rtx;
4241 else
4242 new_dest_label = block_label (new_dest);
4243
4244 if (reversep
4245 ? ! invert_jump_1 (jump, new_dest_label)
4246 : ! redirect_jump_1 (jump, new_dest_label))
4247 goto cancel;
4248 }
4249
4250 if (verify_changes (n_validated_changes))
4251 confirm_change_group ();
4252 else
4253 goto cancel;
4254
4255 if (other_bb != new_dest)
4256 {
4257 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4258
4259 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4260 if (reversep)
4261 {
4262 gcov_type count, probability;
4263 count = BRANCH_EDGE (test_bb)->count;
4264 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4265 FALLTHRU_EDGE (test_bb)->count = count;
4266 probability = BRANCH_EDGE (test_bb)->probability;
4267 BRANCH_EDGE (test_bb)->probability
4268 = FALLTHRU_EDGE (test_bb)->probability;
4269 FALLTHRU_EDGE (test_bb)->probability = probability;
4270 update_br_prob_note (test_bb);
4271 }
4272 }
4273
4274 /* Move the insns out of MERGE_BB to before the branch. */
4275 if (head != NULL)
4276 {
4277 rtx insn;
4278
4279 if (end == BB_END (merge_bb))
4280 BB_END (merge_bb) = PREV_INSN (head);
4281
4282 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4283 notes being moved might become invalid. */
4284 insn = head;
4285 do
4286 {
4287 rtx note, set;
4288
4289 if (! INSN_P (insn))
4290 continue;
4291 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4292 if (! note)
4293 continue;
4294 set = single_set (insn);
4295 if (!set || !function_invariant_p (SET_SRC (set))
4296 || !function_invariant_p (XEXP (note, 0)))
4297 remove_note (insn, note);
4298 } while (insn != end && (insn = NEXT_INSN (insn)));
4299
4300 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4301 notes referring to the registers being set might become invalid. */
4302 if (merge_set)
4303 {
4304 unsigned i;
4305 bitmap_iterator bi;
4306
4307 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4308 remove_reg_equal_equiv_notes_for_regno (i);
4309
4310 BITMAP_FREE (merge_set);
4311 }
4312
4313 reorder_insns (head, end, PREV_INSN (earliest));
4314 }
4315
4316 /* Remove the jump and edge if we can. */
4317 if (other_bb == new_dest)
4318 {
4319 delete_insn (jump);
4320 remove_edge (BRANCH_EDGE (test_bb));
4321 /* ??? Can't merge blocks here, as then_bb is still in use.
4322 At minimum, the merge will get done just before bb-reorder. */
4323 }
4324
4325 return TRUE;
4326
4327 cancel:
4328 cancel_changes (0);
4329
4330 if (merge_set)
4331 BITMAP_FREE (merge_set);
4332
4333 return FALSE;
4334 }
4335 \f
4336 /* Main entry point for all if-conversion. */
4337
4338 static void
4339 if_convert (void)
4340 {
4341 basic_block bb;
4342 int pass;
4343
4344 if (optimize == 1)
4345 {
4346 df_live_add_problem ();
4347 df_live_set_all_dirty ();
4348 }
4349
4350 num_possible_if_blocks = 0;
4351 num_updated_if_blocks = 0;
4352 num_true_changes = 0;
4353
4354 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4355 mark_loop_exit_edges ();
4356 loop_optimizer_finalize ();
4357 free_dominance_info (CDI_DOMINATORS);
4358
4359 /* Compute postdominators. */
4360 calculate_dominance_info (CDI_POST_DOMINATORS);
4361
4362 df_set_flags (DF_LR_RUN_DCE);
4363
4364 /* Go through each of the basic blocks looking for things to convert. If we
4365 have conditional execution, we make multiple passes to allow us to handle
4366 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4367 pass = 0;
4368 do
4369 {
4370 df_analyze ();
4371 /* Only need to do dce on the first pass. */
4372 df_clear_flags (DF_LR_RUN_DCE);
4373 cond_exec_changed_p = FALSE;
4374 pass++;
4375
4376 #ifdef IFCVT_MULTIPLE_DUMPS
4377 if (dump_file && pass > 1)
4378 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4379 #endif
4380
4381 FOR_EACH_BB (bb)
4382 {
4383 basic_block new_bb;
4384 while (!df_get_bb_dirty (bb)
4385 && (new_bb = find_if_header (bb, pass)) != NULL)
4386 bb = new_bb;
4387 }
4388
4389 #ifdef IFCVT_MULTIPLE_DUMPS
4390 if (dump_file && cond_exec_changed_p)
4391 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4392 #endif
4393 }
4394 while (cond_exec_changed_p);
4395
4396 #ifdef IFCVT_MULTIPLE_DUMPS
4397 if (dump_file)
4398 fprintf (dump_file, "\n\n========== no more changes\n");
4399 #endif
4400
4401 free_dominance_info (CDI_POST_DOMINATORS);
4402
4403 if (dump_file)
4404 fflush (dump_file);
4405
4406 clear_aux_for_blocks ();
4407
4408 /* If we allocated new pseudos, we must resize the array for sched1. */
4409 if (max_regno < max_reg_num ())
4410 max_regno = max_reg_num ();
4411
4412 /* Write the final stats. */
4413 if (dump_file && num_possible_if_blocks > 0)
4414 {
4415 fprintf (dump_file,
4416 "\n%d possible IF blocks searched.\n",
4417 num_possible_if_blocks);
4418 fprintf (dump_file,
4419 "%d IF blocks converted.\n",
4420 num_updated_if_blocks);
4421 fprintf (dump_file,
4422 "%d true changes made.\n\n\n",
4423 num_true_changes);
4424 }
4425
4426 if (optimize == 1)
4427 df_remove_problem (df_live);
4428
4429 #ifdef ENABLE_CHECKING
4430 verify_flow_info ();
4431 #endif
4432 }
4433 \f
4434 static bool
4435 gate_handle_if_conversion (void)
4436 {
4437 return (optimize > 0)
4438 && dbg_cnt (if_conversion);
4439 }
4440
4441 /* If-conversion and CFG cleanup. */
4442 static unsigned int
4443 rest_of_handle_if_conversion (void)
4444 {
4445 if (flag_if_conversion)
4446 {
4447 if (dump_file)
4448 {
4449 dump_reg_info (dump_file);
4450 dump_flow_info (dump_file, dump_flags);
4451 }
4452 cleanup_cfg (CLEANUP_EXPENSIVE);
4453 if_convert ();
4454 }
4455
4456 cleanup_cfg (0);
4457 return 0;
4458 }
4459
4460 struct rtl_opt_pass pass_rtl_ifcvt =
4461 {
4462 {
4463 RTL_PASS,
4464 "ce1", /* name */
4465 gate_handle_if_conversion, /* gate */
4466 rest_of_handle_if_conversion, /* execute */
4467 NULL, /* sub */
4468 NULL, /* next */
4469 0, /* static_pass_number */
4470 TV_IFCVT, /* tv_id */
4471 0, /* properties_required */
4472 0, /* properties_provided */
4473 0, /* properties_destroyed */
4474 0, /* todo_flags_start */
4475 TODO_df_finish | TODO_verify_rtl_sharing |
4476 0 /* todo_flags_finish */
4477 }
4478 };
4479
4480 static bool
4481 gate_handle_if_after_combine (void)
4482 {
4483 return optimize > 0 && flag_if_conversion
4484 && dbg_cnt (if_after_combine);
4485 }
4486
4487
4488 /* Rerun if-conversion, as combine may have simplified things enough
4489 to now meet sequence length restrictions. */
4490 static unsigned int
4491 rest_of_handle_if_after_combine (void)
4492 {
4493 if_convert ();
4494 return 0;
4495 }
4496
4497 struct rtl_opt_pass pass_if_after_combine =
4498 {
4499 {
4500 RTL_PASS,
4501 "ce2", /* name */
4502 gate_handle_if_after_combine, /* gate */
4503 rest_of_handle_if_after_combine, /* execute */
4504 NULL, /* sub */
4505 NULL, /* next */
4506 0, /* static_pass_number */
4507 TV_IFCVT, /* tv_id */
4508 0, /* properties_required */
4509 0, /* properties_provided */
4510 0, /* properties_destroyed */
4511 0, /* todo_flags_start */
4512 TODO_df_finish | TODO_verify_rtl_sharing |
4513 TODO_ggc_collect /* todo_flags_finish */
4514 }
4515 };
4516
4517
4518 static bool
4519 gate_handle_if_after_reload (void)
4520 {
4521 return optimize > 0 && flag_if_conversion2
4522 && dbg_cnt (if_after_reload);
4523 }
4524
4525 static unsigned int
4526 rest_of_handle_if_after_reload (void)
4527 {
4528 if_convert ();
4529 return 0;
4530 }
4531
4532
4533 struct rtl_opt_pass pass_if_after_reload =
4534 {
4535 {
4536 RTL_PASS,
4537 "ce3", /* name */
4538 gate_handle_if_after_reload, /* gate */
4539 rest_of_handle_if_after_reload, /* execute */
4540 NULL, /* sub */
4541 NULL, /* next */
4542 0, /* static_pass_number */
4543 TV_IFCVT2, /* tv_id */
4544 0, /* properties_required */
4545 0, /* properties_provided */
4546 0, /* properties_destroyed */
4547 0, /* todo_flags_start */
4548 TODO_df_finish | TODO_verify_rtl_sharing |
4549 TODO_ggc_collect /* todo_flags_finish */
4550 }
4551 };