re PR testsuite/79026 (The tests changed by revision r244006 now fail on darwin)
[gcc.git] / gcc / ipa-icf.c
1 /* Interprocedural Identical Code Folding pass
2 Copyright (C) 2014-2017 Free Software Foundation, Inc.
3
4 Contributed by Jan Hubicka <hubicka@ucw.cz> and Martin Liska <mliska@suse.cz>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Interprocedural Identical Code Folding for functions and
23 read-only variables.
24
25 The goal of this transformation is to discover functions and read-only
26 variables which do have exactly the same semantics.
27
28 In case of functions,
29 we could either create a virtual clone or do a simple function wrapper
30 that will call equivalent function. If the function is just locally visible,
31 all function calls can be redirected. For read-only variables, we create
32 aliases if possible.
33
34 Optimization pass arranges as follows:
35 1) All functions and read-only variables are visited and internal
36 data structure, either sem_function or sem_variables is created.
37 2) For every symbol from the previous step, VAR_DECL and FUNCTION_DECL are
38 saved and matched to corresponding sem_items.
39 3) These declaration are ignored for equality check and are solved
40 by Value Numbering algorithm published by Alpert, Zadeck in 1992.
41 4) We compute hash value for each symbol.
42 5) Congruence classes are created based on hash value. If hash value are
43 equal, equals function is called and symbols are deeply compared.
44 We must prove that all SSA names, declarations and other items
45 correspond.
46 6) Value Numbering is executed for these classes. At the end of the process
47 all symbol members in remaining classes can be merged.
48 7) Merge operation creates alias in case of read-only variables. For
49 callgraph node, we must decide if we can redirect local calls,
50 create an alias or a thunk.
51
52 */
53
54 #include "config.h"
55 #define INCLUDE_LIST
56 #include "system.h"
57 #include "coretypes.h"
58 #include "backend.h"
59 #include "target.h"
60 #include "rtl.h"
61 #include "tree.h"
62 #include "gimple.h"
63 #include "alloc-pool.h"
64 #include "tree-pass.h"
65 #include "ssa.h"
66 #include "cgraph.h"
67 #include "coverage.h"
68 #include "gimple-pretty-print.h"
69 #include "data-streamer.h"
70 #include "fold-const.h"
71 #include "calls.h"
72 #include "varasm.h"
73 #include "gimple-iterator.h"
74 #include "tree-cfg.h"
75 #include "symbol-summary.h"
76 #include "ipa-prop.h"
77 #include "ipa-inline.h"
78 #include "except.h"
79 #include "attribs.h"
80 #include "print-tree.h"
81 #include "ipa-utils.h"
82 #include "ipa-icf-gimple.h"
83 #include "ipa-icf.h"
84 #include "stor-layout.h"
85 #include "dbgcnt.h"
86
87 using namespace ipa_icf_gimple;
88
89 namespace ipa_icf {
90
91 /* Initialization and computation of symtab node hash, there data
92 are propagated later on. */
93
94 static sem_item_optimizer *optimizer = NULL;
95
96 /* Constructor. */
97
98 symbol_compare_collection::symbol_compare_collection (symtab_node *node)
99 {
100 m_references.create (0);
101 m_interposables.create (0);
102
103 ipa_ref *ref;
104
105 if (is_a <varpool_node *> (node) && DECL_VIRTUAL_P (node->decl))
106 return;
107
108 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
109 {
110 if (ref->address_matters_p ())
111 m_references.safe_push (ref->referred);
112
113 if (ref->referred->get_availability () <= AVAIL_INTERPOSABLE)
114 {
115 if (ref->address_matters_p ())
116 m_references.safe_push (ref->referred);
117 else
118 m_interposables.safe_push (ref->referred);
119 }
120 }
121
122 if (is_a <cgraph_node *> (node))
123 {
124 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
125
126 for (cgraph_edge *e = cnode->callees; e; e = e->next_callee)
127 if (e->callee->get_availability () <= AVAIL_INTERPOSABLE)
128 m_interposables.safe_push (e->callee);
129 }
130 }
131
132 /* Constructor for key value pair, where _ITEM is key and _INDEX is a target. */
133
134 sem_usage_pair::sem_usage_pair (sem_item *_item, unsigned int _index)
135 : item (_item), index (_index)
136 {
137 }
138
139 sem_item::sem_item (sem_item_type _type, bitmap_obstack *stack)
140 : type (_type), m_hash (-1), m_hash_set (false)
141 {
142 setup (stack);
143 }
144
145 sem_item::sem_item (sem_item_type _type, symtab_node *_node,
146 bitmap_obstack *stack)
147 : type (_type), node (_node), m_hash (-1), m_hash_set (false)
148 {
149 decl = node->decl;
150 setup (stack);
151 }
152
153 /* Add reference to a semantic TARGET. */
154
155 void
156 sem_item::add_reference (sem_item *target)
157 {
158 refs.safe_push (target);
159 unsigned index = refs.length ();
160 target->usages.safe_push (new sem_usage_pair(this, index));
161 bitmap_set_bit (target->usage_index_bitmap, index);
162 refs_set.add (target->node);
163 }
164
165 /* Initialize internal data structures. Bitmap STACK is used for
166 bitmap memory allocation process. */
167
168 void
169 sem_item::setup (bitmap_obstack *stack)
170 {
171 gcc_checking_assert (node);
172
173 refs.create (0);
174 tree_refs.create (0);
175 usages.create (0);
176 usage_index_bitmap = BITMAP_ALLOC (stack);
177 }
178
179 sem_item::~sem_item ()
180 {
181 for (unsigned i = 0; i < usages.length (); i++)
182 delete usages[i];
183
184 refs.release ();
185 tree_refs.release ();
186 usages.release ();
187
188 BITMAP_FREE (usage_index_bitmap);
189 }
190
191 /* Dump function for debugging purpose. */
192
193 DEBUG_FUNCTION void
194 sem_item::dump (void)
195 {
196 if (dump_file)
197 {
198 fprintf (dump_file, "[%s] %s (%u) (tree:%p)\n", type == FUNC ? "func" : "var",
199 node->name(), node->order, (void *) node->decl);
200 fprintf (dump_file, " hash: %u\n", get_hash ());
201 fprintf (dump_file, " references: ");
202
203 for (unsigned i = 0; i < refs.length (); i++)
204 fprintf (dump_file, "%s%s ", refs[i]->node->name (),
205 i < refs.length() - 1 ? "," : "");
206
207 fprintf (dump_file, "\n");
208 }
209 }
210
211 /* Return true if target supports alias symbols. */
212
213 bool
214 sem_item::target_supports_symbol_aliases_p (void)
215 {
216 #if !defined (ASM_OUTPUT_DEF) || (!defined(ASM_OUTPUT_WEAK_ALIAS) && !defined (ASM_WEAKEN_DECL))
217 return false;
218 #else
219 return true;
220 #endif
221 }
222
223 void sem_item::set_hash (hashval_t hash)
224 {
225 m_hash = hash;
226 m_hash_set = true;
227 }
228
229 /* Semantic function constructor that uses STACK as bitmap memory stack. */
230
231 sem_function::sem_function (bitmap_obstack *stack)
232 : sem_item (FUNC, stack), m_checker (NULL), m_compared_func (NULL)
233 {
234 bb_sizes.create (0);
235 bb_sorted.create (0);
236 }
237
238 sem_function::sem_function (cgraph_node *node, bitmap_obstack *stack)
239 : sem_item (FUNC, node, stack), m_checker (NULL), m_compared_func (NULL)
240 {
241 bb_sizes.create (0);
242 bb_sorted.create (0);
243 }
244
245 sem_function::~sem_function ()
246 {
247 for (unsigned i = 0; i < bb_sorted.length (); i++)
248 delete (bb_sorted[i]);
249
250 bb_sizes.release ();
251 bb_sorted.release ();
252 }
253
254 /* Calculates hash value based on a BASIC_BLOCK. */
255
256 hashval_t
257 sem_function::get_bb_hash (const sem_bb *basic_block)
258 {
259 inchash::hash hstate;
260
261 hstate.add_int (basic_block->nondbg_stmt_count);
262 hstate.add_int (basic_block->edge_count);
263
264 return hstate.end ();
265 }
266
267 /* References independent hash function. */
268
269 hashval_t
270 sem_function::get_hash (void)
271 {
272 if (!m_hash_set)
273 {
274 inchash::hash hstate;
275 hstate.add_int (177454); /* Random number for function type. */
276
277 hstate.add_int (arg_count);
278 hstate.add_int (cfg_checksum);
279 hstate.add_int (gcode_hash);
280
281 for (unsigned i = 0; i < bb_sorted.length (); i++)
282 hstate.merge_hash (get_bb_hash (bb_sorted[i]));
283
284 for (unsigned i = 0; i < bb_sizes.length (); i++)
285 hstate.add_int (bb_sizes[i]);
286
287 /* Add common features of declaration itself. */
288 if (DECL_FUNCTION_SPECIFIC_TARGET (decl))
289 hstate.add_wide_int
290 (cl_target_option_hash
291 (TREE_TARGET_OPTION (DECL_FUNCTION_SPECIFIC_TARGET (decl))));
292 if (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
293 hstate.add_wide_int
294 (cl_optimization_hash
295 (TREE_OPTIMIZATION (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))));
296 hstate.add_flag (DECL_CXX_CONSTRUCTOR_P (decl));
297 hstate.add_flag (DECL_CXX_DESTRUCTOR_P (decl));
298
299 set_hash (hstate.end ());
300 }
301
302 return m_hash;
303 }
304
305 /* Return ture if A1 and A2 represent equivalent function attribute lists.
306 Based on comp_type_attributes. */
307
308 bool
309 sem_item::compare_attributes (const_tree a1, const_tree a2)
310 {
311 const_tree a;
312 if (a1 == a2)
313 return true;
314 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
315 {
316 const struct attribute_spec *as;
317 const_tree attr;
318
319 as = lookup_attribute_spec (get_attribute_name (a));
320 /* TODO: We can introduce as->affects_decl_identity
321 and as->affects_decl_reference_identity if attribute mismatch
322 gets a common reason to give up on merging. It may not be worth
323 the effort.
324 For example returns_nonnull affects only references, while
325 optimize attribute can be ignored because it is already lowered
326 into flags representation and compared separately. */
327 if (!as)
328 continue;
329
330 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
331 if (!attr || !attribute_value_equal (a, attr))
332 break;
333 }
334 if (!a)
335 {
336 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
337 {
338 const struct attribute_spec *as;
339
340 as = lookup_attribute_spec (get_attribute_name (a));
341 if (!as)
342 continue;
343
344 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
345 break;
346 /* We don't need to compare trees again, as we did this
347 already in first loop. */
348 }
349 if (!a)
350 return true;
351 }
352 /* TODO: As in comp_type_attributes we may want to introduce target hook. */
353 return false;
354 }
355
356 /* Compare properties of symbols N1 and N2 that does not affect semantics of
357 symbol itself but affects semantics of its references from USED_BY (which
358 may be NULL if it is unknown). If comparsion is false, symbols
359 can still be merged but any symbols referring them can't.
360
361 If ADDRESS is true, do extra checking needed for IPA_REF_ADDR.
362
363 TODO: We can also split attributes to those that determine codegen of
364 a function body/variable constructor itself and those that are used when
365 referring to it. */
366
367 bool
368 sem_item::compare_referenced_symbol_properties (symtab_node *used_by,
369 symtab_node *n1,
370 symtab_node *n2,
371 bool address)
372 {
373 if (is_a <cgraph_node *> (n1))
374 {
375 /* Inline properties matters: we do now want to merge uses of inline
376 function to uses of normal function because inline hint would be lost.
377 We however can merge inline function to noinline because the alias
378 will keep its DECL_DECLARED_INLINE flag.
379
380 Also ignore inline flag when optimizing for size or when function
381 is known to not be inlinable.
382
383 TODO: the optimize_size checks can also be assumed to be true if
384 unit has no !optimize_size functions. */
385
386 if ((!used_by || address || !is_a <cgraph_node *> (used_by)
387 || !opt_for_fn (used_by->decl, optimize_size))
388 && !opt_for_fn (n1->decl, optimize_size)
389 && n1->get_availability () > AVAIL_INTERPOSABLE
390 && (!DECL_UNINLINABLE (n1->decl) || !DECL_UNINLINABLE (n2->decl)))
391 {
392 if (DECL_DISREGARD_INLINE_LIMITS (n1->decl)
393 != DECL_DISREGARD_INLINE_LIMITS (n2->decl))
394 return return_false_with_msg
395 ("DECL_DISREGARD_INLINE_LIMITS are different");
396
397 if (DECL_DECLARED_INLINE_P (n1->decl)
398 != DECL_DECLARED_INLINE_P (n2->decl))
399 return return_false_with_msg ("inline attributes are different");
400 }
401
402 if (DECL_IS_OPERATOR_NEW (n1->decl)
403 != DECL_IS_OPERATOR_NEW (n2->decl))
404 return return_false_with_msg ("operator new flags are different");
405 }
406
407 /* Merging two definitions with a reference to equivalent vtables, but
408 belonging to a different type may result in ipa-polymorphic-call analysis
409 giving a wrong answer about the dynamic type of instance. */
410 if (is_a <varpool_node *> (n1))
411 {
412 if ((DECL_VIRTUAL_P (n1->decl) || DECL_VIRTUAL_P (n2->decl))
413 && (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl)
414 || !types_must_be_same_for_odr (DECL_CONTEXT (n1->decl),
415 DECL_CONTEXT (n2->decl)))
416 && (!used_by || !is_a <cgraph_node *> (used_by) || address
417 || opt_for_fn (used_by->decl, flag_devirtualize)))
418 return return_false_with_msg
419 ("references to virtual tables can not be merged");
420
421 if (address && DECL_ALIGN (n1->decl) != DECL_ALIGN (n2->decl))
422 return return_false_with_msg ("alignment mismatch");
423
424 /* For functions we compare attributes in equals_wpa, because we do
425 not know what attributes may cause codegen differences, but for
426 variables just compare attributes for references - the codegen
427 for constructors is affected only by those attributes that we lower
428 to explicit representation (such as DECL_ALIGN or DECL_SECTION). */
429 if (!compare_attributes (DECL_ATTRIBUTES (n1->decl),
430 DECL_ATTRIBUTES (n2->decl)))
431 return return_false_with_msg ("different var decl attributes");
432 if (comp_type_attributes (TREE_TYPE (n1->decl),
433 TREE_TYPE (n2->decl)) != 1)
434 return return_false_with_msg ("different var type attributes");
435 }
436
437 /* When matching virtual tables, be sure to also match information
438 relevant for polymorphic call analysis. */
439 if (used_by && is_a <varpool_node *> (used_by)
440 && DECL_VIRTUAL_P (used_by->decl))
441 {
442 if (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl))
443 return return_false_with_msg ("virtual flag mismatch");
444 if (DECL_VIRTUAL_P (n1->decl) && is_a <cgraph_node *> (n1)
445 && (DECL_FINAL_P (n1->decl) != DECL_FINAL_P (n2->decl)))
446 return return_false_with_msg ("final flag mismatch");
447 }
448 return true;
449 }
450
451 /* Hash properties that are compared by compare_referenced_symbol_properties. */
452
453 void
454 sem_item::hash_referenced_symbol_properties (symtab_node *ref,
455 inchash::hash &hstate,
456 bool address)
457 {
458 if (is_a <cgraph_node *> (ref))
459 {
460 if ((type != FUNC || address || !opt_for_fn (decl, optimize_size))
461 && !opt_for_fn (ref->decl, optimize_size)
462 && !DECL_UNINLINABLE (ref->decl))
463 {
464 hstate.add_flag (DECL_DISREGARD_INLINE_LIMITS (ref->decl));
465 hstate.add_flag (DECL_DECLARED_INLINE_P (ref->decl));
466 }
467 hstate.add_flag (DECL_IS_OPERATOR_NEW (ref->decl));
468 }
469 else if (is_a <varpool_node *> (ref))
470 {
471 hstate.add_flag (DECL_VIRTUAL_P (ref->decl));
472 if (address)
473 hstate.add_int (DECL_ALIGN (ref->decl));
474 }
475 }
476
477
478 /* For a given symbol table nodes N1 and N2, we check that FUNCTION_DECLs
479 point to a same function. Comparison can be skipped if IGNORED_NODES
480 contains these nodes. ADDRESS indicate if address is taken. */
481
482 bool
483 sem_item::compare_symbol_references (
484 hash_map <symtab_node *, sem_item *> &ignored_nodes,
485 symtab_node *n1, symtab_node *n2, bool address)
486 {
487 enum availability avail1, avail2;
488
489 if (n1 == n2)
490 return true;
491
492 /* Never match variable and function. */
493 if (is_a <varpool_node *> (n1) != is_a <varpool_node *> (n2))
494 return false;
495
496 if (!compare_referenced_symbol_properties (node, n1, n2, address))
497 return false;
498 if (address && n1->equal_address_to (n2) == 1)
499 return true;
500 if (!address && n1->semantically_equivalent_p (n2))
501 return true;
502
503 n1 = n1->ultimate_alias_target (&avail1);
504 n2 = n2->ultimate_alias_target (&avail2);
505
506 if (avail1 > AVAIL_INTERPOSABLE && ignored_nodes.get (n1)
507 && avail2 > AVAIL_INTERPOSABLE && ignored_nodes.get (n2))
508 return true;
509
510 return return_false_with_msg ("different references");
511 }
512
513 /* If cgraph edges E1 and E2 are indirect calls, verify that
514 ECF flags are the same. */
515
516 bool sem_function::compare_edge_flags (cgraph_edge *e1, cgraph_edge *e2)
517 {
518 if (e1->indirect_info && e2->indirect_info)
519 {
520 int e1_flags = e1->indirect_info->ecf_flags;
521 int e2_flags = e2->indirect_info->ecf_flags;
522
523 if (e1_flags != e2_flags)
524 return return_false_with_msg ("ICF flags are different");
525 }
526 else if (e1->indirect_info || e2->indirect_info)
527 return false;
528
529 return true;
530 }
531
532 /* Return true if parameter I may be used. */
533
534 bool
535 sem_function::param_used_p (unsigned int i)
536 {
537 if (ipa_node_params_sum == NULL)
538 return true;
539
540 struct ipa_node_params *parms_info = IPA_NODE_REF (get_node ());
541
542 if (parms_info->descriptors.is_empty ()
543 || parms_info->descriptors.length () <= i)
544 return true;
545
546 return ipa_is_param_used (IPA_NODE_REF (get_node ()), i);
547 }
548
549 /* Perform additional check needed to match types function parameters that are
550 used. Unlike for normal decls it matters if type is TYPE_RESTRICT and we
551 make an assumption that REFERENCE_TYPE parameters are always non-NULL. */
552
553 bool
554 sem_function::compatible_parm_types_p (tree parm1, tree parm2)
555 {
556 /* Be sure that parameters are TBAA compatible. */
557 if (!func_checker::compatible_types_p (parm1, parm2))
558 return return_false_with_msg ("parameter type is not compatible");
559
560 if (POINTER_TYPE_P (parm1)
561 && (TYPE_RESTRICT (parm1) != TYPE_RESTRICT (parm2)))
562 return return_false_with_msg ("argument restrict flag mismatch");
563
564 /* nonnull_arg_p implies non-zero range to REFERENCE types. */
565 if (POINTER_TYPE_P (parm1)
566 && TREE_CODE (parm1) != TREE_CODE (parm2)
567 && opt_for_fn (decl, flag_delete_null_pointer_checks))
568 return return_false_with_msg ("pointer wrt reference mismatch");
569
570 return true;
571 }
572
573 /* Fast equality function based on knowledge known in WPA. */
574
575 bool
576 sem_function::equals_wpa (sem_item *item,
577 hash_map <symtab_node *, sem_item *> &ignored_nodes)
578 {
579 gcc_assert (item->type == FUNC);
580 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
581 cgraph_node *cnode2 = dyn_cast <cgraph_node *> (item->node);
582
583 m_compared_func = static_cast<sem_function *> (item);
584
585 if (cnode->thunk.thunk_p != cnode2->thunk.thunk_p)
586 return return_false_with_msg ("thunk_p mismatch");
587
588 if (cnode->thunk.thunk_p)
589 {
590 if (cnode->thunk.fixed_offset != cnode2->thunk.fixed_offset)
591 return return_false_with_msg ("thunk fixed_offset mismatch");
592 if (cnode->thunk.virtual_value != cnode2->thunk.virtual_value)
593 return return_false_with_msg ("thunk virtual_value mismatch");
594 if (cnode->thunk.this_adjusting != cnode2->thunk.this_adjusting)
595 return return_false_with_msg ("thunk this_adjusting mismatch");
596 if (cnode->thunk.virtual_offset_p != cnode2->thunk.virtual_offset_p)
597 return return_false_with_msg ("thunk virtual_offset_p mismatch");
598 if (cnode->thunk.add_pointer_bounds_args
599 != cnode2->thunk.add_pointer_bounds_args)
600 return return_false_with_msg ("thunk add_pointer_bounds_args mismatch");
601 }
602
603 /* Compare special function DECL attributes. */
604 if (DECL_FUNCTION_PERSONALITY (decl)
605 != DECL_FUNCTION_PERSONALITY (item->decl))
606 return return_false_with_msg ("function personalities are different");
607
608 if (DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl)
609 != DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (item->decl))
610 return return_false_with_msg ("intrument function entry exit "
611 "attributes are different");
612
613 if (DECL_NO_LIMIT_STACK (decl) != DECL_NO_LIMIT_STACK (item->decl))
614 return return_false_with_msg ("no stack limit attributes are different");
615
616 if (DECL_CXX_CONSTRUCTOR_P (decl) != DECL_CXX_CONSTRUCTOR_P (item->decl))
617 return return_false_with_msg ("DECL_CXX_CONSTRUCTOR mismatch");
618
619 if (DECL_CXX_DESTRUCTOR_P (decl) != DECL_CXX_DESTRUCTOR_P (item->decl))
620 return return_false_with_msg ("DECL_CXX_DESTRUCTOR mismatch");
621
622 /* TODO: pure/const flags mostly matters only for references, except for
623 the fact that codegen takes LOOPING flag as a hint that loops are
624 finite. We may arrange the code to always pick leader that has least
625 specified flags and then this can go into comparing symbol properties. */
626 if (flags_from_decl_or_type (decl) != flags_from_decl_or_type (item->decl))
627 return return_false_with_msg ("decl_or_type flags are different");
628
629 /* Do not match polymorphic constructors of different types. They calls
630 type memory location for ipa-polymorphic-call and we do not want
631 it to get confused by wrong type. */
632 if (DECL_CXX_CONSTRUCTOR_P (decl)
633 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
634 {
635 if (TREE_CODE (TREE_TYPE (item->decl)) != METHOD_TYPE)
636 return return_false_with_msg ("DECL_CXX_CONSTURCTOR type mismatch");
637 else if (!func_checker::compatible_polymorphic_types_p
638 (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
639 TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), false))
640 return return_false_with_msg ("ctor polymorphic type mismatch");
641 }
642
643 /* Checking function TARGET and OPTIMIZATION flags. */
644 cl_target_option *tar1 = target_opts_for_fn (decl);
645 cl_target_option *tar2 = target_opts_for_fn (item->decl);
646
647 if (tar1 != tar2 && !cl_target_option_eq (tar1, tar2))
648 {
649 if (dump_file && (dump_flags & TDF_DETAILS))
650 {
651 fprintf (dump_file, "target flags difference");
652 cl_target_option_print_diff (dump_file, 2, tar1, tar2);
653 }
654
655 return return_false_with_msg ("Target flags are different");
656 }
657
658 cl_optimization *opt1 = opts_for_fn (decl);
659 cl_optimization *opt2 = opts_for_fn (item->decl);
660
661 if (opt1 != opt2 && memcmp (opt1, opt2, sizeof(cl_optimization)))
662 {
663 if (dump_file && (dump_flags & TDF_DETAILS))
664 {
665 fprintf (dump_file, "optimization flags difference");
666 cl_optimization_print_diff (dump_file, 2, opt1, opt2);
667 }
668
669 return return_false_with_msg ("optimization flags are different");
670 }
671
672 /* Result type checking. */
673 if (!func_checker::compatible_types_p
674 (TREE_TYPE (TREE_TYPE (decl)),
675 TREE_TYPE (TREE_TYPE (m_compared_func->decl))))
676 return return_false_with_msg ("result types are different");
677
678 /* Checking types of arguments. */
679 tree list1 = TYPE_ARG_TYPES (TREE_TYPE (decl)),
680 list2 = TYPE_ARG_TYPES (TREE_TYPE (m_compared_func->decl));
681 for (unsigned i = 0; list1 && list2;
682 list1 = TREE_CHAIN (list1), list2 = TREE_CHAIN (list2), i++)
683 {
684 tree parm1 = TREE_VALUE (list1);
685 tree parm2 = TREE_VALUE (list2);
686
687 /* This guard is here for function pointer with attributes (pr59927.c). */
688 if (!parm1 || !parm2)
689 return return_false_with_msg ("NULL argument type");
690
691 /* Verify that types are compatible to ensure that both functions
692 have same calling conventions. */
693 if (!types_compatible_p (parm1, parm2))
694 return return_false_with_msg ("parameter types are not compatible");
695
696 if (!param_used_p (i))
697 continue;
698
699 /* Perform additional checks for used parameters. */
700 if (!compatible_parm_types_p (parm1, parm2))
701 return false;
702 }
703
704 if (list1 || list2)
705 return return_false_with_msg ("Mismatched number of parameters");
706
707 if (node->num_references () != item->node->num_references ())
708 return return_false_with_msg ("different number of references");
709
710 /* Checking function attributes.
711 This is quadratic in number of attributes */
712 if (comp_type_attributes (TREE_TYPE (decl),
713 TREE_TYPE (item->decl)) != 1)
714 return return_false_with_msg ("different type attributes");
715 if (!compare_attributes (DECL_ATTRIBUTES (decl),
716 DECL_ATTRIBUTES (item->decl)))
717 return return_false_with_msg ("different decl attributes");
718
719 /* The type of THIS pointer type memory location for
720 ipa-polymorphic-call-analysis. */
721 if (opt_for_fn (decl, flag_devirtualize)
722 && (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
723 || TREE_CODE (TREE_TYPE (item->decl)) == METHOD_TYPE)
724 && param_used_p (0)
725 && compare_polymorphic_p ())
726 {
727 if (TREE_CODE (TREE_TYPE (decl)) != TREE_CODE (TREE_TYPE (item->decl)))
728 return return_false_with_msg ("METHOD_TYPE and FUNCTION_TYPE mismatch");
729 if (!func_checker::compatible_polymorphic_types_p
730 (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
731 TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), false))
732 return return_false_with_msg ("THIS pointer ODR type mismatch");
733 }
734
735 ipa_ref *ref = NULL, *ref2 = NULL;
736 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
737 {
738 item->node->iterate_reference (i, ref2);
739
740 if (ref->use != ref2->use)
741 return return_false_with_msg ("reference use mismatch");
742
743 if (!compare_symbol_references (ignored_nodes, ref->referred,
744 ref2->referred,
745 ref->address_matters_p ()))
746 return false;
747 }
748
749 cgraph_edge *e1 = dyn_cast <cgraph_node *> (node)->callees;
750 cgraph_edge *e2 = dyn_cast <cgraph_node *> (item->node)->callees;
751
752 while (e1 && e2)
753 {
754 if (!compare_symbol_references (ignored_nodes, e1->callee,
755 e2->callee, false))
756 return false;
757 if (!compare_edge_flags (e1, e2))
758 return false;
759
760 e1 = e1->next_callee;
761 e2 = e2->next_callee;
762 }
763
764 if (e1 || e2)
765 return return_false_with_msg ("different number of calls");
766
767 e1 = dyn_cast <cgraph_node *> (node)->indirect_calls;
768 e2 = dyn_cast <cgraph_node *> (item->node)->indirect_calls;
769
770 while (e1 && e2)
771 {
772 if (!compare_edge_flags (e1, e2))
773 return false;
774
775 e1 = e1->next_callee;
776 e2 = e2->next_callee;
777 }
778
779 if (e1 || e2)
780 return return_false_with_msg ("different number of indirect calls");
781
782 return true;
783 }
784
785 /* Update hash by address sensitive references. We iterate over all
786 sensitive references (address_matters_p) and we hash ultime alias
787 target of these nodes, which can improve a semantic item hash.
788
789 Also hash in referenced symbols properties. This can be done at any time
790 (as the properties should not change), but it is convenient to do it here
791 while we walk the references anyway. */
792
793 void
794 sem_item::update_hash_by_addr_refs (hash_map <symtab_node *,
795 sem_item *> &m_symtab_node_map)
796 {
797 ipa_ref* ref;
798 inchash::hash hstate (get_hash ());
799
800 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
801 {
802 hstate.add_int (ref->use);
803 hash_referenced_symbol_properties (ref->referred, hstate,
804 ref->use == IPA_REF_ADDR);
805 if (ref->address_matters_p () || !m_symtab_node_map.get (ref->referred))
806 hstate.add_int (ref->referred->ultimate_alias_target ()->order);
807 }
808
809 if (is_a <cgraph_node *> (node))
810 {
811 for (cgraph_edge *e = dyn_cast <cgraph_node *> (node)->callers; e;
812 e = e->next_caller)
813 {
814 sem_item **result = m_symtab_node_map.get (e->callee);
815 hash_referenced_symbol_properties (e->callee, hstate, false);
816 if (!result)
817 hstate.add_int (e->callee->ultimate_alias_target ()->order);
818 }
819 }
820
821 set_hash (hstate.end ());
822 }
823
824 /* Update hash by computed local hash values taken from different
825 semantic items.
826 TODO: stronger SCC based hashing would be desirable here. */
827
828 void
829 sem_item::update_hash_by_local_refs (hash_map <symtab_node *,
830 sem_item *> &m_symtab_node_map)
831 {
832 ipa_ref* ref;
833 inchash::hash state (get_hash ());
834
835 for (unsigned j = 0; node->iterate_reference (j, ref); j++)
836 {
837 sem_item **result = m_symtab_node_map.get (ref->referring);
838 if (result)
839 state.merge_hash ((*result)->get_hash ());
840 }
841
842 if (type == FUNC)
843 {
844 for (cgraph_edge *e = dyn_cast <cgraph_node *> (node)->callees; e;
845 e = e->next_callee)
846 {
847 sem_item **result = m_symtab_node_map.get (e->caller);
848 if (result)
849 state.merge_hash ((*result)->get_hash ());
850 }
851 }
852
853 global_hash = state.end ();
854 }
855
856 /* Returns true if the item equals to ITEM given as argument. */
857
858 bool
859 sem_function::equals (sem_item *item,
860 hash_map <symtab_node *, sem_item *> &)
861 {
862 gcc_assert (item->type == FUNC);
863 bool eq = equals_private (item);
864
865 if (m_checker != NULL)
866 {
867 delete m_checker;
868 m_checker = NULL;
869 }
870
871 if (dump_file && (dump_flags & TDF_DETAILS))
872 fprintf (dump_file,
873 "Equals called for:%s:%s (%u:%u) (%s:%s) with result: %s\n\n",
874 xstrdup_for_dump (node->name()),
875 xstrdup_for_dump (item->node->name ()),
876 node->order,
877 item->node->order,
878 xstrdup_for_dump (node->asm_name ()),
879 xstrdup_for_dump (item->node->asm_name ()),
880 eq ? "true" : "false");
881
882 return eq;
883 }
884
885 /* Processes function equality comparison. */
886
887 bool
888 sem_function::equals_private (sem_item *item)
889 {
890 if (item->type != FUNC)
891 return false;
892
893 basic_block bb1, bb2;
894 edge e1, e2;
895 edge_iterator ei1, ei2;
896 bool result = true;
897 tree arg1, arg2;
898
899 m_compared_func = static_cast<sem_function *> (item);
900
901 gcc_assert (decl != item->decl);
902
903 if (bb_sorted.length () != m_compared_func->bb_sorted.length ()
904 || edge_count != m_compared_func->edge_count
905 || cfg_checksum != m_compared_func->cfg_checksum)
906 return return_false ();
907
908 m_checker = new func_checker (decl, m_compared_func->decl,
909 compare_polymorphic_p (),
910 false,
911 &refs_set,
912 &m_compared_func->refs_set);
913 arg1 = DECL_ARGUMENTS (decl);
914 arg2 = DECL_ARGUMENTS (m_compared_func->decl);
915 for (unsigned i = 0;
916 arg1 && arg2; arg1 = DECL_CHAIN (arg1), arg2 = DECL_CHAIN (arg2), i++)
917 {
918 if (!types_compatible_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
919 return return_false_with_msg ("argument types are not compatible");
920 if (!param_used_p (i))
921 continue;
922 /* Perform additional checks for used parameters. */
923 if (!compatible_parm_types_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
924 return false;
925 if (!m_checker->compare_decl (arg1, arg2))
926 return return_false ();
927 }
928 if (arg1 || arg2)
929 return return_false_with_msg ("Mismatched number of arguments");
930
931 if (!dyn_cast <cgraph_node *> (node)->has_gimple_body_p ())
932 return true;
933
934 /* Fill-up label dictionary. */
935 for (unsigned i = 0; i < bb_sorted.length (); ++i)
936 {
937 m_checker->parse_labels (bb_sorted[i]);
938 m_checker->parse_labels (m_compared_func->bb_sorted[i]);
939 }
940
941 /* Checking all basic blocks. */
942 for (unsigned i = 0; i < bb_sorted.length (); ++i)
943 if(!m_checker->compare_bb (bb_sorted[i], m_compared_func->bb_sorted[i]))
944 return return_false();
945
946 dump_message ("All BBs are equal\n");
947
948 auto_vec <int> bb_dict;
949
950 /* Basic block edges check. */
951 for (unsigned i = 0; i < bb_sorted.length (); ++i)
952 {
953 bb1 = bb_sorted[i]->bb;
954 bb2 = m_compared_func->bb_sorted[i]->bb;
955
956 ei2 = ei_start (bb2->preds);
957
958 for (ei1 = ei_start (bb1->preds); ei_cond (ei1, &e1); ei_next (&ei1))
959 {
960 ei_cond (ei2, &e2);
961
962 if (e1->flags != e2->flags)
963 return return_false_with_msg ("flags comparison returns false");
964
965 if (!bb_dict_test (&bb_dict, e1->src->index, e2->src->index))
966 return return_false_with_msg ("edge comparison returns false");
967
968 if (!bb_dict_test (&bb_dict, e1->dest->index, e2->dest->index))
969 return return_false_with_msg ("BB comparison returns false");
970
971 if (!m_checker->compare_edge (e1, e2))
972 return return_false_with_msg ("edge comparison returns false");
973
974 ei_next (&ei2);
975 }
976 }
977
978 /* Basic block PHI nodes comparison. */
979 for (unsigned i = 0; i < bb_sorted.length (); i++)
980 if (!compare_phi_node (bb_sorted[i]->bb, m_compared_func->bb_sorted[i]->bb))
981 return return_false_with_msg ("PHI node comparison returns false");
982
983 return result;
984 }
985
986 /* Set LOCAL_P of NODE to true if DATA is non-NULL.
987 Helper for call_for_symbol_thunks_and_aliases. */
988
989 static bool
990 set_local (cgraph_node *node, void *data)
991 {
992 node->local.local = data != NULL;
993 return false;
994 }
995
996 /* TREE_ADDRESSABLE of NODE to true.
997 Helper for call_for_symbol_thunks_and_aliases. */
998
999 static bool
1000 set_addressable (varpool_node *node, void *)
1001 {
1002 TREE_ADDRESSABLE (node->decl) = 1;
1003 return false;
1004 }
1005
1006 /* Clear DECL_RTL of NODE.
1007 Helper for call_for_symbol_thunks_and_aliases. */
1008
1009 static bool
1010 clear_decl_rtl (symtab_node *node, void *)
1011 {
1012 SET_DECL_RTL (node->decl, NULL);
1013 return false;
1014 }
1015
1016 /* Redirect all callers of N and its aliases to TO. Remove aliases if
1017 possible. Return number of redirections made. */
1018
1019 static int
1020 redirect_all_callers (cgraph_node *n, cgraph_node *to)
1021 {
1022 int nredirected = 0;
1023 ipa_ref *ref;
1024 cgraph_edge *e = n->callers;
1025
1026 while (e)
1027 {
1028 /* Redirecting thunks to interposable symbols or symbols in other sections
1029 may not be supported by target output code. Play safe for now and
1030 punt on redirection. */
1031 if (!e->caller->thunk.thunk_p)
1032 {
1033 struct cgraph_edge *nexte = e->next_caller;
1034 e->redirect_callee (to);
1035 e = nexte;
1036 nredirected++;
1037 }
1038 else
1039 e = e->next_callee;
1040 }
1041 for (unsigned i = 0; n->iterate_direct_aliases (i, ref);)
1042 {
1043 bool removed = false;
1044 cgraph_node *n_alias = dyn_cast <cgraph_node *> (ref->referring);
1045
1046 if ((DECL_COMDAT_GROUP (n->decl)
1047 && (DECL_COMDAT_GROUP (n->decl)
1048 == DECL_COMDAT_GROUP (n_alias->decl)))
1049 || (n_alias->get_availability () > AVAIL_INTERPOSABLE
1050 && n->get_availability () > AVAIL_INTERPOSABLE))
1051 {
1052 nredirected += redirect_all_callers (n_alias, to);
1053 if (n_alias->can_remove_if_no_direct_calls_p ()
1054 && !n_alias->call_for_symbol_and_aliases (cgraph_node::has_thunk_p,
1055 NULL, true)
1056 && !n_alias->has_aliases_p ())
1057 n_alias->remove ();
1058 }
1059 if (!removed)
1060 i++;
1061 }
1062 return nredirected;
1063 }
1064
1065 /* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
1066 be applied. */
1067
1068 bool
1069 sem_function::merge (sem_item *alias_item)
1070 {
1071 gcc_assert (alias_item->type == FUNC);
1072
1073 sem_function *alias_func = static_cast<sem_function *> (alias_item);
1074
1075 cgraph_node *original = get_node ();
1076 cgraph_node *local_original = NULL;
1077 cgraph_node *alias = alias_func->get_node ();
1078
1079 bool create_wrapper = false;
1080 bool create_alias = false;
1081 bool redirect_callers = false;
1082 bool remove = false;
1083
1084 bool original_discardable = false;
1085 bool original_discarded = false;
1086
1087 bool original_address_matters = original->address_matters_p ();
1088 bool alias_address_matters = alias->address_matters_p ();
1089
1090 if (DECL_EXTERNAL (alias->decl))
1091 {
1092 if (dump_file)
1093 fprintf (dump_file, "Not unifying; alias is external.\n\n");
1094 return false;
1095 }
1096
1097 if (DECL_NO_INLINE_WARNING_P (original->decl)
1098 != DECL_NO_INLINE_WARNING_P (alias->decl))
1099 {
1100 if (dump_file)
1101 fprintf (dump_file,
1102 "Not unifying; "
1103 "DECL_NO_INLINE_WARNING mismatch.\n\n");
1104 return false;
1105 }
1106
1107 /* Do not attempt to mix functions from different user sections;
1108 we do not know what user intends with those. */
1109 if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
1110 || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
1111 && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
1112 {
1113 if (dump_file)
1114 fprintf (dump_file,
1115 "Not unifying; "
1116 "original and alias are in different sections.\n\n");
1117 return false;
1118 }
1119
1120 /* See if original is in a section that can be discarded if the main
1121 symbol is not used. */
1122
1123 if (original->can_be_discarded_p ())
1124 original_discardable = true;
1125 /* Also consider case where we have resolution info and we know that
1126 original's definition is not going to be used. In this case we can not
1127 create alias to original. */
1128 if (node->resolution != LDPR_UNKNOWN
1129 && !decl_binds_to_current_def_p (node->decl))
1130 original_discardable = original_discarded = true;
1131
1132 /* Creating a symtab alias is the optimal way to merge.
1133 It however can not be used in the following cases:
1134
1135 1) if ORIGINAL and ALIAS may be possibly compared for address equality.
1136 2) if ORIGINAL is in a section that may be discarded by linker or if
1137 it is an external functions where we can not create an alias
1138 (ORIGINAL_DISCARDABLE)
1139 3) if target do not support symbol aliases.
1140 4) original and alias lie in different comdat groups.
1141
1142 If we can not produce alias, we will turn ALIAS into WRAPPER of ORIGINAL
1143 and/or redirect all callers from ALIAS to ORIGINAL. */
1144 if ((original_address_matters && alias_address_matters)
1145 || (original_discardable
1146 && (!DECL_COMDAT_GROUP (alias->decl)
1147 || (DECL_COMDAT_GROUP (alias->decl)
1148 != DECL_COMDAT_GROUP (original->decl))))
1149 || original_discarded
1150 || !sem_item::target_supports_symbol_aliases_p ()
1151 || DECL_COMDAT_GROUP (alias->decl) != DECL_COMDAT_GROUP (original->decl))
1152 {
1153 /* First see if we can produce wrapper. */
1154
1155 /* Symbol properties that matter for references must be preserved.
1156 TODO: We can produce wrapper, but we need to produce alias of ORIGINAL
1157 with proper properties. */
1158 if (!sem_item::compare_referenced_symbol_properties (NULL, original, alias,
1159 alias->address_taken))
1160 {
1161 if (dump_file)
1162 fprintf (dump_file,
1163 "Wrapper cannot be created because referenced symbol "
1164 "properties mismatch\n");
1165 }
1166 /* Do not turn function in one comdat group into wrapper to another
1167 comdat group. Other compiler producing the body of the
1168 another comdat group may make opossite decision and with unfortunate
1169 linker choices this may close a loop. */
1170 else if (DECL_COMDAT_GROUP (original->decl)
1171 && DECL_COMDAT_GROUP (alias->decl)
1172 && (DECL_COMDAT_GROUP (alias->decl)
1173 != DECL_COMDAT_GROUP (original->decl)))
1174 {
1175 if (dump_file)
1176 fprintf (dump_file,
1177 "Wrapper cannot be created because of COMDAT\n");
1178 }
1179 else if (DECL_STATIC_CHAIN (alias->decl)
1180 || DECL_STATIC_CHAIN (original->decl))
1181 {
1182 if (dump_file)
1183 fprintf (dump_file,
1184 "Cannot create wrapper of nested function.\n");
1185 }
1186 /* TODO: We can also deal with variadic functions never calling
1187 VA_START. */
1188 else if (stdarg_p (TREE_TYPE (alias->decl)))
1189 {
1190 if (dump_file)
1191 fprintf (dump_file,
1192 "can not create wrapper of stdarg function.\n");
1193 }
1194 else if (inline_summaries
1195 && inline_summaries->get (alias)->self_size <= 2)
1196 {
1197 if (dump_file)
1198 fprintf (dump_file, "Wrapper creation is not "
1199 "profitable (function is too small).\n");
1200 }
1201 /* If user paid attention to mark function noinline, assume it is
1202 somewhat special and do not try to turn it into a wrapper that can
1203 not be undone by inliner. */
1204 else if (lookup_attribute ("noinline", DECL_ATTRIBUTES (alias->decl)))
1205 {
1206 if (dump_file)
1207 fprintf (dump_file, "Wrappers are not created for noinline.\n");
1208 }
1209 else
1210 create_wrapper = true;
1211
1212 /* We can redirect local calls in the case both alias and orignal
1213 are not interposable. */
1214 redirect_callers
1215 = alias->get_availability () > AVAIL_INTERPOSABLE
1216 && original->get_availability () > AVAIL_INTERPOSABLE
1217 && !alias->instrumented_version;
1218 /* TODO: We can redirect, but we need to produce alias of ORIGINAL
1219 with proper properties. */
1220 if (!sem_item::compare_referenced_symbol_properties (NULL, original, alias,
1221 alias->address_taken))
1222 redirect_callers = false;
1223
1224 if (!redirect_callers && !create_wrapper)
1225 {
1226 if (dump_file)
1227 fprintf (dump_file, "Not unifying; can not redirect callers nor "
1228 "produce wrapper\n\n");
1229 return false;
1230 }
1231
1232 /* Work out the symbol the wrapper should call.
1233 If ORIGINAL is interposable, we need to call a local alias.
1234 Also produce local alias (if possible) as an optimization.
1235
1236 Local aliases can not be created inside comdat groups because that
1237 prevents inlining. */
1238 if (!original_discardable && !original->get_comdat_group ())
1239 {
1240 local_original
1241 = dyn_cast <cgraph_node *> (original->noninterposable_alias ());
1242 if (!local_original
1243 && original->get_availability () > AVAIL_INTERPOSABLE)
1244 local_original = original;
1245 }
1246 /* If we can not use local alias, fallback to the original
1247 when possible. */
1248 else if (original->get_availability () > AVAIL_INTERPOSABLE)
1249 local_original = original;
1250
1251 /* If original is COMDAT local, we can not really redirect calls outside
1252 of its comdat group to it. */
1253 if (original->comdat_local_p ())
1254 redirect_callers = false;
1255 if (!local_original)
1256 {
1257 if (dump_file)
1258 fprintf (dump_file, "Not unifying; "
1259 "can not produce local alias.\n\n");
1260 return false;
1261 }
1262
1263 if (!redirect_callers && !create_wrapper)
1264 {
1265 if (dump_file)
1266 fprintf (dump_file, "Not unifying; "
1267 "can not redirect callers nor produce a wrapper\n\n");
1268 return false;
1269 }
1270 if (!create_wrapper
1271 && !alias->call_for_symbol_and_aliases (cgraph_node::has_thunk_p,
1272 NULL, true)
1273 && !alias->can_remove_if_no_direct_calls_p ())
1274 {
1275 if (dump_file)
1276 fprintf (dump_file, "Not unifying; can not make wrapper and "
1277 "function has other uses than direct calls\n\n");
1278 return false;
1279 }
1280 }
1281 else
1282 create_alias = true;
1283
1284 if (redirect_callers)
1285 {
1286 int nredirected = redirect_all_callers (alias, local_original);
1287
1288 if (nredirected)
1289 {
1290 alias->icf_merged = true;
1291 local_original->icf_merged = true;
1292
1293 if (dump_file && nredirected)
1294 fprintf (dump_file, "%i local calls have been "
1295 "redirected.\n", nredirected);
1296 }
1297
1298 /* If all callers was redirected, do not produce wrapper. */
1299 if (alias->can_remove_if_no_direct_calls_p ()
1300 && !DECL_VIRTUAL_P (alias->decl)
1301 && !alias->has_aliases_p ())
1302 {
1303 create_wrapper = false;
1304 remove = true;
1305 }
1306 gcc_assert (!create_alias);
1307 }
1308 else if (create_alias)
1309 {
1310 alias->icf_merged = true;
1311
1312 /* Remove the function's body. */
1313 ipa_merge_profiles (original, alias);
1314 alias->release_body (true);
1315 alias->reset ();
1316 /* Notice global symbol possibly produced RTL. */
1317 ((symtab_node *)alias)->call_for_symbol_and_aliases (clear_decl_rtl,
1318 NULL, true);
1319
1320 /* Create the alias. */
1321 cgraph_node::create_alias (alias_func->decl, decl);
1322 alias->resolve_alias (original);
1323
1324 original->call_for_symbol_thunks_and_aliases
1325 (set_local, (void *)(size_t) original->local_p (), true);
1326
1327 if (dump_file)
1328 fprintf (dump_file, "Unified; Function alias has been created.\n\n");
1329 }
1330 if (create_wrapper)
1331 {
1332 gcc_assert (!create_alias);
1333 alias->icf_merged = true;
1334 local_original->icf_merged = true;
1335
1336 ipa_merge_profiles (local_original, alias, true);
1337 alias->create_wrapper (local_original);
1338
1339 if (dump_file)
1340 fprintf (dump_file, "Unified; Wrapper has been created.\n\n");
1341 }
1342
1343 /* It's possible that redirection can hit thunks that block
1344 redirection opportunities. */
1345 gcc_assert (alias->icf_merged || remove || redirect_callers);
1346 original->icf_merged = true;
1347
1348 /* We use merged flag to track cases where COMDAT function is known to be
1349 compatible its callers. If we merged in non-COMDAT, we need to give up
1350 on this optimization. */
1351 if (original->merged_comdat && !alias->merged_comdat)
1352 {
1353 if (dump_file)
1354 fprintf (dump_file, "Dropping merged_comdat flag.\n\n");
1355 if (local_original)
1356 local_original->merged_comdat = false;
1357 original->merged_comdat = false;
1358 }
1359
1360 if (remove)
1361 {
1362 ipa_merge_profiles (original, alias);
1363 alias->release_body ();
1364 alias->reset ();
1365 alias->body_removed = true;
1366 alias->icf_merged = true;
1367 if (dump_file)
1368 fprintf (dump_file, "Unified; Function body was removed.\n");
1369 }
1370
1371 return true;
1372 }
1373
1374 /* Semantic item initialization function. */
1375
1376 void
1377 sem_function::init (void)
1378 {
1379 if (in_lto_p)
1380 get_node ()->get_untransformed_body ();
1381
1382 tree fndecl = node->decl;
1383 function *func = DECL_STRUCT_FUNCTION (fndecl);
1384
1385 gcc_assert (func);
1386 gcc_assert (SSANAMES (func));
1387
1388 ssa_names_size = SSANAMES (func)->length ();
1389 node = node;
1390
1391 decl = fndecl;
1392 region_tree = func->eh->region_tree;
1393
1394 /* iterating all function arguments. */
1395 arg_count = count_formal_params (fndecl);
1396
1397 edge_count = n_edges_for_fn (func);
1398 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
1399 if (!cnode->thunk.thunk_p)
1400 {
1401 cfg_checksum = coverage_compute_cfg_checksum (func);
1402
1403 inchash::hash hstate;
1404
1405 basic_block bb;
1406 FOR_EACH_BB_FN (bb, func)
1407 {
1408 unsigned nondbg_stmt_count = 0;
1409
1410 edge e;
1411 for (edge_iterator ei = ei_start (bb->preds); ei_cond (ei, &e);
1412 ei_next (&ei))
1413 cfg_checksum = iterative_hash_host_wide_int (e->flags,
1414 cfg_checksum);
1415
1416 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1417 gsi_next (&gsi))
1418 {
1419 gimple *stmt = gsi_stmt (gsi);
1420
1421 if (gimple_code (stmt) != GIMPLE_DEBUG
1422 && gimple_code (stmt) != GIMPLE_PREDICT)
1423 {
1424 hash_stmt (stmt, hstate);
1425 nondbg_stmt_count++;
1426 }
1427 }
1428
1429 gcode_hash = hstate.end ();
1430 bb_sizes.safe_push (nondbg_stmt_count);
1431
1432 /* Inserting basic block to hash table. */
1433 sem_bb *semantic_bb = new sem_bb (bb, nondbg_stmt_count,
1434 EDGE_COUNT (bb->preds)
1435 + EDGE_COUNT (bb->succs));
1436
1437 bb_sorted.safe_push (semantic_bb);
1438 }
1439 }
1440 else
1441 {
1442 cfg_checksum = 0;
1443 inchash::hash hstate;
1444 hstate.add_wide_int (cnode->thunk.fixed_offset);
1445 hstate.add_wide_int (cnode->thunk.virtual_value);
1446 hstate.add_flag (cnode->thunk.this_adjusting);
1447 hstate.add_flag (cnode->thunk.virtual_offset_p);
1448 hstate.add_flag (cnode->thunk.add_pointer_bounds_args);
1449 gcode_hash = hstate.end ();
1450 }
1451 }
1452
1453 /* Accumulate to HSTATE a hash of expression EXP.
1454 Identical to inchash::add_expr, but guaranteed to be stable across LTO
1455 and DECL equality classes. */
1456
1457 void
1458 sem_item::add_expr (const_tree exp, inchash::hash &hstate)
1459 {
1460 if (exp == NULL_TREE)
1461 {
1462 hstate.merge_hash (0);
1463 return;
1464 }
1465
1466 /* Handled component can be matched in a cureful way proving equivalence
1467 even if they syntactically differ. Just skip them. */
1468 STRIP_NOPS (exp);
1469 while (handled_component_p (exp))
1470 exp = TREE_OPERAND (exp, 0);
1471
1472 enum tree_code code = TREE_CODE (exp);
1473 hstate.add_int (code);
1474
1475 switch (code)
1476 {
1477 /* Use inchash::add_expr for everything that is LTO stable. */
1478 case VOID_CST:
1479 case INTEGER_CST:
1480 case REAL_CST:
1481 case FIXED_CST:
1482 case STRING_CST:
1483 case COMPLEX_CST:
1484 case VECTOR_CST:
1485 inchash::add_expr (exp, hstate);
1486 break;
1487 case CONSTRUCTOR:
1488 {
1489 unsigned HOST_WIDE_INT idx;
1490 tree value;
1491
1492 hstate.add_wide_int (int_size_in_bytes (TREE_TYPE (exp)));
1493
1494 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
1495 if (value)
1496 add_expr (value, hstate);
1497 break;
1498 }
1499 case ADDR_EXPR:
1500 case FDESC_EXPR:
1501 add_expr (get_base_address (TREE_OPERAND (exp, 0)), hstate);
1502 break;
1503 case SSA_NAME:
1504 case VAR_DECL:
1505 case CONST_DECL:
1506 case PARM_DECL:
1507 hstate.add_wide_int (int_size_in_bytes (TREE_TYPE (exp)));
1508 break;
1509 case MEM_REF:
1510 case POINTER_PLUS_EXPR:
1511 case MINUS_EXPR:
1512 case RANGE_EXPR:
1513 add_expr (TREE_OPERAND (exp, 0), hstate);
1514 add_expr (TREE_OPERAND (exp, 1), hstate);
1515 break;
1516 case PLUS_EXPR:
1517 {
1518 inchash::hash one, two;
1519 add_expr (TREE_OPERAND (exp, 0), one);
1520 add_expr (TREE_OPERAND (exp, 1), two);
1521 hstate.add_commutative (one, two);
1522 }
1523 break;
1524 CASE_CONVERT:
1525 hstate.add_wide_int (int_size_in_bytes (TREE_TYPE (exp)));
1526 return add_expr (TREE_OPERAND (exp, 0), hstate);
1527 default:
1528 break;
1529 }
1530 }
1531
1532 /* Accumulate to HSTATE a hash of type t.
1533 TYpes that may end up being compatible after LTO type merging needs to have
1534 the same hash. */
1535
1536 void
1537 sem_item::add_type (const_tree type, inchash::hash &hstate)
1538 {
1539 if (type == NULL_TREE)
1540 {
1541 hstate.merge_hash (0);
1542 return;
1543 }
1544
1545 type = TYPE_MAIN_VARIANT (type);
1546
1547 hstate.add_int (TYPE_MODE (type));
1548
1549 if (TREE_CODE (type) == COMPLEX_TYPE)
1550 {
1551 hstate.add_int (COMPLEX_TYPE);
1552 sem_item::add_type (TREE_TYPE (type), hstate);
1553 }
1554 else if (INTEGRAL_TYPE_P (type))
1555 {
1556 hstate.add_int (INTEGER_TYPE);
1557 hstate.add_flag (TYPE_UNSIGNED (type));
1558 hstate.add_int (TYPE_PRECISION (type));
1559 }
1560 else if (VECTOR_TYPE_P (type))
1561 {
1562 hstate.add_int (VECTOR_TYPE);
1563 hstate.add_int (TYPE_PRECISION (type));
1564 sem_item::add_type (TREE_TYPE (type), hstate);
1565 }
1566 else if (TREE_CODE (type) == ARRAY_TYPE)
1567 {
1568 hstate.add_int (ARRAY_TYPE);
1569 /* Do not hash size, so complete and incomplete types can match. */
1570 sem_item::add_type (TREE_TYPE (type), hstate);
1571 }
1572 else if (RECORD_OR_UNION_TYPE_P (type))
1573 {
1574 gcc_checking_assert (COMPLETE_TYPE_P (type));
1575 hashval_t *val = optimizer->m_type_hash_cache.get (type);
1576
1577 if (!val)
1578 {
1579 inchash::hash hstate2;
1580 unsigned nf;
1581 tree f;
1582 hashval_t hash;
1583
1584 hstate2.add_int (RECORD_TYPE);
1585 gcc_assert (COMPLETE_TYPE_P (type));
1586
1587 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
1588 if (TREE_CODE (f) == FIELD_DECL)
1589 {
1590 add_type (TREE_TYPE (f), hstate2);
1591 nf++;
1592 }
1593
1594 hstate2.add_int (nf);
1595 hash = hstate2.end ();
1596 hstate.add_wide_int (hash);
1597 optimizer->m_type_hash_cache.put (type, hash);
1598 }
1599 else
1600 hstate.add_wide_int (*val);
1601 }
1602 }
1603
1604 /* Improve accumulated hash for HSTATE based on a gimple statement STMT. */
1605
1606 void
1607 sem_function::hash_stmt (gimple *stmt, inchash::hash &hstate)
1608 {
1609 enum gimple_code code = gimple_code (stmt);
1610
1611 hstate.add_int (code);
1612
1613 switch (code)
1614 {
1615 case GIMPLE_SWITCH:
1616 add_expr (gimple_switch_index (as_a <gswitch *> (stmt)), hstate);
1617 break;
1618 case GIMPLE_ASSIGN:
1619 hstate.add_int (gimple_assign_rhs_code (stmt));
1620 if (commutative_tree_code (gimple_assign_rhs_code (stmt))
1621 || commutative_ternary_tree_code (gimple_assign_rhs_code (stmt)))
1622 {
1623 inchash::hash one, two;
1624
1625 add_expr (gimple_assign_rhs1 (stmt), one);
1626 add_type (TREE_TYPE (gimple_assign_rhs1 (stmt)), one);
1627 add_expr (gimple_assign_rhs2 (stmt), two);
1628 hstate.add_commutative (one, two);
1629 if (commutative_ternary_tree_code (gimple_assign_rhs_code (stmt)))
1630 {
1631 add_expr (gimple_assign_rhs3 (stmt), hstate);
1632 add_type (TREE_TYPE (gimple_assign_rhs3 (stmt)), hstate);
1633 }
1634 add_expr (gimple_assign_lhs (stmt), hstate);
1635 add_type (TREE_TYPE (gimple_assign_lhs (stmt)), two);
1636 break;
1637 }
1638 /* fall through */
1639 case GIMPLE_CALL:
1640 case GIMPLE_ASM:
1641 case GIMPLE_COND:
1642 case GIMPLE_GOTO:
1643 case GIMPLE_RETURN:
1644 /* All these statements are equivalent if their operands are. */
1645 for (unsigned i = 0; i < gimple_num_ops (stmt); ++i)
1646 {
1647 add_expr (gimple_op (stmt, i), hstate);
1648 if (gimple_op (stmt, i))
1649 add_type (TREE_TYPE (gimple_op (stmt, i)), hstate);
1650 }
1651 default:
1652 break;
1653 }
1654 }
1655
1656
1657 /* Return true if polymorphic comparison must be processed. */
1658
1659 bool
1660 sem_function::compare_polymorphic_p (void)
1661 {
1662 struct cgraph_edge *e;
1663
1664 if (!opt_for_fn (get_node ()->decl, flag_devirtualize))
1665 return false;
1666 if (get_node ()->indirect_calls != NULL)
1667 return true;
1668 /* TODO: We can do simple propagation determining what calls may lead to
1669 a polymorphic call. */
1670 for (e = get_node ()->callees; e; e = e->next_callee)
1671 if (e->callee->definition
1672 && opt_for_fn (e->callee->decl, flag_devirtualize))
1673 return true;
1674 return false;
1675 }
1676
1677 /* For a given call graph NODE, the function constructs new
1678 semantic function item. */
1679
1680 sem_function *
1681 sem_function::parse (cgraph_node *node, bitmap_obstack *stack)
1682 {
1683 tree fndecl = node->decl;
1684 function *func = DECL_STRUCT_FUNCTION (fndecl);
1685
1686 if (!func || (!node->has_gimple_body_p () && !node->thunk.thunk_p))
1687 return NULL;
1688
1689 if (lookup_attribute_by_prefix ("omp ", DECL_ATTRIBUTES (node->decl)) != NULL)
1690 return NULL;
1691
1692 if (lookup_attribute_by_prefix ("oacc ",
1693 DECL_ATTRIBUTES (node->decl)) != NULL)
1694 return NULL;
1695
1696 /* PR ipa/70306. */
1697 if (DECL_STATIC_CONSTRUCTOR (node->decl)
1698 || DECL_STATIC_DESTRUCTOR (node->decl))
1699 return NULL;
1700
1701 sem_function *f = new sem_function (node, stack);
1702
1703 f->init ();
1704
1705 return f;
1706 }
1707
1708 /* For given basic blocks BB1 and BB2 (from functions FUNC1 and FUNC),
1709 return true if phi nodes are semantically equivalent in these blocks . */
1710
1711 bool
1712 sem_function::compare_phi_node (basic_block bb1, basic_block bb2)
1713 {
1714 gphi_iterator si1, si2;
1715 gphi *phi1, *phi2;
1716 unsigned size1, size2, i;
1717 tree t1, t2;
1718 edge e1, e2;
1719
1720 gcc_assert (bb1 != NULL);
1721 gcc_assert (bb2 != NULL);
1722
1723 si2 = gsi_start_phis (bb2);
1724 for (si1 = gsi_start_phis (bb1); !gsi_end_p (si1);
1725 gsi_next (&si1))
1726 {
1727 gsi_next_nonvirtual_phi (&si1);
1728 gsi_next_nonvirtual_phi (&si2);
1729
1730 if (gsi_end_p (si1) && gsi_end_p (si2))
1731 break;
1732
1733 if (gsi_end_p (si1) || gsi_end_p (si2))
1734 return return_false();
1735
1736 phi1 = si1.phi ();
1737 phi2 = si2.phi ();
1738
1739 tree phi_result1 = gimple_phi_result (phi1);
1740 tree phi_result2 = gimple_phi_result (phi2);
1741
1742 if (!m_checker->compare_operand (phi_result1, phi_result2))
1743 return return_false_with_msg ("PHI results are different");
1744
1745 size1 = gimple_phi_num_args (phi1);
1746 size2 = gimple_phi_num_args (phi2);
1747
1748 if (size1 != size2)
1749 return return_false ();
1750
1751 for (i = 0; i < size1; ++i)
1752 {
1753 t1 = gimple_phi_arg (phi1, i)->def;
1754 t2 = gimple_phi_arg (phi2, i)->def;
1755
1756 if (!m_checker->compare_operand (t1, t2))
1757 return return_false ();
1758
1759 e1 = gimple_phi_arg_edge (phi1, i);
1760 e2 = gimple_phi_arg_edge (phi2, i);
1761
1762 if (!m_checker->compare_edge (e1, e2))
1763 return return_false ();
1764 }
1765
1766 gsi_next (&si2);
1767 }
1768
1769 return true;
1770 }
1771
1772 /* Returns true if tree T can be compared as a handled component. */
1773
1774 bool
1775 sem_function::icf_handled_component_p (tree t)
1776 {
1777 tree_code tc = TREE_CODE (t);
1778
1779 return (handled_component_p (t)
1780 || tc == ADDR_EXPR || tc == MEM_REF || tc == OBJ_TYPE_REF);
1781 }
1782
1783 /* Basic blocks dictionary BB_DICT returns true if SOURCE index BB
1784 corresponds to TARGET. */
1785
1786 bool
1787 sem_function::bb_dict_test (vec<int> *bb_dict, int source, int target)
1788 {
1789 source++;
1790 target++;
1791
1792 if (bb_dict->length () <= (unsigned)source)
1793 bb_dict->safe_grow_cleared (source + 1);
1794
1795 if ((*bb_dict)[source] == 0)
1796 {
1797 (*bb_dict)[source] = target;
1798 return true;
1799 }
1800 else
1801 return (*bb_dict)[source] == target;
1802 }
1803
1804 sem_variable::sem_variable (bitmap_obstack *stack): sem_item (VAR, stack)
1805 {
1806 }
1807
1808 sem_variable::sem_variable (varpool_node *node, bitmap_obstack *stack)
1809 : sem_item (VAR, node, stack)
1810 {
1811 gcc_checking_assert (node);
1812 gcc_checking_assert (get_node ());
1813 }
1814
1815 /* Fast equality function based on knowledge known in WPA. */
1816
1817 bool
1818 sem_variable::equals_wpa (sem_item *item,
1819 hash_map <symtab_node *, sem_item *> &ignored_nodes)
1820 {
1821 gcc_assert (item->type == VAR);
1822
1823 if (node->num_references () != item->node->num_references ())
1824 return return_false_with_msg ("different number of references");
1825
1826 if (DECL_TLS_MODEL (decl) || DECL_TLS_MODEL (item->decl))
1827 return return_false_with_msg ("TLS model");
1828
1829 /* DECL_ALIGN is safe to merge, because we will always chose the largest
1830 alignment out of all aliases. */
1831
1832 if (DECL_VIRTUAL_P (decl) != DECL_VIRTUAL_P (item->decl))
1833 return return_false_with_msg ("Virtual flag mismatch");
1834
1835 if (DECL_SIZE (decl) != DECL_SIZE (item->decl)
1836 && ((!DECL_SIZE (decl) || !DECL_SIZE (item->decl))
1837 || !operand_equal_p (DECL_SIZE (decl),
1838 DECL_SIZE (item->decl), OEP_ONLY_CONST)))
1839 return return_false_with_msg ("size mismatch");
1840
1841 /* Do not attempt to mix data from different user sections;
1842 we do not know what user intends with those. */
1843 if (((DECL_SECTION_NAME (decl) && !node->implicit_section)
1844 || (DECL_SECTION_NAME (item->decl) && !item->node->implicit_section))
1845 && DECL_SECTION_NAME (decl) != DECL_SECTION_NAME (item->decl))
1846 return return_false_with_msg ("user section mismatch");
1847
1848 if (DECL_IN_TEXT_SECTION (decl) != DECL_IN_TEXT_SECTION (item->decl))
1849 return return_false_with_msg ("text section");
1850
1851 ipa_ref *ref = NULL, *ref2 = NULL;
1852 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
1853 {
1854 item->node->iterate_reference (i, ref2);
1855
1856 if (ref->use != ref2->use)
1857 return return_false_with_msg ("reference use mismatch");
1858
1859 if (!compare_symbol_references (ignored_nodes,
1860 ref->referred, ref2->referred,
1861 ref->address_matters_p ()))
1862 return false;
1863 }
1864
1865 return true;
1866 }
1867
1868 /* Returns true if the item equals to ITEM given as argument. */
1869
1870 bool
1871 sem_variable::equals (sem_item *item,
1872 hash_map <symtab_node *, sem_item *> &)
1873 {
1874 gcc_assert (item->type == VAR);
1875 bool ret;
1876
1877 if (DECL_INITIAL (decl) == error_mark_node && in_lto_p)
1878 dyn_cast <varpool_node *>(node)->get_constructor ();
1879 if (DECL_INITIAL (item->decl) == error_mark_node && in_lto_p)
1880 dyn_cast <varpool_node *>(item->node)->get_constructor ();
1881
1882 /* As seen in PR ipa/65303 we have to compare variables types. */
1883 if (!func_checker::compatible_types_p (TREE_TYPE (decl),
1884 TREE_TYPE (item->decl)))
1885 return return_false_with_msg ("variables types are different");
1886
1887 ret = sem_variable::equals (DECL_INITIAL (decl),
1888 DECL_INITIAL (item->node->decl));
1889 if (dump_file && (dump_flags & TDF_DETAILS))
1890 fprintf (dump_file,
1891 "Equals called for vars:%s:%s (%u:%u) (%s:%s) with result: %s\n\n",
1892 xstrdup_for_dump (node->name()),
1893 xstrdup_for_dump (item->node->name ()),
1894 node->order, item->node->order,
1895 xstrdup_for_dump (node->asm_name ()),
1896 xstrdup_for_dump (item->node->asm_name ()), ret ? "true" : "false");
1897
1898 return ret;
1899 }
1900
1901 /* Compares trees T1 and T2 for semantic equality. */
1902
1903 bool
1904 sem_variable::equals (tree t1, tree t2)
1905 {
1906 if (!t1 || !t2)
1907 return return_with_debug (t1 == t2);
1908 if (t1 == t2)
1909 return true;
1910 tree_code tc1 = TREE_CODE (t1);
1911 tree_code tc2 = TREE_CODE (t2);
1912
1913 if (tc1 != tc2)
1914 return return_false_with_msg ("TREE_CODE mismatch");
1915
1916 switch (tc1)
1917 {
1918 case CONSTRUCTOR:
1919 {
1920 vec<constructor_elt, va_gc> *v1, *v2;
1921 unsigned HOST_WIDE_INT idx;
1922
1923 enum tree_code typecode = TREE_CODE (TREE_TYPE (t1));
1924 if (typecode != TREE_CODE (TREE_TYPE (t2)))
1925 return return_false_with_msg ("constructor type mismatch");
1926
1927 if (typecode == ARRAY_TYPE)
1928 {
1929 HOST_WIDE_INT size_1 = int_size_in_bytes (TREE_TYPE (t1));
1930 /* For arrays, check that the sizes all match. */
1931 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))
1932 || size_1 == -1
1933 || size_1 != int_size_in_bytes (TREE_TYPE (t2)))
1934 return return_false_with_msg ("constructor array size mismatch");
1935 }
1936 else if (!func_checker::compatible_types_p (TREE_TYPE (t1),
1937 TREE_TYPE (t2)))
1938 return return_false_with_msg ("constructor type incompatible");
1939
1940 v1 = CONSTRUCTOR_ELTS (t1);
1941 v2 = CONSTRUCTOR_ELTS (t2);
1942 if (vec_safe_length (v1) != vec_safe_length (v2))
1943 return return_false_with_msg ("constructor number of elts mismatch");
1944
1945 for (idx = 0; idx < vec_safe_length (v1); ++idx)
1946 {
1947 constructor_elt *c1 = &(*v1)[idx];
1948 constructor_elt *c2 = &(*v2)[idx];
1949
1950 /* Check that each value is the same... */
1951 if (!sem_variable::equals (c1->value, c2->value))
1952 return false;
1953 /* ... and that they apply to the same fields! */
1954 if (!sem_variable::equals (c1->index, c2->index))
1955 return false;
1956 }
1957 return true;
1958 }
1959 case MEM_REF:
1960 {
1961 tree x1 = TREE_OPERAND (t1, 0);
1962 tree x2 = TREE_OPERAND (t2, 0);
1963 tree y1 = TREE_OPERAND (t1, 1);
1964 tree y2 = TREE_OPERAND (t2, 1);
1965
1966 if (!func_checker::compatible_types_p (TREE_TYPE (x1), TREE_TYPE (x2)))
1967 return return_false ();
1968
1969 /* Type of the offset on MEM_REF does not matter. */
1970 return return_with_debug (sem_variable::equals (x1, x2)
1971 && wi::to_offset (y1)
1972 == wi::to_offset (y2));
1973 }
1974 case ADDR_EXPR:
1975 case FDESC_EXPR:
1976 {
1977 tree op1 = TREE_OPERAND (t1, 0);
1978 tree op2 = TREE_OPERAND (t2, 0);
1979 return sem_variable::equals (op1, op2);
1980 }
1981 /* References to other vars/decls are compared using ipa-ref. */
1982 case FUNCTION_DECL:
1983 case VAR_DECL:
1984 if (decl_in_symtab_p (t1) && decl_in_symtab_p (t2))
1985 return true;
1986 return return_false_with_msg ("Declaration mismatch");
1987 case CONST_DECL:
1988 /* TODO: We can check CONST_DECL by its DECL_INITIAL, but for that we
1989 need to process its VAR/FUNCTION references without relying on ipa-ref
1990 compare. */
1991 case FIELD_DECL:
1992 case LABEL_DECL:
1993 return return_false_with_msg ("Declaration mismatch");
1994 case INTEGER_CST:
1995 /* Integer constants are the same only if the same width of type. */
1996 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
1997 return return_false_with_msg ("INTEGER_CST precision mismatch");
1998 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
1999 return return_false_with_msg ("INTEGER_CST mode mismatch");
2000 return return_with_debug (tree_int_cst_equal (t1, t2));
2001 case STRING_CST:
2002 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
2003 return return_false_with_msg ("STRING_CST mode mismatch");
2004 if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
2005 return return_false_with_msg ("STRING_CST length mismatch");
2006 if (memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2007 TREE_STRING_LENGTH (t1)))
2008 return return_false_with_msg ("STRING_CST mismatch");
2009 return true;
2010 case FIXED_CST:
2011 /* Fixed constants are the same only if the same width of type. */
2012 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
2013 return return_false_with_msg ("FIXED_CST precision mismatch");
2014
2015 return return_with_debug (FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
2016 TREE_FIXED_CST (t2)));
2017 case COMPLEX_CST:
2018 return (sem_variable::equals (TREE_REALPART (t1), TREE_REALPART (t2))
2019 && sem_variable::equals (TREE_IMAGPART (t1), TREE_IMAGPART (t2)));
2020 case REAL_CST:
2021 /* Real constants are the same only if the same width of type. */
2022 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
2023 return return_false_with_msg ("REAL_CST precision mismatch");
2024 return return_with_debug (real_identical (&TREE_REAL_CST (t1),
2025 &TREE_REAL_CST (t2)));
2026 case VECTOR_CST:
2027 {
2028 unsigned i;
2029
2030 if (VECTOR_CST_NELTS (t1) != VECTOR_CST_NELTS (t2))
2031 return return_false_with_msg ("VECTOR_CST nelts mismatch");
2032
2033 for (i = 0; i < VECTOR_CST_NELTS (t1); ++i)
2034 if (!sem_variable::equals (VECTOR_CST_ELT (t1, i),
2035 VECTOR_CST_ELT (t2, i)))
2036 return 0;
2037
2038 return 1;
2039 }
2040 case ARRAY_REF:
2041 case ARRAY_RANGE_REF:
2042 {
2043 tree x1 = TREE_OPERAND (t1, 0);
2044 tree x2 = TREE_OPERAND (t2, 0);
2045 tree y1 = TREE_OPERAND (t1, 1);
2046 tree y2 = TREE_OPERAND (t2, 1);
2047
2048 if (!sem_variable::equals (x1, x2) || !sem_variable::equals (y1, y2))
2049 return false;
2050 if (!sem_variable::equals (array_ref_low_bound (t1),
2051 array_ref_low_bound (t2)))
2052 return false;
2053 if (!sem_variable::equals (array_ref_element_size (t1),
2054 array_ref_element_size (t2)))
2055 return false;
2056 return true;
2057 }
2058
2059 case COMPONENT_REF:
2060 case POINTER_PLUS_EXPR:
2061 case PLUS_EXPR:
2062 case MINUS_EXPR:
2063 case RANGE_EXPR:
2064 {
2065 tree x1 = TREE_OPERAND (t1, 0);
2066 tree x2 = TREE_OPERAND (t2, 0);
2067 tree y1 = TREE_OPERAND (t1, 1);
2068 tree y2 = TREE_OPERAND (t2, 1);
2069
2070 return sem_variable::equals (x1, x2) && sem_variable::equals (y1, y2);
2071 }
2072
2073 CASE_CONVERT:
2074 case VIEW_CONVERT_EXPR:
2075 if (!func_checker::compatible_types_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2076 return return_false ();
2077 return sem_variable::equals (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2078 case ERROR_MARK:
2079 return return_false_with_msg ("ERROR_MARK");
2080 default:
2081 return return_false_with_msg ("Unknown TREE code reached");
2082 }
2083 }
2084
2085 /* Parser function that visits a varpool NODE. */
2086
2087 sem_variable *
2088 sem_variable::parse (varpool_node *node, bitmap_obstack *stack)
2089 {
2090 if (TREE_THIS_VOLATILE (node->decl) || DECL_HARD_REGISTER (node->decl)
2091 || node->alias)
2092 return NULL;
2093
2094 sem_variable *v = new sem_variable (node, stack);
2095
2096 v->init ();
2097
2098 return v;
2099 }
2100
2101 /* References independent hash function. */
2102
2103 hashval_t
2104 sem_variable::get_hash (void)
2105 {
2106 if (m_hash_set)
2107 return m_hash;
2108
2109 /* All WPA streamed in symbols should have their hashes computed at compile
2110 time. At this point, the constructor may not be in memory at all.
2111 DECL_INITIAL (decl) would be error_mark_node in that case. */
2112 gcc_assert (!node->lto_file_data);
2113 tree ctor = DECL_INITIAL (decl);
2114 inchash::hash hstate;
2115
2116 hstate.add_int (456346417);
2117 if (DECL_SIZE (decl) && tree_fits_shwi_p (DECL_SIZE (decl)))
2118 hstate.add_wide_int (tree_to_shwi (DECL_SIZE (decl)));
2119 add_expr (ctor, hstate);
2120 set_hash (hstate.end ());
2121
2122 return m_hash;
2123 }
2124
2125 /* Set all points-to UIDs of aliases pointing to node N as UID. */
2126
2127 static void
2128 set_alias_uids (symtab_node *n, int uid)
2129 {
2130 ipa_ref *ref;
2131 FOR_EACH_ALIAS (n, ref)
2132 {
2133 if (dump_file)
2134 fprintf (dump_file, " Setting points-to UID of [%s] as %d\n",
2135 xstrdup_for_dump (ref->referring->asm_name ()), uid);
2136
2137 SET_DECL_PT_UID (ref->referring->decl, uid);
2138 set_alias_uids (ref->referring, uid);
2139 }
2140 }
2141
2142 /* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
2143 be applied. */
2144
2145 bool
2146 sem_variable::merge (sem_item *alias_item)
2147 {
2148 gcc_assert (alias_item->type == VAR);
2149
2150 if (!sem_item::target_supports_symbol_aliases_p ())
2151 {
2152 if (dump_file)
2153 fprintf (dump_file, "Not unifying; "
2154 "Symbol aliases are not supported by target\n\n");
2155 return false;
2156 }
2157
2158 if (DECL_EXTERNAL (alias_item->decl))
2159 {
2160 if (dump_file)
2161 fprintf (dump_file, "Not unifying; alias is external.\n\n");
2162 return false;
2163 }
2164
2165 sem_variable *alias_var = static_cast<sem_variable *> (alias_item);
2166
2167 varpool_node *original = get_node ();
2168 varpool_node *alias = alias_var->get_node ();
2169 bool original_discardable = false;
2170
2171 bool alias_address_matters = alias->address_matters_p ();
2172
2173 /* See if original is in a section that can be discarded if the main
2174 symbol is not used.
2175 Also consider case where we have resolution info and we know that
2176 original's definition is not going to be used. In this case we can not
2177 create alias to original. */
2178 if (original->can_be_discarded_p ()
2179 || (node->resolution != LDPR_UNKNOWN
2180 && !decl_binds_to_current_def_p (node->decl)))
2181 original_discardable = true;
2182
2183 gcc_assert (!TREE_ASM_WRITTEN (alias->decl));
2184
2185 /* Constant pool machinery is not quite ready for aliases.
2186 TODO: varasm code contains logic for merging DECL_IN_CONSTANT_POOL.
2187 For LTO merging does not happen that is an important missing feature.
2188 We can enable merging with LTO if the DECL_IN_CONSTANT_POOL
2189 flag is dropped and non-local symbol name is assigned. */
2190 if (DECL_IN_CONSTANT_POOL (alias->decl)
2191 || DECL_IN_CONSTANT_POOL (original->decl))
2192 {
2193 if (dump_file)
2194 fprintf (dump_file,
2195 "Not unifying; constant pool variables.\n\n");
2196 return false;
2197 }
2198
2199 /* Do not attempt to mix functions from different user sections;
2200 we do not know what user intends with those. */
2201 if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
2202 || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
2203 && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
2204 {
2205 if (dump_file)
2206 fprintf (dump_file,
2207 "Not unifying; "
2208 "original and alias are in different sections.\n\n");
2209 return false;
2210 }
2211
2212 /* We can not merge if address comparsion metters. */
2213 if (alias_address_matters && flag_merge_constants < 2)
2214 {
2215 if (dump_file)
2216 fprintf (dump_file,
2217 "Not unifying; address of original may be compared.\n\n");
2218 return false;
2219 }
2220
2221 if (DECL_ALIGN (original->decl) < DECL_ALIGN (alias->decl))
2222 {
2223 if (dump_file)
2224 fprintf (dump_file, "Not unifying; "
2225 "original and alias have incompatible alignments\n\n");
2226
2227 return false;
2228 }
2229
2230 if (DECL_COMDAT_GROUP (original->decl) != DECL_COMDAT_GROUP (alias->decl))
2231 {
2232 if (dump_file)
2233 fprintf (dump_file, "Not unifying; alias cannot be created; "
2234 "across comdat group boundary\n\n");
2235
2236 return false;
2237 }
2238
2239 if (original_discardable)
2240 {
2241 if (dump_file)
2242 fprintf (dump_file, "Not unifying; alias cannot be created; "
2243 "target is discardable\n\n");
2244
2245 return false;
2246 }
2247 else
2248 {
2249 gcc_assert (!original->alias);
2250 gcc_assert (!alias->alias);
2251
2252 alias->analyzed = false;
2253
2254 DECL_INITIAL (alias->decl) = NULL;
2255 ((symtab_node *)alias)->call_for_symbol_and_aliases (clear_decl_rtl,
2256 NULL, true);
2257 alias->need_bounds_init = false;
2258 alias->remove_all_references ();
2259 if (TREE_ADDRESSABLE (alias->decl))
2260 original->call_for_symbol_and_aliases (set_addressable, NULL, true);
2261
2262 varpool_node::create_alias (alias_var->decl, decl);
2263 alias->resolve_alias (original);
2264
2265 if (dump_file)
2266 fprintf (dump_file, "Unified; Variable alias has been created.\n");
2267
2268 set_alias_uids (original, DECL_UID (original->decl));
2269 return true;
2270 }
2271 }
2272
2273 /* Dump symbol to FILE. */
2274
2275 void
2276 sem_variable::dump_to_file (FILE *file)
2277 {
2278 gcc_assert (file);
2279
2280 print_node (file, "", decl, 0);
2281 fprintf (file, "\n\n");
2282 }
2283
2284 unsigned int sem_item_optimizer::class_id = 0;
2285
2286 sem_item_optimizer::sem_item_optimizer ()
2287 : worklist (0), m_classes (0), m_classes_count (0), m_cgraph_node_hooks (NULL),
2288 m_varpool_node_hooks (NULL)
2289 {
2290 m_items.create (0);
2291 m_classes_vec.create (0);
2292 bitmap_obstack_initialize (&m_bmstack);
2293 }
2294
2295 sem_item_optimizer::~sem_item_optimizer ()
2296 {
2297 for (unsigned int i = 0; i < m_items.length (); i++)
2298 delete m_items[i];
2299
2300 unsigned int l;
2301 congruence_class_group *it;
2302 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
2303 {
2304 for (unsigned int i = 0; i < it->classes.length (); i++)
2305 delete it->classes[i];
2306
2307 it->classes.release ();
2308 free (it);
2309 }
2310
2311 m_items.release ();
2312 m_classes_vec.release ();
2313
2314 bitmap_obstack_release (&m_bmstack);
2315 }
2316
2317 /* Write IPA ICF summary for symbols. */
2318
2319 void
2320 sem_item_optimizer::write_summary (void)
2321 {
2322 unsigned int count = 0;
2323
2324 output_block *ob = create_output_block (LTO_section_ipa_icf);
2325 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
2326 ob->symbol = NULL;
2327
2328 /* Calculate number of symbols to be serialized. */
2329 for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
2330 !lsei_end_p (lsei);
2331 lsei_next_in_partition (&lsei))
2332 {
2333 symtab_node *node = lsei_node (lsei);
2334
2335 if (m_symtab_node_map.get (node))
2336 count++;
2337 }
2338
2339 streamer_write_uhwi (ob, count);
2340
2341 /* Process all of the symbols. */
2342 for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
2343 !lsei_end_p (lsei);
2344 lsei_next_in_partition (&lsei))
2345 {
2346 symtab_node *node = lsei_node (lsei);
2347
2348 sem_item **item = m_symtab_node_map.get (node);
2349
2350 if (item && *item)
2351 {
2352 int node_ref = lto_symtab_encoder_encode (encoder, node);
2353 streamer_write_uhwi_stream (ob->main_stream, node_ref);
2354
2355 streamer_write_uhwi (ob, (*item)->get_hash ());
2356 }
2357 }
2358
2359 streamer_write_char_stream (ob->main_stream, 0);
2360 produce_asm (ob, NULL);
2361 destroy_output_block (ob);
2362 }
2363
2364 /* Reads a section from LTO stream file FILE_DATA. Input block for DATA
2365 contains LEN bytes. */
2366
2367 void
2368 sem_item_optimizer::read_section (lto_file_decl_data *file_data,
2369 const char *data, size_t len)
2370 {
2371 const lto_function_header *header
2372 = (const lto_function_header *) data;
2373 const int cfg_offset = sizeof (lto_function_header);
2374 const int main_offset = cfg_offset + header->cfg_size;
2375 const int string_offset = main_offset + header->main_size;
2376 data_in *data_in;
2377 unsigned int i;
2378 unsigned int count;
2379
2380 lto_input_block ib_main ((const char *) data + main_offset, 0,
2381 header->main_size, file_data->mode_table);
2382
2383 data_in
2384 = lto_data_in_create (file_data, (const char *) data + string_offset,
2385 header->string_size, vNULL);
2386
2387 count = streamer_read_uhwi (&ib_main);
2388
2389 for (i = 0; i < count; i++)
2390 {
2391 unsigned int index;
2392 symtab_node *node;
2393 lto_symtab_encoder_t encoder;
2394
2395 index = streamer_read_uhwi (&ib_main);
2396 encoder = file_data->symtab_node_encoder;
2397 node = lto_symtab_encoder_deref (encoder, index);
2398
2399 hashval_t hash = streamer_read_uhwi (&ib_main);
2400
2401 gcc_assert (node->definition);
2402
2403 if (dump_file)
2404 fprintf (dump_file, "Symbol added:%s (tree: %p, uid:%u)\n",
2405 node->asm_name (), (void *) node->decl, node->order);
2406
2407 if (is_a<cgraph_node *> (node))
2408 {
2409 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
2410
2411 sem_function *fn = new sem_function (cnode, &m_bmstack);
2412 fn->set_hash (hash);
2413 m_items.safe_push (fn);
2414 }
2415 else
2416 {
2417 varpool_node *vnode = dyn_cast <varpool_node *> (node);
2418
2419 sem_variable *var = new sem_variable (vnode, &m_bmstack);
2420 var->set_hash (hash);
2421 m_items.safe_push (var);
2422 }
2423 }
2424
2425 lto_free_section_data (file_data, LTO_section_ipa_icf, NULL, data,
2426 len);
2427 lto_data_in_delete (data_in);
2428 }
2429
2430 /* Read IPA ICF summary for symbols. */
2431
2432 void
2433 sem_item_optimizer::read_summary (void)
2434 {
2435 lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
2436 lto_file_decl_data *file_data;
2437 unsigned int j = 0;
2438
2439 while ((file_data = file_data_vec[j++]))
2440 {
2441 size_t len;
2442 const char *data = lto_get_section_data (file_data,
2443 LTO_section_ipa_icf, NULL, &len);
2444
2445 if (data)
2446 read_section (file_data, data, len);
2447 }
2448 }
2449
2450 /* Register callgraph and varpool hooks. */
2451
2452 void
2453 sem_item_optimizer::register_hooks (void)
2454 {
2455 if (!m_cgraph_node_hooks)
2456 m_cgraph_node_hooks = symtab->add_cgraph_removal_hook
2457 (&sem_item_optimizer::cgraph_removal_hook, this);
2458
2459 if (!m_varpool_node_hooks)
2460 m_varpool_node_hooks = symtab->add_varpool_removal_hook
2461 (&sem_item_optimizer::varpool_removal_hook, this);
2462 }
2463
2464 /* Unregister callgraph and varpool hooks. */
2465
2466 void
2467 sem_item_optimizer::unregister_hooks (void)
2468 {
2469 if (m_cgraph_node_hooks)
2470 symtab->remove_cgraph_removal_hook (m_cgraph_node_hooks);
2471
2472 if (m_varpool_node_hooks)
2473 symtab->remove_varpool_removal_hook (m_varpool_node_hooks);
2474 }
2475
2476 /* Adds a CLS to hashtable associated by hash value. */
2477
2478 void
2479 sem_item_optimizer::add_class (congruence_class *cls)
2480 {
2481 gcc_assert (cls->members.length ());
2482
2483 congruence_class_group *group
2484 = get_group_by_hash (cls->members[0]->get_hash (),
2485 cls->members[0]->type);
2486 group->classes.safe_push (cls);
2487 }
2488
2489 /* Gets a congruence class group based on given HASH value and TYPE. */
2490
2491 congruence_class_group *
2492 sem_item_optimizer::get_group_by_hash (hashval_t hash, sem_item_type type)
2493 {
2494 congruence_class_group *item = XNEW (congruence_class_group);
2495 item->hash = hash;
2496 item->type = type;
2497
2498 congruence_class_group **slot = m_classes.find_slot (item, INSERT);
2499
2500 if (*slot)
2501 free (item);
2502 else
2503 {
2504 item->classes.create (1);
2505 m_classes_vec.safe_push (item);
2506 *slot = item;
2507 }
2508
2509 return *slot;
2510 }
2511
2512 /* Callgraph removal hook called for a NODE with a custom DATA. */
2513
2514 void
2515 sem_item_optimizer::cgraph_removal_hook (cgraph_node *node, void *data)
2516 {
2517 sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
2518 optimizer->remove_symtab_node (node);
2519 }
2520
2521 /* Varpool removal hook called for a NODE with a custom DATA. */
2522
2523 void
2524 sem_item_optimizer::varpool_removal_hook (varpool_node *node, void *data)
2525 {
2526 sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
2527 optimizer->remove_symtab_node (node);
2528 }
2529
2530 /* Remove symtab NODE triggered by symtab removal hooks. */
2531
2532 void
2533 sem_item_optimizer::remove_symtab_node (symtab_node *node)
2534 {
2535 gcc_assert (!m_classes.elements ());
2536
2537 m_removed_items_set.add (node);
2538 }
2539
2540 void
2541 sem_item_optimizer::remove_item (sem_item *item)
2542 {
2543 if (m_symtab_node_map.get (item->node))
2544 m_symtab_node_map.remove (item->node);
2545 delete item;
2546 }
2547
2548 /* Removes all callgraph and varpool nodes that are marked by symtab
2549 as deleted. */
2550
2551 void
2552 sem_item_optimizer::filter_removed_items (void)
2553 {
2554 auto_vec <sem_item *> filtered;
2555
2556 for (unsigned int i = 0; i < m_items.length(); i++)
2557 {
2558 sem_item *item = m_items[i];
2559
2560 if (m_removed_items_set.contains (item->node))
2561 {
2562 remove_item (item);
2563 continue;
2564 }
2565
2566 if (item->type == FUNC)
2567 {
2568 cgraph_node *cnode = static_cast <sem_function *>(item)->get_node ();
2569
2570 if (in_lto_p && (cnode->alias || cnode->body_removed))
2571 remove_item (item);
2572 else
2573 filtered.safe_push (item);
2574 }
2575 else /* VAR. */
2576 {
2577 if (!flag_ipa_icf_variables)
2578 remove_item (item);
2579 else
2580 {
2581 /* Filter out non-readonly variables. */
2582 tree decl = item->decl;
2583 if (TREE_READONLY (decl))
2584 filtered.safe_push (item);
2585 else
2586 remove_item (item);
2587 }
2588 }
2589 }
2590
2591 /* Clean-up of released semantic items. */
2592
2593 m_items.release ();
2594 for (unsigned int i = 0; i < filtered.length(); i++)
2595 m_items.safe_push (filtered[i]);
2596 }
2597
2598 /* Optimizer entry point which returns true in case it processes
2599 a merge operation. True is returned if there's a merge operation
2600 processed. */
2601
2602 bool
2603 sem_item_optimizer::execute (void)
2604 {
2605 filter_removed_items ();
2606 unregister_hooks ();
2607
2608 build_graph ();
2609 update_hash_by_addr_refs ();
2610 build_hash_based_classes ();
2611
2612 if (dump_file)
2613 fprintf (dump_file, "Dump after hash based groups\n");
2614 dump_cong_classes ();
2615
2616 for (unsigned int i = 0; i < m_items.length(); i++)
2617 m_items[i]->init_wpa ();
2618
2619 subdivide_classes_by_equality (true);
2620
2621 if (dump_file)
2622 fprintf (dump_file, "Dump after WPA based types groups\n");
2623
2624 dump_cong_classes ();
2625
2626 process_cong_reduction ();
2627 checking_verify_classes ();
2628
2629 if (dump_file)
2630 fprintf (dump_file, "Dump after callgraph-based congruence reduction\n");
2631
2632 dump_cong_classes ();
2633
2634 parse_nonsingleton_classes ();
2635 subdivide_classes_by_equality ();
2636
2637 if (dump_file)
2638 fprintf (dump_file, "Dump after full equality comparison of groups\n");
2639
2640 dump_cong_classes ();
2641
2642 unsigned int prev_class_count = m_classes_count;
2643
2644 process_cong_reduction ();
2645 dump_cong_classes ();
2646 checking_verify_classes ();
2647 bool merged_p = merge_classes (prev_class_count);
2648
2649 if (dump_file && (dump_flags & TDF_DETAILS))
2650 symtab_node::dump_table (dump_file);
2651
2652 return merged_p;
2653 }
2654
2655 /* Function responsible for visiting all potential functions and
2656 read-only variables that can be merged. */
2657
2658 void
2659 sem_item_optimizer::parse_funcs_and_vars (void)
2660 {
2661 cgraph_node *cnode;
2662
2663 if (flag_ipa_icf_functions)
2664 FOR_EACH_DEFINED_FUNCTION (cnode)
2665 {
2666 sem_function *f = sem_function::parse (cnode, &m_bmstack);
2667 if (f)
2668 {
2669 m_items.safe_push (f);
2670 m_symtab_node_map.put (cnode, f);
2671
2672 if (dump_file)
2673 fprintf (dump_file, "Parsed function:%s\n", f->node->asm_name ());
2674
2675 if (dump_file && (dump_flags & TDF_DETAILS))
2676 f->dump_to_file (dump_file);
2677 }
2678 else if (dump_file)
2679 fprintf (dump_file, "Not parsed function:%s\n", cnode->asm_name ());
2680 }
2681
2682 varpool_node *vnode;
2683
2684 if (flag_ipa_icf_variables)
2685 FOR_EACH_DEFINED_VARIABLE (vnode)
2686 {
2687 sem_variable *v = sem_variable::parse (vnode, &m_bmstack);
2688
2689 if (v)
2690 {
2691 m_items.safe_push (v);
2692 m_symtab_node_map.put (vnode, v);
2693 }
2694 }
2695 }
2696
2697 /* Makes pairing between a congruence class CLS and semantic ITEM. */
2698
2699 void
2700 sem_item_optimizer::add_item_to_class (congruence_class *cls, sem_item *item)
2701 {
2702 item->index_in_class = cls->members.length ();
2703 cls->members.safe_push (item);
2704 item->cls = cls;
2705 }
2706
2707 /* For each semantic item, append hash values of references. */
2708
2709 void
2710 sem_item_optimizer::update_hash_by_addr_refs ()
2711 {
2712 /* First, append to hash sensitive references and class type if it need to
2713 be matched for ODR. */
2714 for (unsigned i = 0; i < m_items.length (); i++)
2715 {
2716 m_items[i]->update_hash_by_addr_refs (m_symtab_node_map);
2717 if (m_items[i]->type == FUNC)
2718 {
2719 if (TREE_CODE (TREE_TYPE (m_items[i]->decl)) == METHOD_TYPE
2720 && contains_polymorphic_type_p
2721 (TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl)))
2722 && (DECL_CXX_CONSTRUCTOR_P (m_items[i]->decl)
2723 || (static_cast<sem_function *> (m_items[i])->param_used_p (0)
2724 && static_cast<sem_function *> (m_items[i])
2725 ->compare_polymorphic_p ())))
2726 {
2727 tree class_type
2728 = TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl));
2729 inchash::hash hstate (m_items[i]->get_hash ());
2730
2731 if (TYPE_NAME (class_type)
2732 && DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (class_type)))
2733 hstate.add_wide_int
2734 (IDENTIFIER_HASH_VALUE
2735 (DECL_ASSEMBLER_NAME (TYPE_NAME (class_type))));
2736
2737 m_items[i]->set_hash (hstate.end ());
2738 }
2739 }
2740 }
2741
2742 /* Once all symbols have enhanced hash value, we can append
2743 hash values of symbols that are seen by IPA ICF and are
2744 references by a semantic item. Newly computed values
2745 are saved to global_hash member variable. */
2746 for (unsigned i = 0; i < m_items.length (); i++)
2747 m_items[i]->update_hash_by_local_refs (m_symtab_node_map);
2748
2749 /* Global hash value replace current hash values. */
2750 for (unsigned i = 0; i < m_items.length (); i++)
2751 m_items[i]->set_hash (m_items[i]->global_hash);
2752 }
2753
2754 /* Congruence classes are built by hash value. */
2755
2756 void
2757 sem_item_optimizer::build_hash_based_classes (void)
2758 {
2759 for (unsigned i = 0; i < m_items.length (); i++)
2760 {
2761 sem_item *item = m_items[i];
2762
2763 congruence_class_group *group
2764 = get_group_by_hash (item->get_hash (), item->type);
2765
2766 if (!group->classes.length ())
2767 {
2768 m_classes_count++;
2769 group->classes.safe_push (new congruence_class (class_id++));
2770 }
2771
2772 add_item_to_class (group->classes[0], item);
2773 }
2774 }
2775
2776 /* Build references according to call graph. */
2777
2778 void
2779 sem_item_optimizer::build_graph (void)
2780 {
2781 for (unsigned i = 0; i < m_items.length (); i++)
2782 {
2783 sem_item *item = m_items[i];
2784 m_symtab_node_map.put (item->node, item);
2785
2786 /* Initialize hash values if we are not in LTO mode. */
2787 if (!in_lto_p)
2788 item->get_hash ();
2789 }
2790
2791 for (unsigned i = 0; i < m_items.length (); i++)
2792 {
2793 sem_item *item = m_items[i];
2794
2795 if (item->type == FUNC)
2796 {
2797 cgraph_node *cnode = dyn_cast <cgraph_node *> (item->node);
2798
2799 cgraph_edge *e = cnode->callees;
2800 while (e)
2801 {
2802 sem_item **slot = m_symtab_node_map.get
2803 (e->callee->ultimate_alias_target ());
2804 if (slot)
2805 item->add_reference (*slot);
2806
2807 e = e->next_callee;
2808 }
2809 }
2810
2811 ipa_ref *ref = NULL;
2812 for (unsigned i = 0; item->node->iterate_reference (i, ref); i++)
2813 {
2814 sem_item **slot = m_symtab_node_map.get
2815 (ref->referred->ultimate_alias_target ());
2816 if (slot)
2817 item->add_reference (*slot);
2818 }
2819 }
2820 }
2821
2822 /* Semantic items in classes having more than one element and initialized.
2823 In case of WPA, we load function body. */
2824
2825 void
2826 sem_item_optimizer::parse_nonsingleton_classes (void)
2827 {
2828 unsigned int init_called_count = 0;
2829
2830 for (unsigned i = 0; i < m_items.length (); i++)
2831 if (m_items[i]->cls->members.length () > 1)
2832 {
2833 m_items[i]->init ();
2834 init_called_count++;
2835 }
2836
2837 if (dump_file)
2838 fprintf (dump_file, "Init called for %u items (%.2f%%).\n",
2839 init_called_count,
2840 m_items.length () ? 100.0f * init_called_count / m_items.length ()
2841 : 0.0f);
2842 }
2843
2844 /* Equality function for semantic items is used to subdivide existing
2845 classes. If IN_WPA, fast equality function is invoked. */
2846
2847 void
2848 sem_item_optimizer::subdivide_classes_by_equality (bool in_wpa)
2849 {
2850 unsigned int l;
2851 congruence_class_group *it;
2852 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
2853 {
2854 unsigned int class_count = it->classes.length ();
2855
2856 for (unsigned i = 0; i < class_count; i++)
2857 {
2858 congruence_class *c = it->classes[i];
2859
2860 if (c->members.length() > 1)
2861 {
2862 auto_vec <sem_item *> new_vector;
2863
2864 sem_item *first = c->members[0];
2865 new_vector.safe_push (first);
2866
2867 unsigned class_split_first = it->classes.length ();
2868
2869 for (unsigned j = 1; j < c->members.length (); j++)
2870 {
2871 sem_item *item = c->members[j];
2872
2873 bool equals
2874 = in_wpa ? first->equals_wpa (item, m_symtab_node_map)
2875 : first->equals (item, m_symtab_node_map);
2876
2877 if (equals)
2878 new_vector.safe_push (item);
2879 else
2880 {
2881 bool integrated = false;
2882
2883 for (unsigned k = class_split_first;
2884 k < it->classes.length (); k++)
2885 {
2886 sem_item *x = it->classes[k]->members[0];
2887 bool equals
2888 = in_wpa ? x->equals_wpa (item, m_symtab_node_map)
2889 : x->equals (item, m_symtab_node_map);
2890
2891 if (equals)
2892 {
2893 integrated = true;
2894 add_item_to_class (it->classes[k], item);
2895
2896 break;
2897 }
2898 }
2899
2900 if (!integrated)
2901 {
2902 congruence_class *c
2903 = new congruence_class (class_id++);
2904 m_classes_count++;
2905 add_item_to_class (c, item);
2906
2907 it->classes.safe_push (c);
2908 }
2909 }
2910 }
2911
2912 // We replace newly created new_vector for the class we've just
2913 // splitted.
2914 c->members.release ();
2915 c->members.create (new_vector.length ());
2916
2917 for (unsigned int j = 0; j < new_vector.length (); j++)
2918 add_item_to_class (c, new_vector[j]);
2919 }
2920 }
2921 }
2922
2923 checking_verify_classes ();
2924 }
2925
2926 /* Subdivide classes by address references that members of the class
2927 reference. Example can be a pair of functions that have an address
2928 taken from a function. If these addresses are different the class
2929 is split. */
2930
2931 unsigned
2932 sem_item_optimizer::subdivide_classes_by_sensitive_refs ()
2933 {
2934 typedef hash_map <symbol_compare_hash, vec <sem_item *> > subdivide_hash_map;
2935
2936 unsigned newly_created_classes = 0;
2937
2938 unsigned int l;
2939 congruence_class_group *it;
2940 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
2941 {
2942 unsigned int class_count = it->classes.length ();
2943 auto_vec<congruence_class *> new_classes;
2944
2945 for (unsigned i = 0; i < class_count; i++)
2946 {
2947 congruence_class *c = it->classes[i];
2948
2949 if (c->members.length() > 1)
2950 {
2951 subdivide_hash_map split_map;
2952
2953 for (unsigned j = 0; j < c->members.length (); j++)
2954 {
2955 sem_item *source_node = c->members[j];
2956
2957 symbol_compare_collection *collection
2958 = new symbol_compare_collection (source_node->node);
2959
2960 bool existed;
2961 vec <sem_item *> *slot
2962 = &split_map.get_or_insert (collection, &existed);
2963 gcc_checking_assert (slot);
2964
2965 slot->safe_push (source_node);
2966
2967 if (existed)
2968 delete collection;
2969 }
2970
2971 /* If the map contains more than one key, we have to split
2972 the map appropriately. */
2973 if (split_map.elements () != 1)
2974 {
2975 bool first_class = true;
2976
2977 for (subdivide_hash_map::iterator it2 = split_map.begin ();
2978 it2 != split_map.end (); ++it2)
2979 {
2980 congruence_class *new_cls;
2981 new_cls = new congruence_class (class_id++);
2982
2983 for (unsigned k = 0; k < (*it2).second.length (); k++)
2984 add_item_to_class (new_cls, (*it2).second[k]);
2985
2986 worklist_push (new_cls);
2987 newly_created_classes++;
2988
2989 if (first_class)
2990 {
2991 it->classes[i] = new_cls;
2992 first_class = false;
2993 }
2994 else
2995 {
2996 new_classes.safe_push (new_cls);
2997 m_classes_count++;
2998 }
2999 }
3000 }
3001
3002 /* Release memory. */
3003 for (subdivide_hash_map::iterator it2 = split_map.begin ();
3004 it2 != split_map.end (); ++it2)
3005 {
3006 delete (*it2).first;
3007 (*it2).second.release ();
3008 }
3009 }
3010 }
3011
3012 for (unsigned i = 0; i < new_classes.length (); i++)
3013 it->classes.safe_push (new_classes[i]);
3014 }
3015
3016 return newly_created_classes;
3017 }
3018
3019 /* Verify congruence classes, if checking is enabled. */
3020
3021 void
3022 sem_item_optimizer::checking_verify_classes (void)
3023 {
3024 if (flag_checking)
3025 verify_classes ();
3026 }
3027
3028 /* Verify congruence classes. */
3029
3030 void
3031 sem_item_optimizer::verify_classes (void)
3032 {
3033 unsigned int l;
3034 congruence_class_group *it;
3035 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
3036 {
3037 for (unsigned int i = 0; i < it->classes.length (); i++)
3038 {
3039 congruence_class *cls = it->classes[i];
3040
3041 gcc_assert (cls);
3042 gcc_assert (cls->members.length () > 0);
3043
3044 for (unsigned int j = 0; j < cls->members.length (); j++)
3045 {
3046 sem_item *item = cls->members[j];
3047
3048 gcc_assert (item);
3049 gcc_assert (item->cls == cls);
3050
3051 for (unsigned k = 0; k < item->usages.length (); k++)
3052 {
3053 sem_usage_pair *usage = item->usages[k];
3054 gcc_assert (usage->item->index_in_class
3055 < usage->item->cls->members.length ());
3056 }
3057 }
3058 }
3059 }
3060 }
3061
3062 /* Disposes split map traverse function. CLS_PTR is pointer to congruence
3063 class, BSLOT is bitmap slot we want to release. DATA is mandatory,
3064 but unused argument. */
3065
3066 bool
3067 sem_item_optimizer::release_split_map (congruence_class * const &,
3068 bitmap const &b, traverse_split_pair *)
3069 {
3070 bitmap bmp = b;
3071
3072 BITMAP_FREE (bmp);
3073
3074 return true;
3075 }
3076
3077 /* Process split operation for a class given as pointer CLS_PTR,
3078 where bitmap B splits congruence class members. DATA is used
3079 as argument of split pair. */
3080
3081 bool
3082 sem_item_optimizer::traverse_congruence_split (congruence_class * const &cls,
3083 bitmap const &b,
3084 traverse_split_pair *pair)
3085 {
3086 sem_item_optimizer *optimizer = pair->optimizer;
3087 const congruence_class *splitter_cls = pair->cls;
3088
3089 /* If counted bits are greater than zero and less than the number of members
3090 a group will be splitted. */
3091 unsigned popcount = bitmap_count_bits (b);
3092
3093 if (popcount > 0 && popcount < cls->members.length ())
3094 {
3095 auto_vec <congruence_class *, 2> newclasses;
3096 newclasses.quick_push (new congruence_class (class_id++));
3097 newclasses.quick_push (new congruence_class (class_id++));
3098
3099 for (unsigned int i = 0; i < cls->members.length (); i++)
3100 {
3101 int target = bitmap_bit_p (b, i);
3102 congruence_class *tc = newclasses[target];
3103
3104 add_item_to_class (tc, cls->members[i]);
3105 }
3106
3107 if (flag_checking)
3108 {
3109 for (unsigned int i = 0; i < 2; i++)
3110 gcc_assert (newclasses[i]->members.length ());
3111 }
3112
3113 if (splitter_cls == cls)
3114 optimizer->splitter_class_removed = true;
3115
3116 /* Remove old class from worklist if presented. */
3117 bool in_worklist = cls->in_worklist;
3118
3119 if (in_worklist)
3120 cls->in_worklist = false;
3121
3122 congruence_class_group g;
3123 g.hash = cls->members[0]->get_hash ();
3124 g.type = cls->members[0]->type;
3125
3126 congruence_class_group *slot = optimizer->m_classes.find (&g);
3127
3128 for (unsigned int i = 0; i < slot->classes.length (); i++)
3129 if (slot->classes[i] == cls)
3130 {
3131 slot->classes.ordered_remove (i);
3132 break;
3133 }
3134
3135 /* New class will be inserted and integrated to work list. */
3136 for (unsigned int i = 0; i < 2; i++)
3137 optimizer->add_class (newclasses[i]);
3138
3139 /* Two classes replace one, so that increment just by one. */
3140 optimizer->m_classes_count++;
3141
3142 /* If OLD class was presented in the worklist, we remove the class
3143 and replace it will both newly created classes. */
3144 if (in_worklist)
3145 for (unsigned int i = 0; i < 2; i++)
3146 optimizer->worklist_push (newclasses[i]);
3147 else /* Just smaller class is inserted. */
3148 {
3149 unsigned int smaller_index
3150 = (newclasses[0]->members.length ()
3151 < newclasses[1]->members.length ()
3152 ? 0 : 1);
3153 optimizer->worklist_push (newclasses[smaller_index]);
3154 }
3155
3156 if (dump_file && (dump_flags & TDF_DETAILS))
3157 {
3158 fprintf (dump_file, " congruence class splitted:\n");
3159 cls->dump (dump_file, 4);
3160
3161 fprintf (dump_file, " newly created groups:\n");
3162 for (unsigned int i = 0; i < 2; i++)
3163 newclasses[i]->dump (dump_file, 4);
3164 }
3165
3166 /* Release class if not presented in work list. */
3167 if (!in_worklist)
3168 delete cls;
3169 }
3170
3171
3172 return true;
3173 }
3174
3175 /* Tests if a class CLS used as INDEXth splits any congruence classes.
3176 Bitmap stack BMSTACK is used for bitmap allocation. */
3177
3178 void
3179 sem_item_optimizer::do_congruence_step_for_index (congruence_class *cls,
3180 unsigned int index)
3181 {
3182 hash_map <congruence_class *, bitmap> split_map;
3183
3184 for (unsigned int i = 0; i < cls->members.length (); i++)
3185 {
3186 sem_item *item = cls->members[i];
3187
3188 /* Iterate all usages that have INDEX as usage of the item. */
3189 for (unsigned int j = 0; j < item->usages.length (); j++)
3190 {
3191 sem_usage_pair *usage = item->usages[j];
3192
3193 if (usage->index != index)
3194 continue;
3195
3196 bitmap *slot = split_map.get (usage->item->cls);
3197 bitmap b;
3198
3199 if(!slot)
3200 {
3201 b = BITMAP_ALLOC (&m_bmstack);
3202 split_map.put (usage->item->cls, b);
3203 }
3204 else
3205 b = *slot;
3206
3207 gcc_checking_assert (usage->item->cls);
3208 gcc_checking_assert (usage->item->index_in_class
3209 < usage->item->cls->members.length ());
3210
3211 bitmap_set_bit (b, usage->item->index_in_class);
3212 }
3213 }
3214
3215 traverse_split_pair pair;
3216 pair.optimizer = this;
3217 pair.cls = cls;
3218
3219 splitter_class_removed = false;
3220 split_map.traverse <traverse_split_pair *,
3221 sem_item_optimizer::traverse_congruence_split> (&pair);
3222
3223 /* Bitmap clean-up. */
3224 split_map.traverse <traverse_split_pair *,
3225 sem_item_optimizer::release_split_map> (NULL);
3226 }
3227
3228 /* Every usage of a congruence class CLS is a candidate that can split the
3229 collection of classes. Bitmap stack BMSTACK is used for bitmap
3230 allocation. */
3231
3232 void
3233 sem_item_optimizer::do_congruence_step (congruence_class *cls)
3234 {
3235 bitmap_iterator bi;
3236 unsigned int i;
3237
3238 bitmap usage = BITMAP_ALLOC (&m_bmstack);
3239
3240 for (unsigned int i = 0; i < cls->members.length (); i++)
3241 bitmap_ior_into (usage, cls->members[i]->usage_index_bitmap);
3242
3243 EXECUTE_IF_SET_IN_BITMAP (usage, 0, i, bi)
3244 {
3245 if (dump_file && (dump_flags & TDF_DETAILS))
3246 fprintf (dump_file, " processing congruence step for class: %u, "
3247 "index: %u\n", cls->id, i);
3248
3249 do_congruence_step_for_index (cls, i);
3250
3251 if (splitter_class_removed)
3252 break;
3253 }
3254
3255 BITMAP_FREE (usage);
3256 }
3257
3258 /* Adds a newly created congruence class CLS to worklist. */
3259
3260 void
3261 sem_item_optimizer::worklist_push (congruence_class *cls)
3262 {
3263 /* Return if the class CLS is already presented in work list. */
3264 if (cls->in_worklist)
3265 return;
3266
3267 cls->in_worklist = true;
3268 worklist.push_back (cls);
3269 }
3270
3271 /* Pops a class from worklist. */
3272
3273 congruence_class *
3274 sem_item_optimizer::worklist_pop (void)
3275 {
3276 congruence_class *cls;
3277
3278 while (!worklist.empty ())
3279 {
3280 cls = worklist.front ();
3281 worklist.pop_front ();
3282 if (cls->in_worklist)
3283 {
3284 cls->in_worklist = false;
3285
3286 return cls;
3287 }
3288 else
3289 {
3290 /* Work list item was already intended to be removed.
3291 The only reason for doing it is to split a class.
3292 Thus, the class CLS is deleted. */
3293 delete cls;
3294 }
3295 }
3296
3297 return NULL;
3298 }
3299
3300 /* Iterative congruence reduction function. */
3301
3302 void
3303 sem_item_optimizer::process_cong_reduction (void)
3304 {
3305 unsigned int l;
3306 congruence_class_group *it;
3307 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
3308 for (unsigned i = 0; i < it->classes.length (); i++)
3309 if (it->classes[i]->is_class_used ())
3310 worklist_push (it->classes[i]);
3311
3312 if (dump_file)
3313 fprintf (dump_file, "Worklist has been filled with: %lu\n",
3314 (unsigned long) worklist.size ());
3315
3316 if (dump_file && (dump_flags & TDF_DETAILS))
3317 fprintf (dump_file, "Congruence class reduction\n");
3318
3319 congruence_class *cls;
3320
3321 /* Process complete congruence reduction. */
3322 while ((cls = worklist_pop ()) != NULL)
3323 do_congruence_step (cls);
3324
3325 /* Subdivide newly created classes according to references. */
3326 unsigned new_classes = subdivide_classes_by_sensitive_refs ();
3327
3328 if (dump_file)
3329 fprintf (dump_file, "Address reference subdivision created: %u "
3330 "new classes.\n", new_classes);
3331 }
3332
3333 /* Debug function prints all informations about congruence classes. */
3334
3335 void
3336 sem_item_optimizer::dump_cong_classes (void)
3337 {
3338 if (!dump_file)
3339 return;
3340
3341 fprintf (dump_file,
3342 "Congruence classes: %u (unique hash values: %lu), with total: "
3343 "%u items\n", m_classes_count,
3344 (unsigned long) m_classes.elements (), m_items.length ());
3345
3346 /* Histogram calculation. */
3347 unsigned int max_index = 0;
3348 unsigned int* histogram = XCNEWVEC (unsigned int, m_items.length () + 1);
3349
3350 unsigned int l;
3351 congruence_class_group *it;
3352 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
3353 for (unsigned i = 0; i < it->classes.length (); i++)
3354 {
3355 unsigned int c = it->classes[i]->members.length ();
3356 histogram[c]++;
3357
3358 if (c > max_index)
3359 max_index = c;
3360 }
3361
3362 fprintf (dump_file,
3363 "Class size histogram [num of members]: number of classe number "
3364 "of classess\n");
3365
3366 for (unsigned int i = 0; i <= max_index; i++)
3367 if (histogram[i])
3368 fprintf (dump_file, "[%u]: %u classes\n", i, histogram[i]);
3369
3370 fprintf (dump_file, "\n\n");
3371
3372
3373 if (dump_flags & TDF_DETAILS)
3374 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
3375 {
3376 fprintf (dump_file, " group: with %u classes:\n",
3377 it->classes.length ());
3378
3379 for (unsigned i = 0; i < it->classes.length (); i++)
3380 {
3381 it->classes[i]->dump (dump_file, 4);
3382
3383 if (i < it->classes.length () - 1)
3384 fprintf (dump_file, " ");
3385 }
3386 }
3387
3388 free (histogram);
3389 }
3390
3391 /* After reduction is done, we can declare all items in a group
3392 to be equal. PREV_CLASS_COUNT is start number of classes
3393 before reduction. True is returned if there's a merge operation
3394 processed. */
3395
3396 bool
3397 sem_item_optimizer::merge_classes (unsigned int prev_class_count)
3398 {
3399 unsigned int item_count = m_items.length ();
3400 unsigned int class_count = m_classes_count;
3401 unsigned int equal_items = item_count - class_count;
3402
3403 unsigned int non_singular_classes_count = 0;
3404 unsigned int non_singular_classes_sum = 0;
3405
3406 bool merged_p = false;
3407
3408 unsigned int l;
3409 congruence_class_group *it;
3410 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
3411 for (unsigned int i = 0; i < it->classes.length (); i++)
3412 {
3413 congruence_class *c = it->classes[i];
3414 if (c->members.length () > 1)
3415 {
3416 non_singular_classes_count++;
3417 non_singular_classes_sum += c->members.length ();
3418 }
3419 }
3420
3421 if (dump_file)
3422 {
3423 fprintf (dump_file, "\nItem count: %u\n", item_count);
3424 fprintf (dump_file, "Congruent classes before: %u, after: %u\n",
3425 prev_class_count, class_count);
3426 fprintf (dump_file, "Average class size before: %.2f, after: %.2f\n",
3427 prev_class_count ? 1.0f * item_count / prev_class_count : 0.0f,
3428 class_count ? 1.0f * item_count / class_count : 0.0f);
3429 fprintf (dump_file, "Average non-singular class size: %.2f, count: %u\n",
3430 non_singular_classes_count ? 1.0f * non_singular_classes_sum /
3431 non_singular_classes_count : 0.0f,
3432 non_singular_classes_count);
3433 fprintf (dump_file, "Equal symbols: %u\n", equal_items);
3434 fprintf (dump_file, "Fraction of visited symbols: %.2f%%\n\n",
3435 item_count ? 100.0f * equal_items / item_count : 0.0f);
3436 }
3437
3438 FOR_EACH_VEC_ELT (m_classes_vec, l, it)
3439 for (unsigned int i = 0; i < it->classes.length (); i++)
3440 {
3441 congruence_class *c = it->classes[i];
3442
3443 if (c->members.length () == 1)
3444 continue;
3445
3446 sem_item *source = c->members[0];
3447
3448 if (DECL_NAME (source->decl)
3449 && MAIN_NAME_P (DECL_NAME (source->decl)))
3450 /* If merge via wrappers, picking main as the target can be
3451 problematic. */
3452 source = c->members[1];
3453
3454 for (unsigned int j = 0; j < c->members.length (); j++)
3455 {
3456 sem_item *alias = c->members[j];
3457
3458 if (alias == source)
3459 continue;
3460
3461 if (dump_file)
3462 {
3463 fprintf (dump_file, "Semantic equality hit:%s->%s\n",
3464 xstrdup_for_dump (source->node->name ()),
3465 xstrdup_for_dump (alias->node->name ()));
3466 fprintf (dump_file, "Assembler symbol names:%s->%s\n",
3467 xstrdup_for_dump (source->node->asm_name ()),
3468 xstrdup_for_dump (alias->node->asm_name ()));
3469 }
3470
3471 if (lookup_attribute ("no_icf", DECL_ATTRIBUTES (alias->decl)))
3472 {
3473 if (dump_file)
3474 fprintf (dump_file,
3475 "Merge operation is skipped due to no_icf "
3476 "attribute.\n\n");
3477
3478 continue;
3479 }
3480
3481 if (dump_file && (dump_flags & TDF_DETAILS))
3482 {
3483 source->dump_to_file (dump_file);
3484 alias->dump_to_file (dump_file);
3485 }
3486
3487 if (dbg_cnt (merged_ipa_icf))
3488 merged_p |= source->merge (alias);
3489 }
3490 }
3491
3492 return merged_p;
3493 }
3494
3495 /* Dump function prints all class members to a FILE with an INDENT. */
3496
3497 void
3498 congruence_class::dump (FILE *file, unsigned int indent) const
3499 {
3500 FPRINTF_SPACES (file, indent, "class with id: %u, hash: %u, items: %u\n",
3501 id, members[0]->get_hash (), members.length ());
3502
3503 FPUTS_SPACES (file, indent + 2, "");
3504 for (unsigned i = 0; i < members.length (); i++)
3505 fprintf (file, "%s(%p/%u) ", members[i]->node->asm_name (),
3506 (void *) members[i]->decl,
3507 members[i]->node->order);
3508
3509 fprintf (file, "\n");
3510 }
3511
3512 /* Returns true if there's a member that is used from another group. */
3513
3514 bool
3515 congruence_class::is_class_used (void)
3516 {
3517 for (unsigned int i = 0; i < members.length (); i++)
3518 if (members[i]->usages.length ())
3519 return true;
3520
3521 return false;
3522 }
3523
3524 /* Generate pass summary for IPA ICF pass. */
3525
3526 static void
3527 ipa_icf_generate_summary (void)
3528 {
3529 if (!optimizer)
3530 optimizer = new sem_item_optimizer ();
3531
3532 optimizer->register_hooks ();
3533 optimizer->parse_funcs_and_vars ();
3534 }
3535
3536 /* Write pass summary for IPA ICF pass. */
3537
3538 static void
3539 ipa_icf_write_summary (void)
3540 {
3541 gcc_assert (optimizer);
3542
3543 optimizer->write_summary ();
3544 }
3545
3546 /* Read pass summary for IPA ICF pass. */
3547
3548 static void
3549 ipa_icf_read_summary (void)
3550 {
3551 if (!optimizer)
3552 optimizer = new sem_item_optimizer ();
3553
3554 optimizer->read_summary ();
3555 optimizer->register_hooks ();
3556 }
3557
3558 /* Semantic equality exection function. */
3559
3560 static unsigned int
3561 ipa_icf_driver (void)
3562 {
3563 gcc_assert (optimizer);
3564
3565 bool merged_p = optimizer->execute ();
3566
3567 delete optimizer;
3568 optimizer = NULL;
3569
3570 return merged_p ? TODO_remove_functions : 0;
3571 }
3572
3573 const pass_data pass_data_ipa_icf =
3574 {
3575 IPA_PASS, /* type */
3576 "icf", /* name */
3577 OPTGROUP_IPA, /* optinfo_flags */
3578 TV_IPA_ICF, /* tv_id */
3579 0, /* properties_required */
3580 0, /* properties_provided */
3581 0, /* properties_destroyed */
3582 0, /* todo_flags_start */
3583 0, /* todo_flags_finish */
3584 };
3585
3586 class pass_ipa_icf : public ipa_opt_pass_d
3587 {
3588 public:
3589 pass_ipa_icf (gcc::context *ctxt)
3590 : ipa_opt_pass_d (pass_data_ipa_icf, ctxt,
3591 ipa_icf_generate_summary, /* generate_summary */
3592 ipa_icf_write_summary, /* write_summary */
3593 ipa_icf_read_summary, /* read_summary */
3594 NULL, /*
3595 write_optimization_summary */
3596 NULL, /*
3597 read_optimization_summary */
3598 NULL, /* stmt_fixup */
3599 0, /* function_transform_todo_flags_start */
3600 NULL, /* function_transform */
3601 NULL) /* variable_transform */
3602 {}
3603
3604 /* opt_pass methods: */
3605 virtual bool gate (function *)
3606 {
3607 return in_lto_p || flag_ipa_icf_variables || flag_ipa_icf_functions;
3608 }
3609
3610 virtual unsigned int execute (function *)
3611 {
3612 return ipa_icf_driver();
3613 }
3614 }; // class pass_ipa_icf
3615
3616 } // ipa_icf namespace
3617
3618 ipa_opt_pass_d *
3619 make_pass_ipa_icf (gcc::context *ctxt)
3620 {
3621 return new ipa_icf::pass_ipa_icf (ctxt);
3622 }