ipa-prop.h (struct ipa_param_flags): Removed.
[gcc.git] / gcc / ipa-cp.c
1 /* Interprocedural constant propagation
2 Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Razya Ladelsky <RAZYA@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Interprocedural constant propagation. The aim of interprocedural constant
22 propagation (IPCP) is to find which function's argument has the same
23 constant value in each invocation throughout the whole program. For example,
24 consider the following program:
25
26 int g (int y)
27 {
28 printf ("value is %d",y);
29 }
30
31 int f (int x)
32 {
33 g (x);
34 }
35
36 int h (int y)
37 {
38 g (y);
39 }
40
41 void main (void)
42 {
43 f (3);
44 h (3);
45 }
46
47
48 The IPCP algorithm will find that g's formal argument y is always called
49 with the value 3.
50
51 The algorithm used is based on "Interprocedural Constant Propagation", by
52 Challahan David, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86, pg
53 152-161
54
55 The optimization is divided into three stages:
56
57 First stage - intraprocedural analysis
58 =======================================
59 This phase computes jump_function and modification flags.
60
61 A jump function for a callsite represents the values passed as an actual
62 arguments of a given callsite. There are three types of values:
63 Pass through - the caller's formal parameter is passed as an actual argument.
64 Constant - a constant is passed as an actual argument.
65 Unknown - neither of the above.
66
67 The jump function info, ipa_jump_func, is stored in ipa_edge_args
68 structure (defined in ipa_prop.h and pointed to by cgraph_node->aux)
69 modified_flags are defined in ipa_node_params structure
70 (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
71
72 -ipcp_init_stage() is the first stage driver.
73
74 Second stage - interprocedural analysis
75 ========================================
76 This phase does the interprocedural constant propagation.
77 It computes lattices for all formal parameters in the program
78 and their value that may be:
79 TOP - unknown.
80 BOTTOM - non constant.
81 CONSTANT - constant value.
82
83 Lattice describing a formal parameter p will have a constant value if all
84 callsites invoking this function have the same constant value passed to p.
85
86 The lattices are stored in ipcp_lattice which is itself in ipa_node_params
87 structure (defined in ipa_prop.h and pointed to by cgraph_edge->aux).
88
89 -ipcp_iterate_stage() is the second stage driver.
90
91 Third phase - transformation of function code
92 ============================================
93 Propagates the constant-valued formals into the function.
94 For each function whose parameters are constants, we create its clone.
95
96 Then we process the clone in two ways:
97 1. We insert an assignment statement 'parameter = const' at the beginning
98 of the cloned function.
99 2. For read-only parameters that do not live in memory, we replace all their
100 uses with the constant.
101
102 We also need to modify some callsites to call the cloned functions instead
103 of the original ones. For a callsite passing an argument found to be a
104 constant by IPCP, there are two different cases to handle:
105 1. A constant is passed as an argument. In this case the callsite in the
106 should be redirected to call the cloned callee.
107 2. A parameter (of the caller) passed as an argument (pass through
108 argument). In such cases both the caller and the callee have clones and
109 only the callsite in the cloned caller is redirected to call to the
110 cloned callee.
111
112 This update is done in two steps: First all cloned functions are created
113 during a traversal of the call graph, during which all callsites are
114 redirected to call the cloned function. Then the callsites are traversed
115 and many calls redirected back to fit the description above.
116
117 -ipcp_insert_stage() is the third phase driver.
118
119 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tree.h"
125 #include "target.h"
126 #include "cgraph.h"
127 #include "ipa-prop.h"
128 #include "tree-flow.h"
129 #include "tree-pass.h"
130 #include "flags.h"
131 #include "timevar.h"
132 #include "diagnostic.h"
133 #include "tree-dump.h"
134 #include "tree-inline.h"
135 #include "fibheap.h"
136 #include "params.h"
137
138 /* Number of functions identified as candidates for cloning. When not cloning
139 we can simplify iterate stage not forcing it to go through the decision
140 on what is profitable and what not. */
141 static int n_cloning_candidates;
142
143 /* Maximal count found in program. */
144 static gcov_type max_count;
145
146 /* Cgraph nodes that has been completely replaced by cloning during iterate
147 * stage and will be removed after ipcp is finished. */
148 static bitmap dead_nodes;
149
150 static void ipcp_print_profile_data (FILE *);
151 static void ipcp_function_scale_print (FILE *);
152
153 /* Get the original node field of ipa_node_params associated with node NODE. */
154 static inline struct cgraph_node *
155 ipcp_get_orig_node (struct cgraph_node *node)
156 {
157 return IPA_NODE_REF (node)->ipcp_orig_node;
158 }
159
160 /* Return true if NODE describes a cloned/versioned function. */
161 static inline bool
162 ipcp_node_is_clone (struct cgraph_node *node)
163 {
164 return (ipcp_get_orig_node (node) != NULL);
165 }
166
167 /* Create ipa_node_params and its data structures for NEW_NODE. Set ORIG_NODE
168 as the ipcp_orig_node field in ipa_node_params. */
169 static void
170 ipcp_init_cloned_node (struct cgraph_node *orig_node,
171 struct cgraph_node *new_node)
172 {
173 ipa_check_create_node_params ();
174 ipa_initialize_node_params (new_node);
175 IPA_NODE_REF (new_node)->ipcp_orig_node = orig_node;
176 }
177
178 /* Perform intraprocedrual analysis needed for ipcp. */
179 static void
180 ipcp_analyze_node (struct cgraph_node *node)
181 {
182 /* Unreachable nodes should have been eliminated before ipcp. */
183 gcc_assert (node->needed || node->reachable);
184
185 ipa_initialize_node_params (node);
186 ipa_detect_param_modifications (node);
187 }
188
189 /* Recompute all local information since node might've got new
190 direct calls after cloning. */
191 static void
192 ipcp_update_cloned_node (struct cgraph_node *new_node)
193 {
194 /* We might've introduced new direct calls. */
195 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
196 current_function_decl = new_node->decl;
197 rebuild_cgraph_edges ();
198
199 /* Indirect inlinng rely on fact that we've already analyzed
200 the body.. */
201 if (flag_indirect_inlining)
202 {
203 struct cgraph_edge *cs;
204
205 ipcp_analyze_node (new_node);
206
207 for (cs = new_node->callees; cs; cs = cs->next_callee)
208 {
209 ipa_count_arguments (cs);
210 ipa_compute_jump_functions (cs);
211 }
212 }
213 pop_cfun ();
214 current_function_decl = NULL;
215 }
216
217 /* Return scale for NODE. */
218 static inline gcov_type
219 ipcp_get_node_scale (struct cgraph_node *node)
220 {
221 return IPA_NODE_REF (node)->count_scale;
222 }
223
224 /* Set COUNT as scale for NODE. */
225 static inline void
226 ipcp_set_node_scale (struct cgraph_node *node, gcov_type count)
227 {
228 IPA_NODE_REF (node)->count_scale = count;
229 }
230
231 /* Return whether LAT is a constant lattice. */
232 static inline bool
233 ipcp_lat_is_const (struct ipcp_lattice *lat)
234 {
235 if (lat->type == IPA_CONST_VALUE)
236 return true;
237 else
238 return false;
239 }
240
241 /* Return whether LAT is a constant lattice that ipa-cp can actually insert
242 into the code (i.e. constants excluding member pointers and pointers). */
243 static inline bool
244 ipcp_lat_is_insertable (struct ipcp_lattice *lat)
245 {
246 return lat->type == IPA_CONST_VALUE;
247 }
248
249 /* Return true if LAT1 and LAT2 are equal. */
250 static inline bool
251 ipcp_lats_are_equal (struct ipcp_lattice *lat1, struct ipcp_lattice *lat2)
252 {
253 gcc_assert (ipcp_lat_is_const (lat1) && ipcp_lat_is_const (lat2));
254 if (lat1->type != lat2->type)
255 return false;
256
257 if (operand_equal_p (lat1->constant, lat2->constant, 0))
258 return true;
259
260 return false;
261 }
262
263 /* Compute Meet arithmetics:
264 Meet (IPA_BOTTOM, x) = IPA_BOTTOM
265 Meet (IPA_TOP,x) = x
266 Meet (const_a,const_b) = IPA_BOTTOM, if const_a != const_b.
267 MEET (const_a,const_b) = const_a, if const_a == const_b.*/
268 static void
269 ipa_lattice_meet (struct ipcp_lattice *res, struct ipcp_lattice *lat1,
270 struct ipcp_lattice *lat2)
271 {
272 if (lat1->type == IPA_BOTTOM || lat2->type == IPA_BOTTOM)
273 {
274 res->type = IPA_BOTTOM;
275 return;
276 }
277 if (lat1->type == IPA_TOP)
278 {
279 res->type = lat2->type;
280 res->constant = lat2->constant;
281 return;
282 }
283 if (lat2->type == IPA_TOP)
284 {
285 res->type = lat1->type;
286 res->constant = lat1->constant;
287 return;
288 }
289 if (!ipcp_lats_are_equal (lat1, lat2))
290 {
291 res->type = IPA_BOTTOM;
292 return;
293 }
294 res->type = lat1->type;
295 res->constant = lat1->constant;
296 }
297
298 /* Return the lattice corresponding to the Ith formal parameter of the function
299 described by INFO. */
300 static inline struct ipcp_lattice *
301 ipcp_get_lattice (struct ipa_node_params *info, int i)
302 {
303 return &(info->params[i].ipcp_lattice);
304 }
305
306 /* Given the jump function JFUNC, compute the lattice LAT that describes the
307 value coming down the callsite. INFO describes the caller node so that
308 pass-through jump functions can be evaluated. */
309 static void
310 ipcp_lattice_from_jfunc (struct ipa_node_params *info, struct ipcp_lattice *lat,
311 struct ipa_jump_func *jfunc)
312 {
313 if (jfunc->type == IPA_CONST)
314 {
315 lat->type = IPA_CONST_VALUE;
316 lat->constant = jfunc->value.constant;
317 }
318 else if (jfunc->type == IPA_PASS_THROUGH)
319 {
320 struct ipcp_lattice *caller_lat;
321
322 caller_lat = ipcp_get_lattice (info, jfunc->value.formal_id);
323 lat->type = caller_lat->type;
324 lat->constant = caller_lat->constant;
325 }
326 else
327 lat->type = IPA_BOTTOM;
328 }
329
330 /* True when OLD_LAT and NEW_LAT values are not the same. */
331
332 static bool
333 ipcp_lattice_changed (struct ipcp_lattice *old_lat,
334 struct ipcp_lattice *new_lat)
335 {
336 if (old_lat->type == new_lat->type)
337 {
338 if (!ipcp_lat_is_const (old_lat))
339 return false;
340 if (ipcp_lats_are_equal (old_lat, new_lat))
341 return false;
342 }
343 return true;
344 }
345
346 /* Print all ipcp_lattices of all functions to F. */
347 static void
348 ipcp_print_all_lattices (FILE * f)
349 {
350 struct cgraph_node *node;
351 int i, count;
352
353 fprintf (f, "\nLattice:\n");
354 for (node = cgraph_nodes; node; node = node->next)
355 {
356 struct ipa_node_params *info;
357
358 if (!node->analyzed)
359 continue;
360 info = IPA_NODE_REF (node);
361 fprintf (f, " Node: %s:\n", cgraph_node_name (node));
362 count = ipa_get_param_count (info);
363 for (i = 0; i < count; i++)
364 {
365 struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
366
367 fprintf (f, " param [%d]: ", i);
368 if (lat->type == IPA_CONST_VALUE)
369 {
370 fprintf (f, "type is CONST ");
371 print_generic_expr (f, lat->constant, 0);
372 fprintf (f, "\n");
373 }
374 else if (lat->type == IPA_TOP)
375 fprintf (f, "type is TOP\n");
376 else
377 fprintf (f, "type is BOTTOM\n");
378 }
379 }
380 }
381
382 /* Return true if this NODE is viable candidate for cloning. */
383 static bool
384 ipcp_cloning_candidate_p (struct cgraph_node *node)
385 {
386 int n_calls = 0;
387 int n_hot_calls = 0;
388 gcov_type direct_call_sum = 0;
389 struct cgraph_edge *e;
390
391 /* We never clone functions that are not visible from outside.
392 FIXME: in future we should clone such functions when they are called with
393 different constants, but current ipcp implementation is not good on this.
394 */
395 if (!node->needed || !node->analyzed)
396 return false;
397
398 if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
399 {
400 if (dump_file)
401 fprintf (dump_file, "Not considering %s for cloning; body is overwrittable.\n",
402 cgraph_node_name (node));
403 return false;
404 }
405 if (!tree_versionable_function_p (node->decl))
406 {
407 if (dump_file)
408 fprintf (dump_file, "Not considering %s for cloning; body is not versionable.\n",
409 cgraph_node_name (node));
410 return false;
411 }
412 for (e = node->callers; e; e = e->next_caller)
413 {
414 direct_call_sum += e->count;
415 n_calls ++;
416 if (cgraph_maybe_hot_edge_p (e))
417 n_hot_calls ++;
418 }
419
420 if (!n_calls)
421 {
422 if (dump_file)
423 fprintf (dump_file, "Not considering %s for cloning; no direct calls.\n",
424 cgraph_node_name (node));
425 return false;
426 }
427 if (node->local.inline_summary.self_insns < n_calls)
428 {
429 if (dump_file)
430 fprintf (dump_file, "Considering %s for cloning; code would shrink.\n",
431 cgraph_node_name (node));
432 return true;
433 }
434
435 if (!flag_ipa_cp_clone)
436 {
437 if (dump_file)
438 fprintf (dump_file, "Not considering %s for cloning; -fipa-cp-clone disabled.\n",
439 cgraph_node_name (node));
440 return false;
441 }
442
443 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
444 {
445 if (dump_file)
446 fprintf (dump_file, "Not considering %s for cloning; optimizing it for size.\n",
447 cgraph_node_name (node));
448 return false;
449 }
450
451 /* When profile is available and function is hot, propagate into it even if
452 calls seems cold; constant propagation can improve function's speed
453 significandly. */
454 if (max_count)
455 {
456 if (direct_call_sum > node->count * 90 / 100)
457 {
458 if (dump_file)
459 fprintf (dump_file, "Considering %s for cloning; usually called directly.\n",
460 cgraph_node_name (node));
461 return true;
462 }
463 }
464 if (!n_hot_calls)
465 {
466 if (dump_file)
467 fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
468 cgraph_node_name (node));
469 }
470 if (dump_file)
471 fprintf (dump_file, "Considering %s for cloning.\n",
472 cgraph_node_name (node));
473 return true;
474 }
475
476 /* Initialize ipcp_lattices array. The lattices corresponding to supported
477 types (integers, real types and Fortran constants defined as const_decls)
478 are initialized to IPA_TOP, the rest of them to IPA_BOTTOM. */
479 static void
480 ipcp_initialize_node_lattices (struct cgraph_node *node)
481 {
482 int i;
483 struct ipa_node_params *info = IPA_NODE_REF (node);
484 enum ipa_lattice_type type;
485
486 if (ipa_is_called_with_var_arguments (info))
487 type = IPA_BOTTOM;
488 else if (!node->needed)
489 type = IPA_TOP;
490 /* When cloning is allowed, we can assume that externally visible functions
491 are not called. We will compensate this by cloning later. */
492 else if (ipcp_cloning_candidate_p (node))
493 type = IPA_TOP, n_cloning_candidates ++;
494 else
495 type = IPA_BOTTOM;
496
497 for (i = 0; i < ipa_get_param_count (info) ; i++)
498 ipcp_get_lattice (info, i)->type = type;
499 }
500
501 /* build INTEGER_CST tree with type TREE_TYPE and value according to LAT.
502 Return the tree. */
503 static tree
504 build_const_val (struct ipcp_lattice *lat, tree tree_type)
505 {
506 tree val;
507
508 gcc_assert (ipcp_lat_is_const (lat));
509 val = lat->constant;
510
511 if (!useless_type_conversion_p (tree_type, TREE_TYPE (val)))
512 {
513 if (fold_convertible_p (tree_type, val))
514 return fold_build1 (NOP_EXPR, tree_type, val);
515 else
516 return fold_build1 (VIEW_CONVERT_EXPR, tree_type, val);
517 }
518 return val;
519 }
520
521 /* Compute the proper scale for NODE. It is the ratio between the number of
522 direct calls (represented on the incoming cgraph_edges) and sum of all
523 invocations of NODE (represented as count in cgraph_node). */
524 static void
525 ipcp_compute_node_scale (struct cgraph_node *node)
526 {
527 gcov_type sum;
528 struct cgraph_edge *cs;
529
530 sum = 0;
531 /* Compute sum of all counts of callers. */
532 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
533 sum += cs->count;
534 if (node->count == 0)
535 ipcp_set_node_scale (node, 0);
536 else
537 ipcp_set_node_scale (node, sum * REG_BR_PROB_BASE / node->count);
538 }
539
540 /* Initialization and computation of IPCP data structures. This is the initial
541 intraprocedural analysis of functions, which gathers information to be
542 propagated later on. */
543 static void
544 ipcp_init_stage (void)
545 {
546 struct cgraph_node *node;
547 struct cgraph_edge *cs;
548
549 for (node = cgraph_nodes; node; node = node->next)
550 if (node->analyzed)
551 ipcp_analyze_node (node);
552 for (node = cgraph_nodes; node; node = node->next)
553 {
554 if (!node->analyzed)
555 continue;
556 /* building jump functions */
557 for (cs = node->callees; cs; cs = cs->next_callee)
558 {
559 if (!cs->callee->analyzed)
560 continue;
561 ipa_count_arguments (cs);
562 if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
563 != ipa_get_param_count (IPA_NODE_REF (cs->callee)))
564 {
565 /* Handle cases of functions with
566 a variable number of parameters. */
567 ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));
568 if (flag_indirect_inlining)
569 ipa_compute_jump_functions (cs);
570 }
571 else
572 ipa_compute_jump_functions (cs);
573 }
574 }
575 }
576
577 /* Return true if there are some formal parameters whose value is IPA_TOP (in
578 the whole compilation unit). Change their values to IPA_BOTTOM, since they
579 most probably get their values from outside of this compilation unit. */
580 static bool
581 ipcp_change_tops_to_bottom (void)
582 {
583 int i, count;
584 struct cgraph_node *node;
585 bool prop_again;
586
587 prop_again = false;
588 for (node = cgraph_nodes; node; node = node->next)
589 {
590 struct ipa_node_params *info = IPA_NODE_REF (node);
591 count = ipa_get_param_count (info);
592 for (i = 0; i < count; i++)
593 {
594 struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
595 if (lat->type == IPA_TOP)
596 {
597 prop_again = true;
598 if (dump_file)
599 {
600 fprintf (dump_file, "Forcing param ");
601 print_generic_expr (dump_file, ipa_get_param (info, i), 0);
602 fprintf (dump_file, " of node %s to bottom.\n",
603 cgraph_node_name (node));
604 }
605 lat->type = IPA_BOTTOM;
606 }
607 }
608 }
609 return prop_again;
610 }
611
612 /* Interprocedural analysis. The algorithm propagates constants from the
613 caller's parameters to the callee's arguments. */
614 static void
615 ipcp_propagate_stage (void)
616 {
617 int i;
618 struct ipcp_lattice inc_lat = { IPA_BOTTOM, NULL };
619 struct ipcp_lattice new_lat = { IPA_BOTTOM, NULL };
620 struct ipcp_lattice *dest_lat;
621 struct cgraph_edge *cs;
622 struct ipa_jump_func *jump_func;
623 struct ipa_func_list *wl;
624 int count;
625
626 ipa_check_create_node_params ();
627 ipa_check_create_edge_args ();
628
629 /* Initialize worklist to contain all functions. */
630 wl = ipa_init_func_list ();
631 while (wl)
632 {
633 struct cgraph_node *node = ipa_pop_func_from_list (&wl);
634 struct ipa_node_params *info = IPA_NODE_REF (node);
635
636 for (cs = node->callees; cs; cs = cs->next_callee)
637 {
638 struct ipa_node_params *callee_info = IPA_NODE_REF (cs->callee);
639 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
640
641 if (ipa_is_called_with_var_arguments (callee_info))
642 continue;
643
644 count = ipa_get_cs_argument_count (args);
645 for (i = 0; i < count; i++)
646 {
647 jump_func = ipa_get_ith_jump_func (args, i);
648 ipcp_lattice_from_jfunc (info, &inc_lat, jump_func);
649 dest_lat = ipcp_get_lattice (callee_info, i);
650 ipa_lattice_meet (&new_lat, &inc_lat, dest_lat);
651 if (ipcp_lattice_changed (&new_lat, dest_lat))
652 {
653 dest_lat->type = new_lat.type;
654 dest_lat->constant = new_lat.constant;
655 ipa_push_func_to_list (&wl, cs->callee);
656 }
657 }
658 }
659 }
660 }
661
662 /* Call the constant propagation algorithm and re-call it if necessary
663 (if there are undetermined values left). */
664 static void
665 ipcp_iterate_stage (void)
666 {
667 struct cgraph_node *node;
668 n_cloning_candidates = 0;
669
670 if (dump_file)
671 fprintf (dump_file, "\nIPA iterate stage:\n\n");
672 for (node = cgraph_nodes; node; node = node->next)
673 {
674 ipcp_initialize_node_lattices (node);
675 ipcp_compute_node_scale (node);
676 }
677 if (dump_file && (dump_flags & TDF_DETAILS))
678 {
679 ipcp_print_all_lattices (dump_file);
680 ipcp_function_scale_print (dump_file);
681 }
682
683 ipcp_propagate_stage ();
684 if (ipcp_change_tops_to_bottom ())
685 /* Some lattices have changed from IPA_TOP to IPA_BOTTOM.
686 This change should be propagated. */
687 {
688 gcc_assert (n_cloning_candidates);
689 ipcp_propagate_stage ();
690 }
691 if (dump_file)
692 {
693 fprintf (dump_file, "\nIPA lattices after propagation:\n");
694 ipcp_print_all_lattices (dump_file);
695 if (dump_flags & TDF_DETAILS)
696 ipcp_print_profile_data (dump_file);
697 }
698 }
699
700 /* Check conditions to forbid constant insertion to function described by
701 NODE. */
702 static inline bool
703 ipcp_node_modifiable_p (struct cgraph_node *node)
704 {
705 /* Once we will be able to do in-place replacement, we can be more
706 lax here. */
707 return tree_versionable_function_p (node->decl);
708 }
709
710 /* Print count scale data structures. */
711 static void
712 ipcp_function_scale_print (FILE * f)
713 {
714 struct cgraph_node *node;
715
716 for (node = cgraph_nodes; node; node = node->next)
717 {
718 if (!node->analyzed)
719 continue;
720 fprintf (f, "printing scale for %s: ", cgraph_node_name (node));
721 fprintf (f, "value is " HOST_WIDE_INT_PRINT_DEC
722 " \n", (HOST_WIDE_INT) ipcp_get_node_scale (node));
723 }
724 }
725
726 /* Print counts of all cgraph nodes. */
727 static void
728 ipcp_print_func_profile_counts (FILE * f)
729 {
730 struct cgraph_node *node;
731
732 for (node = cgraph_nodes; node; node = node->next)
733 {
734 fprintf (f, "function %s: ", cgraph_node_name (node));
735 fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC
736 " \n", (HOST_WIDE_INT) node->count);
737 }
738 }
739
740 /* Print counts of all cgraph edges. */
741 static void
742 ipcp_print_call_profile_counts (FILE * f)
743 {
744 struct cgraph_node *node;
745 struct cgraph_edge *cs;
746
747 for (node = cgraph_nodes; node; node = node->next)
748 {
749 for (cs = node->callees; cs; cs = cs->next_callee)
750 {
751 fprintf (f, "%s -> %s ", cgraph_node_name (cs->caller),
752 cgraph_node_name (cs->callee));
753 fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC " \n",
754 (HOST_WIDE_INT) cs->count);
755 }
756 }
757 }
758
759 /* Print all counts and probabilities of cfg edges of all functions. */
760 static void
761 ipcp_print_edge_profiles (FILE * f)
762 {
763 struct cgraph_node *node;
764 basic_block bb;
765 edge_iterator ei;
766 edge e;
767
768 for (node = cgraph_nodes; node; node = node->next)
769 {
770 fprintf (f, "function %s: \n", cgraph_node_name (node));
771 if (node->analyzed)
772 {
773 bb =
774 ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
775 fprintf (f, "ENTRY: ");
776 fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
777 " %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
778
779 if (bb->succs)
780 FOR_EACH_EDGE (e, ei, bb->succs)
781 {
782 if (e->dest ==
783 EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
784 (node->decl)))
785 fprintf (f, "edge ENTRY -> EXIT, Count");
786 else
787 fprintf (f, "edge ENTRY -> %d, Count", e->dest->index);
788 fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
789 " Prob %d\n", (HOST_WIDE_INT) e->count,
790 e->probability);
791 }
792 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
793 {
794 fprintf (f, "bb[%d]: ", bb->index);
795 fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
796 " %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
797 FOR_EACH_EDGE (e, ei, bb->succs)
798 {
799 if (e->dest ==
800 EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
801 (node->decl)))
802 fprintf (f, "edge %d -> EXIT, Count", e->src->index);
803 else
804 fprintf (f, "edge %d -> %d, Count", e->src->index,
805 e->dest->index);
806 fprintf (f, " " HOST_WIDE_INT_PRINT_DEC " Prob %d\n",
807 (HOST_WIDE_INT) e->count, e->probability);
808 }
809 }
810 }
811 }
812 }
813
814 /* Print counts and frequencies for all basic blocks of all functions. */
815 static void
816 ipcp_print_bb_profiles (FILE * f)
817 {
818 basic_block bb;
819 struct cgraph_node *node;
820
821 for (node = cgraph_nodes; node; node = node->next)
822 {
823 fprintf (f, "function %s: \n", cgraph_node_name (node));
824 if (node->analyzed)
825 {
826 bb =
827 ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
828 fprintf (f, "ENTRY: Count");
829 fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
830 " Frequency %d\n", (HOST_WIDE_INT) bb->count,
831 bb->frequency);
832
833 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
834 {
835 fprintf (f, "bb[%d]: Count", bb->index);
836 fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
837 " Frequency %d\n", (HOST_WIDE_INT) bb->count,
838 bb->frequency);
839 }
840 bb =
841 EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
842 fprintf (f, "EXIT: Count");
843 fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
844 " Frequency %d\n", (HOST_WIDE_INT) bb->count,
845 bb->frequency);
846
847 }
848 }
849 }
850
851 /* Print profile info for all functions. */
852 static void
853 ipcp_print_profile_data (FILE * f)
854 {
855 fprintf (f, "\nNODE COUNTS :\n");
856 ipcp_print_func_profile_counts (f);
857 fprintf (f, "\nCS COUNTS stage:\n");
858 ipcp_print_call_profile_counts (f);
859 fprintf (f, "\nBB COUNTS and FREQUENCIES :\n");
860 ipcp_print_bb_profiles (f);
861 fprintf (f, "\nCFG EDGES COUNTS and PROBABILITIES :\n");
862 ipcp_print_edge_profiles (f);
863 }
864
865 /* Build and initialize ipa_replace_map struct according to LAT. This struct is
866 processed by versioning, which operates according to the flags set.
867 PARM_TREE is the formal parameter found to be constant. LAT represents the
868 constant. */
869 static struct ipa_replace_map *
870 ipcp_create_replace_map (tree parm_tree, struct ipcp_lattice *lat)
871 {
872 struct ipa_replace_map *replace_map;
873 tree const_val;
874
875 replace_map = XCNEW (struct ipa_replace_map);
876 const_val = build_const_val (lat, TREE_TYPE (parm_tree));
877 if (dump_file)
878 {
879 fprintf (dump_file, " replacing param ");
880 print_generic_expr (dump_file, parm_tree, 0);
881 fprintf (dump_file, " with const ");
882 print_generic_expr (dump_file, const_val, 0);
883 fprintf (dump_file, "\n");
884 }
885 replace_map->old_tree = parm_tree;
886 replace_map->new_tree = const_val;
887 replace_map->replace_p = true;
888 replace_map->ref_p = false;
889
890 return replace_map;
891 }
892
893 /* Return true if this callsite should be redirected to the original callee
894 (instead of the cloned one). */
895 static bool
896 ipcp_need_redirect_p (struct cgraph_edge *cs)
897 {
898 struct ipa_node_params *orig_callee_info;
899 int i, count;
900 struct ipa_jump_func *jump_func;
901 struct cgraph_node *node = cs->callee, *orig;
902
903 if (!n_cloning_candidates)
904 return false;
905
906 if ((orig = ipcp_get_orig_node (node)) != NULL)
907 node = orig;
908 if (ipcp_get_orig_node (cs->caller))
909 return false;
910
911 orig_callee_info = IPA_NODE_REF (node);
912 count = ipa_get_param_count (orig_callee_info);
913 for (i = 0; i < count; i++)
914 {
915 struct ipcp_lattice *lat = ipcp_get_lattice (orig_callee_info, i);
916 if (ipcp_lat_is_const (lat))
917 {
918 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
919 if (jump_func->type != IPA_CONST)
920 return true;
921 }
922 }
923
924 return false;
925 }
926
927 /* Fix the callsites and the call graph after function cloning was done. */
928 static void
929 ipcp_update_callgraph (void)
930 {
931 struct cgraph_node *node;
932
933 for (node = cgraph_nodes; node; node = node->next)
934 if (node->analyzed && ipcp_node_is_clone (node))
935 {
936 bitmap args_to_skip = BITMAP_ALLOC (NULL);
937 struct cgraph_node *orig_node = ipcp_get_orig_node (node);
938 struct ipa_node_params *info = IPA_NODE_REF (orig_node);
939 int i, count = ipa_get_param_count (info);
940 struct cgraph_edge *cs, *next;
941
942 for (i = 0; i < count; i++)
943 {
944 struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
945 tree parm_tree = ipa_get_param (info, i);
946
947 /* We can proactively remove obviously unused arguments. */
948 if (is_gimple_reg (parm_tree)
949 && !gimple_default_def (DECL_STRUCT_FUNCTION (orig_node->decl),
950 parm_tree))
951 {
952 bitmap_set_bit (args_to_skip, i);
953 continue;
954 }
955
956 if (lat->type == IPA_CONST_VALUE)
957 bitmap_set_bit (args_to_skip, i);
958 }
959 for (cs = node->callers; cs; cs = next)
960 {
961 next = cs->next_caller;
962 if (ipcp_node_is_clone (cs->caller) || !ipcp_need_redirect_p (cs))
963 {
964 gimple new_stmt;
965 gimple_stmt_iterator gsi;
966
967 current_function_decl = cs->caller->decl;
968 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
969
970 new_stmt = giple_copy_call_skip_args (cs->call_stmt, args_to_skip);
971 gsi = gsi_for_stmt (cs->call_stmt);
972 gsi_replace (&gsi, new_stmt, true);
973 cgraph_set_call_stmt (cs, new_stmt);
974 pop_cfun ();
975 current_function_decl = NULL;
976 }
977 else
978 {
979 cgraph_redirect_edge_callee (cs, orig_node);
980 gimple_call_set_fndecl (cs->call_stmt, orig_node->decl);
981 }
982 }
983 }
984 }
985
986 /* Update all cfg basic blocks in NODE according to SCALE. */
987 static void
988 ipcp_update_bb_counts (struct cgraph_node *node, gcov_type scale)
989 {
990 basic_block bb;
991
992 FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
993 bb->count = bb->count * scale / REG_BR_PROB_BASE;
994 }
995
996 /* Update all cfg edges in NODE according to SCALE. */
997 static void
998 ipcp_update_edges_counts (struct cgraph_node *node, gcov_type scale)
999 {
1000 basic_block bb;
1001 edge_iterator ei;
1002 edge e;
1003
1004 FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
1005 FOR_EACH_EDGE (e, ei, bb->succs)
1006 e->count = e->count * scale / REG_BR_PROB_BASE;
1007 }
1008
1009 /* Update profiling info for versioned functions and the functions they were
1010 versioned from. */
1011 static void
1012 ipcp_update_profiling (void)
1013 {
1014 struct cgraph_node *node, *orig_node;
1015 gcov_type scale, scale_complement;
1016 struct cgraph_edge *cs;
1017
1018 for (node = cgraph_nodes; node; node = node->next)
1019 {
1020 if (ipcp_node_is_clone (node))
1021 {
1022 orig_node = ipcp_get_orig_node (node);
1023 scale = ipcp_get_node_scale (orig_node);
1024 node->count = orig_node->count * scale / REG_BR_PROB_BASE;
1025 scale_complement = REG_BR_PROB_BASE - scale;
1026 orig_node->count =
1027 orig_node->count * scale_complement / REG_BR_PROB_BASE;
1028 for (cs = node->callees; cs; cs = cs->next_callee)
1029 cs->count = cs->count * scale / REG_BR_PROB_BASE;
1030 for (cs = orig_node->callees; cs; cs = cs->next_callee)
1031 cs->count = cs->count * scale_complement / REG_BR_PROB_BASE;
1032 ipcp_update_bb_counts (node, scale);
1033 ipcp_update_bb_counts (orig_node, scale_complement);
1034 ipcp_update_edges_counts (node, scale);
1035 ipcp_update_edges_counts (orig_node, scale_complement);
1036 }
1037 }
1038 }
1039
1040 /* If NODE was cloned, how much would program grow? */
1041 static long
1042 ipcp_estimate_growth (struct cgraph_node *node)
1043 {
1044 struct cgraph_edge *cs;
1045 int redirectable_node_callers = 0;
1046 int removable_args = 0;
1047 bool need_original = node->needed;
1048 struct ipa_node_params *info;
1049 int i, count;
1050 int growth;
1051
1052 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
1053 if (!ipcp_need_redirect_p (cs))
1054 redirectable_node_callers++;
1055 else
1056 need_original = true;
1057
1058 /* If we will be able to fully replace orignal node, we never increase
1059 program size. */
1060 if (!need_original)
1061 return false;
1062
1063 info = IPA_NODE_REF (node);
1064 count = ipa_get_param_count (info);
1065 for (i = 0; i < count; i++)
1066 {
1067 struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
1068 tree parm_tree = ipa_get_param (info, i);
1069
1070 /* We can proactively remove obviously unused arguments. */
1071 if (is_gimple_reg (parm_tree)
1072 && !gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
1073 parm_tree))
1074 removable_args++;
1075
1076 if (lat->type == IPA_CONST_VALUE)
1077 removable_args++;
1078 }
1079
1080 /* We make just very simple estimate of savings for removal of operand from
1081 call site. Precise cost is dificult to get, as our size metric counts
1082 constants and moves as free. Generally we are looking for cases that
1083 small function is called very many times. */
1084 growth = node->local.inline_summary.self_insns
1085 - removable_args * redirectable_node_callers;
1086 if (growth < 0)
1087 return 0;
1088 return growth;
1089 }
1090
1091
1092 /* Estimate cost of cloning NODE. */
1093 static long
1094 ipcp_estimate_cloning_cost (struct cgraph_node *node)
1095 {
1096 int freq_sum = 1;
1097 gcov_type count_sum = 1;
1098 struct cgraph_edge *e;
1099 int cost;
1100
1101 cost = ipcp_estimate_growth (node) * 1000;
1102 if (!cost)
1103 {
1104 if (dump_file)
1105 fprintf (dump_file, "Versioning of %s will save code size\n",
1106 cgraph_node_name (node));
1107 return 0;
1108 }
1109
1110 for (e = node->callers; e; e = e->next_caller)
1111 if (!bitmap_bit_p (dead_nodes, e->caller->uid)
1112 && !ipcp_need_redirect_p (e))
1113 {
1114 count_sum += e->count;
1115 freq_sum += e->frequency + 1;
1116 }
1117
1118 if (max_count)
1119 cost /= count_sum * 1000 / max_count + 1;
1120 else
1121 cost /= freq_sum * 1000 / REG_BR_PROB_BASE + 1;
1122 if (dump_file)
1123 fprintf (dump_file, "Cost of versioning %s is %i, (size: %i, freq: %i)\n",
1124 cgraph_node_name (node), cost, node->local.inline_summary.self_insns,
1125 freq_sum);
1126 return cost + 1;
1127 }
1128
1129 /* Return number of live constant parameters. */
1130 static int
1131 ipcp_const_param_count (struct cgraph_node *node)
1132 {
1133 int const_param = 0;
1134 struct ipa_node_params *info = IPA_NODE_REF (node);
1135 int count = ipa_get_param_count (info);
1136 int i;
1137
1138 for (i = 0; i < count; i++)
1139 {
1140 struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
1141 tree parm_tree = ipa_get_param (info, i);
1142 if (ipcp_lat_is_insertable (lat)
1143 /* Do not count obviously unused arguments. */
1144 && (!is_gimple_reg (parm_tree)
1145 || gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
1146 parm_tree)))
1147 const_param++;
1148 }
1149 return const_param;
1150 }
1151
1152 /* Propagate the constant parameters found by ipcp_iterate_stage()
1153 to the function's code. */
1154 static void
1155 ipcp_insert_stage (void)
1156 {
1157 struct cgraph_node *node, *node1 = NULL;
1158 int i;
1159 VEC (cgraph_edge_p, heap) * redirect_callers;
1160 varray_type replace_trees;
1161 struct cgraph_edge *cs;
1162 int node_callers, count;
1163 tree parm_tree;
1164 struct ipa_replace_map *replace_param;
1165 fibheap_t heap;
1166 long overall_insns = 0, new_insns = 0;
1167 long max_new_insns;
1168
1169 ipa_check_create_node_params ();
1170 ipa_check_create_edge_args ();
1171 if (dump_file)
1172 fprintf (dump_file, "\nIPA insert stage:\n\n");
1173
1174 dead_nodes = BITMAP_ALLOC (NULL);
1175
1176 for (node = cgraph_nodes; node; node = node->next)
1177 if (node->analyzed)
1178 {
1179 if (node->count > max_count)
1180 max_count = node->count;
1181 overall_insns += node->local.inline_summary.self_insns;
1182 }
1183
1184 max_new_insns = overall_insns;
1185 if (max_new_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1186 max_new_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1187 max_new_insns = max_new_insns * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
1188
1189 /* First collect all functions we proved to have constant arguments to heap. */
1190 heap = fibheap_new ();
1191 for (node = cgraph_nodes; node; node = node->next)
1192 {
1193 struct ipa_node_params *info;
1194 /* Propagation of the constant is forbidden in certain conditions. */
1195 if (!node->analyzed || !ipcp_node_modifiable_p (node))
1196 continue;
1197 info = IPA_NODE_REF (node);
1198 if (ipa_is_called_with_var_arguments (info))
1199 continue;
1200 if (ipcp_const_param_count (node))
1201 node->aux = fibheap_insert (heap, ipcp_estimate_cloning_cost (node), node);
1202 }
1203
1204 /* Now clone in priority order until code size growth limits are met or
1205 heap is emptied. */
1206 while (!fibheap_empty (heap))
1207 {
1208 struct ipa_node_params *info;
1209 int growth = 0;
1210 bitmap args_to_skip;
1211
1212 node = (struct cgraph_node *)fibheap_extract_min (heap);
1213 node->aux = NULL;
1214 if (dump_file)
1215 fprintf (dump_file, "considering function %s\n",
1216 cgraph_node_name (node));
1217
1218 growth = ipcp_estimate_growth (node);
1219
1220 if (new_insns + growth > max_new_insns)
1221 break;
1222 if (growth
1223 && optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl)))
1224 {
1225 if (dump_file)
1226 fprintf (dump_file, "Not versioning, cold code would grow");
1227 continue;
1228 }
1229
1230 new_insns += growth;
1231
1232 info = IPA_NODE_REF (node);
1233 count = ipa_get_param_count (info);
1234
1235 VARRAY_GENERIC_PTR_INIT (replace_trees, ipcp_const_param_count (node),
1236 "replace_trees");
1237 args_to_skip = BITMAP_ALLOC (NULL);
1238 for (i = 0; i < count; i++)
1239 {
1240 struct ipcp_lattice *lat = ipcp_get_lattice (info, i);
1241 parm_tree = ipa_get_param (info, i);
1242
1243 /* We can proactively remove obviously unused arguments. */
1244 if (is_gimple_reg (parm_tree)
1245 && !gimple_default_def (DECL_STRUCT_FUNCTION (node->decl),
1246 parm_tree))
1247 {
1248 bitmap_set_bit (args_to_skip, i);
1249 continue;
1250 }
1251
1252 if (lat->type == IPA_CONST_VALUE)
1253 {
1254 replace_param =
1255 ipcp_create_replace_map (parm_tree, lat);
1256 VARRAY_PUSH_GENERIC_PTR (replace_trees, replace_param);
1257 bitmap_set_bit (args_to_skip, i);
1258 }
1259 }
1260
1261 /* Compute how many callers node has. */
1262 node_callers = 0;
1263 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
1264 node_callers++;
1265 redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
1266 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
1267 VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
1268
1269 /* Redirecting all the callers of the node to the
1270 new versioned node. */
1271 node1 =
1272 cgraph_function_versioning (node, redirect_callers, replace_trees,
1273 args_to_skip);
1274 BITMAP_FREE (args_to_skip);
1275 VEC_free (cgraph_edge_p, heap, redirect_callers);
1276 VARRAY_CLEAR (replace_trees);
1277 if (node1 == NULL)
1278 continue;
1279 if (dump_file)
1280 fprintf (dump_file, "versioned function %s with growth %i, overall %i\n",
1281 cgraph_node_name (node), (int)growth, (int)new_insns);
1282 ipcp_init_cloned_node (node, node1);
1283
1284 /* We've possibly introduced direct calls. */
1285 ipcp_update_cloned_node (node1);
1286
1287 if (dump_file)
1288 dump_function_to_file (node1->decl, dump_file, dump_flags);
1289
1290 for (cs = node->callees; cs; cs = cs->next_callee)
1291 if (cs->callee->aux)
1292 {
1293 fibheap_delete_node (heap, (fibnode_t) cs->callee->aux);
1294 cs->callee->aux = fibheap_insert (heap,
1295 ipcp_estimate_cloning_cost (cs->callee),
1296 cs->callee);
1297 }
1298 }
1299
1300 while (!fibheap_empty (heap))
1301 {
1302 if (dump_file)
1303 fprintf (dump_file, "skipping function %s\n",
1304 cgraph_node_name (node));
1305 node = (struct cgraph_node *) fibheap_extract_min (heap);
1306 node->aux = NULL;
1307 }
1308 fibheap_delete (heap);
1309 BITMAP_FREE (dead_nodes);
1310 ipcp_update_callgraph ();
1311 ipcp_update_profiling ();
1312 }
1313
1314 /* The IPCP driver. */
1315 static unsigned int
1316 ipcp_driver (void)
1317 {
1318 cgraph_remove_unreachable_nodes (true,dump_file);
1319 if (dump_file)
1320 {
1321 fprintf (dump_file, "\nIPA structures before propagation:\n");
1322 if (dump_flags & TDF_DETAILS)
1323 ipa_print_all_params (dump_file);
1324 ipa_print_all_jump_functions (dump_file);
1325 }
1326 /* 2. Do the interprocedural propagation. */
1327 ipcp_iterate_stage ();
1328 /* 3. Insert the constants found to the functions. */
1329 ipcp_insert_stage ();
1330 if (dump_file && (dump_flags & TDF_DETAILS))
1331 {
1332 fprintf (dump_file, "\nProfiling info after insert stage:\n");
1333 ipcp_print_profile_data (dump_file);
1334 }
1335 /* Free all IPCP structures. */
1336 free_all_ipa_structures_after_ipa_cp ();
1337 if (dump_file)
1338 fprintf (dump_file, "\nIPA constant propagation end\n");
1339 return 0;
1340 }
1341
1342 /* Note function body size. */
1343 static void
1344 ipcp_generate_summary (void)
1345 {
1346 if (dump_file)
1347 fprintf (dump_file, "\nIPA constant propagation start:\n");
1348 ipa_check_create_node_params ();
1349 ipa_check_create_edge_args ();
1350 ipa_register_cgraph_hooks ();
1351 /* 1. Call the init stage to initialize
1352 the ipa_node_params and ipa_edge_args structures. */
1353 ipcp_init_stage ();
1354 }
1355
1356 /* Gate for IPCP optimization. */
1357 static bool
1358 cgraph_gate_cp (void)
1359 {
1360 return flag_ipa_cp;
1361 }
1362
1363 struct ipa_opt_pass pass_ipa_cp =
1364 {
1365 {
1366 IPA_PASS,
1367 "cp", /* name */
1368 cgraph_gate_cp, /* gate */
1369 ipcp_driver, /* execute */
1370 NULL, /* sub */
1371 NULL, /* next */
1372 0, /* static_pass_number */
1373 TV_IPA_CONSTANT_PROP, /* tv_id */
1374 0, /* properties_required */
1375 PROP_trees, /* properties_provided */
1376 0, /* properties_destroyed */
1377 0, /* todo_flags_start */
1378 TODO_dump_cgraph | TODO_dump_func |
1379 TODO_remove_functions /* todo_flags_finish */
1380 },
1381 ipcp_generate_summary, /* generate_summary */
1382 NULL, /* write_summary */
1383 NULL, /* read_summary */
1384 NULL, /* function_read_summary */
1385 0, /* TODOs */
1386 NULL, /* function_transform */
1387 NULL, /* variable_transform */
1388 };