9a67f3c0be3f0f638eb5cb85dbf6a5da2b6e1e68
[gcc.git] / gcc / ipa-cp.c
1 /* Interprocedural constant propagation
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3
4 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
5 <mjambor@suse.cz>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Interprocedural constant propagation (IPA-CP).
24
25 The goal of this transformation is to
26
27 1) discover functions which are always invoked with some arguments with the
28 same known constant values and modify the functions so that the
29 subsequent optimizations can take advantage of the knowledge, and
30
31 2) partial specialization - create specialized versions of functions
32 transformed in this way if some parameters are known constants only in
33 certain contexts but the estimated tradeoff between speedup and cost size
34 is deemed good.
35
36 The algorithm also propagates types and attempts to perform type based
37 devirtualization. Types are propagated much like constants.
38
39 The algorithm basically consists of three stages. In the first, functions
40 are analyzed one at a time and jump functions are constructed for all known
41 call-sites. In the second phase, the pass propagates information from the
42 jump functions across the call to reveal what values are available at what
43 call sites, performs estimations of effects of known values on functions and
44 their callees, and finally decides what specialized extra versions should be
45 created. In the third, the special versions materialize and appropriate
46 calls are redirected.
47
48 The algorithm used is to a certain extent based on "Interprocedural Constant
49 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
50 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
51 Cooper, Mary W. Hall, and Ken Kennedy.
52
53
54 First stage - intraprocedural analysis
55 =======================================
56
57 This phase computes jump_function and modification flags.
58
59 A jump function for a call-site represents the values passed as an actual
60 arguments of a given call-site. In principle, there are three types of
61 values:
62
63 Pass through - the caller's formal parameter is passed as an actual
64 argument, plus an operation on it can be performed.
65 Constant - a constant is passed as an actual argument.
66 Unknown - neither of the above.
67
68 All jump function types are described in detail in ipa-prop.h, together with
69 the data structures that represent them and methods of accessing them.
70
71 ipcp_generate_summary() is the main function of the first stage.
72
73 Second stage - interprocedural analysis
74 ========================================
75
76 This stage is itself divided into two phases. In the first, we propagate
77 known values over the call graph, in the second, we make cloning decisions.
78 It uses a different algorithm than the original Callahan's paper.
79
80 First, we traverse the functions topologically from callers to callees and,
81 for each strongly connected component (SCC), we propagate constants
82 according to previously computed jump functions. We also record what known
83 values depend on other known values and estimate local effects. Finally, we
84 propagate cumulative information about these effects from dependent values
85 to those on which they depend.
86
87 Second, we again traverse the call graph in the same topological order and
88 make clones for functions which we know are called with the same values in
89 all contexts and decide about extra specialized clones of functions just for
90 some contexts - these decisions are based on both local estimates and
91 cumulative estimates propagated from callees.
92
93 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
94 third stage.
95
96 Third phase - materialization of clones, call statement updates.
97 ============================================
98
99 This stage is currently performed by call graph code (mainly in cgraphunit.c
100 and tree-inline.c) according to instructions inserted to the call graph by
101 the second stage. */
102
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "tree.h"
107 #include "target.h"
108 #include "gimple.h"
109 #include "cgraph.h"
110 #include "ipa-prop.h"
111 #include "tree-flow.h"
112 #include "tree-pass.h"
113 #include "flags.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "tree-inline.h"
117 #include "params.h"
118 #include "ipa-inline.h"
119 #include "ipa-utils.h"
120
121 struct ipcp_value;
122
123 /* Describes a particular source for an IPA-CP value. */
124
125 struct ipcp_value_source
126 {
127 /* Aggregate offset of the source, negative if the source is scalar value of
128 the argument itself. */
129 HOST_WIDE_INT offset;
130 /* The incoming edge that brought the value. */
131 struct cgraph_edge *cs;
132 /* If the jump function that resulted into his value was a pass-through or an
133 ancestor, this is the ipcp_value of the caller from which the described
134 value has been derived. Otherwise it is NULL. */
135 struct ipcp_value *val;
136 /* Next pointer in a linked list of sources of a value. */
137 struct ipcp_value_source *next;
138 /* If the jump function that resulted into his value was a pass-through or an
139 ancestor, this is the index of the parameter of the caller the jump
140 function references. */
141 int index;
142 };
143
144 /* Describes one particular value stored in struct ipcp_lattice. */
145
146 struct ipcp_value
147 {
148 /* The actual value for the given parameter. This is either an IPA invariant
149 or a TREE_BINFO describing a type that can be used for
150 devirtualization. */
151 tree value;
152 /* The list of sources from which this value originates. */
153 struct ipcp_value_source *sources;
154 /* Next pointers in a linked list of all values in a lattice. */
155 struct ipcp_value *next;
156 /* Next pointers in a linked list of values in a strongly connected component
157 of values. */
158 struct ipcp_value *scc_next;
159 /* Next pointers in a linked list of SCCs of values sorted topologically
160 according their sources. */
161 struct ipcp_value *topo_next;
162 /* A specialized node created for this value, NULL if none has been (so far)
163 created. */
164 struct cgraph_node *spec_node;
165 /* Depth first search number and low link for topological sorting of
166 values. */
167 int dfs, low_link;
168 /* Time benefit and size cost that specializing the function for this value
169 would bring about in this function alone. */
170 int local_time_benefit, local_size_cost;
171 /* Time benefit and size cost that specializing the function for this value
172 can bring about in it's callees (transitively). */
173 int prop_time_benefit, prop_size_cost;
174 /* True if this valye is currently on the topo-sort stack. */
175 bool on_stack;
176 };
177
178 /* Lattice describing potential values of a formal parameter of a function, or
179 a part of an aggreagate. TOP is represented by a lattice with zero values
180 and with contains_variable and bottom flags cleared. BOTTOM is represented
181 by a lattice with the bottom flag set. In that case, values and
182 contains_variable flag should be disregarded. */
183
184 struct ipcp_lattice
185 {
186 /* The list of known values and types in this lattice. Note that values are
187 not deallocated if a lattice is set to bottom because there may be value
188 sources referencing them. */
189 struct ipcp_value *values;
190 /* Number of known values and types in this lattice. */
191 int values_count;
192 /* The lattice contains a variable component (in addition to values). */
193 bool contains_variable;
194 /* The value of the lattice is bottom (i.e. variable and unusable for any
195 propagation). */
196 bool bottom;
197 };
198
199 /* Lattice with an offset to describe a part of an aggregate. */
200
201 struct ipcp_agg_lattice : public ipcp_lattice
202 {
203 /* Offset that is being described by this lattice. */
204 HOST_WIDE_INT offset;
205 /* Size so that we don't have to re-compute it every time we traverse the
206 list. Must correspond to TYPE_SIZE of all lat values. */
207 HOST_WIDE_INT size;
208 /* Next element of the linked list. */
209 struct ipcp_agg_lattice *next;
210 };
211
212 /* Structure containing lattices for a parameter itself and for pieces of
213 aggregates that are passed in the parameter or by a reference in a parameter
214 plus some other useful flags. */
215
216 struct ipcp_param_lattices
217 {
218 /* Lattice describing the value of the parameter itself. */
219 struct ipcp_lattice itself;
220 /* Lattices describing aggregate parts. */
221 struct ipcp_agg_lattice *aggs;
222 /* Number of aggregate lattices */
223 int aggs_count;
224 /* True if aggregate data were passed by reference (as opposed to by
225 value). */
226 bool aggs_by_ref;
227 /* All aggregate lattices contain a variable component (in addition to
228 values). */
229 bool aggs_contain_variable;
230 /* The value of all aggregate lattices is bottom (i.e. variable and unusable
231 for any propagation). */
232 bool aggs_bottom;
233
234 /* There is a virtual call based on this parameter. */
235 bool virt_call;
236 };
237
238 /* Allocation pools for values and their sources in ipa-cp. */
239
240 alloc_pool ipcp_values_pool;
241 alloc_pool ipcp_sources_pool;
242 alloc_pool ipcp_agg_lattice_pool;
243
244 /* Maximal count found in program. */
245
246 static gcov_type max_count;
247
248 /* Original overall size of the program. */
249
250 static long overall_size, max_new_size;
251
252 /* Head of the linked list of topologically sorted values. */
253
254 static struct ipcp_value *values_topo;
255
256 /* Return the param lattices structure corresponding to the Ith formal
257 parameter of the function described by INFO. */
258 static inline struct ipcp_param_lattices *
259 ipa_get_parm_lattices (struct ipa_node_params *info, int i)
260 {
261 gcc_assert (i >= 0 && i < ipa_get_param_count (info));
262 gcc_checking_assert (!info->ipcp_orig_node);
263 gcc_checking_assert (info->lattices);
264 return &(info->lattices[i]);
265 }
266
267 /* Return the lattice corresponding to the scalar value of the Ith formal
268 parameter of the function described by INFO. */
269 static inline struct ipcp_lattice *
270 ipa_get_scalar_lat (struct ipa_node_params *info, int i)
271 {
272 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
273 return &plats->itself;
274 }
275
276 /* Return whether LAT is a lattice with a single constant and without an
277 undefined value. */
278
279 static inline bool
280 ipa_lat_is_single_const (struct ipcp_lattice *lat)
281 {
282 if (lat->bottom
283 || lat->contains_variable
284 || lat->values_count != 1)
285 return false;
286 else
287 return true;
288 }
289
290 /* Return true iff the CS is an edge within a strongly connected component as
291 computed by ipa_reduced_postorder. */
292
293 static inline bool
294 edge_within_scc (struct cgraph_edge *cs)
295 {
296 struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->symbol.aux;
297 struct ipa_dfs_info *callee_dfs;
298 struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);
299
300 callee_dfs = (struct ipa_dfs_info *) callee->symbol.aux;
301 return (caller_dfs
302 && callee_dfs
303 && caller_dfs->scc_no == callee_dfs->scc_no);
304 }
305
306 /* Print V which is extracted from a value in a lattice to F. */
307
308 static void
309 print_ipcp_constant_value (FILE * f, tree v)
310 {
311 if (TREE_CODE (v) == TREE_BINFO)
312 {
313 fprintf (f, "BINFO ");
314 print_generic_expr (f, BINFO_TYPE (v), 0);
315 }
316 else if (TREE_CODE (v) == ADDR_EXPR
317 && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
318 {
319 fprintf (f, "& ");
320 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
321 }
322 else
323 print_generic_expr (f, v, 0);
324 }
325
326 /* Print a lattice LAT to F. */
327
328 static void
329 print_lattice (FILE * f, struct ipcp_lattice *lat,
330 bool dump_sources, bool dump_benefits)
331 {
332 struct ipcp_value *val;
333 bool prev = false;
334
335 if (lat->bottom)
336 {
337 fprintf (f, "BOTTOM\n");
338 return;
339 }
340
341 if (!lat->values_count && !lat->contains_variable)
342 {
343 fprintf (f, "TOP\n");
344 return;
345 }
346
347 if (lat->contains_variable)
348 {
349 fprintf (f, "VARIABLE");
350 prev = true;
351 if (dump_benefits)
352 fprintf (f, "\n");
353 }
354
355 for (val = lat->values; val; val = val->next)
356 {
357 if (dump_benefits && prev)
358 fprintf (f, " ");
359 else if (!dump_benefits && prev)
360 fprintf (f, ", ");
361 else
362 prev = true;
363
364 print_ipcp_constant_value (f, val->value);
365
366 if (dump_sources)
367 {
368 struct ipcp_value_source *s;
369
370 fprintf (f, " [from:");
371 for (s = val->sources; s; s = s->next)
372 fprintf (f, " %i(%i)", s->cs->caller->uid,s->cs->frequency);
373 fprintf (f, "]");
374 }
375
376 if (dump_benefits)
377 fprintf (f, " [loc_time: %i, loc_size: %i, "
378 "prop_time: %i, prop_size: %i]\n",
379 val->local_time_benefit, val->local_size_cost,
380 val->prop_time_benefit, val->prop_size_cost);
381 }
382 if (!dump_benefits)
383 fprintf (f, "\n");
384 }
385
386 /* Print all ipcp_lattices of all functions to F. */
387
388 static void
389 print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
390 {
391 struct cgraph_node *node;
392 int i, count;
393
394 fprintf (f, "\nLattices:\n");
395 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
396 {
397 struct ipa_node_params *info;
398
399 info = IPA_NODE_REF (node);
400 fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node), node->uid);
401 count = ipa_get_param_count (info);
402 for (i = 0; i < count; i++)
403 {
404 struct ipcp_agg_lattice *aglat;
405 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
406 fprintf (f, " param [%d]: ", i);
407 print_lattice (f, &plats->itself, dump_sources, dump_benefits);
408
409 if (plats->virt_call)
410 fprintf (f, " virt_call flag set\n");
411
412 if (plats->aggs_bottom)
413 {
414 fprintf (f, " AGGS BOTTOM\n");
415 continue;
416 }
417 if (plats->aggs_contain_variable)
418 fprintf (f, " AGGS VARIABLE\n");
419 for (aglat = plats->aggs; aglat; aglat = aglat->next)
420 {
421 fprintf (f, " %soffset " HOST_WIDE_INT_PRINT_DEC ": ",
422 plats->aggs_by_ref ? "ref " : "", aglat->offset);
423 print_lattice (f, aglat, dump_sources, dump_benefits);
424 }
425 }
426 }
427 }
428
429 /* Determine whether it is at all technically possible to create clones of NODE
430 and store this information in the ipa_node_params structure associated
431 with NODE. */
432
433 static void
434 determine_versionability (struct cgraph_node *node)
435 {
436 const char *reason = NULL;
437
438 /* There are a number of generic reasons functions cannot be versioned. We
439 also cannot remove parameters if there are type attributes such as fnspec
440 present. */
441 if (node->alias || node->thunk.thunk_p)
442 reason = "alias or thunk";
443 else if (!node->local.versionable)
444 reason = "not a tree_versionable_function";
445 else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
446 reason = "insufficient body availability";
447
448 if (reason && dump_file && !node->alias && !node->thunk.thunk_p)
449 fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
450 cgraph_node_name (node), node->uid, reason);
451
452 node->local.versionable = (reason == NULL);
453 }
454
455 /* Return true if it is at all technically possible to create clones of a
456 NODE. */
457
458 static bool
459 ipcp_versionable_function_p (struct cgraph_node *node)
460 {
461 return node->local.versionable;
462 }
463
464 /* Structure holding accumulated information about callers of a node. */
465
466 struct caller_statistics
467 {
468 gcov_type count_sum;
469 int n_calls, n_hot_calls, freq_sum;
470 };
471
472 /* Initialize fields of STAT to zeroes. */
473
474 static inline void
475 init_caller_stats (struct caller_statistics *stats)
476 {
477 stats->count_sum = 0;
478 stats->n_calls = 0;
479 stats->n_hot_calls = 0;
480 stats->freq_sum = 0;
481 }
482
483 /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
484 non-thunk incoming edges to NODE. */
485
486 static bool
487 gather_caller_stats (struct cgraph_node *node, void *data)
488 {
489 struct caller_statistics *stats = (struct caller_statistics *) data;
490 struct cgraph_edge *cs;
491
492 for (cs = node->callers; cs; cs = cs->next_caller)
493 if (cs->caller->thunk.thunk_p)
494 cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
495 stats, false);
496 else
497 {
498 stats->count_sum += cs->count;
499 stats->freq_sum += cs->frequency;
500 stats->n_calls++;
501 if (cgraph_maybe_hot_edge_p (cs))
502 stats->n_hot_calls ++;
503 }
504 return false;
505
506 }
507
508 /* Return true if this NODE is viable candidate for cloning. */
509
510 static bool
511 ipcp_cloning_candidate_p (struct cgraph_node *node)
512 {
513 struct caller_statistics stats;
514
515 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
516
517 if (!flag_ipa_cp_clone)
518 {
519 if (dump_file)
520 fprintf (dump_file, "Not considering %s for cloning; "
521 "-fipa-cp-clone disabled.\n",
522 cgraph_node_name (node));
523 return false;
524 }
525
526 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
527 {
528 if (dump_file)
529 fprintf (dump_file, "Not considering %s for cloning; "
530 "optimizing it for size.\n",
531 cgraph_node_name (node));
532 return false;
533 }
534
535 init_caller_stats (&stats);
536 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
537
538 if (inline_summary (node)->self_size < stats.n_calls)
539 {
540 if (dump_file)
541 fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
542 cgraph_node_name (node));
543 return true;
544 }
545
546 /* When profile is available and function is hot, propagate into it even if
547 calls seems cold; constant propagation can improve function's speed
548 significantly. */
549 if (max_count)
550 {
551 if (stats.count_sum > node->count * 90 / 100)
552 {
553 if (dump_file)
554 fprintf (dump_file, "Considering %s for cloning; "
555 "usually called directly.\n",
556 cgraph_node_name (node));
557 return true;
558 }
559 }
560 if (!stats.n_hot_calls)
561 {
562 if (dump_file)
563 fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
564 cgraph_node_name (node));
565 return false;
566 }
567 if (dump_file)
568 fprintf (dump_file, "Considering %s for cloning.\n",
569 cgraph_node_name (node));
570 return true;
571 }
572
573 /* Arrays representing a topological ordering of call graph nodes and a stack
574 of noes used during constant propagation. */
575
576 struct topo_info
577 {
578 struct cgraph_node **order;
579 struct cgraph_node **stack;
580 int nnodes, stack_top;
581 };
582
583 /* Allocate the arrays in TOPO and topologically sort the nodes into order. */
584
585 static void
586 build_toporder_info (struct topo_info *topo)
587 {
588 topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
589 topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
590 topo->stack_top = 0;
591 topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
592 }
593
594 /* Free information about strongly connected components and the arrays in
595 TOPO. */
596
597 static void
598 free_toporder_info (struct topo_info *topo)
599 {
600 ipa_free_postorder_info ();
601 free (topo->order);
602 free (topo->stack);
603 }
604
605 /* Add NODE to the stack in TOPO, unless it is already there. */
606
607 static inline void
608 push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
609 {
610 struct ipa_node_params *info = IPA_NODE_REF (node);
611 if (info->node_enqueued)
612 return;
613 info->node_enqueued = 1;
614 topo->stack[topo->stack_top++] = node;
615 }
616
617 /* Pop a node from the stack in TOPO and return it or return NULL if the stack
618 is empty. */
619
620 static struct cgraph_node *
621 pop_node_from_stack (struct topo_info *topo)
622 {
623 if (topo->stack_top)
624 {
625 struct cgraph_node *node;
626 topo->stack_top--;
627 node = topo->stack[topo->stack_top];
628 IPA_NODE_REF (node)->node_enqueued = 0;
629 return node;
630 }
631 else
632 return NULL;
633 }
634
635 /* Set lattice LAT to bottom and return true if it previously was not set as
636 such. */
637
638 static inline bool
639 set_lattice_to_bottom (struct ipcp_lattice *lat)
640 {
641 bool ret = !lat->bottom;
642 lat->bottom = true;
643 return ret;
644 }
645
646 /* Mark lattice as containing an unknown value and return true if it previously
647 was not marked as such. */
648
649 static inline bool
650 set_lattice_contains_variable (struct ipcp_lattice *lat)
651 {
652 bool ret = !lat->contains_variable;
653 lat->contains_variable = true;
654 return ret;
655 }
656
657 /* Set all aggegate lattices in PLATS to bottom and return true if they were
658 not previously set as such. */
659
660 static inline bool
661 set_agg_lats_to_bottom (struct ipcp_param_lattices *plats)
662 {
663 bool ret = !plats->aggs_bottom;
664 plats->aggs_bottom = true;
665 return ret;
666 }
667
668 /* Mark all aggegate lattices in PLATS as containing an unknown value and
669 return true if they were not previously marked as such. */
670
671 static inline bool
672 set_agg_lats_contain_variable (struct ipcp_param_lattices *plats)
673 {
674 bool ret = !plats->aggs_contain_variable;
675 plats->aggs_contain_variable = true;
676 return ret;
677 }
678
679 /* Mark bot aggregate and scalar lattices as containing an unknown variable,
680 return true is any of them has not been marked as such so far. */
681
682 static inline bool
683 set_all_contains_variable (struct ipcp_param_lattices *plats)
684 {
685 bool ret = !plats->itself.contains_variable || !plats->aggs_contain_variable;
686 plats->itself.contains_variable = true;
687 plats->aggs_contain_variable = true;
688 return ret;
689 }
690
691 /* Initialize ipcp_lattices. */
692
693 static void
694 initialize_node_lattices (struct cgraph_node *node)
695 {
696 struct ipa_node_params *info = IPA_NODE_REF (node);
697 struct cgraph_edge *ie;
698 bool disable = false, variable = false;
699 int i;
700
701 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
702 if (!node->local.local)
703 {
704 /* When cloning is allowed, we can assume that externally visible
705 functions are not called. We will compensate this by cloning
706 later. */
707 if (ipcp_versionable_function_p (node)
708 && ipcp_cloning_candidate_p (node))
709 variable = true;
710 else
711 disable = true;
712 }
713
714 if (disable || variable)
715 {
716 for (i = 0; i < ipa_get_param_count (info) ; i++)
717 {
718 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
719 if (disable)
720 {
721 set_lattice_to_bottom (&plats->itself);
722 set_agg_lats_to_bottom (plats);
723 }
724 else
725 set_all_contains_variable (plats);
726 }
727 if (dump_file && (dump_flags & TDF_DETAILS)
728 && !node->alias && !node->thunk.thunk_p)
729 fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
730 cgraph_node_name (node), node->uid,
731 disable ? "BOTTOM" : "VARIABLE");
732 }
733 if (!disable)
734 for (i = 0; i < ipa_get_param_count (info) ; i++)
735 {
736 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
737 tree t = TREE_TYPE (ipa_get_param(info, i));
738
739 if (POINTER_TYPE_P (t) && TYPE_RESTRICT (t)
740 && TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE)
741 {
742 set_lattice_to_bottom (&plats->itself);
743 if (dump_file && (dump_flags & TDF_DETAILS)
744 && !node->alias && !node->thunk.thunk_p)
745 fprintf (dump_file, "Going to ignore param %i of of %s/%i.\n",
746 i, cgraph_node_name (node), node->uid);
747 }
748 }
749
750 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
751 if (ie->indirect_info->polymorphic)
752 {
753 gcc_checking_assert (ie->indirect_info->param_index >= 0);
754 ipa_get_parm_lattices (info,
755 ie->indirect_info->param_index)->virt_call = 1;
756 }
757 }
758
759 /* Return the result of a (possibly arithmetic) pass through jump function
760 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
761 determined or itself is considered an interprocedural invariant. */
762
763 static tree
764 ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
765 {
766 tree restype, res;
767
768 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
769 return input;
770 else if (TREE_CODE (input) == TREE_BINFO)
771 return NULL_TREE;
772
773 gcc_checking_assert (is_gimple_ip_invariant (input));
774 if (TREE_CODE_CLASS (ipa_get_jf_pass_through_operation (jfunc))
775 == tcc_comparison)
776 restype = boolean_type_node;
777 else
778 restype = TREE_TYPE (input);
779 res = fold_binary (ipa_get_jf_pass_through_operation (jfunc), restype,
780 input, ipa_get_jf_pass_through_operand (jfunc));
781
782 if (res && !is_gimple_ip_invariant (res))
783 return NULL_TREE;
784
785 return res;
786 }
787
788 /* Return the result of an ancestor jump function JFUNC on the constant value
789 INPUT. Return NULL_TREE if that cannot be determined. */
790
791 static tree
792 ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
793 {
794 if (TREE_CODE (input) == TREE_BINFO)
795 return get_binfo_at_offset (input,
796 ipa_get_jf_ancestor_offset (jfunc),
797 ipa_get_jf_ancestor_type (jfunc));
798 else if (TREE_CODE (input) == ADDR_EXPR)
799 {
800 tree t = TREE_OPERAND (input, 0);
801 t = build_ref_for_offset (EXPR_LOCATION (t), t,
802 ipa_get_jf_ancestor_offset (jfunc),
803 ipa_get_jf_ancestor_type (jfunc), NULL, false);
804 return build_fold_addr_expr (t);
805 }
806 else
807 return NULL_TREE;
808 }
809
810 /* Extract the acual BINFO being described by JFUNC which must be a known type
811 jump function. */
812
813 static tree
814 ipa_value_from_known_type_jfunc (struct ipa_jump_func *jfunc)
815 {
816 tree base_binfo = TYPE_BINFO (ipa_get_jf_known_type_base_type (jfunc));
817 if (!base_binfo)
818 return NULL_TREE;
819 return get_binfo_at_offset (base_binfo,
820 ipa_get_jf_known_type_offset (jfunc),
821 ipa_get_jf_known_type_component_type (jfunc));
822 }
823
824 /* Determine whether JFUNC evaluates to a known value (that is either a
825 constant or a binfo) and if so, return it. Otherwise return NULL. INFO
826 describes the caller node so that pass-through jump functions can be
827 evaluated. */
828
829 tree
830 ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
831 {
832 if (jfunc->type == IPA_JF_CONST)
833 return ipa_get_jf_constant (jfunc);
834 else if (jfunc->type == IPA_JF_KNOWN_TYPE)
835 return ipa_value_from_known_type_jfunc (jfunc);
836 else if (jfunc->type == IPA_JF_PASS_THROUGH
837 || jfunc->type == IPA_JF_ANCESTOR)
838 {
839 tree input;
840 int idx;
841
842 if (jfunc->type == IPA_JF_PASS_THROUGH)
843 idx = ipa_get_jf_pass_through_formal_id (jfunc);
844 else
845 idx = ipa_get_jf_ancestor_formal_id (jfunc);
846
847 if (info->ipcp_orig_node)
848 input = info->known_vals[idx];
849 else
850 {
851 struct ipcp_lattice *lat;
852
853 if (!info->lattices)
854 {
855 gcc_checking_assert (!flag_ipa_cp);
856 return NULL_TREE;
857 }
858 lat = ipa_get_scalar_lat (info, idx);
859 if (!ipa_lat_is_single_const (lat))
860 return NULL_TREE;
861 input = lat->values->value;
862 }
863
864 if (!input)
865 return NULL_TREE;
866
867 if (jfunc->type == IPA_JF_PASS_THROUGH)
868 return ipa_get_jf_pass_through_result (jfunc, input);
869 else
870 return ipa_get_jf_ancestor_result (jfunc, input);
871 }
872 else
873 return NULL_TREE;
874 }
875
876
877 /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
878 bottom, not containing a variable component and without any known value at
879 the same time. */
880
881 DEBUG_FUNCTION void
882 ipcp_verify_propagated_values (void)
883 {
884 struct cgraph_node *node;
885
886 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
887 {
888 struct ipa_node_params *info = IPA_NODE_REF (node);
889 int i, count = ipa_get_param_count (info);
890
891 for (i = 0; i < count; i++)
892 {
893 struct ipcp_lattice *lat = ipa_get_scalar_lat (info, i);
894
895 if (!lat->bottom
896 && !lat->contains_variable
897 && lat->values_count == 0)
898 {
899 if (dump_file)
900 {
901 fprintf (dump_file, "\nIPA lattices after constant "
902 "propagation:\n");
903 print_all_lattices (dump_file, true, false);
904 }
905
906 gcc_unreachable ();
907 }
908 }
909 }
910 }
911
912 /* Return true iff X and Y should be considered equal values by IPA-CP. */
913
914 static bool
915 values_equal_for_ipcp_p (tree x, tree y)
916 {
917 gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
918
919 if (x == y)
920 return true;
921
922 if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
923 return false;
924
925 if (TREE_CODE (x) == ADDR_EXPR
926 && TREE_CODE (y) == ADDR_EXPR
927 && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
928 && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
929 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
930 DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
931 else
932 return operand_equal_p (x, y, 0);
933 }
934
935 /* Add a new value source to VAL, marking that a value comes from edge CS and
936 (if the underlying jump function is a pass-through or an ancestor one) from
937 a caller value SRC_VAL of a caller parameter described by SRC_INDEX. OFFSET
938 is negative if the source was the scalar value of the parameter itself or
939 the offset within an aggregate. */
940
941 static void
942 add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
943 struct ipcp_value *src_val, int src_idx, HOST_WIDE_INT offset)
944 {
945 struct ipcp_value_source *src;
946
947 src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
948 src->offset = offset;
949 src->cs = cs;
950 src->val = src_val;
951 src->index = src_idx;
952
953 src->next = val->sources;
954 val->sources = src;
955 }
956
957 /* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
958 it. CS, SRC_VAL SRC_INDEX and OFFSET are meant for add_value_source and
959 have the same meaning. */
960
961 static bool
962 add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
963 struct cgraph_edge *cs, struct ipcp_value *src_val,
964 int src_idx, HOST_WIDE_INT offset)
965 {
966 struct ipcp_value *val;
967
968 if (lat->bottom)
969 return false;
970
971 for (val = lat->values; val; val = val->next)
972 if (values_equal_for_ipcp_p (val->value, newval))
973 {
974 if (edge_within_scc (cs))
975 {
976 struct ipcp_value_source *s;
977 for (s = val->sources; s ; s = s->next)
978 if (s->cs == cs)
979 break;
980 if (s)
981 return false;
982 }
983
984 add_value_source (val, cs, src_val, src_idx, offset);
985 return false;
986 }
987
988 if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
989 {
990 /* We can only free sources, not the values themselves, because sources
991 of other values in this this SCC might point to them. */
992 for (val = lat->values; val; val = val->next)
993 {
994 while (val->sources)
995 {
996 struct ipcp_value_source *src = val->sources;
997 val->sources = src->next;
998 pool_free (ipcp_sources_pool, src);
999 }
1000 }
1001
1002 lat->values = NULL;
1003 return set_lattice_to_bottom (lat);
1004 }
1005
1006 lat->values_count++;
1007 val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
1008 memset (val, 0, sizeof (*val));
1009
1010 add_value_source (val, cs, src_val, src_idx, offset);
1011 val->value = newval;
1012 val->next = lat->values;
1013 lat->values = val;
1014 return true;
1015 }
1016
1017 /* Like above but passes a special value of offset to distinguish that the
1018 origin is the scalar value of the parameter rather than a part of an
1019 aggregate. */
1020
1021 static inline bool
1022 add_scalar_value_to_lattice (struct ipcp_lattice *lat, tree newval,
1023 struct cgraph_edge *cs,
1024 struct ipcp_value *src_val, int src_idx)
1025 {
1026 return add_value_to_lattice (lat, newval, cs, src_val, src_idx, -1);
1027 }
1028
1029 /* Propagate values through a pass-through jump function JFUNC associated with
1030 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1031 is the index of the source parameter. */
1032
1033 static bool
1034 propagate_vals_accross_pass_through (struct cgraph_edge *cs,
1035 struct ipa_jump_func *jfunc,
1036 struct ipcp_lattice *src_lat,
1037 struct ipcp_lattice *dest_lat,
1038 int src_idx)
1039 {
1040 struct ipcp_value *src_val;
1041 bool ret = false;
1042
1043 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
1044 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1045 ret |= add_scalar_value_to_lattice (dest_lat, src_val->value, cs,
1046 src_val, src_idx);
1047 /* Do not create new values when propagating within an SCC because if there
1048 are arithmetic functions with circular dependencies, there is infinite
1049 number of them and we would just make lattices bottom. */
1050 else if (edge_within_scc (cs))
1051 ret = set_lattice_contains_variable (dest_lat);
1052 else
1053 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1054 {
1055 tree cstval = src_val->value;
1056
1057 if (TREE_CODE (cstval) == TREE_BINFO)
1058 {
1059 ret |= set_lattice_contains_variable (dest_lat);
1060 continue;
1061 }
1062 cstval = ipa_get_jf_pass_through_result (jfunc, cstval);
1063
1064 if (cstval)
1065 ret |= add_scalar_value_to_lattice (dest_lat, cstval, cs, src_val,
1066 src_idx);
1067 else
1068 ret |= set_lattice_contains_variable (dest_lat);
1069 }
1070
1071 return ret;
1072 }
1073
1074 /* Propagate values through an ancestor jump function JFUNC associated with
1075 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1076 is the index of the source parameter. */
1077
1078 static bool
1079 propagate_vals_accross_ancestor (struct cgraph_edge *cs,
1080 struct ipa_jump_func *jfunc,
1081 struct ipcp_lattice *src_lat,
1082 struct ipcp_lattice *dest_lat,
1083 int src_idx)
1084 {
1085 struct ipcp_value *src_val;
1086 bool ret = false;
1087
1088 if (edge_within_scc (cs))
1089 return set_lattice_contains_variable (dest_lat);
1090
1091 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1092 {
1093 tree t = ipa_get_jf_ancestor_result (jfunc, src_val->value);
1094
1095 if (t)
1096 ret |= add_scalar_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
1097 else
1098 ret |= set_lattice_contains_variable (dest_lat);
1099 }
1100
1101 return ret;
1102 }
1103
1104 /* Propagate scalar values across jump function JFUNC that is associated with
1105 edge CS and put the values into DEST_LAT. */
1106
1107 static bool
1108 propagate_scalar_accross_jump_function (struct cgraph_edge *cs,
1109 struct ipa_jump_func *jfunc,
1110 struct ipcp_lattice *dest_lat)
1111 {
1112 if (dest_lat->bottom)
1113 return false;
1114
1115 if (jfunc->type == IPA_JF_CONST
1116 || jfunc->type == IPA_JF_KNOWN_TYPE)
1117 {
1118 tree val;
1119
1120 if (jfunc->type == IPA_JF_KNOWN_TYPE)
1121 {
1122 val = ipa_value_from_known_type_jfunc (jfunc);
1123 if (!val)
1124 return set_lattice_contains_variable (dest_lat);
1125 }
1126 else
1127 val = ipa_get_jf_constant (jfunc);
1128 return add_scalar_value_to_lattice (dest_lat, val, cs, NULL, 0);
1129 }
1130 else if (jfunc->type == IPA_JF_PASS_THROUGH
1131 || jfunc->type == IPA_JF_ANCESTOR)
1132 {
1133 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1134 struct ipcp_lattice *src_lat;
1135 int src_idx;
1136 bool ret;
1137
1138 if (jfunc->type == IPA_JF_PASS_THROUGH)
1139 src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1140 else
1141 src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1142
1143 src_lat = ipa_get_scalar_lat (caller_info, src_idx);
1144 if (src_lat->bottom)
1145 return set_lattice_contains_variable (dest_lat);
1146
1147 /* If we would need to clone the caller and cannot, do not propagate. */
1148 if (!ipcp_versionable_function_p (cs->caller)
1149 && (src_lat->contains_variable
1150 || (src_lat->values_count > 1)))
1151 return set_lattice_contains_variable (dest_lat);
1152
1153 if (jfunc->type == IPA_JF_PASS_THROUGH)
1154 ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
1155 dest_lat, src_idx);
1156 else
1157 ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
1158 src_idx);
1159
1160 if (src_lat->contains_variable)
1161 ret |= set_lattice_contains_variable (dest_lat);
1162
1163 return ret;
1164 }
1165
1166 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1167 use it for indirect inlining), we should propagate them too. */
1168 return set_lattice_contains_variable (dest_lat);
1169 }
1170
1171 /* If DEST_PLATS already has aggregate items, check that aggs_by_ref matches
1172 NEW_AGGS_BY_REF and if not, mark all aggs as bottoms and return true (in all
1173 other cases, return false). If there are no aggregate items, set
1174 aggs_by_ref to NEW_AGGS_BY_REF. */
1175
1176 static bool
1177 set_check_aggs_by_ref (struct ipcp_param_lattices *dest_plats,
1178 bool new_aggs_by_ref)
1179 {
1180 if (dest_plats->aggs)
1181 {
1182 if (dest_plats->aggs_by_ref != new_aggs_by_ref)
1183 {
1184 set_agg_lats_to_bottom (dest_plats);
1185 return true;
1186 }
1187 }
1188 else
1189 dest_plats->aggs_by_ref = new_aggs_by_ref;
1190 return false;
1191 }
1192
1193 /* Walk aggregate lattices in DEST_PLATS from ***AGLAT on, until ***aglat is an
1194 already existing lattice for the given OFFSET and SIZE, marking all skipped
1195 lattices as containing variable and checking for overlaps. If there is no
1196 already existing lattice for the OFFSET and VAL_SIZE, create one, initialize
1197 it with offset, size and contains_variable to PRE_EXISTING, and return true,
1198 unless there are too many already. If there are two many, return false. If
1199 there are overlaps turn whole DEST_PLATS to bottom and return false. If any
1200 skipped lattices were newly marked as containing variable, set *CHANGE to
1201 true. */
1202
1203 static bool
1204 merge_agg_lats_step (struct ipcp_param_lattices *dest_plats,
1205 HOST_WIDE_INT offset, HOST_WIDE_INT val_size,
1206 struct ipcp_agg_lattice ***aglat,
1207 bool pre_existing, bool *change)
1208 {
1209 gcc_checking_assert (offset >= 0);
1210
1211 while (**aglat && (**aglat)->offset < offset)
1212 {
1213 if ((**aglat)->offset + (**aglat)->size > offset)
1214 {
1215 set_agg_lats_to_bottom (dest_plats);
1216 return false;
1217 }
1218 *change |= set_lattice_contains_variable (**aglat);
1219 *aglat = &(**aglat)->next;
1220 }
1221
1222 if (**aglat && (**aglat)->offset == offset)
1223 {
1224 if ((**aglat)->size != val_size
1225 || ((**aglat)->next
1226 && (**aglat)->next->offset < offset + val_size))
1227 {
1228 set_agg_lats_to_bottom (dest_plats);
1229 return false;
1230 }
1231 gcc_checking_assert (!(**aglat)->next
1232 || (**aglat)->next->offset >= offset + val_size);
1233 return true;
1234 }
1235 else
1236 {
1237 struct ipcp_agg_lattice *new_al;
1238
1239 if (**aglat && (**aglat)->offset < offset + val_size)
1240 {
1241 set_agg_lats_to_bottom (dest_plats);
1242 return false;
1243 }
1244 if (dest_plats->aggs_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1245 return false;
1246 dest_plats->aggs_count++;
1247 new_al = (struct ipcp_agg_lattice *) pool_alloc (ipcp_agg_lattice_pool);
1248 memset (new_al, 0, sizeof (*new_al));
1249
1250 new_al->offset = offset;
1251 new_al->size = val_size;
1252 new_al->contains_variable = pre_existing;
1253
1254 new_al->next = **aglat;
1255 **aglat = new_al;
1256 return true;
1257 }
1258 }
1259
1260 /* Set all AGLAT and all other aggregate lattices reachable by next pointers as
1261 containing an unknown value. */
1262
1263 static bool
1264 set_chain_of_aglats_contains_variable (struct ipcp_agg_lattice *aglat)
1265 {
1266 bool ret = false;
1267 while (aglat)
1268 {
1269 ret |= set_lattice_contains_variable (aglat);
1270 aglat = aglat->next;
1271 }
1272 return ret;
1273 }
1274
1275 /* Merge existing aggregate lattices in SRC_PLATS to DEST_PLATS, subtracting
1276 DELTA_OFFSET. CS is the call graph edge and SRC_IDX the index of the source
1277 parameter used for lattice value sources. Return true if DEST_PLATS changed
1278 in any way. */
1279
1280 static bool
1281 merge_aggregate_lattices (struct cgraph_edge *cs,
1282 struct ipcp_param_lattices *dest_plats,
1283 struct ipcp_param_lattices *src_plats,
1284 int src_idx, HOST_WIDE_INT offset_delta)
1285 {
1286 bool pre_existing = dest_plats->aggs != NULL;
1287 struct ipcp_agg_lattice **dst_aglat;
1288 bool ret = false;
1289
1290 if (set_check_aggs_by_ref (dest_plats, src_plats->aggs_by_ref))
1291 return true;
1292 if (src_plats->aggs_bottom)
1293 return set_agg_lats_contain_variable (dest_plats);
1294 if (src_plats->aggs_contain_variable)
1295 ret |= set_agg_lats_contain_variable (dest_plats);
1296 dst_aglat = &dest_plats->aggs;
1297
1298 for (struct ipcp_agg_lattice *src_aglat = src_plats->aggs;
1299 src_aglat;
1300 src_aglat = src_aglat->next)
1301 {
1302 HOST_WIDE_INT new_offset = src_aglat->offset - offset_delta;
1303
1304 if (new_offset < 0)
1305 continue;
1306 if (merge_agg_lats_step (dest_plats, new_offset, src_aglat->size,
1307 &dst_aglat, pre_existing, &ret))
1308 {
1309 struct ipcp_agg_lattice *new_al = *dst_aglat;
1310
1311 dst_aglat = &(*dst_aglat)->next;
1312 if (src_aglat->bottom)
1313 {
1314 ret |= set_lattice_contains_variable (new_al);
1315 continue;
1316 }
1317 if (src_aglat->contains_variable)
1318 ret |= set_lattice_contains_variable (new_al);
1319 for (struct ipcp_value *val = src_aglat->values;
1320 val;
1321 val = val->next)
1322 ret |= add_value_to_lattice (new_al, val->value, cs, val, src_idx,
1323 src_aglat->offset);
1324 }
1325 else if (dest_plats->aggs_bottom)
1326 return true;
1327 }
1328 ret |= set_chain_of_aglats_contains_variable (*dst_aglat);
1329 return ret;
1330 }
1331
1332 /* Determine whether there is anything to propagate FROM SRC_PLATS through a
1333 pass-through JFUNC and if so, whether it has conform and conforms to the
1334 rules about propagating values passed by reference. */
1335
1336 static bool
1337 agg_pass_through_permissible_p (struct ipcp_param_lattices *src_plats,
1338 struct ipa_jump_func *jfunc)
1339 {
1340 return src_plats->aggs
1341 && (!src_plats->aggs_by_ref
1342 || ipa_get_jf_pass_through_agg_preserved (jfunc));
1343 }
1344
1345 /* Propagate scalar values across jump function JFUNC that is associated with
1346 edge CS and put the values into DEST_LAT. */
1347
1348 static bool
1349 propagate_aggs_accross_jump_function (struct cgraph_edge *cs,
1350 struct ipa_jump_func *jfunc,
1351 struct ipcp_param_lattices *dest_plats)
1352 {
1353 bool ret = false;
1354
1355 if (dest_plats->aggs_bottom)
1356 return false;
1357
1358 if (jfunc->type == IPA_JF_PASS_THROUGH
1359 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
1360 {
1361 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1362 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1363 struct ipcp_param_lattices *src_plats;
1364
1365 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1366 if (agg_pass_through_permissible_p (src_plats, jfunc))
1367 {
1368 /* Currently we do not produce clobber aggregate jump
1369 functions, replace with merging when we do. */
1370 gcc_assert (!jfunc->agg.items);
1371 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats,
1372 src_idx, 0);
1373 }
1374 else
1375 ret |= set_agg_lats_contain_variable (dest_plats);
1376 }
1377 else if (jfunc->type == IPA_JF_ANCESTOR
1378 && ipa_get_jf_ancestor_agg_preserved (jfunc))
1379 {
1380 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1381 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1382 struct ipcp_param_lattices *src_plats;
1383
1384 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1385 if (src_plats->aggs && src_plats->aggs_by_ref)
1386 {
1387 /* Currently we do not produce clobber aggregate jump
1388 functions, replace with merging when we do. */
1389 gcc_assert (!jfunc->agg.items);
1390 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats, src_idx,
1391 ipa_get_jf_ancestor_offset (jfunc));
1392 }
1393 else if (!src_plats->aggs_by_ref)
1394 ret |= set_agg_lats_to_bottom (dest_plats);
1395 else
1396 ret |= set_agg_lats_contain_variable (dest_plats);
1397 }
1398 else if (jfunc->agg.items)
1399 {
1400 bool pre_existing = dest_plats->aggs != NULL;
1401 struct ipcp_agg_lattice **aglat = &dest_plats->aggs;
1402 struct ipa_agg_jf_item *item;
1403 int i;
1404
1405 if (set_check_aggs_by_ref (dest_plats, jfunc->agg.by_ref))
1406 return true;
1407
1408 FOR_EACH_VEC_ELT (*jfunc->agg.items, i, item)
1409 {
1410 HOST_WIDE_INT val_size;
1411
1412 if (item->offset < 0)
1413 continue;
1414 gcc_checking_assert (is_gimple_ip_invariant (item->value));
1415 val_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (item->value)), 1);
1416
1417 if (merge_agg_lats_step (dest_plats, item->offset, val_size,
1418 &aglat, pre_existing, &ret))
1419 {
1420 ret |= add_value_to_lattice (*aglat, item->value, cs, NULL, 0, 0);
1421 aglat = &(*aglat)->next;
1422 }
1423 else if (dest_plats->aggs_bottom)
1424 return true;
1425 }
1426
1427 ret |= set_chain_of_aglats_contains_variable (*aglat);
1428 }
1429 else
1430 ret |= set_agg_lats_contain_variable (dest_plats);
1431
1432 return ret;
1433 }
1434
1435 /* Propagate constants from the caller to the callee of CS. INFO describes the
1436 caller. */
1437
1438 static bool
1439 propagate_constants_accross_call (struct cgraph_edge *cs)
1440 {
1441 struct ipa_node_params *callee_info;
1442 enum availability availability;
1443 struct cgraph_node *callee, *alias_or_thunk;
1444 struct ipa_edge_args *args;
1445 bool ret = false;
1446 int i, args_count, parms_count;
1447
1448 callee = cgraph_function_node (cs->callee, &availability);
1449 if (!callee->analyzed)
1450 return false;
1451 gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
1452 callee_info = IPA_NODE_REF (callee);
1453
1454 args = IPA_EDGE_REF (cs);
1455 args_count = ipa_get_cs_argument_count (args);
1456 parms_count = ipa_get_param_count (callee_info);
1457
1458 /* If this call goes through a thunk we must not propagate to the first (0th)
1459 parameter. However, we might need to uncover a thunk from below a series
1460 of aliases first. */
1461 alias_or_thunk = cs->callee;
1462 while (alias_or_thunk->alias)
1463 alias_or_thunk = cgraph_alias_aliased_node (alias_or_thunk);
1464 if (alias_or_thunk->thunk.thunk_p)
1465 {
1466 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
1467 0));
1468 i = 1;
1469 }
1470 else
1471 i = 0;
1472
1473 for (; (i < args_count) && (i < parms_count); i++)
1474 {
1475 struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
1476 struct ipcp_param_lattices *dest_plats;
1477
1478 dest_plats = ipa_get_parm_lattices (callee_info, i);
1479 if (availability == AVAIL_OVERWRITABLE)
1480 ret |= set_all_contains_variable (dest_plats);
1481 else
1482 {
1483 ret |= propagate_scalar_accross_jump_function (cs, jump_func,
1484 &dest_plats->itself);
1485 ret |= propagate_aggs_accross_jump_function (cs, jump_func,
1486 dest_plats);
1487 }
1488 }
1489 for (; i < parms_count; i++)
1490 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, i));
1491
1492 return ret;
1493 }
1494
1495 /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1496 (which can contain both constants and binfos) or KNOWN_BINFOS (which can be
1497 NULL) return the destination. */
1498
1499 tree
1500 ipa_get_indirect_edge_target (struct cgraph_edge *ie,
1501 vec<tree> known_vals,
1502 vec<tree> known_binfos,
1503 vec<ipa_agg_jump_function_p> known_aggs)
1504 {
1505 int param_index = ie->indirect_info->param_index;
1506 HOST_WIDE_INT token, anc_offset;
1507 tree otr_type;
1508 tree t;
1509
1510 if (param_index == -1)
1511 return NULL_TREE;
1512
1513 if (!ie->indirect_info->polymorphic)
1514 {
1515 tree t;
1516
1517 if (ie->indirect_info->agg_contents)
1518 {
1519 if (known_aggs.length ()
1520 > (unsigned int) param_index)
1521 {
1522 struct ipa_agg_jump_function *agg;
1523 agg = known_aggs[param_index];
1524 t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
1525 ie->indirect_info->by_ref);
1526 }
1527 else
1528 t = NULL;
1529 }
1530 else
1531 t = (known_vals.length () > (unsigned int) param_index
1532 ? known_vals[param_index] : NULL);
1533
1534 if (t &&
1535 TREE_CODE (t) == ADDR_EXPR
1536 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
1537 return TREE_OPERAND (t, 0);
1538 else
1539 return NULL_TREE;
1540 }
1541
1542 gcc_assert (!ie->indirect_info->agg_contents);
1543 token = ie->indirect_info->otr_token;
1544 anc_offset = ie->indirect_info->offset;
1545 otr_type = ie->indirect_info->otr_type;
1546
1547 t = known_vals[param_index];
1548 if (!t && known_binfos.length () > (unsigned int) param_index)
1549 t = known_binfos[param_index];
1550 if (!t)
1551 return NULL_TREE;
1552
1553 if (TREE_CODE (t) != TREE_BINFO)
1554 {
1555 tree binfo;
1556 binfo = gimple_extract_devirt_binfo_from_cst (t);
1557 if (!binfo)
1558 return NULL_TREE;
1559 binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
1560 if (!binfo)
1561 return NULL_TREE;
1562 return gimple_get_virt_method_for_binfo (token, binfo);
1563 }
1564 else
1565 {
1566 tree binfo;
1567
1568 binfo = get_binfo_at_offset (t, anc_offset, otr_type);
1569 if (!binfo)
1570 return NULL_TREE;
1571 return gimple_get_virt_method_for_binfo (token, binfo);
1572 }
1573 }
1574
1575 /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
1576 and KNOWN_BINFOS. */
1577
1578 static int
1579 devirtualization_time_bonus (struct cgraph_node *node,
1580 vec<tree> known_csts,
1581 vec<tree> known_binfos)
1582 {
1583 struct cgraph_edge *ie;
1584 int res = 0;
1585
1586 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
1587 {
1588 struct cgraph_node *callee;
1589 struct inline_summary *isummary;
1590 tree target;
1591
1592 target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos,
1593 vNULL);
1594 if (!target)
1595 continue;
1596
1597 /* Only bare minimum benefit for clearly un-inlineable targets. */
1598 res += 1;
1599 callee = cgraph_get_node (target);
1600 if (!callee || !callee->analyzed)
1601 continue;
1602 isummary = inline_summary (callee);
1603 if (!isummary->inlinable)
1604 continue;
1605
1606 /* FIXME: The values below need re-considering and perhaps also
1607 integrating into the cost metrics, at lest in some very basic way. */
1608 if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
1609 res += 31;
1610 else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
1611 res += 15;
1612 else if (isummary->size <= MAX_INLINE_INSNS_AUTO
1613 || DECL_DECLARED_INLINE_P (callee->symbol.decl))
1614 res += 7;
1615 }
1616
1617 return res;
1618 }
1619
1620 /* Return time bonus incurred because of HINTS. */
1621
1622 static int
1623 hint_time_bonus (inline_hints hints)
1624 {
1625 if (hints & (INLINE_HINT_loop_iterations | INLINE_HINT_loop_stride))
1626 return PARAM_VALUE (PARAM_IPA_CP_LOOP_HINT_BONUS);
1627 return 0;
1628 }
1629
1630 /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
1631 and SIZE_COST and with the sum of frequencies of incoming edges to the
1632 potential new clone in FREQUENCIES. */
1633
1634 static bool
1635 good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
1636 int freq_sum, gcov_type count_sum, int size_cost)
1637 {
1638 if (time_benefit == 0
1639 || !flag_ipa_cp_clone
1640 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
1641 return false;
1642
1643 gcc_assert (size_cost > 0);
1644
1645 if (max_count)
1646 {
1647 int factor = (count_sum * 1000) / max_count;
1648 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * factor)
1649 / size_cost);
1650
1651 if (dump_file && (dump_flags & TDF_DETAILS))
1652 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1653 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
1654 ") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
1655 ", threshold: %i\n",
1656 time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
1657 evaluation, PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
1658
1659 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1660 }
1661 else
1662 {
1663 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * freq_sum)
1664 / size_cost);
1665
1666 if (dump_file && (dump_flags & TDF_DETAILS))
1667 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1668 "size: %i, freq_sum: %i) -> evaluation: "
1669 HOST_WIDEST_INT_PRINT_DEC ", threshold: %i\n",
1670 time_benefit, size_cost, freq_sum, evaluation,
1671 PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
1672
1673 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1674 }
1675 }
1676
1677 /* Return all context independent values from aggregate lattices in PLATS in a
1678 vector. Return NULL if there are none. */
1679
1680 static vec<ipa_agg_jf_item_t, va_gc> *
1681 context_independent_aggregate_values (struct ipcp_param_lattices *plats)
1682 {
1683 vec<ipa_agg_jf_item_t, va_gc> *res = NULL;
1684
1685 if (plats->aggs_bottom
1686 || plats->aggs_contain_variable
1687 || plats->aggs_count == 0)
1688 return NULL;
1689
1690 for (struct ipcp_agg_lattice *aglat = plats->aggs;
1691 aglat;
1692 aglat = aglat->next)
1693 if (ipa_lat_is_single_const (aglat))
1694 {
1695 struct ipa_agg_jf_item item;
1696 item.offset = aglat->offset;
1697 item.value = aglat->values->value;
1698 vec_safe_push (res, item);
1699 }
1700 return res;
1701 }
1702
1703 /* Allocate KNOWN_CSTS, KNOWN_BINFOS and, if non-NULL, KNOWN_AGGS and populate
1704 them with values of parameters that are known independent of the context.
1705 INFO describes the function. If REMOVABLE_PARAMS_COST is non-NULL, the
1706 movement cost of all removable parameters will be stored in it. */
1707
1708 static bool
1709 gather_context_independent_values (struct ipa_node_params *info,
1710 vec<tree> *known_csts,
1711 vec<tree> *known_binfos,
1712 vec<ipa_agg_jump_function_t> *known_aggs,
1713 int *removable_params_cost)
1714 {
1715 int i, count = ipa_get_param_count (info);
1716 bool ret = false;
1717
1718 known_csts->create (0);
1719 known_binfos->create (0);
1720 known_csts->safe_grow_cleared (count);
1721 known_binfos->safe_grow_cleared (count);
1722 if (known_aggs)
1723 {
1724 known_aggs->create (0);
1725 known_aggs->safe_grow_cleared (count);
1726 }
1727
1728 if (removable_params_cost)
1729 *removable_params_cost = 0;
1730
1731 for (i = 0; i < count ; i++)
1732 {
1733 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1734 struct ipcp_lattice *lat = &plats->itself;
1735
1736 if (ipa_lat_is_single_const (lat))
1737 {
1738 struct ipcp_value *val = lat->values;
1739 if (TREE_CODE (val->value) != TREE_BINFO)
1740 {
1741 (*known_csts)[i] = val->value;
1742 if (removable_params_cost)
1743 *removable_params_cost
1744 += estimate_move_cost (TREE_TYPE (val->value));
1745 ret = true;
1746 }
1747 else if (plats->virt_call)
1748 {
1749 (*known_binfos)[i] = val->value;
1750 ret = true;
1751 }
1752 else if (removable_params_cost
1753 && !ipa_is_param_used (info, i))
1754 *removable_params_cost
1755 += estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
1756 }
1757 else if (removable_params_cost
1758 && !ipa_is_param_used (info, i))
1759 *removable_params_cost
1760 += estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
1761
1762 if (known_aggs)
1763 {
1764 vec<ipa_agg_jf_item_t, va_gc> *agg_items;
1765 struct ipa_agg_jump_function *ajf;
1766
1767 agg_items = context_independent_aggregate_values (plats);
1768 ajf = &(*known_aggs)[i];
1769 ajf->items = agg_items;
1770 ajf->by_ref = plats->aggs_by_ref;
1771 ret |= agg_items != NULL;
1772 }
1773 }
1774
1775 return ret;
1776 }
1777
1778 /* The current interface in ipa-inline-analysis requires a pointer vector.
1779 Create it.
1780
1781 FIXME: That interface should be re-worked, this is slightly silly. Still,
1782 I'd like to discuss how to change it first and this demonstrates the
1783 issue. */
1784
1785 static vec<ipa_agg_jump_function_p>
1786 agg_jmp_p_vec_for_t_vec (vec<ipa_agg_jump_function_t> known_aggs)
1787 {
1788 vec<ipa_agg_jump_function_p> ret;
1789 struct ipa_agg_jump_function *ajf;
1790 int i;
1791
1792 ret.create (known_aggs.length ());
1793 FOR_EACH_VEC_ELT (known_aggs, i, ajf)
1794 ret.quick_push (ajf);
1795 return ret;
1796 }
1797
1798 /* Iterate over known values of parameters of NODE and estimate the local
1799 effects in terms of time and size they have. */
1800
1801 static void
1802 estimate_local_effects (struct cgraph_node *node)
1803 {
1804 struct ipa_node_params *info = IPA_NODE_REF (node);
1805 int i, count = ipa_get_param_count (info);
1806 vec<tree> known_csts, known_binfos;
1807 vec<ipa_agg_jump_function_t> known_aggs;
1808 vec<ipa_agg_jump_function_p> known_aggs_ptrs;
1809 bool always_const;
1810 int base_time = inline_summary (node)->time;
1811 int removable_params_cost;
1812
1813 if (!count || !ipcp_versionable_function_p (node))
1814 return;
1815
1816 if (dump_file && (dump_flags & TDF_DETAILS))
1817 fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
1818 cgraph_node_name (node), node->uid, base_time);
1819
1820 always_const = gather_context_independent_values (info, &known_csts,
1821 &known_binfos, &known_aggs,
1822 &removable_params_cost);
1823 known_aggs_ptrs = agg_jmp_p_vec_for_t_vec (known_aggs);
1824 if (always_const)
1825 {
1826 struct caller_statistics stats;
1827 inline_hints hints;
1828 int time, size;
1829
1830 init_caller_stats (&stats);
1831 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
1832 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1833 known_aggs_ptrs, &size, &time, &hints);
1834 time -= devirtualization_time_bonus (node, known_csts, known_binfos);
1835 time -= hint_time_bonus (hints);
1836 time -= removable_params_cost;
1837 size -= stats.n_calls * removable_params_cost;
1838
1839 if (dump_file)
1840 fprintf (dump_file, " - context independent values, size: %i, "
1841 "time_benefit: %i\n", size, base_time - time);
1842
1843 if (size <= 0
1844 || cgraph_will_be_removed_from_program_if_no_direct_calls (node))
1845 {
1846 info->do_clone_for_all_contexts = true;
1847 base_time = time;
1848
1849 if (dump_file)
1850 fprintf (dump_file, " Decided to specialize for all "
1851 "known contexts, code not going to grow.\n");
1852 }
1853 else if (good_cloning_opportunity_p (node, base_time - time,
1854 stats.freq_sum, stats.count_sum,
1855 size))
1856 {
1857 if (size + overall_size <= max_new_size)
1858 {
1859 info->do_clone_for_all_contexts = true;
1860 base_time = time;
1861 overall_size += size;
1862
1863 if (dump_file)
1864 fprintf (dump_file, " Decided to specialize for all "
1865 "known contexts, growth deemed beneficial.\n");
1866 }
1867 else if (dump_file && (dump_flags & TDF_DETAILS))
1868 fprintf (dump_file, " Not cloning for all contexts because "
1869 "max_new_size would be reached with %li.\n",
1870 size + overall_size);
1871 }
1872 }
1873
1874 for (i = 0; i < count ; i++)
1875 {
1876 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1877 struct ipcp_lattice *lat = &plats->itself;
1878 struct ipcp_value *val;
1879 int emc;
1880
1881 if (lat->bottom
1882 || !lat->values
1883 || known_csts[i]
1884 || known_binfos[i])
1885 continue;
1886
1887 for (val = lat->values; val; val = val->next)
1888 {
1889 int time, size, time_benefit;
1890 inline_hints hints;
1891
1892 if (TREE_CODE (val->value) != TREE_BINFO)
1893 {
1894 known_csts[i] = val->value;
1895 known_binfos[i] = NULL_TREE;
1896 emc = estimate_move_cost (TREE_TYPE (val->value));
1897 }
1898 else if (plats->virt_call)
1899 {
1900 known_csts[i] = NULL_TREE;
1901 known_binfos[i] = val->value;
1902 emc = 0;
1903 }
1904 else
1905 continue;
1906
1907 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1908 known_aggs_ptrs, &size, &time,
1909 &hints);
1910 time_benefit = base_time - time
1911 + devirtualization_time_bonus (node, known_csts, known_binfos)
1912 + hint_time_bonus (hints)
1913 + removable_params_cost + emc;
1914
1915 gcc_checking_assert (size >=0);
1916 /* The inliner-heuristics based estimates may think that in certain
1917 contexts some functions do not have any size at all but we want
1918 all specializations to have at least a tiny cost, not least not to
1919 divide by zero. */
1920 if (size == 0)
1921 size = 1;
1922
1923 if (dump_file && (dump_flags & TDF_DETAILS))
1924 {
1925 fprintf (dump_file, " - estimates for value ");
1926 print_ipcp_constant_value (dump_file, val->value);
1927 fprintf (dump_file, " for parameter ");
1928 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
1929 fprintf (dump_file, ": time_benefit: %i, size: %i\n",
1930 time_benefit, size);
1931 }
1932
1933 val->local_time_benefit = time_benefit;
1934 val->local_size_cost = size;
1935 }
1936 known_binfos[i] = NULL_TREE;
1937 known_csts[i] = NULL_TREE;
1938 }
1939
1940 for (i = 0; i < count ; i++)
1941 {
1942 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1943 struct ipa_agg_jump_function *ajf;
1944 struct ipcp_agg_lattice *aglat;
1945
1946 if (plats->aggs_bottom || !plats->aggs)
1947 continue;
1948
1949 ajf = &known_aggs[i];
1950 for (aglat = plats->aggs; aglat; aglat = aglat->next)
1951 {
1952 struct ipcp_value *val;
1953 if (aglat->bottom || !aglat->values
1954 /* If the following is true, the one value is in known_aggs. */
1955 || (!plats->aggs_contain_variable
1956 && ipa_lat_is_single_const (aglat)))
1957 continue;
1958
1959 for (val = aglat->values; val; val = val->next)
1960 {
1961 int time, size, time_benefit;
1962 struct ipa_agg_jf_item item;
1963 inline_hints hints;
1964
1965 item.offset = aglat->offset;
1966 item.value = val->value;
1967 vec_safe_push (ajf->items, item);
1968
1969 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1970 known_aggs_ptrs, &size, &time,
1971 &hints);
1972 time_benefit = base_time - time
1973 + devirtualization_time_bonus (node, known_csts, known_binfos)
1974 + hint_time_bonus (hints);
1975 gcc_checking_assert (size >=0);
1976 if (size == 0)
1977 size = 1;
1978
1979 if (dump_file && (dump_flags & TDF_DETAILS))
1980 {
1981 fprintf (dump_file, " - estimates for value ");
1982 print_ipcp_constant_value (dump_file, val->value);
1983 fprintf (dump_file, " for parameter ");
1984 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
1985 fprintf (dump_file, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
1986 "]: time_benefit: %i, size: %i\n",
1987 plats->aggs_by_ref ? "ref " : "",
1988 aglat->offset, time_benefit, size);
1989 }
1990
1991 val->local_time_benefit = time_benefit;
1992 val->local_size_cost = size;
1993 ajf->items->pop ();
1994 }
1995 }
1996 }
1997
1998 for (i = 0; i < count ; i++)
1999 vec_free (known_aggs[i].items);
2000
2001 known_csts.release ();
2002 known_binfos.release ();
2003 known_aggs.release ();
2004 known_aggs_ptrs.release ();
2005 }
2006
2007
2008 /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
2009 topological sort of values. */
2010
2011 static void
2012 add_val_to_toposort (struct ipcp_value *cur_val)
2013 {
2014 static int dfs_counter = 0;
2015 static struct ipcp_value *stack;
2016 struct ipcp_value_source *src;
2017
2018 if (cur_val->dfs)
2019 return;
2020
2021 dfs_counter++;
2022 cur_val->dfs = dfs_counter;
2023 cur_val->low_link = dfs_counter;
2024
2025 cur_val->topo_next = stack;
2026 stack = cur_val;
2027 cur_val->on_stack = true;
2028
2029 for (src = cur_val->sources; src; src = src->next)
2030 if (src->val)
2031 {
2032 if (src->val->dfs == 0)
2033 {
2034 add_val_to_toposort (src->val);
2035 if (src->val->low_link < cur_val->low_link)
2036 cur_val->low_link = src->val->low_link;
2037 }
2038 else if (src->val->on_stack
2039 && src->val->dfs < cur_val->low_link)
2040 cur_val->low_link = src->val->dfs;
2041 }
2042
2043 if (cur_val->dfs == cur_val->low_link)
2044 {
2045 struct ipcp_value *v, *scc_list = NULL;
2046
2047 do
2048 {
2049 v = stack;
2050 stack = v->topo_next;
2051 v->on_stack = false;
2052
2053 v->scc_next = scc_list;
2054 scc_list = v;
2055 }
2056 while (v != cur_val);
2057
2058 cur_val->topo_next = values_topo;
2059 values_topo = cur_val;
2060 }
2061 }
2062
2063 /* Add all values in lattices associated with NODE to the topological sort if
2064 they are not there yet. */
2065
2066 static void
2067 add_all_node_vals_to_toposort (struct cgraph_node *node)
2068 {
2069 struct ipa_node_params *info = IPA_NODE_REF (node);
2070 int i, count = ipa_get_param_count (info);
2071
2072 for (i = 0; i < count ; i++)
2073 {
2074 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2075 struct ipcp_lattice *lat = &plats->itself;
2076 struct ipcp_agg_lattice *aglat;
2077 struct ipcp_value *val;
2078
2079 if (!lat->bottom)
2080 for (val = lat->values; val; val = val->next)
2081 add_val_to_toposort (val);
2082
2083 if (!plats->aggs_bottom)
2084 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2085 if (!aglat->bottom)
2086 for (val = aglat->values; val; val = val->next)
2087 add_val_to_toposort (val);
2088 }
2089 }
2090
2091 /* One pass of constants propagation along the call graph edges, from callers
2092 to callees (requires topological ordering in TOPO), iterate over strongly
2093 connected components. */
2094
2095 static void
2096 propagate_constants_topo (struct topo_info *topo)
2097 {
2098 int i;
2099
2100 for (i = topo->nnodes - 1; i >= 0; i--)
2101 {
2102 struct cgraph_node *v, *node = topo->order[i];
2103 struct ipa_dfs_info *node_dfs_info;
2104
2105 if (!cgraph_function_with_gimple_body_p (node))
2106 continue;
2107
2108 node_dfs_info = (struct ipa_dfs_info *) node->symbol.aux;
2109 /* First, iteratively propagate within the strongly connected component
2110 until all lattices stabilize. */
2111 v = node_dfs_info->next_cycle;
2112 while (v)
2113 {
2114 push_node_to_stack (topo, v);
2115 v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
2116 }
2117
2118 v = node;
2119 while (v)
2120 {
2121 struct cgraph_edge *cs;
2122
2123 for (cs = v->callees; cs; cs = cs->next_callee)
2124 if (edge_within_scc (cs)
2125 && propagate_constants_accross_call (cs))
2126 push_node_to_stack (topo, cs->callee);
2127 v = pop_node_from_stack (topo);
2128 }
2129
2130 /* Afterwards, propagate along edges leading out of the SCC, calculates
2131 the local effects of the discovered constants and all valid values to
2132 their topological sort. */
2133 v = node;
2134 while (v)
2135 {
2136 struct cgraph_edge *cs;
2137
2138 estimate_local_effects (v);
2139 add_all_node_vals_to_toposort (v);
2140 for (cs = v->callees; cs; cs = cs->next_callee)
2141 if (!edge_within_scc (cs))
2142 propagate_constants_accross_call (cs);
2143
2144 v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
2145 }
2146 }
2147 }
2148
2149
2150 /* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
2151 the bigger one if otherwise. */
2152
2153 static int
2154 safe_add (int a, int b)
2155 {
2156 if (a > INT_MAX/2 || b > INT_MAX/2)
2157 return a > b ? a : b;
2158 else
2159 return a + b;
2160 }
2161
2162
2163 /* Propagate the estimated effects of individual values along the topological
2164 from the dependent values to those they depend on. */
2165
2166 static void
2167 propagate_effects (void)
2168 {
2169 struct ipcp_value *base;
2170
2171 for (base = values_topo; base; base = base->topo_next)
2172 {
2173 struct ipcp_value_source *src;
2174 struct ipcp_value *val;
2175 int time = 0, size = 0;
2176
2177 for (val = base; val; val = val->scc_next)
2178 {
2179 time = safe_add (time,
2180 val->local_time_benefit + val->prop_time_benefit);
2181 size = safe_add (size, val->local_size_cost + val->prop_size_cost);
2182 }
2183
2184 for (val = base; val; val = val->scc_next)
2185 for (src = val->sources; src; src = src->next)
2186 if (src->val
2187 && cgraph_maybe_hot_edge_p (src->cs))
2188 {
2189 src->val->prop_time_benefit = safe_add (time,
2190 src->val->prop_time_benefit);
2191 src->val->prop_size_cost = safe_add (size,
2192 src->val->prop_size_cost);
2193 }
2194 }
2195 }
2196
2197
2198 /* Propagate constants, binfos and their effects from the summaries
2199 interprocedurally. */
2200
2201 static void
2202 ipcp_propagate_stage (struct topo_info *topo)
2203 {
2204 struct cgraph_node *node;
2205
2206 if (dump_file)
2207 fprintf (dump_file, "\n Propagating constants:\n\n");
2208
2209 if (in_lto_p)
2210 ipa_update_after_lto_read ();
2211
2212
2213 FOR_EACH_DEFINED_FUNCTION (node)
2214 {
2215 struct ipa_node_params *info = IPA_NODE_REF (node);
2216
2217 determine_versionability (node);
2218 if (cgraph_function_with_gimple_body_p (node))
2219 {
2220 info->lattices = XCNEWVEC (struct ipcp_param_lattices,
2221 ipa_get_param_count (info));
2222 initialize_node_lattices (node);
2223 }
2224 if (node->count > max_count)
2225 max_count = node->count;
2226 overall_size += inline_summary (node)->self_size;
2227 }
2228
2229 max_new_size = overall_size;
2230 if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
2231 max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
2232 max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
2233
2234 if (dump_file)
2235 fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
2236 overall_size, max_new_size);
2237
2238 propagate_constants_topo (topo);
2239 #ifdef ENABLE_CHECKING
2240 ipcp_verify_propagated_values ();
2241 #endif
2242 propagate_effects ();
2243
2244 if (dump_file)
2245 {
2246 fprintf (dump_file, "\nIPA lattices after all propagation:\n");
2247 print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
2248 }
2249 }
2250
2251 /* Discover newly direct outgoing edges from NODE which is a new clone with
2252 known KNOWN_VALS and make them direct. */
2253
2254 static void
2255 ipcp_discover_new_direct_edges (struct cgraph_node *node,
2256 vec<tree> known_vals)
2257 {
2258 struct cgraph_edge *ie, *next_ie;
2259 bool found = false;
2260
2261 for (ie = node->indirect_calls; ie; ie = next_ie)
2262 {
2263 tree target;
2264
2265 next_ie = ie->next_callee;
2266 target = ipa_get_indirect_edge_target (ie, known_vals, vNULL, vNULL);
2267 if (target)
2268 {
2269 ipa_make_edge_direct_to_target (ie, target);
2270 found = true;
2271 }
2272 }
2273 /* Turning calls to direct calls will improve overall summary. */
2274 if (found)
2275 inline_update_overall_summary (node);
2276 }
2277
2278 /* Vector of pointers which for linked lists of clones of an original crgaph
2279 edge. */
2280
2281 static vec<cgraph_edge_p> next_edge_clone;
2282
2283 static inline void
2284 grow_next_edge_clone_vector (void)
2285 {
2286 if (next_edge_clone.length ()
2287 <= (unsigned) cgraph_edge_max_uid)
2288 next_edge_clone.safe_grow_cleared (cgraph_edge_max_uid + 1);
2289 }
2290
2291 /* Edge duplication hook to grow the appropriate linked list in
2292 next_edge_clone. */
2293
2294 static void
2295 ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
2296 __attribute__((unused)) void *data)
2297 {
2298 grow_next_edge_clone_vector ();
2299 next_edge_clone[dst->uid] = next_edge_clone[src->uid];
2300 next_edge_clone[src->uid] = dst;
2301 }
2302
2303 /* See if NODE is a clone with a known aggregate value at a given OFFSET of a
2304 parameter with the given INDEX. */
2305
2306 static tree
2307 get_clone_agg_value (struct cgraph_node *node, HOST_WIDEST_INT offset,
2308 int index)
2309 {
2310 struct ipa_agg_replacement_value *aggval;
2311
2312 aggval = ipa_get_agg_replacements_for_node (node);
2313 while (aggval)
2314 {
2315 if (aggval->offset == offset
2316 && aggval->index == index)
2317 return aggval->value;
2318 aggval = aggval->next;
2319 }
2320 return NULL_TREE;
2321 }
2322
2323 /* Return true if edge CS does bring about the value described by SRC. */
2324
2325 static bool
2326 cgraph_edge_brings_value_p (struct cgraph_edge *cs,
2327 struct ipcp_value_source *src)
2328 {
2329 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2330 struct ipa_node_params *dst_info = IPA_NODE_REF (cs->callee);
2331
2332 if ((dst_info->ipcp_orig_node && !dst_info->is_all_contexts_clone)
2333 || caller_info->node_dead)
2334 return false;
2335 if (!src->val)
2336 return true;
2337
2338 if (caller_info->ipcp_orig_node)
2339 {
2340 tree t;
2341 if (src->offset == -1)
2342 t = caller_info->known_vals[src->index];
2343 else
2344 t = get_clone_agg_value (cs->caller, src->offset, src->index);
2345 return (t != NULL_TREE
2346 && values_equal_for_ipcp_p (src->val->value, t));
2347 }
2348 else
2349 {
2350 struct ipcp_agg_lattice *aglat;
2351 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
2352 src->index);
2353 if (src->offset == -1)
2354 return (ipa_lat_is_single_const (&plats->itself)
2355 && values_equal_for_ipcp_p (src->val->value,
2356 plats->itself.values->value));
2357 else
2358 {
2359 if (plats->aggs_bottom || plats->aggs_contain_variable)
2360 return false;
2361 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2362 if (aglat->offset == src->offset)
2363 return (ipa_lat_is_single_const (aglat)
2364 && values_equal_for_ipcp_p (src->val->value,
2365 aglat->values->value));
2366 }
2367 return false;
2368 }
2369 }
2370
2371 /* Get the next clone in the linked list of clones of an edge. */
2372
2373 static inline struct cgraph_edge *
2374 get_next_cgraph_edge_clone (struct cgraph_edge *cs)
2375 {
2376 return next_edge_clone[cs->uid];
2377 }
2378
2379 /* Given VAL, iterate over all its sources and if they still hold, add their
2380 edge frequency and their number into *FREQUENCY and *CALLER_COUNT
2381 respectively. */
2382
2383 static bool
2384 get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
2385 gcov_type *count_sum, int *caller_count)
2386 {
2387 struct ipcp_value_source *src;
2388 int freq = 0, count = 0;
2389 gcov_type cnt = 0;
2390 bool hot = false;
2391
2392 for (src = val->sources; src; src = src->next)
2393 {
2394 struct cgraph_edge *cs = src->cs;
2395 while (cs)
2396 {
2397 if (cgraph_edge_brings_value_p (cs, src))
2398 {
2399 count++;
2400 freq += cs->frequency;
2401 cnt += cs->count;
2402 hot |= cgraph_maybe_hot_edge_p (cs);
2403 }
2404 cs = get_next_cgraph_edge_clone (cs);
2405 }
2406 }
2407
2408 *freq_sum = freq;
2409 *count_sum = cnt;
2410 *caller_count = count;
2411 return hot;
2412 }
2413
2414 /* Return a vector of incoming edges that do bring value VAL. It is assumed
2415 their number is known and equal to CALLER_COUNT. */
2416
2417 static vec<cgraph_edge_p>
2418 gather_edges_for_value (struct ipcp_value *val, int caller_count)
2419 {
2420 struct ipcp_value_source *src;
2421 vec<cgraph_edge_p> ret;
2422
2423 ret.create (caller_count);
2424 for (src = val->sources; src; src = src->next)
2425 {
2426 struct cgraph_edge *cs = src->cs;
2427 while (cs)
2428 {
2429 if (cgraph_edge_brings_value_p (cs, src))
2430 ret.quick_push (cs);
2431 cs = get_next_cgraph_edge_clone (cs);
2432 }
2433 }
2434
2435 return ret;
2436 }
2437
2438 /* Construct a replacement map for a know VALUE for a formal parameter PARAM.
2439 Return it or NULL if for some reason it cannot be created. */
2440
2441 static struct ipa_replace_map *
2442 get_replacement_map (tree value, tree parm)
2443 {
2444 tree req_type = TREE_TYPE (parm);
2445 struct ipa_replace_map *replace_map;
2446
2447 if (!useless_type_conversion_p (req_type, TREE_TYPE (value)))
2448 {
2449 if (fold_convertible_p (req_type, value))
2450 value = fold_build1 (NOP_EXPR, req_type, value);
2451 else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value)))
2452 value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value);
2453 else
2454 {
2455 if (dump_file)
2456 {
2457 fprintf (dump_file, " const ");
2458 print_generic_expr (dump_file, value, 0);
2459 fprintf (dump_file, " can't be converted to param ");
2460 print_generic_expr (dump_file, parm, 0);
2461 fprintf (dump_file, "\n");
2462 }
2463 return NULL;
2464 }
2465 }
2466
2467 replace_map = ggc_alloc_ipa_replace_map ();
2468 if (dump_file)
2469 {
2470 fprintf (dump_file, " replacing param ");
2471 print_generic_expr (dump_file, parm, 0);
2472 fprintf (dump_file, " with const ");
2473 print_generic_expr (dump_file, value, 0);
2474 fprintf (dump_file, "\n");
2475 }
2476 replace_map->old_tree = parm;
2477 replace_map->new_tree = value;
2478 replace_map->replace_p = true;
2479 replace_map->ref_p = false;
2480
2481 return replace_map;
2482 }
2483
2484 /* Dump new profiling counts */
2485
2486 static void
2487 dump_profile_updates (struct cgraph_node *orig_node,
2488 struct cgraph_node *new_node)
2489 {
2490 struct cgraph_edge *cs;
2491
2492 fprintf (dump_file, " setting count of the specialized node to "
2493 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
2494 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2495 fprintf (dump_file, " edge to %s has count "
2496 HOST_WIDE_INT_PRINT_DEC "\n",
2497 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
2498
2499 fprintf (dump_file, " setting count of the original node to "
2500 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
2501 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2502 fprintf (dump_file, " edge to %s is left with "
2503 HOST_WIDE_INT_PRINT_DEC "\n",
2504 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
2505 }
2506
2507 /* After a specialized NEW_NODE version of ORIG_NODE has been created, update
2508 their profile information to reflect this. */
2509
2510 static void
2511 update_profiling_info (struct cgraph_node *orig_node,
2512 struct cgraph_node *new_node)
2513 {
2514 struct cgraph_edge *cs;
2515 struct caller_statistics stats;
2516 gcov_type new_sum, orig_sum;
2517 gcov_type remainder, orig_node_count = orig_node->count;
2518
2519 if (orig_node_count == 0)
2520 return;
2521
2522 init_caller_stats (&stats);
2523 cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
2524 orig_sum = stats.count_sum;
2525 init_caller_stats (&stats);
2526 cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
2527 new_sum = stats.count_sum;
2528
2529 if (orig_node_count < orig_sum + new_sum)
2530 {
2531 if (dump_file)
2532 fprintf (dump_file, " Problem: node %s/%i has too low count "
2533 HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
2534 "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
2535 cgraph_node_name (orig_node), orig_node->uid,
2536 (HOST_WIDE_INT) orig_node_count,
2537 (HOST_WIDE_INT) (orig_sum + new_sum));
2538
2539 orig_node_count = (orig_sum + new_sum) * 12 / 10;
2540 if (dump_file)
2541 fprintf (dump_file, " proceeding by pretending it was "
2542 HOST_WIDE_INT_PRINT_DEC "\n",
2543 (HOST_WIDE_INT) orig_node_count);
2544 }
2545
2546 new_node->count = new_sum;
2547 remainder = orig_node_count - new_sum;
2548 orig_node->count = remainder;
2549
2550 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2551 if (cs->frequency)
2552 cs->count = cs->count * (new_sum * REG_BR_PROB_BASE
2553 / orig_node_count) / REG_BR_PROB_BASE;
2554 else
2555 cs->count = 0;
2556
2557 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2558 cs->count = cs->count * (remainder * REG_BR_PROB_BASE
2559 / orig_node_count) / REG_BR_PROB_BASE;
2560
2561 if (dump_file)
2562 dump_profile_updates (orig_node, new_node);
2563 }
2564
2565 /* Update the respective profile of specialized NEW_NODE and the original
2566 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
2567 have been redirected to the specialized version. */
2568
2569 static void
2570 update_specialized_profile (struct cgraph_node *new_node,
2571 struct cgraph_node *orig_node,
2572 gcov_type redirected_sum)
2573 {
2574 struct cgraph_edge *cs;
2575 gcov_type new_node_count, orig_node_count = orig_node->count;
2576
2577 if (dump_file)
2578 fprintf (dump_file, " the sum of counts of redirected edges is "
2579 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
2580 if (orig_node_count == 0)
2581 return;
2582
2583 gcc_assert (orig_node_count >= redirected_sum);
2584
2585 new_node_count = new_node->count;
2586 new_node->count += redirected_sum;
2587 orig_node->count -= redirected_sum;
2588
2589 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2590 if (cs->frequency)
2591 cs->count += cs->count * redirected_sum / new_node_count;
2592 else
2593 cs->count = 0;
2594
2595 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2596 {
2597 gcov_type dec = cs->count * (redirected_sum * REG_BR_PROB_BASE
2598 / orig_node_count) / REG_BR_PROB_BASE;
2599 if (dec < cs->count)
2600 cs->count -= dec;
2601 else
2602 cs->count = 0;
2603 }
2604
2605 if (dump_file)
2606 dump_profile_updates (orig_node, new_node);
2607 }
2608
2609 /* Create a specialized version of NODE with known constants and types of
2610 parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
2611
2612 static struct cgraph_node *
2613 create_specialized_node (struct cgraph_node *node,
2614 vec<tree> known_vals,
2615 struct ipa_agg_replacement_value *aggvals,
2616 vec<cgraph_edge_p> callers)
2617 {
2618 struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
2619 vec<ipa_replace_map_p, va_gc> *replace_trees = NULL;
2620 struct cgraph_node *new_node;
2621 int i, count = ipa_get_param_count (info);
2622 bitmap args_to_skip;
2623
2624 gcc_assert (!info->ipcp_orig_node);
2625
2626 if (node->local.can_change_signature)
2627 {
2628 args_to_skip = BITMAP_GGC_ALLOC ();
2629 for (i = 0; i < count; i++)
2630 {
2631 tree t = known_vals[i];
2632
2633 if ((t && TREE_CODE (t) != TREE_BINFO)
2634 || !ipa_is_param_used (info, i))
2635 bitmap_set_bit (args_to_skip, i);
2636 }
2637 }
2638 else
2639 {
2640 args_to_skip = NULL;
2641 if (dump_file && (dump_flags & TDF_DETAILS))
2642 fprintf (dump_file, " cannot change function signature\n");
2643 }
2644
2645 for (i = 0; i < count ; i++)
2646 {
2647 tree t = known_vals[i];
2648 if (t && TREE_CODE (t) != TREE_BINFO)
2649 {
2650 struct ipa_replace_map *replace_map;
2651
2652 replace_map = get_replacement_map (t, ipa_get_param (info, i));
2653 if (replace_map)
2654 vec_safe_push (replace_trees, replace_map);
2655 }
2656 }
2657
2658 new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
2659 args_to_skip, "constprop");
2660 ipa_set_node_agg_value_chain (new_node, aggvals);
2661 if (dump_file && (dump_flags & TDF_DETAILS))
2662 {
2663 fprintf (dump_file, " the new node is %s/%i.\n",
2664 cgraph_node_name (new_node), new_node->uid);
2665 if (aggvals)
2666 ipa_dump_agg_replacement_values (dump_file, aggvals);
2667 }
2668 gcc_checking_assert (ipa_node_params_vector.exists ()
2669 && (ipa_node_params_vector.length ()
2670 > (unsigned) cgraph_max_uid));
2671 update_profiling_info (node, new_node);
2672 new_info = IPA_NODE_REF (new_node);
2673 new_info->ipcp_orig_node = node;
2674 new_info->known_vals = known_vals;
2675
2676 ipcp_discover_new_direct_edges (new_node, known_vals);
2677
2678 callers.release ();
2679 return new_node;
2680 }
2681
2682 /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
2683 KNOWN_VALS with constants and types that are also known for all of the
2684 CALLERS. */
2685
2686 static void
2687 find_more_scalar_values_for_callers_subset (struct cgraph_node *node,
2688 vec<tree> known_vals,
2689 vec<cgraph_edge_p> callers)
2690 {
2691 struct ipa_node_params *info = IPA_NODE_REF (node);
2692 int i, count = ipa_get_param_count (info);
2693
2694 for (i = 0; i < count ; i++)
2695 {
2696 struct cgraph_edge *cs;
2697 tree newval = NULL_TREE;
2698 int j;
2699
2700 if (ipa_get_scalar_lat (info, i)->bottom || known_vals[i])
2701 continue;
2702
2703 FOR_EACH_VEC_ELT (callers, j, cs)
2704 {
2705 struct ipa_jump_func *jump_func;
2706 tree t;
2707
2708 if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
2709 {
2710 newval = NULL_TREE;
2711 break;
2712 }
2713 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
2714 t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
2715 if (!t
2716 || (newval
2717 && !values_equal_for_ipcp_p (t, newval)))
2718 {
2719 newval = NULL_TREE;
2720 break;
2721 }
2722 else
2723 newval = t;
2724 }
2725
2726 if (newval)
2727 {
2728 if (dump_file && (dump_flags & TDF_DETAILS))
2729 {
2730 fprintf (dump_file, " adding an extra known scalar value ");
2731 print_ipcp_constant_value (dump_file, newval);
2732 fprintf (dump_file, " for parameter ");
2733 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
2734 fprintf (dump_file, "\n");
2735 }
2736
2737 known_vals[i] = newval;
2738 }
2739 }
2740 }
2741
2742 /* Go through PLATS and create a vector of values consisting of values and
2743 offsets (minus OFFSET) of lattices that contain only a single value. */
2744
2745 static vec<ipa_agg_jf_item_t>
2746 copy_plats_to_inter (struct ipcp_param_lattices *plats, HOST_WIDE_INT offset)
2747 {
2748 vec<ipa_agg_jf_item_t> res = vNULL;
2749
2750 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
2751 return vNULL;
2752
2753 for (struct ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
2754 if (ipa_lat_is_single_const (aglat))
2755 {
2756 struct ipa_agg_jf_item ti;
2757 ti.offset = aglat->offset - offset;
2758 ti.value = aglat->values->value;
2759 res.safe_push (ti);
2760 }
2761 return res;
2762 }
2763
2764 /* Intersect all values in INTER with single value lattices in PLATS (while
2765 subtracting OFFSET). */
2766
2767 static void
2768 intersect_with_plats (struct ipcp_param_lattices *plats,
2769 vec<ipa_agg_jf_item_t> *inter,
2770 HOST_WIDE_INT offset)
2771 {
2772 struct ipcp_agg_lattice *aglat;
2773 struct ipa_agg_jf_item *item;
2774 int k;
2775
2776 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
2777 {
2778 inter->release ();
2779 return;
2780 }
2781
2782 aglat = plats->aggs;
2783 FOR_EACH_VEC_ELT (*inter, k, item)
2784 {
2785 bool found = false;
2786 if (!item->value)
2787 continue;
2788 while (aglat)
2789 {
2790 if (aglat->offset - offset > item->offset)
2791 break;
2792 if (aglat->offset - offset == item->offset)
2793 {
2794 gcc_checking_assert (item->value);
2795 if (values_equal_for_ipcp_p (item->value, aglat->values->value))
2796 found = true;
2797 break;
2798 }
2799 aglat = aglat->next;
2800 }
2801 if (!found)
2802 item->value = NULL_TREE;
2803 }
2804 }
2805
2806 /* Copy agggregate replacement values of NODE (which is an IPA-CP clone) to the
2807 vector result while subtracting OFFSET from the individual value offsets. */
2808
2809 static vec<ipa_agg_jf_item_t>
2810 agg_replacements_to_vector (struct cgraph_node *node, int index,
2811 HOST_WIDE_INT offset)
2812 {
2813 struct ipa_agg_replacement_value *av;
2814 vec<ipa_agg_jf_item_t> res = vNULL;
2815
2816 for (av = ipa_get_agg_replacements_for_node (node); av; av = av->next)
2817 if (av->index == index
2818 && (av->offset - offset) >= 0)
2819 {
2820 struct ipa_agg_jf_item item;
2821 gcc_checking_assert (av->value);
2822 item.offset = av->offset - offset;
2823 item.value = av->value;
2824 res.safe_push (item);
2825 }
2826
2827 return res;
2828 }
2829
2830 /* Intersect all values in INTER with those that we have already scheduled to
2831 be replaced in parameter number INDEX of NODE, which is an IPA-CP clone
2832 (while subtracting OFFSET). */
2833
2834 static void
2835 intersect_with_agg_replacements (struct cgraph_node *node, int index,
2836 vec<ipa_agg_jf_item_t> *inter,
2837 HOST_WIDE_INT offset)
2838 {
2839 struct ipa_agg_replacement_value *srcvals;
2840 struct ipa_agg_jf_item *item;
2841 int i;
2842
2843 srcvals = ipa_get_agg_replacements_for_node (node);
2844 if (!srcvals)
2845 {
2846 inter->release ();
2847 return;
2848 }
2849
2850 FOR_EACH_VEC_ELT (*inter, i, item)
2851 {
2852 struct ipa_agg_replacement_value *av;
2853 bool found = false;
2854 if (!item->value)
2855 continue;
2856 for (av = srcvals; av; av = av->next)
2857 {
2858 gcc_checking_assert (av->value);
2859 if (av->index == index
2860 && av->offset - offset == item->offset)
2861 {
2862 if (values_equal_for_ipcp_p (item->value, av->value))
2863 found = true;
2864 break;
2865 }
2866 }
2867 if (!found)
2868 item->value = NULL_TREE;
2869 }
2870 }
2871
2872 /* Intersect values in INTER with aggregate values that come along edge CS to
2873 parameter number INDEX and return it. If INTER does not actually exist yet,
2874 copy all incoming values to it. If we determine we ended up with no values
2875 whatsoever, return a released vector. */
2876
2877 static vec<ipa_agg_jf_item_t>
2878 intersect_aggregates_with_edge (struct cgraph_edge *cs, int index,
2879 vec<ipa_agg_jf_item_t> inter)
2880 {
2881 struct ipa_jump_func *jfunc;
2882 jfunc = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), index);
2883 if (jfunc->type == IPA_JF_PASS_THROUGH
2884 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
2885 {
2886 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2887 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
2888
2889 if (caller_info->ipcp_orig_node)
2890 {
2891 struct cgraph_node *orig_node = caller_info->ipcp_orig_node;
2892 struct ipcp_param_lattices *orig_plats;
2893 orig_plats = ipa_get_parm_lattices (IPA_NODE_REF (orig_node),
2894 src_idx);
2895 if (agg_pass_through_permissible_p (orig_plats, jfunc))
2896 {
2897 if (!inter.exists ())
2898 inter = agg_replacements_to_vector (cs->caller, src_idx, 0);
2899 else
2900 intersect_with_agg_replacements (cs->caller, src_idx,
2901 &inter, 0);
2902 }
2903 }
2904 else
2905 {
2906 struct ipcp_param_lattices *src_plats;
2907 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
2908 if (agg_pass_through_permissible_p (src_plats, jfunc))
2909 {
2910 /* Currently we do not produce clobber aggregate jump
2911 functions, adjust when we do. */
2912 gcc_checking_assert (!jfunc->agg.items);
2913 if (!inter.exists ())
2914 inter = copy_plats_to_inter (src_plats, 0);
2915 else
2916 intersect_with_plats (src_plats, &inter, 0);
2917 }
2918 }
2919 }
2920 else if (jfunc->type == IPA_JF_ANCESTOR
2921 && ipa_get_jf_ancestor_agg_preserved (jfunc))
2922 {
2923 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2924 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
2925 struct ipcp_param_lattices *src_plats;
2926 HOST_WIDE_INT delta = ipa_get_jf_ancestor_offset (jfunc);
2927
2928 if (caller_info->ipcp_orig_node)
2929 {
2930 if (!inter.exists ())
2931 inter = agg_replacements_to_vector (cs->caller, src_idx, delta);
2932 else
2933 intersect_with_agg_replacements (cs->caller, src_idx, &inter,
2934 delta);
2935 }
2936 else
2937 {
2938 src_plats = ipa_get_parm_lattices (caller_info, src_idx);;
2939 /* Currently we do not produce clobber aggregate jump
2940 functions, adjust when we do. */
2941 gcc_checking_assert (!src_plats->aggs || !jfunc->agg.items);
2942 if (!inter.exists ())
2943 inter = copy_plats_to_inter (src_plats, delta);
2944 else
2945 intersect_with_plats (src_plats, &inter, delta);
2946 }
2947 }
2948 else if (jfunc->agg.items)
2949 {
2950 struct ipa_agg_jf_item *item;
2951 int k;
2952
2953 if (!inter.exists ())
2954 for (unsigned i = 0; i < jfunc->agg.items->length (); i++)
2955 inter.safe_push ((*jfunc->agg.items)[i]);
2956 else
2957 FOR_EACH_VEC_ELT (inter, k, item)
2958 {
2959 int l = 0;
2960 bool found = false;;
2961
2962 if (!item->value)
2963 continue;
2964
2965 while ((unsigned) l < jfunc->agg.items->length ())
2966 {
2967 struct ipa_agg_jf_item *ti;
2968 ti = &(*jfunc->agg.items)[l];
2969 if (ti->offset > item->offset)
2970 break;
2971 if (ti->offset == item->offset)
2972 {
2973 gcc_checking_assert (ti->value);
2974 if (values_equal_for_ipcp_p (item->value,
2975 ti->value))
2976 found = true;
2977 break;
2978 }
2979 l++;
2980 }
2981 if (!found)
2982 item->value = NULL;
2983 }
2984 }
2985 else
2986 {
2987 inter.release();
2988 return vec<ipa_agg_jf_item_t>();
2989 }
2990 return inter;
2991 }
2992
2993 /* Look at edges in CALLERS and collect all known aggregate values that arrive
2994 from all of them. */
2995
2996 static struct ipa_agg_replacement_value *
2997 find_aggregate_values_for_callers_subset (struct cgraph_node *node,
2998 vec<cgraph_edge_p> callers)
2999 {
3000 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3001 struct ipa_agg_replacement_value *res = NULL;
3002 struct cgraph_edge *cs;
3003 int i, j, count = ipa_get_param_count (dest_info);
3004
3005 FOR_EACH_VEC_ELT (callers, j, cs)
3006 {
3007 int c = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3008 if (c < count)
3009 count = c;
3010 }
3011
3012 for (i = 0; i < count ; i++)
3013 {
3014 struct cgraph_edge *cs;
3015 vec<ipa_agg_jf_item_t> inter = vNULL;
3016 struct ipa_agg_jf_item *item;
3017 int j;
3018
3019 /* Among other things, the following check should deal with all by_ref
3020 mismatches. */
3021 if (ipa_get_parm_lattices (dest_info, i)->aggs_bottom)
3022 continue;
3023
3024 FOR_EACH_VEC_ELT (callers, j, cs)
3025 {
3026 inter = intersect_aggregates_with_edge (cs, i, inter);
3027
3028 if (!inter.exists ())
3029 goto next_param;
3030 }
3031
3032 FOR_EACH_VEC_ELT (inter, j, item)
3033 {
3034 struct ipa_agg_replacement_value *v;
3035
3036 if (!item->value)
3037 continue;
3038
3039 v = ggc_alloc_ipa_agg_replacement_value ();
3040 v->index = i;
3041 v->offset = item->offset;
3042 v->value = item->value;
3043 v->next = res;
3044 res = v;
3045 }
3046
3047 next_param:
3048 if (inter.exists ())
3049 inter.release ();
3050 }
3051 return res;
3052 }
3053
3054 /* Turn KNOWN_AGGS into a list of aggreate replacement values. */
3055
3056 static struct ipa_agg_replacement_value *
3057 known_aggs_to_agg_replacement_list (vec<ipa_agg_jump_function_t> known_aggs)
3058 {
3059 struct ipa_agg_replacement_value *res = NULL;
3060 struct ipa_agg_jump_function *aggjf;
3061 struct ipa_agg_jf_item *item;
3062 int i, j;
3063
3064 FOR_EACH_VEC_ELT (known_aggs, i, aggjf)
3065 FOR_EACH_VEC_SAFE_ELT (aggjf->items, j, item)
3066 {
3067 struct ipa_agg_replacement_value *v;
3068 v = ggc_alloc_ipa_agg_replacement_value ();
3069 v->index = i;
3070 v->offset = item->offset;
3071 v->value = item->value;
3072 v->next = res;
3073 res = v;
3074 }
3075 return res;
3076 }
3077
3078 /* Determine whether CS also brings all scalar values that the NODE is
3079 specialized for. */
3080
3081 static bool
3082 cgraph_edge_brings_all_scalars_for_node (struct cgraph_edge *cs,
3083 struct cgraph_node *node)
3084 {
3085 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3086 int count = ipa_get_param_count (dest_info);
3087 struct ipa_node_params *caller_info;
3088 struct ipa_edge_args *args;
3089 int i;
3090
3091 caller_info = IPA_NODE_REF (cs->caller);
3092 args = IPA_EDGE_REF (cs);
3093 for (i = 0; i < count; i++)
3094 {
3095 struct ipa_jump_func *jump_func;
3096 tree val, t;
3097
3098 val = dest_info->known_vals[i];
3099 if (!val)
3100 continue;
3101
3102 if (i >= ipa_get_cs_argument_count (args))
3103 return false;
3104 jump_func = ipa_get_ith_jump_func (args, i);
3105 t = ipa_value_from_jfunc (caller_info, jump_func);
3106 if (!t || !values_equal_for_ipcp_p (val, t))
3107 return false;
3108 }
3109 return true;
3110 }
3111
3112 /* Determine whether CS also brings all aggregate values that NODE is
3113 specialized for. */
3114 static bool
3115 cgraph_edge_brings_all_agg_vals_for_node (struct cgraph_edge *cs,
3116 struct cgraph_node *node)
3117 {
3118 struct ipa_node_params *orig_caller_info = IPA_NODE_REF (cs->caller);
3119 struct ipa_agg_replacement_value *aggval;
3120 int i, ec, count;
3121
3122 aggval = ipa_get_agg_replacements_for_node (node);
3123 if (!aggval)
3124 return true;
3125
3126 count = ipa_get_param_count (IPA_NODE_REF (node));
3127 ec = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3128 if (ec < count)
3129 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3130 if (aggval->index >= ec)
3131 return false;
3132
3133 if (orig_caller_info->ipcp_orig_node)
3134 orig_caller_info = IPA_NODE_REF (orig_caller_info->ipcp_orig_node);
3135
3136 for (i = 0; i < count; i++)
3137 {
3138 static vec<ipa_agg_jf_item_t> values = vec<ipa_agg_jf_item_t>();
3139 struct ipcp_param_lattices *plats;
3140 bool interesting = false;
3141 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3142 if (aggval->index == i)
3143 {
3144 interesting = true;
3145 break;
3146 }
3147 if (!interesting)
3148 continue;
3149
3150 plats = ipa_get_parm_lattices (orig_caller_info, aggval->index);
3151 if (plats->aggs_bottom)
3152 return false;
3153
3154 values = intersect_aggregates_with_edge (cs, i, values);
3155 if (!values.exists())
3156 return false;
3157
3158 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3159 if (aggval->index == i)
3160 {
3161 struct ipa_agg_jf_item *item;
3162 int j;
3163 bool found = false;
3164 FOR_EACH_VEC_ELT (values, j, item)
3165 if (item->value
3166 && item->offset == av->offset
3167 && values_equal_for_ipcp_p (item->value, av->value))
3168 found = true;
3169 if (!found)
3170 {
3171 values.release();
3172 return false;
3173 }
3174 }
3175 }
3176 return true;
3177 }
3178
3179 /* Given an original NODE and a VAL for which we have already created a
3180 specialized clone, look whether there are incoming edges that still lead
3181 into the old node but now also bring the requested value and also conform to
3182 all other criteria such that they can be redirected the the special node.
3183 This function can therefore redirect the final edge in a SCC. */
3184
3185 static void
3186 perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
3187 {
3188 struct ipcp_value_source *src;
3189 gcov_type redirected_sum = 0;
3190
3191 for (src = val->sources; src; src = src->next)
3192 {
3193 struct cgraph_edge *cs = src->cs;
3194 while (cs)
3195 {
3196 enum availability availability;
3197 struct cgraph_node *dst = cgraph_function_node (cs->callee,
3198 &availability);
3199 if ((dst == node || IPA_NODE_REF (dst)->is_all_contexts_clone)
3200 && availability > AVAIL_OVERWRITABLE
3201 && cgraph_edge_brings_value_p (cs, src))
3202 {
3203 if (cgraph_edge_brings_all_scalars_for_node (cs, val->spec_node)
3204 && cgraph_edge_brings_all_agg_vals_for_node (cs,
3205 val->spec_node))
3206 {
3207 if (dump_file)
3208 fprintf (dump_file, " - adding an extra caller %s/%i"
3209 " of %s/%i\n",
3210 xstrdup (cgraph_node_name (cs->caller)),
3211 cs->caller->uid,
3212 xstrdup (cgraph_node_name (val->spec_node)),
3213 val->spec_node->uid);
3214
3215 cgraph_redirect_edge_callee (cs, val->spec_node);
3216 redirected_sum += cs->count;
3217 }
3218 }
3219 cs = get_next_cgraph_edge_clone (cs);
3220 }
3221 }
3222
3223 if (redirected_sum)
3224 update_specialized_profile (val->spec_node, node, redirected_sum);
3225 }
3226
3227
3228 /* Copy KNOWN_BINFOS to KNOWN_VALS. */
3229
3230 static void
3231 move_binfos_to_values (vec<tree> known_vals,
3232 vec<tree> known_binfos)
3233 {
3234 tree t;
3235 int i;
3236
3237 for (i = 0; known_binfos.iterate (i, &t); i++)
3238 if (t)
3239 known_vals[i] = t;
3240 }
3241
3242 /* Return true if there is a replacement equivalent to VALUE, INDEX and OFFSET
3243 among those in the AGGVALS list. */
3244
3245 DEBUG_FUNCTION bool
3246 ipcp_val_in_agg_replacements_p (struct ipa_agg_replacement_value *aggvals,
3247 int index, HOST_WIDE_INT offset, tree value)
3248 {
3249 while (aggvals)
3250 {
3251 if (aggvals->index == index
3252 && aggvals->offset == offset
3253 && values_equal_for_ipcp_p (aggvals->value, value))
3254 return true;
3255 aggvals = aggvals->next;
3256 }
3257 return false;
3258 }
3259
3260 /* Decide wheter to create a special version of NODE for value VAL of parameter
3261 at the given INDEX. If OFFSET is -1, the value is for the parameter itself,
3262 otherwise it is stored at the given OFFSET of the parameter. KNOWN_CSTS,
3263 KNOWN_BINFOS and KNOWN_AGGS describe the other already known values. */
3264
3265 static bool
3266 decide_about_value (struct cgraph_node *node, int index, HOST_WIDE_INT offset,
3267 struct ipcp_value *val, vec<tree> known_csts,
3268 vec<tree> known_binfos)
3269 {
3270 struct ipa_agg_replacement_value *aggvals;
3271 int freq_sum, caller_count;
3272 gcov_type count_sum;
3273 vec<cgraph_edge_p> callers;
3274 vec<tree> kv;
3275
3276 if (val->spec_node)
3277 {
3278 perhaps_add_new_callers (node, val);
3279 return false;
3280 }
3281 else if (val->local_size_cost + overall_size > max_new_size)
3282 {
3283 if (dump_file && (dump_flags & TDF_DETAILS))
3284 fprintf (dump_file, " Ignoring candidate value because "
3285 "max_new_size would be reached with %li.\n",
3286 val->local_size_cost + overall_size);
3287 return false;
3288 }
3289 else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
3290 &caller_count))
3291 return false;
3292
3293 if (dump_file && (dump_flags & TDF_DETAILS))
3294 {
3295 fprintf (dump_file, " - considering value ");
3296 print_ipcp_constant_value (dump_file, val->value);
3297 fprintf (dump_file, " for parameter ");
3298 print_generic_expr (dump_file, ipa_get_param (IPA_NODE_REF (node),
3299 index), 0);
3300 if (offset != -1)
3301 fprintf (dump_file, ", offset: " HOST_WIDE_INT_PRINT_DEC, offset);
3302 fprintf (dump_file, " (caller_count: %i)\n", caller_count);
3303 }
3304
3305 if (!good_cloning_opportunity_p (node, val->local_time_benefit,
3306 freq_sum, count_sum,
3307 val->local_size_cost)
3308 && !good_cloning_opportunity_p (node,
3309 val->local_time_benefit
3310 + val->prop_time_benefit,
3311 freq_sum, count_sum,
3312 val->local_size_cost
3313 + val->prop_size_cost))
3314 return false;
3315
3316 if (dump_file)
3317 fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
3318 cgraph_node_name (node), node->uid);
3319
3320 callers = gather_edges_for_value (val, caller_count);
3321 kv = known_csts.copy ();
3322 move_binfos_to_values (kv, known_binfos);
3323 if (offset == -1)
3324 kv[index] = val->value;
3325 find_more_scalar_values_for_callers_subset (node, kv, callers);
3326 aggvals = find_aggregate_values_for_callers_subset (node, callers);
3327 gcc_checking_assert (offset == -1
3328 || ipcp_val_in_agg_replacements_p (aggvals, index,
3329 offset, val->value));
3330 val->spec_node = create_specialized_node (node, kv, aggvals, callers);
3331 overall_size += val->local_size_cost;
3332
3333 /* TODO: If for some lattice there is only one other known value
3334 left, make a special node for it too. */
3335
3336 return true;
3337 }
3338
3339 /* Decide whether and what specialized clones of NODE should be created. */
3340
3341 static bool
3342 decide_whether_version_node (struct cgraph_node *node)
3343 {
3344 struct ipa_node_params *info = IPA_NODE_REF (node);
3345 int i, count = ipa_get_param_count (info);
3346 vec<tree> known_csts, known_binfos;
3347 vec<ipa_agg_jump_function_t> known_aggs = vNULL;
3348 bool ret = false;
3349
3350 if (count == 0)
3351 return false;
3352
3353 if (dump_file && (dump_flags & TDF_DETAILS))
3354 fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
3355 cgraph_node_name (node), node->uid);
3356
3357 gather_context_independent_values (info, &known_csts, &known_binfos,
3358 info->do_clone_for_all_contexts ? &known_aggs
3359 : NULL, NULL);
3360
3361 for (i = 0; i < count ;i++)
3362 {
3363 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
3364 struct ipcp_lattice *lat = &plats->itself;
3365 struct ipcp_value *val;
3366
3367 if (!lat->bottom
3368 && !known_csts[i]
3369 && !known_binfos[i])
3370 for (val = lat->values; val; val = val->next)
3371 ret |= decide_about_value (node, i, -1, val, known_csts,
3372 known_binfos);
3373
3374 if (!plats->aggs_bottom)
3375 {
3376 struct ipcp_agg_lattice *aglat;
3377 struct ipcp_value *val;
3378 for (aglat = plats->aggs; aglat; aglat = aglat->next)
3379 if (!aglat->bottom && aglat->values
3380 /* If the following is false, the one value is in
3381 known_aggs. */
3382 && (plats->aggs_contain_variable
3383 || !ipa_lat_is_single_const (aglat)))
3384 for (val = aglat->values; val; val = val->next)
3385 ret |= decide_about_value (node, i, aglat->offset, val,
3386 known_csts, known_binfos);
3387 }
3388 info = IPA_NODE_REF (node);
3389 }
3390
3391 if (info->do_clone_for_all_contexts)
3392 {
3393 struct cgraph_node *clone;
3394 vec<cgraph_edge_p> callers;
3395
3396 if (dump_file)
3397 fprintf (dump_file, " - Creating a specialized node of %s/%i "
3398 "for all known contexts.\n", cgraph_node_name (node),
3399 node->uid);
3400
3401 callers = collect_callers_of_node (node);
3402 move_binfos_to_values (known_csts, known_binfos);
3403 clone = create_specialized_node (node, known_csts,
3404 known_aggs_to_agg_replacement_list (known_aggs),
3405 callers);
3406 info = IPA_NODE_REF (node);
3407 info->do_clone_for_all_contexts = false;
3408 IPA_NODE_REF (clone)->is_all_contexts_clone = true;
3409 ret = true;
3410 }
3411 else
3412 known_csts.release ();
3413
3414 known_binfos.release ();
3415 return ret;
3416 }
3417
3418 /* Transitively mark all callees of NODE within the same SCC as not dead. */
3419
3420 static void
3421 spread_undeadness (struct cgraph_node *node)
3422 {
3423 struct cgraph_edge *cs;
3424
3425 for (cs = node->callees; cs; cs = cs->next_callee)
3426 if (edge_within_scc (cs))
3427 {
3428 struct cgraph_node *callee;
3429 struct ipa_node_params *info;
3430
3431 callee = cgraph_function_node (cs->callee, NULL);
3432 info = IPA_NODE_REF (callee);
3433
3434 if (info->node_dead)
3435 {
3436 info->node_dead = 0;
3437 spread_undeadness (callee);
3438 }
3439 }
3440 }
3441
3442 /* Return true if NODE has a caller from outside of its SCC that is not
3443 dead. Worker callback for cgraph_for_node_and_aliases. */
3444
3445 static bool
3446 has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
3447 void *data ATTRIBUTE_UNUSED)
3448 {
3449 struct cgraph_edge *cs;
3450
3451 for (cs = node->callers; cs; cs = cs->next_caller)
3452 if (cs->caller->thunk.thunk_p
3453 && cgraph_for_node_and_aliases (cs->caller,
3454 has_undead_caller_from_outside_scc_p,
3455 NULL, true))
3456 return true;
3457 else if (!edge_within_scc (cs)
3458 && !IPA_NODE_REF (cs->caller)->node_dead)
3459 return true;
3460 return false;
3461 }
3462
3463
3464 /* Identify nodes within the same SCC as NODE which are no longer needed
3465 because of new clones and will be removed as unreachable. */
3466
3467 static void
3468 identify_dead_nodes (struct cgraph_node *node)
3469 {
3470 struct cgraph_node *v;
3471 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3472 if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
3473 && !cgraph_for_node_and_aliases (v,
3474 has_undead_caller_from_outside_scc_p,
3475 NULL, true))
3476 IPA_NODE_REF (v)->node_dead = 1;
3477
3478 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3479 if (!IPA_NODE_REF (v)->node_dead)
3480 spread_undeadness (v);
3481
3482 if (dump_file && (dump_flags & TDF_DETAILS))
3483 {
3484 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3485 if (IPA_NODE_REF (v)->node_dead)
3486 fprintf (dump_file, " Marking node as dead: %s/%i.\n",
3487 cgraph_node_name (v), v->uid);
3488 }
3489 }
3490
3491 /* The decision stage. Iterate over the topological order of call graph nodes
3492 TOPO and make specialized clones if deemed beneficial. */
3493
3494 static void
3495 ipcp_decision_stage (struct topo_info *topo)
3496 {
3497 int i;
3498
3499 if (dump_file)
3500 fprintf (dump_file, "\nIPA decision stage:\n\n");
3501
3502 for (i = topo->nnodes - 1; i >= 0; i--)
3503 {
3504 struct cgraph_node *node = topo->order[i];
3505 bool change = false, iterate = true;
3506
3507 while (iterate)
3508 {
3509 struct cgraph_node *v;
3510 iterate = false;
3511 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3512 if (cgraph_function_with_gimple_body_p (v)
3513 && ipcp_versionable_function_p (v))
3514 iterate |= decide_whether_version_node (v);
3515
3516 change |= iterate;
3517 }
3518 if (change)
3519 identify_dead_nodes (node);
3520 }
3521 }
3522
3523 /* The IPCP driver. */
3524
3525 static unsigned int
3526 ipcp_driver (void)
3527 {
3528 struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
3529 struct topo_info topo;
3530
3531 ipa_check_create_node_params ();
3532 ipa_check_create_edge_args ();
3533 grow_next_edge_clone_vector ();
3534 edge_duplication_hook_holder =
3535 cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
3536 ipcp_values_pool = create_alloc_pool ("IPA-CP values",
3537 sizeof (struct ipcp_value), 32);
3538 ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
3539 sizeof (struct ipcp_value_source), 64);
3540 ipcp_agg_lattice_pool = create_alloc_pool ("IPA_CP aggregate lattices",
3541 sizeof (struct ipcp_agg_lattice),
3542 32);
3543 if (dump_file)
3544 {
3545 fprintf (dump_file, "\nIPA structures before propagation:\n");
3546 if (dump_flags & TDF_DETAILS)
3547 ipa_print_all_params (dump_file);
3548 ipa_print_all_jump_functions (dump_file);
3549 }
3550
3551 /* Topological sort. */
3552 build_toporder_info (&topo);
3553 /* Do the interprocedural propagation. */
3554 ipcp_propagate_stage (&topo);
3555 /* Decide what constant propagation and cloning should be performed. */
3556 ipcp_decision_stage (&topo);
3557
3558 /* Free all IPCP structures. */
3559 free_toporder_info (&topo);
3560 next_edge_clone.release ();
3561 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
3562 ipa_free_all_structures_after_ipa_cp ();
3563 if (dump_file)
3564 fprintf (dump_file, "\nIPA constant propagation end\n");
3565 return 0;
3566 }
3567
3568 /* Initialization and computation of IPCP data structures. This is the initial
3569 intraprocedural analysis of functions, which gathers information to be
3570 propagated later on. */
3571
3572 static void
3573 ipcp_generate_summary (void)
3574 {
3575 struct cgraph_node *node;
3576
3577 if (dump_file)
3578 fprintf (dump_file, "\nIPA constant propagation start:\n");
3579 ipa_register_cgraph_hooks ();
3580
3581 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
3582 {
3583 node->local.versionable
3584 = tree_versionable_function_p (node->symbol.decl);
3585 ipa_analyze_node (node);
3586 }
3587 }
3588
3589 /* Write ipcp summary for nodes in SET. */
3590
3591 static void
3592 ipcp_write_summary (void)
3593 {
3594 ipa_prop_write_jump_functions ();
3595 }
3596
3597 /* Read ipcp summary. */
3598
3599 static void
3600 ipcp_read_summary (void)
3601 {
3602 ipa_prop_read_jump_functions ();
3603 }
3604
3605 /* Gate for IPCP optimization. */
3606
3607 static bool
3608 cgraph_gate_cp (void)
3609 {
3610 /* FIXME: We should remove the optimize check after we ensure we never run
3611 IPA passes when not optimizing. */
3612 return flag_ipa_cp && optimize;
3613 }
3614
3615 struct ipa_opt_pass_d pass_ipa_cp =
3616 {
3617 {
3618 IPA_PASS,
3619 "cp", /* name */
3620 OPTGROUP_NONE, /* optinfo_flags */
3621 cgraph_gate_cp, /* gate */
3622 ipcp_driver, /* execute */
3623 NULL, /* sub */
3624 NULL, /* next */
3625 0, /* static_pass_number */
3626 TV_IPA_CONSTANT_PROP, /* tv_id */
3627 0, /* properties_required */
3628 0, /* properties_provided */
3629 0, /* properties_destroyed */
3630 0, /* todo_flags_start */
3631 TODO_dump_symtab |
3632 TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
3633 },
3634 ipcp_generate_summary, /* generate_summary */
3635 ipcp_write_summary, /* write_summary */
3636 ipcp_read_summary, /* read_summary */
3637 ipa_prop_write_all_agg_replacement, /* write_optimization_summary */
3638 ipa_prop_read_all_agg_replacement, /* read_optimization_summary */
3639 NULL, /* stmt_fixup */
3640 0, /* TODOs */
3641 ipcp_transform_function, /* function_transform */
3642 NULL, /* variable_transform */
3643 };