re PR debug/11098 ([dwarf2] g++ doesn't emit complete debugging information for local...
[gcc.git] / gcc / integrate.c
1 /* Procedure integration for GCC.
2 Copyright (C) 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "debug.h"
34 #include "insn-config.h"
35 #include "expr.h"
36 #include "output.h"
37 #include "recog.h"
38 #include "integrate.h"
39 #include "real.h"
40 #include "except.h"
41 #include "function.h"
42 #include "toplev.h"
43 #include "intl.h"
44 #include "loop.h"
45 #include "params.h"
46 #include "ggc.h"
47 #include "target.h"
48 #include "langhooks.h"
49
50 /* Similar, but round to the next highest integer that meets the
51 alignment. */
52 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
53
54 /* Default max number of insns a function can have and still be inline.
55 This is overridden on RISC machines. */
56 #ifndef INTEGRATE_THRESHOLD
57 /* Inlining small functions might save more space then not inlining at
58 all. Assume 1 instruction for the call and 1.5 insns per argument. */
59 #define INTEGRATE_THRESHOLD(DECL) \
60 (optimize_size \
61 ? (1 + (3 * list_length (DECL_ARGUMENTS (DECL))) / 2) \
62 : (8 * (8 + list_length (DECL_ARGUMENTS (DECL)))))
63 #endif
64 \f
65
66 /* Private type used by {get/has}_func_hard_reg_initial_val. */
67 typedef struct initial_value_pair GTY(()) {
68 rtx hard_reg;
69 rtx pseudo;
70 } initial_value_pair;
71 typedef struct initial_value_struct GTY(()) {
72 int num_entries;
73 int max_entries;
74 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
75 } initial_value_struct;
76
77 static void setup_initial_hard_reg_value_integration (struct function *,
78 struct inline_remap *);
79
80 static rtvec initialize_for_inline (tree);
81 static void note_modified_parmregs (rtx, rtx, void *);
82 static void integrate_parm_decls (tree, struct inline_remap *, rtvec);
83 static tree integrate_decl_tree (tree, struct inline_remap *);
84 static void subst_constants (rtx *, rtx, struct inline_remap *, int);
85 static void set_block_origin_self (tree);
86 static void set_block_abstract_flags (tree, int);
87 static void process_reg_param (struct inline_remap *, rtx, rtx);
88 static void mark_stores (rtx, rtx, void *);
89 static void save_parm_insns (rtx, rtx);
90 static void copy_insn_list (rtx, struct inline_remap *, rtx);
91 static void copy_insn_notes (rtx, struct inline_remap *, int);
92 static int compare_blocks (const void *, const void *);
93 static int find_block (const void *, const void *);
94
95 /* Used by copy_rtx_and_substitute; this indicates whether the function is
96 called for the purpose of inlining or some other purpose (i.e. loop
97 unrolling). This affects how constant pool references are handled.
98 This variable contains the FUNCTION_DECL for the inlined function. */
99 static struct function *inlining = 0;
100 \f
101 /* Returns the Ith entry in the label_map contained in MAP. If the
102 Ith entry has not yet been set, return a fresh label. This function
103 performs a lazy initialization of label_map, thereby avoiding huge memory
104 explosions when the label_map gets very large. */
105
106 rtx
107 get_label_from_map (struct inline_remap *map, int i)
108 {
109 rtx x = map->label_map[i];
110
111 if (x == NULL_RTX)
112 x = map->label_map[i] = gen_label_rtx ();
113
114 return x;
115 }
116
117 /* Return false if the function FNDECL cannot be inlined on account of its
118 attributes, true otherwise. */
119 bool
120 function_attribute_inlinable_p (tree fndecl)
121 {
122 if (targetm.attribute_table)
123 {
124 tree a;
125
126 for (a = DECL_ATTRIBUTES (fndecl); a; a = TREE_CHAIN (a))
127 {
128 tree name = TREE_PURPOSE (a);
129 int i;
130
131 for (i = 0; targetm.attribute_table[i].name != NULL; i++)
132 if (is_attribute_p (targetm.attribute_table[i].name, name))
133 return (*targetm.function_attribute_inlinable_p) (fndecl);
134 }
135 }
136
137 return true;
138 }
139
140 /* Zero if the current function (whose FUNCTION_DECL is FNDECL)
141 is safe and reasonable to integrate into other functions.
142 Nonzero means value is a warning msgid with a single %s
143 for the function's name. */
144
145 const char *
146 function_cannot_inline_p (tree fndecl)
147 {
148 rtx insn;
149 tree last = tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
150
151 /* For functions marked as inline increase the maximum size to
152 MAX_INLINE_INSNS_RTL (--param max-inline-insn-rtl=<n>). For
153 regular functions use the limit given by INTEGRATE_THRESHOLD.
154 Note that the RTL inliner is not used by the languages that use
155 the tree inliner (C, C++). */
156
157 int max_insns = (DECL_INLINE (fndecl))
158 ? (MAX_INLINE_INSNS_RTL
159 + 8 * list_length (DECL_ARGUMENTS (fndecl)))
160 : INTEGRATE_THRESHOLD (fndecl);
161
162 int ninsns = 0;
163 tree parms;
164
165 if (DECL_UNINLINABLE (fndecl))
166 return N_("function cannot be inline");
167
168 /* No inlines with varargs. */
169 if (last && TREE_VALUE (last) != void_type_node)
170 return N_("varargs function cannot be inline");
171
172 if (current_function_calls_alloca)
173 return N_("function using alloca cannot be inline");
174
175 if (current_function_calls_setjmp)
176 return N_("function using setjmp cannot be inline");
177
178 if (current_function_calls_eh_return)
179 return N_("function uses __builtin_eh_return");
180
181 if (current_function_contains_functions)
182 return N_("function with nested functions cannot be inline");
183
184 if (forced_labels)
185 return
186 N_("function with label addresses used in initializers cannot inline");
187
188 if (current_function_cannot_inline)
189 return current_function_cannot_inline;
190
191 /* If its not even close, don't even look. */
192 if (get_max_uid () > 3 * max_insns)
193 return N_("function too large to be inline");
194
195 #if 0
196 /* Don't inline functions which do not specify a function prototype and
197 have BLKmode argument or take the address of a parameter. */
198 for (parms = DECL_ARGUMENTS (fndecl); parms; parms = TREE_CHAIN (parms))
199 {
200 if (TYPE_MODE (TREE_TYPE (parms)) == BLKmode)
201 TREE_ADDRESSABLE (parms) = 1;
202 if (last == NULL_TREE && TREE_ADDRESSABLE (parms))
203 return N_("no prototype, and parameter address used; cannot be inline");
204 }
205 #endif
206
207 /* We can't inline functions that return structures
208 the old-fashioned PCC way, copying into a static block. */
209 if (current_function_returns_pcc_struct)
210 return N_("inline functions not supported for this return value type");
211
212 /* We can't inline functions that return structures of varying size. */
213 if (TREE_CODE (TREE_TYPE (TREE_TYPE (fndecl))) != VOID_TYPE
214 && int_size_in_bytes (TREE_TYPE (TREE_TYPE (fndecl))) < 0)
215 return N_("function with varying-size return value cannot be inline");
216
217 /* Cannot inline a function with a varying size argument or one that
218 receives a transparent union. */
219 for (parms = DECL_ARGUMENTS (fndecl); parms; parms = TREE_CHAIN (parms))
220 {
221 if (int_size_in_bytes (TREE_TYPE (parms)) < 0)
222 return N_("function with varying-size parameter cannot be inline");
223 else if (TREE_CODE (TREE_TYPE (parms)) == UNION_TYPE
224 && TYPE_TRANSPARENT_UNION (TREE_TYPE (parms)))
225 return N_("function with transparent unit parameter cannot be inline");
226 }
227
228 if (get_max_uid () > max_insns)
229 {
230 for (ninsns = 0, insn = get_first_nonparm_insn ();
231 insn && ninsns < max_insns;
232 insn = NEXT_INSN (insn))
233 if (INSN_P (insn))
234 ninsns++;
235
236 if (ninsns >= max_insns)
237 return N_("function too large to be inline");
238 }
239
240 /* We will not inline a function which uses computed goto. The addresses of
241 its local labels, which may be tucked into global storage, are of course
242 not constant across instantiations, which causes unexpected behavior. */
243 if (current_function_has_computed_jump)
244 return N_("function with computed jump cannot inline");
245
246 /* We cannot inline a nested function that jumps to a nonlocal label. */
247 if (current_function_has_nonlocal_goto)
248 return N_("function with nonlocal goto cannot be inline");
249
250 /* We can't inline functions that return a PARALLEL rtx. */
251 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
252 {
253 rtx result = DECL_RTL (DECL_RESULT (fndecl));
254 if (GET_CODE (result) == PARALLEL)
255 return N_("inline functions not supported for this return value type");
256 }
257
258 /* If the function has a target specific attribute attached to it,
259 then we assume that we should not inline it. This can be overridden
260 by the target if it defines TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P. */
261 if (!function_attribute_inlinable_p (fndecl))
262 return N_("function with target specific attribute(s) cannot be inlined");
263
264 return NULL;
265 }
266 \f
267 /* Map pseudo reg number into the PARM_DECL for the parm living in the reg.
268 Zero for a reg that isn't a parm's home.
269 Only reg numbers less than max_parm_reg are mapped here. */
270 static tree *parmdecl_map;
271
272 /* In save_for_inline, nonzero if past the parm-initialization insns. */
273 static int in_nonparm_insns;
274 \f
275 /* Subroutine for `save_for_inline'. Performs initialization
276 needed to save FNDECL's insns and info for future inline expansion. */
277
278 static rtvec
279 initialize_for_inline (tree fndecl)
280 {
281 int i;
282 rtvec arg_vector;
283 tree parms;
284
285 /* Clear out PARMDECL_MAP. It was allocated in the caller's frame. */
286 memset ((char *) parmdecl_map, 0, max_parm_reg * sizeof (tree));
287 arg_vector = rtvec_alloc (list_length (DECL_ARGUMENTS (fndecl)));
288
289 for (parms = DECL_ARGUMENTS (fndecl), i = 0;
290 parms;
291 parms = TREE_CHAIN (parms), i++)
292 {
293 rtx p = DECL_RTL (parms);
294
295 /* If we have (mem (addressof (mem ...))), use the inner MEM since
296 otherwise the copy_rtx call below will not unshare the MEM since
297 it shares ADDRESSOF. */
298 if (GET_CODE (p) == MEM && GET_CODE (XEXP (p, 0)) == ADDRESSOF
299 && GET_CODE (XEXP (XEXP (p, 0), 0)) == MEM)
300 p = XEXP (XEXP (p, 0), 0);
301
302 RTVEC_ELT (arg_vector, i) = p;
303
304 if (GET_CODE (p) == REG)
305 parmdecl_map[REGNO (p)] = parms;
306 else if (GET_CODE (p) == CONCAT)
307 {
308 rtx preal = gen_realpart (GET_MODE (XEXP (p, 0)), p);
309 rtx pimag = gen_imagpart (GET_MODE (preal), p);
310
311 if (GET_CODE (preal) == REG)
312 parmdecl_map[REGNO (preal)] = parms;
313 if (GET_CODE (pimag) == REG)
314 parmdecl_map[REGNO (pimag)] = parms;
315 }
316
317 /* This flag is cleared later
318 if the function ever modifies the value of the parm. */
319 TREE_READONLY (parms) = 1;
320 }
321
322 return arg_vector;
323 }
324
325 /* Copy NODE (which must be a DECL, but not a PARM_DECL). The DECL
326 originally was in the FROM_FN, but now it will be in the
327 TO_FN. */
328
329 tree
330 copy_decl_for_inlining (tree decl, tree from_fn, tree to_fn)
331 {
332 tree copy;
333
334 /* Copy the declaration. */
335 if (TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL)
336 {
337 tree type;
338 int invisiref = 0;
339
340 /* See if the frontend wants to pass this by invisible reference. */
341 if (TREE_CODE (decl) == PARM_DECL
342 && DECL_ARG_TYPE (decl) != TREE_TYPE (decl)
343 && POINTER_TYPE_P (DECL_ARG_TYPE (decl))
344 && TREE_TYPE (DECL_ARG_TYPE (decl)) == TREE_TYPE (decl))
345 {
346 invisiref = 1;
347 type = DECL_ARG_TYPE (decl);
348 }
349 else
350 type = TREE_TYPE (decl);
351
352 /* For a parameter, we must make an equivalent VAR_DECL, not a
353 new PARM_DECL. */
354 copy = build_decl (VAR_DECL, DECL_NAME (decl), type);
355 if (!invisiref)
356 {
357 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl);
358 TREE_READONLY (copy) = TREE_READONLY (decl);
359 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl);
360 }
361 else
362 {
363 TREE_ADDRESSABLE (copy) = 0;
364 TREE_READONLY (copy) = 1;
365 TREE_THIS_VOLATILE (copy) = 0;
366 }
367 }
368 else
369 {
370 copy = copy_node (decl);
371 /* The COPY is not abstract; it will be generated in TO_FN. */
372 DECL_ABSTRACT (copy) = 0;
373 (*lang_hooks.dup_lang_specific_decl) (copy);
374
375 /* TREE_ADDRESSABLE isn't used to indicate that a label's
376 address has been taken; it's for internal bookkeeping in
377 expand_goto_internal. */
378 if (TREE_CODE (copy) == LABEL_DECL)
379 TREE_ADDRESSABLE (copy) = 0;
380 }
381
382 /* Set the DECL_ABSTRACT_ORIGIN so the debugging routines know what
383 declaration inspired this copy. */
384 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (decl);
385
386 /* The new variable/label has no RTL, yet. */
387 if (!TREE_STATIC (copy) && !DECL_EXTERNAL (copy))
388 SET_DECL_RTL (copy, NULL_RTX);
389
390 /* These args would always appear unused, if not for this. */
391 TREE_USED (copy) = 1;
392
393 /* Set the context for the new declaration. */
394 if (!DECL_CONTEXT (decl))
395 /* Globals stay global. */
396 ;
397 else if (DECL_CONTEXT (decl) != from_fn)
398 /* Things that weren't in the scope of the function we're inlining
399 from aren't in the scope we're inlining to, either. */
400 ;
401 else if (TREE_STATIC (decl))
402 /* Function-scoped static variables should stay in the original
403 function. */
404 ;
405 else
406 /* Ordinary automatic local variables are now in the scope of the
407 new function. */
408 DECL_CONTEXT (copy) = to_fn;
409
410 return copy;
411 }
412
413 /* Make the insns and PARM_DECLs of the current function permanent
414 and record other information in DECL_SAVED_INSNS to allow inlining
415 of this function in subsequent calls.
416
417 This routine need not copy any insns because we are not going
418 to immediately compile the insns in the insn chain. There
419 are two cases when we would compile the insns for FNDECL:
420 (1) when FNDECL is expanded inline, and (2) when FNDECL needs to
421 be output at the end of other compilation, because somebody took
422 its address. In the first case, the insns of FNDECL are copied
423 as it is expanded inline, so FNDECL's saved insns are not
424 modified. In the second case, FNDECL is used for the last time,
425 so modifying the rtl is not a problem.
426
427 We don't have to worry about FNDECL being inline expanded by
428 other functions which are written at the end of compilation
429 because flag_no_inline is turned on when we begin writing
430 functions at the end of compilation. */
431
432 void
433 save_for_inline (tree fndecl)
434 {
435 rtx insn;
436 rtvec argvec;
437 rtx first_nonparm_insn;
438
439 /* Set up PARMDECL_MAP which maps pseudo-reg number to its PARM_DECL.
440 Later we set TREE_READONLY to 0 if the parm is modified inside the fn.
441 Also set up ARG_VECTOR, which holds the unmodified DECL_RTX values
442 for the parms, prior to elimination of virtual registers.
443 These values are needed for substituting parms properly. */
444 if (! flag_no_inline)
445 parmdecl_map = (tree *) xmalloc (max_parm_reg * sizeof (tree));
446
447 /* Make and emit a return-label if we have not already done so. */
448
449 if (return_label == 0)
450 {
451 return_label = gen_label_rtx ();
452 emit_label (return_label);
453 }
454
455 if (! flag_no_inline)
456 argvec = initialize_for_inline (fndecl);
457 else
458 argvec = NULL;
459
460 /* Delete basic block notes created by early run of find_basic_block.
461 The notes would be later used by find_basic_blocks to reuse the memory
462 for basic_block structures on already freed obstack. */
463 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
464 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK)
465 delete_related_insns (insn);
466
467 /* If there are insns that copy parms from the stack into pseudo registers,
468 those insns are not copied. `expand_inline_function' must
469 emit the correct code to handle such things. */
470
471 insn = get_insns ();
472 if (GET_CODE (insn) != NOTE)
473 abort ();
474
475 if (! flag_no_inline)
476 {
477 /* Get the insn which signals the end of parameter setup code. */
478 first_nonparm_insn = get_first_nonparm_insn ();
479
480 /* Now just scan the chain of insns to see what happens to our
481 PARM_DECLs. If a PARM_DECL is used but never modified, we
482 can substitute its rtl directly when expanding inline (and
483 perform constant folding when its incoming value is
484 constant). Otherwise, we have to copy its value into a new
485 register and track the new register's life. */
486 in_nonparm_insns = 0;
487 save_parm_insns (insn, first_nonparm_insn);
488
489 cfun->inl_max_label_num = max_label_num ();
490 cfun->inl_last_parm_insn = cfun->x_last_parm_insn;
491 cfun->original_arg_vector = argvec;
492 }
493 cfun->original_decl_initial = DECL_INITIAL (fndecl);
494 cfun->no_debugging_symbols = (write_symbols == NO_DEBUG);
495 DECL_SAVED_INSNS (fndecl) = cfun;
496
497 /* Clean up. */
498 if (! flag_no_inline)
499 free (parmdecl_map);
500 }
501
502 /* Scan the chain of insns to see what happens to our PARM_DECLs. If a
503 PARM_DECL is used but never modified, we can substitute its rtl directly
504 when expanding inline (and perform constant folding when its incoming
505 value is constant). Otherwise, we have to copy its value into a new
506 register and track the new register's life. */
507
508 static void
509 save_parm_insns (rtx insn, rtx first_nonparm_insn)
510 {
511 if (insn == NULL_RTX)
512 return;
513
514 for (insn = NEXT_INSN (insn); insn; insn = NEXT_INSN (insn))
515 {
516 if (insn == first_nonparm_insn)
517 in_nonparm_insns = 1;
518
519 if (INSN_P (insn))
520 {
521 /* Record what interesting things happen to our parameters. */
522 note_stores (PATTERN (insn), note_modified_parmregs, NULL);
523
524 /* If this is a CALL_PLACEHOLDER insn then we need to look into the
525 three attached sequences: normal call, sibling call and tail
526 recursion. */
527 if (GET_CODE (insn) == CALL_INSN
528 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
529 {
530 int i;
531
532 for (i = 0; i < 3; i++)
533 save_parm_insns (XEXP (PATTERN (insn), i),
534 first_nonparm_insn);
535 }
536 }
537 }
538 }
539 \f
540 /* Note whether a parameter is modified or not. */
541
542 static void
543 note_modified_parmregs (rtx reg, rtx x ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
544 {
545 if (GET_CODE (reg) == REG && in_nonparm_insns
546 && REGNO (reg) < max_parm_reg
547 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
548 && parmdecl_map[REGNO (reg)] != 0)
549 TREE_READONLY (parmdecl_map[REGNO (reg)]) = 0;
550 }
551
552 /* Unfortunately, we need a global copy of const_equiv map for communication
553 with a function called from note_stores. Be *very* careful that this
554 is used properly in the presence of recursion. */
555
556 varray_type global_const_equiv_varray;
557 \f
558 #define FIXED_BASE_PLUS_P(X) \
559 (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
560 && GET_CODE (XEXP (X, 0)) == REG \
561 && REGNO (XEXP (X, 0)) >= FIRST_VIRTUAL_REGISTER \
562 && REGNO (XEXP (X, 0)) <= LAST_VIRTUAL_REGISTER)
563
564 /* Called to set up a mapping for the case where a parameter is in a
565 register. If it is read-only and our argument is a constant, set up the
566 constant equivalence.
567
568 If LOC is REG_USERVAR_P, the usual case, COPY must also have that flag set
569 if it is a register.
570
571 Also, don't allow hard registers here; they might not be valid when
572 substituted into insns. */
573 static void
574 process_reg_param (struct inline_remap *map, rtx loc, rtx copy)
575 {
576 if ((GET_CODE (copy) != REG && GET_CODE (copy) != SUBREG)
577 || (GET_CODE (copy) == REG && REG_USERVAR_P (loc)
578 && ! REG_USERVAR_P (copy))
579 || (GET_CODE (copy) == REG
580 && REGNO (copy) < FIRST_PSEUDO_REGISTER))
581 {
582 rtx temp = copy_to_mode_reg (GET_MODE (loc), copy);
583 REG_USERVAR_P (temp) = REG_USERVAR_P (loc);
584 if (CONSTANT_P (copy) || FIXED_BASE_PLUS_P (copy))
585 SET_CONST_EQUIV_DATA (map, temp, copy, CONST_AGE_PARM);
586 copy = temp;
587 }
588 map->reg_map[REGNO (loc)] = copy;
589 }
590
591 /* Compare two BLOCKs for qsort. The key we sort on is the
592 BLOCK_ABSTRACT_ORIGIN of the blocks. We cannot just subtract the
593 two pointers, because it may overflow sizeof(int). */
594
595 static int
596 compare_blocks (const void *v1, const void *v2)
597 {
598 tree b1 = *((const tree *) v1);
599 tree b2 = *((const tree *) v2);
600 char *p1 = (char *) BLOCK_ABSTRACT_ORIGIN (b1);
601 char *p2 = (char *) BLOCK_ABSTRACT_ORIGIN (b2);
602
603 if (p1 == p2)
604 return 0;
605 return p1 < p2 ? -1 : 1;
606 }
607
608 /* Compare two BLOCKs for bsearch. The first pointer corresponds to
609 an original block; the second to a remapped equivalent. */
610
611 static int
612 find_block (const void *v1, const void *v2)
613 {
614 const union tree_node *b1 = (const union tree_node *) v1;
615 tree b2 = *((const tree *) v2);
616 char *p1 = (char *) b1;
617 char *p2 = (char *) BLOCK_ABSTRACT_ORIGIN (b2);
618
619 if (p1 == p2)
620 return 0;
621 return p1 < p2 ? -1 : 1;
622 }
623
624 /* Integrate the procedure defined by FNDECL. Note that this function
625 may wind up calling itself. Since the static variables are not
626 reentrant, we do not assign them until after the possibility
627 of recursion is eliminated.
628
629 If IGNORE is nonzero, do not produce a value.
630 Otherwise store the value in TARGET if it is nonzero and that is convenient.
631
632 Value is:
633 (rtx)-1 if we could not substitute the function
634 0 if we substituted it and it does not produce a value
635 else an rtx for where the value is stored. */
636
637 rtx
638 expand_inline_function (tree fndecl, tree parms, rtx target, int ignore,
639 tree type, rtx structure_value_addr)
640 {
641 struct function *inlining_previous;
642 struct function *inl_f = DECL_SAVED_INSNS (fndecl);
643 tree formal, actual, block;
644 rtx parm_insns = inl_f->emit->x_first_insn;
645 rtx insns = (inl_f->inl_last_parm_insn
646 ? NEXT_INSN (inl_f->inl_last_parm_insn)
647 : parm_insns);
648 tree *arg_trees;
649 rtx *arg_vals;
650 int max_regno;
651 int i;
652 int min_labelno = inl_f->emit->x_first_label_num;
653 int max_labelno = inl_f->inl_max_label_num;
654 int nargs;
655 rtx loc;
656 rtx stack_save = 0;
657 rtx temp;
658 struct inline_remap *map = 0;
659 rtvec arg_vector = inl_f->original_arg_vector;
660 rtx static_chain_value = 0;
661 int inl_max_uid;
662 int eh_region_offset;
663
664 /* The pointer used to track the true location of the memory used
665 for MAP->LABEL_MAP. */
666 rtx *real_label_map = 0;
667
668 /* Allow for equivalences of the pseudos we make for virtual fp and ap. */
669 max_regno = inl_f->emit->x_reg_rtx_no + 3;
670 if (max_regno < FIRST_PSEUDO_REGISTER)
671 abort ();
672
673 /* Pull out the decl for the function definition; fndecl may be a
674 local declaration, which would break DECL_ABSTRACT_ORIGIN. */
675 fndecl = inl_f->decl;
676
677 nargs = list_length (DECL_ARGUMENTS (fndecl));
678
679 if (cfun->preferred_stack_boundary < inl_f->preferred_stack_boundary)
680 cfun->preferred_stack_boundary = inl_f->preferred_stack_boundary;
681
682 /* Check that the parms type match and that sufficient arguments were
683 passed. Since the appropriate conversions or default promotions have
684 already been applied, the machine modes should match exactly. */
685
686 for (formal = DECL_ARGUMENTS (fndecl), actual = parms;
687 formal;
688 formal = TREE_CHAIN (formal), actual = TREE_CHAIN (actual))
689 {
690 tree arg;
691 enum machine_mode mode;
692
693 if (actual == 0)
694 return (rtx) (size_t) -1;
695
696 arg = TREE_VALUE (actual);
697 mode = TYPE_MODE (DECL_ARG_TYPE (formal));
698
699 if (arg == error_mark_node
700 || mode != TYPE_MODE (TREE_TYPE (arg))
701 /* If they are block mode, the types should match exactly.
702 They don't match exactly if TREE_TYPE (FORMAL) == ERROR_MARK_NODE,
703 which could happen if the parameter has incomplete type. */
704 || (mode == BLKmode
705 && (TYPE_MAIN_VARIANT (TREE_TYPE (arg))
706 != TYPE_MAIN_VARIANT (TREE_TYPE (formal)))))
707 return (rtx) (size_t) -1;
708 }
709
710 /* If there is a TARGET which is a readonly BLKmode MEM and DECL_RESULT
711 is also a mem, we are going to lose the readonly on the stores, so don't
712 inline. */
713 if (target != 0 && GET_CODE (target) == MEM && GET_MODE (target) == BLKmode
714 && RTX_UNCHANGING_P (target) && DECL_RTL_SET_P (DECL_RESULT (fndecl))
715 && GET_CODE (DECL_RTL (DECL_RESULT (fndecl))) == MEM)
716 return (rtx) (size_t) -1;
717
718 /* Extra arguments are valid, but will be ignored below, so we must
719 evaluate them here for side-effects. */
720 for (; actual; actual = TREE_CHAIN (actual))
721 expand_expr (TREE_VALUE (actual), const0_rtx,
722 TYPE_MODE (TREE_TYPE (TREE_VALUE (actual))), 0);
723
724 /* Expand the function arguments. Do this first so that any
725 new registers get created before we allocate the maps. */
726
727 arg_vals = (rtx *) xmalloc (nargs * sizeof (rtx));
728 arg_trees = (tree *) xmalloc (nargs * sizeof (tree));
729
730 for (formal = DECL_ARGUMENTS (fndecl), actual = parms, i = 0;
731 formal;
732 formal = TREE_CHAIN (formal), actual = TREE_CHAIN (actual), i++)
733 {
734 /* Actual parameter, converted to the type of the argument within the
735 function. */
736 tree arg = convert (TREE_TYPE (formal), TREE_VALUE (actual));
737 /* Mode of the variable used within the function. */
738 enum machine_mode mode = TYPE_MODE (TREE_TYPE (formal));
739 int invisiref = 0;
740
741 arg_trees[i] = arg;
742 loc = RTVEC_ELT (arg_vector, i);
743
744 /* If this is an object passed by invisible reference, we copy the
745 object into a stack slot and save its address. If this will go
746 into memory, we do nothing now. Otherwise, we just expand the
747 argument. */
748 if (GET_CODE (loc) == MEM && GET_CODE (XEXP (loc, 0)) == REG
749 && REGNO (XEXP (loc, 0)) > LAST_VIRTUAL_REGISTER)
750 {
751 rtx stack_slot = assign_temp (TREE_TYPE (arg), 1, 1, 1);
752
753 store_expr (arg, stack_slot, 0);
754 arg_vals[i] = XEXP (stack_slot, 0);
755 invisiref = 1;
756 }
757 else if (GET_CODE (loc) != MEM)
758 {
759 if (GET_MODE (loc) != TYPE_MODE (TREE_TYPE (arg)))
760 {
761 int unsignedp = TREE_UNSIGNED (TREE_TYPE (formal));
762 enum machine_mode pmode = TYPE_MODE (TREE_TYPE (formal));
763
764 pmode = promote_mode (TREE_TYPE (formal), pmode,
765 &unsignedp, 0);
766
767 if (GET_MODE (loc) != pmode)
768 abort ();
769
770 /* The mode if LOC and ARG can differ if LOC was a variable
771 that had its mode promoted via PROMOTED_MODE. */
772 arg_vals[i] = convert_modes (pmode,
773 TYPE_MODE (TREE_TYPE (arg)),
774 expand_expr (arg, NULL_RTX, mode,
775 EXPAND_SUM),
776 unsignedp);
777 }
778 else
779 arg_vals[i] = expand_expr (arg, NULL_RTX, mode, EXPAND_SUM);
780 }
781 else
782 arg_vals[i] = 0;
783
784 /* If the formal type was const but the actual was not, we might
785 end up here with an rtx wrongly tagged unchanging in the caller's
786 context. Fix that. */
787 if (arg_vals[i] != 0
788 && (GET_CODE (arg_vals[i]) == REG || GET_CODE (arg_vals[i]) == MEM)
789 && ! TREE_READONLY (TREE_VALUE (actual)))
790 RTX_UNCHANGING_P (arg_vals[i]) = 0;
791
792 if (arg_vals[i] != 0
793 && (! TREE_READONLY (formal)
794 /* If the parameter is not read-only, copy our argument through
795 a register. Also, we cannot use ARG_VALS[I] if it overlaps
796 TARGET in any way. In the inline function, they will likely
797 be two different pseudos, and `safe_from_p' will make all
798 sorts of smart assumptions about their not conflicting.
799 But if ARG_VALS[I] overlaps TARGET, these assumptions are
800 wrong, so put ARG_VALS[I] into a fresh register.
801 Don't worry about invisible references, since their stack
802 temps will never overlap the target. */
803 || (target != 0
804 && ! invisiref
805 && (GET_CODE (arg_vals[i]) == REG
806 || GET_CODE (arg_vals[i]) == SUBREG
807 || GET_CODE (arg_vals[i]) == MEM)
808 && reg_overlap_mentioned_p (arg_vals[i], target))
809 /* ??? We must always copy a SUBREG into a REG, because it might
810 get substituted into an address, and not all ports correctly
811 handle SUBREGs in addresses. */
812 || (GET_CODE (arg_vals[i]) == SUBREG)))
813 arg_vals[i] = copy_to_mode_reg (GET_MODE (loc), arg_vals[i]);
814
815 if (arg_vals[i] != 0 && GET_CODE (arg_vals[i]) == REG
816 && POINTER_TYPE_P (TREE_TYPE (formal)))
817 mark_reg_pointer (arg_vals[i],
818 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (formal))));
819 }
820
821 /* Allocate the structures we use to remap things. */
822
823 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
824 map->fndecl = fndecl;
825
826 VARRAY_TREE_INIT (map->block_map, 10, "block_map");
827 map->reg_map = (rtx *) xcalloc (max_regno, sizeof (rtx));
828
829 /* We used to use alloca here, but the size of what it would try to
830 allocate would occasionally cause it to exceed the stack limit and
831 cause unpredictable core dumps. */
832 real_label_map
833 = (rtx *) xmalloc ((max_labelno) * sizeof (rtx));
834 map->label_map = real_label_map;
835 map->local_return_label = NULL_RTX;
836
837 inl_max_uid = (inl_f->emit->x_cur_insn_uid + 1);
838 map->insn_map = (rtx *) xcalloc (inl_max_uid, sizeof (rtx));
839 map->min_insnno = 0;
840 map->max_insnno = inl_max_uid;
841
842 map->integrating = 1;
843 map->compare_src = NULL_RTX;
844 map->compare_mode = VOIDmode;
845
846 /* const_equiv_varray maps pseudos in our routine to constants, so
847 it needs to be large enough for all our pseudos. This is the
848 number we are currently using plus the number in the called
849 routine, plus 15 for each arg, five to compute the virtual frame
850 pointer, and five for the return value. This should be enough
851 for most cases. We do not reference entries outside the range of
852 the map.
853
854 ??? These numbers are quite arbitrary and were obtained by
855 experimentation. At some point, we should try to allocate the
856 table after all the parameters are set up so we can more accurately
857 estimate the number of pseudos we will need. */
858
859 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
860 (max_reg_num ()
861 + (max_regno - FIRST_PSEUDO_REGISTER)
862 + 15 * nargs
863 + 10),
864 "expand_inline_function");
865 map->const_age = 0;
866
867 /* Record the current insn in case we have to set up pointers to frame
868 and argument memory blocks. If there are no insns yet, add a dummy
869 insn that can be used as an insertion point. */
870 map->insns_at_start = get_last_insn ();
871 if (map->insns_at_start == 0)
872 map->insns_at_start = emit_note (NOTE_INSN_DELETED);
873
874 map->regno_pointer_align = inl_f->emit->regno_pointer_align;
875 map->x_regno_reg_rtx = inl_f->emit->x_regno_reg_rtx;
876
877 /* Update the outgoing argument size to allow for those in the inlined
878 function. */
879 if (inl_f->outgoing_args_size > current_function_outgoing_args_size)
880 current_function_outgoing_args_size = inl_f->outgoing_args_size;
881
882 /* If the inline function needs to make PIC references, that means
883 that this function's PIC offset table must be used. */
884 if (inl_f->uses_pic_offset_table)
885 current_function_uses_pic_offset_table = 1;
886
887 /* If this function needs a context, set it up. */
888 if (inl_f->needs_context)
889 static_chain_value = lookup_static_chain (fndecl);
890
891 /* If the inlined function calls __builtin_constant_p, then we'll
892 need to call purge_builtin_constant_p on this function. */
893 if (inl_f->calls_constant_p)
894 current_function_calls_constant_p = 1;
895
896 if (GET_CODE (parm_insns) == NOTE
897 && NOTE_LINE_NUMBER (parm_insns) > 0)
898 {
899 rtx note = emit_note_copy (parm_insns);
900
901 if (note)
902 RTX_INTEGRATED_P (note) = 1;
903 }
904
905 /* Process each argument. For each, set up things so that the function's
906 reference to the argument will refer to the argument being passed.
907 We only replace REG with REG here. Any simplifications are done
908 via const_equiv_map.
909
910 We make two passes: In the first, we deal with parameters that will
911 be placed into registers, since we need to ensure that the allocated
912 register number fits in const_equiv_map. Then we store all non-register
913 parameters into their memory location. */
914
915 /* Don't try to free temp stack slots here, because we may put one of the
916 parameters into a temp stack slot. */
917
918 for (i = 0; i < nargs; i++)
919 {
920 rtx copy = arg_vals[i];
921
922 loc = RTVEC_ELT (arg_vector, i);
923
924 /* There are three cases, each handled separately. */
925 if (GET_CODE (loc) == MEM && GET_CODE (XEXP (loc, 0)) == REG
926 && REGNO (XEXP (loc, 0)) > LAST_VIRTUAL_REGISTER)
927 {
928 /* This must be an object passed by invisible reference (it could
929 also be a variable-sized object, but we forbid inlining functions
930 with variable-sized arguments). COPY is the address of the
931 actual value (this computation will cause it to be copied). We
932 map that address for the register, noting the actual address as
933 an equivalent in case it can be substituted into the insns. */
934
935 if (GET_CODE (copy) != REG)
936 {
937 temp = copy_addr_to_reg (copy);
938 if (CONSTANT_P (copy) || FIXED_BASE_PLUS_P (copy))
939 SET_CONST_EQUIV_DATA (map, temp, copy, CONST_AGE_PARM);
940 copy = temp;
941 }
942 map->reg_map[REGNO (XEXP (loc, 0))] = copy;
943 }
944 else if (GET_CODE (loc) == MEM)
945 {
946 /* This is the case of a parameter that lives in memory. It
947 will live in the block we allocate in the called routine's
948 frame that simulates the incoming argument area. Do nothing
949 with the parameter now; we will call store_expr later. In
950 this case, however, we must ensure that the virtual stack and
951 incoming arg rtx values are expanded now so that we can be
952 sure we have enough slots in the const equiv map since the
953 store_expr call can easily blow the size estimate. */
954 if (DECL_SAVED_INSNS (fndecl)->args_size != 0)
955 copy_rtx_and_substitute (virtual_incoming_args_rtx, map, 0);
956 }
957 else if (GET_CODE (loc) == REG)
958 process_reg_param (map, loc, copy);
959 else if (GET_CODE (loc) == CONCAT)
960 {
961 rtx locreal = gen_realpart (GET_MODE (XEXP (loc, 0)), loc);
962 rtx locimag = gen_imagpart (GET_MODE (XEXP (loc, 0)), loc);
963 rtx copyreal = gen_realpart (GET_MODE (locreal), copy);
964 rtx copyimag = gen_imagpart (GET_MODE (locimag), copy);
965
966 process_reg_param (map, locreal, copyreal);
967 process_reg_param (map, locimag, copyimag);
968 }
969 else
970 abort ();
971 }
972
973 /* Tell copy_rtx_and_substitute to handle constant pool SYMBOL_REFs
974 specially. This function can be called recursively, so we need to
975 save the previous value. */
976 inlining_previous = inlining;
977 inlining = inl_f;
978
979 /* Now do the parameters that will be placed in memory. */
980
981 for (formal = DECL_ARGUMENTS (fndecl), i = 0;
982 formal; formal = TREE_CHAIN (formal), i++)
983 {
984 loc = RTVEC_ELT (arg_vector, i);
985
986 if (GET_CODE (loc) == MEM
987 /* Exclude case handled above. */
988 && ! (GET_CODE (XEXP (loc, 0)) == REG
989 && REGNO (XEXP (loc, 0)) > LAST_VIRTUAL_REGISTER))
990 {
991 rtx note = emit_line_note (DECL_SOURCE_LOCATION (formal));
992
993 if (note)
994 RTX_INTEGRATED_P (note) = 1;
995
996 /* Compute the address in the area we reserved and store the
997 value there. */
998 temp = copy_rtx_and_substitute (loc, map, 1);
999 subst_constants (&temp, NULL_RTX, map, 1);
1000 apply_change_group ();
1001 if (! memory_address_p (GET_MODE (temp), XEXP (temp, 0)))
1002 temp = change_address (temp, VOIDmode, XEXP (temp, 0));
1003 store_expr (arg_trees[i], temp, 0);
1004 }
1005 }
1006
1007 /* Deal with the places that the function puts its result.
1008 We are driven by what is placed into DECL_RESULT.
1009
1010 Initially, we assume that we don't have anything special handling for
1011 REG_FUNCTION_RETURN_VALUE_P. */
1012
1013 map->inline_target = 0;
1014 loc = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
1015 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
1016
1017 if (TYPE_MODE (type) == VOIDmode)
1018 /* There is no return value to worry about. */
1019 ;
1020 else if (GET_CODE (loc) == MEM)
1021 {
1022 if (GET_CODE (XEXP (loc, 0)) == ADDRESSOF)
1023 {
1024 temp = copy_rtx_and_substitute (loc, map, 1);
1025 subst_constants (&temp, NULL_RTX, map, 1);
1026 apply_change_group ();
1027 target = temp;
1028 }
1029 else
1030 {
1031 if (! structure_value_addr
1032 || ! aggregate_value_p (DECL_RESULT (fndecl)))
1033 abort ();
1034
1035 /* Pass the function the address in which to return a structure
1036 value. Note that a constructor can cause someone to call us
1037 with STRUCTURE_VALUE_ADDR, but the initialization takes place
1038 via the first parameter, rather than the struct return address.
1039
1040 We have two cases: If the address is a simple register
1041 indirect, use the mapping mechanism to point that register to
1042 our structure return address. Otherwise, store the structure
1043 return value into the place that it will be referenced from. */
1044
1045 if (GET_CODE (XEXP (loc, 0)) == REG)
1046 {
1047 temp = force_operand (structure_value_addr, NULL_RTX);
1048 temp = force_reg (Pmode, temp);
1049 /* A virtual register might be invalid in an insn, because
1050 it can cause trouble in reload. Since we don't have access
1051 to the expanders at map translation time, make sure we have
1052 a proper register now.
1053 If a virtual register is actually valid, cse or combine
1054 can put it into the mapped insns. */
1055 if (REGNO (temp) >= FIRST_VIRTUAL_REGISTER
1056 && REGNO (temp) <= LAST_VIRTUAL_REGISTER)
1057 temp = copy_to_mode_reg (Pmode, temp);
1058 map->reg_map[REGNO (XEXP (loc, 0))] = temp;
1059
1060 if (CONSTANT_P (structure_value_addr)
1061 || GET_CODE (structure_value_addr) == ADDRESSOF
1062 || (GET_CODE (structure_value_addr) == PLUS
1063 && (XEXP (structure_value_addr, 0)
1064 == virtual_stack_vars_rtx)
1065 && (GET_CODE (XEXP (structure_value_addr, 1))
1066 == CONST_INT)))
1067 {
1068 SET_CONST_EQUIV_DATA (map, temp, structure_value_addr,
1069 CONST_AGE_PARM);
1070 }
1071 }
1072 else
1073 {
1074 temp = copy_rtx_and_substitute (loc, map, 1);
1075 subst_constants (&temp, NULL_RTX, map, 0);
1076 apply_change_group ();
1077 emit_move_insn (temp, structure_value_addr);
1078 }
1079 }
1080 }
1081 else if (ignore)
1082 /* We will ignore the result value, so don't look at its structure.
1083 Note that preparations for an aggregate return value
1084 do need to be made (above) even if it will be ignored. */
1085 ;
1086 else if (GET_CODE (loc) == REG)
1087 {
1088 /* The function returns an object in a register and we use the return
1089 value. Set up our target for remapping. */
1090
1091 /* Machine mode function was declared to return. */
1092 enum machine_mode departing_mode = TYPE_MODE (type);
1093 /* (Possibly wider) machine mode it actually computes
1094 (for the sake of callers that fail to declare it right).
1095 We have to use the mode of the result's RTL, rather than
1096 its type, since expand_function_start may have promoted it. */
1097 enum machine_mode arriving_mode
1098 = GET_MODE (DECL_RTL (DECL_RESULT (fndecl)));
1099 rtx reg_to_map;
1100
1101 /* Don't use MEMs as direct targets because on some machines
1102 substituting a MEM for a REG makes invalid insns.
1103 Let the combiner substitute the MEM if that is valid. */
1104 if (target == 0 || GET_CODE (target) != REG
1105 || GET_MODE (target) != departing_mode)
1106 {
1107 /* Don't make BLKmode registers. If this looks like
1108 a BLKmode object being returned in a register, get
1109 the mode from that, otherwise abort. */
1110 if (departing_mode == BLKmode)
1111 {
1112 if (REG == GET_CODE (DECL_RTL (DECL_RESULT (fndecl))))
1113 {
1114 departing_mode = GET_MODE (DECL_RTL (DECL_RESULT (fndecl)));
1115 arriving_mode = departing_mode;
1116 }
1117 else
1118 abort ();
1119 }
1120
1121 target = gen_reg_rtx (departing_mode);
1122 }
1123
1124 /* If function's value was promoted before return,
1125 avoid machine mode mismatch when we substitute INLINE_TARGET.
1126 But TARGET is what we will return to the caller. */
1127 if (arriving_mode != departing_mode)
1128 {
1129 /* Avoid creating a paradoxical subreg wider than
1130 BITS_PER_WORD, since that is illegal. */
1131 if (GET_MODE_BITSIZE (arriving_mode) > BITS_PER_WORD)
1132 {
1133 if (!TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (departing_mode),
1134 GET_MODE_BITSIZE (arriving_mode)))
1135 /* Maybe could be handled by using convert_move () ? */
1136 abort ();
1137 reg_to_map = gen_reg_rtx (arriving_mode);
1138 target = gen_lowpart (departing_mode, reg_to_map);
1139 }
1140 else
1141 reg_to_map = gen_rtx_SUBREG (arriving_mode, target, 0);
1142 }
1143 else
1144 reg_to_map = target;
1145
1146 /* Usually, the result value is the machine's return register.
1147 Sometimes it may be a pseudo. Handle both cases. */
1148 if (REG_FUNCTION_VALUE_P (loc))
1149 map->inline_target = reg_to_map;
1150 else
1151 map->reg_map[REGNO (loc)] = reg_to_map;
1152 }
1153 else if (GET_CODE (loc) == CONCAT)
1154 {
1155 enum machine_mode departing_mode = TYPE_MODE (type);
1156 enum machine_mode arriving_mode
1157 = GET_MODE (DECL_RTL (DECL_RESULT (fndecl)));
1158
1159 if (departing_mode != arriving_mode)
1160 abort ();
1161 if (GET_CODE (XEXP (loc, 0)) != REG
1162 || GET_CODE (XEXP (loc, 1)) != REG)
1163 abort ();
1164
1165 /* Don't use MEMs as direct targets because on some machines
1166 substituting a MEM for a REG makes invalid insns.
1167 Let the combiner substitute the MEM if that is valid. */
1168 if (target == 0 || GET_CODE (target) != REG
1169 || GET_MODE (target) != departing_mode)
1170 target = gen_reg_rtx (departing_mode);
1171
1172 if (GET_CODE (target) != CONCAT)
1173 abort ();
1174
1175 map->reg_map[REGNO (XEXP (loc, 0))] = XEXP (target, 0);
1176 map->reg_map[REGNO (XEXP (loc, 1))] = XEXP (target, 1);
1177 }
1178 else
1179 abort ();
1180
1181 /* Remap the exception handler data pointer from one to the other. */
1182 temp = get_exception_pointer (inl_f);
1183 if (temp)
1184 map->reg_map[REGNO (temp)] = get_exception_pointer (cfun);
1185
1186 /* Initialize label_map. get_label_from_map will actually make
1187 the labels. */
1188 memset ((char *) &map->label_map[min_labelno], 0,
1189 (max_labelno - min_labelno) * sizeof (rtx));
1190
1191 /* Make copies of the decls of the symbols in the inline function, so that
1192 the copies of the variables get declared in the current function. Set
1193 up things so that lookup_static_chain knows that to interpret registers
1194 in SAVE_EXPRs for TYPE_SIZEs as local. */
1195 inline_function_decl = fndecl;
1196 integrate_parm_decls (DECL_ARGUMENTS (fndecl), map, arg_vector);
1197 block = integrate_decl_tree (inl_f->original_decl_initial, map);
1198 BLOCK_ABSTRACT_ORIGIN (block) = DECL_ORIGIN (fndecl);
1199 inline_function_decl = 0;
1200
1201 /* Make a fresh binding contour that we can easily remove. Do this after
1202 expanding our arguments so cleanups are properly scoped. */
1203 expand_start_bindings_and_block (0, block);
1204
1205 /* Sort the block-map so that it will be easy to find remapped
1206 blocks later. */
1207 qsort (&VARRAY_TREE (map->block_map, 0),
1208 map->block_map->elements_used,
1209 sizeof (tree),
1210 compare_blocks);
1211
1212 /* Perform postincrements before actually calling the function. */
1213 emit_queue ();
1214
1215 /* Clean up stack so that variables might have smaller offsets. */
1216 do_pending_stack_adjust ();
1217
1218 /* Save a copy of the location of const_equiv_varray for
1219 mark_stores, called via note_stores. */
1220 global_const_equiv_varray = map->const_equiv_varray;
1221
1222 /* If the called function does an alloca, save and restore the
1223 stack pointer around the call. This saves stack space, but
1224 also is required if this inline is being done between two
1225 pushes. */
1226 if (inl_f->calls_alloca)
1227 emit_stack_save (SAVE_BLOCK, &stack_save, NULL_RTX);
1228
1229 /* Map pseudos used for initial hard reg values. */
1230 setup_initial_hard_reg_value_integration (inl_f, map);
1231
1232 /* Now copy the insns one by one. */
1233 copy_insn_list (insns, map, static_chain_value);
1234
1235 /* Duplicate the EH regions. This will create an offset from the
1236 region numbers in the function we're inlining to the region
1237 numbers in the calling function. This must wait until after
1238 copy_insn_list, as we need the insn map to be complete. */
1239 eh_region_offset = duplicate_eh_regions (inl_f, map);
1240
1241 /* Now copy the REG_NOTES for those insns. */
1242 copy_insn_notes (insns, map, eh_region_offset);
1243
1244 /* If the insn sequence required one, emit the return label. */
1245 if (map->local_return_label)
1246 emit_label (map->local_return_label);
1247
1248 /* Restore the stack pointer if we saved it above. */
1249 if (inl_f->calls_alloca)
1250 emit_stack_restore (SAVE_BLOCK, stack_save, NULL_RTX);
1251
1252 if (! cfun->x_whole_function_mode_p)
1253 /* In statement-at-a-time mode, we just tell the front-end to add
1254 this block to the list of blocks at this binding level. We
1255 can't do it the way it's done for function-at-a-time mode the
1256 superblocks have not been created yet. */
1257 (*lang_hooks.decls.insert_block) (block);
1258 else
1259 {
1260 BLOCK_CHAIN (block)
1261 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
1262 BLOCK_CHAIN (DECL_INITIAL (current_function_decl)) = block;
1263 }
1264
1265 /* End the scope containing the copied formal parameter variables
1266 and copied LABEL_DECLs. We pass NULL_TREE for the variables list
1267 here so that expand_end_bindings will not check for unused
1268 variables. That's already been checked for when the inlined
1269 function was defined. */
1270 expand_end_bindings (NULL_TREE, 1, 1);
1271
1272 /* Must mark the line number note after inlined functions as a repeat, so
1273 that the test coverage code can avoid counting the call twice. This
1274 just tells the code to ignore the immediately following line note, since
1275 there already exists a copy of this note before the expanded inline call.
1276 This line number note is still needed for debugging though, so we can't
1277 delete it. */
1278 if (flag_test_coverage)
1279 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
1280
1281 emit_line_note (input_location);
1282
1283 /* If the function returns a BLKmode object in a register, copy it
1284 out of the temp register into a BLKmode memory object. */
1285 if (target
1286 && TYPE_MODE (TREE_TYPE (TREE_TYPE (fndecl))) == BLKmode
1287 && ! aggregate_value_p (TREE_TYPE (TREE_TYPE (fndecl))))
1288 target = copy_blkmode_from_reg (0, target, TREE_TYPE (TREE_TYPE (fndecl)));
1289
1290 if (structure_value_addr)
1291 {
1292 target = gen_rtx_MEM (TYPE_MODE (type),
1293 memory_address (TYPE_MODE (type),
1294 structure_value_addr));
1295 set_mem_attributes (target, type, 1);
1296 }
1297
1298 /* Make sure we free the things we explicitly allocated with xmalloc. */
1299 if (real_label_map)
1300 free (real_label_map);
1301 VARRAY_FREE (map->const_equiv_varray);
1302 free (map->reg_map);
1303 free (map->insn_map);
1304 free (map);
1305 free (arg_vals);
1306 free (arg_trees);
1307
1308 inlining = inlining_previous;
1309
1310 return target;
1311 }
1312
1313 /* Make copies of each insn in the given list using the mapping
1314 computed in expand_inline_function. This function may call itself for
1315 insns containing sequences.
1316
1317 Copying is done in two passes, first the insns and then their REG_NOTES.
1318
1319 If static_chain_value is nonzero, it represents the context-pointer
1320 register for the function. */
1321
1322 static void
1323 copy_insn_list (rtx insns, struct inline_remap *map, rtx static_chain_value)
1324 {
1325 int i;
1326 rtx insn;
1327 rtx temp;
1328 #ifdef HAVE_cc0
1329 rtx cc0_insn = 0;
1330 #endif
1331 rtx static_chain_mem = 0;
1332
1333 /* Copy the insns one by one. Do this in two passes, first the insns and
1334 then their REG_NOTES. */
1335
1336 /* This loop is very similar to the loop in copy_loop_body in unroll.c. */
1337
1338 for (insn = insns; insn; insn = NEXT_INSN (insn))
1339 {
1340 rtx copy, pattern, set;
1341
1342 map->orig_asm_operands_vector = 0;
1343
1344 switch (GET_CODE (insn))
1345 {
1346 case INSN:
1347 pattern = PATTERN (insn);
1348 set = single_set (insn);
1349 copy = 0;
1350 if (GET_CODE (pattern) == USE
1351 && GET_CODE (XEXP (pattern, 0)) == REG
1352 && REG_FUNCTION_VALUE_P (XEXP (pattern, 0)))
1353 /* The (USE (REG n)) at return from the function should
1354 be ignored since we are changing (REG n) into
1355 inline_target. */
1356 break;
1357
1358 /* Ignore setting a function value that we don't want to use. */
1359 if (map->inline_target == 0
1360 && set != 0
1361 && GET_CODE (SET_DEST (set)) == REG
1362 && REG_FUNCTION_VALUE_P (SET_DEST (set)))
1363 {
1364 if (volatile_refs_p (SET_SRC (set)))
1365 {
1366 rtx new_set;
1367
1368 /* If we must not delete the source,
1369 load it into a new temporary. */
1370 copy = emit_insn (copy_rtx_and_substitute (pattern, map, 0));
1371
1372 new_set = single_set (copy);
1373 if (new_set == 0)
1374 abort ();
1375
1376 SET_DEST (new_set)
1377 = gen_reg_rtx (GET_MODE (SET_DEST (new_set)));
1378 }
1379 /* If the source and destination are the same and it
1380 has a note on it, keep the insn. */
1381 else if (rtx_equal_p (SET_DEST (set), SET_SRC (set))
1382 && REG_NOTES (insn) != 0)
1383 copy = emit_insn (copy_rtx_and_substitute (pattern, map, 0));
1384 else
1385 break;
1386 }
1387
1388 /* Similarly if an ignored return value is clobbered. */
1389 else if (map->inline_target == 0
1390 && GET_CODE (pattern) == CLOBBER
1391 && GET_CODE (XEXP (pattern, 0)) == REG
1392 && REG_FUNCTION_VALUE_P (XEXP (pattern, 0)))
1393 break;
1394
1395 /* Look for the address of the static chain slot. The
1396 rtx_equal_p comparisons against the
1397 static_chain_incoming_rtx below may fail if the static
1398 chain is in memory and the address specified is not
1399 "legitimate". This happens on Xtensa where the static
1400 chain is at a negative offset from argp and where only
1401 positive offsets are legitimate. When the RTL is
1402 generated, the address is "legitimized" by copying it
1403 into a register, causing the rtx_equal_p comparisons to
1404 fail. This workaround looks for code that sets a
1405 register to the address of the static chain. Subsequent
1406 memory references via that register can then be
1407 identified as static chain references. We assume that
1408 the register is only assigned once, and that the static
1409 chain address is only live in one register at a time. */
1410
1411 else if (static_chain_value != 0
1412 && set != 0
1413 && GET_CODE (static_chain_incoming_rtx) == MEM
1414 && GET_CODE (SET_DEST (set)) == REG
1415 && rtx_equal_p (SET_SRC (set),
1416 XEXP (static_chain_incoming_rtx, 0)))
1417 {
1418 static_chain_mem =
1419 gen_rtx_MEM (GET_MODE (static_chain_incoming_rtx),
1420 SET_DEST (set));
1421
1422 /* emit the instruction in case it is used for something
1423 other than setting the static chain; if it's not used,
1424 it can always be removed as dead code */
1425 copy = emit_insn (copy_rtx_and_substitute (pattern, map, 0));
1426 }
1427
1428 /* If this is setting the static chain rtx, omit it. */
1429 else if (static_chain_value != 0
1430 && set != 0
1431 && (rtx_equal_p (SET_DEST (set),
1432 static_chain_incoming_rtx)
1433 || (static_chain_mem
1434 && rtx_equal_p (SET_DEST (set), static_chain_mem))))
1435 break;
1436
1437 /* If this is setting the static chain pseudo, set it from
1438 the value we want to give it instead. */
1439 else if (static_chain_value != 0
1440 && set != 0
1441 && (rtx_equal_p (SET_SRC (set),
1442 static_chain_incoming_rtx)
1443 || (static_chain_mem
1444 && rtx_equal_p (SET_SRC (set), static_chain_mem))))
1445 {
1446 rtx newdest = copy_rtx_and_substitute (SET_DEST (set), map, 1);
1447
1448 copy = emit_move_insn (newdest, static_chain_value);
1449 if (GET_CODE (static_chain_incoming_rtx) != MEM)
1450 static_chain_value = 0;
1451 }
1452
1453 /* If this is setting the virtual stack vars register, this must
1454 be the code at the handler for a builtin longjmp. The value
1455 saved in the setjmp buffer will be the address of the frame
1456 we've made for this inlined instance within our frame. But we
1457 know the offset of that value so we can use it to reconstruct
1458 our virtual stack vars register from that value. If we are
1459 copying it from the stack pointer, leave it unchanged. */
1460 else if (set != 0
1461 && rtx_equal_p (SET_DEST (set), virtual_stack_vars_rtx))
1462 {
1463 HOST_WIDE_INT offset;
1464 temp = map->reg_map[REGNO (SET_DEST (set))];
1465 temp = VARRAY_CONST_EQUIV (map->const_equiv_varray,
1466 REGNO (temp)).rtx;
1467
1468 if (rtx_equal_p (temp, virtual_stack_vars_rtx))
1469 offset = 0;
1470 else if (GET_CODE (temp) == PLUS
1471 && rtx_equal_p (XEXP (temp, 0), virtual_stack_vars_rtx)
1472 && GET_CODE (XEXP (temp, 1)) == CONST_INT)
1473 offset = INTVAL (XEXP (temp, 1));
1474 else
1475 abort ();
1476
1477 if (rtx_equal_p (SET_SRC (set), stack_pointer_rtx))
1478 temp = SET_SRC (set);
1479 else
1480 temp = force_operand (plus_constant (SET_SRC (set),
1481 - offset),
1482 NULL_RTX);
1483
1484 copy = emit_move_insn (virtual_stack_vars_rtx, temp);
1485 }
1486
1487 else
1488 copy = emit_insn (copy_rtx_and_substitute (pattern, map, 0));
1489 /* REG_NOTES will be copied later. */
1490
1491 #ifdef HAVE_cc0
1492 /* If this insn is setting CC0, it may need to look at
1493 the insn that uses CC0 to see what type of insn it is.
1494 In that case, the call to recog via validate_change will
1495 fail. So don't substitute constants here. Instead,
1496 do it when we emit the following insn.
1497
1498 For example, see the pyr.md file. That machine has signed and
1499 unsigned compares. The compare patterns must check the
1500 following branch insn to see which what kind of compare to
1501 emit.
1502
1503 If the previous insn set CC0, substitute constants on it as
1504 well. */
1505 if (sets_cc0_p (PATTERN (copy)) != 0)
1506 cc0_insn = copy;
1507 else
1508 {
1509 if (cc0_insn)
1510 try_constants (cc0_insn, map);
1511 cc0_insn = 0;
1512 try_constants (copy, map);
1513 }
1514 #else
1515 try_constants (copy, map);
1516 #endif
1517 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
1518 break;
1519
1520 case JUMP_INSN:
1521 if (map->integrating && returnjump_p (insn))
1522 {
1523 if (map->local_return_label == 0)
1524 map->local_return_label = gen_label_rtx ();
1525 pattern = gen_jump (map->local_return_label);
1526 }
1527 else
1528 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
1529
1530 copy = emit_jump_insn (pattern);
1531
1532 #ifdef HAVE_cc0
1533 if (cc0_insn)
1534 try_constants (cc0_insn, map);
1535 cc0_insn = 0;
1536 #endif
1537 try_constants (copy, map);
1538 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
1539
1540 /* If this used to be a conditional jump insn but whose branch
1541 direction is now know, we must do something special. */
1542 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
1543 {
1544 #ifdef HAVE_cc0
1545 /* If the previous insn set cc0 for us, delete it. */
1546 if (only_sets_cc0_p (PREV_INSN (copy)))
1547 delete_related_insns (PREV_INSN (copy));
1548 #endif
1549
1550 /* If this is now a no-op, delete it. */
1551 if (map->last_pc_value == pc_rtx)
1552 {
1553 delete_related_insns (copy);
1554 copy = 0;
1555 }
1556 else
1557 /* Otherwise, this is unconditional jump so we must put a
1558 BARRIER after it. We could do some dead code elimination
1559 here, but jump.c will do it just as well. */
1560 emit_barrier ();
1561 }
1562 break;
1563
1564 case CALL_INSN:
1565 /* If this is a CALL_PLACEHOLDER insn then we need to copy the
1566 three attached sequences: normal call, sibling call and tail
1567 recursion. */
1568 if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1569 {
1570 rtx sequence[3];
1571 rtx tail_label;
1572
1573 for (i = 0; i < 3; i++)
1574 {
1575 rtx seq;
1576
1577 sequence[i] = NULL_RTX;
1578 seq = XEXP (PATTERN (insn), i);
1579 if (seq)
1580 {
1581 start_sequence ();
1582 copy_insn_list (seq, map, static_chain_value);
1583 sequence[i] = get_insns ();
1584 end_sequence ();
1585 }
1586 }
1587
1588 /* Find the new tail recursion label.
1589 It will already be substituted into sequence[2]. */
1590 tail_label = copy_rtx_and_substitute (XEXP (PATTERN (insn), 3),
1591 map, 0);
1592
1593 copy = emit_call_insn (gen_rtx_CALL_PLACEHOLDER (VOIDmode,
1594 sequence[0],
1595 sequence[1],
1596 sequence[2],
1597 tail_label));
1598 break;
1599 }
1600
1601 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
1602 copy = emit_call_insn (pattern);
1603
1604 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
1605 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
1606 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
1607
1608 /* Because the USAGE information potentially contains objects other
1609 than hard registers, we need to copy it. */
1610
1611 CALL_INSN_FUNCTION_USAGE (copy)
1612 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
1613 map, 0);
1614
1615 #ifdef HAVE_cc0
1616 if (cc0_insn)
1617 try_constants (cc0_insn, map);
1618 cc0_insn = 0;
1619 #endif
1620 try_constants (copy, map);
1621
1622 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1623 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1624 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
1625 break;
1626
1627 case CODE_LABEL:
1628 copy = emit_label (get_label_from_map (map,
1629 CODE_LABEL_NUMBER (insn)));
1630 LABEL_NAME (copy) = LABEL_NAME (insn);
1631 map->const_age++;
1632 break;
1633
1634 case BARRIER:
1635 copy = emit_barrier ();
1636 break;
1637
1638 case NOTE:
1639 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)
1640 {
1641 copy = emit_label (get_label_from_map (map,
1642 CODE_LABEL_NUMBER (insn)));
1643 LABEL_NAME (copy) = NOTE_SOURCE_FILE (insn);
1644 map->const_age++;
1645 break;
1646 }
1647
1648 /* NOTE_INSN_FUNCTION_END and NOTE_INSN_FUNCTION_BEG are
1649 discarded because it is important to have only one of
1650 each in the current function.
1651
1652 NOTE_INSN_DELETED notes aren't useful. */
1653
1654 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END
1655 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_BEG
1656 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1657 {
1658 copy = emit_note_copy (insn);
1659 if (!copy)
1660 /*Copied a line note, but line numbering is off*/;
1661 else if ((NOTE_LINE_NUMBER (copy) == NOTE_INSN_BLOCK_BEG
1662 || NOTE_LINE_NUMBER (copy) == NOTE_INSN_BLOCK_END)
1663 && NOTE_BLOCK (insn))
1664 {
1665 tree *mapped_block_p;
1666
1667 mapped_block_p
1668 = (tree *) bsearch (NOTE_BLOCK (insn),
1669 &VARRAY_TREE (map->block_map, 0),
1670 map->block_map->elements_used,
1671 sizeof (tree),
1672 find_block);
1673
1674 if (!mapped_block_p)
1675 abort ();
1676 else
1677 NOTE_BLOCK (copy) = *mapped_block_p;
1678 }
1679 else if (NOTE_LINE_NUMBER (copy) == NOTE_INSN_EXPECTED_VALUE)
1680 NOTE_EXPECTED_VALUE (copy)
1681 = copy_rtx_and_substitute (NOTE_EXPECTED_VALUE (insn),
1682 map, 0);
1683 }
1684 else
1685 copy = 0;
1686 break;
1687
1688 default:
1689 abort ();
1690 }
1691
1692 if (copy)
1693 RTX_INTEGRATED_P (copy) = 1;
1694
1695 map->insn_map[INSN_UID (insn)] = copy;
1696 }
1697 }
1698
1699 /* Copy the REG_NOTES. Increment const_age, so that only constants
1700 from parameters can be substituted in. These are the only ones
1701 that are valid across the entire function. */
1702
1703 static void
1704 copy_insn_notes (rtx insns, struct inline_remap *map, int eh_region_offset)
1705 {
1706 rtx insn, new_insn;
1707
1708 map->const_age++;
1709 for (insn = insns; insn; insn = NEXT_INSN (insn))
1710 {
1711 if (! INSN_P (insn))
1712 continue;
1713
1714 new_insn = map->insn_map[INSN_UID (insn)];
1715 if (! new_insn)
1716 continue;
1717
1718 if (REG_NOTES (insn))
1719 {
1720 rtx next, note = copy_rtx_and_substitute (REG_NOTES (insn), map, 0);
1721
1722 /* We must also do subst_constants, in case one of our parameters
1723 has const type and constant value. */
1724 subst_constants (&note, NULL_RTX, map, 0);
1725 apply_change_group ();
1726 REG_NOTES (new_insn) = note;
1727
1728 /* Delete any REG_LABEL notes from the chain. Remap any
1729 REG_EH_REGION notes. */
1730 for (; note; note = next)
1731 {
1732 next = XEXP (note, 1);
1733 if (REG_NOTE_KIND (note) == REG_LABEL)
1734 remove_note (new_insn, note);
1735 else if (REG_NOTE_KIND (note) == REG_EH_REGION
1736 && INTVAL (XEXP (note, 0)) > 0)
1737 XEXP (note, 0) = GEN_INT (INTVAL (XEXP (note, 0))
1738 + eh_region_offset);
1739 }
1740 }
1741
1742 if (GET_CODE (insn) == CALL_INSN
1743 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1744 {
1745 int i;
1746 for (i = 0; i < 3; i++)
1747 copy_insn_notes (XEXP (PATTERN (insn), i), map, eh_region_offset);
1748 }
1749
1750 if (GET_CODE (insn) == JUMP_INSN
1751 && GET_CODE (PATTERN (insn)) == RESX)
1752 XINT (PATTERN (new_insn), 0) += eh_region_offset;
1753 }
1754 }
1755 \f
1756 /* Given a chain of PARM_DECLs, ARGS, copy each decl into a VAR_DECL,
1757 push all of those decls and give each one the corresponding home. */
1758
1759 static void
1760 integrate_parm_decls (tree args, struct inline_remap *map, rtvec arg_vector)
1761 {
1762 tree tail;
1763 int i;
1764
1765 for (tail = args, i = 0; tail; tail = TREE_CHAIN (tail), i++)
1766 {
1767 tree decl = copy_decl_for_inlining (tail, map->fndecl,
1768 current_function_decl);
1769 rtx new_decl_rtl
1770 = copy_rtx_and_substitute (RTVEC_ELT (arg_vector, i), map, 1);
1771
1772 /* We really should be setting DECL_INCOMING_RTL to something reasonable
1773 here, but that's going to require some more work. */
1774 /* DECL_INCOMING_RTL (decl) = ?; */
1775 /* Fully instantiate the address with the equivalent form so that the
1776 debugging information contains the actual register, instead of the
1777 virtual register. Do this by not passing an insn to
1778 subst_constants. */
1779 subst_constants (&new_decl_rtl, NULL_RTX, map, 1);
1780 apply_change_group ();
1781 SET_DECL_RTL (decl, new_decl_rtl);
1782 }
1783 }
1784
1785 /* Given a BLOCK node LET, push decls and levels so as to construct in the
1786 current function a tree of contexts isomorphic to the one that is given.
1787
1788 MAP, if nonzero, is a pointer to an inline_remap map which indicates how
1789 registers used in the DECL_RTL field should be remapped. If it is zero,
1790 no mapping is necessary. */
1791
1792 static tree
1793 integrate_decl_tree (tree let, struct inline_remap *map)
1794 {
1795 tree t;
1796 tree new_block;
1797 tree *next;
1798
1799 new_block = make_node (BLOCK);
1800 VARRAY_PUSH_TREE (map->block_map, new_block);
1801 next = &BLOCK_VARS (new_block);
1802
1803 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1804 {
1805 tree d;
1806
1807 d = copy_decl_for_inlining (t, map->fndecl, current_function_decl);
1808
1809 if (DECL_RTL_SET_P (t))
1810 {
1811 rtx r;
1812
1813 SET_DECL_RTL (d, copy_rtx_and_substitute (DECL_RTL (t), map, 1));
1814
1815 /* Fully instantiate the address with the equivalent form so that the
1816 debugging information contains the actual register, instead of the
1817 virtual register. Do this by not passing an insn to
1818 subst_constants. */
1819 r = DECL_RTL (d);
1820 subst_constants (&r, NULL_RTX, map, 1);
1821 SET_DECL_RTL (d, r);
1822
1823 apply_change_group ();
1824 }
1825
1826 /* Add this declaration to the list of variables in the new
1827 block. */
1828 *next = d;
1829 next = &TREE_CHAIN (d);
1830 }
1831
1832 next = &BLOCK_SUBBLOCKS (new_block);
1833 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1834 {
1835 *next = integrate_decl_tree (t, map);
1836 BLOCK_SUPERCONTEXT (*next) = new_block;
1837 next = &BLOCK_CHAIN (*next);
1838 }
1839
1840 TREE_USED (new_block) = TREE_USED (let);
1841 BLOCK_ABSTRACT_ORIGIN (new_block) = let;
1842
1843 return new_block;
1844 }
1845 \f
1846 /* Create a new copy of an rtx. Recursively copies the operands of the rtx,
1847 except for those few rtx codes that are sharable.
1848
1849 We always return an rtx that is similar to that incoming rtx, with the
1850 exception of possibly changing a REG to a SUBREG or vice versa. No
1851 rtl is ever emitted.
1852
1853 If FOR_LHS is nonzero, if means we are processing something that will
1854 be the LHS of a SET. In that case, we copy RTX_UNCHANGING_P even if
1855 inlining since we need to be conservative in how it is set for
1856 such cases.
1857
1858 Handle constants that need to be placed in the constant pool by
1859 calling `force_const_mem'. */
1860
1861 rtx
1862 copy_rtx_and_substitute (rtx orig, struct inline_remap *map, int for_lhs)
1863 {
1864 rtx copy, temp;
1865 int i, j;
1866 RTX_CODE code;
1867 enum machine_mode mode;
1868 const char *format_ptr;
1869 int regno;
1870
1871 if (orig == 0)
1872 return 0;
1873
1874 code = GET_CODE (orig);
1875 mode = GET_MODE (orig);
1876
1877 switch (code)
1878 {
1879 case REG:
1880 /* If the stack pointer register shows up, it must be part of
1881 stack-adjustments (*not* because we eliminated the frame pointer!).
1882 Small hard registers are returned as-is. Pseudo-registers
1883 go through their `reg_map'. */
1884 regno = REGNO (orig);
1885 if (regno <= LAST_VIRTUAL_REGISTER
1886 || (map->integrating
1887 && DECL_SAVED_INSNS (map->fndecl)->internal_arg_pointer == orig))
1888 {
1889 /* Some hard registers are also mapped,
1890 but others are not translated. */
1891 if (map->reg_map[regno] != 0)
1892 return map->reg_map[regno];
1893
1894 /* If this is the virtual frame pointer, make space in current
1895 function's stack frame for the stack frame of the inline function.
1896
1897 Copy the address of this area into a pseudo. Map
1898 virtual_stack_vars_rtx to this pseudo and set up a constant
1899 equivalence for it to be the address. This will substitute the
1900 address into insns where it can be substituted and use the new
1901 pseudo where it can't. */
1902 else if (regno == VIRTUAL_STACK_VARS_REGNUM)
1903 {
1904 rtx loc, seq;
1905 int size = get_func_frame_size (DECL_SAVED_INSNS (map->fndecl));
1906 #ifdef FRAME_GROWS_DOWNWARD
1907 int alignment
1908 = (DECL_SAVED_INSNS (map->fndecl)->stack_alignment_needed
1909 / BITS_PER_UNIT);
1910
1911 /* In this case, virtual_stack_vars_rtx points to one byte
1912 higher than the top of the frame area. So make sure we
1913 allocate a big enough chunk to keep the frame pointer
1914 aligned like a real one. */
1915 if (alignment)
1916 size = CEIL_ROUND (size, alignment);
1917 #endif
1918 start_sequence ();
1919 loc = assign_stack_temp (BLKmode, size, 1);
1920 loc = XEXP (loc, 0);
1921 #ifdef FRAME_GROWS_DOWNWARD
1922 /* In this case, virtual_stack_vars_rtx points to one byte
1923 higher than the top of the frame area. So compute the offset
1924 to one byte higher than our substitute frame. */
1925 loc = plus_constant (loc, size);
1926 #endif
1927 map->reg_map[regno] = temp
1928 = force_reg (Pmode, force_operand (loc, NULL_RTX));
1929
1930 #ifdef STACK_BOUNDARY
1931 mark_reg_pointer (map->reg_map[regno], STACK_BOUNDARY);
1932 #endif
1933
1934 SET_CONST_EQUIV_DATA (map, temp, loc, CONST_AGE_PARM);
1935
1936 seq = get_insns ();
1937 end_sequence ();
1938 emit_insn_after (seq, map->insns_at_start);
1939 return temp;
1940 }
1941 else if (regno == VIRTUAL_INCOMING_ARGS_REGNUM
1942 || (map->integrating
1943 && (DECL_SAVED_INSNS (map->fndecl)->internal_arg_pointer
1944 == orig)))
1945 {
1946 /* Do the same for a block to contain any arguments referenced
1947 in memory. */
1948 rtx loc, seq;
1949 int size = DECL_SAVED_INSNS (map->fndecl)->args_size;
1950
1951 start_sequence ();
1952 loc = assign_stack_temp (BLKmode, size, 1);
1953 loc = XEXP (loc, 0);
1954 /* When arguments grow downward, the virtual incoming
1955 args pointer points to the top of the argument block,
1956 so the remapped location better do the same. */
1957 #ifdef ARGS_GROW_DOWNWARD
1958 loc = plus_constant (loc, size);
1959 #endif
1960 map->reg_map[regno] = temp
1961 = force_reg (Pmode, force_operand (loc, NULL_RTX));
1962
1963 #ifdef STACK_BOUNDARY
1964 mark_reg_pointer (map->reg_map[regno], STACK_BOUNDARY);
1965 #endif
1966
1967 SET_CONST_EQUIV_DATA (map, temp, loc, CONST_AGE_PARM);
1968
1969 seq = get_insns ();
1970 end_sequence ();
1971 emit_insn_after (seq, map->insns_at_start);
1972 return temp;
1973 }
1974 else if (REG_FUNCTION_VALUE_P (orig))
1975 {
1976 /* This is a reference to the function return value. If
1977 the function doesn't have a return value, error. If the
1978 mode doesn't agree, and it ain't BLKmode, make a SUBREG. */
1979 if (map->inline_target == 0)
1980 {
1981 if (rtx_equal_function_value_matters)
1982 /* This is an ignored return value. We must not
1983 leave it in with REG_FUNCTION_VALUE_P set, since
1984 that would confuse subsequent inlining of the
1985 current function into a later function. */
1986 return gen_rtx_REG (GET_MODE (orig), regno);
1987 else
1988 /* Must be unrolling loops or replicating code if we
1989 reach here, so return the register unchanged. */
1990 return orig;
1991 }
1992 else if (GET_MODE (map->inline_target) != BLKmode
1993 && mode != GET_MODE (map->inline_target))
1994 return gen_lowpart (mode, map->inline_target);
1995 else
1996 return map->inline_target;
1997 }
1998 #if defined (LEAF_REGISTERS) && defined (LEAF_REG_REMAP)
1999 /* If leaf_renumber_regs_insn() might remap this register to
2000 some other number, make sure we don't share it with the
2001 inlined function, otherwise delayed optimization of the
2002 inlined function may change it in place, breaking our
2003 reference to it. We may still shared it within the
2004 function, so create an entry for this register in the
2005 reg_map. */
2006 if (map->integrating && regno < FIRST_PSEUDO_REGISTER
2007 && LEAF_REGISTERS[regno] && LEAF_REG_REMAP (regno) != regno)
2008 {
2009 if (!map->leaf_reg_map[regno][mode])
2010 map->leaf_reg_map[regno][mode] = gen_rtx_REG (mode, regno);
2011 return map->leaf_reg_map[regno][mode];
2012 }
2013 #endif
2014 else
2015 return orig;
2016
2017 abort ();
2018 }
2019 if (map->reg_map[regno] == NULL)
2020 {
2021 map->reg_map[regno] = gen_reg_rtx (mode);
2022 REG_USERVAR_P (map->reg_map[regno]) = REG_USERVAR_P (orig);
2023 REG_LOOP_TEST_P (map->reg_map[regno]) = REG_LOOP_TEST_P (orig);
2024 RTX_UNCHANGING_P (map->reg_map[regno]) = RTX_UNCHANGING_P (orig);
2025 /* A reg with REG_FUNCTION_VALUE_P true will never reach here. */
2026
2027 if (REG_POINTER (map->x_regno_reg_rtx[regno]))
2028 mark_reg_pointer (map->reg_map[regno],
2029 map->regno_pointer_align[regno]);
2030 }
2031 return map->reg_map[regno];
2032
2033 case SUBREG:
2034 copy = copy_rtx_and_substitute (SUBREG_REG (orig), map, for_lhs);
2035 return simplify_gen_subreg (GET_MODE (orig), copy,
2036 GET_MODE (SUBREG_REG (orig)),
2037 SUBREG_BYTE (orig));
2038
2039 case ADDRESSOF:
2040 copy = gen_rtx_ADDRESSOF (mode,
2041 copy_rtx_and_substitute (XEXP (orig, 0),
2042 map, for_lhs),
2043 0, ADDRESSOF_DECL (orig));
2044 regno = ADDRESSOF_REGNO (orig);
2045 if (map->reg_map[regno])
2046 regno = REGNO (map->reg_map[regno]);
2047 else if (regno > LAST_VIRTUAL_REGISTER)
2048 {
2049 temp = XEXP (orig, 0);
2050 map->reg_map[regno] = gen_reg_rtx (GET_MODE (temp));
2051 REG_USERVAR_P (map->reg_map[regno]) = REG_USERVAR_P (temp);
2052 REG_LOOP_TEST_P (map->reg_map[regno]) = REG_LOOP_TEST_P (temp);
2053 RTX_UNCHANGING_P (map->reg_map[regno]) = RTX_UNCHANGING_P (temp);
2054 /* A reg with REG_FUNCTION_VALUE_P true will never reach here. */
2055
2056 /* Objects may initially be represented as registers, but
2057 but turned into a MEM if their address is taken by
2058 put_var_into_stack. Therefore, the register table may have
2059 entries which are MEMs.
2060
2061 We briefly tried to clear such entries, but that ended up
2062 cascading into many changes due to the optimizers not being
2063 prepared for empty entries in the register table. So we've
2064 decided to allow the MEMs in the register table for now. */
2065 if (REG_P (map->x_regno_reg_rtx[regno])
2066 && REG_POINTER (map->x_regno_reg_rtx[regno]))
2067 mark_reg_pointer (map->reg_map[regno],
2068 map->regno_pointer_align[regno]);
2069 regno = REGNO (map->reg_map[regno]);
2070 }
2071 ADDRESSOF_REGNO (copy) = regno;
2072 return copy;
2073
2074 case USE:
2075 case CLOBBER:
2076 /* USE and CLOBBER are ordinary, but we convert (use (subreg foo))
2077 to (use foo) if the original insn didn't have a subreg.
2078 Removing the subreg distorts the VAX movstrhi pattern
2079 by changing the mode of an operand. */
2080 copy = copy_rtx_and_substitute (XEXP (orig, 0), map, code == CLOBBER);
2081 if (GET_CODE (copy) == SUBREG && GET_CODE (XEXP (orig, 0)) != SUBREG)
2082 copy = SUBREG_REG (copy);
2083 return gen_rtx_fmt_e (code, VOIDmode, copy);
2084
2085 /* We need to handle "deleted" labels that appear in the DECL_RTL
2086 of a LABEL_DECL. */
2087 case NOTE:
2088 if (NOTE_LINE_NUMBER (orig) != NOTE_INSN_DELETED_LABEL)
2089 break;
2090
2091 /* ... FALLTHRU ... */
2092 case CODE_LABEL:
2093 LABEL_PRESERVE_P (get_label_from_map (map, CODE_LABEL_NUMBER (orig)))
2094 = LABEL_PRESERVE_P (orig);
2095 return get_label_from_map (map, CODE_LABEL_NUMBER (orig));
2096
2097 case LABEL_REF:
2098 copy
2099 = gen_rtx_LABEL_REF
2100 (mode,
2101 LABEL_REF_NONLOCAL_P (orig) ? XEXP (orig, 0)
2102 : get_label_from_map (map, CODE_LABEL_NUMBER (XEXP (orig, 0))));
2103
2104 LABEL_OUTSIDE_LOOP_P (copy) = LABEL_OUTSIDE_LOOP_P (orig);
2105
2106 /* The fact that this label was previously nonlocal does not mean
2107 it still is, so we must check if it is within the range of
2108 this function's labels. */
2109 LABEL_REF_NONLOCAL_P (copy)
2110 = (LABEL_REF_NONLOCAL_P (orig)
2111 && ! (CODE_LABEL_NUMBER (XEXP (copy, 0)) >= get_first_label_num ()
2112 && CODE_LABEL_NUMBER (XEXP (copy, 0)) < max_label_num ()));
2113
2114 /* If we have made a nonlocal label local, it means that this
2115 inlined call will be referring to our nonlocal goto handler.
2116 So make sure we create one for this block; we normally would
2117 not since this is not otherwise considered a "call". */
2118 if (LABEL_REF_NONLOCAL_P (orig) && ! LABEL_REF_NONLOCAL_P (copy))
2119 function_call_count++;
2120
2121 return copy;
2122
2123 case PC:
2124 case CC0:
2125 case CONST_INT:
2126 case CONST_VECTOR:
2127 return orig;
2128
2129 case SYMBOL_REF:
2130 /* Symbols which represent the address of a label stored in the constant
2131 pool must be modified to point to a constant pool entry for the
2132 remapped label. Otherwise, symbols are returned unchanged. */
2133 if (CONSTANT_POOL_ADDRESS_P (orig))
2134 {
2135 struct function *f = inlining ? inlining : cfun;
2136 rtx constant = get_pool_constant_for_function (f, orig);
2137 enum machine_mode const_mode = get_pool_mode_for_function (f, orig);
2138 if (inlining)
2139 {
2140 rtx temp = force_const_mem (const_mode,
2141 copy_rtx_and_substitute (constant,
2142 map, 0));
2143
2144 #if 0
2145 /* Legitimizing the address here is incorrect.
2146
2147 Since we had a SYMBOL_REF before, we can assume it is valid
2148 to have one in this position in the insn.
2149
2150 Also, change_address may create new registers. These
2151 registers will not have valid reg_map entries. This can
2152 cause try_constants() to fail because assumes that all
2153 registers in the rtx have valid reg_map entries, and it may
2154 end up replacing one of these new registers with junk. */
2155
2156 if (! memory_address_p (GET_MODE (temp), XEXP (temp, 0)))
2157 temp = change_address (temp, GET_MODE (temp), XEXP (temp, 0));
2158 #endif
2159
2160 temp = XEXP (temp, 0);
2161
2162 #ifdef POINTERS_EXTEND_UNSIGNED
2163 if (GET_MODE (temp) != GET_MODE (orig))
2164 temp = convert_memory_address (GET_MODE (orig), temp);
2165 #endif
2166 return temp;
2167 }
2168 else if (GET_CODE (constant) == LABEL_REF)
2169 return XEXP (force_const_mem
2170 (GET_MODE (orig),
2171 copy_rtx_and_substitute (constant, map, for_lhs)),
2172 0);
2173 }
2174 else if (TREE_CONSTANT_POOL_ADDRESS_P (orig) && inlining)
2175 notice_rtl_inlining_of_deferred_constant ();
2176
2177 return orig;
2178
2179 case CONST_DOUBLE:
2180 /* We have to make a new copy of this CONST_DOUBLE because don't want
2181 to use the old value of CONST_DOUBLE_MEM. Also, this may be a
2182 duplicate of a CONST_DOUBLE we have already seen. */
2183 if (GET_MODE_CLASS (GET_MODE (orig)) == MODE_FLOAT)
2184 {
2185 REAL_VALUE_TYPE d;
2186
2187 REAL_VALUE_FROM_CONST_DOUBLE (d, orig);
2188 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (orig));
2189 }
2190 else
2191 return immed_double_const (CONST_DOUBLE_LOW (orig),
2192 CONST_DOUBLE_HIGH (orig), VOIDmode);
2193
2194 case CONST:
2195 /* Make new constant pool entry for a constant
2196 that was in the pool of the inline function. */
2197 if (RTX_INTEGRATED_P (orig))
2198 abort ();
2199 break;
2200
2201 case ASM_OPERANDS:
2202 /* If a single asm insn contains multiple output operands then
2203 it contains multiple ASM_OPERANDS rtx's that share the input
2204 and constraint vecs. We must make sure that the copied insn
2205 continues to share it. */
2206 if (map->orig_asm_operands_vector == ASM_OPERANDS_INPUT_VEC (orig))
2207 {
2208 copy = rtx_alloc (ASM_OPERANDS);
2209 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2210 PUT_MODE (copy, GET_MODE (orig));
2211 ASM_OPERANDS_TEMPLATE (copy) = ASM_OPERANDS_TEMPLATE (orig);
2212 ASM_OPERANDS_OUTPUT_CONSTRAINT (copy)
2213 = ASM_OPERANDS_OUTPUT_CONSTRAINT (orig);
2214 ASM_OPERANDS_OUTPUT_IDX (copy) = ASM_OPERANDS_OUTPUT_IDX (orig);
2215 ASM_OPERANDS_INPUT_VEC (copy) = map->copy_asm_operands_vector;
2216 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy)
2217 = map->copy_asm_constraints_vector;
2218 ASM_OPERANDS_SOURCE_FILE (copy) = ASM_OPERANDS_SOURCE_FILE (orig);
2219 ASM_OPERANDS_SOURCE_LINE (copy) = ASM_OPERANDS_SOURCE_LINE (orig);
2220 return copy;
2221 }
2222 break;
2223
2224 case CALL:
2225 /* This is given special treatment because the first
2226 operand of a CALL is a (MEM ...) which may get
2227 forced into a register for cse. This is undesirable
2228 if function-address cse isn't wanted or if we won't do cse. */
2229 #ifndef NO_FUNCTION_CSE
2230 if (! (optimize && ! flag_no_function_cse))
2231 #endif
2232 {
2233 rtx copy
2234 = gen_rtx_MEM (GET_MODE (XEXP (orig, 0)),
2235 copy_rtx_and_substitute (XEXP (XEXP (orig, 0), 0),
2236 map, 0));
2237
2238 MEM_COPY_ATTRIBUTES (copy, XEXP (orig, 0));
2239
2240 return
2241 gen_rtx_CALL (GET_MODE (orig), copy,
2242 copy_rtx_and_substitute (XEXP (orig, 1), map, 0));
2243 }
2244 break;
2245
2246 #if 0
2247 /* Must be ifdefed out for loop unrolling to work. */
2248 case RETURN:
2249 abort ();
2250 #endif
2251
2252 case SET:
2253 /* If this is setting fp or ap, it means that we have a nonlocal goto.
2254 Adjust the setting by the offset of the area we made.
2255 If the nonlocal goto is into the current function,
2256 this will result in unnecessarily bad code, but should work. */
2257 if (SET_DEST (orig) == virtual_stack_vars_rtx
2258 || SET_DEST (orig) == virtual_incoming_args_rtx)
2259 {
2260 /* In case a translation hasn't occurred already, make one now. */
2261 rtx equiv_reg;
2262 rtx equiv_loc;
2263 HOST_WIDE_INT loc_offset;
2264
2265 copy_rtx_and_substitute (SET_DEST (orig), map, for_lhs);
2266 equiv_reg = map->reg_map[REGNO (SET_DEST (orig))];
2267 equiv_loc = VARRAY_CONST_EQUIV (map->const_equiv_varray,
2268 REGNO (equiv_reg)).rtx;
2269 loc_offset
2270 = GET_CODE (equiv_loc) == REG ? 0 : INTVAL (XEXP (equiv_loc, 1));
2271
2272 return gen_rtx_SET (VOIDmode, SET_DEST (orig),
2273 force_operand
2274 (plus_constant
2275 (copy_rtx_and_substitute (SET_SRC (orig),
2276 map, 0),
2277 - loc_offset),
2278 NULL_RTX));
2279 }
2280 else
2281 return gen_rtx_SET (VOIDmode,
2282 copy_rtx_and_substitute (SET_DEST (orig), map, 1),
2283 copy_rtx_and_substitute (SET_SRC (orig), map, 0));
2284 break;
2285
2286 case MEM:
2287 if (inlining
2288 && GET_CODE (XEXP (orig, 0)) == SYMBOL_REF
2289 && CONSTANT_POOL_ADDRESS_P (XEXP (orig, 0)))
2290 {
2291 enum machine_mode const_mode
2292 = get_pool_mode_for_function (inlining, XEXP (orig, 0));
2293 rtx constant
2294 = get_pool_constant_for_function (inlining, XEXP (orig, 0));
2295
2296 constant = copy_rtx_and_substitute (constant, map, 0);
2297
2298 /* If this was an address of a constant pool entry that itself
2299 had to be placed in the constant pool, it might not be a
2300 valid address. So the recursive call might have turned it
2301 into a register. In that case, it isn't a constant any
2302 more, so return it. This has the potential of changing a
2303 MEM into a REG, but we'll assume that it safe. */
2304 if (! CONSTANT_P (constant))
2305 return constant;
2306
2307 return validize_mem (force_const_mem (const_mode, constant));
2308 }
2309
2310 copy = gen_rtx_MEM (mode, copy_rtx_and_substitute (XEXP (orig, 0),
2311 map, 0));
2312 MEM_COPY_ATTRIBUTES (copy, orig);
2313
2314 /* If inlining and this is not for the LHS, turn off RTX_UNCHANGING_P
2315 since this may be an indirect reference to a parameter and the
2316 actual may not be readonly. */
2317 if (inlining && !for_lhs)
2318 RTX_UNCHANGING_P (copy) = 0;
2319
2320 /* If inlining, squish aliasing data that references the subroutine's
2321 parameter list, since that's no longer applicable. */
2322 if (inlining && MEM_EXPR (copy)
2323 && TREE_CODE (MEM_EXPR (copy)) == INDIRECT_REF
2324 && TREE_CODE (TREE_OPERAND (MEM_EXPR (copy), 0)) == PARM_DECL)
2325 set_mem_expr (copy, NULL_TREE);
2326
2327 return copy;
2328
2329 default:
2330 break;
2331 }
2332
2333 copy = rtx_alloc (code);
2334 PUT_MODE (copy, mode);
2335 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2336 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2337 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2338
2339 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2340
2341 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2342 {
2343 switch (*format_ptr++)
2344 {
2345 case '0':
2346 /* Copy this through the wide int field; that's safest. */
2347 X0WINT (copy, i) = X0WINT (orig, i);
2348 break;
2349
2350 case 'e':
2351 XEXP (copy, i)
2352 = copy_rtx_and_substitute (XEXP (orig, i), map, for_lhs);
2353 break;
2354
2355 case 'u':
2356 /* Change any references to old-insns to point to the
2357 corresponding copied insns. */
2358 XEXP (copy, i) = map->insn_map[INSN_UID (XEXP (orig, i))];
2359 break;
2360
2361 case 'E':
2362 XVEC (copy, i) = XVEC (orig, i);
2363 if (XVEC (orig, i) != NULL && XVECLEN (orig, i) != 0)
2364 {
2365 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2366 for (j = 0; j < XVECLEN (copy, i); j++)
2367 XVECEXP (copy, i, j)
2368 = copy_rtx_and_substitute (XVECEXP (orig, i, j),
2369 map, for_lhs);
2370 }
2371 break;
2372
2373 case 'w':
2374 XWINT (copy, i) = XWINT (orig, i);
2375 break;
2376
2377 case 'i':
2378 XINT (copy, i) = XINT (orig, i);
2379 break;
2380
2381 case 's':
2382 XSTR (copy, i) = XSTR (orig, i);
2383 break;
2384
2385 case 't':
2386 XTREE (copy, i) = XTREE (orig, i);
2387 break;
2388
2389 default:
2390 abort ();
2391 }
2392 }
2393
2394 if (code == ASM_OPERANDS && map->orig_asm_operands_vector == 0)
2395 {
2396 map->orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
2397 map->copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
2398 map->copy_asm_constraints_vector
2399 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
2400 }
2401
2402 return copy;
2403 }
2404 \f
2405 /* Substitute known constant values into INSN, if that is valid. */
2406
2407 void
2408 try_constants (rtx insn, struct inline_remap *map)
2409 {
2410 int i;
2411
2412 map->num_sets = 0;
2413
2414 /* First try just updating addresses, then other things. This is
2415 important when we have something like the store of a constant
2416 into memory and we can update the memory address but the machine
2417 does not support a constant source. */
2418 subst_constants (&PATTERN (insn), insn, map, 1);
2419 apply_change_group ();
2420 subst_constants (&PATTERN (insn), insn, map, 0);
2421 apply_change_group ();
2422
2423 /* Enforce consistency between the addresses in the regular insn flow
2424 and the ones in CALL_INSN_FUNCTION_USAGE lists, if any. */
2425 if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
2426 {
2427 subst_constants (&CALL_INSN_FUNCTION_USAGE (insn), insn, map, 1);
2428 apply_change_group ();
2429 }
2430
2431 /* Show we don't know the value of anything stored or clobbered. */
2432 note_stores (PATTERN (insn), mark_stores, NULL);
2433 map->last_pc_value = 0;
2434 #ifdef HAVE_cc0
2435 map->last_cc0_value = 0;
2436 #endif
2437
2438 /* Set up any constant equivalences made in this insn. */
2439 for (i = 0; i < map->num_sets; i++)
2440 {
2441 if (GET_CODE (map->equiv_sets[i].dest) == REG)
2442 {
2443 int regno = REGNO (map->equiv_sets[i].dest);
2444
2445 MAYBE_EXTEND_CONST_EQUIV_VARRAY (map, regno);
2446 if (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).rtx == 0
2447 /* Following clause is a hack to make case work where GNU C++
2448 reassigns a variable to make cse work right. */
2449 || ! rtx_equal_p (VARRAY_CONST_EQUIV (map->const_equiv_varray,
2450 regno).rtx,
2451 map->equiv_sets[i].equiv))
2452 SET_CONST_EQUIV_DATA (map, map->equiv_sets[i].dest,
2453 map->equiv_sets[i].equiv, map->const_age);
2454 }
2455 else if (map->equiv_sets[i].dest == pc_rtx)
2456 map->last_pc_value = map->equiv_sets[i].equiv;
2457 #ifdef HAVE_cc0
2458 else if (map->equiv_sets[i].dest == cc0_rtx)
2459 map->last_cc0_value = map->equiv_sets[i].equiv;
2460 #endif
2461 }
2462 }
2463 \f
2464 /* Substitute known constants for pseudo regs in the contents of LOC,
2465 which are part of INSN.
2466 If INSN is zero, the substitution should always be done (this is used to
2467 update DECL_RTL).
2468 These changes are taken out by try_constants if the result is not valid.
2469
2470 Note that we are more concerned with determining when the result of a SET
2471 is a constant, for further propagation, than actually inserting constants
2472 into insns; cse will do the latter task better.
2473
2474 This function is also used to adjust address of items previously addressed
2475 via the virtual stack variable or virtual incoming arguments registers.
2476
2477 If MEMONLY is nonzero, only make changes inside a MEM. */
2478
2479 static void
2480 subst_constants (rtx *loc, rtx insn, struct inline_remap *map, int memonly)
2481 {
2482 rtx x = *loc;
2483 int i, j;
2484 enum rtx_code code;
2485 const char *format_ptr;
2486 int num_changes = num_validated_changes ();
2487 rtx new = 0;
2488 enum machine_mode op0_mode = MAX_MACHINE_MODE;
2489
2490 code = GET_CODE (x);
2491
2492 switch (code)
2493 {
2494 case PC:
2495 case CONST_INT:
2496 case CONST_DOUBLE:
2497 case CONST_VECTOR:
2498 case SYMBOL_REF:
2499 case CONST:
2500 case LABEL_REF:
2501 case ADDRESS:
2502 return;
2503
2504 #ifdef HAVE_cc0
2505 case CC0:
2506 if (! memonly)
2507 validate_change (insn, loc, map->last_cc0_value, 1);
2508 return;
2509 #endif
2510
2511 case USE:
2512 case CLOBBER:
2513 /* The only thing we can do with a USE or CLOBBER is possibly do
2514 some substitutions in a MEM within it. */
2515 if (GET_CODE (XEXP (x, 0)) == MEM)
2516 subst_constants (&XEXP (XEXP (x, 0), 0), insn, map, 0);
2517 return;
2518
2519 case REG:
2520 /* Substitute for parms and known constants. Don't replace
2521 hard regs used as user variables with constants. */
2522 if (! memonly)
2523 {
2524 int regno = REGNO (x);
2525 struct const_equiv_data *p;
2526
2527 if (! (regno < FIRST_PSEUDO_REGISTER && REG_USERVAR_P (x))
2528 && (size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2529 && (p = &VARRAY_CONST_EQUIV (map->const_equiv_varray, regno),
2530 p->rtx != 0)
2531 && p->age >= map->const_age)
2532 validate_change (insn, loc, p->rtx, 1);
2533 }
2534 return;
2535
2536 case SUBREG:
2537 /* SUBREG applied to something other than a reg
2538 should be treated as ordinary, since that must
2539 be a special hack and we don't know how to treat it specially.
2540 Consider for example mulsidi3 in m68k.md.
2541 Ordinary SUBREG of a REG needs this special treatment. */
2542 if (! memonly && GET_CODE (SUBREG_REG (x)) == REG)
2543 {
2544 rtx inner = SUBREG_REG (x);
2545 rtx new = 0;
2546
2547 /* We can't call subst_constants on &SUBREG_REG (x) because any
2548 constant or SUBREG wouldn't be valid inside our SUBEG. Instead,
2549 see what is inside, try to form the new SUBREG and see if that is
2550 valid. We handle two cases: extracting a full word in an
2551 integral mode and extracting the low part. */
2552 subst_constants (&inner, NULL_RTX, map, 0);
2553 new = simplify_gen_subreg (GET_MODE (x), inner,
2554 GET_MODE (SUBREG_REG (x)),
2555 SUBREG_BYTE (x));
2556
2557 if (new)
2558 validate_change (insn, loc, new, 1);
2559 else
2560 cancel_changes (num_changes);
2561
2562 return;
2563 }
2564 break;
2565
2566 case MEM:
2567 subst_constants (&XEXP (x, 0), insn, map, 0);
2568
2569 /* If a memory address got spoiled, change it back. */
2570 if (! memonly && insn != 0 && num_validated_changes () != num_changes
2571 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2572 cancel_changes (num_changes);
2573 return;
2574
2575 case SET:
2576 {
2577 /* Substitute constants in our source, and in any arguments to a
2578 complex (e..g, ZERO_EXTRACT) destination, but not in the destination
2579 itself. */
2580 rtx *dest_loc = &SET_DEST (x);
2581 rtx dest = *dest_loc;
2582 rtx src, tem;
2583 enum machine_mode compare_mode = VOIDmode;
2584
2585 /* If SET_SRC is a COMPARE which subst_constants would turn into
2586 COMPARE of 2 VOIDmode constants, note the mode in which comparison
2587 is to be done. */
2588 if (GET_CODE (SET_SRC (x)) == COMPARE)
2589 {
2590 src = SET_SRC (x);
2591 if (GET_MODE_CLASS (GET_MODE (src)) == MODE_CC
2592 || CC0_P (dest))
2593 {
2594 compare_mode = GET_MODE (XEXP (src, 0));
2595 if (compare_mode == VOIDmode)
2596 compare_mode = GET_MODE (XEXP (src, 1));
2597 }
2598 }
2599
2600 subst_constants (&SET_SRC (x), insn, map, memonly);
2601 src = SET_SRC (x);
2602
2603 while (GET_CODE (*dest_loc) == ZERO_EXTRACT
2604 || GET_CODE (*dest_loc) == SUBREG
2605 || GET_CODE (*dest_loc) == STRICT_LOW_PART)
2606 {
2607 if (GET_CODE (*dest_loc) == ZERO_EXTRACT)
2608 {
2609 subst_constants (&XEXP (*dest_loc, 1), insn, map, memonly);
2610 subst_constants (&XEXP (*dest_loc, 2), insn, map, memonly);
2611 }
2612 dest_loc = &XEXP (*dest_loc, 0);
2613 }
2614
2615 /* Do substitute in the address of a destination in memory. */
2616 if (GET_CODE (*dest_loc) == MEM)
2617 subst_constants (&XEXP (*dest_loc, 0), insn, map, 0);
2618
2619 /* Check for the case of DEST a SUBREG, both it and the underlying
2620 register are less than one word, and the SUBREG has the wider mode.
2621 In the case, we are really setting the underlying register to the
2622 source converted to the mode of DEST. So indicate that. */
2623 if (GET_CODE (dest) == SUBREG
2624 && GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD
2625 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) <= UNITS_PER_WORD
2626 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2627 <= GET_MODE_SIZE (GET_MODE (dest)))
2628 && (tem = gen_lowpart_if_possible (GET_MODE (SUBREG_REG (dest)),
2629 src)))
2630 src = tem, dest = SUBREG_REG (dest);
2631
2632 /* If storing a recognizable value save it for later recording. */
2633 if ((map->num_sets < MAX_RECOG_OPERANDS)
2634 && (CONSTANT_P (src)
2635 || (GET_CODE (src) == REG
2636 && (REGNO (src) == VIRTUAL_INCOMING_ARGS_REGNUM
2637 || REGNO (src) == VIRTUAL_STACK_VARS_REGNUM))
2638 || (GET_CODE (src) == PLUS
2639 && GET_CODE (XEXP (src, 0)) == REG
2640 && (REGNO (XEXP (src, 0)) == VIRTUAL_INCOMING_ARGS_REGNUM
2641 || REGNO (XEXP (src, 0)) == VIRTUAL_STACK_VARS_REGNUM)
2642 && CONSTANT_P (XEXP (src, 1)))
2643 || GET_CODE (src) == COMPARE
2644 || CC0_P (dest)
2645 || (dest == pc_rtx
2646 && (src == pc_rtx || GET_CODE (src) == RETURN
2647 || GET_CODE (src) == LABEL_REF))))
2648 {
2649 /* Normally, this copy won't do anything. But, if SRC is a COMPARE
2650 it will cause us to save the COMPARE with any constants
2651 substituted, which is what we want for later. */
2652 rtx src_copy = copy_rtx (src);
2653 map->equiv_sets[map->num_sets].equiv = src_copy;
2654 map->equiv_sets[map->num_sets++].dest = dest;
2655 if (compare_mode != VOIDmode
2656 && GET_CODE (src) == COMPARE
2657 && (GET_MODE_CLASS (GET_MODE (src)) == MODE_CC
2658 || CC0_P (dest))
2659 && GET_MODE (XEXP (src, 0)) == VOIDmode
2660 && GET_MODE (XEXP (src, 1)) == VOIDmode)
2661 {
2662 map->compare_src = src_copy;
2663 map->compare_mode = compare_mode;
2664 }
2665 }
2666 }
2667 return;
2668
2669 default:
2670 break;
2671 }
2672
2673 format_ptr = GET_RTX_FORMAT (code);
2674
2675 /* If the first operand is an expression, save its mode for later. */
2676 if (*format_ptr == 'e')
2677 op0_mode = GET_MODE (XEXP (x, 0));
2678
2679 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2680 {
2681 switch (*format_ptr++)
2682 {
2683 case '0':
2684 break;
2685
2686 case 'e':
2687 if (XEXP (x, i))
2688 subst_constants (&XEXP (x, i), insn, map, memonly);
2689 break;
2690
2691 case 'u':
2692 case 'i':
2693 case 's':
2694 case 'w':
2695 case 'n':
2696 case 't':
2697 case 'B':
2698 break;
2699
2700 case 'E':
2701 if (XVEC (x, i) != NULL && XVECLEN (x, i) != 0)
2702 for (j = 0; j < XVECLEN (x, i); j++)
2703 subst_constants (&XVECEXP (x, i, j), insn, map, memonly);
2704
2705 break;
2706
2707 default:
2708 abort ();
2709 }
2710 }
2711
2712 /* If this is a commutative operation, move a constant to the second
2713 operand unless the second operand is already a CONST_INT. */
2714 if (! memonly
2715 && (GET_RTX_CLASS (code) == 'c' || code == NE || code == EQ)
2716 && CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
2717 {
2718 rtx tem = XEXP (x, 0);
2719 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
2720 validate_change (insn, &XEXP (x, 1), tem, 1);
2721 }
2722
2723 /* Simplify the expression in case we put in some constants. */
2724 if (! memonly)
2725 switch (GET_RTX_CLASS (code))
2726 {
2727 case '1':
2728 if (op0_mode == MAX_MACHINE_MODE)
2729 abort ();
2730 new = simplify_unary_operation (code, GET_MODE (x),
2731 XEXP (x, 0), op0_mode);
2732 break;
2733
2734 case '<':
2735 {
2736 enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
2737
2738 if (op_mode == VOIDmode)
2739 op_mode = GET_MODE (XEXP (x, 1));
2740 new = simplify_relational_operation (code, op_mode,
2741 XEXP (x, 0), XEXP (x, 1));
2742 #ifdef FLOAT_STORE_FLAG_VALUE
2743 if (new != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
2744 {
2745 enum machine_mode mode = GET_MODE (x);
2746 if (new == const0_rtx)
2747 new = CONST0_RTX (mode);
2748 else
2749 {
2750 REAL_VALUE_TYPE val;
2751
2752 /* Avoid automatic aggregate initialization. */
2753 val = FLOAT_STORE_FLAG_VALUE (mode);
2754 new = CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
2755 }
2756 }
2757 #endif
2758 break;
2759 }
2760
2761 case '2':
2762 case 'c':
2763 new = simplify_binary_operation (code, GET_MODE (x),
2764 XEXP (x, 0), XEXP (x, 1));
2765 break;
2766
2767 case 'b':
2768 case '3':
2769 if (op0_mode == MAX_MACHINE_MODE)
2770 abort ();
2771
2772 if (code == IF_THEN_ELSE)
2773 {
2774 rtx op0 = XEXP (x, 0);
2775
2776 if (GET_RTX_CLASS (GET_CODE (op0)) == '<'
2777 && GET_MODE (op0) == VOIDmode
2778 && ! side_effects_p (op0)
2779 && XEXP (op0, 0) == map->compare_src
2780 && GET_MODE (XEXP (op0, 1)) == VOIDmode)
2781 {
2782 /* We have compare of two VOIDmode constants for which
2783 we recorded the comparison mode. */
2784 rtx temp =
2785 simplify_relational_operation (GET_CODE (op0),
2786 map->compare_mode,
2787 XEXP (op0, 0),
2788 XEXP (op0, 1));
2789
2790 if (temp == const0_rtx)
2791 new = XEXP (x, 2);
2792 else if (temp == const1_rtx)
2793 new = XEXP (x, 1);
2794 }
2795 }
2796 if (!new)
2797 new = simplify_ternary_operation (code, GET_MODE (x), op0_mode,
2798 XEXP (x, 0), XEXP (x, 1),
2799 XEXP (x, 2));
2800 break;
2801 }
2802
2803 if (new)
2804 validate_change (insn, loc, new, 1);
2805 }
2806
2807 /* Show that register modified no longer contain known constants. We are
2808 called from note_stores with parts of the new insn. */
2809
2810 static void
2811 mark_stores (rtx dest, rtx x ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2812 {
2813 int regno = -1;
2814 enum machine_mode mode = VOIDmode;
2815
2816 /* DEST is always the innermost thing set, except in the case of
2817 SUBREGs of hard registers. */
2818
2819 if (GET_CODE (dest) == REG)
2820 regno = REGNO (dest), mode = GET_MODE (dest);
2821 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
2822 {
2823 regno = REGNO (SUBREG_REG (dest));
2824 if (regno < FIRST_PSEUDO_REGISTER)
2825 regno += subreg_regno_offset (REGNO (SUBREG_REG (dest)),
2826 GET_MODE (SUBREG_REG (dest)),
2827 SUBREG_BYTE (dest),
2828 GET_MODE (dest));
2829 mode = GET_MODE (SUBREG_REG (dest));
2830 }
2831
2832 if (regno >= 0)
2833 {
2834 unsigned int uregno = regno;
2835 unsigned int last_reg = (uregno >= FIRST_PSEUDO_REGISTER ? uregno
2836 : uregno + HARD_REGNO_NREGS (uregno, mode) - 1);
2837 unsigned int i;
2838
2839 /* Ignore virtual stack var or virtual arg register since those
2840 are handled separately. */
2841 if (uregno != VIRTUAL_INCOMING_ARGS_REGNUM
2842 && uregno != VIRTUAL_STACK_VARS_REGNUM)
2843 for (i = uregno; i <= last_reg; i++)
2844 if ((size_t) i < VARRAY_SIZE (global_const_equiv_varray))
2845 VARRAY_CONST_EQUIV (global_const_equiv_varray, i).rtx = 0;
2846 }
2847 }
2848 \f
2849 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
2850 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
2851 that it points to the node itself, thus indicating that the node is its
2852 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
2853 the given node is NULL, recursively descend the decl/block tree which
2854 it is the root of, and for each other ..._DECL or BLOCK node contained
2855 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
2856 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
2857 values to point to themselves. */
2858
2859 static void
2860 set_block_origin_self (tree stmt)
2861 {
2862 if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
2863 {
2864 BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;
2865
2866 {
2867 tree local_decl;
2868
2869 for (local_decl = BLOCK_VARS (stmt);
2870 local_decl != NULL_TREE;
2871 local_decl = TREE_CHAIN (local_decl))
2872 set_decl_origin_self (local_decl); /* Potential recursion. */
2873 }
2874
2875 {
2876 tree subblock;
2877
2878 for (subblock = BLOCK_SUBBLOCKS (stmt);
2879 subblock != NULL_TREE;
2880 subblock = BLOCK_CHAIN (subblock))
2881 set_block_origin_self (subblock); /* Recurse. */
2882 }
2883 }
2884 }
2885
2886 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
2887 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
2888 node to so that it points to the node itself, thus indicating that the
2889 node represents its own (abstract) origin. Additionally, if the
2890 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
2891 the decl/block tree of which the given node is the root of, and for
2892 each other ..._DECL or BLOCK node contained therein whose
2893 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
2894 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
2895 point to themselves. */
2896
2897 void
2898 set_decl_origin_self (tree decl)
2899 {
2900 if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
2901 {
2902 DECL_ABSTRACT_ORIGIN (decl) = decl;
2903 if (TREE_CODE (decl) == FUNCTION_DECL)
2904 {
2905 tree arg;
2906
2907 for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg))
2908 DECL_ABSTRACT_ORIGIN (arg) = arg;
2909 if (DECL_INITIAL (decl) != NULL_TREE
2910 && DECL_INITIAL (decl) != error_mark_node)
2911 set_block_origin_self (DECL_INITIAL (decl));
2912 }
2913 }
2914 }
2915 \f
2916 /* Given a pointer to some BLOCK node, and a boolean value to set the
2917 "abstract" flags to, set that value into the BLOCK_ABSTRACT flag for
2918 the given block, and for all local decls and all local sub-blocks
2919 (recursively) which are contained therein. */
2920
2921 static void
2922 set_block_abstract_flags (tree stmt, int setting)
2923 {
2924 tree local_decl;
2925 tree subblock;
2926
2927 BLOCK_ABSTRACT (stmt) = setting;
2928
2929 for (local_decl = BLOCK_VARS (stmt);
2930 local_decl != NULL_TREE;
2931 local_decl = TREE_CHAIN (local_decl))
2932 set_decl_abstract_flags (local_decl, setting);
2933
2934 for (subblock = BLOCK_SUBBLOCKS (stmt);
2935 subblock != NULL_TREE;
2936 subblock = BLOCK_CHAIN (subblock))
2937 set_block_abstract_flags (subblock, setting);
2938 }
2939
2940 /* Given a pointer to some ..._DECL node, and a boolean value to set the
2941 "abstract" flags to, set that value into the DECL_ABSTRACT flag for the
2942 given decl, and (in the case where the decl is a FUNCTION_DECL) also
2943 set the abstract flags for all of the parameters, local vars, local
2944 blocks and sub-blocks (recursively) to the same setting. */
2945
2946 void
2947 set_decl_abstract_flags (tree decl, int setting)
2948 {
2949 DECL_ABSTRACT (decl) = setting;
2950 if (TREE_CODE (decl) == FUNCTION_DECL)
2951 {
2952 tree arg;
2953
2954 for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg))
2955 DECL_ABSTRACT (arg) = setting;
2956 if (DECL_INITIAL (decl) != NULL_TREE
2957 && DECL_INITIAL (decl) != error_mark_node)
2958 set_block_abstract_flags (DECL_INITIAL (decl), setting);
2959 }
2960 }
2961 \f
2962 /* Output the assembly language code for the function FNDECL
2963 from its DECL_SAVED_INSNS. Used for inline functions that are output
2964 at end of compilation instead of where they came in the source. */
2965
2966 static GTY(()) struct function *old_cfun;
2967
2968 void
2969 output_inline_function (tree fndecl)
2970 {
2971 enum debug_info_type old_write_symbols = write_symbols;
2972 const struct gcc_debug_hooks *const old_debug_hooks = debug_hooks;
2973 struct function *f = DECL_SAVED_INSNS (fndecl);
2974
2975 old_cfun = cfun;
2976 cfun = f;
2977 current_function_decl = fndecl;
2978
2979 set_new_last_label_num (f->inl_max_label_num);
2980
2981 /* We're not deferring this any longer. */
2982 DECL_DEFER_OUTPUT (fndecl) = 0;
2983
2984 /* If requested, suppress debugging information. */
2985 if (f->no_debugging_symbols)
2986 {
2987 write_symbols = NO_DEBUG;
2988 debug_hooks = &do_nothing_debug_hooks;
2989 }
2990
2991 /* Make sure warnings emitted by the optimizers (e.g. control reaches
2992 end of non-void function) is not wildly incorrect. */
2993 input_location = DECL_SOURCE_LOCATION (fndecl);
2994
2995 /* Compile this function all the way down to assembly code. As a
2996 side effect this destroys the saved RTL representation, but
2997 that's okay, because we don't need to inline this anymore. */
2998 rest_of_compilation (fndecl);
2999 DECL_INLINE (fndecl) = 0;
3000
3001 cfun = old_cfun;
3002 current_function_decl = old_cfun ? old_cfun->decl : 0;
3003 write_symbols = old_write_symbols;
3004 debug_hooks = old_debug_hooks;
3005 }
3006
3007 \f
3008 /* Functions to keep track of the values hard regs had at the start of
3009 the function. */
3010
3011 rtx
3012 get_hard_reg_initial_reg (struct function *fun, rtx reg)
3013 {
3014 struct initial_value_struct *ivs = fun->hard_reg_initial_vals;
3015 int i;
3016
3017 if (ivs == 0)
3018 return NULL_RTX;
3019
3020 for (i = 0; i < ivs->num_entries; i++)
3021 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
3022 return ivs->entries[i].hard_reg;
3023
3024 return NULL_RTX;
3025 }
3026
3027 rtx
3028 has_func_hard_reg_initial_val (struct function *fun, rtx reg)
3029 {
3030 struct initial_value_struct *ivs = fun->hard_reg_initial_vals;
3031 int i;
3032
3033 if (ivs == 0)
3034 return NULL_RTX;
3035
3036 for (i = 0; i < ivs->num_entries; i++)
3037 if (rtx_equal_p (ivs->entries[i].hard_reg, reg))
3038 return ivs->entries[i].pseudo;
3039
3040 return NULL_RTX;
3041 }
3042
3043 rtx
3044 get_func_hard_reg_initial_val (struct function *fun, rtx reg)
3045 {
3046 struct initial_value_struct *ivs = fun->hard_reg_initial_vals;
3047 rtx rv = has_func_hard_reg_initial_val (fun, reg);
3048
3049 if (rv)
3050 return rv;
3051
3052 if (ivs == 0)
3053 {
3054 fun->hard_reg_initial_vals = (void *) ggc_alloc (sizeof (initial_value_struct));
3055 ivs = fun->hard_reg_initial_vals;
3056 ivs->num_entries = 0;
3057 ivs->max_entries = 5;
3058 ivs->entries = (initial_value_pair *) ggc_alloc (5 * sizeof (initial_value_pair));
3059 }
3060
3061 if (ivs->num_entries >= ivs->max_entries)
3062 {
3063 ivs->max_entries += 5;
3064 ivs->entries =
3065 (initial_value_pair *) ggc_realloc (ivs->entries,
3066 ivs->max_entries
3067 * sizeof (initial_value_pair));
3068 }
3069
3070 ivs->entries[ivs->num_entries].hard_reg = reg;
3071 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (GET_MODE (reg));
3072
3073 return ivs->entries[ivs->num_entries++].pseudo;
3074 }
3075
3076 rtx
3077 get_hard_reg_initial_val (enum machine_mode mode, int regno)
3078 {
3079 return get_func_hard_reg_initial_val (cfun, gen_rtx_REG (mode, regno));
3080 }
3081
3082 rtx
3083 has_hard_reg_initial_val (enum machine_mode mode, int regno)
3084 {
3085 return has_func_hard_reg_initial_val (cfun, gen_rtx_REG (mode, regno));
3086 }
3087
3088 static void
3089 setup_initial_hard_reg_value_integration (struct function *inl_f, struct inline_remap *remap)
3090 {
3091 struct initial_value_struct *ivs = inl_f->hard_reg_initial_vals;
3092 int i;
3093
3094 if (ivs == 0)
3095 return;
3096
3097 for (i = 0; i < ivs->num_entries; i ++)
3098 remap->reg_map[REGNO (ivs->entries[i].pseudo)]
3099 = get_func_hard_reg_initial_val (cfun, ivs->entries[i].hard_reg);
3100 }
3101
3102
3103 void
3104 emit_initial_value_sets (void)
3105 {
3106 struct initial_value_struct *ivs = cfun->hard_reg_initial_vals;
3107 int i;
3108 rtx seq;
3109
3110 if (ivs == 0)
3111 return;
3112
3113 start_sequence ();
3114 for (i = 0; i < ivs->num_entries; i++)
3115 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
3116 seq = get_insns ();
3117 end_sequence ();
3118
3119 emit_insn_after (seq, get_insns ());
3120 }
3121
3122 /* If the backend knows where to allocate pseudos for hard
3123 register initial values, register these allocations now. */
3124 void
3125 allocate_initial_values (rtx *reg_equiv_memory_loc ATTRIBUTE_UNUSED)
3126 {
3127 #ifdef ALLOCATE_INITIAL_VALUE
3128 struct initial_value_struct *ivs = cfun->hard_reg_initial_vals;
3129 int i;
3130
3131 if (ivs == 0)
3132 return;
3133
3134 for (i = 0; i < ivs->num_entries; i++)
3135 {
3136 int regno = REGNO (ivs->entries[i].pseudo);
3137 rtx x = ALLOCATE_INITIAL_VALUE (ivs->entries[i].hard_reg);
3138
3139 if (x == NULL_RTX || REG_N_SETS (REGNO (ivs->entries[i].pseudo)) > 1)
3140 ; /* Do nothing. */
3141 else if (GET_CODE (x) == MEM)
3142 reg_equiv_memory_loc[regno] = x;
3143 else if (GET_CODE (x) == REG)
3144 {
3145 reg_renumber[regno] = REGNO (x);
3146 /* Poke the regno right into regno_reg_rtx
3147 so that even fixed regs are accepted. */
3148 REGNO (ivs->entries[i].pseudo) = REGNO (x);
3149 }
3150 else abort ();
3151 }
3152 #endif
3153 }
3154
3155 #include "gt-integrate.h"