ifcvt.c (noce_get_alt_condition): Use prev_nonnote_insn.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46
47
48 #ifndef HAVE_conditional_execution
49 #define HAVE_conditional_execution 0
50 #endif
51 #ifndef HAVE_conditional_move
52 #define HAVE_conditional_move 0
53 #endif
54 #ifndef HAVE_incscc
55 #define HAVE_incscc 0
56 #endif
57 #ifndef HAVE_decscc
58 #define HAVE_decscc 0
59 #endif
60 #ifndef HAVE_trap
61 #define HAVE_trap 0
62 #endif
63 #ifndef HAVE_conditional_trap
64 #define HAVE_conditional_trap 0
65 #endif
66
67 #ifndef MAX_CONDITIONAL_EXECUTE
68 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
69 #endif
70
71 #define NULL_BLOCK ((basic_block) NULL)
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made which require life information to be updated. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* True if life data ok at present. */
87 static bool life_data_ok;
88
89 /* Forward references. */
90 static int count_bb_insns (basic_block);
91 static bool cheap_bb_rtx_cost_p (basic_block, int);
92 static rtx first_active_insn (basic_block);
93 static rtx last_active_insn (basic_block, int);
94 static basic_block block_fallthru (basic_block);
95 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
96 static rtx cond_exec_get_condition (rtx);
97 static int cond_exec_process_if_block (ce_if_block_t *, int);
98 static rtx noce_get_condition (rtx, rtx *);
99 static int noce_operand_ok (rtx);
100 static int noce_process_if_block (ce_if_block_t *);
101 static int process_if_block (ce_if_block_t *);
102 static void merge_if_block (ce_if_block_t *);
103 static int find_cond_trap (basic_block, edge, edge);
104 static basic_block find_if_header (basic_block, int);
105 static int block_jumps_and_fallthru_p (basic_block, basic_block);
106 static int find_if_block (ce_if_block_t *);
107 static int find_if_case_1 (basic_block, edge, edge);
108 static int find_if_case_2 (basic_block, edge, edge);
109 static int find_memory (rtx *, void *);
110 static int dead_or_predicable (basic_block, basic_block, basic_block,
111 basic_block, int);
112 static void noce_emit_move_insn (rtx, rtx);
113 static rtx block_has_only_trap (basic_block);
114 \f
115 /* Count the number of non-jump active insns in BB. */
116
117 static int
118 count_bb_insns (basic_block bb)
119 {
120 int count = 0;
121 rtx insn = BB_HEAD (bb);
122
123 while (1)
124 {
125 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
126 count++;
127
128 if (insn == BB_END (bb))
129 break;
130 insn = NEXT_INSN (insn);
131 }
132
133 return count;
134 }
135
136 /* Determine whether the total insn_rtx_cost on non-jump insns in
137 basic block BB is less than MAX_COST. This function returns
138 false if the cost of any instruction could not be estimated. */
139
140 static bool
141 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
142 {
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145
146 while (1)
147 {
148 if (NONJUMP_INSN_P (insn))
149 {
150 int cost = insn_rtx_cost (PATTERN (insn));
151 if (cost == 0)
152 return false;
153
154 /* If this instruction is the load or set of a "stack" register,
155 such as a floating point register on x87, then the cost of
156 speculatively executing this instruction needs to include
157 the additional cost of popping this register off of the
158 register stack. */
159 #ifdef STACK_REGS
160 {
161 rtx set = single_set (insn);
162 if (set && STACK_REG_P (SET_DEST (set)))
163 cost += COSTS_N_INSNS (1);
164 }
165 #endif
166
167 count += cost;
168 if (count >= max_cost)
169 return false;
170 }
171 else if (CALL_P (insn))
172 return false;
173
174 if (insn == BB_END (bb))
175 break;
176 insn = NEXT_INSN (insn);
177 }
178
179 return true;
180 }
181
182 /* Return the first non-jump active insn in the basic block. */
183
184 static rtx
185 first_active_insn (basic_block bb)
186 {
187 rtx insn = BB_HEAD (bb);
188
189 if (LABEL_P (insn))
190 {
191 if (insn == BB_END (bb))
192 return NULL_RTX;
193 insn = NEXT_INSN (insn);
194 }
195
196 while (NOTE_P (insn))
197 {
198 if (insn == BB_END (bb))
199 return NULL_RTX;
200 insn = NEXT_INSN (insn);
201 }
202
203 if (JUMP_P (insn))
204 return NULL_RTX;
205
206 return insn;
207 }
208
209 /* Return the last non-jump active (non-jump) insn in the basic block. */
210
211 static rtx
212 last_active_insn (basic_block bb, int skip_use_p)
213 {
214 rtx insn = BB_END (bb);
215 rtx head = BB_HEAD (bb);
216
217 while (NOTE_P (insn)
218 || JUMP_P (insn)
219 || (skip_use_p
220 && NONJUMP_INSN_P (insn)
221 && GET_CODE (PATTERN (insn)) == USE))
222 {
223 if (insn == head)
224 return NULL_RTX;
225 insn = PREV_INSN (insn);
226 }
227
228 if (LABEL_P (insn))
229 return NULL_RTX;
230
231 return insn;
232 }
233
234 /* Return the basic block reached by falling though the basic block BB. */
235
236 static basic_block
237 block_fallthru (basic_block bb)
238 {
239 edge e;
240 edge_iterator ei;
241
242 FOR_EACH_EDGE (e, ei, bb->succs)
243 if (e->flags & EDGE_FALLTHRU)
244 break;
245
246 return (e) ? e->dest : NULL_BLOCK;
247 }
248 \f
249 /* Go through a bunch of insns, converting them to conditional
250 execution format if possible. Return TRUE if all of the non-note
251 insns were processed. */
252
253 static int
254 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
255 /* if block information */rtx start,
256 /* first insn to look at */rtx end,
257 /* last insn to look at */rtx test,
258 /* conditional execution test */rtx prob_val,
259 /* probability of branch taken. */int mod_ok)
260 {
261 int must_be_last = FALSE;
262 rtx insn;
263 rtx xtest;
264 rtx pattern;
265
266 if (!start || !end)
267 return FALSE;
268
269 for (insn = start; ; insn = NEXT_INSN (insn))
270 {
271 if (NOTE_P (insn))
272 goto insn_done;
273
274 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
275
276 /* Remove USE insns that get in the way. */
277 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278 {
279 /* ??? Ug. Actually unlinking the thing is problematic,
280 given what we'd have to coordinate with our callers. */
281 SET_INSN_DELETED (insn);
282 goto insn_done;
283 }
284
285 /* Last insn wasn't last? */
286 if (must_be_last)
287 return FALSE;
288
289 if (modified_in_p (test, insn))
290 {
291 if (!mod_ok)
292 return FALSE;
293 must_be_last = TRUE;
294 }
295
296 /* Now build the conditional form of the instruction. */
297 pattern = PATTERN (insn);
298 xtest = copy_rtx (test);
299
300 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
301 two conditions. */
302 if (GET_CODE (pattern) == COND_EXEC)
303 {
304 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
305 return FALSE;
306
307 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
308 COND_EXEC_TEST (pattern));
309 pattern = COND_EXEC_CODE (pattern);
310 }
311
312 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313
314 /* If the machine needs to modify the insn being conditionally executed,
315 say for example to force a constant integer operand into a temp
316 register, do so here. */
317 #ifdef IFCVT_MODIFY_INSN
318 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
319 if (! pattern)
320 return FALSE;
321 #endif
322
323 validate_change (insn, &PATTERN (insn), pattern, 1);
324
325 if (CALL_P (insn) && prob_val)
326 validate_change (insn, &REG_NOTES (insn),
327 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
328 REG_NOTES (insn)), 1);
329
330 insn_done:
331 if (insn == end)
332 break;
333 }
334
335 return TRUE;
336 }
337
338 /* Return the condition for a jump. Do not do any special processing. */
339
340 static rtx
341 cond_exec_get_condition (rtx jump)
342 {
343 rtx test_if, cond;
344
345 if (any_condjump_p (jump))
346 test_if = SET_SRC (pc_set (jump));
347 else
348 return NULL_RTX;
349 cond = XEXP (test_if, 0);
350
351 /* If this branches to JUMP_LABEL when the condition is false,
352 reverse the condition. */
353 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
354 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355 {
356 enum rtx_code rev = reversed_comparison_code (cond, jump);
357 if (rev == UNKNOWN)
358 return NULL_RTX;
359
360 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
361 XEXP (cond, 1));
362 }
363
364 return cond;
365 }
366
367 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
368 to conditional execution. Return TRUE if we were successful at
369 converting the block. */
370
371 static int
372 cond_exec_process_if_block (ce_if_block_t * ce_info,
373 /* if block information */int do_multiple_p)
374 {
375 basic_block test_bb = ce_info->test_bb; /* last test block */
376 basic_block then_bb = ce_info->then_bb; /* THEN */
377 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
378 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
379 rtx then_start; /* first insn in THEN block */
380 rtx then_end; /* last insn + 1 in THEN block */
381 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
382 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
383 int max; /* max # of insns to convert. */
384 int then_mod_ok; /* whether conditional mods are ok in THEN */
385 rtx true_expr; /* test for else block insns */
386 rtx false_expr; /* test for then block insns */
387 rtx true_prob_val; /* probability of else block */
388 rtx false_prob_val; /* probability of then block */
389 int n_insns;
390 enum rtx_code false_code;
391
392 /* If test is comprised of && or || elements, and we've failed at handling
393 all of them together, just use the last test if it is the special case of
394 && elements without an ELSE block. */
395 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
396 {
397 if (else_bb || ! ce_info->and_and_p)
398 return FALSE;
399
400 ce_info->test_bb = test_bb = ce_info->last_test_bb;
401 ce_info->num_multiple_test_blocks = 0;
402 ce_info->num_and_and_blocks = 0;
403 ce_info->num_or_or_blocks = 0;
404 }
405
406 /* Find the conditional jump to the ELSE or JOIN part, and isolate
407 the test. */
408 test_expr = cond_exec_get_condition (BB_END (test_bb));
409 if (! test_expr)
410 return FALSE;
411
412 /* If the conditional jump is more than just a conditional jump,
413 then we can not do conditional execution conversion on this block. */
414 if (! onlyjump_p (BB_END (test_bb)))
415 return FALSE;
416
417 /* Collect the bounds of where we're to search, skipping any labels, jumps
418 and notes at the beginning and end of the block. Then count the total
419 number of insns and see if it is small enough to convert. */
420 then_start = first_active_insn (then_bb);
421 then_end = last_active_insn (then_bb, TRUE);
422 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
423 max = MAX_CONDITIONAL_EXECUTE;
424
425 if (else_bb)
426 {
427 max *= 2;
428 else_start = first_active_insn (else_bb);
429 else_end = last_active_insn (else_bb, TRUE);
430 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
431 }
432
433 if (n_insns > max)
434 return FALSE;
435
436 /* Map test_expr/test_jump into the appropriate MD tests to use on
437 the conditionally executed code. */
438
439 true_expr = test_expr;
440
441 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
442 if (false_code != UNKNOWN)
443 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
444 XEXP (true_expr, 0), XEXP (true_expr, 1));
445 else
446 false_expr = NULL_RTX;
447
448 #ifdef IFCVT_MODIFY_TESTS
449 /* If the machine description needs to modify the tests, such as setting a
450 conditional execution register from a comparison, it can do so here. */
451 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
452
453 /* See if the conversion failed. */
454 if (!true_expr || !false_expr)
455 goto fail;
456 #endif
457
458 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
459 if (true_prob_val)
460 {
461 true_prob_val = XEXP (true_prob_val, 0);
462 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
463 }
464 else
465 false_prob_val = NULL_RTX;
466
467 /* If we have && or || tests, do them here. These tests are in the adjacent
468 blocks after the first block containing the test. */
469 if (ce_info->num_multiple_test_blocks > 0)
470 {
471 basic_block bb = test_bb;
472 basic_block last_test_bb = ce_info->last_test_bb;
473
474 if (! false_expr)
475 goto fail;
476
477 do
478 {
479 rtx start, end;
480 rtx t, f;
481 enum rtx_code f_code;
482
483 bb = block_fallthru (bb);
484 start = first_active_insn (bb);
485 end = last_active_insn (bb, TRUE);
486 if (start
487 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
488 false_prob_val, FALSE))
489 goto fail;
490
491 /* If the conditional jump is more than just a conditional jump, then
492 we can not do conditional execution conversion on this block. */
493 if (! onlyjump_p (BB_END (bb)))
494 goto fail;
495
496 /* Find the conditional jump and isolate the test. */
497 t = cond_exec_get_condition (BB_END (bb));
498 if (! t)
499 goto fail;
500
501 f_code = reversed_comparison_code (t, BB_END (bb));
502 if (f_code == UNKNOWN)
503 goto fail;
504
505 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
506 if (ce_info->and_and_p)
507 {
508 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
509 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
510 }
511 else
512 {
513 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
514 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
515 }
516
517 /* If the machine description needs to modify the tests, such as
518 setting a conditional execution register from a comparison, it can
519 do so here. */
520 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
521 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
522
523 /* See if the conversion failed. */
524 if (!t || !f)
525 goto fail;
526 #endif
527
528 true_expr = t;
529 false_expr = f;
530 }
531 while (bb != last_test_bb);
532 }
533
534 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
535 on then THEN block. */
536 then_mod_ok = (else_bb == NULL_BLOCK);
537
538 /* Go through the THEN and ELSE blocks converting the insns if possible
539 to conditional execution. */
540
541 if (then_end
542 && (! false_expr
543 || ! cond_exec_process_insns (ce_info, then_start, then_end,
544 false_expr, false_prob_val,
545 then_mod_ok)))
546 goto fail;
547
548 if (else_bb && else_end
549 && ! cond_exec_process_insns (ce_info, else_start, else_end,
550 true_expr, true_prob_val, TRUE))
551 goto fail;
552
553 /* If we cannot apply the changes, fail. Do not go through the normal fail
554 processing, since apply_change_group will call cancel_changes. */
555 if (! apply_change_group ())
556 {
557 #ifdef IFCVT_MODIFY_CANCEL
558 /* Cancel any machine dependent changes. */
559 IFCVT_MODIFY_CANCEL (ce_info);
560 #endif
561 return FALSE;
562 }
563
564 #ifdef IFCVT_MODIFY_FINAL
565 /* Do any machine dependent final modifications. */
566 IFCVT_MODIFY_FINAL (ce_info);
567 #endif
568
569 /* Conversion succeeded. */
570 if (dump_file)
571 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
572 n_insns, (n_insns == 1) ? " was" : "s were");
573
574 /* Merge the blocks! */
575 merge_if_block (ce_info);
576 cond_exec_changed_p = TRUE;
577 return TRUE;
578
579 fail:
580 #ifdef IFCVT_MODIFY_CANCEL
581 /* Cancel any machine dependent changes. */
582 IFCVT_MODIFY_CANCEL (ce_info);
583 #endif
584
585 cancel_changes (0);
586 return FALSE;
587 }
588 \f
589 /* Used by noce_process_if_block to communicate with its subroutines.
590
591 The subroutines know that A and B may be evaluated freely. They
592 know that X is a register. They should insert new instructions
593 before cond_earliest. */
594
595 struct noce_if_info
596 {
597 basic_block test_bb;
598 rtx insn_a, insn_b;
599 rtx x, a, b;
600 rtx jump, cond, cond_earliest;
601 /* True if "b" was originally evaluated unconditionally. */
602 bool b_unconditional;
603 };
604
605 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
606 static int noce_try_move (struct noce_if_info *);
607 static int noce_try_store_flag (struct noce_if_info *);
608 static int noce_try_addcc (struct noce_if_info *);
609 static int noce_try_store_flag_constants (struct noce_if_info *);
610 static int noce_try_store_flag_mask (struct noce_if_info *);
611 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
612 rtx, rtx, rtx);
613 static int noce_try_cmove (struct noce_if_info *);
614 static int noce_try_cmove_arith (struct noce_if_info *);
615 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
616 static int noce_try_minmax (struct noce_if_info *);
617 static int noce_try_abs (struct noce_if_info *);
618 static int noce_try_sign_mask (struct noce_if_info *);
619
620 /* Helper function for noce_try_store_flag*. */
621
622 static rtx
623 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
624 int normalize)
625 {
626 rtx cond = if_info->cond;
627 int cond_complex;
628 enum rtx_code code;
629
630 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
631 || ! general_operand (XEXP (cond, 1), VOIDmode));
632
633 /* If earliest == jump, or when the condition is complex, try to
634 build the store_flag insn directly. */
635
636 if (cond_complex)
637 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
638
639 if (reversep)
640 code = reversed_comparison_code (cond, if_info->jump);
641 else
642 code = GET_CODE (cond);
643
644 if ((if_info->cond_earliest == if_info->jump || cond_complex)
645 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
646 {
647 rtx tmp;
648
649 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
650 XEXP (cond, 1));
651 tmp = gen_rtx_SET (VOIDmode, x, tmp);
652
653 start_sequence ();
654 tmp = emit_insn (tmp);
655
656 if (recog_memoized (tmp) >= 0)
657 {
658 tmp = get_insns ();
659 end_sequence ();
660 emit_insn (tmp);
661
662 if_info->cond_earliest = if_info->jump;
663
664 return x;
665 }
666
667 end_sequence ();
668 }
669
670 /* Don't even try if the comparison operands or the mode of X are weird. */
671 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
672 return NULL_RTX;
673
674 return emit_store_flag (x, code, XEXP (cond, 0),
675 XEXP (cond, 1), VOIDmode,
676 (code == LTU || code == LEU
677 || code == GEU || code == GTU), normalize);
678 }
679
680 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
681 X is the destination/target and Y is the value to copy. */
682
683 static void
684 noce_emit_move_insn (rtx x, rtx y)
685 {
686 enum machine_mode outmode;
687 rtx outer, inner;
688 int bitpos;
689
690 if (GET_CODE (x) != STRICT_LOW_PART)
691 {
692 rtx seq, insn, target;
693 optab ot;
694
695 start_sequence ();
696 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
697 otherwise construct a suitable SET pattern ourselves. */
698 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
699 ? emit_move_insn (x, y)
700 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
701 seq = get_insns ();
702 end_sequence();
703
704 if (recog_memoized (insn) <= 0)
705 switch (GET_RTX_CLASS (GET_CODE (y)))
706 {
707 case RTX_UNARY:
708 ot = code_to_optab[GET_CODE (y)];
709 if (ot)
710 {
711 start_sequence ();
712 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
713 if (target != NULL_RTX)
714 {
715 if (target != x)
716 emit_move_insn (x, target);
717 seq = get_insns ();
718 }
719 end_sequence ();
720 }
721 break;
722
723 case RTX_BIN_ARITH:
724 case RTX_COMM_ARITH:
725 ot = code_to_optab[GET_CODE (y)];
726 if (ot)
727 {
728 start_sequence ();
729 target = expand_binop (GET_MODE (y), ot,
730 XEXP (y, 0), XEXP (y, 1),
731 x, 0, OPTAB_DIRECT);
732 if (target != NULL_RTX)
733 {
734 if (target != x)
735 emit_move_insn (x, target);
736 seq = get_insns ();
737 }
738 end_sequence ();
739 }
740 break;
741
742 default:
743 break;
744 }
745
746 emit_insn (seq);
747 return;
748 }
749
750 outer = XEXP (x, 0);
751 inner = XEXP (outer, 0);
752 outmode = GET_MODE (outer);
753 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
754 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
755 }
756
757 /* Return sequence of instructions generated by if conversion. This
758 function calls end_sequence() to end the current stream, ensures
759 that are instructions are unshared, recognizable non-jump insns.
760 On failure, this function returns a NULL_RTX. */
761
762 static rtx
763 end_ifcvt_sequence (struct noce_if_info *if_info)
764 {
765 rtx insn;
766 rtx seq = get_insns ();
767
768 set_used_flags (if_info->x);
769 set_used_flags (if_info->cond);
770 unshare_all_rtl_in_chain (seq);
771 end_sequence ();
772
773 /* Make sure that all of the instructions emitted are recognizable,
774 and that we haven't introduced a new jump instruction.
775 As an exercise for the reader, build a general mechanism that
776 allows proper placement of required clobbers. */
777 for (insn = seq; insn; insn = NEXT_INSN (insn))
778 if (JUMP_P (insn)
779 || recog_memoized (insn) == -1)
780 return NULL_RTX;
781
782 return seq;
783 }
784
785 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
786 "if (a == b) x = a; else x = b" into "x = b". */
787
788 static int
789 noce_try_move (struct noce_if_info *if_info)
790 {
791 rtx cond = if_info->cond;
792 enum rtx_code code = GET_CODE (cond);
793 rtx y, seq;
794
795 if (code != NE && code != EQ)
796 return FALSE;
797
798 /* This optimization isn't valid if either A or B could be a NaN
799 or a signed zero. */
800 if (HONOR_NANS (GET_MODE (if_info->x))
801 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
802 return FALSE;
803
804 /* Check whether the operands of the comparison are A and in
805 either order. */
806 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
807 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
808 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
809 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
810 {
811 y = (code == EQ) ? if_info->a : if_info->b;
812
813 /* Avoid generating the move if the source is the destination. */
814 if (! rtx_equal_p (if_info->x, y))
815 {
816 start_sequence ();
817 noce_emit_move_insn (if_info->x, y);
818 seq = end_ifcvt_sequence (if_info);
819 if (!seq)
820 return FALSE;
821
822 emit_insn_before_setloc (seq, if_info->jump,
823 INSN_LOCATOR (if_info->insn_a));
824 }
825 return TRUE;
826 }
827 return FALSE;
828 }
829
830 /* Convert "if (test) x = 1; else x = 0".
831
832 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
833 tried in noce_try_store_flag_constants after noce_try_cmove has had
834 a go at the conversion. */
835
836 static int
837 noce_try_store_flag (struct noce_if_info *if_info)
838 {
839 int reversep;
840 rtx target, seq;
841
842 if (GET_CODE (if_info->b) == CONST_INT
843 && INTVAL (if_info->b) == STORE_FLAG_VALUE
844 && if_info->a == const0_rtx)
845 reversep = 0;
846 else if (if_info->b == const0_rtx
847 && GET_CODE (if_info->a) == CONST_INT
848 && INTVAL (if_info->a) == STORE_FLAG_VALUE
849 && (reversed_comparison_code (if_info->cond, if_info->jump)
850 != UNKNOWN))
851 reversep = 1;
852 else
853 return FALSE;
854
855 start_sequence ();
856
857 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
858 if (target)
859 {
860 if (target != if_info->x)
861 noce_emit_move_insn (if_info->x, target);
862
863 seq = end_ifcvt_sequence (if_info);
864 if (! seq)
865 return FALSE;
866
867 emit_insn_before_setloc (seq, if_info->jump,
868 INSN_LOCATOR (if_info->insn_a));
869 return TRUE;
870 }
871 else
872 {
873 end_sequence ();
874 return FALSE;
875 }
876 }
877
878 /* Convert "if (test) x = a; else x = b", for A and B constant. */
879
880 static int
881 noce_try_store_flag_constants (struct noce_if_info *if_info)
882 {
883 rtx target, seq;
884 int reversep;
885 HOST_WIDE_INT itrue, ifalse, diff, tmp;
886 int normalize, can_reverse;
887 enum machine_mode mode;
888
889 if (! no_new_pseudos
890 && GET_CODE (if_info->a) == CONST_INT
891 && GET_CODE (if_info->b) == CONST_INT)
892 {
893 mode = GET_MODE (if_info->x);
894 ifalse = INTVAL (if_info->a);
895 itrue = INTVAL (if_info->b);
896
897 /* Make sure we can represent the difference between the two values. */
898 if ((itrue - ifalse > 0)
899 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
900 return FALSE;
901
902 diff = trunc_int_for_mode (itrue - ifalse, mode);
903
904 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
905 != UNKNOWN);
906
907 reversep = 0;
908 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
909 normalize = 0;
910 else if (ifalse == 0 && exact_log2 (itrue) >= 0
911 && (STORE_FLAG_VALUE == 1
912 || BRANCH_COST >= 2))
913 normalize = 1;
914 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
915 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
916 normalize = 1, reversep = 1;
917 else if (itrue == -1
918 && (STORE_FLAG_VALUE == -1
919 || BRANCH_COST >= 2))
920 normalize = -1;
921 else if (ifalse == -1 && can_reverse
922 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
923 normalize = -1, reversep = 1;
924 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
925 || BRANCH_COST >= 3)
926 normalize = -1;
927 else
928 return FALSE;
929
930 if (reversep)
931 {
932 tmp = itrue; itrue = ifalse; ifalse = tmp;
933 diff = trunc_int_for_mode (-diff, mode);
934 }
935
936 start_sequence ();
937 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
938 if (! target)
939 {
940 end_sequence ();
941 return FALSE;
942 }
943
944 /* if (test) x = 3; else x = 4;
945 => x = 3 + (test == 0); */
946 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
947 {
948 target = expand_simple_binop (mode,
949 (diff == STORE_FLAG_VALUE
950 ? PLUS : MINUS),
951 GEN_INT (ifalse), target, if_info->x, 0,
952 OPTAB_WIDEN);
953 }
954
955 /* if (test) x = 8; else x = 0;
956 => x = (test != 0) << 3; */
957 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
958 {
959 target = expand_simple_binop (mode, ASHIFT,
960 target, GEN_INT (tmp), if_info->x, 0,
961 OPTAB_WIDEN);
962 }
963
964 /* if (test) x = -1; else x = b;
965 => x = -(test != 0) | b; */
966 else if (itrue == -1)
967 {
968 target = expand_simple_binop (mode, IOR,
969 target, GEN_INT (ifalse), if_info->x, 0,
970 OPTAB_WIDEN);
971 }
972
973 /* if (test) x = a; else x = b;
974 => x = (-(test != 0) & (b - a)) + a; */
975 else
976 {
977 target = expand_simple_binop (mode, AND,
978 target, GEN_INT (diff), if_info->x, 0,
979 OPTAB_WIDEN);
980 if (target)
981 target = expand_simple_binop (mode, PLUS,
982 target, GEN_INT (ifalse),
983 if_info->x, 0, OPTAB_WIDEN);
984 }
985
986 if (! target)
987 {
988 end_sequence ();
989 return FALSE;
990 }
991
992 if (target != if_info->x)
993 noce_emit_move_insn (if_info->x, target);
994
995 seq = end_ifcvt_sequence (if_info);
996 if (!seq)
997 return FALSE;
998
999 emit_insn_before_setloc (seq, if_info->jump,
1000 INSN_LOCATOR (if_info->insn_a));
1001 return TRUE;
1002 }
1003
1004 return FALSE;
1005 }
1006
1007 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1008 similarly for "foo--". */
1009
1010 static int
1011 noce_try_addcc (struct noce_if_info *if_info)
1012 {
1013 rtx target, seq;
1014 int subtract, normalize;
1015
1016 if (! no_new_pseudos
1017 && GET_CODE (if_info->a) == PLUS
1018 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1019 && (reversed_comparison_code (if_info->cond, if_info->jump)
1020 != UNKNOWN))
1021 {
1022 rtx cond = if_info->cond;
1023 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1024
1025 /* First try to use addcc pattern. */
1026 if (general_operand (XEXP (cond, 0), VOIDmode)
1027 && general_operand (XEXP (cond, 1), VOIDmode))
1028 {
1029 start_sequence ();
1030 target = emit_conditional_add (if_info->x, code,
1031 XEXP (cond, 0),
1032 XEXP (cond, 1),
1033 VOIDmode,
1034 if_info->b,
1035 XEXP (if_info->a, 1),
1036 GET_MODE (if_info->x),
1037 (code == LTU || code == GEU
1038 || code == LEU || code == GTU));
1039 if (target)
1040 {
1041 if (target != if_info->x)
1042 noce_emit_move_insn (if_info->x, target);
1043
1044 seq = end_ifcvt_sequence (if_info);
1045 if (!seq)
1046 return FALSE;
1047
1048 emit_insn_before_setloc (seq, if_info->jump,
1049 INSN_LOCATOR (if_info->insn_a));
1050 return TRUE;
1051 }
1052 end_sequence ();
1053 }
1054
1055 /* If that fails, construct conditional increment or decrement using
1056 setcc. */
1057 if (BRANCH_COST >= 2
1058 && (XEXP (if_info->a, 1) == const1_rtx
1059 || XEXP (if_info->a, 1) == constm1_rtx))
1060 {
1061 start_sequence ();
1062 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1063 subtract = 0, normalize = 0;
1064 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1065 subtract = 1, normalize = 0;
1066 else
1067 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1068
1069
1070 target = noce_emit_store_flag (if_info,
1071 gen_reg_rtx (GET_MODE (if_info->x)),
1072 1, normalize);
1073
1074 if (target)
1075 target = expand_simple_binop (GET_MODE (if_info->x),
1076 subtract ? MINUS : PLUS,
1077 if_info->b, target, if_info->x,
1078 0, OPTAB_WIDEN);
1079 if (target)
1080 {
1081 if (target != if_info->x)
1082 noce_emit_move_insn (if_info->x, target);
1083
1084 seq = end_ifcvt_sequence (if_info);
1085 if (!seq)
1086 return FALSE;
1087
1088 emit_insn_before_setloc (seq, if_info->jump,
1089 INSN_LOCATOR (if_info->insn_a));
1090 return TRUE;
1091 }
1092 end_sequence ();
1093 }
1094 }
1095
1096 return FALSE;
1097 }
1098
1099 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1100
1101 static int
1102 noce_try_store_flag_mask (struct noce_if_info *if_info)
1103 {
1104 rtx target, seq;
1105 int reversep;
1106
1107 reversep = 0;
1108 if (! no_new_pseudos
1109 && (BRANCH_COST >= 2
1110 || STORE_FLAG_VALUE == -1)
1111 && ((if_info->a == const0_rtx
1112 && rtx_equal_p (if_info->b, if_info->x))
1113 || ((reversep = (reversed_comparison_code (if_info->cond,
1114 if_info->jump)
1115 != UNKNOWN))
1116 && if_info->b == const0_rtx
1117 && rtx_equal_p (if_info->a, if_info->x))))
1118 {
1119 start_sequence ();
1120 target = noce_emit_store_flag (if_info,
1121 gen_reg_rtx (GET_MODE (if_info->x)),
1122 reversep, -1);
1123 if (target)
1124 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1125 if_info->x,
1126 target, if_info->x, 0,
1127 OPTAB_WIDEN);
1128
1129 if (target)
1130 {
1131 if (target != if_info->x)
1132 noce_emit_move_insn (if_info->x, target);
1133
1134 seq = end_ifcvt_sequence (if_info);
1135 if (!seq)
1136 return FALSE;
1137
1138 emit_insn_before_setloc (seq, if_info->jump,
1139 INSN_LOCATOR (if_info->insn_a));
1140 return TRUE;
1141 }
1142
1143 end_sequence ();
1144 }
1145
1146 return FALSE;
1147 }
1148
1149 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1150
1151 static rtx
1152 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1153 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1154 {
1155 /* If earliest == jump, try to build the cmove insn directly.
1156 This is helpful when combine has created some complex condition
1157 (like for alpha's cmovlbs) that we can't hope to regenerate
1158 through the normal interface. */
1159
1160 if (if_info->cond_earliest == if_info->jump)
1161 {
1162 rtx tmp;
1163
1164 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1165 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1166 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1167
1168 start_sequence ();
1169 tmp = emit_insn (tmp);
1170
1171 if (recog_memoized (tmp) >= 0)
1172 {
1173 tmp = get_insns ();
1174 end_sequence ();
1175 emit_insn (tmp);
1176
1177 return x;
1178 }
1179
1180 end_sequence ();
1181 }
1182
1183 /* Don't even try if the comparison operands are weird. */
1184 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1185 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1186 return NULL_RTX;
1187
1188 #if HAVE_conditional_move
1189 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1190 vtrue, vfalse, GET_MODE (x),
1191 (code == LTU || code == GEU
1192 || code == LEU || code == GTU));
1193 #else
1194 /* We'll never get here, as noce_process_if_block doesn't call the
1195 functions involved. Ifdef code, however, should be discouraged
1196 because it leads to typos in the code not selected. However,
1197 emit_conditional_move won't exist either. */
1198 return NULL_RTX;
1199 #endif
1200 }
1201
1202 /* Try only simple constants and registers here. More complex cases
1203 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1204 has had a go at it. */
1205
1206 static int
1207 noce_try_cmove (struct noce_if_info *if_info)
1208 {
1209 enum rtx_code code;
1210 rtx target, seq;
1211
1212 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1213 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1214 {
1215 start_sequence ();
1216
1217 code = GET_CODE (if_info->cond);
1218 target = noce_emit_cmove (if_info, if_info->x, code,
1219 XEXP (if_info->cond, 0),
1220 XEXP (if_info->cond, 1),
1221 if_info->a, if_info->b);
1222
1223 if (target)
1224 {
1225 if (target != if_info->x)
1226 noce_emit_move_insn (if_info->x, target);
1227
1228 seq = end_ifcvt_sequence (if_info);
1229 if (!seq)
1230 return FALSE;
1231
1232 emit_insn_before_setloc (seq, if_info->jump,
1233 INSN_LOCATOR (if_info->insn_a));
1234 return TRUE;
1235 }
1236 else
1237 {
1238 end_sequence ();
1239 return FALSE;
1240 }
1241 }
1242
1243 return FALSE;
1244 }
1245
1246 /* Try more complex cases involving conditional_move. */
1247
1248 static int
1249 noce_try_cmove_arith (struct noce_if_info *if_info)
1250 {
1251 rtx a = if_info->a;
1252 rtx b = if_info->b;
1253 rtx x = if_info->x;
1254 rtx orig_a, orig_b;
1255 rtx insn_a, insn_b;
1256 rtx tmp, target;
1257 int is_mem = 0;
1258 int insn_cost;
1259 enum rtx_code code;
1260
1261 /* A conditional move from two memory sources is equivalent to a
1262 conditional on their addresses followed by a load. Don't do this
1263 early because it'll screw alias analysis. Note that we've
1264 already checked for no side effects. */
1265 if (! no_new_pseudos && cse_not_expected
1266 && MEM_P (a) && MEM_P (b)
1267 && BRANCH_COST >= 5)
1268 {
1269 a = XEXP (a, 0);
1270 b = XEXP (b, 0);
1271 x = gen_reg_rtx (Pmode);
1272 is_mem = 1;
1273 }
1274
1275 /* ??? We could handle this if we knew that a load from A or B could
1276 not fault. This is also true if we've already loaded
1277 from the address along the path from ENTRY. */
1278 else if (may_trap_p (a) || may_trap_p (b))
1279 return FALSE;
1280
1281 /* if (test) x = a + b; else x = c - d;
1282 => y = a + b;
1283 x = c - d;
1284 if (test)
1285 x = y;
1286 */
1287
1288 code = GET_CODE (if_info->cond);
1289 insn_a = if_info->insn_a;
1290 insn_b = if_info->insn_b;
1291
1292 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1293 if insn_rtx_cost can't be estimated. */
1294 if (insn_a)
1295 {
1296 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1297 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1298 return FALSE;
1299 }
1300 else
1301 {
1302 insn_cost = 0;
1303 }
1304
1305 if (insn_b) {
1306 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1307 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1308 return FALSE;
1309 }
1310
1311 /* Possibly rearrange operands to make things come out more natural. */
1312 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1313 {
1314 int reversep = 0;
1315 if (rtx_equal_p (b, x))
1316 reversep = 1;
1317 else if (general_operand (b, GET_MODE (b)))
1318 reversep = 1;
1319
1320 if (reversep)
1321 {
1322 code = reversed_comparison_code (if_info->cond, if_info->jump);
1323 tmp = a, a = b, b = tmp;
1324 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1325 }
1326 }
1327
1328 start_sequence ();
1329
1330 orig_a = a;
1331 orig_b = b;
1332
1333 /* If either operand is complex, load it into a register first.
1334 The best way to do this is to copy the original insn. In this
1335 way we preserve any clobbers etc that the insn may have had.
1336 This is of course not possible in the IS_MEM case. */
1337 if (! general_operand (a, GET_MODE (a)))
1338 {
1339 rtx set;
1340
1341 if (no_new_pseudos)
1342 goto end_seq_and_fail;
1343
1344 if (is_mem)
1345 {
1346 tmp = gen_reg_rtx (GET_MODE (a));
1347 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1348 }
1349 else if (! insn_a)
1350 goto end_seq_and_fail;
1351 else
1352 {
1353 a = gen_reg_rtx (GET_MODE (a));
1354 tmp = copy_rtx (insn_a);
1355 set = single_set (tmp);
1356 SET_DEST (set) = a;
1357 tmp = emit_insn (PATTERN (tmp));
1358 }
1359 if (recog_memoized (tmp) < 0)
1360 goto end_seq_and_fail;
1361 }
1362 if (! general_operand (b, GET_MODE (b)))
1363 {
1364 rtx set, last;
1365
1366 if (no_new_pseudos)
1367 goto end_seq_and_fail;
1368
1369 if (is_mem)
1370 {
1371 tmp = gen_reg_rtx (GET_MODE (b));
1372 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1373 }
1374 else if (! insn_b)
1375 goto end_seq_and_fail;
1376 else
1377 {
1378 b = gen_reg_rtx (GET_MODE (b));
1379 tmp = copy_rtx (insn_b);
1380 set = single_set (tmp);
1381 SET_DEST (set) = b;
1382 tmp = PATTERN (tmp);
1383 }
1384
1385 /* If insn to set up A clobbers any registers B depends on, try to
1386 swap insn that sets up A with the one that sets up B. If even
1387 that doesn't help, punt. */
1388 last = get_last_insn ();
1389 if (last && modified_in_p (orig_b, last))
1390 {
1391 tmp = emit_insn_before (tmp, get_insns ());
1392 if (modified_in_p (orig_a, tmp))
1393 goto end_seq_and_fail;
1394 }
1395 else
1396 tmp = emit_insn (tmp);
1397
1398 if (recog_memoized (tmp) < 0)
1399 goto end_seq_and_fail;
1400 }
1401
1402 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1403 XEXP (if_info->cond, 1), a, b);
1404
1405 if (! target)
1406 goto end_seq_and_fail;
1407
1408 /* If we're handling a memory for above, emit the load now. */
1409 if (is_mem)
1410 {
1411 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1412
1413 /* Copy over flags as appropriate. */
1414 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1415 MEM_VOLATILE_P (tmp) = 1;
1416 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1417 MEM_IN_STRUCT_P (tmp) = 1;
1418 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1419 MEM_SCALAR_P (tmp) = 1;
1420 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1421 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1422 set_mem_align (tmp,
1423 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1424
1425 noce_emit_move_insn (if_info->x, tmp);
1426 }
1427 else if (target != x)
1428 noce_emit_move_insn (x, target);
1429
1430 tmp = end_ifcvt_sequence (if_info);
1431 if (!tmp)
1432 return FALSE;
1433
1434 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1435 return TRUE;
1436
1437 end_seq_and_fail:
1438 end_sequence ();
1439 return FALSE;
1440 }
1441
1442 /* For most cases, the simplified condition we found is the best
1443 choice, but this is not the case for the min/max/abs transforms.
1444 For these we wish to know that it is A or B in the condition. */
1445
1446 static rtx
1447 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1448 rtx *earliest)
1449 {
1450 rtx cond, set, insn;
1451 int reverse;
1452
1453 /* If target is already mentioned in the known condition, return it. */
1454 if (reg_mentioned_p (target, if_info->cond))
1455 {
1456 *earliest = if_info->cond_earliest;
1457 return if_info->cond;
1458 }
1459
1460 set = pc_set (if_info->jump);
1461 cond = XEXP (SET_SRC (set), 0);
1462 reverse
1463 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1464 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1465
1466 /* If we're looking for a constant, try to make the conditional
1467 have that constant in it. There are two reasons why it may
1468 not have the constant we want:
1469
1470 1. GCC may have needed to put the constant in a register, because
1471 the target can't compare directly against that constant. For
1472 this case, we look for a SET immediately before the comparison
1473 that puts a constant in that register.
1474
1475 2. GCC may have canonicalized the conditional, for example
1476 replacing "if x < 4" with "if x <= 3". We can undo that (or
1477 make equivalent types of changes) to get the constants we need
1478 if they're off by one in the right direction. */
1479
1480 if (GET_CODE (target) == CONST_INT)
1481 {
1482 enum rtx_code code = GET_CODE (if_info->cond);
1483 rtx op_a = XEXP (if_info->cond, 0);
1484 rtx op_b = XEXP (if_info->cond, 1);
1485 rtx prev_insn;
1486
1487 /* First, look to see if we put a constant in a register. */
1488 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1489 if (prev_insn
1490 && INSN_P (prev_insn)
1491 && GET_CODE (PATTERN (prev_insn)) == SET)
1492 {
1493 rtx src = find_reg_equal_equiv_note (prev_insn);
1494 if (!src)
1495 src = SET_SRC (PATTERN (prev_insn));
1496 if (GET_CODE (src) == CONST_INT)
1497 {
1498 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1499 op_a = src;
1500 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1501 op_b = src;
1502
1503 if (GET_CODE (op_a) == CONST_INT)
1504 {
1505 rtx tmp = op_a;
1506 op_a = op_b;
1507 op_b = tmp;
1508 code = swap_condition (code);
1509 }
1510 }
1511 }
1512
1513 /* Now, look to see if we can get the right constant by
1514 adjusting the conditional. */
1515 if (GET_CODE (op_b) == CONST_INT)
1516 {
1517 HOST_WIDE_INT desired_val = INTVAL (target);
1518 HOST_WIDE_INT actual_val = INTVAL (op_b);
1519
1520 switch (code)
1521 {
1522 case LT:
1523 if (actual_val == desired_val + 1)
1524 {
1525 code = LE;
1526 op_b = GEN_INT (desired_val);
1527 }
1528 break;
1529 case LE:
1530 if (actual_val == desired_val - 1)
1531 {
1532 code = LT;
1533 op_b = GEN_INT (desired_val);
1534 }
1535 break;
1536 case GT:
1537 if (actual_val == desired_val - 1)
1538 {
1539 code = GE;
1540 op_b = GEN_INT (desired_val);
1541 }
1542 break;
1543 case GE:
1544 if (actual_val == desired_val + 1)
1545 {
1546 code = GT;
1547 op_b = GEN_INT (desired_val);
1548 }
1549 break;
1550 default:
1551 break;
1552 }
1553 }
1554
1555 /* If we made any changes, generate a new conditional that is
1556 equivalent to what we started with, but has the right
1557 constants in it. */
1558 if (code != GET_CODE (if_info->cond)
1559 || op_a != XEXP (if_info->cond, 0)
1560 || op_b != XEXP (if_info->cond, 1))
1561 {
1562 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1563 *earliest = if_info->cond_earliest;
1564 return cond;
1565 }
1566 }
1567
1568 cond = canonicalize_condition (if_info->jump, cond, reverse,
1569 earliest, target, false, true);
1570 if (! cond || ! reg_mentioned_p (target, cond))
1571 return NULL;
1572
1573 /* We almost certainly searched back to a different place.
1574 Need to re-verify correct lifetimes. */
1575
1576 /* X may not be mentioned in the range (cond_earliest, jump]. */
1577 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1578 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1579 return NULL;
1580
1581 /* A and B may not be modified in the range [cond_earliest, jump). */
1582 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1583 if (INSN_P (insn)
1584 && (modified_in_p (if_info->a, insn)
1585 || modified_in_p (if_info->b, insn)))
1586 return NULL;
1587
1588 return cond;
1589 }
1590
1591 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1592
1593 static int
1594 noce_try_minmax (struct noce_if_info *if_info)
1595 {
1596 rtx cond, earliest, target, seq;
1597 enum rtx_code code, op;
1598 int unsignedp;
1599
1600 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1601 if (no_new_pseudos)
1602 return FALSE;
1603
1604 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1605 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1606 to get the target to tell us... */
1607 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1608 || HONOR_NANS (GET_MODE (if_info->x)))
1609 return FALSE;
1610
1611 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1612 if (!cond)
1613 return FALSE;
1614
1615 /* Verify the condition is of the form we expect, and canonicalize
1616 the comparison code. */
1617 code = GET_CODE (cond);
1618 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1619 {
1620 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1621 return FALSE;
1622 }
1623 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1624 {
1625 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1626 return FALSE;
1627 code = swap_condition (code);
1628 }
1629 else
1630 return FALSE;
1631
1632 /* Determine what sort of operation this is. Note that the code is for
1633 a taken branch, so the code->operation mapping appears backwards. */
1634 switch (code)
1635 {
1636 case LT:
1637 case LE:
1638 case UNLT:
1639 case UNLE:
1640 op = SMAX;
1641 unsignedp = 0;
1642 break;
1643 case GT:
1644 case GE:
1645 case UNGT:
1646 case UNGE:
1647 op = SMIN;
1648 unsignedp = 0;
1649 break;
1650 case LTU:
1651 case LEU:
1652 op = UMAX;
1653 unsignedp = 1;
1654 break;
1655 case GTU:
1656 case GEU:
1657 op = UMIN;
1658 unsignedp = 1;
1659 break;
1660 default:
1661 return FALSE;
1662 }
1663
1664 start_sequence ();
1665
1666 target = expand_simple_binop (GET_MODE (if_info->x), op,
1667 if_info->a, if_info->b,
1668 if_info->x, unsignedp, OPTAB_WIDEN);
1669 if (! target)
1670 {
1671 end_sequence ();
1672 return FALSE;
1673 }
1674 if (target != if_info->x)
1675 noce_emit_move_insn (if_info->x, target);
1676
1677 seq = end_ifcvt_sequence (if_info);
1678 if (!seq)
1679 return FALSE;
1680
1681 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1682 if_info->cond = cond;
1683 if_info->cond_earliest = earliest;
1684
1685 return TRUE;
1686 }
1687
1688 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1689
1690 static int
1691 noce_try_abs (struct noce_if_info *if_info)
1692 {
1693 rtx cond, earliest, target, seq, a, b, c;
1694 int negate;
1695
1696 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1697 if (no_new_pseudos)
1698 return FALSE;
1699
1700 /* Recognize A and B as constituting an ABS or NABS. The canonical
1701 form is a branch around the negation, taken when the object is the
1702 first operand of a comparison against 0 that evaluates to true. */
1703 a = if_info->a;
1704 b = if_info->b;
1705 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1706 negate = 0;
1707 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1708 {
1709 c = a; a = b; b = c;
1710 negate = 1;
1711 }
1712 else
1713 return FALSE;
1714
1715 cond = noce_get_alt_condition (if_info, b, &earliest);
1716 if (!cond)
1717 return FALSE;
1718
1719 /* Verify the condition is of the form we expect. */
1720 if (rtx_equal_p (XEXP (cond, 0), b))
1721 c = XEXP (cond, 1);
1722 else if (rtx_equal_p (XEXP (cond, 1), b))
1723 {
1724 c = XEXP (cond, 0);
1725 negate = !negate;
1726 }
1727 else
1728 return FALSE;
1729
1730 /* Verify that C is zero. Search one step backward for a
1731 REG_EQUAL note or a simple source if necessary. */
1732 if (REG_P (c))
1733 {
1734 rtx set, insn = prev_nonnote_insn (earliest);
1735 if (insn
1736 && (set = single_set (insn))
1737 && rtx_equal_p (SET_DEST (set), c))
1738 {
1739 rtx note = find_reg_equal_equiv_note (insn);
1740 if (note)
1741 c = XEXP (note, 0);
1742 else
1743 c = SET_SRC (set);
1744 }
1745 else
1746 return FALSE;
1747 }
1748 if (MEM_P (c)
1749 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1750 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1751 c = get_pool_constant (XEXP (c, 0));
1752
1753 /* Work around funny ideas get_condition has wrt canonicalization.
1754 Note that these rtx constants are known to be CONST_INT, and
1755 therefore imply integer comparisons. */
1756 if (c == constm1_rtx && GET_CODE (cond) == GT)
1757 ;
1758 else if (c == const1_rtx && GET_CODE (cond) == LT)
1759 ;
1760 else if (c != CONST0_RTX (GET_MODE (b)))
1761 return FALSE;
1762
1763 /* Determine what sort of operation this is. */
1764 switch (GET_CODE (cond))
1765 {
1766 case LT:
1767 case LE:
1768 case UNLT:
1769 case UNLE:
1770 negate = !negate;
1771 break;
1772 case GT:
1773 case GE:
1774 case UNGT:
1775 case UNGE:
1776 break;
1777 default:
1778 return FALSE;
1779 }
1780
1781 start_sequence ();
1782
1783 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1784
1785 /* ??? It's a quandary whether cmove would be better here, especially
1786 for integers. Perhaps combine will clean things up. */
1787 if (target && negate)
1788 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1789
1790 if (! target)
1791 {
1792 end_sequence ();
1793 return FALSE;
1794 }
1795
1796 if (target != if_info->x)
1797 noce_emit_move_insn (if_info->x, target);
1798
1799 seq = end_ifcvt_sequence (if_info);
1800 if (!seq)
1801 return FALSE;
1802
1803 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1804 if_info->cond = cond;
1805 if_info->cond_earliest = earliest;
1806
1807 return TRUE;
1808 }
1809
1810 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1811
1812 static int
1813 noce_try_sign_mask (struct noce_if_info *if_info)
1814 {
1815 rtx cond, t, m, c, seq;
1816 enum machine_mode mode;
1817 enum rtx_code code;
1818
1819 if (no_new_pseudos)
1820 return FALSE;
1821
1822 cond = if_info->cond;
1823 code = GET_CODE (cond);
1824 m = XEXP (cond, 0);
1825 c = XEXP (cond, 1);
1826
1827 t = NULL_RTX;
1828 if (if_info->a == const0_rtx)
1829 {
1830 if ((code == LT && c == const0_rtx)
1831 || (code == LE && c == constm1_rtx))
1832 t = if_info->b;
1833 }
1834 else if (if_info->b == const0_rtx)
1835 {
1836 if ((code == GE && c == const0_rtx)
1837 || (code == GT && c == constm1_rtx))
1838 t = if_info->a;
1839 }
1840
1841 if (! t || side_effects_p (t))
1842 return FALSE;
1843
1844 /* We currently don't handle different modes. */
1845 mode = GET_MODE (t);
1846 if (GET_MODE (m) != mode)
1847 return FALSE;
1848
1849 /* This is only profitable if T is cheap, or T is unconditionally
1850 executed/evaluated in the original insn sequence. */
1851 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1852 && (!if_info->b_unconditional
1853 || t != if_info->b))
1854 return FALSE;
1855
1856 start_sequence ();
1857 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1858 "(signed) m >> 31" directly. This benefits targets with specialized
1859 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1860 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1861 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1862 : NULL_RTX;
1863
1864 if (!t)
1865 {
1866 end_sequence ();
1867 return FALSE;
1868 }
1869
1870 noce_emit_move_insn (if_info->x, t);
1871
1872 seq = end_ifcvt_sequence (if_info);
1873 if (!seq)
1874 return FALSE;
1875
1876 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1877 return TRUE;
1878 }
1879
1880
1881 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1882 transformations. */
1883
1884 static int
1885 noce_try_bitop (struct noce_if_info *if_info)
1886 {
1887 rtx cond, x, a, result, seq;
1888 enum machine_mode mode;
1889 enum rtx_code code;
1890 int bitnum;
1891
1892 x = if_info->x;
1893 cond = if_info->cond;
1894 code = GET_CODE (cond);
1895
1896 /* Check for no else condition. */
1897 if (! rtx_equal_p (x, if_info->b))
1898 return FALSE;
1899
1900 /* Check for a suitable condition. */
1901 if (code != NE && code != EQ)
1902 return FALSE;
1903 if (XEXP (cond, 1) != const0_rtx)
1904 return FALSE;
1905 cond = XEXP (cond, 0);
1906
1907 /* ??? We could also handle AND here. */
1908 if (GET_CODE (cond) == ZERO_EXTRACT)
1909 {
1910 if (XEXP (cond, 1) != const1_rtx
1911 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1912 || ! rtx_equal_p (x, XEXP (cond, 0)))
1913 return FALSE;
1914 bitnum = INTVAL (XEXP (cond, 2));
1915 mode = GET_MODE (x);
1916 if (bitnum >= HOST_BITS_PER_WIDE_INT)
1917 return FALSE;
1918 }
1919 else
1920 return FALSE;
1921
1922 a = if_info->a;
1923 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1924 {
1925 /* Check for "if (X & C) x = x op C". */
1926 if (! rtx_equal_p (x, XEXP (a, 0))
1927 || GET_CODE (XEXP (a, 1)) != CONST_INT
1928 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1929 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1930 return FALSE;
1931
1932 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1933 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1934 if (GET_CODE (a) == IOR)
1935 result = (code == NE) ? a : NULL_RTX;
1936 else if (code == NE)
1937 {
1938 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1939 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1940 result = simplify_gen_binary (IOR, mode, x, result);
1941 }
1942 else
1943 {
1944 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
1945 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1946 result = simplify_gen_binary (AND, mode, x, result);
1947 }
1948 }
1949 else if (GET_CODE (a) == AND)
1950 {
1951 /* Check for "if (X & C) x &= ~C". */
1952 if (! rtx_equal_p (x, XEXP (a, 0))
1953 || GET_CODE (XEXP (a, 1)) != CONST_INT
1954 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1955 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
1956 return FALSE;
1957
1958 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
1959 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
1960 result = (code == EQ) ? a : NULL_RTX;
1961 }
1962 else
1963 return FALSE;
1964
1965 if (result)
1966 {
1967 start_sequence ();
1968 noce_emit_move_insn (x, result);
1969 seq = end_ifcvt_sequence (if_info);
1970 if (!seq)
1971 return FALSE;
1972
1973 emit_insn_before_setloc (seq, if_info->jump,
1974 INSN_LOCATOR (if_info->insn_a));
1975 }
1976 return TRUE;
1977 }
1978
1979
1980 /* Similar to get_condition, only the resulting condition must be
1981 valid at JUMP, instead of at EARLIEST. */
1982
1983 static rtx
1984 noce_get_condition (rtx jump, rtx *earliest)
1985 {
1986 rtx cond, set, tmp;
1987 bool reverse;
1988
1989 if (! any_condjump_p (jump))
1990 return NULL_RTX;
1991
1992 set = pc_set (jump);
1993
1994 /* If this branches to JUMP_LABEL when the condition is false,
1995 reverse the condition. */
1996 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1997 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
1998
1999 /* If the condition variable is a register and is MODE_INT, accept it. */
2000
2001 cond = XEXP (SET_SRC (set), 0);
2002 tmp = XEXP (cond, 0);
2003 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2004 {
2005 *earliest = jump;
2006
2007 if (reverse)
2008 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2009 GET_MODE (cond), tmp, XEXP (cond, 1));
2010 return cond;
2011 }
2012
2013 /* Otherwise, fall back on canonicalize_condition to do the dirty
2014 work of manipulating MODE_CC values and COMPARE rtx codes. */
2015 return canonicalize_condition (jump, cond, reverse, earliest,
2016 NULL_RTX, false, true);
2017 }
2018
2019 /* Return true if OP is ok for if-then-else processing. */
2020
2021 static int
2022 noce_operand_ok (rtx op)
2023 {
2024 /* We special-case memories, so handle any of them with
2025 no address side effects. */
2026 if (MEM_P (op))
2027 return ! side_effects_p (XEXP (op, 0));
2028
2029 if (side_effects_p (op))
2030 return FALSE;
2031
2032 return ! may_trap_p (op);
2033 }
2034
2035 /* Return true if a write into MEM may trap or fault. */
2036
2037 static bool
2038 noce_mem_write_may_trap_or_fault_p (rtx mem)
2039 {
2040 rtx addr;
2041
2042 if (MEM_READONLY_P (mem))
2043 return true;
2044
2045 if (may_trap_or_fault_p (mem))
2046 return true;
2047
2048 addr = XEXP (mem, 0);
2049
2050 /* Call target hook to avoid the effects of -fpic etc.... */
2051 addr = targetm.delegitimize_address (addr);
2052
2053 while (addr)
2054 switch (GET_CODE (addr))
2055 {
2056 case CONST:
2057 case PRE_DEC:
2058 case PRE_INC:
2059 case POST_DEC:
2060 case POST_INC:
2061 case POST_MODIFY:
2062 addr = XEXP (addr, 0);
2063 break;
2064 case LO_SUM:
2065 case PRE_MODIFY:
2066 addr = XEXP (addr, 1);
2067 break;
2068 case PLUS:
2069 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2070 addr = XEXP (addr, 0);
2071 else
2072 return false;
2073 break;
2074 case LABEL_REF:
2075 return true;
2076 case SYMBOL_REF:
2077 if (SYMBOL_REF_DECL (addr)
2078 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2079 return true;
2080 return false;
2081 default:
2082 return false;
2083 }
2084
2085 return false;
2086 }
2087
2088 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2089 without using conditional execution. Return TRUE if we were
2090 successful at converting the block. */
2091
2092 static int
2093 noce_process_if_block (struct ce_if_block * ce_info)
2094 {
2095 basic_block test_bb = ce_info->test_bb; /* test block */
2096 basic_block then_bb = ce_info->then_bb; /* THEN */
2097 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2098 struct noce_if_info if_info;
2099 rtx insn_a, insn_b;
2100 rtx set_a, set_b;
2101 rtx orig_x, x, a, b;
2102 rtx jump, cond;
2103
2104 /* We're looking for patterns of the form
2105
2106 (1) if (...) x = a; else x = b;
2107 (2) x = b; if (...) x = a;
2108 (3) if (...) x = a; // as if with an initial x = x.
2109
2110 The later patterns require jumps to be more expensive.
2111
2112 ??? For future expansion, look for multiple X in such patterns. */
2113
2114 /* If test is comprised of && or || elements, don't handle it unless it is
2115 the special case of && elements without an ELSE block. */
2116 if (ce_info->num_multiple_test_blocks)
2117 {
2118 if (else_bb || ! ce_info->and_and_p)
2119 return FALSE;
2120
2121 ce_info->test_bb = test_bb = ce_info->last_test_bb;
2122 ce_info->num_multiple_test_blocks = 0;
2123 ce_info->num_and_and_blocks = 0;
2124 ce_info->num_or_or_blocks = 0;
2125 }
2126
2127 /* If this is not a standard conditional jump, we can't parse it. */
2128 jump = BB_END (test_bb);
2129 cond = noce_get_condition (jump, &if_info.cond_earliest);
2130 if (! cond)
2131 return FALSE;
2132
2133 /* If the conditional jump is more than just a conditional
2134 jump, then we can not do if-conversion on this block. */
2135 if (! onlyjump_p (jump))
2136 return FALSE;
2137
2138 /* We must be comparing objects whose modes imply the size. */
2139 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2140 return FALSE;
2141
2142 /* Look for one of the potential sets. */
2143 insn_a = first_active_insn (then_bb);
2144 if (! insn_a
2145 || insn_a != last_active_insn (then_bb, FALSE)
2146 || (set_a = single_set (insn_a)) == NULL_RTX)
2147 return FALSE;
2148
2149 x = SET_DEST (set_a);
2150 a = SET_SRC (set_a);
2151
2152 /* Look for the other potential set. Make sure we've got equivalent
2153 destinations. */
2154 /* ??? This is overconservative. Storing to two different mems is
2155 as easy as conditionally computing the address. Storing to a
2156 single mem merely requires a scratch memory to use as one of the
2157 destination addresses; often the memory immediately below the
2158 stack pointer is available for this. */
2159 set_b = NULL_RTX;
2160 if (else_bb)
2161 {
2162 insn_b = first_active_insn (else_bb);
2163 if (! insn_b
2164 || insn_b != last_active_insn (else_bb, FALSE)
2165 || (set_b = single_set (insn_b)) == NULL_RTX
2166 || ! rtx_equal_p (x, SET_DEST (set_b)))
2167 return FALSE;
2168 }
2169 else
2170 {
2171 insn_b = prev_nonnote_insn (if_info.cond_earliest);
2172 /* We're going to be moving the evaluation of B down from above
2173 COND_EARLIEST to JUMP. Make sure the relevant data is still
2174 intact. */
2175 if (! insn_b
2176 || !NONJUMP_INSN_P (insn_b)
2177 || (set_b = single_set (insn_b)) == NULL_RTX
2178 || ! rtx_equal_p (x, SET_DEST (set_b))
2179 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2180 || modified_between_p (SET_SRC (set_b),
2181 PREV_INSN (if_info.cond_earliest), jump)
2182 /* Likewise with X. In particular this can happen when
2183 noce_get_condition looks farther back in the instruction
2184 stream than one might expect. */
2185 || reg_overlap_mentioned_p (x, cond)
2186 || reg_overlap_mentioned_p (x, a)
2187 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
2188 insn_b = set_b = NULL_RTX;
2189 }
2190
2191 /* If x has side effects then only the if-then-else form is safe to
2192 convert. But even in that case we would need to restore any notes
2193 (such as REG_INC) at then end. That can be tricky if
2194 noce_emit_move_insn expands to more than one insn, so disable the
2195 optimization entirely for now if there are side effects. */
2196 if (side_effects_p (x))
2197 return FALSE;
2198
2199 b = (set_b ? SET_SRC (set_b) : x);
2200
2201 /* Only operate on register destinations, and even then avoid extending
2202 the lifetime of hard registers on small register class machines. */
2203 orig_x = x;
2204 if (!REG_P (x)
2205 || (SMALL_REGISTER_CLASSES
2206 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2207 {
2208 if (no_new_pseudos || GET_MODE (x) == BLKmode)
2209 return FALSE;
2210 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2211 ? XEXP (x, 0) : x));
2212 }
2213
2214 /* Don't operate on sources that may trap or are volatile. */
2215 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2216 return FALSE;
2217
2218 /* Set up the info block for our subroutines. */
2219 if_info.test_bb = test_bb;
2220 if_info.cond = cond;
2221 if_info.jump = jump;
2222 if_info.insn_a = insn_a;
2223 if_info.insn_b = insn_b;
2224 if_info.x = x;
2225 if_info.a = a;
2226 if_info.b = b;
2227 if_info.b_unconditional = else_bb == 0;
2228
2229 /* Try optimizations in some approximation of a useful order. */
2230 /* ??? Should first look to see if X is live incoming at all. If it
2231 isn't, we don't need anything but an unconditional set. */
2232
2233 /* Look and see if A and B are really the same. Avoid creating silly
2234 cmove constructs that no one will fix up later. */
2235 if (rtx_equal_p (a, b))
2236 {
2237 /* If we have an INSN_B, we don't have to create any new rtl. Just
2238 move the instruction that we already have. If we don't have an
2239 INSN_B, that means that A == X, and we've got a noop move. In
2240 that case don't do anything and let the code below delete INSN_A. */
2241 if (insn_b && else_bb)
2242 {
2243 rtx note;
2244
2245 if (else_bb && insn_b == BB_END (else_bb))
2246 BB_END (else_bb) = PREV_INSN (insn_b);
2247 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2248
2249 /* If there was a REG_EQUAL note, delete it since it may have been
2250 true due to this insn being after a jump. */
2251 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2252 remove_note (insn_b, note);
2253
2254 insn_b = NULL_RTX;
2255 }
2256 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2257 x must be executed twice. */
2258 else if (insn_b && side_effects_p (orig_x))
2259 return FALSE;
2260
2261 x = orig_x;
2262 goto success;
2263 }
2264
2265 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2266 for optimizations if writing to x may trap or fault, i.e. it's a memory
2267 other than a static var or a stack slot, is misaligned on strict
2268 aligned machines or is read-only.
2269 If x is a read-only memory, then the program is valid only if we
2270 avoid the store into it. If there are stores on both the THEN and
2271 ELSE arms, then we can go ahead with the conversion; either the
2272 program is broken, or the condition is always false such that the
2273 other memory is selected. */
2274 if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
2275 return FALSE;
2276
2277 if (noce_try_move (&if_info))
2278 goto success;
2279 if (noce_try_store_flag (&if_info))
2280 goto success;
2281 if (noce_try_bitop (&if_info))
2282 goto success;
2283 if (noce_try_minmax (&if_info))
2284 goto success;
2285 if (noce_try_abs (&if_info))
2286 goto success;
2287 if (HAVE_conditional_move
2288 && noce_try_cmove (&if_info))
2289 goto success;
2290 if (! HAVE_conditional_execution)
2291 {
2292 if (noce_try_store_flag_constants (&if_info))
2293 goto success;
2294 if (noce_try_addcc (&if_info))
2295 goto success;
2296 if (noce_try_store_flag_mask (&if_info))
2297 goto success;
2298 if (HAVE_conditional_move
2299 && noce_try_cmove_arith (&if_info))
2300 goto success;
2301 if (noce_try_sign_mask (&if_info))
2302 goto success;
2303 }
2304
2305 return FALSE;
2306
2307 success:
2308 /* The original sets may now be killed. */
2309 delete_insn (insn_a);
2310
2311 /* Several special cases here: First, we may have reused insn_b above,
2312 in which case insn_b is now NULL. Second, we want to delete insn_b
2313 if it came from the ELSE block, because follows the now correct
2314 write that appears in the TEST block. However, if we got insn_b from
2315 the TEST block, it may in fact be loading data needed for the comparison.
2316 We'll let life_analysis remove the insn if it's really dead. */
2317 if (insn_b && else_bb)
2318 delete_insn (insn_b);
2319
2320 /* The new insns will have been inserted immediately before the jump. We
2321 should be able to remove the jump with impunity, but the condition itself
2322 may have been modified by gcse to be shared across basic blocks. */
2323 delete_insn (jump);
2324
2325 /* If we used a temporary, fix it up now. */
2326 if (orig_x != x)
2327 {
2328 start_sequence ();
2329 noce_emit_move_insn (orig_x, x);
2330 insn_b = get_insns ();
2331 set_used_flags (orig_x);
2332 unshare_all_rtl_in_chain (insn_b);
2333 end_sequence ();
2334
2335 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2336 }
2337
2338 /* Merge the blocks! */
2339 merge_if_block (ce_info);
2340
2341 return TRUE;
2342 }
2343 \f
2344 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2345 straight line code. Return true if successful. */
2346
2347 static int
2348 process_if_block (struct ce_if_block * ce_info)
2349 {
2350 if (! reload_completed
2351 && noce_process_if_block (ce_info))
2352 return TRUE;
2353
2354 if (HAVE_conditional_execution && reload_completed)
2355 {
2356 /* If we have && and || tests, try to first handle combining the && and
2357 || tests into the conditional code, and if that fails, go back and
2358 handle it without the && and ||, which at present handles the && case
2359 if there was no ELSE block. */
2360 if (cond_exec_process_if_block (ce_info, TRUE))
2361 return TRUE;
2362
2363 if (ce_info->num_multiple_test_blocks)
2364 {
2365 cancel_changes (0);
2366
2367 if (cond_exec_process_if_block (ce_info, FALSE))
2368 return TRUE;
2369 }
2370 }
2371
2372 return FALSE;
2373 }
2374
2375 /* Merge the blocks and mark for local life update. */
2376
2377 static void
2378 merge_if_block (struct ce_if_block * ce_info)
2379 {
2380 basic_block test_bb = ce_info->test_bb; /* last test block */
2381 basic_block then_bb = ce_info->then_bb; /* THEN */
2382 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2383 basic_block join_bb = ce_info->join_bb; /* join block */
2384 basic_block combo_bb;
2385
2386 /* All block merging is done into the lower block numbers. */
2387
2388 combo_bb = test_bb;
2389
2390 /* Merge any basic blocks to handle && and || subtests. Each of
2391 the blocks are on the fallthru path from the predecessor block. */
2392 if (ce_info->num_multiple_test_blocks > 0)
2393 {
2394 basic_block bb = test_bb;
2395 basic_block last_test_bb = ce_info->last_test_bb;
2396 basic_block fallthru = block_fallthru (bb);
2397
2398 do
2399 {
2400 bb = fallthru;
2401 fallthru = block_fallthru (bb);
2402 merge_blocks (combo_bb, bb);
2403 num_true_changes++;
2404 }
2405 while (bb != last_test_bb);
2406 }
2407
2408 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2409 label, but it might if there were || tests. That label's count should be
2410 zero, and it normally should be removed. */
2411
2412 if (then_bb)
2413 {
2414 if (combo_bb->il.rtl->global_live_at_end)
2415 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2416 then_bb->il.rtl->global_live_at_end);
2417 merge_blocks (combo_bb, then_bb);
2418 num_true_changes++;
2419 }
2420
2421 /* The ELSE block, if it existed, had a label. That label count
2422 will almost always be zero, but odd things can happen when labels
2423 get their addresses taken. */
2424 if (else_bb)
2425 {
2426 merge_blocks (combo_bb, else_bb);
2427 num_true_changes++;
2428 }
2429
2430 /* If there was no join block reported, that means it was not adjacent
2431 to the others, and so we cannot merge them. */
2432
2433 if (! join_bb)
2434 {
2435 rtx last = BB_END (combo_bb);
2436
2437 /* The outgoing edge for the current COMBO block should already
2438 be correct. Verify this. */
2439 if (EDGE_COUNT (combo_bb->succs) == 0)
2440 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2441 || (NONJUMP_INSN_P (last)
2442 && GET_CODE (PATTERN (last)) == TRAP_IF
2443 && (TRAP_CONDITION (PATTERN (last))
2444 == const_true_rtx)));
2445
2446 else
2447 /* There should still be something at the end of the THEN or ELSE
2448 blocks taking us to our final destination. */
2449 gcc_assert (JUMP_P (last)
2450 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2451 && CALL_P (last)
2452 && SIBLING_CALL_P (last))
2453 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2454 && can_throw_internal (last)));
2455 }
2456
2457 /* The JOIN block may have had quite a number of other predecessors too.
2458 Since we've already merged the TEST, THEN and ELSE blocks, we should
2459 have only one remaining edge from our if-then-else diamond. If there
2460 is more than one remaining edge, it must come from elsewhere. There
2461 may be zero incoming edges if the THEN block didn't actually join
2462 back up (as with a call to a non-return function). */
2463 else if (EDGE_COUNT (join_bb->preds) < 2
2464 && join_bb != EXIT_BLOCK_PTR)
2465 {
2466 /* We can merge the JOIN. */
2467 if (combo_bb->il.rtl->global_live_at_end)
2468 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2469 join_bb->il.rtl->global_live_at_end);
2470
2471 merge_blocks (combo_bb, join_bb);
2472 num_true_changes++;
2473 }
2474 else
2475 {
2476 /* We cannot merge the JOIN. */
2477
2478 /* The outgoing edge for the current COMBO block should already
2479 be correct. Verify this. */
2480 gcc_assert (single_succ_p (combo_bb)
2481 && single_succ (combo_bb) == join_bb);
2482
2483 /* Remove the jump and cruft from the end of the COMBO block. */
2484 if (join_bb != EXIT_BLOCK_PTR)
2485 tidy_fallthru_edge (single_succ_edge (combo_bb));
2486 }
2487
2488 num_updated_if_blocks++;
2489 }
2490 \f
2491 /* Find a block ending in a simple IF condition and try to transform it
2492 in some way. When converting a multi-block condition, put the new code
2493 in the first such block and delete the rest. Return a pointer to this
2494 first block if some transformation was done. Return NULL otherwise. */
2495
2496 static basic_block
2497 find_if_header (basic_block test_bb, int pass)
2498 {
2499 ce_if_block_t ce_info;
2500 edge then_edge;
2501 edge else_edge;
2502
2503 /* The kind of block we're looking for has exactly two successors. */
2504 if (EDGE_COUNT (test_bb->succs) != 2)
2505 return NULL;
2506
2507 then_edge = EDGE_SUCC (test_bb, 0);
2508 else_edge = EDGE_SUCC (test_bb, 1);
2509
2510 /* Neither edge should be abnormal. */
2511 if ((then_edge->flags & EDGE_COMPLEX)
2512 || (else_edge->flags & EDGE_COMPLEX))
2513 return NULL;
2514
2515 /* Nor exit the loop. */
2516 if ((then_edge->flags & EDGE_LOOP_EXIT)
2517 || (else_edge->flags & EDGE_LOOP_EXIT))
2518 return NULL;
2519
2520 /* The THEN edge is canonically the one that falls through. */
2521 if (then_edge->flags & EDGE_FALLTHRU)
2522 ;
2523 else if (else_edge->flags & EDGE_FALLTHRU)
2524 {
2525 edge e = else_edge;
2526 else_edge = then_edge;
2527 then_edge = e;
2528 }
2529 else
2530 /* Otherwise this must be a multiway branch of some sort. */
2531 return NULL;
2532
2533 memset (&ce_info, '\0', sizeof (ce_info));
2534 ce_info.test_bb = test_bb;
2535 ce_info.then_bb = then_edge->dest;
2536 ce_info.else_bb = else_edge->dest;
2537 ce_info.pass = pass;
2538
2539 #ifdef IFCVT_INIT_EXTRA_FIELDS
2540 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2541 #endif
2542
2543 if (find_if_block (&ce_info))
2544 goto success;
2545
2546 if (HAVE_trap && HAVE_conditional_trap
2547 && find_cond_trap (test_bb, then_edge, else_edge))
2548 goto success;
2549
2550 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2551 && (! HAVE_conditional_execution || reload_completed))
2552 {
2553 if (find_if_case_1 (test_bb, then_edge, else_edge))
2554 goto success;
2555 if (find_if_case_2 (test_bb, then_edge, else_edge))
2556 goto success;
2557 }
2558
2559 return NULL;
2560
2561 success:
2562 if (dump_file)
2563 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2564 return ce_info.test_bb;
2565 }
2566
2567 /* Return true if a block has two edges, one of which falls through to the next
2568 block, and the other jumps to a specific block, so that we can tell if the
2569 block is part of an && test or an || test. Returns either -1 or the number
2570 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2571
2572 static int
2573 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2574 {
2575 edge cur_edge;
2576 int fallthru_p = FALSE;
2577 int jump_p = FALSE;
2578 rtx insn;
2579 rtx end;
2580 int n_insns = 0;
2581 edge_iterator ei;
2582
2583 if (!cur_bb || !target_bb)
2584 return -1;
2585
2586 /* If no edges, obviously it doesn't jump or fallthru. */
2587 if (EDGE_COUNT (cur_bb->succs) == 0)
2588 return FALSE;
2589
2590 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2591 {
2592 if (cur_edge->flags & EDGE_COMPLEX)
2593 /* Anything complex isn't what we want. */
2594 return -1;
2595
2596 else if (cur_edge->flags & EDGE_FALLTHRU)
2597 fallthru_p = TRUE;
2598
2599 else if (cur_edge->dest == target_bb)
2600 jump_p = TRUE;
2601
2602 else
2603 return -1;
2604 }
2605
2606 if ((jump_p & fallthru_p) == 0)
2607 return -1;
2608
2609 /* Don't allow calls in the block, since this is used to group && and ||
2610 together for conditional execution support. ??? we should support
2611 conditional execution support across calls for IA-64 some day, but
2612 for now it makes the code simpler. */
2613 end = BB_END (cur_bb);
2614 insn = BB_HEAD (cur_bb);
2615
2616 while (insn != NULL_RTX)
2617 {
2618 if (CALL_P (insn))
2619 return -1;
2620
2621 if (INSN_P (insn)
2622 && !JUMP_P (insn)
2623 && GET_CODE (PATTERN (insn)) != USE
2624 && GET_CODE (PATTERN (insn)) != CLOBBER)
2625 n_insns++;
2626
2627 if (insn == end)
2628 break;
2629
2630 insn = NEXT_INSN (insn);
2631 }
2632
2633 return n_insns;
2634 }
2635
2636 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2637 block. If so, we'll try to convert the insns to not require the branch.
2638 Return TRUE if we were successful at converting the block. */
2639
2640 static int
2641 find_if_block (struct ce_if_block * ce_info)
2642 {
2643 basic_block test_bb = ce_info->test_bb;
2644 basic_block then_bb = ce_info->then_bb;
2645 basic_block else_bb = ce_info->else_bb;
2646 basic_block join_bb = NULL_BLOCK;
2647 edge cur_edge;
2648 basic_block next;
2649 edge_iterator ei;
2650
2651 ce_info->last_test_bb = test_bb;
2652
2653 /* Discover if any fall through predecessors of the current test basic block
2654 were && tests (which jump to the else block) or || tests (which jump to
2655 the then block). */
2656 if (HAVE_conditional_execution && reload_completed
2657 && single_pred_p (test_bb)
2658 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
2659 {
2660 basic_block bb = single_pred (test_bb);
2661 basic_block target_bb;
2662 int max_insns = MAX_CONDITIONAL_EXECUTE;
2663 int n_insns;
2664
2665 /* Determine if the preceding block is an && or || block. */
2666 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2667 {
2668 ce_info->and_and_p = TRUE;
2669 target_bb = else_bb;
2670 }
2671 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2672 {
2673 ce_info->and_and_p = FALSE;
2674 target_bb = then_bb;
2675 }
2676 else
2677 target_bb = NULL_BLOCK;
2678
2679 if (target_bb && n_insns <= max_insns)
2680 {
2681 int total_insns = 0;
2682 int blocks = 0;
2683
2684 ce_info->last_test_bb = test_bb;
2685
2686 /* Found at least one && or || block, look for more. */
2687 do
2688 {
2689 ce_info->test_bb = test_bb = bb;
2690 total_insns += n_insns;
2691 blocks++;
2692
2693 if (!single_pred_p (bb))
2694 break;
2695
2696 bb = single_pred (bb);
2697 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2698 }
2699 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2700
2701 ce_info->num_multiple_test_blocks = blocks;
2702 ce_info->num_multiple_test_insns = total_insns;
2703
2704 if (ce_info->and_and_p)
2705 ce_info->num_and_and_blocks = blocks;
2706 else
2707 ce_info->num_or_or_blocks = blocks;
2708 }
2709 }
2710
2711 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2712 other than any || blocks which jump to the THEN block. */
2713 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
2714 return FALSE;
2715
2716 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2717 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
2718 {
2719 if (cur_edge->flags & EDGE_COMPLEX)
2720 return FALSE;
2721 }
2722
2723 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
2724 {
2725 if (cur_edge->flags & EDGE_COMPLEX)
2726 return FALSE;
2727 }
2728
2729 /* The THEN block of an IF-THEN combo must have zero or one successors. */
2730 if (EDGE_COUNT (then_bb->succs) > 0
2731 && (!single_succ_p (then_bb)
2732 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2733 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2734 return FALSE;
2735
2736 /* If the THEN block has no successors, conditional execution can still
2737 make a conditional call. Don't do this unless the ELSE block has
2738 only one incoming edge -- the CFG manipulation is too ugly otherwise.
2739 Check for the last insn of the THEN block being an indirect jump, which
2740 is listed as not having any successors, but confuses the rest of the CE
2741 code processing. ??? we should fix this in the future. */
2742 if (EDGE_COUNT (then_bb->succs) == 0)
2743 {
2744 if (single_pred_p (else_bb))
2745 {
2746 rtx last_insn = BB_END (then_bb);
2747
2748 while (last_insn
2749 && NOTE_P (last_insn)
2750 && last_insn != BB_HEAD (then_bb))
2751 last_insn = PREV_INSN (last_insn);
2752
2753 if (last_insn
2754 && JUMP_P (last_insn)
2755 && ! simplejump_p (last_insn))
2756 return FALSE;
2757
2758 join_bb = else_bb;
2759 else_bb = NULL_BLOCK;
2760 }
2761 else
2762 return FALSE;
2763 }
2764
2765 /* If the THEN block's successor is the other edge out of the TEST block,
2766 then we have an IF-THEN combo without an ELSE. */
2767 else if (single_succ (then_bb) == else_bb)
2768 {
2769 join_bb = else_bb;
2770 else_bb = NULL_BLOCK;
2771 }
2772
2773 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2774 has exactly one predecessor and one successor, and the outgoing edge
2775 is not complex, then we have an IF-THEN-ELSE combo. */
2776 else if (single_succ_p (else_bb)
2777 && single_succ (then_bb) == single_succ (else_bb)
2778 && single_pred_p (else_bb)
2779 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2780 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2781 join_bb = single_succ (else_bb);
2782
2783 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2784 else
2785 return FALSE;
2786
2787 num_possible_if_blocks++;
2788
2789 if (dump_file)
2790 {
2791 fprintf (dump_file,
2792 "\nIF-THEN%s block found, pass %d, start block %d "
2793 "[insn %d], then %d [%d]",
2794 (else_bb) ? "-ELSE" : "",
2795 ce_info->pass,
2796 test_bb->index,
2797 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2798 then_bb->index,
2799 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2800
2801 if (else_bb)
2802 fprintf (dump_file, ", else %d [%d]",
2803 else_bb->index,
2804 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2805
2806 fprintf (dump_file, ", join %d [%d]",
2807 join_bb->index,
2808 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2809
2810 if (ce_info->num_multiple_test_blocks > 0)
2811 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2812 ce_info->num_multiple_test_blocks,
2813 (ce_info->and_and_p) ? "&&" : "||",
2814 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2815 ce_info->last_test_bb->index,
2816 ((BB_HEAD (ce_info->last_test_bb))
2817 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2818 : -1));
2819
2820 fputc ('\n', dump_file);
2821 }
2822
2823 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
2824 first condition for free, since we've already asserted that there's a
2825 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
2826 we checked the FALLTHRU flag, those are already adjacent to the last IF
2827 block. */
2828 /* ??? As an enhancement, move the ELSE block. Have to deal with
2829 BLOCK notes, if by no other means than backing out the merge if they
2830 exist. Sticky enough I don't want to think about it now. */
2831 next = then_bb;
2832 if (else_bb && (next = next->next_bb) != else_bb)
2833 return FALSE;
2834 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2835 {
2836 if (else_bb)
2837 join_bb = NULL;
2838 else
2839 return FALSE;
2840 }
2841
2842 /* Do the real work. */
2843 ce_info->else_bb = else_bb;
2844 ce_info->join_bb = join_bb;
2845
2846 return process_if_block (ce_info);
2847 }
2848
2849 /* Convert a branch over a trap, or a branch
2850 to a trap, into a conditional trap. */
2851
2852 static int
2853 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2854 {
2855 basic_block then_bb = then_edge->dest;
2856 basic_block else_bb = else_edge->dest;
2857 basic_block other_bb, trap_bb;
2858 rtx trap, jump, cond, cond_earliest, seq;
2859 enum rtx_code code;
2860
2861 /* Locate the block with the trap instruction. */
2862 /* ??? While we look for no successors, we really ought to allow
2863 EH successors. Need to fix merge_if_block for that to work. */
2864 if ((trap = block_has_only_trap (then_bb)) != NULL)
2865 trap_bb = then_bb, other_bb = else_bb;
2866 else if ((trap = block_has_only_trap (else_bb)) != NULL)
2867 trap_bb = else_bb, other_bb = then_bb;
2868 else
2869 return FALSE;
2870
2871 if (dump_file)
2872 {
2873 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2874 test_bb->index, trap_bb->index);
2875 }
2876
2877 /* If this is not a standard conditional jump, we can't parse it. */
2878 jump = BB_END (test_bb);
2879 cond = noce_get_condition (jump, &cond_earliest);
2880 if (! cond)
2881 return FALSE;
2882
2883 /* If the conditional jump is more than just a conditional jump, then
2884 we can not do if-conversion on this block. */
2885 if (! onlyjump_p (jump))
2886 return FALSE;
2887
2888 /* We must be comparing objects whose modes imply the size. */
2889 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2890 return FALSE;
2891
2892 /* Reverse the comparison code, if necessary. */
2893 code = GET_CODE (cond);
2894 if (then_bb == trap_bb)
2895 {
2896 code = reversed_comparison_code (cond, jump);
2897 if (code == UNKNOWN)
2898 return FALSE;
2899 }
2900
2901 /* Attempt to generate the conditional trap. */
2902 seq = gen_cond_trap (code, XEXP (cond, 0),
2903 XEXP (cond, 1),
2904 TRAP_CODE (PATTERN (trap)));
2905 if (seq == NULL)
2906 return FALSE;
2907
2908 num_true_changes++;
2909
2910 /* Emit the new insns before cond_earliest. */
2911 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
2912
2913 /* Delete the trap block if possible. */
2914 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
2915 if (EDGE_COUNT (trap_bb->preds) == 0)
2916 delete_basic_block (trap_bb);
2917
2918 /* If the non-trap block and the test are now adjacent, merge them.
2919 Otherwise we must insert a direct branch. */
2920 if (test_bb->next_bb == other_bb)
2921 {
2922 struct ce_if_block new_ce_info;
2923 delete_insn (jump);
2924 memset (&new_ce_info, '\0', sizeof (new_ce_info));
2925 new_ce_info.test_bb = test_bb;
2926 new_ce_info.then_bb = NULL;
2927 new_ce_info.else_bb = NULL;
2928 new_ce_info.join_bb = other_bb;
2929 merge_if_block (&new_ce_info);
2930 }
2931 else
2932 {
2933 rtx lab, newjump;
2934
2935 lab = JUMP_LABEL (jump);
2936 newjump = emit_jump_insn_after (gen_jump (lab), jump);
2937 LABEL_NUSES (lab) += 1;
2938 JUMP_LABEL (newjump) = lab;
2939 emit_barrier_after (newjump);
2940
2941 delete_insn (jump);
2942 }
2943
2944 return TRUE;
2945 }
2946
2947 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
2948 return it. */
2949
2950 static rtx
2951 block_has_only_trap (basic_block bb)
2952 {
2953 rtx trap;
2954
2955 /* We're not the exit block. */
2956 if (bb == EXIT_BLOCK_PTR)
2957 return NULL_RTX;
2958
2959 /* The block must have no successors. */
2960 if (EDGE_COUNT (bb->succs) > 0)
2961 return NULL_RTX;
2962
2963 /* The only instruction in the THEN block must be the trap. */
2964 trap = first_active_insn (bb);
2965 if (! (trap == BB_END (bb)
2966 && GET_CODE (PATTERN (trap)) == TRAP_IF
2967 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2968 return NULL_RTX;
2969
2970 return trap;
2971 }
2972
2973 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2974 transformable, but not necessarily the other. There need be no
2975 JOIN block.
2976
2977 Return TRUE if we were successful at converting the block.
2978
2979 Cases we'd like to look at:
2980
2981 (1)
2982 if (test) goto over; // x not live
2983 x = a;
2984 goto label;
2985 over:
2986
2987 becomes
2988
2989 x = a;
2990 if (! test) goto label;
2991
2992 (2)
2993 if (test) goto E; // x not live
2994 x = big();
2995 goto L;
2996 E:
2997 x = b;
2998 goto M;
2999
3000 becomes
3001
3002 x = b;
3003 if (test) goto M;
3004 x = big();
3005 goto L;
3006
3007 (3) // This one's really only interesting for targets that can do
3008 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3009 // it results in multiple branches on a cache line, which often
3010 // does not sit well with predictors.
3011
3012 if (test1) goto E; // predicted not taken
3013 x = a;
3014 if (test2) goto F;
3015 ...
3016 E:
3017 x = b;
3018 J:
3019
3020 becomes
3021
3022 x = a;
3023 if (test1) goto E;
3024 if (test2) goto F;
3025
3026 Notes:
3027
3028 (A) Don't do (2) if the branch is predicted against the block we're
3029 eliminating. Do it anyway if we can eliminate a branch; this requires
3030 that the sole successor of the eliminated block postdominate the other
3031 side of the if.
3032
3033 (B) With CE, on (3) we can steal from both sides of the if, creating
3034
3035 if (test1) x = a;
3036 if (!test1) x = b;
3037 if (test1) goto J;
3038 if (test2) goto F;
3039 ...
3040 J:
3041
3042 Again, this is most useful if J postdominates.
3043
3044 (C) CE substitutes for helpful life information.
3045
3046 (D) These heuristics need a lot of work. */
3047
3048 /* Tests for case 1 above. */
3049
3050 static int
3051 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3052 {
3053 basic_block then_bb = then_edge->dest;
3054 basic_block else_bb = else_edge->dest, new_bb;
3055 int then_bb_index;
3056
3057 /* If we are partitioning hot/cold basic blocks, we don't want to
3058 mess up unconditional or indirect jumps that cross between hot
3059 and cold sections.
3060
3061 Basic block partitioning may result in some jumps that appear to
3062 be optimizable (or blocks that appear to be mergeable), but which really
3063 must be left untouched (they are required to make it safely across
3064 partition boundaries). See the comments at the top of
3065 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3066
3067 if ((BB_END (then_bb)
3068 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3069 || (BB_END (test_bb)
3070 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3071 || (BB_END (else_bb)
3072 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3073 NULL_RTX)))
3074 return FALSE;
3075
3076 /* THEN has one successor. */
3077 if (!single_succ_p (then_bb))
3078 return FALSE;
3079
3080 /* THEN does not fall through, but is not strange either. */
3081 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3082 return FALSE;
3083
3084 /* THEN has one predecessor. */
3085 if (!single_pred_p (then_bb))
3086 return FALSE;
3087
3088 /* THEN must do something. */
3089 if (forwarder_block_p (then_bb))
3090 return FALSE;
3091
3092 num_possible_if_blocks++;
3093 if (dump_file)
3094 fprintf (dump_file,
3095 "\nIF-CASE-1 found, start %d, then %d\n",
3096 test_bb->index, then_bb->index);
3097
3098 /* THEN is small. */
3099 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3100 return FALSE;
3101
3102 /* Registers set are dead, or are predicable. */
3103 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3104 single_succ (then_bb), 1))
3105 return FALSE;
3106
3107 /* Conversion went ok, including moving the insns and fixing up the
3108 jump. Adjust the CFG to match. */
3109
3110 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3111 else_bb->il.rtl->global_live_at_start,
3112 then_bb->il.rtl->global_live_at_end);
3113
3114
3115 /* We can avoid creating a new basic block if then_bb is immediately
3116 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3117 thru to else_bb. */
3118
3119 if (then_bb->next_bb == else_bb
3120 && then_bb->prev_bb == test_bb
3121 && else_bb != EXIT_BLOCK_PTR)
3122 {
3123 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3124 new_bb = 0;
3125 }
3126 else
3127 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3128 else_bb);
3129
3130 then_bb_index = then_bb->index;
3131 delete_basic_block (then_bb);
3132
3133 /* Make rest of code believe that the newly created block is the THEN_BB
3134 block we removed. */
3135 if (new_bb)
3136 {
3137 new_bb->index = then_bb_index;
3138 BASIC_BLOCK (then_bb_index) = new_bb;
3139 /* Since the fallthru edge was redirected from test_bb to new_bb,
3140 we need to ensure that new_bb is in the same partition as
3141 test bb (you can not fall through across section boundaries). */
3142 BB_COPY_PARTITION (new_bb, test_bb);
3143 }
3144 /* We've possibly created jump to next insn, cleanup_cfg will solve that
3145 later. */
3146
3147 num_true_changes++;
3148 num_updated_if_blocks++;
3149
3150 return TRUE;
3151 }
3152
3153 /* Test for case 2 above. */
3154
3155 static int
3156 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3157 {
3158 basic_block then_bb = then_edge->dest;
3159 basic_block else_bb = else_edge->dest;
3160 edge else_succ;
3161 rtx note;
3162
3163 /* If we are partitioning hot/cold basic blocks, we don't want to
3164 mess up unconditional or indirect jumps that cross between hot
3165 and cold sections.
3166
3167 Basic block partitioning may result in some jumps that appear to
3168 be optimizable (or blocks that appear to be mergeable), but which really
3169 must be left untouched (they are required to make it safely across
3170 partition boundaries). See the comments at the top of
3171 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3172
3173 if ((BB_END (then_bb)
3174 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3175 || (BB_END (test_bb)
3176 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3177 || (BB_END (else_bb)
3178 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3179 NULL_RTX)))
3180 return FALSE;
3181
3182 /* ELSE has one successor. */
3183 if (!single_succ_p (else_bb))
3184 return FALSE;
3185 else
3186 else_succ = single_succ_edge (else_bb);
3187
3188 /* ELSE outgoing edge is not complex. */
3189 if (else_succ->flags & EDGE_COMPLEX)
3190 return FALSE;
3191
3192 /* ELSE has one predecessor. */
3193 if (!single_pred_p (else_bb))
3194 return FALSE;
3195
3196 /* THEN is not EXIT. */
3197 if (then_bb->index < 0)
3198 return FALSE;
3199
3200 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3201 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3202 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3203 ;
3204 else if (else_succ->dest->index < 0
3205 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3206 else_succ->dest))
3207 ;
3208 else
3209 return FALSE;
3210
3211 num_possible_if_blocks++;
3212 if (dump_file)
3213 fprintf (dump_file,
3214 "\nIF-CASE-2 found, start %d, else %d\n",
3215 test_bb->index, else_bb->index);
3216
3217 /* ELSE is small. */
3218 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3219 return FALSE;
3220
3221 /* Registers set are dead, or are predicable. */
3222 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3223 return FALSE;
3224
3225 /* Conversion went ok, including moving the insns and fixing up the
3226 jump. Adjust the CFG to match. */
3227
3228 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3229 then_bb->il.rtl->global_live_at_start,
3230 else_bb->il.rtl->global_live_at_end);
3231
3232 delete_basic_block (else_bb);
3233
3234 num_true_changes++;
3235 num_updated_if_blocks++;
3236
3237 /* ??? We may now fallthru from one of THEN's successors into a join
3238 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3239
3240 return TRUE;
3241 }
3242
3243 /* A subroutine of dead_or_predicable called through for_each_rtx.
3244 Return 1 if a memory is found. */
3245
3246 static int
3247 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3248 {
3249 return MEM_P (*px);
3250 }
3251
3252 /* Used by the code above to perform the actual rtl transformations.
3253 Return TRUE if successful.
3254
3255 TEST_BB is the block containing the conditional branch. MERGE_BB
3256 is the block containing the code to manipulate. NEW_DEST is the
3257 label TEST_BB should be branching to after the conversion.
3258 REVERSEP is true if the sense of the branch should be reversed. */
3259
3260 static int
3261 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3262 basic_block other_bb, basic_block new_dest, int reversep)
3263 {
3264 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3265
3266 jump = BB_END (test_bb);
3267
3268 /* Find the extent of the real code in the merge block. */
3269 head = BB_HEAD (merge_bb);
3270 end = BB_END (merge_bb);
3271
3272 if (LABEL_P (head))
3273 head = NEXT_INSN (head);
3274 if (NOTE_P (head))
3275 {
3276 if (head == end)
3277 {
3278 head = end = NULL_RTX;
3279 goto no_body;
3280 }
3281 head = NEXT_INSN (head);
3282 }
3283
3284 if (JUMP_P (end))
3285 {
3286 if (head == end)
3287 {
3288 head = end = NULL_RTX;
3289 goto no_body;
3290 }
3291 end = PREV_INSN (end);
3292 }
3293
3294 /* Disable handling dead code by conditional execution if the machine needs
3295 to do anything funny with the tests, etc. */
3296 #ifndef IFCVT_MODIFY_TESTS
3297 if (HAVE_conditional_execution)
3298 {
3299 /* In the conditional execution case, we have things easy. We know
3300 the condition is reversible. We don't have to check life info
3301 because we're going to conditionally execute the code anyway.
3302 All that's left is making sure the insns involved can actually
3303 be predicated. */
3304
3305 rtx cond, prob_val;
3306
3307 cond = cond_exec_get_condition (jump);
3308 if (! cond)
3309 return FALSE;
3310
3311 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3312 if (prob_val)
3313 prob_val = XEXP (prob_val, 0);
3314
3315 if (reversep)
3316 {
3317 enum rtx_code rev = reversed_comparison_code (cond, jump);
3318 if (rev == UNKNOWN)
3319 return FALSE;
3320 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3321 XEXP (cond, 1));
3322 if (prob_val)
3323 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3324 }
3325
3326 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3327 prob_val, 0))
3328 goto cancel;
3329
3330 earliest = jump;
3331 }
3332 else
3333 #endif
3334 {
3335 /* In the non-conditional execution case, we have to verify that there
3336 are no trapping operations, no calls, no references to memory, and
3337 that any registers modified are dead at the branch site. */
3338
3339 rtx insn, cond, prev;
3340 regset merge_set, tmp, test_live, test_set;
3341 struct propagate_block_info *pbi;
3342 unsigned i, fail = 0;
3343 bitmap_iterator bi;
3344
3345 /* Check for no calls or trapping operations. */
3346 for (insn = head; ; insn = NEXT_INSN (insn))
3347 {
3348 if (CALL_P (insn))
3349 return FALSE;
3350 if (INSN_P (insn))
3351 {
3352 if (may_trap_p (PATTERN (insn)))
3353 return FALSE;
3354
3355 /* ??? Even non-trapping memories such as stack frame
3356 references must be avoided. For stores, we collect
3357 no lifetime info; for reads, we'd have to assert
3358 true_dependence false against every store in the
3359 TEST range. */
3360 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3361 return FALSE;
3362 }
3363 if (insn == end)
3364 break;
3365 }
3366
3367 if (! any_condjump_p (jump))
3368 return FALSE;
3369
3370 /* Find the extent of the conditional. */
3371 cond = noce_get_condition (jump, &earliest);
3372 if (! cond)
3373 return FALSE;
3374
3375 /* Collect:
3376 MERGE_SET = set of registers set in MERGE_BB
3377 TEST_LIVE = set of registers live at EARLIEST
3378 TEST_SET = set of registers set between EARLIEST and the
3379 end of the block. */
3380
3381 tmp = ALLOC_REG_SET (&reg_obstack);
3382 merge_set = ALLOC_REG_SET (&reg_obstack);
3383 test_live = ALLOC_REG_SET (&reg_obstack);
3384 test_set = ALLOC_REG_SET (&reg_obstack);
3385
3386 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3387 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3388 since we've already asserted that MERGE_BB is small. */
3389 /* If we allocated new pseudos (e.g. in the conditional move
3390 expander called from noce_emit_cmove), we must resize the
3391 array first. */
3392 if (max_regno < max_reg_num ())
3393 {
3394 max_regno = max_reg_num ();
3395 allocate_reg_info (max_regno, FALSE, FALSE);
3396 }
3397 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3398
3399 /* For small register class machines, don't lengthen lifetimes of
3400 hard registers before reload. */
3401 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3402 {
3403 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3404 {
3405 if (i < FIRST_PSEUDO_REGISTER
3406 && ! fixed_regs[i]
3407 && ! global_regs[i])
3408 fail = 1;
3409 }
3410 }
3411
3412 /* For TEST, we're interested in a range of insns, not a whole block.
3413 Moreover, we're interested in the insns live from OTHER_BB. */
3414
3415 COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3416 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3417 0);
3418
3419 for (insn = jump; ; insn = prev)
3420 {
3421 prev = propagate_one_insn (pbi, insn);
3422 if (insn == earliest)
3423 break;
3424 }
3425
3426 free_propagate_block_info (pbi);
3427
3428 /* We can perform the transformation if
3429 MERGE_SET & (TEST_SET | TEST_LIVE)
3430 and
3431 TEST_SET & merge_bb->il.rtl->global_live_at_start
3432 are empty. */
3433
3434 if (bitmap_intersect_p (test_set, merge_set)
3435 || bitmap_intersect_p (test_live, merge_set)
3436 || bitmap_intersect_p (test_set,
3437 merge_bb->il.rtl->global_live_at_start))
3438 fail = 1;
3439
3440 FREE_REG_SET (tmp);
3441 FREE_REG_SET (merge_set);
3442 FREE_REG_SET (test_live);
3443 FREE_REG_SET (test_set);
3444
3445 if (fail)
3446 return FALSE;
3447 }
3448
3449 no_body:
3450 /* We don't want to use normal invert_jump or redirect_jump because
3451 we don't want to delete_insn called. Also, we want to do our own
3452 change group management. */
3453
3454 old_dest = JUMP_LABEL (jump);
3455 if (other_bb != new_dest)
3456 {
3457 new_label = block_label (new_dest);
3458 if (reversep
3459 ? ! invert_jump_1 (jump, new_label)
3460 : ! redirect_jump_1 (jump, new_label))
3461 goto cancel;
3462 }
3463
3464 if (! apply_change_group ())
3465 return FALSE;
3466
3467 if (other_bb != new_dest)
3468 {
3469 redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3470
3471 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3472 if (reversep)
3473 {
3474 gcov_type count, probability;
3475 count = BRANCH_EDGE (test_bb)->count;
3476 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3477 FALLTHRU_EDGE (test_bb)->count = count;
3478 probability = BRANCH_EDGE (test_bb)->probability;
3479 BRANCH_EDGE (test_bb)->probability
3480 = FALLTHRU_EDGE (test_bb)->probability;
3481 FALLTHRU_EDGE (test_bb)->probability = probability;
3482 update_br_prob_note (test_bb);
3483 }
3484 }
3485
3486 /* Move the insns out of MERGE_BB to before the branch. */
3487 if (head != NULL)
3488 {
3489 rtx insn;
3490
3491 if (end == BB_END (merge_bb))
3492 BB_END (merge_bb) = PREV_INSN (head);
3493
3494 if (squeeze_notes (&head, &end))
3495 return TRUE;
3496
3497 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3498 notes might become invalid. */
3499 insn = head;
3500 do
3501 {
3502 rtx note, set;
3503
3504 if (! INSN_P (insn))
3505 continue;
3506 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3507 if (! note)
3508 continue;
3509 set = single_set (insn);
3510 if (!set || !function_invariant_p (SET_SRC (set)))
3511 remove_note (insn, note);
3512 } while (insn != end && (insn = NEXT_INSN (insn)));
3513
3514 reorder_insns (head, end, PREV_INSN (earliest));
3515 }
3516
3517 /* Remove the jump and edge if we can. */
3518 if (other_bb == new_dest)
3519 {
3520 delete_insn (jump);
3521 remove_edge (BRANCH_EDGE (test_bb));
3522 /* ??? Can't merge blocks here, as then_bb is still in use.
3523 At minimum, the merge will get done just before bb-reorder. */
3524 }
3525
3526 return TRUE;
3527
3528 cancel:
3529 cancel_changes (0);
3530 return FALSE;
3531 }
3532 \f
3533 /* Main entry point for all if-conversion. */
3534
3535 void
3536 if_convert (int x_life_data_ok)
3537 {
3538 basic_block bb;
3539 int pass;
3540
3541 num_possible_if_blocks = 0;
3542 num_updated_if_blocks = 0;
3543 num_true_changes = 0;
3544 life_data_ok = (x_life_data_ok != 0);
3545
3546 if ((! targetm.cannot_modify_jumps_p ())
3547 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3548 || !targetm.have_named_sections))
3549 {
3550 struct loops loops;
3551
3552 flow_loops_find (&loops);
3553 mark_loop_exit_edges (&loops);
3554 flow_loops_free (&loops);
3555 free_dominance_info (CDI_DOMINATORS);
3556 }
3557
3558 /* Compute postdominators if we think we'll use them. */
3559 if (HAVE_conditional_execution || life_data_ok)
3560 calculate_dominance_info (CDI_POST_DOMINATORS);
3561
3562 if (life_data_ok)
3563 clear_bb_flags ();
3564
3565 /* Go through each of the basic blocks looking for things to convert. If we
3566 have conditional execution, we make multiple passes to allow us to handle
3567 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3568 pass = 0;
3569 do
3570 {
3571 cond_exec_changed_p = FALSE;
3572 pass++;
3573
3574 #ifdef IFCVT_MULTIPLE_DUMPS
3575 if (dump_file && pass > 1)
3576 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3577 #endif
3578
3579 FOR_EACH_BB (bb)
3580 {
3581 basic_block new_bb;
3582 while ((new_bb = find_if_header (bb, pass)))
3583 bb = new_bb;
3584 }
3585
3586 #ifdef IFCVT_MULTIPLE_DUMPS
3587 if (dump_file && cond_exec_changed_p)
3588 print_rtl_with_bb (dump_file, get_insns ());
3589 #endif
3590 }
3591 while (cond_exec_changed_p);
3592
3593 #ifdef IFCVT_MULTIPLE_DUMPS
3594 if (dump_file)
3595 fprintf (dump_file, "\n\n========== no more changes\n");
3596 #endif
3597
3598 free_dominance_info (CDI_POST_DOMINATORS);
3599
3600 if (dump_file)
3601 fflush (dump_file);
3602
3603 clear_aux_for_blocks ();
3604
3605 /* Rebuild life info for basic blocks that require it. */
3606 if (num_true_changes && life_data_ok)
3607 {
3608 /* If we allocated new pseudos, we must resize the array for sched1. */
3609 if (max_regno < max_reg_num ())
3610 {
3611 max_regno = max_reg_num ();
3612 allocate_reg_info (max_regno, FALSE, FALSE);
3613 }
3614 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3615 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3616 | PROP_KILL_DEAD_CODE);
3617 }
3618
3619 /* Write the final stats. */
3620 if (dump_file && num_possible_if_blocks > 0)
3621 {
3622 fprintf (dump_file,
3623 "\n%d possible IF blocks searched.\n",
3624 num_possible_if_blocks);
3625 fprintf (dump_file,
3626 "%d IF blocks converted.\n",
3627 num_updated_if_blocks);
3628 fprintf (dump_file,
3629 "%d true changes made.\n\n\n",
3630 num_true_changes);
3631 }
3632
3633 #ifdef ENABLE_CHECKING
3634 verify_flow_info ();
3635 #endif
3636 }
3637 \f
3638 static bool
3639 gate_handle_if_conversion (void)
3640 {
3641 return (optimize > 0);
3642 }
3643
3644 /* If-conversion and CFG cleanup. */
3645 static void
3646 rest_of_handle_if_conversion (void)
3647 {
3648 if (flag_if_conversion)
3649 {
3650 if (dump_file)
3651 dump_flow_info (dump_file);
3652 cleanup_cfg (CLEANUP_EXPENSIVE);
3653 reg_scan (get_insns (), max_reg_num ());
3654 if_convert (0);
3655 }
3656
3657 timevar_push (TV_JUMP);
3658 cleanup_cfg (CLEANUP_EXPENSIVE);
3659 reg_scan (get_insns (), max_reg_num ());
3660 timevar_pop (TV_JUMP);
3661 }
3662
3663 struct tree_opt_pass pass_rtl_ifcvt =
3664 {
3665 "ce1", /* name */
3666 gate_handle_if_conversion, /* gate */
3667 rest_of_handle_if_conversion, /* execute */
3668 NULL, /* sub */
3669 NULL, /* next */
3670 0, /* static_pass_number */
3671 TV_IFCVT, /* tv_id */
3672 0, /* properties_required */
3673 0, /* properties_provided */
3674 0, /* properties_destroyed */
3675 0, /* todo_flags_start */
3676 TODO_dump_func, /* todo_flags_finish */
3677 'C' /* letter */
3678 };
3679
3680 static bool
3681 gate_handle_if_after_combine (void)
3682 {
3683 return (optimize > 0 && flag_if_conversion);
3684 }
3685
3686
3687 /* Rerun if-conversion, as combine may have simplified things enough
3688 to now meet sequence length restrictions. */
3689 static void
3690 rest_of_handle_if_after_combine (void)
3691 {
3692 no_new_pseudos = 0;
3693 if_convert (1);
3694 no_new_pseudos = 1;
3695 }
3696
3697 struct tree_opt_pass pass_if_after_combine =
3698 {
3699 "ce2", /* name */
3700 gate_handle_if_after_combine, /* gate */
3701 rest_of_handle_if_after_combine, /* execute */
3702 NULL, /* sub */
3703 NULL, /* next */
3704 0, /* static_pass_number */
3705 TV_IFCVT, /* tv_id */
3706 0, /* properties_required */
3707 0, /* properties_provided */
3708 0, /* properties_destroyed */
3709 0, /* todo_flags_start */
3710 TODO_dump_func |
3711 TODO_ggc_collect, /* todo_flags_finish */
3712 'C' /* letter */
3713 };
3714
3715
3716 static bool
3717 gate_handle_if_after_reload (void)
3718 {
3719 return (optimize > 0);
3720 }
3721
3722 static void
3723 rest_of_handle_if_after_reload (void)
3724 {
3725 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
3726 splitting possibly introduced more crossjumping opportunities. */
3727 cleanup_cfg (CLEANUP_EXPENSIVE
3728 | CLEANUP_UPDATE_LIFE
3729 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
3730 if (flag_if_conversion2)
3731 if_convert (1);
3732 }
3733
3734
3735 struct tree_opt_pass pass_if_after_reload =
3736 {
3737 "ce3", /* name */
3738 gate_handle_if_after_reload, /* gate */
3739 rest_of_handle_if_after_reload, /* execute */
3740 NULL, /* sub */
3741 NULL, /* next */
3742 0, /* static_pass_number */
3743 TV_IFCVT2, /* tv_id */
3744 0, /* properties_required */
3745 0, /* properties_provided */
3746 0, /* properties_destroyed */
3747 0, /* todo_flags_start */
3748 TODO_dump_func |
3749 TODO_ggc_collect, /* todo_flags_finish */
3750 'E' /* letter */
3751 };
3752
3753