passes.c (execute_todo): Do not call ggc_collect conditional here.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "pointer-set.h"
45 #include "dbgcnt.h"
46
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
59
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
65
66 #define IFCVT_MULTIPLE_DUMPS 1
67
68 #define NULL_BLOCK ((basic_block) NULL)
69
70 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
71 static int num_possible_if_blocks;
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
74 execution. */
75 static int num_updated_if_blocks;
76
77 /* # of changes made. */
78 static int num_true_changes;
79
80 /* Whether conditional execution changes were made. */
81 static int cond_exec_changed_p;
82
83 /* Forward references. */
84 static int count_bb_insns (const_basic_block);
85 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
86 static rtx first_active_insn (basic_block);
87 static rtx last_active_insn (basic_block, int);
88 static rtx find_active_insn_before (basic_block, rtx);
89 static rtx find_active_insn_after (basic_block, rtx);
90 static basic_block block_fallthru (basic_block);
91 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
92 static rtx cond_exec_get_condition (rtx);
93 static rtx noce_get_condition (rtx, rtx *, bool);
94 static int noce_operand_ok (const_rtx);
95 static void merge_if_block (ce_if_block_t *);
96 static int find_cond_trap (basic_block, edge, edge);
97 static basic_block find_if_header (basic_block, int);
98 static int block_jumps_and_fallthru_p (basic_block, basic_block);
99 static int noce_find_if_block (basic_block, edge, edge, int);
100 static int cond_exec_find_if_block (ce_if_block_t *);
101 static int find_if_case_1 (basic_block, edge, edge);
102 static int find_if_case_2 (basic_block, edge, edge);
103 static int dead_or_predicable (basic_block, basic_block, basic_block,
104 edge, int);
105 static void noce_emit_move_insn (rtx, rtx);
106 static rtx block_has_only_trap (basic_block);
107 \f
108 /* Count the number of non-jump active insns in BB. */
109
110 static int
111 count_bb_insns (const_basic_block bb)
112 {
113 int count = 0;
114 rtx insn = BB_HEAD (bb);
115
116 while (1)
117 {
118 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
119 count++;
120
121 if (insn == BB_END (bb))
122 break;
123 insn = NEXT_INSN (insn);
124 }
125
126 return count;
127 }
128
129 /* Determine whether the total insn_rtx_cost on non-jump insns in
130 basic block BB is less than MAX_COST. This function returns
131 false if the cost of any instruction could not be estimated.
132
133 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
134 as those insns are being speculated. MAX_COST is scaled with SCALE
135 plus a small fudge factor. */
136
137 static bool
138 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
139 {
140 int count = 0;
141 rtx insn = BB_HEAD (bb);
142 bool speed = optimize_bb_for_speed_p (bb);
143
144 /* Our branch probability/scaling factors are just estimates and don't
145 account for cases where we can get speculation for free and other
146 secondary benefits. So we fudge the scale factor to make speculating
147 appear a little more profitable. */
148 scale += REG_BR_PROB_BASE / 8;
149 max_cost *= scale;
150
151 while (1)
152 {
153 if (NONJUMP_INSN_P (insn))
154 {
155 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
156 if (cost == 0)
157 return false;
158
159 /* If this instruction is the load or set of a "stack" register,
160 such as a floating point register on x87, then the cost of
161 speculatively executing this insn may need to include
162 the additional cost of popping its result off of the
163 register stack. Unfortunately, correctly recognizing and
164 accounting for this additional overhead is tricky, so for
165 now we simply prohibit such speculative execution. */
166 #ifdef STACK_REGS
167 {
168 rtx set = single_set (insn);
169 if (set && STACK_REG_P (SET_DEST (set)))
170 return false;
171 }
172 #endif
173
174 count += cost;
175 if (count >= max_cost)
176 return false;
177 }
178 else if (CALL_P (insn))
179 return false;
180
181 if (insn == BB_END (bb))
182 break;
183 insn = NEXT_INSN (insn);
184 }
185
186 return true;
187 }
188
189 /* Return the first non-jump active insn in the basic block. */
190
191 static rtx
192 first_active_insn (basic_block bb)
193 {
194 rtx insn = BB_HEAD (bb);
195
196 if (LABEL_P (insn))
197 {
198 if (insn == BB_END (bb))
199 return NULL_RTX;
200 insn = NEXT_INSN (insn);
201 }
202
203 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
204 {
205 if (insn == BB_END (bb))
206 return NULL_RTX;
207 insn = NEXT_INSN (insn);
208 }
209
210 if (JUMP_P (insn))
211 return NULL_RTX;
212
213 return insn;
214 }
215
216 /* Return the last non-jump active (non-jump) insn in the basic block. */
217
218 static rtx
219 last_active_insn (basic_block bb, int skip_use_p)
220 {
221 rtx insn = BB_END (bb);
222 rtx head = BB_HEAD (bb);
223
224 while (NOTE_P (insn)
225 || JUMP_P (insn)
226 || DEBUG_INSN_P (insn)
227 || (skip_use_p
228 && NONJUMP_INSN_P (insn)
229 && GET_CODE (PATTERN (insn)) == USE))
230 {
231 if (insn == head)
232 return NULL_RTX;
233 insn = PREV_INSN (insn);
234 }
235
236 if (LABEL_P (insn))
237 return NULL_RTX;
238
239 return insn;
240 }
241
242 /* Return the active insn before INSN inside basic block CURR_BB. */
243
244 static rtx
245 find_active_insn_before (basic_block curr_bb, rtx insn)
246 {
247 if (!insn || insn == BB_HEAD (curr_bb))
248 return NULL_RTX;
249
250 while ((insn = PREV_INSN (insn)) != NULL_RTX)
251 {
252 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
253 break;
254
255 /* No other active insn all the way to the start of the basic block. */
256 if (insn == BB_HEAD (curr_bb))
257 return NULL_RTX;
258 }
259
260 return insn;
261 }
262
263 /* Return the active insn after INSN inside basic block CURR_BB. */
264
265 static rtx
266 find_active_insn_after (basic_block curr_bb, rtx insn)
267 {
268 if (!insn || insn == BB_END (curr_bb))
269 return NULL_RTX;
270
271 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
272 {
273 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
274 break;
275
276 /* No other active insn all the way to the end of the basic block. */
277 if (insn == BB_END (curr_bb))
278 return NULL_RTX;
279 }
280
281 return insn;
282 }
283
284 /* Return the basic block reached by falling though the basic block BB. */
285
286 static basic_block
287 block_fallthru (basic_block bb)
288 {
289 edge e = find_fallthru_edge (bb->succs);
290
291 return (e) ? e->dest : NULL_BLOCK;
292 }
293 \f
294 /* Go through a bunch of insns, converting them to conditional
295 execution format if possible. Return TRUE if all of the non-note
296 insns were processed. */
297
298 static int
299 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
300 /* if block information */rtx start,
301 /* first insn to look at */rtx end,
302 /* last insn to look at */rtx test,
303 /* conditional execution test */rtx prob_val,
304 /* probability of branch taken. */int mod_ok)
305 {
306 int must_be_last = FALSE;
307 rtx insn;
308 rtx xtest;
309 rtx pattern;
310
311 if (!start || !end)
312 return FALSE;
313
314 for (insn = start; ; insn = NEXT_INSN (insn))
315 {
316 /* dwarf2out can't cope with conditional prologues. */
317 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
318 return FALSE;
319
320 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
321 goto insn_done;
322
323 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
324
325 /* Remove USE insns that get in the way. */
326 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
327 {
328 /* ??? Ug. Actually unlinking the thing is problematic,
329 given what we'd have to coordinate with our callers. */
330 SET_INSN_DELETED (insn);
331 goto insn_done;
332 }
333
334 /* Last insn wasn't last? */
335 if (must_be_last)
336 return FALSE;
337
338 if (modified_in_p (test, insn))
339 {
340 if (!mod_ok)
341 return FALSE;
342 must_be_last = TRUE;
343 }
344
345 /* Now build the conditional form of the instruction. */
346 pattern = PATTERN (insn);
347 xtest = copy_rtx (test);
348
349 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
350 two conditions. */
351 if (GET_CODE (pattern) == COND_EXEC)
352 {
353 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
354 return FALSE;
355
356 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
357 COND_EXEC_TEST (pattern));
358 pattern = COND_EXEC_CODE (pattern);
359 }
360
361 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
362
363 /* If the machine needs to modify the insn being conditionally executed,
364 say for example to force a constant integer operand into a temp
365 register, do so here. */
366 #ifdef IFCVT_MODIFY_INSN
367 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
368 if (! pattern)
369 return FALSE;
370 #endif
371
372 validate_change (insn, &PATTERN (insn), pattern, 1);
373
374 if (CALL_P (insn) && prob_val)
375 validate_change (insn, &REG_NOTES (insn),
376 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
377 REG_NOTES (insn)), 1);
378
379 insn_done:
380 if (insn == end)
381 break;
382 }
383
384 return TRUE;
385 }
386
387 /* Return the condition for a jump. Do not do any special processing. */
388
389 static rtx
390 cond_exec_get_condition (rtx jump)
391 {
392 rtx test_if, cond;
393
394 if (any_condjump_p (jump))
395 test_if = SET_SRC (pc_set (jump));
396 else
397 return NULL_RTX;
398 cond = XEXP (test_if, 0);
399
400 /* If this branches to JUMP_LABEL when the condition is false,
401 reverse the condition. */
402 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
403 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
404 {
405 enum rtx_code rev = reversed_comparison_code (cond, jump);
406 if (rev == UNKNOWN)
407 return NULL_RTX;
408
409 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
410 XEXP (cond, 1));
411 }
412
413 return cond;
414 }
415
416 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
417 to conditional execution. Return TRUE if we were successful at
418 converting the block. */
419
420 static int
421 cond_exec_process_if_block (ce_if_block_t * ce_info,
422 /* if block information */int do_multiple_p)
423 {
424 basic_block test_bb = ce_info->test_bb; /* last test block */
425 basic_block then_bb = ce_info->then_bb; /* THEN */
426 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
427 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
428 rtx then_start; /* first insn in THEN block */
429 rtx then_end; /* last insn + 1 in THEN block */
430 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
431 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
432 int max; /* max # of insns to convert. */
433 int then_mod_ok; /* whether conditional mods are ok in THEN */
434 rtx true_expr; /* test for else block insns */
435 rtx false_expr; /* test for then block insns */
436 rtx true_prob_val; /* probability of else block */
437 rtx false_prob_val; /* probability of then block */
438 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
439 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
440 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
441 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
442 int then_n_insns, else_n_insns, n_insns;
443 enum rtx_code false_code;
444
445 /* If test is comprised of && or || elements, and we've failed at handling
446 all of them together, just use the last test if it is the special case of
447 && elements without an ELSE block. */
448 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
449 {
450 if (else_bb || ! ce_info->and_and_p)
451 return FALSE;
452
453 ce_info->test_bb = test_bb = ce_info->last_test_bb;
454 ce_info->num_multiple_test_blocks = 0;
455 ce_info->num_and_and_blocks = 0;
456 ce_info->num_or_or_blocks = 0;
457 }
458
459 /* Find the conditional jump to the ELSE or JOIN part, and isolate
460 the test. */
461 test_expr = cond_exec_get_condition (BB_END (test_bb));
462 if (! test_expr)
463 return FALSE;
464
465 /* If the conditional jump is more than just a conditional jump,
466 then we can not do conditional execution conversion on this block. */
467 if (! onlyjump_p (BB_END (test_bb)))
468 return FALSE;
469
470 /* Collect the bounds of where we're to search, skipping any labels, jumps
471 and notes at the beginning and end of the block. Then count the total
472 number of insns and see if it is small enough to convert. */
473 then_start = first_active_insn (then_bb);
474 then_end = last_active_insn (then_bb, TRUE);
475 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
476 n_insns = then_n_insns;
477 max = MAX_CONDITIONAL_EXECUTE;
478
479 if (else_bb)
480 {
481 int n_matching;
482
483 max *= 2;
484 else_start = first_active_insn (else_bb);
485 else_end = last_active_insn (else_bb, TRUE);
486 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
487 n_insns += else_n_insns;
488
489 /* Look for matching sequences at the head and tail of the two blocks,
490 and limit the range of insns to be converted if possible. */
491 n_matching = flow_find_cross_jump (then_bb, else_bb,
492 &then_first_tail, &else_first_tail,
493 NULL);
494 if (then_first_tail == BB_HEAD (then_bb))
495 then_start = then_end = NULL_RTX;
496 if (else_first_tail == BB_HEAD (else_bb))
497 else_start = else_end = NULL_RTX;
498
499 if (n_matching > 0)
500 {
501 if (then_end)
502 then_end = find_active_insn_before (then_bb, then_first_tail);
503 if (else_end)
504 else_end = find_active_insn_before (else_bb, else_first_tail);
505 n_insns -= 2 * n_matching;
506 }
507
508 if (then_start && else_start)
509 {
510 int longest_match = MIN (then_n_insns - n_matching,
511 else_n_insns - n_matching);
512 n_matching
513 = flow_find_head_matching_sequence (then_bb, else_bb,
514 &then_last_head,
515 &else_last_head,
516 longest_match);
517
518 if (n_matching > 0)
519 {
520 rtx insn;
521
522 /* We won't pass the insns in the head sequence to
523 cond_exec_process_insns, so we need to test them here
524 to make sure that they don't clobber the condition. */
525 for (insn = BB_HEAD (then_bb);
526 insn != NEXT_INSN (then_last_head);
527 insn = NEXT_INSN (insn))
528 if (!LABEL_P (insn) && !NOTE_P (insn)
529 && !DEBUG_INSN_P (insn)
530 && modified_in_p (test_expr, insn))
531 return FALSE;
532 }
533
534 if (then_last_head == then_end)
535 then_start = then_end = NULL_RTX;
536 if (else_last_head == else_end)
537 else_start = else_end = NULL_RTX;
538
539 if (n_matching > 0)
540 {
541 if (then_start)
542 then_start = find_active_insn_after (then_bb, then_last_head);
543 if (else_start)
544 else_start = find_active_insn_after (else_bb, else_last_head);
545 n_insns -= 2 * n_matching;
546 }
547 }
548 }
549
550 if (n_insns > max)
551 return FALSE;
552
553 /* Map test_expr/test_jump into the appropriate MD tests to use on
554 the conditionally executed code. */
555
556 true_expr = test_expr;
557
558 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
559 if (false_code != UNKNOWN)
560 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
561 XEXP (true_expr, 0), XEXP (true_expr, 1));
562 else
563 false_expr = NULL_RTX;
564
565 #ifdef IFCVT_MODIFY_TESTS
566 /* If the machine description needs to modify the tests, such as setting a
567 conditional execution register from a comparison, it can do so here. */
568 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
569
570 /* See if the conversion failed. */
571 if (!true_expr || !false_expr)
572 goto fail;
573 #endif
574
575 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
576 if (true_prob_val)
577 {
578 true_prob_val = XEXP (true_prob_val, 0);
579 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
580 }
581 else
582 false_prob_val = NULL_RTX;
583
584 /* If we have && or || tests, do them here. These tests are in the adjacent
585 blocks after the first block containing the test. */
586 if (ce_info->num_multiple_test_blocks > 0)
587 {
588 basic_block bb = test_bb;
589 basic_block last_test_bb = ce_info->last_test_bb;
590
591 if (! false_expr)
592 goto fail;
593
594 do
595 {
596 rtx start, end;
597 rtx t, f;
598 enum rtx_code f_code;
599
600 bb = block_fallthru (bb);
601 start = first_active_insn (bb);
602 end = last_active_insn (bb, TRUE);
603 if (start
604 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
605 false_prob_val, FALSE))
606 goto fail;
607
608 /* If the conditional jump is more than just a conditional jump, then
609 we can not do conditional execution conversion on this block. */
610 if (! onlyjump_p (BB_END (bb)))
611 goto fail;
612
613 /* Find the conditional jump and isolate the test. */
614 t = cond_exec_get_condition (BB_END (bb));
615 if (! t)
616 goto fail;
617
618 f_code = reversed_comparison_code (t, BB_END (bb));
619 if (f_code == UNKNOWN)
620 goto fail;
621
622 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
623 if (ce_info->and_and_p)
624 {
625 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
626 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
627 }
628 else
629 {
630 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
631 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
632 }
633
634 /* If the machine description needs to modify the tests, such as
635 setting a conditional execution register from a comparison, it can
636 do so here. */
637 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
638 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
639
640 /* See if the conversion failed. */
641 if (!t || !f)
642 goto fail;
643 #endif
644
645 true_expr = t;
646 false_expr = f;
647 }
648 while (bb != last_test_bb);
649 }
650
651 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
652 on then THEN block. */
653 then_mod_ok = (else_bb == NULL_BLOCK);
654
655 /* Go through the THEN and ELSE blocks converting the insns if possible
656 to conditional execution. */
657
658 if (then_end
659 && (! false_expr
660 || ! cond_exec_process_insns (ce_info, then_start, then_end,
661 false_expr, false_prob_val,
662 then_mod_ok)))
663 goto fail;
664
665 if (else_bb && else_end
666 && ! cond_exec_process_insns (ce_info, else_start, else_end,
667 true_expr, true_prob_val, TRUE))
668 goto fail;
669
670 /* If we cannot apply the changes, fail. Do not go through the normal fail
671 processing, since apply_change_group will call cancel_changes. */
672 if (! apply_change_group ())
673 {
674 #ifdef IFCVT_MODIFY_CANCEL
675 /* Cancel any machine dependent changes. */
676 IFCVT_MODIFY_CANCEL (ce_info);
677 #endif
678 return FALSE;
679 }
680
681 #ifdef IFCVT_MODIFY_FINAL
682 /* Do any machine dependent final modifications. */
683 IFCVT_MODIFY_FINAL (ce_info);
684 #endif
685
686 /* Conversion succeeded. */
687 if (dump_file)
688 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
689 n_insns, (n_insns == 1) ? " was" : "s were");
690
691 /* Merge the blocks! If we had matching sequences, make sure to delete one
692 copy at the appropriate location first: delete the copy in the THEN branch
693 for a tail sequence so that the remaining one is executed last for both
694 branches, and delete the copy in the ELSE branch for a head sequence so
695 that the remaining one is executed first for both branches. */
696 if (then_first_tail)
697 {
698 rtx from = then_first_tail;
699 if (!INSN_P (from))
700 from = find_active_insn_after (then_bb, from);
701 delete_insn_chain (from, BB_END (then_bb), false);
702 }
703 if (else_last_head)
704 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
705
706 merge_if_block (ce_info);
707 cond_exec_changed_p = TRUE;
708 return TRUE;
709
710 fail:
711 #ifdef IFCVT_MODIFY_CANCEL
712 /* Cancel any machine dependent changes. */
713 IFCVT_MODIFY_CANCEL (ce_info);
714 #endif
715
716 cancel_changes (0);
717 return FALSE;
718 }
719 \f
720 /* Used by noce_process_if_block to communicate with its subroutines.
721
722 The subroutines know that A and B may be evaluated freely. They
723 know that X is a register. They should insert new instructions
724 before cond_earliest. */
725
726 struct noce_if_info
727 {
728 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
729 basic_block test_bb, then_bb, else_bb, join_bb;
730
731 /* The jump that ends TEST_BB. */
732 rtx jump;
733
734 /* The jump condition. */
735 rtx cond;
736
737 /* New insns should be inserted before this one. */
738 rtx cond_earliest;
739
740 /* Insns in the THEN and ELSE block. There is always just this
741 one insns in those blocks. The insns are single_set insns.
742 If there was no ELSE block, INSN_B is the last insn before
743 COND_EARLIEST, or NULL_RTX. In the former case, the insn
744 operands are still valid, as if INSN_B was moved down below
745 the jump. */
746 rtx insn_a, insn_b;
747
748 /* The SET_SRC of INSN_A and INSN_B. */
749 rtx a, b;
750
751 /* The SET_DEST of INSN_A. */
752 rtx x;
753
754 /* True if this if block is not canonical. In the canonical form of
755 if blocks, the THEN_BB is the block reached via the fallthru edge
756 from TEST_BB. For the noce transformations, we allow the symmetric
757 form as well. */
758 bool then_else_reversed;
759
760 /* Estimated cost of the particular branch instruction. */
761 int branch_cost;
762 };
763
764 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
765 static int noce_try_move (struct noce_if_info *);
766 static int noce_try_store_flag (struct noce_if_info *);
767 static int noce_try_addcc (struct noce_if_info *);
768 static int noce_try_store_flag_constants (struct noce_if_info *);
769 static int noce_try_store_flag_mask (struct noce_if_info *);
770 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
771 rtx, rtx, rtx);
772 static int noce_try_cmove (struct noce_if_info *);
773 static int noce_try_cmove_arith (struct noce_if_info *);
774 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
775 static int noce_try_minmax (struct noce_if_info *);
776 static int noce_try_abs (struct noce_if_info *);
777 static int noce_try_sign_mask (struct noce_if_info *);
778
779 /* Helper function for noce_try_store_flag*. */
780
781 static rtx
782 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
783 int normalize)
784 {
785 rtx cond = if_info->cond;
786 int cond_complex;
787 enum rtx_code code;
788
789 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
790 || ! general_operand (XEXP (cond, 1), VOIDmode));
791
792 /* If earliest == jump, or when the condition is complex, try to
793 build the store_flag insn directly. */
794
795 if (cond_complex)
796 {
797 rtx set = pc_set (if_info->jump);
798 cond = XEXP (SET_SRC (set), 0);
799 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
800 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
801 reversep = !reversep;
802 if (if_info->then_else_reversed)
803 reversep = !reversep;
804 }
805
806 if (reversep)
807 code = reversed_comparison_code (cond, if_info->jump);
808 else
809 code = GET_CODE (cond);
810
811 if ((if_info->cond_earliest == if_info->jump || cond_complex)
812 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
813 {
814 rtx tmp;
815
816 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
817 XEXP (cond, 1));
818 tmp = gen_rtx_SET (VOIDmode, x, tmp);
819
820 start_sequence ();
821 tmp = emit_insn (tmp);
822
823 if (recog_memoized (tmp) >= 0)
824 {
825 tmp = get_insns ();
826 end_sequence ();
827 emit_insn (tmp);
828
829 if_info->cond_earliest = if_info->jump;
830
831 return x;
832 }
833
834 end_sequence ();
835 }
836
837 /* Don't even try if the comparison operands or the mode of X are weird. */
838 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
839 return NULL_RTX;
840
841 return emit_store_flag (x, code, XEXP (cond, 0),
842 XEXP (cond, 1), VOIDmode,
843 (code == LTU || code == LEU
844 || code == GEU || code == GTU), normalize);
845 }
846
847 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
848 X is the destination/target and Y is the value to copy. */
849
850 static void
851 noce_emit_move_insn (rtx x, rtx y)
852 {
853 enum machine_mode outmode;
854 rtx outer, inner;
855 int bitpos;
856
857 if (GET_CODE (x) != STRICT_LOW_PART)
858 {
859 rtx seq, insn, target;
860 optab ot;
861
862 start_sequence ();
863 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
864 otherwise construct a suitable SET pattern ourselves. */
865 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
866 ? emit_move_insn (x, y)
867 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
868 seq = get_insns ();
869 end_sequence ();
870
871 if (recog_memoized (insn) <= 0)
872 {
873 if (GET_CODE (x) == ZERO_EXTRACT)
874 {
875 rtx op = XEXP (x, 0);
876 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
877 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
878
879 /* store_bit_field expects START to be relative to
880 BYTES_BIG_ENDIAN and adjusts this value for machines with
881 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
882 invoke store_bit_field again it is necessary to have the START
883 value from the first call. */
884 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
885 {
886 if (MEM_P (op))
887 start = BITS_PER_UNIT - start - size;
888 else
889 {
890 gcc_assert (REG_P (op));
891 start = BITS_PER_WORD - start - size;
892 }
893 }
894
895 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
896 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
897 return;
898 }
899
900 switch (GET_RTX_CLASS (GET_CODE (y)))
901 {
902 case RTX_UNARY:
903 ot = code_to_optab (GET_CODE (y));
904 if (ot)
905 {
906 start_sequence ();
907 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
908 if (target != NULL_RTX)
909 {
910 if (target != x)
911 emit_move_insn (x, target);
912 seq = get_insns ();
913 }
914 end_sequence ();
915 }
916 break;
917
918 case RTX_BIN_ARITH:
919 case RTX_COMM_ARITH:
920 ot = code_to_optab (GET_CODE (y));
921 if (ot)
922 {
923 start_sequence ();
924 target = expand_binop (GET_MODE (y), ot,
925 XEXP (y, 0), XEXP (y, 1),
926 x, 0, OPTAB_DIRECT);
927 if (target != NULL_RTX)
928 {
929 if (target != x)
930 emit_move_insn (x, target);
931 seq = get_insns ();
932 }
933 end_sequence ();
934 }
935 break;
936
937 default:
938 break;
939 }
940 }
941
942 emit_insn (seq);
943 return;
944 }
945
946 outer = XEXP (x, 0);
947 inner = XEXP (outer, 0);
948 outmode = GET_MODE (outer);
949 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
950 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
951 0, 0, outmode, y);
952 }
953
954 /* Return sequence of instructions generated by if conversion. This
955 function calls end_sequence() to end the current stream, ensures
956 that are instructions are unshared, recognizable non-jump insns.
957 On failure, this function returns a NULL_RTX. */
958
959 static rtx
960 end_ifcvt_sequence (struct noce_if_info *if_info)
961 {
962 rtx insn;
963 rtx seq = get_insns ();
964
965 set_used_flags (if_info->x);
966 set_used_flags (if_info->cond);
967 unshare_all_rtl_in_chain (seq);
968 end_sequence ();
969
970 /* Make sure that all of the instructions emitted are recognizable,
971 and that we haven't introduced a new jump instruction.
972 As an exercise for the reader, build a general mechanism that
973 allows proper placement of required clobbers. */
974 for (insn = seq; insn; insn = NEXT_INSN (insn))
975 if (JUMP_P (insn)
976 || recog_memoized (insn) == -1)
977 return NULL_RTX;
978
979 return seq;
980 }
981
982 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
983 "if (a == b) x = a; else x = b" into "x = b". */
984
985 static int
986 noce_try_move (struct noce_if_info *if_info)
987 {
988 rtx cond = if_info->cond;
989 enum rtx_code code = GET_CODE (cond);
990 rtx y, seq;
991
992 if (code != NE && code != EQ)
993 return FALSE;
994
995 /* This optimization isn't valid if either A or B could be a NaN
996 or a signed zero. */
997 if (HONOR_NANS (GET_MODE (if_info->x))
998 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
999 return FALSE;
1000
1001 /* Check whether the operands of the comparison are A and in
1002 either order. */
1003 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1004 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1005 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1006 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1007 {
1008 y = (code == EQ) ? if_info->a : if_info->b;
1009
1010 /* Avoid generating the move if the source is the destination. */
1011 if (! rtx_equal_p (if_info->x, y))
1012 {
1013 start_sequence ();
1014 noce_emit_move_insn (if_info->x, y);
1015 seq = end_ifcvt_sequence (if_info);
1016 if (!seq)
1017 return FALSE;
1018
1019 emit_insn_before_setloc (seq, if_info->jump,
1020 INSN_LOCATION (if_info->insn_a));
1021 }
1022 return TRUE;
1023 }
1024 return FALSE;
1025 }
1026
1027 /* Convert "if (test) x = 1; else x = 0".
1028
1029 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1030 tried in noce_try_store_flag_constants after noce_try_cmove has had
1031 a go at the conversion. */
1032
1033 static int
1034 noce_try_store_flag (struct noce_if_info *if_info)
1035 {
1036 int reversep;
1037 rtx target, seq;
1038
1039 if (CONST_INT_P (if_info->b)
1040 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1041 && if_info->a == const0_rtx)
1042 reversep = 0;
1043 else if (if_info->b == const0_rtx
1044 && CONST_INT_P (if_info->a)
1045 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1046 && (reversed_comparison_code (if_info->cond, if_info->jump)
1047 != UNKNOWN))
1048 reversep = 1;
1049 else
1050 return FALSE;
1051
1052 start_sequence ();
1053
1054 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1055 if (target)
1056 {
1057 if (target != if_info->x)
1058 noce_emit_move_insn (if_info->x, target);
1059
1060 seq = end_ifcvt_sequence (if_info);
1061 if (! seq)
1062 return FALSE;
1063
1064 emit_insn_before_setloc (seq, if_info->jump,
1065 INSN_LOCATION (if_info->insn_a));
1066 return TRUE;
1067 }
1068 else
1069 {
1070 end_sequence ();
1071 return FALSE;
1072 }
1073 }
1074
1075 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1076
1077 static int
1078 noce_try_store_flag_constants (struct noce_if_info *if_info)
1079 {
1080 rtx target, seq;
1081 int reversep;
1082 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1083 int normalize, can_reverse;
1084 enum machine_mode mode;
1085
1086 if (CONST_INT_P (if_info->a)
1087 && CONST_INT_P (if_info->b))
1088 {
1089 mode = GET_MODE (if_info->x);
1090 ifalse = INTVAL (if_info->a);
1091 itrue = INTVAL (if_info->b);
1092
1093 /* Make sure we can represent the difference between the two values. */
1094 if ((itrue - ifalse > 0)
1095 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1096 return FALSE;
1097
1098 diff = trunc_int_for_mode (itrue - ifalse, mode);
1099
1100 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1101 != UNKNOWN);
1102
1103 reversep = 0;
1104 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1105 normalize = 0;
1106 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1107 && (STORE_FLAG_VALUE == 1
1108 || if_info->branch_cost >= 2))
1109 normalize = 1;
1110 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1111 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1112 normalize = 1, reversep = 1;
1113 else if (itrue == -1
1114 && (STORE_FLAG_VALUE == -1
1115 || if_info->branch_cost >= 2))
1116 normalize = -1;
1117 else if (ifalse == -1 && can_reverse
1118 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1119 normalize = -1, reversep = 1;
1120 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1121 || if_info->branch_cost >= 3)
1122 normalize = -1;
1123 else
1124 return FALSE;
1125
1126 if (reversep)
1127 {
1128 tmp = itrue; itrue = ifalse; ifalse = tmp;
1129 diff = trunc_int_for_mode (-diff, mode);
1130 }
1131
1132 start_sequence ();
1133 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1134 if (! target)
1135 {
1136 end_sequence ();
1137 return FALSE;
1138 }
1139
1140 /* if (test) x = 3; else x = 4;
1141 => x = 3 + (test == 0); */
1142 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1143 {
1144 target = expand_simple_binop (mode,
1145 (diff == STORE_FLAG_VALUE
1146 ? PLUS : MINUS),
1147 GEN_INT (ifalse), target, if_info->x, 0,
1148 OPTAB_WIDEN);
1149 }
1150
1151 /* if (test) x = 8; else x = 0;
1152 => x = (test != 0) << 3; */
1153 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1154 {
1155 target = expand_simple_binop (mode, ASHIFT,
1156 target, GEN_INT (tmp), if_info->x, 0,
1157 OPTAB_WIDEN);
1158 }
1159
1160 /* if (test) x = -1; else x = b;
1161 => x = -(test != 0) | b; */
1162 else if (itrue == -1)
1163 {
1164 target = expand_simple_binop (mode, IOR,
1165 target, GEN_INT (ifalse), if_info->x, 0,
1166 OPTAB_WIDEN);
1167 }
1168
1169 /* if (test) x = a; else x = b;
1170 => x = (-(test != 0) & (b - a)) + a; */
1171 else
1172 {
1173 target = expand_simple_binop (mode, AND,
1174 target, GEN_INT (diff), if_info->x, 0,
1175 OPTAB_WIDEN);
1176 if (target)
1177 target = expand_simple_binop (mode, PLUS,
1178 target, GEN_INT (ifalse),
1179 if_info->x, 0, OPTAB_WIDEN);
1180 }
1181
1182 if (! target)
1183 {
1184 end_sequence ();
1185 return FALSE;
1186 }
1187
1188 if (target != if_info->x)
1189 noce_emit_move_insn (if_info->x, target);
1190
1191 seq = end_ifcvt_sequence (if_info);
1192 if (!seq)
1193 return FALSE;
1194
1195 emit_insn_before_setloc (seq, if_info->jump,
1196 INSN_LOCATION (if_info->insn_a));
1197 return TRUE;
1198 }
1199
1200 return FALSE;
1201 }
1202
1203 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1204 similarly for "foo--". */
1205
1206 static int
1207 noce_try_addcc (struct noce_if_info *if_info)
1208 {
1209 rtx target, seq;
1210 int subtract, normalize;
1211
1212 if (GET_CODE (if_info->a) == PLUS
1213 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1214 && (reversed_comparison_code (if_info->cond, if_info->jump)
1215 != UNKNOWN))
1216 {
1217 rtx cond = if_info->cond;
1218 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1219
1220 /* First try to use addcc pattern. */
1221 if (general_operand (XEXP (cond, 0), VOIDmode)
1222 && general_operand (XEXP (cond, 1), VOIDmode))
1223 {
1224 start_sequence ();
1225 target = emit_conditional_add (if_info->x, code,
1226 XEXP (cond, 0),
1227 XEXP (cond, 1),
1228 VOIDmode,
1229 if_info->b,
1230 XEXP (if_info->a, 1),
1231 GET_MODE (if_info->x),
1232 (code == LTU || code == GEU
1233 || code == LEU || code == GTU));
1234 if (target)
1235 {
1236 if (target != if_info->x)
1237 noce_emit_move_insn (if_info->x, target);
1238
1239 seq = end_ifcvt_sequence (if_info);
1240 if (!seq)
1241 return FALSE;
1242
1243 emit_insn_before_setloc (seq, if_info->jump,
1244 INSN_LOCATION (if_info->insn_a));
1245 return TRUE;
1246 }
1247 end_sequence ();
1248 }
1249
1250 /* If that fails, construct conditional increment or decrement using
1251 setcc. */
1252 if (if_info->branch_cost >= 2
1253 && (XEXP (if_info->a, 1) == const1_rtx
1254 || XEXP (if_info->a, 1) == constm1_rtx))
1255 {
1256 start_sequence ();
1257 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1258 subtract = 0, normalize = 0;
1259 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1260 subtract = 1, normalize = 0;
1261 else
1262 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1263
1264
1265 target = noce_emit_store_flag (if_info,
1266 gen_reg_rtx (GET_MODE (if_info->x)),
1267 1, normalize);
1268
1269 if (target)
1270 target = expand_simple_binop (GET_MODE (if_info->x),
1271 subtract ? MINUS : PLUS,
1272 if_info->b, target, if_info->x,
1273 0, OPTAB_WIDEN);
1274 if (target)
1275 {
1276 if (target != if_info->x)
1277 noce_emit_move_insn (if_info->x, target);
1278
1279 seq = end_ifcvt_sequence (if_info);
1280 if (!seq)
1281 return FALSE;
1282
1283 emit_insn_before_setloc (seq, if_info->jump,
1284 INSN_LOCATION (if_info->insn_a));
1285 return TRUE;
1286 }
1287 end_sequence ();
1288 }
1289 }
1290
1291 return FALSE;
1292 }
1293
1294 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1295
1296 static int
1297 noce_try_store_flag_mask (struct noce_if_info *if_info)
1298 {
1299 rtx target, seq;
1300 int reversep;
1301
1302 reversep = 0;
1303 if ((if_info->branch_cost >= 2
1304 || STORE_FLAG_VALUE == -1)
1305 && ((if_info->a == const0_rtx
1306 && rtx_equal_p (if_info->b, if_info->x))
1307 || ((reversep = (reversed_comparison_code (if_info->cond,
1308 if_info->jump)
1309 != UNKNOWN))
1310 && if_info->b == const0_rtx
1311 && rtx_equal_p (if_info->a, if_info->x))))
1312 {
1313 start_sequence ();
1314 target = noce_emit_store_flag (if_info,
1315 gen_reg_rtx (GET_MODE (if_info->x)),
1316 reversep, -1);
1317 if (target)
1318 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1319 if_info->x,
1320 target, if_info->x, 0,
1321 OPTAB_WIDEN);
1322
1323 if (target)
1324 {
1325 if (target != if_info->x)
1326 noce_emit_move_insn (if_info->x, target);
1327
1328 seq = end_ifcvt_sequence (if_info);
1329 if (!seq)
1330 return FALSE;
1331
1332 emit_insn_before_setloc (seq, if_info->jump,
1333 INSN_LOCATION (if_info->insn_a));
1334 return TRUE;
1335 }
1336
1337 end_sequence ();
1338 }
1339
1340 return FALSE;
1341 }
1342
1343 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1344
1345 static rtx
1346 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1347 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1348 {
1349 rtx target ATTRIBUTE_UNUSED;
1350 int unsignedp ATTRIBUTE_UNUSED;
1351
1352 /* If earliest == jump, try to build the cmove insn directly.
1353 This is helpful when combine has created some complex condition
1354 (like for alpha's cmovlbs) that we can't hope to regenerate
1355 through the normal interface. */
1356
1357 if (if_info->cond_earliest == if_info->jump)
1358 {
1359 rtx tmp;
1360
1361 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1362 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1363 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1364
1365 start_sequence ();
1366 tmp = emit_insn (tmp);
1367
1368 if (recog_memoized (tmp) >= 0)
1369 {
1370 tmp = get_insns ();
1371 end_sequence ();
1372 emit_insn (tmp);
1373
1374 return x;
1375 }
1376
1377 end_sequence ();
1378 }
1379
1380 /* Don't even try if the comparison operands are weird. */
1381 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1382 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1383 return NULL_RTX;
1384
1385 #if HAVE_conditional_move
1386 unsignedp = (code == LTU || code == GEU
1387 || code == LEU || code == GTU);
1388
1389 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1390 vtrue, vfalse, GET_MODE (x),
1391 unsignedp);
1392 if (target)
1393 return target;
1394
1395 /* We might be faced with a situation like:
1396
1397 x = (reg:M TARGET)
1398 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1399 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1400
1401 We can't do a conditional move in mode M, but it's possible that we
1402 could do a conditional move in mode N instead and take a subreg of
1403 the result.
1404
1405 If we can't create new pseudos, though, don't bother. */
1406 if (reload_completed)
1407 return NULL_RTX;
1408
1409 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1410 {
1411 rtx reg_vtrue = SUBREG_REG (vtrue);
1412 rtx reg_vfalse = SUBREG_REG (vfalse);
1413 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1414 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1415 rtx promoted_target;
1416
1417 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1418 || byte_vtrue != byte_vfalse
1419 || (SUBREG_PROMOTED_VAR_P (vtrue)
1420 != SUBREG_PROMOTED_VAR_P (vfalse))
1421 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1422 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1423 return NULL_RTX;
1424
1425 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1426
1427 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1428 VOIDmode, reg_vtrue, reg_vfalse,
1429 GET_MODE (reg_vtrue), unsignedp);
1430 /* Nope, couldn't do it in that mode either. */
1431 if (!target)
1432 return NULL_RTX;
1433
1434 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1435 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1436 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1437 emit_move_insn (x, target);
1438 return x;
1439 }
1440 else
1441 return NULL_RTX;
1442 #else
1443 /* We'll never get here, as noce_process_if_block doesn't call the
1444 functions involved. Ifdef code, however, should be discouraged
1445 because it leads to typos in the code not selected. However,
1446 emit_conditional_move won't exist either. */
1447 return NULL_RTX;
1448 #endif
1449 }
1450
1451 /* Try only simple constants and registers here. More complex cases
1452 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1453 has had a go at it. */
1454
1455 static int
1456 noce_try_cmove (struct noce_if_info *if_info)
1457 {
1458 enum rtx_code code;
1459 rtx target, seq;
1460
1461 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1462 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1463 {
1464 start_sequence ();
1465
1466 code = GET_CODE (if_info->cond);
1467 target = noce_emit_cmove (if_info, if_info->x, code,
1468 XEXP (if_info->cond, 0),
1469 XEXP (if_info->cond, 1),
1470 if_info->a, if_info->b);
1471
1472 if (target)
1473 {
1474 if (target != if_info->x)
1475 noce_emit_move_insn (if_info->x, target);
1476
1477 seq = end_ifcvt_sequence (if_info);
1478 if (!seq)
1479 return FALSE;
1480
1481 emit_insn_before_setloc (seq, if_info->jump,
1482 INSN_LOCATION (if_info->insn_a));
1483 return TRUE;
1484 }
1485 else
1486 {
1487 end_sequence ();
1488 return FALSE;
1489 }
1490 }
1491
1492 return FALSE;
1493 }
1494
1495 /* Try more complex cases involving conditional_move. */
1496
1497 static int
1498 noce_try_cmove_arith (struct noce_if_info *if_info)
1499 {
1500 rtx a = if_info->a;
1501 rtx b = if_info->b;
1502 rtx x = if_info->x;
1503 rtx orig_a, orig_b;
1504 rtx insn_a, insn_b;
1505 rtx tmp, target;
1506 int is_mem = 0;
1507 int insn_cost;
1508 enum rtx_code code;
1509
1510 /* A conditional move from two memory sources is equivalent to a
1511 conditional on their addresses followed by a load. Don't do this
1512 early because it'll screw alias analysis. Note that we've
1513 already checked for no side effects. */
1514 /* ??? FIXME: Magic number 5. */
1515 if (cse_not_expected
1516 && MEM_P (a) && MEM_P (b)
1517 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1518 && if_info->branch_cost >= 5)
1519 {
1520 enum machine_mode address_mode = get_address_mode (a);
1521
1522 a = XEXP (a, 0);
1523 b = XEXP (b, 0);
1524 x = gen_reg_rtx (address_mode);
1525 is_mem = 1;
1526 }
1527
1528 /* ??? We could handle this if we knew that a load from A or B could
1529 not trap or fault. This is also true if we've already loaded
1530 from the address along the path from ENTRY. */
1531 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1532 return FALSE;
1533
1534 /* if (test) x = a + b; else x = c - d;
1535 => y = a + b;
1536 x = c - d;
1537 if (test)
1538 x = y;
1539 */
1540
1541 code = GET_CODE (if_info->cond);
1542 insn_a = if_info->insn_a;
1543 insn_b = if_info->insn_b;
1544
1545 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1546 if insn_rtx_cost can't be estimated. */
1547 if (insn_a)
1548 {
1549 insn_cost
1550 = insn_rtx_cost (PATTERN (insn_a),
1551 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1552 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1553 return FALSE;
1554 }
1555 else
1556 insn_cost = 0;
1557
1558 if (insn_b)
1559 {
1560 insn_cost
1561 += insn_rtx_cost (PATTERN (insn_b),
1562 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1563 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1564 return FALSE;
1565 }
1566
1567 /* Possibly rearrange operands to make things come out more natural. */
1568 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1569 {
1570 int reversep = 0;
1571 if (rtx_equal_p (b, x))
1572 reversep = 1;
1573 else if (general_operand (b, GET_MODE (b)))
1574 reversep = 1;
1575
1576 if (reversep)
1577 {
1578 code = reversed_comparison_code (if_info->cond, if_info->jump);
1579 tmp = a, a = b, b = tmp;
1580 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1581 }
1582 }
1583
1584 start_sequence ();
1585
1586 orig_a = a;
1587 orig_b = b;
1588
1589 /* If either operand is complex, load it into a register first.
1590 The best way to do this is to copy the original insn. In this
1591 way we preserve any clobbers etc that the insn may have had.
1592 This is of course not possible in the IS_MEM case. */
1593 if (! general_operand (a, GET_MODE (a)))
1594 {
1595 rtx set;
1596
1597 if (is_mem)
1598 {
1599 tmp = gen_reg_rtx (GET_MODE (a));
1600 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1601 }
1602 else if (! insn_a)
1603 goto end_seq_and_fail;
1604 else
1605 {
1606 a = gen_reg_rtx (GET_MODE (a));
1607 tmp = copy_rtx (insn_a);
1608 set = single_set (tmp);
1609 SET_DEST (set) = a;
1610 tmp = emit_insn (PATTERN (tmp));
1611 }
1612 if (recog_memoized (tmp) < 0)
1613 goto end_seq_and_fail;
1614 }
1615 if (! general_operand (b, GET_MODE (b)))
1616 {
1617 rtx set, last;
1618
1619 if (is_mem)
1620 {
1621 tmp = gen_reg_rtx (GET_MODE (b));
1622 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1623 }
1624 else if (! insn_b)
1625 goto end_seq_and_fail;
1626 else
1627 {
1628 b = gen_reg_rtx (GET_MODE (b));
1629 tmp = copy_rtx (insn_b);
1630 set = single_set (tmp);
1631 SET_DEST (set) = b;
1632 tmp = PATTERN (tmp);
1633 }
1634
1635 /* If insn to set up A clobbers any registers B depends on, try to
1636 swap insn that sets up A with the one that sets up B. If even
1637 that doesn't help, punt. */
1638 last = get_last_insn ();
1639 if (last && modified_in_p (orig_b, last))
1640 {
1641 tmp = emit_insn_before (tmp, get_insns ());
1642 if (modified_in_p (orig_a, tmp))
1643 goto end_seq_and_fail;
1644 }
1645 else
1646 tmp = emit_insn (tmp);
1647
1648 if (recog_memoized (tmp) < 0)
1649 goto end_seq_and_fail;
1650 }
1651
1652 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1653 XEXP (if_info->cond, 1), a, b);
1654
1655 if (! target)
1656 goto end_seq_and_fail;
1657
1658 /* If we're handling a memory for above, emit the load now. */
1659 if (is_mem)
1660 {
1661 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1662
1663 /* Copy over flags as appropriate. */
1664 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1665 MEM_VOLATILE_P (tmp) = 1;
1666 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1667 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1668 set_mem_align (tmp,
1669 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1670
1671 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1672 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1673
1674 noce_emit_move_insn (if_info->x, tmp);
1675 }
1676 else if (target != x)
1677 noce_emit_move_insn (x, target);
1678
1679 tmp = end_ifcvt_sequence (if_info);
1680 if (!tmp)
1681 return FALSE;
1682
1683 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1684 return TRUE;
1685
1686 end_seq_and_fail:
1687 end_sequence ();
1688 return FALSE;
1689 }
1690
1691 /* For most cases, the simplified condition we found is the best
1692 choice, but this is not the case for the min/max/abs transforms.
1693 For these we wish to know that it is A or B in the condition. */
1694
1695 static rtx
1696 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1697 rtx *earliest)
1698 {
1699 rtx cond, set, insn;
1700 int reverse;
1701
1702 /* If target is already mentioned in the known condition, return it. */
1703 if (reg_mentioned_p (target, if_info->cond))
1704 {
1705 *earliest = if_info->cond_earliest;
1706 return if_info->cond;
1707 }
1708
1709 set = pc_set (if_info->jump);
1710 cond = XEXP (SET_SRC (set), 0);
1711 reverse
1712 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1713 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1714 if (if_info->then_else_reversed)
1715 reverse = !reverse;
1716
1717 /* If we're looking for a constant, try to make the conditional
1718 have that constant in it. There are two reasons why it may
1719 not have the constant we want:
1720
1721 1. GCC may have needed to put the constant in a register, because
1722 the target can't compare directly against that constant. For
1723 this case, we look for a SET immediately before the comparison
1724 that puts a constant in that register.
1725
1726 2. GCC may have canonicalized the conditional, for example
1727 replacing "if x < 4" with "if x <= 3". We can undo that (or
1728 make equivalent types of changes) to get the constants we need
1729 if they're off by one in the right direction. */
1730
1731 if (CONST_INT_P (target))
1732 {
1733 enum rtx_code code = GET_CODE (if_info->cond);
1734 rtx op_a = XEXP (if_info->cond, 0);
1735 rtx op_b = XEXP (if_info->cond, 1);
1736 rtx prev_insn;
1737
1738 /* First, look to see if we put a constant in a register. */
1739 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1740 if (prev_insn
1741 && BLOCK_FOR_INSN (prev_insn)
1742 == BLOCK_FOR_INSN (if_info->cond_earliest)
1743 && INSN_P (prev_insn)
1744 && GET_CODE (PATTERN (prev_insn)) == SET)
1745 {
1746 rtx src = find_reg_equal_equiv_note (prev_insn);
1747 if (!src)
1748 src = SET_SRC (PATTERN (prev_insn));
1749 if (CONST_INT_P (src))
1750 {
1751 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1752 op_a = src;
1753 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1754 op_b = src;
1755
1756 if (CONST_INT_P (op_a))
1757 {
1758 rtx tmp = op_a;
1759 op_a = op_b;
1760 op_b = tmp;
1761 code = swap_condition (code);
1762 }
1763 }
1764 }
1765
1766 /* Now, look to see if we can get the right constant by
1767 adjusting the conditional. */
1768 if (CONST_INT_P (op_b))
1769 {
1770 HOST_WIDE_INT desired_val = INTVAL (target);
1771 HOST_WIDE_INT actual_val = INTVAL (op_b);
1772
1773 switch (code)
1774 {
1775 case LT:
1776 if (actual_val == desired_val + 1)
1777 {
1778 code = LE;
1779 op_b = GEN_INT (desired_val);
1780 }
1781 break;
1782 case LE:
1783 if (actual_val == desired_val - 1)
1784 {
1785 code = LT;
1786 op_b = GEN_INT (desired_val);
1787 }
1788 break;
1789 case GT:
1790 if (actual_val == desired_val - 1)
1791 {
1792 code = GE;
1793 op_b = GEN_INT (desired_val);
1794 }
1795 break;
1796 case GE:
1797 if (actual_val == desired_val + 1)
1798 {
1799 code = GT;
1800 op_b = GEN_INT (desired_val);
1801 }
1802 break;
1803 default:
1804 break;
1805 }
1806 }
1807
1808 /* If we made any changes, generate a new conditional that is
1809 equivalent to what we started with, but has the right
1810 constants in it. */
1811 if (code != GET_CODE (if_info->cond)
1812 || op_a != XEXP (if_info->cond, 0)
1813 || op_b != XEXP (if_info->cond, 1))
1814 {
1815 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1816 *earliest = if_info->cond_earliest;
1817 return cond;
1818 }
1819 }
1820
1821 cond = canonicalize_condition (if_info->jump, cond, reverse,
1822 earliest, target, false, true);
1823 if (! cond || ! reg_mentioned_p (target, cond))
1824 return NULL;
1825
1826 /* We almost certainly searched back to a different place.
1827 Need to re-verify correct lifetimes. */
1828
1829 /* X may not be mentioned in the range (cond_earliest, jump]. */
1830 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1831 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1832 return NULL;
1833
1834 /* A and B may not be modified in the range [cond_earliest, jump). */
1835 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1836 if (INSN_P (insn)
1837 && (modified_in_p (if_info->a, insn)
1838 || modified_in_p (if_info->b, insn)))
1839 return NULL;
1840
1841 return cond;
1842 }
1843
1844 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1845
1846 static int
1847 noce_try_minmax (struct noce_if_info *if_info)
1848 {
1849 rtx cond, earliest, target, seq;
1850 enum rtx_code code, op;
1851 int unsignedp;
1852
1853 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1854 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1855 to get the target to tell us... */
1856 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1857 || HONOR_NANS (GET_MODE (if_info->x)))
1858 return FALSE;
1859
1860 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1861 if (!cond)
1862 return FALSE;
1863
1864 /* Verify the condition is of the form we expect, and canonicalize
1865 the comparison code. */
1866 code = GET_CODE (cond);
1867 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1868 {
1869 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1870 return FALSE;
1871 }
1872 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1873 {
1874 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1875 return FALSE;
1876 code = swap_condition (code);
1877 }
1878 else
1879 return FALSE;
1880
1881 /* Determine what sort of operation this is. Note that the code is for
1882 a taken branch, so the code->operation mapping appears backwards. */
1883 switch (code)
1884 {
1885 case LT:
1886 case LE:
1887 case UNLT:
1888 case UNLE:
1889 op = SMAX;
1890 unsignedp = 0;
1891 break;
1892 case GT:
1893 case GE:
1894 case UNGT:
1895 case UNGE:
1896 op = SMIN;
1897 unsignedp = 0;
1898 break;
1899 case LTU:
1900 case LEU:
1901 op = UMAX;
1902 unsignedp = 1;
1903 break;
1904 case GTU:
1905 case GEU:
1906 op = UMIN;
1907 unsignedp = 1;
1908 break;
1909 default:
1910 return FALSE;
1911 }
1912
1913 start_sequence ();
1914
1915 target = expand_simple_binop (GET_MODE (if_info->x), op,
1916 if_info->a, if_info->b,
1917 if_info->x, unsignedp, OPTAB_WIDEN);
1918 if (! target)
1919 {
1920 end_sequence ();
1921 return FALSE;
1922 }
1923 if (target != if_info->x)
1924 noce_emit_move_insn (if_info->x, target);
1925
1926 seq = end_ifcvt_sequence (if_info);
1927 if (!seq)
1928 return FALSE;
1929
1930 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1931 if_info->cond = cond;
1932 if_info->cond_earliest = earliest;
1933
1934 return TRUE;
1935 }
1936
1937 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1938 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1939 etc. */
1940
1941 static int
1942 noce_try_abs (struct noce_if_info *if_info)
1943 {
1944 rtx cond, earliest, target, seq, a, b, c;
1945 int negate;
1946 bool one_cmpl = false;
1947
1948 /* Reject modes with signed zeros. */
1949 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1950 return FALSE;
1951
1952 /* Recognize A and B as constituting an ABS or NABS. The canonical
1953 form is a branch around the negation, taken when the object is the
1954 first operand of a comparison against 0 that evaluates to true. */
1955 a = if_info->a;
1956 b = if_info->b;
1957 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1958 negate = 0;
1959 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1960 {
1961 c = a; a = b; b = c;
1962 negate = 1;
1963 }
1964 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1965 {
1966 negate = 0;
1967 one_cmpl = true;
1968 }
1969 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1970 {
1971 c = a; a = b; b = c;
1972 negate = 1;
1973 one_cmpl = true;
1974 }
1975 else
1976 return FALSE;
1977
1978 cond = noce_get_alt_condition (if_info, b, &earliest);
1979 if (!cond)
1980 return FALSE;
1981
1982 /* Verify the condition is of the form we expect. */
1983 if (rtx_equal_p (XEXP (cond, 0), b))
1984 c = XEXP (cond, 1);
1985 else if (rtx_equal_p (XEXP (cond, 1), b))
1986 {
1987 c = XEXP (cond, 0);
1988 negate = !negate;
1989 }
1990 else
1991 return FALSE;
1992
1993 /* Verify that C is zero. Search one step backward for a
1994 REG_EQUAL note or a simple source if necessary. */
1995 if (REG_P (c))
1996 {
1997 rtx set, insn = prev_nonnote_insn (earliest);
1998 if (insn
1999 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2000 && (set = single_set (insn))
2001 && rtx_equal_p (SET_DEST (set), c))
2002 {
2003 rtx note = find_reg_equal_equiv_note (insn);
2004 if (note)
2005 c = XEXP (note, 0);
2006 else
2007 c = SET_SRC (set);
2008 }
2009 else
2010 return FALSE;
2011 }
2012 if (MEM_P (c)
2013 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2014 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2015 c = get_pool_constant (XEXP (c, 0));
2016
2017 /* Work around funny ideas get_condition has wrt canonicalization.
2018 Note that these rtx constants are known to be CONST_INT, and
2019 therefore imply integer comparisons. */
2020 if (c == constm1_rtx && GET_CODE (cond) == GT)
2021 ;
2022 else if (c == const1_rtx && GET_CODE (cond) == LT)
2023 ;
2024 else if (c != CONST0_RTX (GET_MODE (b)))
2025 return FALSE;
2026
2027 /* Determine what sort of operation this is. */
2028 switch (GET_CODE (cond))
2029 {
2030 case LT:
2031 case LE:
2032 case UNLT:
2033 case UNLE:
2034 negate = !negate;
2035 break;
2036 case GT:
2037 case GE:
2038 case UNGT:
2039 case UNGE:
2040 break;
2041 default:
2042 return FALSE;
2043 }
2044
2045 start_sequence ();
2046 if (one_cmpl)
2047 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2048 if_info->x);
2049 else
2050 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2051
2052 /* ??? It's a quandary whether cmove would be better here, especially
2053 for integers. Perhaps combine will clean things up. */
2054 if (target && negate)
2055 {
2056 if (one_cmpl)
2057 target = expand_simple_unop (GET_MODE (target), NOT, target,
2058 if_info->x, 0);
2059 else
2060 target = expand_simple_unop (GET_MODE (target), NEG, target,
2061 if_info->x, 0);
2062 }
2063
2064 if (! target)
2065 {
2066 end_sequence ();
2067 return FALSE;
2068 }
2069
2070 if (target != if_info->x)
2071 noce_emit_move_insn (if_info->x, target);
2072
2073 seq = end_ifcvt_sequence (if_info);
2074 if (!seq)
2075 return FALSE;
2076
2077 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2078 if_info->cond = cond;
2079 if_info->cond_earliest = earliest;
2080
2081 return TRUE;
2082 }
2083
2084 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2085
2086 static int
2087 noce_try_sign_mask (struct noce_if_info *if_info)
2088 {
2089 rtx cond, t, m, c, seq;
2090 enum machine_mode mode;
2091 enum rtx_code code;
2092 bool t_unconditional;
2093
2094 cond = if_info->cond;
2095 code = GET_CODE (cond);
2096 m = XEXP (cond, 0);
2097 c = XEXP (cond, 1);
2098
2099 t = NULL_RTX;
2100 if (if_info->a == const0_rtx)
2101 {
2102 if ((code == LT && c == const0_rtx)
2103 || (code == LE && c == constm1_rtx))
2104 t = if_info->b;
2105 }
2106 else if (if_info->b == const0_rtx)
2107 {
2108 if ((code == GE && c == const0_rtx)
2109 || (code == GT && c == constm1_rtx))
2110 t = if_info->a;
2111 }
2112
2113 if (! t || side_effects_p (t))
2114 return FALSE;
2115
2116 /* We currently don't handle different modes. */
2117 mode = GET_MODE (t);
2118 if (GET_MODE (m) != mode)
2119 return FALSE;
2120
2121 /* This is only profitable if T is unconditionally executed/evaluated in the
2122 original insn sequence or T is cheap. The former happens if B is the
2123 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2124 INSN_B which can happen for e.g. conditional stores to memory. For the
2125 cost computation use the block TEST_BB where the evaluation will end up
2126 after the transformation. */
2127 t_unconditional =
2128 (t == if_info->b
2129 && (if_info->insn_b == NULL_RTX
2130 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2131 if (!(t_unconditional
2132 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2133 < COSTS_N_INSNS (2))))
2134 return FALSE;
2135
2136 start_sequence ();
2137 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2138 "(signed) m >> 31" directly. This benefits targets with specialized
2139 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2140 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2141 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2142 : NULL_RTX;
2143
2144 if (!t)
2145 {
2146 end_sequence ();
2147 return FALSE;
2148 }
2149
2150 noce_emit_move_insn (if_info->x, t);
2151
2152 seq = end_ifcvt_sequence (if_info);
2153 if (!seq)
2154 return FALSE;
2155
2156 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2157 return TRUE;
2158 }
2159
2160
2161 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2162 transformations. */
2163
2164 static int
2165 noce_try_bitop (struct noce_if_info *if_info)
2166 {
2167 rtx cond, x, a, result, seq;
2168 enum machine_mode mode;
2169 enum rtx_code code;
2170 int bitnum;
2171
2172 x = if_info->x;
2173 cond = if_info->cond;
2174 code = GET_CODE (cond);
2175
2176 /* Check for no else condition. */
2177 if (! rtx_equal_p (x, if_info->b))
2178 return FALSE;
2179
2180 /* Check for a suitable condition. */
2181 if (code != NE && code != EQ)
2182 return FALSE;
2183 if (XEXP (cond, 1) != const0_rtx)
2184 return FALSE;
2185 cond = XEXP (cond, 0);
2186
2187 /* ??? We could also handle AND here. */
2188 if (GET_CODE (cond) == ZERO_EXTRACT)
2189 {
2190 if (XEXP (cond, 1) != const1_rtx
2191 || !CONST_INT_P (XEXP (cond, 2))
2192 || ! rtx_equal_p (x, XEXP (cond, 0)))
2193 return FALSE;
2194 bitnum = INTVAL (XEXP (cond, 2));
2195 mode = GET_MODE (x);
2196 if (BITS_BIG_ENDIAN)
2197 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2198 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2199 return FALSE;
2200 }
2201 else
2202 return FALSE;
2203
2204 a = if_info->a;
2205 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2206 {
2207 /* Check for "if (X & C) x = x op C". */
2208 if (! rtx_equal_p (x, XEXP (a, 0))
2209 || !CONST_INT_P (XEXP (a, 1))
2210 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2211 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2212 return FALSE;
2213
2214 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2215 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2216 if (GET_CODE (a) == IOR)
2217 result = (code == NE) ? a : NULL_RTX;
2218 else if (code == NE)
2219 {
2220 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2221 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2222 result = simplify_gen_binary (IOR, mode, x, result);
2223 }
2224 else
2225 {
2226 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2227 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2228 result = simplify_gen_binary (AND, mode, x, result);
2229 }
2230 }
2231 else if (GET_CODE (a) == AND)
2232 {
2233 /* Check for "if (X & C) x &= ~C". */
2234 if (! rtx_equal_p (x, XEXP (a, 0))
2235 || !CONST_INT_P (XEXP (a, 1))
2236 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2237 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2238 return FALSE;
2239
2240 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2241 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2242 result = (code == EQ) ? a : NULL_RTX;
2243 }
2244 else
2245 return FALSE;
2246
2247 if (result)
2248 {
2249 start_sequence ();
2250 noce_emit_move_insn (x, result);
2251 seq = end_ifcvt_sequence (if_info);
2252 if (!seq)
2253 return FALSE;
2254
2255 emit_insn_before_setloc (seq, if_info->jump,
2256 INSN_LOCATION (if_info->insn_a));
2257 }
2258 return TRUE;
2259 }
2260
2261
2262 /* Similar to get_condition, only the resulting condition must be
2263 valid at JUMP, instead of at EARLIEST.
2264
2265 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2266 THEN block of the caller, and we have to reverse the condition. */
2267
2268 static rtx
2269 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2270 {
2271 rtx cond, set, tmp;
2272 bool reverse;
2273
2274 if (! any_condjump_p (jump))
2275 return NULL_RTX;
2276
2277 set = pc_set (jump);
2278
2279 /* If this branches to JUMP_LABEL when the condition is false,
2280 reverse the condition. */
2281 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2282 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2283
2284 /* We may have to reverse because the caller's if block is not canonical,
2285 i.e. the THEN block isn't the fallthrough block for the TEST block
2286 (see find_if_header). */
2287 if (then_else_reversed)
2288 reverse = !reverse;
2289
2290 /* If the condition variable is a register and is MODE_INT, accept it. */
2291
2292 cond = XEXP (SET_SRC (set), 0);
2293 tmp = XEXP (cond, 0);
2294 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2295 && (GET_MODE (tmp) != BImode
2296 || !targetm.small_register_classes_for_mode_p (BImode)))
2297 {
2298 *earliest = jump;
2299
2300 if (reverse)
2301 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2302 GET_MODE (cond), tmp, XEXP (cond, 1));
2303 return cond;
2304 }
2305
2306 /* Otherwise, fall back on canonicalize_condition to do the dirty
2307 work of manipulating MODE_CC values and COMPARE rtx codes. */
2308 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2309 NULL_RTX, false, true);
2310
2311 /* We don't handle side-effects in the condition, like handling
2312 REG_INC notes and making sure no duplicate conditions are emitted. */
2313 if (tmp != NULL_RTX && side_effects_p (tmp))
2314 return NULL_RTX;
2315
2316 return tmp;
2317 }
2318
2319 /* Return true if OP is ok for if-then-else processing. */
2320
2321 static int
2322 noce_operand_ok (const_rtx op)
2323 {
2324 if (side_effects_p (op))
2325 return FALSE;
2326
2327 /* We special-case memories, so handle any of them with
2328 no address side effects. */
2329 if (MEM_P (op))
2330 return ! side_effects_p (XEXP (op, 0));
2331
2332 return ! may_trap_p (op);
2333 }
2334
2335 /* Return true if a write into MEM may trap or fault. */
2336
2337 static bool
2338 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2339 {
2340 rtx addr;
2341
2342 if (MEM_READONLY_P (mem))
2343 return true;
2344
2345 if (may_trap_or_fault_p (mem))
2346 return true;
2347
2348 addr = XEXP (mem, 0);
2349
2350 /* Call target hook to avoid the effects of -fpic etc.... */
2351 addr = targetm.delegitimize_address (addr);
2352
2353 while (addr)
2354 switch (GET_CODE (addr))
2355 {
2356 case CONST:
2357 case PRE_DEC:
2358 case PRE_INC:
2359 case POST_DEC:
2360 case POST_INC:
2361 case POST_MODIFY:
2362 addr = XEXP (addr, 0);
2363 break;
2364 case LO_SUM:
2365 case PRE_MODIFY:
2366 addr = XEXP (addr, 1);
2367 break;
2368 case PLUS:
2369 if (CONST_INT_P (XEXP (addr, 1)))
2370 addr = XEXP (addr, 0);
2371 else
2372 return false;
2373 break;
2374 case LABEL_REF:
2375 return true;
2376 case SYMBOL_REF:
2377 if (SYMBOL_REF_DECL (addr)
2378 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2379 return true;
2380 return false;
2381 default:
2382 return false;
2383 }
2384
2385 return false;
2386 }
2387
2388 /* Return whether we can use store speculation for MEM. TOP_BB is the
2389 basic block above the conditional block where we are considering
2390 doing the speculative store. We look for whether MEM is set
2391 unconditionally later in the function. */
2392
2393 static bool
2394 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2395 {
2396 basic_block dominator;
2397
2398 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2399 dominator != NULL;
2400 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2401 {
2402 rtx insn;
2403
2404 FOR_BB_INSNS (dominator, insn)
2405 {
2406 /* If we see something that might be a memory barrier, we
2407 have to stop looking. Even if the MEM is set later in
2408 the function, we still don't want to set it
2409 unconditionally before the barrier. */
2410 if (INSN_P (insn)
2411 && (volatile_insn_p (PATTERN (insn))
2412 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2413 return false;
2414
2415 if (memory_must_be_modified_in_insn_p (mem, insn))
2416 return true;
2417 if (modified_in_p (XEXP (mem, 0), insn))
2418 return false;
2419
2420 }
2421 }
2422
2423 return false;
2424 }
2425
2426 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2427 it without using conditional execution. Return TRUE if we were successful
2428 at converting the block. */
2429
2430 static int
2431 noce_process_if_block (struct noce_if_info *if_info)
2432 {
2433 basic_block test_bb = if_info->test_bb; /* test block */
2434 basic_block then_bb = if_info->then_bb; /* THEN */
2435 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2436 basic_block join_bb = if_info->join_bb; /* JOIN */
2437 rtx jump = if_info->jump;
2438 rtx cond = if_info->cond;
2439 rtx insn_a, insn_b;
2440 rtx set_a, set_b;
2441 rtx orig_x, x, a, b;
2442
2443 /* We're looking for patterns of the form
2444
2445 (1) if (...) x = a; else x = b;
2446 (2) x = b; if (...) x = a;
2447 (3) if (...) x = a; // as if with an initial x = x.
2448
2449 The later patterns require jumps to be more expensive.
2450
2451 ??? For future expansion, look for multiple X in such patterns. */
2452
2453 /* Look for one of the potential sets. */
2454 insn_a = first_active_insn (then_bb);
2455 if (! insn_a
2456 || insn_a != last_active_insn (then_bb, FALSE)
2457 || (set_a = single_set (insn_a)) == NULL_RTX)
2458 return FALSE;
2459
2460 x = SET_DEST (set_a);
2461 a = SET_SRC (set_a);
2462
2463 /* Look for the other potential set. Make sure we've got equivalent
2464 destinations. */
2465 /* ??? This is overconservative. Storing to two different mems is
2466 as easy as conditionally computing the address. Storing to a
2467 single mem merely requires a scratch memory to use as one of the
2468 destination addresses; often the memory immediately below the
2469 stack pointer is available for this. */
2470 set_b = NULL_RTX;
2471 if (else_bb)
2472 {
2473 insn_b = first_active_insn (else_bb);
2474 if (! insn_b
2475 || insn_b != last_active_insn (else_bb, FALSE)
2476 || (set_b = single_set (insn_b)) == NULL_RTX
2477 || ! rtx_equal_p (x, SET_DEST (set_b)))
2478 return FALSE;
2479 }
2480 else
2481 {
2482 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2483 /* We're going to be moving the evaluation of B down from above
2484 COND_EARLIEST to JUMP. Make sure the relevant data is still
2485 intact. */
2486 if (! insn_b
2487 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2488 || !NONJUMP_INSN_P (insn_b)
2489 || (set_b = single_set (insn_b)) == NULL_RTX
2490 || ! rtx_equal_p (x, SET_DEST (set_b))
2491 || ! noce_operand_ok (SET_SRC (set_b))
2492 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2493 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2494 /* Avoid extending the lifetime of hard registers on small
2495 register class machines. */
2496 || (REG_P (SET_SRC (set_b))
2497 && HARD_REGISTER_P (SET_SRC (set_b))
2498 && targetm.small_register_classes_for_mode_p
2499 (GET_MODE (SET_SRC (set_b))))
2500 /* Likewise with X. In particular this can happen when
2501 noce_get_condition looks farther back in the instruction
2502 stream than one might expect. */
2503 || reg_overlap_mentioned_p (x, cond)
2504 || reg_overlap_mentioned_p (x, a)
2505 || modified_between_p (x, insn_b, jump))
2506 insn_b = set_b = NULL_RTX;
2507 }
2508
2509 /* If x has side effects then only the if-then-else form is safe to
2510 convert. But even in that case we would need to restore any notes
2511 (such as REG_INC) at then end. That can be tricky if
2512 noce_emit_move_insn expands to more than one insn, so disable the
2513 optimization entirely for now if there are side effects. */
2514 if (side_effects_p (x))
2515 return FALSE;
2516
2517 b = (set_b ? SET_SRC (set_b) : x);
2518
2519 /* Only operate on register destinations, and even then avoid extending
2520 the lifetime of hard registers on small register class machines. */
2521 orig_x = x;
2522 if (!REG_P (x)
2523 || (HARD_REGISTER_P (x)
2524 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2525 {
2526 if (GET_MODE (x) == BLKmode)
2527 return FALSE;
2528
2529 if (GET_CODE (x) == ZERO_EXTRACT
2530 && (!CONST_INT_P (XEXP (x, 1))
2531 || !CONST_INT_P (XEXP (x, 2))))
2532 return FALSE;
2533
2534 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2535 ? XEXP (x, 0) : x));
2536 }
2537
2538 /* Don't operate on sources that may trap or are volatile. */
2539 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2540 return FALSE;
2541
2542 retry:
2543 /* Set up the info block for our subroutines. */
2544 if_info->insn_a = insn_a;
2545 if_info->insn_b = insn_b;
2546 if_info->x = x;
2547 if_info->a = a;
2548 if_info->b = b;
2549
2550 /* Try optimizations in some approximation of a useful order. */
2551 /* ??? Should first look to see if X is live incoming at all. If it
2552 isn't, we don't need anything but an unconditional set. */
2553
2554 /* Look and see if A and B are really the same. Avoid creating silly
2555 cmove constructs that no one will fix up later. */
2556 if (rtx_equal_p (a, b))
2557 {
2558 /* If we have an INSN_B, we don't have to create any new rtl. Just
2559 move the instruction that we already have. If we don't have an
2560 INSN_B, that means that A == X, and we've got a noop move. In
2561 that case don't do anything and let the code below delete INSN_A. */
2562 if (insn_b && else_bb)
2563 {
2564 rtx note;
2565
2566 if (else_bb && insn_b == BB_END (else_bb))
2567 BB_END (else_bb) = PREV_INSN (insn_b);
2568 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2569
2570 /* If there was a REG_EQUAL note, delete it since it may have been
2571 true due to this insn being after a jump. */
2572 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2573 remove_note (insn_b, note);
2574
2575 insn_b = NULL_RTX;
2576 }
2577 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2578 x must be executed twice. */
2579 else if (insn_b && side_effects_p (orig_x))
2580 return FALSE;
2581
2582 x = orig_x;
2583 goto success;
2584 }
2585
2586 if (!set_b && MEM_P (orig_x))
2587 {
2588 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2589 for optimizations if writing to x may trap or fault,
2590 i.e. it's a memory other than a static var or a stack slot,
2591 is misaligned on strict aligned machines or is read-only. If
2592 x is a read-only memory, then the program is valid only if we
2593 avoid the store into it. If there are stores on both the
2594 THEN and ELSE arms, then we can go ahead with the conversion;
2595 either the program is broken, or the condition is always
2596 false such that the other memory is selected. */
2597 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2598 return FALSE;
2599
2600 /* Avoid store speculation: given "if (...) x = a" where x is a
2601 MEM, we only want to do the store if x is always set
2602 somewhere in the function. This avoids cases like
2603 if (pthread_mutex_trylock(mutex))
2604 ++global_variable;
2605 where we only want global_variable to be changed if the mutex
2606 is held. FIXME: This should ideally be expressed directly in
2607 RTL somehow. */
2608 if (!noce_can_store_speculate_p (test_bb, orig_x))
2609 return FALSE;
2610 }
2611
2612 if (noce_try_move (if_info))
2613 goto success;
2614 if (noce_try_store_flag (if_info))
2615 goto success;
2616 if (noce_try_bitop (if_info))
2617 goto success;
2618 if (noce_try_minmax (if_info))
2619 goto success;
2620 if (noce_try_abs (if_info))
2621 goto success;
2622 if (HAVE_conditional_move
2623 && noce_try_cmove (if_info))
2624 goto success;
2625 if (! targetm.have_conditional_execution ())
2626 {
2627 if (noce_try_store_flag_constants (if_info))
2628 goto success;
2629 if (noce_try_addcc (if_info))
2630 goto success;
2631 if (noce_try_store_flag_mask (if_info))
2632 goto success;
2633 if (HAVE_conditional_move
2634 && noce_try_cmove_arith (if_info))
2635 goto success;
2636 if (noce_try_sign_mask (if_info))
2637 goto success;
2638 }
2639
2640 if (!else_bb && set_b)
2641 {
2642 insn_b = set_b = NULL_RTX;
2643 b = orig_x;
2644 goto retry;
2645 }
2646
2647 return FALSE;
2648
2649 success:
2650
2651 /* If we used a temporary, fix it up now. */
2652 if (orig_x != x)
2653 {
2654 rtx seq;
2655
2656 start_sequence ();
2657 noce_emit_move_insn (orig_x, x);
2658 seq = get_insns ();
2659 set_used_flags (orig_x);
2660 unshare_all_rtl_in_chain (seq);
2661 end_sequence ();
2662
2663 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2664 }
2665
2666 /* The original THEN and ELSE blocks may now be removed. The test block
2667 must now jump to the join block. If the test block and the join block
2668 can be merged, do so. */
2669 if (else_bb)
2670 {
2671 delete_basic_block (else_bb);
2672 num_true_changes++;
2673 }
2674 else
2675 remove_edge (find_edge (test_bb, join_bb));
2676
2677 remove_edge (find_edge (then_bb, join_bb));
2678 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2679 delete_basic_block (then_bb);
2680 num_true_changes++;
2681
2682 if (can_merge_blocks_p (test_bb, join_bb))
2683 {
2684 merge_blocks (test_bb, join_bb);
2685 num_true_changes++;
2686 }
2687
2688 num_updated_if_blocks++;
2689 return TRUE;
2690 }
2691
2692 /* Check whether a block is suitable for conditional move conversion.
2693 Every insn must be a simple set of a register to a constant or a
2694 register. For each assignment, store the value in the pointer map
2695 VALS, keyed indexed by register pointer, then store the register
2696 pointer in REGS. COND is the condition we will test. */
2697
2698 static int
2699 check_cond_move_block (basic_block bb,
2700 struct pointer_map_t *vals,
2701 vec<rtx> *regs,
2702 rtx cond)
2703 {
2704 rtx insn;
2705
2706 /* We can only handle simple jumps at the end of the basic block.
2707 It is almost impossible to update the CFG otherwise. */
2708 insn = BB_END (bb);
2709 if (JUMP_P (insn) && !onlyjump_p (insn))
2710 return FALSE;
2711
2712 FOR_BB_INSNS (bb, insn)
2713 {
2714 rtx set, dest, src;
2715 void **slot;
2716
2717 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2718 continue;
2719 set = single_set (insn);
2720 if (!set)
2721 return FALSE;
2722
2723 dest = SET_DEST (set);
2724 src = SET_SRC (set);
2725 if (!REG_P (dest)
2726 || (HARD_REGISTER_P (dest)
2727 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2728 return FALSE;
2729
2730 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2731 return FALSE;
2732
2733 if (side_effects_p (src) || side_effects_p (dest))
2734 return FALSE;
2735
2736 if (may_trap_p (src) || may_trap_p (dest))
2737 return FALSE;
2738
2739 /* Don't try to handle this if the source register was
2740 modified earlier in the block. */
2741 if ((REG_P (src)
2742 && pointer_map_contains (vals, src))
2743 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2744 && pointer_map_contains (vals, SUBREG_REG (src))))
2745 return FALSE;
2746
2747 /* Don't try to handle this if the destination register was
2748 modified earlier in the block. */
2749 if (pointer_map_contains (vals, dest))
2750 return FALSE;
2751
2752 /* Don't try to handle this if the condition uses the
2753 destination register. */
2754 if (reg_overlap_mentioned_p (dest, cond))
2755 return FALSE;
2756
2757 /* Don't try to handle this if the source register is modified
2758 later in the block. */
2759 if (!CONSTANT_P (src)
2760 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2761 return FALSE;
2762
2763 slot = pointer_map_insert (vals, (void *) dest);
2764 *slot = (void *) src;
2765
2766 regs->safe_push (dest);
2767 }
2768
2769 return TRUE;
2770 }
2771
2772 /* Given a basic block BB suitable for conditional move conversion,
2773 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2774 the register values depending on COND, emit the insns in the block as
2775 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2776 processed. The caller has started a sequence for the conversion.
2777 Return true if successful, false if something goes wrong. */
2778
2779 static bool
2780 cond_move_convert_if_block (struct noce_if_info *if_infop,
2781 basic_block bb, rtx cond,
2782 struct pointer_map_t *then_vals,
2783 struct pointer_map_t *else_vals,
2784 bool else_block_p)
2785 {
2786 enum rtx_code code;
2787 rtx insn, cond_arg0, cond_arg1;
2788
2789 code = GET_CODE (cond);
2790 cond_arg0 = XEXP (cond, 0);
2791 cond_arg1 = XEXP (cond, 1);
2792
2793 FOR_BB_INSNS (bb, insn)
2794 {
2795 rtx set, target, dest, t, e;
2796 void **then_slot, **else_slot;
2797
2798 /* ??? Maybe emit conditional debug insn? */
2799 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2800 continue;
2801 set = single_set (insn);
2802 gcc_assert (set && REG_P (SET_DEST (set)));
2803
2804 dest = SET_DEST (set);
2805
2806 then_slot = pointer_map_contains (then_vals, dest);
2807 else_slot = pointer_map_contains (else_vals, dest);
2808 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2809 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2810
2811 if (else_block_p)
2812 {
2813 /* If this register was set in the then block, we already
2814 handled this case there. */
2815 if (t)
2816 continue;
2817 t = dest;
2818 gcc_assert (e);
2819 }
2820 else
2821 {
2822 gcc_assert (t);
2823 if (!e)
2824 e = dest;
2825 }
2826
2827 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2828 t, e);
2829 if (!target)
2830 return false;
2831
2832 if (target != dest)
2833 noce_emit_move_insn (dest, target);
2834 }
2835
2836 return true;
2837 }
2838
2839 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2840 it using only conditional moves. Return TRUE if we were successful at
2841 converting the block. */
2842
2843 static int
2844 cond_move_process_if_block (struct noce_if_info *if_info)
2845 {
2846 basic_block test_bb = if_info->test_bb;
2847 basic_block then_bb = if_info->then_bb;
2848 basic_block else_bb = if_info->else_bb;
2849 basic_block join_bb = if_info->join_bb;
2850 rtx jump = if_info->jump;
2851 rtx cond = if_info->cond;
2852 rtx seq, loc_insn;
2853 rtx reg;
2854 int c;
2855 struct pointer_map_t *then_vals;
2856 struct pointer_map_t *else_vals;
2857 vec<rtx> then_regs = vNULL;
2858 vec<rtx> else_regs = vNULL;
2859 unsigned int i;
2860 int success_p = FALSE;
2861
2862 /* Build a mapping for each block to the value used for each
2863 register. */
2864 then_vals = pointer_map_create ();
2865 else_vals = pointer_map_create ();
2866
2867 /* Make sure the blocks are suitable. */
2868 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2869 || (else_bb
2870 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2871 goto done;
2872
2873 /* Make sure the blocks can be used together. If the same register
2874 is set in both blocks, and is not set to a constant in both
2875 cases, then both blocks must set it to the same register. We
2876 have already verified that if it is set to a register, that the
2877 source register does not change after the assignment. Also count
2878 the number of registers set in only one of the blocks. */
2879 c = 0;
2880 FOR_EACH_VEC_ELT (then_regs, i, reg)
2881 {
2882 void **then_slot = pointer_map_contains (then_vals, reg);
2883 void **else_slot = pointer_map_contains (else_vals, reg);
2884
2885 gcc_checking_assert (then_slot);
2886 if (!else_slot)
2887 ++c;
2888 else
2889 {
2890 rtx then_val = (rtx) *then_slot;
2891 rtx else_val = (rtx) *else_slot;
2892 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2893 && !rtx_equal_p (then_val, else_val))
2894 goto done;
2895 }
2896 }
2897
2898 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2899 FOR_EACH_VEC_ELT (else_regs, i, reg)
2900 {
2901 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2902 if (!pointer_map_contains (then_vals, reg))
2903 ++c;
2904 }
2905
2906 /* Make sure it is reasonable to convert this block. What matters
2907 is the number of assignments currently made in only one of the
2908 branches, since if we convert we are going to always execute
2909 them. */
2910 if (c > MAX_CONDITIONAL_EXECUTE)
2911 goto done;
2912
2913 /* Try to emit the conditional moves. First do the then block,
2914 then do anything left in the else blocks. */
2915 start_sequence ();
2916 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2917 then_vals, else_vals, false)
2918 || (else_bb
2919 && !cond_move_convert_if_block (if_info, else_bb, cond,
2920 then_vals, else_vals, true)))
2921 {
2922 end_sequence ();
2923 goto done;
2924 }
2925 seq = end_ifcvt_sequence (if_info);
2926 if (!seq)
2927 goto done;
2928
2929 loc_insn = first_active_insn (then_bb);
2930 if (!loc_insn)
2931 {
2932 loc_insn = first_active_insn (else_bb);
2933 gcc_assert (loc_insn);
2934 }
2935 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2936
2937 if (else_bb)
2938 {
2939 delete_basic_block (else_bb);
2940 num_true_changes++;
2941 }
2942 else
2943 remove_edge (find_edge (test_bb, join_bb));
2944
2945 remove_edge (find_edge (then_bb, join_bb));
2946 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2947 delete_basic_block (then_bb);
2948 num_true_changes++;
2949
2950 if (can_merge_blocks_p (test_bb, join_bb))
2951 {
2952 merge_blocks (test_bb, join_bb);
2953 num_true_changes++;
2954 }
2955
2956 num_updated_if_blocks++;
2957
2958 success_p = TRUE;
2959
2960 done:
2961 pointer_map_destroy (then_vals);
2962 pointer_map_destroy (else_vals);
2963 then_regs.release ();
2964 else_regs.release ();
2965 return success_p;
2966 }
2967
2968 \f
2969 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2970 IF-THEN-ELSE-JOIN block.
2971
2972 If so, we'll try to convert the insns to not require the branch,
2973 using only transformations that do not require conditional execution.
2974
2975 Return TRUE if we were successful at converting the block. */
2976
2977 static int
2978 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2979 int pass)
2980 {
2981 basic_block then_bb, else_bb, join_bb;
2982 bool then_else_reversed = false;
2983 rtx jump, cond;
2984 rtx cond_earliest;
2985 struct noce_if_info if_info;
2986
2987 /* We only ever should get here before reload. */
2988 gcc_assert (!reload_completed);
2989
2990 /* Recognize an IF-THEN-ELSE-JOIN block. */
2991 if (single_pred_p (then_edge->dest)
2992 && single_succ_p (then_edge->dest)
2993 && single_pred_p (else_edge->dest)
2994 && single_succ_p (else_edge->dest)
2995 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2996 {
2997 then_bb = then_edge->dest;
2998 else_bb = else_edge->dest;
2999 join_bb = single_succ (then_bb);
3000 }
3001 /* Recognize an IF-THEN-JOIN block. */
3002 else if (single_pred_p (then_edge->dest)
3003 && single_succ_p (then_edge->dest)
3004 && single_succ (then_edge->dest) == else_edge->dest)
3005 {
3006 then_bb = then_edge->dest;
3007 else_bb = NULL_BLOCK;
3008 join_bb = else_edge->dest;
3009 }
3010 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3011 of basic blocks in cfglayout mode does not matter, so the fallthrough
3012 edge can go to any basic block (and not just to bb->next_bb, like in
3013 cfgrtl mode). */
3014 else if (single_pred_p (else_edge->dest)
3015 && single_succ_p (else_edge->dest)
3016 && single_succ (else_edge->dest) == then_edge->dest)
3017 {
3018 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3019 To make this work, we have to invert the THEN and ELSE blocks
3020 and reverse the jump condition. */
3021 then_bb = else_edge->dest;
3022 else_bb = NULL_BLOCK;
3023 join_bb = single_succ (then_bb);
3024 then_else_reversed = true;
3025 }
3026 else
3027 /* Not a form we can handle. */
3028 return FALSE;
3029
3030 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3031 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3032 return FALSE;
3033 if (else_bb
3034 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3035 return FALSE;
3036
3037 num_possible_if_blocks++;
3038
3039 if (dump_file)
3040 {
3041 fprintf (dump_file,
3042 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3043 (else_bb) ? "-ELSE" : "",
3044 pass, test_bb->index, then_bb->index);
3045
3046 if (else_bb)
3047 fprintf (dump_file, ", else %d", else_bb->index);
3048
3049 fprintf (dump_file, ", join %d\n", join_bb->index);
3050 }
3051
3052 /* If the conditional jump is more than just a conditional
3053 jump, then we can not do if-conversion on this block. */
3054 jump = BB_END (test_bb);
3055 if (! onlyjump_p (jump))
3056 return FALSE;
3057
3058 /* If this is not a standard conditional jump, we can't parse it. */
3059 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3060 if (!cond)
3061 return FALSE;
3062
3063 /* We must be comparing objects whose modes imply the size. */
3064 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3065 return FALSE;
3066
3067 /* Initialize an IF_INFO struct to pass around. */
3068 memset (&if_info, 0, sizeof if_info);
3069 if_info.test_bb = test_bb;
3070 if_info.then_bb = then_bb;
3071 if_info.else_bb = else_bb;
3072 if_info.join_bb = join_bb;
3073 if_info.cond = cond;
3074 if_info.cond_earliest = cond_earliest;
3075 if_info.jump = jump;
3076 if_info.then_else_reversed = then_else_reversed;
3077 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3078 predictable_edge_p (then_edge));
3079
3080 /* Do the real work. */
3081
3082 if (noce_process_if_block (&if_info))
3083 return TRUE;
3084
3085 if (HAVE_conditional_move
3086 && cond_move_process_if_block (&if_info))
3087 return TRUE;
3088
3089 return FALSE;
3090 }
3091 \f
3092
3093 /* Merge the blocks and mark for local life update. */
3094
3095 static void
3096 merge_if_block (struct ce_if_block * ce_info)
3097 {
3098 basic_block test_bb = ce_info->test_bb; /* last test block */
3099 basic_block then_bb = ce_info->then_bb; /* THEN */
3100 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3101 basic_block join_bb = ce_info->join_bb; /* join block */
3102 basic_block combo_bb;
3103
3104 /* All block merging is done into the lower block numbers. */
3105
3106 combo_bb = test_bb;
3107 df_set_bb_dirty (test_bb);
3108
3109 /* Merge any basic blocks to handle && and || subtests. Each of
3110 the blocks are on the fallthru path from the predecessor block. */
3111 if (ce_info->num_multiple_test_blocks > 0)
3112 {
3113 basic_block bb = test_bb;
3114 basic_block last_test_bb = ce_info->last_test_bb;
3115 basic_block fallthru = block_fallthru (bb);
3116
3117 do
3118 {
3119 bb = fallthru;
3120 fallthru = block_fallthru (bb);
3121 merge_blocks (combo_bb, bb);
3122 num_true_changes++;
3123 }
3124 while (bb != last_test_bb);
3125 }
3126
3127 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3128 label, but it might if there were || tests. That label's count should be
3129 zero, and it normally should be removed. */
3130
3131 if (then_bb)
3132 {
3133 merge_blocks (combo_bb, then_bb);
3134 num_true_changes++;
3135 }
3136
3137 /* The ELSE block, if it existed, had a label. That label count
3138 will almost always be zero, but odd things can happen when labels
3139 get their addresses taken. */
3140 if (else_bb)
3141 {
3142 merge_blocks (combo_bb, else_bb);
3143 num_true_changes++;
3144 }
3145
3146 /* If there was no join block reported, that means it was not adjacent
3147 to the others, and so we cannot merge them. */
3148
3149 if (! join_bb)
3150 {
3151 rtx last = BB_END (combo_bb);
3152
3153 /* The outgoing edge for the current COMBO block should already
3154 be correct. Verify this. */
3155 if (EDGE_COUNT (combo_bb->succs) == 0)
3156 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3157 || (NONJUMP_INSN_P (last)
3158 && GET_CODE (PATTERN (last)) == TRAP_IF
3159 && (TRAP_CONDITION (PATTERN (last))
3160 == const_true_rtx)));
3161
3162 else
3163 /* There should still be something at the end of the THEN or ELSE
3164 blocks taking us to our final destination. */
3165 gcc_assert (JUMP_P (last)
3166 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3167 && CALL_P (last)
3168 && SIBLING_CALL_P (last))
3169 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3170 && can_throw_internal (last)));
3171 }
3172
3173 /* The JOIN block may have had quite a number of other predecessors too.
3174 Since we've already merged the TEST, THEN and ELSE blocks, we should
3175 have only one remaining edge from our if-then-else diamond. If there
3176 is more than one remaining edge, it must come from elsewhere. There
3177 may be zero incoming edges if the THEN block didn't actually join
3178 back up (as with a call to a non-return function). */
3179 else if (EDGE_COUNT (join_bb->preds) < 2
3180 && join_bb != EXIT_BLOCK_PTR)
3181 {
3182 /* We can merge the JOIN cleanly and update the dataflow try
3183 again on this pass.*/
3184 merge_blocks (combo_bb, join_bb);
3185 num_true_changes++;
3186 }
3187 else
3188 {
3189 /* We cannot merge the JOIN. */
3190
3191 /* The outgoing edge for the current COMBO block should already
3192 be correct. Verify this. */
3193 gcc_assert (single_succ_p (combo_bb)
3194 && single_succ (combo_bb) == join_bb);
3195
3196 /* Remove the jump and cruft from the end of the COMBO block. */
3197 if (join_bb != EXIT_BLOCK_PTR)
3198 tidy_fallthru_edge (single_succ_edge (combo_bb));
3199 }
3200
3201 num_updated_if_blocks++;
3202 }
3203 \f
3204 /* Find a block ending in a simple IF condition and try to transform it
3205 in some way. When converting a multi-block condition, put the new code
3206 in the first such block and delete the rest. Return a pointer to this
3207 first block if some transformation was done. Return NULL otherwise. */
3208
3209 static basic_block
3210 find_if_header (basic_block test_bb, int pass)
3211 {
3212 ce_if_block_t ce_info;
3213 edge then_edge;
3214 edge else_edge;
3215
3216 /* The kind of block we're looking for has exactly two successors. */
3217 if (EDGE_COUNT (test_bb->succs) != 2)
3218 return NULL;
3219
3220 then_edge = EDGE_SUCC (test_bb, 0);
3221 else_edge = EDGE_SUCC (test_bb, 1);
3222
3223 if (df_get_bb_dirty (then_edge->dest))
3224 return NULL;
3225 if (df_get_bb_dirty (else_edge->dest))
3226 return NULL;
3227
3228 /* Neither edge should be abnormal. */
3229 if ((then_edge->flags & EDGE_COMPLEX)
3230 || (else_edge->flags & EDGE_COMPLEX))
3231 return NULL;
3232
3233 /* Nor exit the loop. */
3234 if ((then_edge->flags & EDGE_LOOP_EXIT)
3235 || (else_edge->flags & EDGE_LOOP_EXIT))
3236 return NULL;
3237
3238 /* The THEN edge is canonically the one that falls through. */
3239 if (then_edge->flags & EDGE_FALLTHRU)
3240 ;
3241 else if (else_edge->flags & EDGE_FALLTHRU)
3242 {
3243 edge e = else_edge;
3244 else_edge = then_edge;
3245 then_edge = e;
3246 }
3247 else
3248 /* Otherwise this must be a multiway branch of some sort. */
3249 return NULL;
3250
3251 memset (&ce_info, 0, sizeof (ce_info));
3252 ce_info.test_bb = test_bb;
3253 ce_info.then_bb = then_edge->dest;
3254 ce_info.else_bb = else_edge->dest;
3255 ce_info.pass = pass;
3256
3257 #ifdef IFCVT_MACHDEP_INIT
3258 IFCVT_MACHDEP_INIT (&ce_info);
3259 #endif
3260
3261 if (!reload_completed
3262 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3263 goto success;
3264
3265 if (reload_completed
3266 && targetm.have_conditional_execution ()
3267 && cond_exec_find_if_block (&ce_info))
3268 goto success;
3269
3270 if (HAVE_trap
3271 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3272 && find_cond_trap (test_bb, then_edge, else_edge))
3273 goto success;
3274
3275 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3276 && (reload_completed || !targetm.have_conditional_execution ()))
3277 {
3278 if (find_if_case_1 (test_bb, then_edge, else_edge))
3279 goto success;
3280 if (find_if_case_2 (test_bb, then_edge, else_edge))
3281 goto success;
3282 }
3283
3284 return NULL;
3285
3286 success:
3287 if (dump_file)
3288 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3289 /* Set this so we continue looking. */
3290 cond_exec_changed_p = TRUE;
3291 return ce_info.test_bb;
3292 }
3293
3294 /* Return true if a block has two edges, one of which falls through to the next
3295 block, and the other jumps to a specific block, so that we can tell if the
3296 block is part of an && test or an || test. Returns either -1 or the number
3297 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3298
3299 static int
3300 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3301 {
3302 edge cur_edge;
3303 int fallthru_p = FALSE;
3304 int jump_p = FALSE;
3305 rtx insn;
3306 rtx end;
3307 int n_insns = 0;
3308 edge_iterator ei;
3309
3310 if (!cur_bb || !target_bb)
3311 return -1;
3312
3313 /* If no edges, obviously it doesn't jump or fallthru. */
3314 if (EDGE_COUNT (cur_bb->succs) == 0)
3315 return FALSE;
3316
3317 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3318 {
3319 if (cur_edge->flags & EDGE_COMPLEX)
3320 /* Anything complex isn't what we want. */
3321 return -1;
3322
3323 else if (cur_edge->flags & EDGE_FALLTHRU)
3324 fallthru_p = TRUE;
3325
3326 else if (cur_edge->dest == target_bb)
3327 jump_p = TRUE;
3328
3329 else
3330 return -1;
3331 }
3332
3333 if ((jump_p & fallthru_p) == 0)
3334 return -1;
3335
3336 /* Don't allow calls in the block, since this is used to group && and ||
3337 together for conditional execution support. ??? we should support
3338 conditional execution support across calls for IA-64 some day, but
3339 for now it makes the code simpler. */
3340 end = BB_END (cur_bb);
3341 insn = BB_HEAD (cur_bb);
3342
3343 while (insn != NULL_RTX)
3344 {
3345 if (CALL_P (insn))
3346 return -1;
3347
3348 if (INSN_P (insn)
3349 && !JUMP_P (insn)
3350 && !DEBUG_INSN_P (insn)
3351 && GET_CODE (PATTERN (insn)) != USE
3352 && GET_CODE (PATTERN (insn)) != CLOBBER)
3353 n_insns++;
3354
3355 if (insn == end)
3356 break;
3357
3358 insn = NEXT_INSN (insn);
3359 }
3360
3361 return n_insns;
3362 }
3363
3364 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3365 block. If so, we'll try to convert the insns to not require the branch.
3366 Return TRUE if we were successful at converting the block. */
3367
3368 static int
3369 cond_exec_find_if_block (struct ce_if_block * ce_info)
3370 {
3371 basic_block test_bb = ce_info->test_bb;
3372 basic_block then_bb = ce_info->then_bb;
3373 basic_block else_bb = ce_info->else_bb;
3374 basic_block join_bb = NULL_BLOCK;
3375 edge cur_edge;
3376 basic_block next;
3377 edge_iterator ei;
3378
3379 ce_info->last_test_bb = test_bb;
3380
3381 /* We only ever should get here after reload,
3382 and if we have conditional execution. */
3383 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3384
3385 /* Discover if any fall through predecessors of the current test basic block
3386 were && tests (which jump to the else block) or || tests (which jump to
3387 the then block). */
3388 if (single_pred_p (test_bb)
3389 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3390 {
3391 basic_block bb = single_pred (test_bb);
3392 basic_block target_bb;
3393 int max_insns = MAX_CONDITIONAL_EXECUTE;
3394 int n_insns;
3395
3396 /* Determine if the preceding block is an && or || block. */
3397 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3398 {
3399 ce_info->and_and_p = TRUE;
3400 target_bb = else_bb;
3401 }
3402 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3403 {
3404 ce_info->and_and_p = FALSE;
3405 target_bb = then_bb;
3406 }
3407 else
3408 target_bb = NULL_BLOCK;
3409
3410 if (target_bb && n_insns <= max_insns)
3411 {
3412 int total_insns = 0;
3413 int blocks = 0;
3414
3415 ce_info->last_test_bb = test_bb;
3416
3417 /* Found at least one && or || block, look for more. */
3418 do
3419 {
3420 ce_info->test_bb = test_bb = bb;
3421 total_insns += n_insns;
3422 blocks++;
3423
3424 if (!single_pred_p (bb))
3425 break;
3426
3427 bb = single_pred (bb);
3428 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3429 }
3430 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3431
3432 ce_info->num_multiple_test_blocks = blocks;
3433 ce_info->num_multiple_test_insns = total_insns;
3434
3435 if (ce_info->and_and_p)
3436 ce_info->num_and_and_blocks = blocks;
3437 else
3438 ce_info->num_or_or_blocks = blocks;
3439 }
3440 }
3441
3442 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3443 other than any || blocks which jump to the THEN block. */
3444 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3445 return FALSE;
3446
3447 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3448 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3449 {
3450 if (cur_edge->flags & EDGE_COMPLEX)
3451 return FALSE;
3452 }
3453
3454 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3455 {
3456 if (cur_edge->flags & EDGE_COMPLEX)
3457 return FALSE;
3458 }
3459
3460 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3461 if (EDGE_COUNT (then_bb->succs) > 0
3462 && (!single_succ_p (then_bb)
3463 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3464 || (epilogue_completed
3465 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3466 return FALSE;
3467
3468 /* If the THEN block has no successors, conditional execution can still
3469 make a conditional call. Don't do this unless the ELSE block has
3470 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3471 Check for the last insn of the THEN block being an indirect jump, which
3472 is listed as not having any successors, but confuses the rest of the CE
3473 code processing. ??? we should fix this in the future. */
3474 if (EDGE_COUNT (then_bb->succs) == 0)
3475 {
3476 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR)
3477 {
3478 rtx last_insn = BB_END (then_bb);
3479
3480 while (last_insn
3481 && NOTE_P (last_insn)
3482 && last_insn != BB_HEAD (then_bb))
3483 last_insn = PREV_INSN (last_insn);
3484
3485 if (last_insn
3486 && JUMP_P (last_insn)
3487 && ! simplejump_p (last_insn))
3488 return FALSE;
3489
3490 join_bb = else_bb;
3491 else_bb = NULL_BLOCK;
3492 }
3493 else
3494 return FALSE;
3495 }
3496
3497 /* If the THEN block's successor is the other edge out of the TEST block,
3498 then we have an IF-THEN combo without an ELSE. */
3499 else if (single_succ (then_bb) == else_bb)
3500 {
3501 join_bb = else_bb;
3502 else_bb = NULL_BLOCK;
3503 }
3504
3505 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3506 has exactly one predecessor and one successor, and the outgoing edge
3507 is not complex, then we have an IF-THEN-ELSE combo. */
3508 else if (single_succ_p (else_bb)
3509 && single_succ (then_bb) == single_succ (else_bb)
3510 && single_pred_p (else_bb)
3511 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3512 && !(epilogue_completed
3513 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3514 join_bb = single_succ (else_bb);
3515
3516 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3517 else
3518 return FALSE;
3519
3520 num_possible_if_blocks++;
3521
3522 if (dump_file)
3523 {
3524 fprintf (dump_file,
3525 "\nIF-THEN%s block found, pass %d, start block %d "
3526 "[insn %d], then %d [%d]",
3527 (else_bb) ? "-ELSE" : "",
3528 ce_info->pass,
3529 test_bb->index,
3530 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3531 then_bb->index,
3532 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3533
3534 if (else_bb)
3535 fprintf (dump_file, ", else %d [%d]",
3536 else_bb->index,
3537 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3538
3539 fprintf (dump_file, ", join %d [%d]",
3540 join_bb->index,
3541 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3542
3543 if (ce_info->num_multiple_test_blocks > 0)
3544 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3545 ce_info->num_multiple_test_blocks,
3546 (ce_info->and_and_p) ? "&&" : "||",
3547 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3548 ce_info->last_test_bb->index,
3549 ((BB_HEAD (ce_info->last_test_bb))
3550 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3551 : -1));
3552
3553 fputc ('\n', dump_file);
3554 }
3555
3556 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3557 first condition for free, since we've already asserted that there's a
3558 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3559 we checked the FALLTHRU flag, those are already adjacent to the last IF
3560 block. */
3561 /* ??? As an enhancement, move the ELSE block. Have to deal with
3562 BLOCK notes, if by no other means than backing out the merge if they
3563 exist. Sticky enough I don't want to think about it now. */
3564 next = then_bb;
3565 if (else_bb && (next = next->next_bb) != else_bb)
3566 return FALSE;
3567 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3568 {
3569 if (else_bb)
3570 join_bb = NULL;
3571 else
3572 return FALSE;
3573 }
3574
3575 /* Do the real work. */
3576
3577 ce_info->else_bb = else_bb;
3578 ce_info->join_bb = join_bb;
3579
3580 /* If we have && and || tests, try to first handle combining the && and ||
3581 tests into the conditional code, and if that fails, go back and handle
3582 it without the && and ||, which at present handles the && case if there
3583 was no ELSE block. */
3584 if (cond_exec_process_if_block (ce_info, TRUE))
3585 return TRUE;
3586
3587 if (ce_info->num_multiple_test_blocks)
3588 {
3589 cancel_changes (0);
3590
3591 if (cond_exec_process_if_block (ce_info, FALSE))
3592 return TRUE;
3593 }
3594
3595 return FALSE;
3596 }
3597
3598 /* Convert a branch over a trap, or a branch
3599 to a trap, into a conditional trap. */
3600
3601 static int
3602 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3603 {
3604 basic_block then_bb = then_edge->dest;
3605 basic_block else_bb = else_edge->dest;
3606 basic_block other_bb, trap_bb;
3607 rtx trap, jump, cond, cond_earliest, seq;
3608 enum rtx_code code;
3609
3610 /* Locate the block with the trap instruction. */
3611 /* ??? While we look for no successors, we really ought to allow
3612 EH successors. Need to fix merge_if_block for that to work. */
3613 if ((trap = block_has_only_trap (then_bb)) != NULL)
3614 trap_bb = then_bb, other_bb = else_bb;
3615 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3616 trap_bb = else_bb, other_bb = then_bb;
3617 else
3618 return FALSE;
3619
3620 if (dump_file)
3621 {
3622 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3623 test_bb->index, trap_bb->index);
3624 }
3625
3626 /* If this is not a standard conditional jump, we can't parse it. */
3627 jump = BB_END (test_bb);
3628 cond = noce_get_condition (jump, &cond_earliest, false);
3629 if (! cond)
3630 return FALSE;
3631
3632 /* If the conditional jump is more than just a conditional jump, then
3633 we can not do if-conversion on this block. */
3634 if (! onlyjump_p (jump))
3635 return FALSE;
3636
3637 /* We must be comparing objects whose modes imply the size. */
3638 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3639 return FALSE;
3640
3641 /* Reverse the comparison code, if necessary. */
3642 code = GET_CODE (cond);
3643 if (then_bb == trap_bb)
3644 {
3645 code = reversed_comparison_code (cond, jump);
3646 if (code == UNKNOWN)
3647 return FALSE;
3648 }
3649
3650 /* Attempt to generate the conditional trap. */
3651 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3652 copy_rtx (XEXP (cond, 1)),
3653 TRAP_CODE (PATTERN (trap)));
3654 if (seq == NULL)
3655 return FALSE;
3656
3657 /* Emit the new insns before cond_earliest. */
3658 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3659
3660 /* Delete the trap block if possible. */
3661 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3662 df_set_bb_dirty (test_bb);
3663 df_set_bb_dirty (then_bb);
3664 df_set_bb_dirty (else_bb);
3665
3666 if (EDGE_COUNT (trap_bb->preds) == 0)
3667 {
3668 delete_basic_block (trap_bb);
3669 num_true_changes++;
3670 }
3671
3672 /* Wire together the blocks again. */
3673 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3674 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3675 else
3676 {
3677 rtx lab, newjump;
3678
3679 lab = JUMP_LABEL (jump);
3680 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3681 LABEL_NUSES (lab) += 1;
3682 JUMP_LABEL (newjump) = lab;
3683 emit_barrier_after (newjump);
3684 }
3685 delete_insn (jump);
3686
3687 if (can_merge_blocks_p (test_bb, other_bb))
3688 {
3689 merge_blocks (test_bb, other_bb);
3690 num_true_changes++;
3691 }
3692
3693 num_updated_if_blocks++;
3694 return TRUE;
3695 }
3696
3697 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3698 return it. */
3699
3700 static rtx
3701 block_has_only_trap (basic_block bb)
3702 {
3703 rtx trap;
3704
3705 /* We're not the exit block. */
3706 if (bb == EXIT_BLOCK_PTR)
3707 return NULL_RTX;
3708
3709 /* The block must have no successors. */
3710 if (EDGE_COUNT (bb->succs) > 0)
3711 return NULL_RTX;
3712
3713 /* The only instruction in the THEN block must be the trap. */
3714 trap = first_active_insn (bb);
3715 if (! (trap == BB_END (bb)
3716 && GET_CODE (PATTERN (trap)) == TRAP_IF
3717 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3718 return NULL_RTX;
3719
3720 return trap;
3721 }
3722
3723 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3724 transformable, but not necessarily the other. There need be no
3725 JOIN block.
3726
3727 Return TRUE if we were successful at converting the block.
3728
3729 Cases we'd like to look at:
3730
3731 (1)
3732 if (test) goto over; // x not live
3733 x = a;
3734 goto label;
3735 over:
3736
3737 becomes
3738
3739 x = a;
3740 if (! test) goto label;
3741
3742 (2)
3743 if (test) goto E; // x not live
3744 x = big();
3745 goto L;
3746 E:
3747 x = b;
3748 goto M;
3749
3750 becomes
3751
3752 x = b;
3753 if (test) goto M;
3754 x = big();
3755 goto L;
3756
3757 (3) // This one's really only interesting for targets that can do
3758 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3759 // it results in multiple branches on a cache line, which often
3760 // does not sit well with predictors.
3761
3762 if (test1) goto E; // predicted not taken
3763 x = a;
3764 if (test2) goto F;
3765 ...
3766 E:
3767 x = b;
3768 J:
3769
3770 becomes
3771
3772 x = a;
3773 if (test1) goto E;
3774 if (test2) goto F;
3775
3776 Notes:
3777
3778 (A) Don't do (2) if the branch is predicted against the block we're
3779 eliminating. Do it anyway if we can eliminate a branch; this requires
3780 that the sole successor of the eliminated block postdominate the other
3781 side of the if.
3782
3783 (B) With CE, on (3) we can steal from both sides of the if, creating
3784
3785 if (test1) x = a;
3786 if (!test1) x = b;
3787 if (test1) goto J;
3788 if (test2) goto F;
3789 ...
3790 J:
3791
3792 Again, this is most useful if J postdominates.
3793
3794 (C) CE substitutes for helpful life information.
3795
3796 (D) These heuristics need a lot of work. */
3797
3798 /* Tests for case 1 above. */
3799
3800 static int
3801 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3802 {
3803 basic_block then_bb = then_edge->dest;
3804 basic_block else_bb = else_edge->dest;
3805 basic_block new_bb;
3806 int then_bb_index, then_prob;
3807 rtx else_target = NULL_RTX;
3808
3809 /* If we are partitioning hot/cold basic blocks, we don't want to
3810 mess up unconditional or indirect jumps that cross between hot
3811 and cold sections.
3812
3813 Basic block partitioning may result in some jumps that appear to
3814 be optimizable (or blocks that appear to be mergeable), but which really
3815 must be left untouched (they are required to make it safely across
3816 partition boundaries). See the comments at the top of
3817 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3818
3819 if ((BB_END (then_bb)
3820 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3821 || (BB_END (test_bb)
3822 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3823 || (BB_END (else_bb)
3824 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3825 NULL_RTX)))
3826 return FALSE;
3827
3828 /* THEN has one successor. */
3829 if (!single_succ_p (then_bb))
3830 return FALSE;
3831
3832 /* THEN does not fall through, but is not strange either. */
3833 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3834 return FALSE;
3835
3836 /* THEN has one predecessor. */
3837 if (!single_pred_p (then_bb))
3838 return FALSE;
3839
3840 /* THEN must do something. */
3841 if (forwarder_block_p (then_bb))
3842 return FALSE;
3843
3844 num_possible_if_blocks++;
3845 if (dump_file)
3846 fprintf (dump_file,
3847 "\nIF-CASE-1 found, start %d, then %d\n",
3848 test_bb->index, then_bb->index);
3849
3850 if (then_edge->probability)
3851 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3852 else
3853 then_prob = REG_BR_PROB_BASE / 2;
3854
3855 /* We're speculating from the THEN path, we want to make sure the cost
3856 of speculation is within reason. */
3857 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3858 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3859 predictable_edge_p (then_edge)))))
3860 return FALSE;
3861
3862 if (else_bb == EXIT_BLOCK_PTR)
3863 {
3864 rtx jump = BB_END (else_edge->src);
3865 gcc_assert (JUMP_P (jump));
3866 else_target = JUMP_LABEL (jump);
3867 }
3868
3869 /* Registers set are dead, or are predicable. */
3870 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3871 single_succ_edge (then_bb), 1))
3872 return FALSE;
3873
3874 /* Conversion went ok, including moving the insns and fixing up the
3875 jump. Adjust the CFG to match. */
3876
3877 /* We can avoid creating a new basic block if then_bb is immediately
3878 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3879 through to else_bb. */
3880
3881 if (then_bb->next_bb == else_bb
3882 && then_bb->prev_bb == test_bb
3883 && else_bb != EXIT_BLOCK_PTR)
3884 {
3885 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3886 new_bb = 0;
3887 }
3888 else if (else_bb == EXIT_BLOCK_PTR)
3889 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3890 else_bb, else_target);
3891 else
3892 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3893 else_bb);
3894
3895 df_set_bb_dirty (test_bb);
3896 df_set_bb_dirty (else_bb);
3897
3898 then_bb_index = then_bb->index;
3899 delete_basic_block (then_bb);
3900
3901 /* Make rest of code believe that the newly created block is the THEN_BB
3902 block we removed. */
3903 if (new_bb)
3904 {
3905 df_bb_replace (then_bb_index, new_bb);
3906 /* Since the fallthru edge was redirected from test_bb to new_bb,
3907 we need to ensure that new_bb is in the same partition as
3908 test bb (you can not fall through across section boundaries). */
3909 BB_COPY_PARTITION (new_bb, test_bb);
3910 }
3911
3912 num_true_changes++;
3913 num_updated_if_blocks++;
3914
3915 return TRUE;
3916 }
3917
3918 /* Test for case 2 above. */
3919
3920 static int
3921 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3922 {
3923 basic_block then_bb = then_edge->dest;
3924 basic_block else_bb = else_edge->dest;
3925 edge else_succ;
3926 int then_prob, else_prob;
3927
3928 /* We do not want to speculate (empty) loop latches. */
3929 if (current_loops
3930 && else_bb->loop_father->latch == else_bb)
3931 return FALSE;
3932
3933 /* If we are partitioning hot/cold basic blocks, we don't want to
3934 mess up unconditional or indirect jumps that cross between hot
3935 and cold sections.
3936
3937 Basic block partitioning may result in some jumps that appear to
3938 be optimizable (or blocks that appear to be mergeable), but which really
3939 must be left untouched (they are required to make it safely across
3940 partition boundaries). See the comments at the top of
3941 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3942
3943 if ((BB_END (then_bb)
3944 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3945 || (BB_END (test_bb)
3946 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3947 || (BB_END (else_bb)
3948 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3949 NULL_RTX)))
3950 return FALSE;
3951
3952 /* ELSE has one successor. */
3953 if (!single_succ_p (else_bb))
3954 return FALSE;
3955 else
3956 else_succ = single_succ_edge (else_bb);
3957
3958 /* ELSE outgoing edge is not complex. */
3959 if (else_succ->flags & EDGE_COMPLEX)
3960 return FALSE;
3961
3962 /* ELSE has one predecessor. */
3963 if (!single_pred_p (else_bb))
3964 return FALSE;
3965
3966 /* THEN is not EXIT. */
3967 if (then_bb->index < NUM_FIXED_BLOCKS)
3968 return FALSE;
3969
3970 if (else_edge->probability)
3971 {
3972 else_prob = else_edge->probability;
3973 then_prob = REG_BR_PROB_BASE - else_prob;
3974 }
3975 else
3976 {
3977 else_prob = REG_BR_PROB_BASE / 2;
3978 then_prob = REG_BR_PROB_BASE / 2;
3979 }
3980
3981 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3982 if (else_prob > then_prob)
3983 ;
3984 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3985 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3986 else_succ->dest))
3987 ;
3988 else
3989 return FALSE;
3990
3991 num_possible_if_blocks++;
3992 if (dump_file)
3993 fprintf (dump_file,
3994 "\nIF-CASE-2 found, start %d, else %d\n",
3995 test_bb->index, else_bb->index);
3996
3997 /* We're speculating from the ELSE path, we want to make sure the cost
3998 of speculation is within reason. */
3999 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4000 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4001 predictable_edge_p (else_edge)))))
4002 return FALSE;
4003
4004 /* Registers set are dead, or are predicable. */
4005 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4006 return FALSE;
4007
4008 /* Conversion went ok, including moving the insns and fixing up the
4009 jump. Adjust the CFG to match. */
4010
4011 df_set_bb_dirty (test_bb);
4012 df_set_bb_dirty (then_bb);
4013 delete_basic_block (else_bb);
4014
4015 num_true_changes++;
4016 num_updated_if_blocks++;
4017
4018 /* ??? We may now fallthru from one of THEN's successors into a join
4019 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4020
4021 return TRUE;
4022 }
4023
4024 /* Used by the code above to perform the actual rtl transformations.
4025 Return TRUE if successful.
4026
4027 TEST_BB is the block containing the conditional branch. MERGE_BB
4028 is the block containing the code to manipulate. DEST_EDGE is an
4029 edge representing a jump to the join block; after the conversion,
4030 TEST_BB should be branching to its destination.
4031 REVERSEP is true if the sense of the branch should be reversed. */
4032
4033 static int
4034 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4035 basic_block other_bb, edge dest_edge, int reversep)
4036 {
4037 basic_block new_dest = dest_edge->dest;
4038 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4039 bitmap merge_set = NULL;
4040 /* Number of pending changes. */
4041 int n_validated_changes = 0;
4042 rtx new_dest_label = NULL_RTX;
4043
4044 jump = BB_END (test_bb);
4045
4046 /* Find the extent of the real code in the merge block. */
4047 head = BB_HEAD (merge_bb);
4048 end = BB_END (merge_bb);
4049
4050 while (DEBUG_INSN_P (end) && end != head)
4051 end = PREV_INSN (end);
4052
4053 /* If merge_bb ends with a tablejump, predicating/moving insn's
4054 into test_bb and then deleting merge_bb will result in the jumptable
4055 that follows merge_bb being removed along with merge_bb and then we
4056 get an unresolved reference to the jumptable. */
4057 if (tablejump_p (end, NULL, NULL))
4058 return FALSE;
4059
4060 if (LABEL_P (head))
4061 head = NEXT_INSN (head);
4062 while (DEBUG_INSN_P (head) && head != end)
4063 head = NEXT_INSN (head);
4064 if (NOTE_P (head))
4065 {
4066 if (head == end)
4067 {
4068 head = end = NULL_RTX;
4069 goto no_body;
4070 }
4071 head = NEXT_INSN (head);
4072 while (DEBUG_INSN_P (head) && head != end)
4073 head = NEXT_INSN (head);
4074 }
4075
4076 if (JUMP_P (end))
4077 {
4078 if (head == end)
4079 {
4080 head = end = NULL_RTX;
4081 goto no_body;
4082 }
4083 end = PREV_INSN (end);
4084 while (DEBUG_INSN_P (end) && end != head)
4085 end = PREV_INSN (end);
4086 }
4087
4088 /* Disable handling dead code by conditional execution if the machine needs
4089 to do anything funny with the tests, etc. */
4090 #ifndef IFCVT_MODIFY_TESTS
4091 if (targetm.have_conditional_execution ())
4092 {
4093 /* In the conditional execution case, we have things easy. We know
4094 the condition is reversible. We don't have to check life info
4095 because we're going to conditionally execute the code anyway.
4096 All that's left is making sure the insns involved can actually
4097 be predicated. */
4098
4099 rtx cond, prob_val;
4100
4101 cond = cond_exec_get_condition (jump);
4102 if (! cond)
4103 return FALSE;
4104
4105 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4106 if (prob_val)
4107 prob_val = XEXP (prob_val, 0);
4108
4109 if (reversep)
4110 {
4111 enum rtx_code rev = reversed_comparison_code (cond, jump);
4112 if (rev == UNKNOWN)
4113 return FALSE;
4114 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4115 XEXP (cond, 1));
4116 if (prob_val)
4117 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4118 }
4119
4120 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4121 && verify_changes (0))
4122 n_validated_changes = num_validated_changes ();
4123 else
4124 cancel_changes (0);
4125
4126 earliest = jump;
4127 }
4128 #endif
4129
4130 /* If we allocated new pseudos (e.g. in the conditional move
4131 expander called from noce_emit_cmove), we must resize the
4132 array first. */
4133 if (max_regno < max_reg_num ())
4134 max_regno = max_reg_num ();
4135
4136 /* Try the NCE path if the CE path did not result in any changes. */
4137 if (n_validated_changes == 0)
4138 {
4139 rtx cond, insn;
4140 regset live;
4141 bool success;
4142
4143 /* In the non-conditional execution case, we have to verify that there
4144 are no trapping operations, no calls, no references to memory, and
4145 that any registers modified are dead at the branch site. */
4146
4147 if (!any_condjump_p (jump))
4148 return FALSE;
4149
4150 /* Find the extent of the conditional. */
4151 cond = noce_get_condition (jump, &earliest, false);
4152 if (!cond)
4153 return FALSE;
4154
4155 live = BITMAP_ALLOC (&reg_obstack);
4156 simulate_backwards_to_point (merge_bb, live, end);
4157 success = can_move_insns_across (head, end, earliest, jump,
4158 merge_bb, live,
4159 df_get_live_in (other_bb), NULL);
4160 BITMAP_FREE (live);
4161 if (!success)
4162 return FALSE;
4163
4164 /* Collect the set of registers set in MERGE_BB. */
4165 merge_set = BITMAP_ALLOC (&reg_obstack);
4166
4167 FOR_BB_INSNS (merge_bb, insn)
4168 if (NONDEBUG_INSN_P (insn))
4169 df_simulate_find_defs (insn, merge_set);
4170
4171 #ifdef HAVE_simple_return
4172 /* If shrink-wrapping, disable this optimization when test_bb is
4173 the first basic block and merge_bb exits. The idea is to not
4174 move code setting up a return register as that may clobber a
4175 register used to pass function parameters, which then must be
4176 saved in caller-saved regs. A caller-saved reg requires the
4177 prologue, killing a shrink-wrap opportunity. */
4178 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4179 && ENTRY_BLOCK_PTR->next_bb == test_bb
4180 && single_succ_p (new_dest)
4181 && single_succ (new_dest) == EXIT_BLOCK_PTR
4182 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4183 {
4184 regset return_regs;
4185 unsigned int i;
4186
4187 return_regs = BITMAP_ALLOC (&reg_obstack);
4188
4189 /* Start off with the intersection of regs used to pass
4190 params and regs used to return values. */
4191 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4192 if (FUNCTION_ARG_REGNO_P (i)
4193 && targetm.calls.function_value_regno_p (i))
4194 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4195
4196 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4197 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4198 if (!bitmap_empty_p (return_regs))
4199 {
4200 FOR_BB_INSNS_REVERSE (new_dest, insn)
4201 if (NONDEBUG_INSN_P (insn))
4202 {
4203 df_ref *def_rec;
4204 unsigned int uid = INSN_UID (insn);
4205
4206 /* If this insn sets any reg in return_regs.. */
4207 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4208 {
4209 df_ref def = *def_rec;
4210 unsigned r = DF_REF_REGNO (def);
4211
4212 if (bitmap_bit_p (return_regs, r))
4213 break;
4214 }
4215 /* ..then add all reg uses to the set of regs
4216 we're interested in. */
4217 if (*def_rec)
4218 df_simulate_uses (insn, return_regs);
4219 }
4220 if (bitmap_intersect_p (merge_set, return_regs))
4221 {
4222 BITMAP_FREE (return_regs);
4223 BITMAP_FREE (merge_set);
4224 return FALSE;
4225 }
4226 }
4227 BITMAP_FREE (return_regs);
4228 }
4229 #endif
4230 }
4231
4232 no_body:
4233 /* We don't want to use normal invert_jump or redirect_jump because
4234 we don't want to delete_insn called. Also, we want to do our own
4235 change group management. */
4236
4237 old_dest = JUMP_LABEL (jump);
4238 if (other_bb != new_dest)
4239 {
4240 if (JUMP_P (BB_END (dest_edge->src)))
4241 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4242 else if (new_dest == EXIT_BLOCK_PTR)
4243 new_dest_label = ret_rtx;
4244 else
4245 new_dest_label = block_label (new_dest);
4246
4247 if (reversep
4248 ? ! invert_jump_1 (jump, new_dest_label)
4249 : ! redirect_jump_1 (jump, new_dest_label))
4250 goto cancel;
4251 }
4252
4253 if (verify_changes (n_validated_changes))
4254 confirm_change_group ();
4255 else
4256 goto cancel;
4257
4258 if (other_bb != new_dest)
4259 {
4260 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4261
4262 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4263 if (reversep)
4264 {
4265 gcov_type count, probability;
4266 count = BRANCH_EDGE (test_bb)->count;
4267 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4268 FALLTHRU_EDGE (test_bb)->count = count;
4269 probability = BRANCH_EDGE (test_bb)->probability;
4270 BRANCH_EDGE (test_bb)->probability
4271 = FALLTHRU_EDGE (test_bb)->probability;
4272 FALLTHRU_EDGE (test_bb)->probability = probability;
4273 update_br_prob_note (test_bb);
4274 }
4275 }
4276
4277 /* Move the insns out of MERGE_BB to before the branch. */
4278 if (head != NULL)
4279 {
4280 rtx insn;
4281
4282 if (end == BB_END (merge_bb))
4283 BB_END (merge_bb) = PREV_INSN (head);
4284
4285 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4286 notes being moved might become invalid. */
4287 insn = head;
4288 do
4289 {
4290 rtx note, set;
4291
4292 if (! INSN_P (insn))
4293 continue;
4294 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4295 if (! note)
4296 continue;
4297 set = single_set (insn);
4298 if (!set || !function_invariant_p (SET_SRC (set))
4299 || !function_invariant_p (XEXP (note, 0)))
4300 remove_note (insn, note);
4301 } while (insn != end && (insn = NEXT_INSN (insn)));
4302
4303 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4304 notes referring to the registers being set might become invalid. */
4305 if (merge_set)
4306 {
4307 unsigned i;
4308 bitmap_iterator bi;
4309
4310 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4311 remove_reg_equal_equiv_notes_for_regno (i);
4312
4313 BITMAP_FREE (merge_set);
4314 }
4315
4316 reorder_insns (head, end, PREV_INSN (earliest));
4317 }
4318
4319 /* Remove the jump and edge if we can. */
4320 if (other_bb == new_dest)
4321 {
4322 delete_insn (jump);
4323 remove_edge (BRANCH_EDGE (test_bb));
4324 /* ??? Can't merge blocks here, as then_bb is still in use.
4325 At minimum, the merge will get done just before bb-reorder. */
4326 }
4327
4328 return TRUE;
4329
4330 cancel:
4331 cancel_changes (0);
4332
4333 if (merge_set)
4334 BITMAP_FREE (merge_set);
4335
4336 return FALSE;
4337 }
4338 \f
4339 /* Main entry point for all if-conversion. */
4340
4341 static void
4342 if_convert (void)
4343 {
4344 basic_block bb;
4345 int pass;
4346
4347 if (optimize == 1)
4348 {
4349 df_live_add_problem ();
4350 df_live_set_all_dirty ();
4351 }
4352
4353 num_possible_if_blocks = 0;
4354 num_updated_if_blocks = 0;
4355 num_true_changes = 0;
4356
4357 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4358 mark_loop_exit_edges ();
4359 loop_optimizer_finalize ();
4360 free_dominance_info (CDI_DOMINATORS);
4361
4362 /* Compute postdominators. */
4363 calculate_dominance_info (CDI_POST_DOMINATORS);
4364
4365 df_set_flags (DF_LR_RUN_DCE);
4366
4367 /* Go through each of the basic blocks looking for things to convert. If we
4368 have conditional execution, we make multiple passes to allow us to handle
4369 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4370 pass = 0;
4371 do
4372 {
4373 df_analyze ();
4374 /* Only need to do dce on the first pass. */
4375 df_clear_flags (DF_LR_RUN_DCE);
4376 cond_exec_changed_p = FALSE;
4377 pass++;
4378
4379 #ifdef IFCVT_MULTIPLE_DUMPS
4380 if (dump_file && pass > 1)
4381 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4382 #endif
4383
4384 FOR_EACH_BB (bb)
4385 {
4386 basic_block new_bb;
4387 while (!df_get_bb_dirty (bb)
4388 && (new_bb = find_if_header (bb, pass)) != NULL)
4389 bb = new_bb;
4390 }
4391
4392 #ifdef IFCVT_MULTIPLE_DUMPS
4393 if (dump_file && cond_exec_changed_p)
4394 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4395 #endif
4396 }
4397 while (cond_exec_changed_p);
4398
4399 #ifdef IFCVT_MULTIPLE_DUMPS
4400 if (dump_file)
4401 fprintf (dump_file, "\n\n========== no more changes\n");
4402 #endif
4403
4404 free_dominance_info (CDI_POST_DOMINATORS);
4405
4406 if (dump_file)
4407 fflush (dump_file);
4408
4409 clear_aux_for_blocks ();
4410
4411 /* If we allocated new pseudos, we must resize the array for sched1. */
4412 if (max_regno < max_reg_num ())
4413 max_regno = max_reg_num ();
4414
4415 /* Write the final stats. */
4416 if (dump_file && num_possible_if_blocks > 0)
4417 {
4418 fprintf (dump_file,
4419 "\n%d possible IF blocks searched.\n",
4420 num_possible_if_blocks);
4421 fprintf (dump_file,
4422 "%d IF blocks converted.\n",
4423 num_updated_if_blocks);
4424 fprintf (dump_file,
4425 "%d true changes made.\n\n\n",
4426 num_true_changes);
4427 }
4428
4429 if (optimize == 1)
4430 df_remove_problem (df_live);
4431
4432 #ifdef ENABLE_CHECKING
4433 verify_flow_info ();
4434 #endif
4435 }
4436 \f
4437 static bool
4438 gate_handle_if_conversion (void)
4439 {
4440 return (optimize > 0)
4441 && dbg_cnt (if_conversion);
4442 }
4443
4444 /* If-conversion and CFG cleanup. */
4445 static unsigned int
4446 rest_of_handle_if_conversion (void)
4447 {
4448 if (flag_if_conversion)
4449 {
4450 if (dump_file)
4451 {
4452 dump_reg_info (dump_file);
4453 dump_flow_info (dump_file, dump_flags);
4454 }
4455 cleanup_cfg (CLEANUP_EXPENSIVE);
4456 if_convert ();
4457 }
4458
4459 cleanup_cfg (0);
4460 return 0;
4461 }
4462
4463 struct rtl_opt_pass pass_rtl_ifcvt =
4464 {
4465 {
4466 RTL_PASS,
4467 "ce1", /* name */
4468 OPTGROUP_NONE, /* optinfo_flags */
4469 gate_handle_if_conversion, /* gate */
4470 rest_of_handle_if_conversion, /* execute */
4471 NULL, /* sub */
4472 NULL, /* next */
4473 0, /* static_pass_number */
4474 TV_IFCVT, /* tv_id */
4475 0, /* properties_required */
4476 0, /* properties_provided */
4477 0, /* properties_destroyed */
4478 0, /* todo_flags_start */
4479 TODO_df_finish | TODO_verify_rtl_sharing |
4480 0 /* todo_flags_finish */
4481 }
4482 };
4483
4484 static bool
4485 gate_handle_if_after_combine (void)
4486 {
4487 return optimize > 0 && flag_if_conversion
4488 && dbg_cnt (if_after_combine);
4489 }
4490
4491
4492 /* Rerun if-conversion, as combine may have simplified things enough
4493 to now meet sequence length restrictions. */
4494 static unsigned int
4495 rest_of_handle_if_after_combine (void)
4496 {
4497 if_convert ();
4498 return 0;
4499 }
4500
4501 struct rtl_opt_pass pass_if_after_combine =
4502 {
4503 {
4504 RTL_PASS,
4505 "ce2", /* name */
4506 OPTGROUP_NONE, /* optinfo_flags */
4507 gate_handle_if_after_combine, /* gate */
4508 rest_of_handle_if_after_combine, /* execute */
4509 NULL, /* sub */
4510 NULL, /* next */
4511 0, /* static_pass_number */
4512 TV_IFCVT, /* tv_id */
4513 0, /* properties_required */
4514 0, /* properties_provided */
4515 0, /* properties_destroyed */
4516 0, /* todo_flags_start */
4517 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */
4518 }
4519 };
4520
4521
4522 static bool
4523 gate_handle_if_after_reload (void)
4524 {
4525 return optimize > 0 && flag_if_conversion2
4526 && dbg_cnt (if_after_reload);
4527 }
4528
4529 static unsigned int
4530 rest_of_handle_if_after_reload (void)
4531 {
4532 if_convert ();
4533 return 0;
4534 }
4535
4536
4537 struct rtl_opt_pass pass_if_after_reload =
4538 {
4539 {
4540 RTL_PASS,
4541 "ce3", /* name */
4542 OPTGROUP_NONE, /* optinfo_flags */
4543 gate_handle_if_after_reload, /* gate */
4544 rest_of_handle_if_after_reload, /* execute */
4545 NULL, /* sub */
4546 NULL, /* next */
4547 0, /* static_pass_number */
4548 TV_IFCVT2, /* tv_id */
4549 0, /* properties_required */
4550 0, /* properties_provided */
4551 0, /* properties_destroyed */
4552 0, /* todo_flags_start */
4553 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */
4554 }
4555 };