ifcvt.c (seq_contains_jump): Delete function.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43
44
45 #ifndef HAVE_conditional_execution
46 #define HAVE_conditional_execution 0
47 #endif
48 #ifndef HAVE_conditional_move
49 #define HAVE_conditional_move 0
50 #endif
51 #ifndef HAVE_incscc
52 #define HAVE_incscc 0
53 #endif
54 #ifndef HAVE_decscc
55 #define HAVE_decscc 0
56 #endif
57 #ifndef HAVE_trap
58 #define HAVE_trap 0
59 #endif
60 #ifndef HAVE_conditional_trap
61 #define HAVE_conditional_trap 0
62 #endif
63
64 #ifndef MAX_CONDITIONAL_EXECUTE
65 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
66 #endif
67
68 #define NULL_EDGE ((struct edge_def *)NULL)
69 #define NULL_BLOCK ((struct basic_block_def *)NULL)
70
71 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
72 static int num_possible_if_blocks;
73
74 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
75 execution. */
76 static int num_updated_if_blocks;
77
78 /* # of changes made which require life information to be updated. */
79 static int num_true_changes;
80
81 /* Whether conditional execution changes were made. */
82 static int cond_exec_changed_p;
83
84 /* True if life data ok at present. */
85 static bool life_data_ok;
86
87 /* Forward references. */
88 static int count_bb_insns (basic_block);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static basic_block block_fallthru (basic_block);
92 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
93 static rtx cond_exec_get_condition (rtx);
94 static int cond_exec_process_if_block (ce_if_block_t *, int);
95 static rtx noce_get_condition (rtx, rtx *);
96 static int noce_operand_ok (rtx);
97 static int noce_process_if_block (ce_if_block_t *);
98 static int process_if_block (ce_if_block_t *);
99 static void merge_if_block (ce_if_block_t *);
100 static int find_cond_trap (basic_block, edge, edge);
101 static basic_block find_if_header (basic_block, int);
102 static int block_jumps_and_fallthru_p (basic_block, basic_block);
103 static int find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int find_memory (rtx *, void *);
107 static int dead_or_predicable (basic_block, basic_block, basic_block,
108 basic_block, int);
109 static void noce_emit_move_insn (rtx, rtx);
110 static rtx block_has_only_trap (basic_block);
111 static void mark_loop_exit_edges (void);
112 \f
113 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
114 static void
115 mark_loop_exit_edges (void)
116 {
117 struct loops loops;
118 basic_block bb;
119 edge e;
120
121 flow_loops_find (&loops, LOOP_TREE);
122 free_dominance_info (CDI_DOMINATORS);
123
124 if (loops.num > 1)
125 {
126 FOR_EACH_BB (bb)
127 {
128 for (e = bb->succ; e; e = e->succ_next)
129 {
130 if (find_common_loop (bb->loop_father, e->dest->loop_father)
131 != bb->loop_father)
132 e->flags |= EDGE_LOOP_EXIT;
133 else
134 e->flags &= ~EDGE_LOOP_EXIT;
135 }
136 }
137 }
138
139 flow_loops_free (&loops);
140 }
141
142 /* Count the number of non-jump active insns in BB. */
143
144 static int
145 count_bb_insns (basic_block bb)
146 {
147 int count = 0;
148 rtx insn = BB_HEAD (bb);
149
150 while (1)
151 {
152 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == INSN)
153 count++;
154
155 if (insn == BB_END (bb))
156 break;
157 insn = NEXT_INSN (insn);
158 }
159
160 return count;
161 }
162
163 /* Return the first non-jump active insn in the basic block. */
164
165 static rtx
166 first_active_insn (basic_block bb)
167 {
168 rtx insn = BB_HEAD (bb);
169
170 if (GET_CODE (insn) == CODE_LABEL)
171 {
172 if (insn == BB_END (bb))
173 return NULL_RTX;
174 insn = NEXT_INSN (insn);
175 }
176
177 while (GET_CODE (insn) == NOTE)
178 {
179 if (insn == BB_END (bb))
180 return NULL_RTX;
181 insn = NEXT_INSN (insn);
182 }
183
184 if (GET_CODE (insn) == JUMP_INSN)
185 return NULL_RTX;
186
187 return insn;
188 }
189
190 /* Return the last non-jump active (non-jump) insn in the basic block. */
191
192 static rtx
193 last_active_insn (basic_block bb, int skip_use_p)
194 {
195 rtx insn = BB_END (bb);
196 rtx head = BB_HEAD (bb);
197
198 while (GET_CODE (insn) == NOTE
199 || GET_CODE (insn) == JUMP_INSN
200 || (skip_use_p
201 && GET_CODE (insn) == INSN
202 && GET_CODE (PATTERN (insn)) == USE))
203 {
204 if (insn == head)
205 return NULL_RTX;
206 insn = PREV_INSN (insn);
207 }
208
209 if (GET_CODE (insn) == CODE_LABEL)
210 return NULL_RTX;
211
212 return insn;
213 }
214
215 /* Return the basic block reached by falling though the basic block BB. */
216
217 static basic_block
218 block_fallthru (basic_block bb)
219 {
220 edge e;
221
222 for (e = bb->succ;
223 e != NULL_EDGE && (e->flags & EDGE_FALLTHRU) == 0;
224 e = e->succ_next)
225 ;
226
227 return (e) ? e->dest : NULL_BLOCK;
228 }
229 \f
230 /* Go through a bunch of insns, converting them to conditional
231 execution format if possible. Return TRUE if all of the non-note
232 insns were processed. */
233
234 static int
235 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
236 /* if block information */rtx start,
237 /* first insn to look at */rtx end,
238 /* last insn to look at */rtx test,
239 /* conditional execution test */rtx prob_val,
240 /* probability of branch taken. */int mod_ok)
241 {
242 int must_be_last = FALSE;
243 rtx insn;
244 rtx xtest;
245 rtx pattern;
246
247 if (!start || !end)
248 return FALSE;
249
250 for (insn = start; ; insn = NEXT_INSN (insn))
251 {
252 if (GET_CODE (insn) == NOTE)
253 goto insn_done;
254
255 if (GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
256 abort ();
257
258 /* Remove USE insns that get in the way. */
259 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
260 {
261 /* ??? Ug. Actually unlinking the thing is problematic,
262 given what we'd have to coordinate with our callers. */
263 PUT_CODE (insn, NOTE);
264 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
265 NOTE_SOURCE_FILE (insn) = 0;
266 goto insn_done;
267 }
268
269 /* Last insn wasn't last? */
270 if (must_be_last)
271 return FALSE;
272
273 if (modified_in_p (test, insn))
274 {
275 if (!mod_ok)
276 return FALSE;
277 must_be_last = TRUE;
278 }
279
280 /* Now build the conditional form of the instruction. */
281 pattern = PATTERN (insn);
282 xtest = copy_rtx (test);
283
284 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
285 two conditions. */
286 if (GET_CODE (pattern) == COND_EXEC)
287 {
288 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
289 return FALSE;
290
291 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
292 COND_EXEC_TEST (pattern));
293 pattern = COND_EXEC_CODE (pattern);
294 }
295
296 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
297
298 /* If the machine needs to modify the insn being conditionally executed,
299 say for example to force a constant integer operand into a temp
300 register, do so here. */
301 #ifdef IFCVT_MODIFY_INSN
302 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
303 if (! pattern)
304 return FALSE;
305 #endif
306
307 validate_change (insn, &PATTERN (insn), pattern, 1);
308
309 if (GET_CODE (insn) == CALL_INSN && prob_val)
310 validate_change (insn, &REG_NOTES (insn),
311 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
312 REG_NOTES (insn)), 1);
313
314 insn_done:
315 if (insn == end)
316 break;
317 }
318
319 return TRUE;
320 }
321
322 /* Return the condition for a jump. Do not do any special processing. */
323
324 static rtx
325 cond_exec_get_condition (rtx jump)
326 {
327 rtx test_if, cond;
328
329 if (any_condjump_p (jump))
330 test_if = SET_SRC (pc_set (jump));
331 else
332 return NULL_RTX;
333 cond = XEXP (test_if, 0);
334
335 /* If this branches to JUMP_LABEL when the condition is false,
336 reverse the condition. */
337 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
338 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
339 {
340 enum rtx_code rev = reversed_comparison_code (cond, jump);
341 if (rev == UNKNOWN)
342 return NULL_RTX;
343
344 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
345 XEXP (cond, 1));
346 }
347
348 return cond;
349 }
350
351 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
352 to conditional execution. Return TRUE if we were successful at
353 converting the block. */
354
355 static int
356 cond_exec_process_if_block (ce_if_block_t * ce_info,
357 /* if block information */int do_multiple_p)
358 {
359 basic_block test_bb = ce_info->test_bb; /* last test block */
360 basic_block then_bb = ce_info->then_bb; /* THEN */
361 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
362 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
363 rtx then_start; /* first insn in THEN block */
364 rtx then_end; /* last insn + 1 in THEN block */
365 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
366 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
367 int max; /* max # of insns to convert. */
368 int then_mod_ok; /* whether conditional mods are ok in THEN */
369 rtx true_expr; /* test for else block insns */
370 rtx false_expr; /* test for then block insns */
371 rtx true_prob_val; /* probability of else block */
372 rtx false_prob_val; /* probability of then block */
373 int n_insns;
374 enum rtx_code false_code;
375
376 /* If test is comprised of && or || elements, and we've failed at handling
377 all of them together, just use the last test if it is the special case of
378 && elements without an ELSE block. */
379 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
380 {
381 if (else_bb || ! ce_info->and_and_p)
382 return FALSE;
383
384 ce_info->test_bb = test_bb = ce_info->last_test_bb;
385 ce_info->num_multiple_test_blocks = 0;
386 ce_info->num_and_and_blocks = 0;
387 ce_info->num_or_or_blocks = 0;
388 }
389
390 /* Find the conditional jump to the ELSE or JOIN part, and isolate
391 the test. */
392 test_expr = cond_exec_get_condition (BB_END (test_bb));
393 if (! test_expr)
394 return FALSE;
395
396 /* If the conditional jump is more than just a conditional jump,
397 then we can not do conditional execution conversion on this block. */
398 if (! onlyjump_p (BB_END (test_bb)))
399 return FALSE;
400
401 /* Collect the bounds of where we're to search, skipping any labels, jumps
402 and notes at the beginning and end of the block. Then count the total
403 number of insns and see if it is small enough to convert. */
404 then_start = first_active_insn (then_bb);
405 then_end = last_active_insn (then_bb, TRUE);
406 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
407 max = MAX_CONDITIONAL_EXECUTE;
408
409 if (else_bb)
410 {
411 max *= 2;
412 else_start = first_active_insn (else_bb);
413 else_end = last_active_insn (else_bb, TRUE);
414 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
415 }
416
417 if (n_insns > max)
418 return FALSE;
419
420 /* Map test_expr/test_jump into the appropriate MD tests to use on
421 the conditionally executed code. */
422
423 true_expr = test_expr;
424
425 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
426 if (false_code != UNKNOWN)
427 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
428 XEXP (true_expr, 0), XEXP (true_expr, 1));
429 else
430 false_expr = NULL_RTX;
431
432 #ifdef IFCVT_MODIFY_TESTS
433 /* If the machine description needs to modify the tests, such as setting a
434 conditional execution register from a comparison, it can do so here. */
435 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
436
437 /* See if the conversion failed. */
438 if (!true_expr || !false_expr)
439 goto fail;
440 #endif
441
442 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
443 if (true_prob_val)
444 {
445 true_prob_val = XEXP (true_prob_val, 0);
446 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
447 }
448 else
449 false_prob_val = NULL_RTX;
450
451 /* If we have && or || tests, do them here. These tests are in the adjacent
452 blocks after the first block containing the test. */
453 if (ce_info->num_multiple_test_blocks > 0)
454 {
455 basic_block bb = test_bb;
456 basic_block last_test_bb = ce_info->last_test_bb;
457
458 if (! false_expr)
459 goto fail;
460
461 do
462 {
463 rtx start, end;
464 rtx t, f;
465
466 bb = block_fallthru (bb);
467 start = first_active_insn (bb);
468 end = last_active_insn (bb, TRUE);
469 if (start
470 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
471 false_prob_val, FALSE))
472 goto fail;
473
474 /* If the conditional jump is more than just a conditional jump, then
475 we can not do conditional execution conversion on this block. */
476 if (! onlyjump_p (BB_END (bb)))
477 goto fail;
478
479 /* Find the conditional jump and isolate the test. */
480 t = cond_exec_get_condition (BB_END (bb));
481 if (! t)
482 goto fail;
483
484 f = gen_rtx_fmt_ee (reverse_condition (GET_CODE (t)),
485 GET_MODE (t),
486 XEXP (t, 0),
487 XEXP (t, 1));
488
489 if (ce_info->and_and_p)
490 {
491 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
492 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
493 }
494 else
495 {
496 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
497 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
498 }
499
500 /* If the machine description needs to modify the tests, such as
501 setting a conditional execution register from a comparison, it can
502 do so here. */
503 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
504 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
505
506 /* See if the conversion failed. */
507 if (!t || !f)
508 goto fail;
509 #endif
510
511 true_expr = t;
512 false_expr = f;
513 }
514 while (bb != last_test_bb);
515 }
516
517 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
518 on then THEN block. */
519 then_mod_ok = (else_bb == NULL_BLOCK);
520
521 /* Go through the THEN and ELSE blocks converting the insns if possible
522 to conditional execution. */
523
524 if (then_end
525 && (! false_expr
526 || ! cond_exec_process_insns (ce_info, then_start, then_end,
527 false_expr, false_prob_val,
528 then_mod_ok)))
529 goto fail;
530
531 if (else_bb && else_end
532 && ! cond_exec_process_insns (ce_info, else_start, else_end,
533 true_expr, true_prob_val, TRUE))
534 goto fail;
535
536 /* If we cannot apply the changes, fail. Do not go through the normal fail
537 processing, since apply_change_group will call cancel_changes. */
538 if (! apply_change_group ())
539 {
540 #ifdef IFCVT_MODIFY_CANCEL
541 /* Cancel any machine dependent changes. */
542 IFCVT_MODIFY_CANCEL (ce_info);
543 #endif
544 return FALSE;
545 }
546
547 #ifdef IFCVT_MODIFY_FINAL
548 /* Do any machine dependent final modifications. */
549 IFCVT_MODIFY_FINAL (ce_info);
550 #endif
551
552 /* Conversion succeeded. */
553 if (dump_file)
554 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
555 n_insns, (n_insns == 1) ? " was" : "s were");
556
557 /* Merge the blocks! */
558 merge_if_block (ce_info);
559 cond_exec_changed_p = TRUE;
560 return TRUE;
561
562 fail:
563 #ifdef IFCVT_MODIFY_CANCEL
564 /* Cancel any machine dependent changes. */
565 IFCVT_MODIFY_CANCEL (ce_info);
566 #endif
567
568 cancel_changes (0);
569 return FALSE;
570 }
571 \f
572 /* Used by noce_process_if_block to communicate with its subroutines.
573
574 The subroutines know that A and B may be evaluated freely. They
575 know that X is a register. They should insert new instructions
576 before cond_earliest. */
577
578 struct noce_if_info
579 {
580 basic_block test_bb;
581 rtx insn_a, insn_b;
582 rtx x, a, b;
583 rtx jump, cond, cond_earliest;
584 };
585
586 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
587 static int noce_try_move (struct noce_if_info *);
588 static int noce_try_store_flag (struct noce_if_info *);
589 static int noce_try_addcc (struct noce_if_info *);
590 static int noce_try_store_flag_constants (struct noce_if_info *);
591 static int noce_try_store_flag_mask (struct noce_if_info *);
592 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
593 rtx, rtx, rtx);
594 static int noce_try_cmove (struct noce_if_info *);
595 static int noce_try_cmove_arith (struct noce_if_info *);
596 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
597 static int noce_try_minmax (struct noce_if_info *);
598 static int noce_try_abs (struct noce_if_info *);
599 static int noce_try_sign_mask (struct noce_if_info *);
600
601 /* Helper function for noce_try_store_flag*. */
602
603 static rtx
604 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
605 int normalize)
606 {
607 rtx cond = if_info->cond;
608 int cond_complex;
609 enum rtx_code code;
610
611 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
612 || ! general_operand (XEXP (cond, 1), VOIDmode));
613
614 /* If earliest == jump, or when the condition is complex, try to
615 build the store_flag insn directly. */
616
617 if (cond_complex)
618 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
619
620 if (reversep)
621 code = reversed_comparison_code (cond, if_info->jump);
622 else
623 code = GET_CODE (cond);
624
625 if ((if_info->cond_earliest == if_info->jump || cond_complex)
626 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
627 {
628 rtx tmp;
629
630 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
631 XEXP (cond, 1));
632 tmp = gen_rtx_SET (VOIDmode, x, tmp);
633
634 start_sequence ();
635 tmp = emit_insn (tmp);
636
637 if (recog_memoized (tmp) >= 0)
638 {
639 tmp = get_insns ();
640 end_sequence ();
641 emit_insn (tmp);
642
643 if_info->cond_earliest = if_info->jump;
644
645 return x;
646 }
647
648 end_sequence ();
649 }
650
651 /* Don't even try if the comparison operands or the mode of X are weird. */
652 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
653 return NULL_RTX;
654
655 return emit_store_flag (x, code, XEXP (cond, 0),
656 XEXP (cond, 1), VOIDmode,
657 (code == LTU || code == LEU
658 || code == GEU || code == GTU), normalize);
659 }
660
661 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
662 X is the destination/target and Y is the value to copy. */
663
664 static void
665 noce_emit_move_insn (rtx x, rtx y)
666 {
667 enum machine_mode outmode, inmode;
668 rtx outer, inner;
669 int bitpos;
670
671 if (GET_CODE (x) != STRICT_LOW_PART)
672 {
673 emit_move_insn (x, y);
674 return;
675 }
676
677 outer = XEXP (x, 0);
678 inner = XEXP (outer, 0);
679 outmode = GET_MODE (outer);
680 inmode = GET_MODE (inner);
681 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
682 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y,
683 GET_MODE_BITSIZE (inmode));
684 }
685
686 /* Return sequence of instructions generated by if conversion. This
687 function calls end_sequence() to end the current stream, ensures
688 that are instructions are unshared, recognizable non-jump insns.
689 On failure, this function returns a NULL_RTX. */
690
691 static rtx
692 end_ifcvt_sequence (struct noce_if_info *if_info)
693 {
694 rtx insn;
695 rtx seq = get_insns ();
696
697 set_used_flags (if_info->x);
698 set_used_flags (if_info->cond);
699 unshare_all_rtl_in_chain (seq);
700 end_sequence ();
701
702 /* Make sure that all of the instructions emitted are recognizable,
703 and that we haven't introduced a new jump instruction.
704 As an excersise for the reader, build a general mechanism that
705 allows proper placement of required clobbers. */
706 for (insn = seq; insn; insn = NEXT_INSN (insn))
707 if (GET_CODE (insn) == JUMP_INSN
708 || recog_memoized (insn) == -1)
709 return NULL_RTX;
710
711 return seq;
712 }
713
714 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
715 "if (a == b) x = a; else x = b" into "x = b". */
716
717 static int
718 noce_try_move (struct noce_if_info *if_info)
719 {
720 rtx cond = if_info->cond;
721 enum rtx_code code = GET_CODE (cond);
722 rtx y, seq;
723
724 if (code != NE && code != EQ)
725 return FALSE;
726
727 /* This optimization isn't valid if either A or B could be a NaN
728 or a signed zero. */
729 if (HONOR_NANS (GET_MODE (if_info->x))
730 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
731 return FALSE;
732
733 /* Check whether the operands of the comparison are A and in
734 either order. */
735 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
736 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
737 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
738 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
739 {
740 y = (code == EQ) ? if_info->a : if_info->b;
741
742 /* Avoid generating the move if the source is the destination. */
743 if (! rtx_equal_p (if_info->x, y))
744 {
745 start_sequence ();
746 noce_emit_move_insn (if_info->x, y);
747 seq = end_ifcvt_sequence (if_info);
748 if (!seq)
749 return FALSE;
750
751 emit_insn_before_setloc (seq, if_info->jump,
752 INSN_LOCATOR (if_info->insn_a));
753 }
754 return TRUE;
755 }
756 return FALSE;
757 }
758
759 /* Convert "if (test) x = 1; else x = 0".
760
761 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
762 tried in noce_try_store_flag_constants after noce_try_cmove has had
763 a go at the conversion. */
764
765 static int
766 noce_try_store_flag (struct noce_if_info *if_info)
767 {
768 int reversep;
769 rtx target, seq;
770
771 if (GET_CODE (if_info->b) == CONST_INT
772 && INTVAL (if_info->b) == STORE_FLAG_VALUE
773 && if_info->a == const0_rtx)
774 reversep = 0;
775 else if (if_info->b == const0_rtx
776 && GET_CODE (if_info->a) == CONST_INT
777 && INTVAL (if_info->a) == STORE_FLAG_VALUE
778 && (reversed_comparison_code (if_info->cond, if_info->jump)
779 != UNKNOWN))
780 reversep = 1;
781 else
782 return FALSE;
783
784 start_sequence ();
785
786 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
787 if (target)
788 {
789 if (target != if_info->x)
790 noce_emit_move_insn (if_info->x, target);
791
792 seq = end_ifcvt_sequence (if_info);
793 if (! seq)
794 return FALSE;
795
796 emit_insn_before_setloc (seq, if_info->jump,
797 INSN_LOCATOR (if_info->insn_a));
798 return TRUE;
799 }
800 else
801 {
802 end_sequence ();
803 return FALSE;
804 }
805 }
806
807 /* Convert "if (test) x = a; else x = b", for A and B constant. */
808
809 static int
810 noce_try_store_flag_constants (struct noce_if_info *if_info)
811 {
812 rtx target, seq;
813 int reversep;
814 HOST_WIDE_INT itrue, ifalse, diff, tmp;
815 int normalize, can_reverse;
816 enum machine_mode mode;
817
818 if (! no_new_pseudos
819 && GET_CODE (if_info->a) == CONST_INT
820 && GET_CODE (if_info->b) == CONST_INT)
821 {
822 mode = GET_MODE (if_info->x);
823 ifalse = INTVAL (if_info->a);
824 itrue = INTVAL (if_info->b);
825
826 /* Make sure we can represent the difference between the two values. */
827 if ((itrue - ifalse > 0)
828 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
829 return FALSE;
830
831 diff = trunc_int_for_mode (itrue - ifalse, mode);
832
833 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
834 != UNKNOWN);
835
836 reversep = 0;
837 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
838 normalize = 0;
839 else if (ifalse == 0 && exact_log2 (itrue) >= 0
840 && (STORE_FLAG_VALUE == 1
841 || BRANCH_COST >= 2))
842 normalize = 1;
843 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
844 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
845 normalize = 1, reversep = 1;
846 else if (itrue == -1
847 && (STORE_FLAG_VALUE == -1
848 || BRANCH_COST >= 2))
849 normalize = -1;
850 else if (ifalse == -1 && can_reverse
851 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
852 normalize = -1, reversep = 1;
853 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
854 || BRANCH_COST >= 3)
855 normalize = -1;
856 else
857 return FALSE;
858
859 if (reversep)
860 {
861 tmp = itrue; itrue = ifalse; ifalse = tmp;
862 diff = trunc_int_for_mode (-diff, mode);
863 }
864
865 start_sequence ();
866 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
867 if (! target)
868 {
869 end_sequence ();
870 return FALSE;
871 }
872
873 /* if (test) x = 3; else x = 4;
874 => x = 3 + (test == 0); */
875 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
876 {
877 target = expand_simple_binop (mode,
878 (diff == STORE_FLAG_VALUE
879 ? PLUS : MINUS),
880 GEN_INT (ifalse), target, if_info->x, 0,
881 OPTAB_WIDEN);
882 }
883
884 /* if (test) x = 8; else x = 0;
885 => x = (test != 0) << 3; */
886 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
887 {
888 target = expand_simple_binop (mode, ASHIFT,
889 target, GEN_INT (tmp), if_info->x, 0,
890 OPTAB_WIDEN);
891 }
892
893 /* if (test) x = -1; else x = b;
894 => x = -(test != 0) | b; */
895 else if (itrue == -1)
896 {
897 target = expand_simple_binop (mode, IOR,
898 target, GEN_INT (ifalse), if_info->x, 0,
899 OPTAB_WIDEN);
900 }
901
902 /* if (test) x = a; else x = b;
903 => x = (-(test != 0) & (b - a)) + a; */
904 else
905 {
906 target = expand_simple_binop (mode, AND,
907 target, GEN_INT (diff), if_info->x, 0,
908 OPTAB_WIDEN);
909 if (target)
910 target = expand_simple_binop (mode, PLUS,
911 target, GEN_INT (ifalse),
912 if_info->x, 0, OPTAB_WIDEN);
913 }
914
915 if (! target)
916 {
917 end_sequence ();
918 return FALSE;
919 }
920
921 if (target != if_info->x)
922 noce_emit_move_insn (if_info->x, target);
923
924 seq = end_ifcvt_sequence (if_info);
925 if (!seq)
926 return FALSE;
927
928 emit_insn_before_setloc (seq, if_info->jump,
929 INSN_LOCATOR (if_info->insn_a));
930 return TRUE;
931 }
932
933 return FALSE;
934 }
935
936 /* Convert "if (test) foo++" into "foo += (test != 0)", and
937 similarly for "foo--". */
938
939 static int
940 noce_try_addcc (struct noce_if_info *if_info)
941 {
942 rtx target, seq;
943 int subtract, normalize;
944
945 if (! no_new_pseudos
946 && GET_CODE (if_info->a) == PLUS
947 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
948 && (reversed_comparison_code (if_info->cond, if_info->jump)
949 != UNKNOWN))
950 {
951 rtx cond = if_info->cond;
952 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
953
954 /* First try to use addcc pattern. */
955 if (general_operand (XEXP (cond, 0), VOIDmode)
956 && general_operand (XEXP (cond, 1), VOIDmode))
957 {
958 start_sequence ();
959 target = emit_conditional_add (if_info->x, code,
960 XEXP (cond, 0),
961 XEXP (cond, 1),
962 VOIDmode,
963 if_info->b,
964 XEXP (if_info->a, 1),
965 GET_MODE (if_info->x),
966 (code == LTU || code == GEU
967 || code == LEU || code == GTU));
968 if (target)
969 {
970 if (target != if_info->x)
971 noce_emit_move_insn (if_info->x, target);
972
973 seq = end_ifcvt_sequence (if_info);
974 if (!seq)
975 return FALSE;
976
977 emit_insn_before_setloc (seq, if_info->jump,
978 INSN_LOCATOR (if_info->insn_a));
979 return TRUE;
980 }
981 end_sequence ();
982 }
983
984 /* If that fails, construct conditional increment or decrement using
985 setcc. */
986 if (BRANCH_COST >= 2
987 && (XEXP (if_info->a, 1) == const1_rtx
988 || XEXP (if_info->a, 1) == constm1_rtx))
989 {
990 start_sequence ();
991 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
992 subtract = 0, normalize = 0;
993 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
994 subtract = 1, normalize = 0;
995 else
996 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
997
998
999 target = noce_emit_store_flag (if_info,
1000 gen_reg_rtx (GET_MODE (if_info->x)),
1001 1, normalize);
1002
1003 if (target)
1004 target = expand_simple_binop (GET_MODE (if_info->x),
1005 subtract ? MINUS : PLUS,
1006 if_info->b, target, if_info->x,
1007 0, OPTAB_WIDEN);
1008 if (target)
1009 {
1010 if (target != if_info->x)
1011 noce_emit_move_insn (if_info->x, target);
1012
1013 seq = end_ifcvt_sequence (if_info);
1014 if (!seq)
1015 return FALSE;
1016
1017 emit_insn_before_setloc (seq, if_info->jump,
1018 INSN_LOCATOR (if_info->insn_a));
1019 return TRUE;
1020 }
1021 end_sequence ();
1022 }
1023 }
1024
1025 return FALSE;
1026 }
1027
1028 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1029
1030 static int
1031 noce_try_store_flag_mask (struct noce_if_info *if_info)
1032 {
1033 rtx target, seq;
1034 int reversep;
1035
1036 reversep = 0;
1037 if (! no_new_pseudos
1038 && (BRANCH_COST >= 2
1039 || STORE_FLAG_VALUE == -1)
1040 && ((if_info->a == const0_rtx
1041 && rtx_equal_p (if_info->b, if_info->x))
1042 || ((reversep = (reversed_comparison_code (if_info->cond,
1043 if_info->jump)
1044 != UNKNOWN))
1045 && if_info->b == const0_rtx
1046 && rtx_equal_p (if_info->a, if_info->x))))
1047 {
1048 start_sequence ();
1049 target = noce_emit_store_flag (if_info,
1050 gen_reg_rtx (GET_MODE (if_info->x)),
1051 reversep, -1);
1052 if (target)
1053 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1054 if_info->x,
1055 target, if_info->x, 0,
1056 OPTAB_WIDEN);
1057
1058 if (target)
1059 {
1060 if (target != if_info->x)
1061 noce_emit_move_insn (if_info->x, target);
1062
1063 seq = end_ifcvt_sequence (if_info);
1064 if (!seq)
1065 return FALSE;
1066
1067 emit_insn_before_setloc (seq, if_info->jump,
1068 INSN_LOCATOR (if_info->insn_a));
1069 return TRUE;
1070 }
1071
1072 end_sequence ();
1073 }
1074
1075 return FALSE;
1076 }
1077
1078 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1079
1080 static rtx
1081 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1082 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1083 {
1084 /* If earliest == jump, try to build the cmove insn directly.
1085 This is helpful when combine has created some complex condition
1086 (like for alpha's cmovlbs) that we can't hope to regenerate
1087 through the normal interface. */
1088
1089 if (if_info->cond_earliest == if_info->jump)
1090 {
1091 rtx tmp;
1092
1093 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1094 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1095 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1096
1097 start_sequence ();
1098 tmp = emit_insn (tmp);
1099
1100 if (recog_memoized (tmp) >= 0)
1101 {
1102 tmp = get_insns ();
1103 end_sequence ();
1104 emit_insn (tmp);
1105
1106 return x;
1107 }
1108
1109 end_sequence ();
1110 }
1111
1112 /* Don't even try if the comparison operands are weird. */
1113 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1114 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1115 return NULL_RTX;
1116
1117 #if HAVE_conditional_move
1118 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1119 vtrue, vfalse, GET_MODE (x),
1120 (code == LTU || code == GEU
1121 || code == LEU || code == GTU));
1122 #else
1123 /* We'll never get here, as noce_process_if_block doesn't call the
1124 functions involved. Ifdef code, however, should be discouraged
1125 because it leads to typos in the code not selected. However,
1126 emit_conditional_move won't exist either. */
1127 return NULL_RTX;
1128 #endif
1129 }
1130
1131 /* Try only simple constants and registers here. More complex cases
1132 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1133 has had a go at it. */
1134
1135 static int
1136 noce_try_cmove (struct noce_if_info *if_info)
1137 {
1138 enum rtx_code code;
1139 rtx target, seq;
1140
1141 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1142 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1143 {
1144 start_sequence ();
1145
1146 code = GET_CODE (if_info->cond);
1147 target = noce_emit_cmove (if_info, if_info->x, code,
1148 XEXP (if_info->cond, 0),
1149 XEXP (if_info->cond, 1),
1150 if_info->a, if_info->b);
1151
1152 if (target)
1153 {
1154 if (target != if_info->x)
1155 noce_emit_move_insn (if_info->x, target);
1156
1157 seq = end_ifcvt_sequence (if_info);
1158 if (!seq)
1159 return FALSE;
1160
1161 emit_insn_before_setloc (seq, if_info->jump,
1162 INSN_LOCATOR (if_info->insn_a));
1163 return TRUE;
1164 }
1165 else
1166 {
1167 end_sequence ();
1168 return FALSE;
1169 }
1170 }
1171
1172 return FALSE;
1173 }
1174
1175 /* Try more complex cases involving conditional_move. */
1176
1177 static int
1178 noce_try_cmove_arith (struct noce_if_info *if_info)
1179 {
1180 rtx a = if_info->a;
1181 rtx b = if_info->b;
1182 rtx x = if_info->x;
1183 rtx insn_a, insn_b;
1184 rtx tmp, target;
1185 int is_mem = 0;
1186 enum rtx_code code;
1187
1188 /* A conditional move from two memory sources is equivalent to a
1189 conditional on their addresses followed by a load. Don't do this
1190 early because it'll screw alias analysis. Note that we've
1191 already checked for no side effects. */
1192 if (! no_new_pseudos && cse_not_expected
1193 && GET_CODE (a) == MEM && GET_CODE (b) == MEM
1194 && BRANCH_COST >= 5)
1195 {
1196 a = XEXP (a, 0);
1197 b = XEXP (b, 0);
1198 x = gen_reg_rtx (Pmode);
1199 is_mem = 1;
1200 }
1201
1202 /* ??? We could handle this if we knew that a load from A or B could
1203 not fault. This is also true if we've already loaded
1204 from the address along the path from ENTRY. */
1205 else if (may_trap_p (a) || may_trap_p (b))
1206 return FALSE;
1207
1208 /* if (test) x = a + b; else x = c - d;
1209 => y = a + b;
1210 x = c - d;
1211 if (test)
1212 x = y;
1213 */
1214
1215 code = GET_CODE (if_info->cond);
1216 insn_a = if_info->insn_a;
1217 insn_b = if_info->insn_b;
1218
1219 /* Possibly rearrange operands to make things come out more natural. */
1220 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1221 {
1222 int reversep = 0;
1223 if (rtx_equal_p (b, x))
1224 reversep = 1;
1225 else if (general_operand (b, GET_MODE (b)))
1226 reversep = 1;
1227
1228 if (reversep)
1229 {
1230 code = reversed_comparison_code (if_info->cond, if_info->jump);
1231 tmp = a, a = b, b = tmp;
1232 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1233 }
1234 }
1235
1236 start_sequence ();
1237
1238 /* If either operand is complex, load it into a register first.
1239 The best way to do this is to copy the original insn. In this
1240 way we preserve any clobbers etc that the insn may have had.
1241 This is of course not possible in the IS_MEM case. */
1242 if (! general_operand (a, GET_MODE (a)))
1243 {
1244 rtx set;
1245
1246 if (no_new_pseudos)
1247 goto end_seq_and_fail;
1248
1249 if (is_mem)
1250 {
1251 tmp = gen_reg_rtx (GET_MODE (a));
1252 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1253 }
1254 else if (! insn_a)
1255 goto end_seq_and_fail;
1256 else
1257 {
1258 a = gen_reg_rtx (GET_MODE (a));
1259 tmp = copy_rtx (insn_a);
1260 set = single_set (tmp);
1261 SET_DEST (set) = a;
1262 tmp = emit_insn (PATTERN (tmp));
1263 }
1264 if (recog_memoized (tmp) < 0)
1265 goto end_seq_and_fail;
1266 }
1267 if (! general_operand (b, GET_MODE (b)))
1268 {
1269 rtx set;
1270
1271 if (no_new_pseudos)
1272 goto end_seq_and_fail;
1273
1274 if (is_mem)
1275 {
1276 tmp = gen_reg_rtx (GET_MODE (b));
1277 tmp = emit_insn (gen_rtx_SET (VOIDmode,
1278 tmp,
1279 b));
1280 }
1281 else if (! insn_b)
1282 goto end_seq_and_fail;
1283 else
1284 {
1285 b = gen_reg_rtx (GET_MODE (b));
1286 tmp = copy_rtx (insn_b);
1287 set = single_set (tmp);
1288 SET_DEST (set) = b;
1289 tmp = emit_insn (PATTERN (tmp));
1290 }
1291 if (recog_memoized (tmp) < 0)
1292 goto end_seq_and_fail;
1293 }
1294
1295 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1296 XEXP (if_info->cond, 1), a, b);
1297
1298 if (! target)
1299 goto end_seq_and_fail;
1300
1301 /* If we're handling a memory for above, emit the load now. */
1302 if (is_mem)
1303 {
1304 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1305
1306 /* Copy over flags as appropriate. */
1307 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1308 MEM_VOLATILE_P (tmp) = 1;
1309 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1310 MEM_IN_STRUCT_P (tmp) = 1;
1311 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1312 MEM_SCALAR_P (tmp) = 1;
1313 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1314 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1315 set_mem_align (tmp,
1316 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1317
1318 noce_emit_move_insn (if_info->x, tmp);
1319 }
1320 else if (target != x)
1321 noce_emit_move_insn (x, target);
1322
1323 tmp = end_ifcvt_sequence (if_info);
1324 if (!tmp)
1325 return FALSE;
1326
1327 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1328 return TRUE;
1329
1330 end_seq_and_fail:
1331 end_sequence ();
1332 return FALSE;
1333 }
1334
1335 /* For most cases, the simplified condition we found is the best
1336 choice, but this is not the case for the min/max/abs transforms.
1337 For these we wish to know that it is A or B in the condition. */
1338
1339 static rtx
1340 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1341 rtx *earliest)
1342 {
1343 rtx cond, set, insn;
1344 int reverse;
1345
1346 /* If target is already mentioned in the known condition, return it. */
1347 if (reg_mentioned_p (target, if_info->cond))
1348 {
1349 *earliest = if_info->cond_earliest;
1350 return if_info->cond;
1351 }
1352
1353 set = pc_set (if_info->jump);
1354 cond = XEXP (SET_SRC (set), 0);
1355 reverse
1356 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1357 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1358
1359 /* If we're looking for a constant, try to make the conditional
1360 have that constant in it. There are two reasons why it may
1361 not have the constant we want:
1362
1363 1. GCC may have needed to put the constant in a register, because
1364 the target can't compare directly against that constant. For
1365 this case, we look for a SET immediately before the comparison
1366 that puts a constant in that register.
1367
1368 2. GCC may have canonicalized the conditional, for example
1369 replacing "if x < 4" with "if x <= 3". We can undo that (or
1370 make equivalent types of changes) to get the constants we need
1371 if they're off by one in the right direction. */
1372
1373 if (GET_CODE (target) == CONST_INT)
1374 {
1375 enum rtx_code code = GET_CODE (if_info->cond);
1376 rtx op_a = XEXP (if_info->cond, 0);
1377 rtx op_b = XEXP (if_info->cond, 1);
1378 rtx prev_insn;
1379
1380 /* First, look to see if we put a constant in a register. */
1381 prev_insn = PREV_INSN (if_info->cond_earliest);
1382 if (prev_insn
1383 && INSN_P (prev_insn)
1384 && GET_CODE (PATTERN (prev_insn)) == SET)
1385 {
1386 rtx src = find_reg_equal_equiv_note (prev_insn);
1387 if (!src)
1388 src = SET_SRC (PATTERN (prev_insn));
1389 if (GET_CODE (src) == CONST_INT)
1390 {
1391 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1392 op_a = src;
1393 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1394 op_b = src;
1395
1396 if (GET_CODE (op_a) == CONST_INT)
1397 {
1398 rtx tmp = op_a;
1399 op_a = op_b;
1400 op_b = tmp;
1401 code = swap_condition (code);
1402 }
1403 }
1404 }
1405
1406 /* Now, look to see if we can get the right constant by
1407 adjusting the conditional. */
1408 if (GET_CODE (op_b) == CONST_INT)
1409 {
1410 HOST_WIDE_INT desired_val = INTVAL (target);
1411 HOST_WIDE_INT actual_val = INTVAL (op_b);
1412
1413 switch (code)
1414 {
1415 case LT:
1416 if (actual_val == desired_val + 1)
1417 {
1418 code = LE;
1419 op_b = GEN_INT (desired_val);
1420 }
1421 break;
1422 case LE:
1423 if (actual_val == desired_val - 1)
1424 {
1425 code = LT;
1426 op_b = GEN_INT (desired_val);
1427 }
1428 break;
1429 case GT:
1430 if (actual_val == desired_val - 1)
1431 {
1432 code = GE;
1433 op_b = GEN_INT (desired_val);
1434 }
1435 break;
1436 case GE:
1437 if (actual_val == desired_val + 1)
1438 {
1439 code = GT;
1440 op_b = GEN_INT (desired_val);
1441 }
1442 break;
1443 default:
1444 break;
1445 }
1446 }
1447
1448 /* If we made any changes, generate a new conditional that is
1449 equivalent to what we started with, but has the right
1450 constants in it. */
1451 if (code != GET_CODE (if_info->cond)
1452 || op_a != XEXP (if_info->cond, 0)
1453 || op_b != XEXP (if_info->cond, 1))
1454 {
1455 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1456 *earliest = if_info->cond_earliest;
1457 return cond;
1458 }
1459 }
1460
1461 cond = canonicalize_condition (if_info->jump, cond, reverse,
1462 earliest, target, false);
1463 if (! cond || ! reg_mentioned_p (target, cond))
1464 return NULL;
1465
1466 /* We almost certainly searched back to a different place.
1467 Need to re-verify correct lifetimes. */
1468
1469 /* X may not be mentioned in the range (cond_earliest, jump]. */
1470 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1471 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1472 return NULL;
1473
1474 /* A and B may not be modified in the range [cond_earliest, jump). */
1475 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1476 if (INSN_P (insn)
1477 && (modified_in_p (if_info->a, insn)
1478 || modified_in_p (if_info->b, insn)))
1479 return NULL;
1480
1481 return cond;
1482 }
1483
1484 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1485
1486 static int
1487 noce_try_minmax (struct noce_if_info *if_info)
1488 {
1489 rtx cond, earliest, target, seq;
1490 enum rtx_code code, op;
1491 int unsignedp;
1492
1493 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1494 if (no_new_pseudos)
1495 return FALSE;
1496
1497 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1498 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1499 to get the target to tell us... */
1500 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1501 || HONOR_NANS (GET_MODE (if_info->x)))
1502 return FALSE;
1503
1504 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1505 if (!cond)
1506 return FALSE;
1507
1508 /* Verify the condition is of the form we expect, and canonicalize
1509 the comparison code. */
1510 code = GET_CODE (cond);
1511 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1512 {
1513 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1514 return FALSE;
1515 }
1516 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1517 {
1518 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1519 return FALSE;
1520 code = swap_condition (code);
1521 }
1522 else
1523 return FALSE;
1524
1525 /* Determine what sort of operation this is. Note that the code is for
1526 a taken branch, so the code->operation mapping appears backwards. */
1527 switch (code)
1528 {
1529 case LT:
1530 case LE:
1531 case UNLT:
1532 case UNLE:
1533 op = SMAX;
1534 unsignedp = 0;
1535 break;
1536 case GT:
1537 case GE:
1538 case UNGT:
1539 case UNGE:
1540 op = SMIN;
1541 unsignedp = 0;
1542 break;
1543 case LTU:
1544 case LEU:
1545 op = UMAX;
1546 unsignedp = 1;
1547 break;
1548 case GTU:
1549 case GEU:
1550 op = UMIN;
1551 unsignedp = 1;
1552 break;
1553 default:
1554 return FALSE;
1555 }
1556
1557 start_sequence ();
1558
1559 target = expand_simple_binop (GET_MODE (if_info->x), op,
1560 if_info->a, if_info->b,
1561 if_info->x, unsignedp, OPTAB_WIDEN);
1562 if (! target)
1563 {
1564 end_sequence ();
1565 return FALSE;
1566 }
1567 if (target != if_info->x)
1568 noce_emit_move_insn (if_info->x, target);
1569
1570 seq = end_ifcvt_sequence (if_info);
1571 if (!seq)
1572 return FALSE;
1573
1574 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1575 if_info->cond = cond;
1576 if_info->cond_earliest = earliest;
1577
1578 return TRUE;
1579 }
1580
1581 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1582
1583 static int
1584 noce_try_abs (struct noce_if_info *if_info)
1585 {
1586 rtx cond, earliest, target, seq, a, b, c;
1587 int negate;
1588
1589 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1590 if (no_new_pseudos)
1591 return FALSE;
1592
1593 /* Recognize A and B as constituting an ABS or NABS. */
1594 a = if_info->a;
1595 b = if_info->b;
1596 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1597 negate = 0;
1598 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1599 {
1600 c = a; a = b; b = c;
1601 negate = 1;
1602 }
1603 else
1604 return FALSE;
1605
1606 cond = noce_get_alt_condition (if_info, b, &earliest);
1607 if (!cond)
1608 return FALSE;
1609
1610 /* Verify the condition is of the form we expect. */
1611 if (rtx_equal_p (XEXP (cond, 0), b))
1612 c = XEXP (cond, 1);
1613 else if (rtx_equal_p (XEXP (cond, 1), b))
1614 c = XEXP (cond, 0);
1615 else
1616 return FALSE;
1617
1618 /* Verify that C is zero. Search backward through the block for
1619 a REG_EQUAL note if necessary. */
1620 if (REG_P (c))
1621 {
1622 rtx insn, note = NULL;
1623 for (insn = earliest;
1624 insn != BB_HEAD (if_info->test_bb);
1625 insn = PREV_INSN (insn))
1626 if (INSN_P (insn)
1627 && ((note = find_reg_note (insn, REG_EQUAL, c))
1628 || (note = find_reg_note (insn, REG_EQUIV, c))))
1629 break;
1630 if (! note)
1631 return FALSE;
1632 c = XEXP (note, 0);
1633 }
1634 if (GET_CODE (c) == MEM
1635 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1636 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1637 c = get_pool_constant (XEXP (c, 0));
1638
1639 /* Work around funny ideas get_condition has wrt canonicalization.
1640 Note that these rtx constants are known to be CONST_INT, and
1641 therefore imply integer comparisons. */
1642 if (c == constm1_rtx && GET_CODE (cond) == GT)
1643 ;
1644 else if (c == const1_rtx && GET_CODE (cond) == LT)
1645 ;
1646 else if (c != CONST0_RTX (GET_MODE (b)))
1647 return FALSE;
1648
1649 /* Determine what sort of operation this is. */
1650 switch (GET_CODE (cond))
1651 {
1652 case LT:
1653 case LE:
1654 case UNLT:
1655 case UNLE:
1656 negate = !negate;
1657 break;
1658 case GT:
1659 case GE:
1660 case UNGT:
1661 case UNGE:
1662 break;
1663 default:
1664 return FALSE;
1665 }
1666
1667 start_sequence ();
1668
1669 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1670
1671 /* ??? It's a quandary whether cmove would be better here, especially
1672 for integers. Perhaps combine will clean things up. */
1673 if (target && negate)
1674 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1675
1676 if (! target)
1677 {
1678 end_sequence ();
1679 return FALSE;
1680 }
1681
1682 if (target != if_info->x)
1683 noce_emit_move_insn (if_info->x, target);
1684
1685 seq = end_ifcvt_sequence (if_info);
1686 if (!seq)
1687 return FALSE;
1688
1689 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1690 if_info->cond = cond;
1691 if_info->cond_earliest = earliest;
1692
1693 return TRUE;
1694 }
1695
1696 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1697
1698 static int
1699 noce_try_sign_mask (struct noce_if_info *if_info)
1700 {
1701 rtx cond, t, m, c, seq;
1702 enum machine_mode mode;
1703 enum rtx_code code;
1704
1705 if (no_new_pseudos)
1706 return FALSE;
1707
1708 cond = if_info->cond;
1709 code = GET_CODE (cond);
1710 m = XEXP (cond, 0);
1711 c = XEXP (cond, 1);
1712
1713 t = NULL_RTX;
1714 if (if_info->a == const0_rtx)
1715 {
1716 if ((code == LT && c == const0_rtx)
1717 || (code == LE && c == constm1_rtx))
1718 t = if_info->b;
1719 }
1720 else if (if_info->b == const0_rtx)
1721 {
1722 if ((code == GE && c == const0_rtx)
1723 || (code == GT && c == constm1_rtx))
1724 t = if_info->a;
1725 }
1726
1727 if (! t || side_effects_p (t))
1728 return FALSE;
1729
1730 /* We currently don't handle different modes. */
1731 mode = GET_MODE (t);
1732 if (GET_MODE (m) != mode)
1733 return FALSE;
1734
1735 /* This is only profitable if T is cheap. */
1736 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2))
1737 return FALSE;
1738
1739 start_sequence ();
1740 c = gen_int_mode (GET_MODE_BITSIZE (mode) - 1, mode);
1741 m = expand_binop (mode, ashr_optab, m, c, NULL_RTX, 0, OPTAB_DIRECT);
1742 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1743 : NULL_RTX;
1744
1745 if (!t)
1746 {
1747 end_sequence ();
1748 return FALSE;
1749 }
1750
1751 noce_emit_move_insn (if_info->x, t);
1752
1753 seq = end_ifcvt_sequence (if_info);
1754 if (!seq)
1755 return FALSE;
1756
1757 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1758 return TRUE;
1759 }
1760
1761
1762 /* Similar to get_condition, only the resulting condition must be
1763 valid at JUMP, instead of at EARLIEST. */
1764
1765 static rtx
1766 noce_get_condition (rtx jump, rtx *earliest)
1767 {
1768 rtx cond, set, tmp, insn;
1769 bool reverse;
1770
1771 if (! any_condjump_p (jump))
1772 return NULL_RTX;
1773
1774 set = pc_set (jump);
1775
1776 /* If this branches to JUMP_LABEL when the condition is false,
1777 reverse the condition. */
1778 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1779 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
1780
1781 /* If the condition variable is a register and is MODE_INT, accept it. */
1782
1783 cond = XEXP (SET_SRC (set), 0);
1784 tmp = XEXP (cond, 0);
1785 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
1786 {
1787 *earliest = jump;
1788
1789 if (reverse)
1790 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1791 GET_MODE (cond), tmp, XEXP (cond, 1));
1792 return cond;
1793 }
1794
1795 /* Otherwise, fall back on canonicalize_condition to do the dirty
1796 work of manipulating MODE_CC values and COMPARE rtx codes. */
1797
1798 tmp = canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
1799 false);
1800 if (!tmp)
1801 return NULL_RTX;
1802
1803 /* We are going to insert code before JUMP, not before EARLIEST.
1804 We must therefore be certain that the given condition is valid
1805 at JUMP by virtue of not having been modified since. */
1806 for (insn = *earliest; insn != jump; insn = NEXT_INSN (insn))
1807 if (INSN_P (insn) && modified_in_p (tmp, insn))
1808 break;
1809 if (insn == jump)
1810 return tmp;
1811
1812 /* The condition was modified. See if we can get a partial result
1813 that doesn't follow all the reversals. Perhaps combine can fold
1814 them together later. */
1815 tmp = XEXP (tmp, 0);
1816 if (!REG_P (tmp) || GET_MODE_CLASS (GET_MODE (tmp)) != MODE_INT)
1817 return NULL_RTX;
1818 tmp = canonicalize_condition (jump, cond, reverse, earliest, tmp,
1819 false);
1820 if (!tmp)
1821 return NULL_RTX;
1822
1823 /* For sanity's sake, re-validate the new result. */
1824 for (insn = *earliest; insn != jump; insn = NEXT_INSN (insn))
1825 if (INSN_P (insn) && modified_in_p (tmp, insn))
1826 return NULL_RTX;
1827
1828 return tmp;
1829 }
1830
1831 /* Return true if OP is ok for if-then-else processing. */
1832
1833 static int
1834 noce_operand_ok (rtx op)
1835 {
1836 /* We special-case memories, so handle any of them with
1837 no address side effects. */
1838 if (GET_CODE (op) == MEM)
1839 return ! side_effects_p (XEXP (op, 0));
1840
1841 if (side_effects_p (op))
1842 return FALSE;
1843
1844 return ! may_trap_p (op);
1845 }
1846
1847 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1848 without using conditional execution. Return TRUE if we were
1849 successful at converting the block. */
1850
1851 static int
1852 noce_process_if_block (struct ce_if_block * ce_info)
1853 {
1854 basic_block test_bb = ce_info->test_bb; /* test block */
1855 basic_block then_bb = ce_info->then_bb; /* THEN */
1856 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
1857 struct noce_if_info if_info;
1858 rtx insn_a, insn_b;
1859 rtx set_a, set_b;
1860 rtx orig_x, x, a, b;
1861 rtx jump, cond;
1862
1863 /* We're looking for patterns of the form
1864
1865 (1) if (...) x = a; else x = b;
1866 (2) x = b; if (...) x = a;
1867 (3) if (...) x = a; // as if with an initial x = x.
1868
1869 The later patterns require jumps to be more expensive.
1870
1871 ??? For future expansion, look for multiple X in such patterns. */
1872
1873 /* If test is comprised of && or || elements, don't handle it unless it is
1874 the special case of && elements without an ELSE block. */
1875 if (ce_info->num_multiple_test_blocks)
1876 {
1877 if (else_bb || ! ce_info->and_and_p)
1878 return FALSE;
1879
1880 ce_info->test_bb = test_bb = ce_info->last_test_bb;
1881 ce_info->num_multiple_test_blocks = 0;
1882 ce_info->num_and_and_blocks = 0;
1883 ce_info->num_or_or_blocks = 0;
1884 }
1885
1886 /* If this is not a standard conditional jump, we can't parse it. */
1887 jump = BB_END (test_bb);
1888 cond = noce_get_condition (jump, &if_info.cond_earliest);
1889 if (! cond)
1890 return FALSE;
1891
1892 /* If the conditional jump is more than just a conditional
1893 jump, then we can not do if-conversion on this block. */
1894 if (! onlyjump_p (jump))
1895 return FALSE;
1896
1897 /* We must be comparing objects whose modes imply the size. */
1898 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1899 return FALSE;
1900
1901 /* Look for one of the potential sets. */
1902 insn_a = first_active_insn (then_bb);
1903 if (! insn_a
1904 || insn_a != last_active_insn (then_bb, FALSE)
1905 || (set_a = single_set (insn_a)) == NULL_RTX)
1906 return FALSE;
1907
1908 x = SET_DEST (set_a);
1909 a = SET_SRC (set_a);
1910
1911 /* Look for the other potential set. Make sure we've got equivalent
1912 destinations. */
1913 /* ??? This is overconservative. Storing to two different mems is
1914 as easy as conditionally computing the address. Storing to a
1915 single mem merely requires a scratch memory to use as one of the
1916 destination addresses; often the memory immediately below the
1917 stack pointer is available for this. */
1918 set_b = NULL_RTX;
1919 if (else_bb)
1920 {
1921 insn_b = first_active_insn (else_bb);
1922 if (! insn_b
1923 || insn_b != last_active_insn (else_bb, FALSE)
1924 || (set_b = single_set (insn_b)) == NULL_RTX
1925 || ! rtx_equal_p (x, SET_DEST (set_b)))
1926 return FALSE;
1927 }
1928 else
1929 {
1930 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1931 /* We're going to be moving the evaluation of B down from above
1932 COND_EARLIEST to JUMP. Make sure the relevant data is still
1933 intact. */
1934 if (! insn_b
1935 || GET_CODE (insn_b) != INSN
1936 || (set_b = single_set (insn_b)) == NULL_RTX
1937 || ! rtx_equal_p (x, SET_DEST (set_b))
1938 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
1939 || modified_between_p (SET_SRC (set_b),
1940 PREV_INSN (if_info.cond_earliest), jump)
1941 /* Likewise with X. In particular this can happen when
1942 noce_get_condition looks farther back in the instruction
1943 stream than one might expect. */
1944 || reg_overlap_mentioned_p (x, cond)
1945 || reg_overlap_mentioned_p (x, a)
1946 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
1947 insn_b = set_b = NULL_RTX;
1948 }
1949
1950 /* If x has side effects then only the if-then-else form is safe to
1951 convert. But even in that case we would need to restore any notes
1952 (such as REG_INC) at then end. That can be tricky if
1953 noce_emit_move_insn expands to more than one insn, so disable the
1954 optimization entirely for now if there are side effects. */
1955 if (side_effects_p (x))
1956 return FALSE;
1957
1958 b = (set_b ? SET_SRC (set_b) : x);
1959
1960 /* Only operate on register destinations, and even then avoid extending
1961 the lifetime of hard registers on small register class machines. */
1962 orig_x = x;
1963 if (!REG_P (x)
1964 || (SMALL_REGISTER_CLASSES
1965 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1966 {
1967 if (no_new_pseudos || GET_MODE (x) == BLKmode)
1968 return FALSE;
1969 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
1970 ? XEXP (x, 0) : x));
1971 }
1972
1973 /* Don't operate on sources that may trap or are volatile. */
1974 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
1975 return FALSE;
1976
1977 /* Set up the info block for our subroutines. */
1978 if_info.test_bb = test_bb;
1979 if_info.cond = cond;
1980 if_info.jump = jump;
1981 if_info.insn_a = insn_a;
1982 if_info.insn_b = insn_b;
1983 if_info.x = x;
1984 if_info.a = a;
1985 if_info.b = b;
1986
1987 /* Try optimizations in some approximation of a useful order. */
1988 /* ??? Should first look to see if X is live incoming at all. If it
1989 isn't, we don't need anything but an unconditional set. */
1990
1991 /* Look and see if A and B are really the same. Avoid creating silly
1992 cmove constructs that no one will fix up later. */
1993 if (rtx_equal_p (a, b))
1994 {
1995 /* If we have an INSN_B, we don't have to create any new rtl. Just
1996 move the instruction that we already have. If we don't have an
1997 INSN_B, that means that A == X, and we've got a noop move. In
1998 that case don't do anything and let the code below delete INSN_A. */
1999 if (insn_b && else_bb)
2000 {
2001 rtx note;
2002
2003 if (else_bb && insn_b == BB_END (else_bb))
2004 BB_END (else_bb) = PREV_INSN (insn_b);
2005 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2006
2007 /* If there was a REG_EQUAL note, delete it since it may have been
2008 true due to this insn being after a jump. */
2009 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2010 remove_note (insn_b, note);
2011
2012 insn_b = NULL_RTX;
2013 }
2014 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2015 x must be executed twice. */
2016 else if (insn_b && side_effects_p (orig_x))
2017 return FALSE;
2018
2019 x = orig_x;
2020 goto success;
2021 }
2022
2023 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2024 for most optimizations if writing to x may trap, i.e. it's a memory
2025 other than a static var or a stack slot. */
2026 if (! set_b
2027 && GET_CODE (orig_x) == MEM
2028 && ! MEM_NOTRAP_P (orig_x)
2029 && rtx_addr_can_trap_p (XEXP (orig_x, 0)))
2030 {
2031 if (HAVE_conditional_move)
2032 {
2033 if (noce_try_cmove (&if_info))
2034 goto success;
2035 if (! HAVE_conditional_execution
2036 && noce_try_cmove_arith (&if_info))
2037 goto success;
2038 }
2039 return FALSE;
2040 }
2041
2042 if (noce_try_move (&if_info))
2043 goto success;
2044 if (noce_try_store_flag (&if_info))
2045 goto success;
2046 if (noce_try_minmax (&if_info))
2047 goto success;
2048 if (noce_try_abs (&if_info))
2049 goto success;
2050 if (HAVE_conditional_move
2051 && noce_try_cmove (&if_info))
2052 goto success;
2053 if (! HAVE_conditional_execution)
2054 {
2055 if (noce_try_store_flag_constants (&if_info))
2056 goto success;
2057 if (noce_try_addcc (&if_info))
2058 goto success;
2059 if (noce_try_store_flag_mask (&if_info))
2060 goto success;
2061 if (HAVE_conditional_move
2062 && noce_try_cmove_arith (&if_info))
2063 goto success;
2064 if (noce_try_sign_mask (&if_info))
2065 goto success;
2066 }
2067
2068 return FALSE;
2069
2070 success:
2071 /* The original sets may now be killed. */
2072 delete_insn (insn_a);
2073
2074 /* Several special cases here: First, we may have reused insn_b above,
2075 in which case insn_b is now NULL. Second, we want to delete insn_b
2076 if it came from the ELSE block, because follows the now correct
2077 write that appears in the TEST block. However, if we got insn_b from
2078 the TEST block, it may in fact be loading data needed for the comparison.
2079 We'll let life_analysis remove the insn if it's really dead. */
2080 if (insn_b && else_bb)
2081 delete_insn (insn_b);
2082
2083 /* The new insns will have been inserted immediately before the jump. We
2084 should be able to remove the jump with impunity, but the condition itself
2085 may have been modified by gcse to be shared across basic blocks. */
2086 delete_insn (jump);
2087
2088 /* If we used a temporary, fix it up now. */
2089 if (orig_x != x)
2090 {
2091 start_sequence ();
2092 noce_emit_move_insn (orig_x, x);
2093 insn_b = get_insns ();
2094 set_used_flags (orig_x);
2095 unshare_all_rtl_in_chain (insn_b);
2096 end_sequence ();
2097
2098 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2099 }
2100
2101 /* Merge the blocks! */
2102 merge_if_block (ce_info);
2103
2104 return TRUE;
2105 }
2106 \f
2107 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2108 straight line code. Return true if successful. */
2109
2110 static int
2111 process_if_block (struct ce_if_block * ce_info)
2112 {
2113 if (! reload_completed
2114 && noce_process_if_block (ce_info))
2115 return TRUE;
2116
2117 if (HAVE_conditional_execution && reload_completed)
2118 {
2119 /* If we have && and || tests, try to first handle combining the && and
2120 || tests into the conditional code, and if that fails, go back and
2121 handle it without the && and ||, which at present handles the && case
2122 if there was no ELSE block. */
2123 if (cond_exec_process_if_block (ce_info, TRUE))
2124 return TRUE;
2125
2126 if (ce_info->num_multiple_test_blocks)
2127 {
2128 cancel_changes (0);
2129
2130 if (cond_exec_process_if_block (ce_info, FALSE))
2131 return TRUE;
2132 }
2133 }
2134
2135 return FALSE;
2136 }
2137
2138 /* Merge the blocks and mark for local life update. */
2139
2140 static void
2141 merge_if_block (struct ce_if_block * ce_info)
2142 {
2143 basic_block test_bb = ce_info->test_bb; /* last test block */
2144 basic_block then_bb = ce_info->then_bb; /* THEN */
2145 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2146 basic_block join_bb = ce_info->join_bb; /* join block */
2147 basic_block combo_bb;
2148
2149 /* All block merging is done into the lower block numbers. */
2150
2151 combo_bb = test_bb;
2152
2153 /* Merge any basic blocks to handle && and || subtests. Each of
2154 the blocks are on the fallthru path from the predecessor block. */
2155 if (ce_info->num_multiple_test_blocks > 0)
2156 {
2157 basic_block bb = test_bb;
2158 basic_block last_test_bb = ce_info->last_test_bb;
2159 basic_block fallthru = block_fallthru (bb);
2160
2161 do
2162 {
2163 bb = fallthru;
2164 fallthru = block_fallthru (bb);
2165 merge_blocks (combo_bb, bb);
2166 num_true_changes++;
2167 }
2168 while (bb != last_test_bb);
2169 }
2170
2171 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2172 label, but it might if there were || tests. That label's count should be
2173 zero, and it normally should be removed. */
2174
2175 if (then_bb)
2176 {
2177 if (combo_bb->global_live_at_end)
2178 COPY_REG_SET (combo_bb->global_live_at_end,
2179 then_bb->global_live_at_end);
2180 merge_blocks (combo_bb, then_bb);
2181 num_true_changes++;
2182 }
2183
2184 /* The ELSE block, if it existed, had a label. That label count
2185 will almost always be zero, but odd things can happen when labels
2186 get their addresses taken. */
2187 if (else_bb)
2188 {
2189 merge_blocks (combo_bb, else_bb);
2190 num_true_changes++;
2191 }
2192
2193 /* If there was no join block reported, that means it was not adjacent
2194 to the others, and so we cannot merge them. */
2195
2196 if (! join_bb)
2197 {
2198 rtx last = BB_END (combo_bb);
2199
2200 /* The outgoing edge for the current COMBO block should already
2201 be correct. Verify this. */
2202 if (combo_bb->succ == NULL_EDGE)
2203 {
2204 if (find_reg_note (last, REG_NORETURN, NULL))
2205 ;
2206 else if (GET_CODE (last) == INSN
2207 && GET_CODE (PATTERN (last)) == TRAP_IF
2208 && TRAP_CONDITION (PATTERN (last)) == const_true_rtx)
2209 ;
2210 else
2211 abort ();
2212 }
2213
2214 /* There should still be something at the end of the THEN or ELSE
2215 blocks taking us to our final destination. */
2216 else if (GET_CODE (last) == JUMP_INSN)
2217 ;
2218 else if (combo_bb->succ->dest == EXIT_BLOCK_PTR
2219 && GET_CODE (last) == CALL_INSN
2220 && SIBLING_CALL_P (last))
2221 ;
2222 else if ((combo_bb->succ->flags & EDGE_EH)
2223 && can_throw_internal (last))
2224 ;
2225 else
2226 abort ();
2227 }
2228
2229 /* The JOIN block may have had quite a number of other predecessors too.
2230 Since we've already merged the TEST, THEN and ELSE blocks, we should
2231 have only one remaining edge from our if-then-else diamond. If there
2232 is more than one remaining edge, it must come from elsewhere. There
2233 may be zero incoming edges if the THEN block didn't actually join
2234 back up (as with a call to abort). */
2235 else if ((join_bb->pred == NULL
2236 || join_bb->pred->pred_next == NULL)
2237 && join_bb != EXIT_BLOCK_PTR)
2238 {
2239 /* We can merge the JOIN. */
2240 if (combo_bb->global_live_at_end)
2241 COPY_REG_SET (combo_bb->global_live_at_end,
2242 join_bb->global_live_at_end);
2243
2244 merge_blocks (combo_bb, join_bb);
2245 num_true_changes++;
2246 }
2247 else
2248 {
2249 /* We cannot merge the JOIN. */
2250
2251 /* The outgoing edge for the current COMBO block should already
2252 be correct. Verify this. */
2253 if (combo_bb->succ->succ_next != NULL_EDGE
2254 || combo_bb->succ->dest != join_bb)
2255 abort ();
2256
2257 /* Remove the jump and cruft from the end of the COMBO block. */
2258 if (join_bb != EXIT_BLOCK_PTR)
2259 tidy_fallthru_edge (combo_bb->succ);
2260 }
2261
2262 num_updated_if_blocks++;
2263 }
2264 \f
2265 /* Find a block ending in a simple IF condition and try to transform it
2266 in some way. When converting a multi-block condition, put the new code
2267 in the first such block and delete the rest. Return a pointer to this
2268 first block if some transformation was done. Return NULL otherwise. */
2269
2270 static basic_block
2271 find_if_header (basic_block test_bb, int pass)
2272 {
2273 ce_if_block_t ce_info;
2274 edge then_edge;
2275 edge else_edge;
2276
2277 /* The kind of block we're looking for has exactly two successors. */
2278 if ((then_edge = test_bb->succ) == NULL_EDGE
2279 || (else_edge = then_edge->succ_next) == NULL_EDGE
2280 || else_edge->succ_next != NULL_EDGE)
2281 return NULL;
2282
2283 /* Neither edge should be abnormal. */
2284 if ((then_edge->flags & EDGE_COMPLEX)
2285 || (else_edge->flags & EDGE_COMPLEX))
2286 return NULL;
2287
2288 /* Nor exit the loop. */
2289 if ((then_edge->flags & EDGE_LOOP_EXIT)
2290 || (else_edge->flags & EDGE_LOOP_EXIT))
2291 return NULL;
2292
2293 /* The THEN edge is canonically the one that falls through. */
2294 if (then_edge->flags & EDGE_FALLTHRU)
2295 ;
2296 else if (else_edge->flags & EDGE_FALLTHRU)
2297 {
2298 edge e = else_edge;
2299 else_edge = then_edge;
2300 then_edge = e;
2301 }
2302 else
2303 /* Otherwise this must be a multiway branch of some sort. */
2304 return NULL;
2305
2306 memset (&ce_info, '\0', sizeof (ce_info));
2307 ce_info.test_bb = test_bb;
2308 ce_info.then_bb = then_edge->dest;
2309 ce_info.else_bb = else_edge->dest;
2310 ce_info.pass = pass;
2311
2312 #ifdef IFCVT_INIT_EXTRA_FIELDS
2313 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2314 #endif
2315
2316 if (find_if_block (&ce_info))
2317 goto success;
2318
2319 if (HAVE_trap && HAVE_conditional_trap
2320 && find_cond_trap (test_bb, then_edge, else_edge))
2321 goto success;
2322
2323 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2324 && (! HAVE_conditional_execution || reload_completed))
2325 {
2326 if (find_if_case_1 (test_bb, then_edge, else_edge))
2327 goto success;
2328 if (find_if_case_2 (test_bb, then_edge, else_edge))
2329 goto success;
2330 }
2331
2332 return NULL;
2333
2334 success:
2335 if (dump_file)
2336 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2337 return ce_info.test_bb;
2338 }
2339
2340 /* Return true if a block has two edges, one of which falls through to the next
2341 block, and the other jumps to a specific block, so that we can tell if the
2342 block is part of an && test or an || test. Returns either -1 or the number
2343 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2344
2345 static int
2346 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2347 {
2348 edge cur_edge;
2349 int fallthru_p = FALSE;
2350 int jump_p = FALSE;
2351 rtx insn;
2352 rtx end;
2353 int n_insns = 0;
2354
2355 if (!cur_bb || !target_bb)
2356 return -1;
2357
2358 /* If no edges, obviously it doesn't jump or fallthru. */
2359 if (cur_bb->succ == NULL_EDGE)
2360 return FALSE;
2361
2362 for (cur_edge = cur_bb->succ;
2363 cur_edge != NULL_EDGE;
2364 cur_edge = cur_edge->succ_next)
2365 {
2366 if (cur_edge->flags & EDGE_COMPLEX)
2367 /* Anything complex isn't what we want. */
2368 return -1;
2369
2370 else if (cur_edge->flags & EDGE_FALLTHRU)
2371 fallthru_p = TRUE;
2372
2373 else if (cur_edge->dest == target_bb)
2374 jump_p = TRUE;
2375
2376 else
2377 return -1;
2378 }
2379
2380 if ((jump_p & fallthru_p) == 0)
2381 return -1;
2382
2383 /* Don't allow calls in the block, since this is used to group && and ||
2384 together for conditional execution support. ??? we should support
2385 conditional execution support across calls for IA-64 some day, but
2386 for now it makes the code simpler. */
2387 end = BB_END (cur_bb);
2388 insn = BB_HEAD (cur_bb);
2389
2390 while (insn != NULL_RTX)
2391 {
2392 if (GET_CODE (insn) == CALL_INSN)
2393 return -1;
2394
2395 if (INSN_P (insn)
2396 && GET_CODE (insn) != JUMP_INSN
2397 && GET_CODE (PATTERN (insn)) != USE
2398 && GET_CODE (PATTERN (insn)) != CLOBBER)
2399 n_insns++;
2400
2401 if (insn == end)
2402 break;
2403
2404 insn = NEXT_INSN (insn);
2405 }
2406
2407 return n_insns;
2408 }
2409
2410 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2411 block. If so, we'll try to convert the insns to not require the branch.
2412 Return TRUE if we were successful at converting the block. */
2413
2414 static int
2415 find_if_block (struct ce_if_block * ce_info)
2416 {
2417 basic_block test_bb = ce_info->test_bb;
2418 basic_block then_bb = ce_info->then_bb;
2419 basic_block else_bb = ce_info->else_bb;
2420 basic_block join_bb = NULL_BLOCK;
2421 edge then_succ = then_bb->succ;
2422 edge else_succ = else_bb->succ;
2423 int then_predecessors;
2424 int else_predecessors;
2425 edge cur_edge;
2426 basic_block next;
2427
2428 ce_info->last_test_bb = test_bb;
2429
2430 /* Discover if any fall through predecessors of the current test basic block
2431 were && tests (which jump to the else block) or || tests (which jump to
2432 the then block). */
2433 if (HAVE_conditional_execution && reload_completed
2434 && test_bb->pred != NULL_EDGE
2435 && test_bb->pred->pred_next == NULL_EDGE
2436 && test_bb->pred->flags == EDGE_FALLTHRU)
2437 {
2438 basic_block bb = test_bb->pred->src;
2439 basic_block target_bb;
2440 int max_insns = MAX_CONDITIONAL_EXECUTE;
2441 int n_insns;
2442
2443 /* Determine if the preceding block is an && or || block. */
2444 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2445 {
2446 ce_info->and_and_p = TRUE;
2447 target_bb = else_bb;
2448 }
2449 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2450 {
2451 ce_info->and_and_p = FALSE;
2452 target_bb = then_bb;
2453 }
2454 else
2455 target_bb = NULL_BLOCK;
2456
2457 if (target_bb && n_insns <= max_insns)
2458 {
2459 int total_insns = 0;
2460 int blocks = 0;
2461
2462 ce_info->last_test_bb = test_bb;
2463
2464 /* Found at least one && or || block, look for more. */
2465 do
2466 {
2467 ce_info->test_bb = test_bb = bb;
2468 total_insns += n_insns;
2469 blocks++;
2470
2471 if (bb->pred == NULL_EDGE || bb->pred->pred_next != NULL_EDGE)
2472 break;
2473
2474 bb = bb->pred->src;
2475 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2476 }
2477 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2478
2479 ce_info->num_multiple_test_blocks = blocks;
2480 ce_info->num_multiple_test_insns = total_insns;
2481
2482 if (ce_info->and_and_p)
2483 ce_info->num_and_and_blocks = blocks;
2484 else
2485 ce_info->num_or_or_blocks = blocks;
2486 }
2487 }
2488
2489 /* Count the number of edges the THEN and ELSE blocks have. */
2490 then_predecessors = 0;
2491 for (cur_edge = then_bb->pred;
2492 cur_edge != NULL_EDGE;
2493 cur_edge = cur_edge->pred_next)
2494 {
2495 then_predecessors++;
2496 if (cur_edge->flags & EDGE_COMPLEX)
2497 return FALSE;
2498 }
2499
2500 else_predecessors = 0;
2501 for (cur_edge = else_bb->pred;
2502 cur_edge != NULL_EDGE;
2503 cur_edge = cur_edge->pred_next)
2504 {
2505 else_predecessors++;
2506 if (cur_edge->flags & EDGE_COMPLEX)
2507 return FALSE;
2508 }
2509
2510 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2511 other than any || blocks which jump to the THEN block. */
2512 if ((then_predecessors - ce_info->num_or_or_blocks) != 1)
2513 return FALSE;
2514
2515 /* The THEN block of an IF-THEN combo must have zero or one successors. */
2516 if (then_succ != NULL_EDGE
2517 && (then_succ->succ_next != NULL_EDGE
2518 || (then_succ->flags & EDGE_COMPLEX)
2519 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2520 return FALSE;
2521
2522 /* If the THEN block has no successors, conditional execution can still
2523 make a conditional call. Don't do this unless the ELSE block has
2524 only one incoming edge -- the CFG manipulation is too ugly otherwise.
2525 Check for the last insn of the THEN block being an indirect jump, which
2526 is listed as not having any successors, but confuses the rest of the CE
2527 code processing. ??? we should fix this in the future. */
2528 if (then_succ == NULL)
2529 {
2530 if (else_bb->pred->pred_next == NULL_EDGE)
2531 {
2532 rtx last_insn = BB_END (then_bb);
2533
2534 while (last_insn
2535 && GET_CODE (last_insn) == NOTE
2536 && last_insn != BB_HEAD (then_bb))
2537 last_insn = PREV_INSN (last_insn);
2538
2539 if (last_insn
2540 && GET_CODE (last_insn) == JUMP_INSN
2541 && ! simplejump_p (last_insn))
2542 return FALSE;
2543
2544 join_bb = else_bb;
2545 else_bb = NULL_BLOCK;
2546 }
2547 else
2548 return FALSE;
2549 }
2550
2551 /* If the THEN block's successor is the other edge out of the TEST block,
2552 then we have an IF-THEN combo without an ELSE. */
2553 else if (then_succ->dest == else_bb)
2554 {
2555 join_bb = else_bb;
2556 else_bb = NULL_BLOCK;
2557 }
2558
2559 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2560 has exactly one predecessor and one successor, and the outgoing edge
2561 is not complex, then we have an IF-THEN-ELSE combo. */
2562 else if (else_succ != NULL_EDGE
2563 && then_succ->dest == else_succ->dest
2564 && else_bb->pred->pred_next == NULL_EDGE
2565 && else_succ->succ_next == NULL_EDGE
2566 && ! (else_succ->flags & EDGE_COMPLEX)
2567 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2568 join_bb = else_succ->dest;
2569
2570 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2571 else
2572 return FALSE;
2573
2574 num_possible_if_blocks++;
2575
2576 if (dump_file)
2577 {
2578 fprintf (dump_file,
2579 "\nIF-THEN%s block found, pass %d, start block %d "
2580 "[insn %d], then %d [%d]",
2581 (else_bb) ? "-ELSE" : "",
2582 ce_info->pass,
2583 test_bb->index,
2584 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2585 then_bb->index,
2586 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2587
2588 if (else_bb)
2589 fprintf (dump_file, ", else %d [%d]",
2590 else_bb->index,
2591 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2592
2593 fprintf (dump_file, ", join %d [%d]",
2594 join_bb->index,
2595 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2596
2597 if (ce_info->num_multiple_test_blocks > 0)
2598 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2599 ce_info->num_multiple_test_blocks,
2600 (ce_info->and_and_p) ? "&&" : "||",
2601 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2602 ce_info->last_test_bb->index,
2603 ((BB_HEAD (ce_info->last_test_bb))
2604 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2605 : -1));
2606
2607 fputc ('\n', dump_file);
2608 }
2609
2610 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
2611 first condition for free, since we've already asserted that there's a
2612 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
2613 we checked the FALLTHRU flag, those are already adjacent to the last IF
2614 block. */
2615 /* ??? As an enhancement, move the ELSE block. Have to deal with
2616 BLOCK notes, if by no other means than aborting the merge if they
2617 exist. Sticky enough I don't want to think about it now. */
2618 next = then_bb;
2619 if (else_bb && (next = next->next_bb) != else_bb)
2620 return FALSE;
2621 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2622 {
2623 if (else_bb)
2624 join_bb = NULL;
2625 else
2626 return FALSE;
2627 }
2628
2629 /* Do the real work. */
2630 ce_info->else_bb = else_bb;
2631 ce_info->join_bb = join_bb;
2632
2633 return process_if_block (ce_info);
2634 }
2635
2636 /* Convert a branch over a trap, or a branch
2637 to a trap, into a conditional trap. */
2638
2639 static int
2640 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2641 {
2642 basic_block then_bb = then_edge->dest;
2643 basic_block else_bb = else_edge->dest;
2644 basic_block other_bb, trap_bb;
2645 rtx trap, jump, cond, cond_earliest, seq;
2646 enum rtx_code code;
2647
2648 /* Locate the block with the trap instruction. */
2649 /* ??? While we look for no successors, we really ought to allow
2650 EH successors. Need to fix merge_if_block for that to work. */
2651 if ((trap = block_has_only_trap (then_bb)) != NULL)
2652 trap_bb = then_bb, other_bb = else_bb;
2653 else if ((trap = block_has_only_trap (else_bb)) != NULL)
2654 trap_bb = else_bb, other_bb = then_bb;
2655 else
2656 return FALSE;
2657
2658 if (dump_file)
2659 {
2660 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2661 test_bb->index, trap_bb->index);
2662 }
2663
2664 /* If this is not a standard conditional jump, we can't parse it. */
2665 jump = BB_END (test_bb);
2666 cond = noce_get_condition (jump, &cond_earliest);
2667 if (! cond)
2668 return FALSE;
2669
2670 /* If the conditional jump is more than just a conditional jump, then
2671 we can not do if-conversion on this block. */
2672 if (! onlyjump_p (jump))
2673 return FALSE;
2674
2675 /* We must be comparing objects whose modes imply the size. */
2676 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2677 return FALSE;
2678
2679 /* Reverse the comparison code, if necessary. */
2680 code = GET_CODE (cond);
2681 if (then_bb == trap_bb)
2682 {
2683 code = reversed_comparison_code (cond, jump);
2684 if (code == UNKNOWN)
2685 return FALSE;
2686 }
2687
2688 /* Attempt to generate the conditional trap. */
2689 seq = gen_cond_trap (code, XEXP (cond, 0),
2690 XEXP (cond, 1),
2691 TRAP_CODE (PATTERN (trap)));
2692 if (seq == NULL)
2693 return FALSE;
2694
2695 num_true_changes++;
2696
2697 /* Emit the new insns before cond_earliest. */
2698 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
2699
2700 /* Delete the trap block if possible. */
2701 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
2702 if (trap_bb->pred == NULL)
2703 delete_basic_block (trap_bb);
2704
2705 /* If the non-trap block and the test are now adjacent, merge them.
2706 Otherwise we must insert a direct branch. */
2707 if (test_bb->next_bb == other_bb)
2708 {
2709 struct ce_if_block new_ce_info;
2710 delete_insn (jump);
2711 memset (&new_ce_info, '\0', sizeof (new_ce_info));
2712 new_ce_info.test_bb = test_bb;
2713 new_ce_info.then_bb = NULL;
2714 new_ce_info.else_bb = NULL;
2715 new_ce_info.join_bb = other_bb;
2716 merge_if_block (&new_ce_info);
2717 }
2718 else
2719 {
2720 rtx lab, newjump;
2721
2722 lab = JUMP_LABEL (jump);
2723 newjump = emit_jump_insn_after (gen_jump (lab), jump);
2724 LABEL_NUSES (lab) += 1;
2725 JUMP_LABEL (newjump) = lab;
2726 emit_barrier_after (newjump);
2727
2728 delete_insn (jump);
2729 }
2730
2731 return TRUE;
2732 }
2733
2734 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
2735 return it. */
2736
2737 static rtx
2738 block_has_only_trap (basic_block bb)
2739 {
2740 rtx trap;
2741
2742 /* We're not the exit block. */
2743 if (bb == EXIT_BLOCK_PTR)
2744 return NULL_RTX;
2745
2746 /* The block must have no successors. */
2747 if (bb->succ)
2748 return NULL_RTX;
2749
2750 /* The only instruction in the THEN block must be the trap. */
2751 trap = first_active_insn (bb);
2752 if (! (trap == BB_END (bb)
2753 && GET_CODE (PATTERN (trap)) == TRAP_IF
2754 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2755 return NULL_RTX;
2756
2757 return trap;
2758 }
2759
2760 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2761 transformable, but not necessarily the other. There need be no
2762 JOIN block.
2763
2764 Return TRUE if we were successful at converting the block.
2765
2766 Cases we'd like to look at:
2767
2768 (1)
2769 if (test) goto over; // x not live
2770 x = a;
2771 goto label;
2772 over:
2773
2774 becomes
2775
2776 x = a;
2777 if (! test) goto label;
2778
2779 (2)
2780 if (test) goto E; // x not live
2781 x = big();
2782 goto L;
2783 E:
2784 x = b;
2785 goto M;
2786
2787 becomes
2788
2789 x = b;
2790 if (test) goto M;
2791 x = big();
2792 goto L;
2793
2794 (3) // This one's really only interesting for targets that can do
2795 // multiway branching, e.g. IA-64 BBB bundles. For other targets
2796 // it results in multiple branches on a cache line, which often
2797 // does not sit well with predictors.
2798
2799 if (test1) goto E; // predicted not taken
2800 x = a;
2801 if (test2) goto F;
2802 ...
2803 E:
2804 x = b;
2805 J:
2806
2807 becomes
2808
2809 x = a;
2810 if (test1) goto E;
2811 if (test2) goto F;
2812
2813 Notes:
2814
2815 (A) Don't do (2) if the branch is predicted against the block we're
2816 eliminating. Do it anyway if we can eliminate a branch; this requires
2817 that the sole successor of the eliminated block postdominate the other
2818 side of the if.
2819
2820 (B) With CE, on (3) we can steal from both sides of the if, creating
2821
2822 if (test1) x = a;
2823 if (!test1) x = b;
2824 if (test1) goto J;
2825 if (test2) goto F;
2826 ...
2827 J:
2828
2829 Again, this is most useful if J postdominates.
2830
2831 (C) CE substitutes for helpful life information.
2832
2833 (D) These heuristics need a lot of work. */
2834
2835 /* Tests for case 1 above. */
2836
2837 static int
2838 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
2839 {
2840 basic_block then_bb = then_edge->dest;
2841 basic_block else_bb = else_edge->dest, new_bb;
2842 edge then_succ = then_bb->succ;
2843 int then_bb_index;
2844
2845 /* If we are partitioning hot/cold basic blocks, we don't want to
2846 mess up unconditional or indirect jumps that cross between hot
2847 and cold sections. */
2848
2849 if (flag_reorder_blocks_and_partition
2850 && ((BB_END (then_bb)
2851 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2852 || (BB_END (else_bb)
2853 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2854 NULL_RTX))))
2855 return FALSE;
2856
2857 /* THEN has one successor. */
2858 if (!then_succ || then_succ->succ_next != NULL)
2859 return FALSE;
2860
2861 /* THEN does not fall through, but is not strange either. */
2862 if (then_succ->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
2863 return FALSE;
2864
2865 /* THEN has one predecessor. */
2866 if (then_bb->pred->pred_next != NULL)
2867 return FALSE;
2868
2869 /* THEN must do something. */
2870 if (forwarder_block_p (then_bb))
2871 return FALSE;
2872
2873 num_possible_if_blocks++;
2874 if (dump_file)
2875 fprintf (dump_file,
2876 "\nIF-CASE-1 found, start %d, then %d\n",
2877 test_bb->index, then_bb->index);
2878
2879 /* THEN is small. */
2880 if (count_bb_insns (then_bb) > BRANCH_COST)
2881 return FALSE;
2882
2883 /* Registers set are dead, or are predicable. */
2884 if (! dead_or_predicable (test_bb, then_bb, else_bb,
2885 then_bb->succ->dest, 1))
2886 return FALSE;
2887
2888 /* Conversion went ok, including moving the insns and fixing up the
2889 jump. Adjust the CFG to match. */
2890
2891 bitmap_operation (test_bb->global_live_at_end,
2892 else_bb->global_live_at_start,
2893 then_bb->global_live_at_end, BITMAP_IOR);
2894
2895 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb), else_bb);
2896 then_bb_index = then_bb->index;
2897 delete_basic_block (then_bb);
2898
2899 /* Make rest of code believe that the newly created block is the THEN_BB
2900 block we removed. */
2901 if (new_bb)
2902 {
2903 new_bb->index = then_bb_index;
2904 BASIC_BLOCK (then_bb_index) = new_bb;
2905 }
2906 /* We've possibly created jump to next insn, cleanup_cfg will solve that
2907 later. */
2908
2909 num_true_changes++;
2910 num_updated_if_blocks++;
2911
2912 return TRUE;
2913 }
2914
2915 /* Test for case 2 above. */
2916
2917 static int
2918 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
2919 {
2920 basic_block then_bb = then_edge->dest;
2921 basic_block else_bb = else_edge->dest;
2922 edge else_succ = else_bb->succ;
2923 rtx note;
2924
2925 /* If we are partitioning hot/cold basic blocks, we don't want to
2926 mess up unconditional or indirect jumps that cross between hot
2927 and cold sections. */
2928
2929 if (flag_reorder_blocks_and_partition
2930 && ((BB_END (then_bb)
2931 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2932 || (BB_END (else_bb)
2933 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2934 NULL_RTX))))
2935 return FALSE;
2936
2937 /* ELSE has one successor. */
2938 if (!else_succ || else_succ->succ_next != NULL)
2939 return FALSE;
2940
2941 /* ELSE outgoing edge is not complex. */
2942 if (else_succ->flags & EDGE_COMPLEX)
2943 return FALSE;
2944
2945 /* ELSE has one predecessor. */
2946 if (else_bb->pred->pred_next != NULL)
2947 return FALSE;
2948
2949 /* THEN is not EXIT. */
2950 if (then_bb->index < 0)
2951 return FALSE;
2952
2953 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
2954 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
2955 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
2956 ;
2957 else if (else_succ->dest->index < 0
2958 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
2959 else_succ->dest))
2960 ;
2961 else
2962 return FALSE;
2963
2964 num_possible_if_blocks++;
2965 if (dump_file)
2966 fprintf (dump_file,
2967 "\nIF-CASE-2 found, start %d, else %d\n",
2968 test_bb->index, else_bb->index);
2969
2970 /* ELSE is small. */
2971 if (count_bb_insns (else_bb) > BRANCH_COST)
2972 return FALSE;
2973
2974 /* Registers set are dead, or are predicable. */
2975 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
2976 return FALSE;
2977
2978 /* Conversion went ok, including moving the insns and fixing up the
2979 jump. Adjust the CFG to match. */
2980
2981 bitmap_operation (test_bb->global_live_at_end,
2982 then_bb->global_live_at_start,
2983 else_bb->global_live_at_end, BITMAP_IOR);
2984
2985 delete_basic_block (else_bb);
2986
2987 num_true_changes++;
2988 num_updated_if_blocks++;
2989
2990 /* ??? We may now fallthru from one of THEN's successors into a join
2991 block. Rerun cleanup_cfg? Examine things manually? Wait? */
2992
2993 return TRUE;
2994 }
2995
2996 /* A subroutine of dead_or_predicable called through for_each_rtx.
2997 Return 1 if a memory is found. */
2998
2999 static int
3000 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3001 {
3002 return GET_CODE (*px) == MEM;
3003 }
3004
3005 /* Used by the code above to perform the actual rtl transformations.
3006 Return TRUE if successful.
3007
3008 TEST_BB is the block containing the conditional branch. MERGE_BB
3009 is the block containing the code to manipulate. NEW_DEST is the
3010 label TEST_BB should be branching to after the conversion.
3011 REVERSEP is true if the sense of the branch should be reversed. */
3012
3013 static int
3014 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3015 basic_block other_bb, basic_block new_dest, int reversep)
3016 {
3017 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3018
3019 jump = BB_END (test_bb);
3020
3021 /* Find the extent of the real code in the merge block. */
3022 head = BB_HEAD (merge_bb);
3023 end = BB_END (merge_bb);
3024
3025 if (GET_CODE (head) == CODE_LABEL)
3026 head = NEXT_INSN (head);
3027 if (GET_CODE (head) == NOTE)
3028 {
3029 if (head == end)
3030 {
3031 head = end = NULL_RTX;
3032 goto no_body;
3033 }
3034 head = NEXT_INSN (head);
3035 }
3036
3037 if (GET_CODE (end) == JUMP_INSN)
3038 {
3039 if (head == end)
3040 {
3041 head = end = NULL_RTX;
3042 goto no_body;
3043 }
3044 end = PREV_INSN (end);
3045 }
3046
3047 /* Disable handling dead code by conditional execution if the machine needs
3048 to do anything funny with the tests, etc. */
3049 #ifndef IFCVT_MODIFY_TESTS
3050 if (HAVE_conditional_execution)
3051 {
3052 /* In the conditional execution case, we have things easy. We know
3053 the condition is reversible. We don't have to check life info
3054 because we're going to conditionally execute the code anyway.
3055 All that's left is making sure the insns involved can actually
3056 be predicated. */
3057
3058 rtx cond, prob_val;
3059
3060 cond = cond_exec_get_condition (jump);
3061 if (! cond)
3062 return FALSE;
3063
3064 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3065 if (prob_val)
3066 prob_val = XEXP (prob_val, 0);
3067
3068 if (reversep)
3069 {
3070 enum rtx_code rev = reversed_comparison_code (cond, jump);
3071 if (rev == UNKNOWN)
3072 return FALSE;
3073 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3074 XEXP (cond, 1));
3075 if (prob_val)
3076 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3077 }
3078
3079 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3080 prob_val, 0))
3081 goto cancel;
3082
3083 earliest = jump;
3084 }
3085 else
3086 #endif
3087 {
3088 /* In the non-conditional execution case, we have to verify that there
3089 are no trapping operations, no calls, no references to memory, and
3090 that any registers modified are dead at the branch site. */
3091
3092 rtx insn, cond, prev;
3093 regset_head merge_set_head, tmp_head, test_live_head, test_set_head;
3094 regset merge_set, tmp, test_live, test_set;
3095 struct propagate_block_info *pbi;
3096 int i, fail = 0;
3097
3098 /* Check for no calls or trapping operations. */
3099 for (insn = head; ; insn = NEXT_INSN (insn))
3100 {
3101 if (GET_CODE (insn) == CALL_INSN)
3102 return FALSE;
3103 if (INSN_P (insn))
3104 {
3105 if (may_trap_p (PATTERN (insn)))
3106 return FALSE;
3107
3108 /* ??? Even non-trapping memories such as stack frame
3109 references must be avoided. For stores, we collect
3110 no lifetime info; for reads, we'd have to assert
3111 true_dependence false against every store in the
3112 TEST range. */
3113 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3114 return FALSE;
3115 }
3116 if (insn == end)
3117 break;
3118 }
3119
3120 if (! any_condjump_p (jump))
3121 return FALSE;
3122
3123 /* Find the extent of the conditional. */
3124 cond = noce_get_condition (jump, &earliest);
3125 if (! cond)
3126 return FALSE;
3127
3128 /* Collect:
3129 MERGE_SET = set of registers set in MERGE_BB
3130 TEST_LIVE = set of registers live at EARLIEST
3131 TEST_SET = set of registers set between EARLIEST and the
3132 end of the block. */
3133
3134 tmp = INITIALIZE_REG_SET (tmp_head);
3135 merge_set = INITIALIZE_REG_SET (merge_set_head);
3136 test_live = INITIALIZE_REG_SET (test_live_head);
3137 test_set = INITIALIZE_REG_SET (test_set_head);
3138
3139 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3140 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3141 since we've already asserted that MERGE_BB is small. */
3142 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3143
3144 /* For small register class machines, don't lengthen lifetimes of
3145 hard registers before reload. */
3146 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3147 {
3148 EXECUTE_IF_SET_IN_BITMAP
3149 (merge_set, 0, i,
3150 {
3151 if (i < FIRST_PSEUDO_REGISTER
3152 && ! fixed_regs[i]
3153 && ! global_regs[i])
3154 fail = 1;
3155 });
3156 }
3157
3158 /* For TEST, we're interested in a range of insns, not a whole block.
3159 Moreover, we're interested in the insns live from OTHER_BB. */
3160
3161 COPY_REG_SET (test_live, other_bb->global_live_at_start);
3162 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3163 0);
3164
3165 for (insn = jump; ; insn = prev)
3166 {
3167 prev = propagate_one_insn (pbi, insn);
3168 if (insn == earliest)
3169 break;
3170 }
3171
3172 free_propagate_block_info (pbi);
3173
3174 /* We can perform the transformation if
3175 MERGE_SET & (TEST_SET | TEST_LIVE)
3176 and
3177 TEST_SET & merge_bb->global_live_at_start
3178 are empty. */
3179
3180 bitmap_operation (tmp, test_set, test_live, BITMAP_IOR);
3181 bitmap_operation (tmp, tmp, merge_set, BITMAP_AND);
3182 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
3183
3184 bitmap_operation (tmp, test_set, merge_bb->global_live_at_start,
3185 BITMAP_AND);
3186 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
3187
3188 FREE_REG_SET (tmp);
3189 FREE_REG_SET (merge_set);
3190 FREE_REG_SET (test_live);
3191 FREE_REG_SET (test_set);
3192
3193 if (fail)
3194 return FALSE;
3195 }
3196
3197 no_body:
3198 /* We don't want to use normal invert_jump or redirect_jump because
3199 we don't want to delete_insn called. Also, we want to do our own
3200 change group management. */
3201
3202 old_dest = JUMP_LABEL (jump);
3203 if (other_bb != new_dest)
3204 {
3205 new_label = block_label (new_dest);
3206 if (reversep
3207 ? ! invert_jump_1 (jump, new_label)
3208 : ! redirect_jump_1 (jump, new_label))
3209 goto cancel;
3210 }
3211
3212 if (! apply_change_group ())
3213 return FALSE;
3214
3215 if (other_bb != new_dest)
3216 {
3217 if (old_dest)
3218 LABEL_NUSES (old_dest) -= 1;
3219 if (new_label)
3220 LABEL_NUSES (new_label) += 1;
3221 JUMP_LABEL (jump) = new_label;
3222 if (reversep)
3223 invert_br_probabilities (jump);
3224
3225 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3226 if (reversep)
3227 {
3228 gcov_type count, probability;
3229 count = BRANCH_EDGE (test_bb)->count;
3230 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3231 FALLTHRU_EDGE (test_bb)->count = count;
3232 probability = BRANCH_EDGE (test_bb)->probability;
3233 BRANCH_EDGE (test_bb)->probability
3234 = FALLTHRU_EDGE (test_bb)->probability;
3235 FALLTHRU_EDGE (test_bb)->probability = probability;
3236 update_br_prob_note (test_bb);
3237 }
3238 }
3239
3240 /* Move the insns out of MERGE_BB to before the branch. */
3241 if (head != NULL)
3242 {
3243 if (end == BB_END (merge_bb))
3244 BB_END (merge_bb) = PREV_INSN (head);
3245
3246 if (squeeze_notes (&head, &end))
3247 return TRUE;
3248
3249 reorder_insns (head, end, PREV_INSN (earliest));
3250 }
3251
3252 /* Remove the jump and edge if we can. */
3253 if (other_bb == new_dest)
3254 {
3255 delete_insn (jump);
3256 remove_edge (BRANCH_EDGE (test_bb));
3257 /* ??? Can't merge blocks here, as then_bb is still in use.
3258 At minimum, the merge will get done just before bb-reorder. */
3259 }
3260
3261 return TRUE;
3262
3263 cancel:
3264 cancel_changes (0);
3265 return FALSE;
3266 }
3267 \f
3268 /* Main entry point for all if-conversion. */
3269
3270 void
3271 if_convert (int x_life_data_ok)
3272 {
3273 basic_block bb;
3274 int pass;
3275
3276 num_possible_if_blocks = 0;
3277 num_updated_if_blocks = 0;
3278 num_true_changes = 0;
3279 life_data_ok = (x_life_data_ok != 0);
3280
3281 if ((! targetm.cannot_modify_jumps_p ())
3282 && (!flag_reorder_blocks_and_partition || !no_new_pseudos))
3283 mark_loop_exit_edges ();
3284
3285 /* Compute postdominators if we think we'll use them. */
3286 if (HAVE_conditional_execution || life_data_ok)
3287 calculate_dominance_info (CDI_POST_DOMINATORS);
3288
3289 if (life_data_ok)
3290 clear_bb_flags ();
3291
3292 /* Go through each of the basic blocks looking for things to convert. If we
3293 have conditional execution, we make multiple passes to allow us to handle
3294 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3295 pass = 0;
3296 do
3297 {
3298 cond_exec_changed_p = FALSE;
3299 pass++;
3300
3301 #ifdef IFCVT_MULTIPLE_DUMPS
3302 if (dump_file && pass > 1)
3303 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3304 #endif
3305
3306 FOR_EACH_BB (bb)
3307 {
3308 basic_block new_bb;
3309 while ((new_bb = find_if_header (bb, pass)))
3310 bb = new_bb;
3311 }
3312
3313 #ifdef IFCVT_MULTIPLE_DUMPS
3314 if (dump_file && cond_exec_changed_p)
3315 print_rtl_with_bb (dump_file, get_insns ());
3316 #endif
3317 }
3318 while (cond_exec_changed_p);
3319
3320 #ifdef IFCVT_MULTIPLE_DUMPS
3321 if (dump_file)
3322 fprintf (dump_file, "\n\n========== no more changes\n");
3323 #endif
3324
3325 free_dominance_info (CDI_POST_DOMINATORS);
3326
3327 if (dump_file)
3328 fflush (dump_file);
3329
3330 clear_aux_for_blocks ();
3331
3332 /* Rebuild life info for basic blocks that require it. */
3333 if (num_true_changes && life_data_ok)
3334 {
3335 /* If we allocated new pseudos, we must resize the array for sched1. */
3336 if (max_regno < max_reg_num ())
3337 {
3338 max_regno = max_reg_num ();
3339 allocate_reg_info (max_regno, FALSE, FALSE);
3340 }
3341 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3342 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3343 | PROP_KILL_DEAD_CODE);
3344 }
3345
3346 /* Write the final stats. */
3347 if (dump_file && num_possible_if_blocks > 0)
3348 {
3349 fprintf (dump_file,
3350 "\n%d possible IF blocks searched.\n",
3351 num_possible_if_blocks);
3352 fprintf (dump_file,
3353 "%d IF blocks converted.\n",
3354 num_updated_if_blocks);
3355 fprintf (dump_file,
3356 "%d true changes made.\n\n\n",
3357 num_true_changes);
3358 }
3359
3360 #ifdef ENABLE_CHECKING
3361 verify_flow_info ();
3362 #endif
3363 }