gcc/testsuite/
[gcc.git] / gcc / ipa-inline.c
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Inlining decision heuristics
22
23 The implementation of inliner is organized as follows:
24
25 inlining heuristics limits
26
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
30
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
35
36 inlining heuristics
37
38 The inliner itself is split into two passes:
39
40 pass_early_inlining
41
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
45
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
52
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
56
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
61
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
67
68 pass_ipa_inline
69
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
72
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
76
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
81
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
87
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
91
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "tm.h"
96 #include "tree.h"
97 #include "trans-mem.h"
98 #include "calls.h"
99 #include "tree-inline.h"
100 #include "langhooks.h"
101 #include "flags.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "params.h"
105 #include "fibheap.h"
106 #include "intl.h"
107 #include "tree-pass.h"
108 #include "coverage.h"
109 #include "rtl.h"
110 #include "bitmap.h"
111 #include "basic-block.h"
112 #include "tree-ssa-alias.h"
113 #include "internal-fn.h"
114 #include "gimple-expr.h"
115 #include "is-a.h"
116 #include "gimple.h"
117 #include "gimple-ssa.h"
118 #include "ipa-prop.h"
119 #include "except.h"
120 #include "target.h"
121 #include "ipa-inline.h"
122 #include "ipa-utils.h"
123 #include "sreal.h"
124 #include "cilk.h"
125 #include "builtins.h"
126
127 /* Statistics we collect about inlining algorithm. */
128 static int overall_size;
129 static gcov_type max_count;
130 static sreal max_count_real, max_relbenefit_real, half_int_min_real;
131 static gcov_type spec_rem;
132
133 /* Return false when inlining edge E would lead to violating
134 limits on function unit growth or stack usage growth.
135
136 The relative function body growth limit is present generally
137 to avoid problems with non-linear behavior of the compiler.
138 To allow inlining huge functions into tiny wrapper, the limit
139 is always based on the bigger of the two functions considered.
140
141 For stack growth limits we always base the growth in stack usage
142 of the callers. We want to prevent applications from segfaulting
143 on stack overflow when functions with huge stack frames gets
144 inlined. */
145
146 static bool
147 caller_growth_limits (struct cgraph_edge *e)
148 {
149 struct cgraph_node *to = e->caller;
150 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
151 int newsize;
152 int limit = 0;
153 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
154 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
155
156 /* Look for function e->caller is inlined to. While doing
157 so work out the largest function body on the way. As
158 described above, we want to base our function growth
159 limits based on that. Not on the self size of the
160 outer function, not on the self size of inline code
161 we immediately inline to. This is the most relaxed
162 interpretation of the rule "do not grow large functions
163 too much in order to prevent compiler from exploding". */
164 while (true)
165 {
166 info = inline_summary (to);
167 if (limit < info->self_size)
168 limit = info->self_size;
169 if (stack_size_limit < info->estimated_self_stack_size)
170 stack_size_limit = info->estimated_self_stack_size;
171 if (to->global.inlined_to)
172 to = to->callers->caller;
173 else
174 break;
175 }
176
177 what_info = inline_summary (what);
178
179 if (limit < what_info->self_size)
180 limit = what_info->self_size;
181
182 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
183
184 /* Check the size after inlining against the function limits. But allow
185 the function to shrink if it went over the limits by forced inlining. */
186 newsize = estimate_size_after_inlining (to, e);
187 if (newsize >= info->size
188 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
189 && newsize > limit)
190 {
191 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
192 return false;
193 }
194
195 if (!what_info->estimated_stack_size)
196 return true;
197
198 /* FIXME: Stack size limit often prevents inlining in Fortran programs
199 due to large i/o datastructures used by the Fortran front-end.
200 We ought to ignore this limit when we know that the edge is executed
201 on every invocation of the caller (i.e. its call statement dominates
202 exit block). We do not track this information, yet. */
203 stack_size_limit += ((gcov_type)stack_size_limit
204 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
205
206 inlined_stack = (outer_info->stack_frame_offset
207 + outer_info->estimated_self_stack_size
208 + what_info->estimated_stack_size);
209 /* Check new stack consumption with stack consumption at the place
210 stack is used. */
211 if (inlined_stack > stack_size_limit
212 /* If function already has large stack usage from sibling
213 inline call, we can inline, too.
214 This bit overoptimistically assume that we are good at stack
215 packing. */
216 && inlined_stack > info->estimated_stack_size
217 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
218 {
219 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
220 return false;
221 }
222 return true;
223 }
224
225 /* Dump info about why inlining has failed. */
226
227 static void
228 report_inline_failed_reason (struct cgraph_edge *e)
229 {
230 if (dump_file)
231 {
232 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
233 xstrdup (e->caller->name ()), e->caller->order,
234 xstrdup (e->callee->name ()), e->callee->order,
235 cgraph_inline_failed_string (e->inline_failed));
236 }
237 }
238
239 /* Decide whether sanitizer-related attributes allow inlining. */
240
241 static bool
242 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
243 {
244 /* Don't care if sanitizer is disabled */
245 if (!(flag_sanitize & SANITIZE_ADDRESS))
246 return true;
247
248 if (!caller || !callee)
249 return true;
250
251 return !!lookup_attribute ("no_sanitize_address",
252 DECL_ATTRIBUTES (caller)) ==
253 !!lookup_attribute ("no_sanitize_address",
254 DECL_ATTRIBUTES (callee));
255 }
256
257 /* Decide if we can inline the edge and possibly update
258 inline_failed reason.
259 We check whether inlining is possible at all and whether
260 caller growth limits allow doing so.
261
262 if REPORT is true, output reason to the dump file.
263
264 if DISREGARD_LIMITS is true, ignore size limits.*/
265
266 static bool
267 can_inline_edge_p (struct cgraph_edge *e, bool report,
268 bool disregard_limits = false)
269 {
270 bool inlinable = true;
271 enum availability avail;
272 struct cgraph_node *callee
273 = cgraph_function_or_thunk_node (e->callee, &avail);
274 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
275 tree callee_tree
276 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
277 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->decl);
278 struct function *callee_cfun
279 = callee ? DECL_STRUCT_FUNCTION (callee->decl) : NULL;
280
281 if (!caller_cfun && e->caller->clone_of)
282 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->decl);
283
284 if (!callee_cfun && callee && callee->clone_of)
285 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->decl);
286
287 gcc_assert (e->inline_failed);
288
289 if (!callee || !callee->definition)
290 {
291 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
292 inlinable = false;
293 }
294 else if (callee->calls_comdat_local)
295 {
296 e->inline_failed = CIF_USES_COMDAT_LOCAL;
297 inlinable = false;
298 }
299 else if (!inline_summary (callee)->inlinable
300 || (caller_cfun && fn_contains_cilk_spawn_p (caller_cfun)))
301 {
302 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
303 inlinable = false;
304 }
305 else if (avail <= AVAIL_OVERWRITABLE)
306 {
307 e->inline_failed = CIF_OVERWRITABLE;
308 inlinable = false;
309 }
310 else if (e->call_stmt_cannot_inline_p)
311 {
312 if (e->inline_failed != CIF_FUNCTION_NOT_OPTIMIZED)
313 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
314 inlinable = false;
315 }
316 /* Don't inline if the functions have different EH personalities. */
317 else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
318 && DECL_FUNCTION_PERSONALITY (callee->decl)
319 && (DECL_FUNCTION_PERSONALITY (e->caller->decl)
320 != DECL_FUNCTION_PERSONALITY (callee->decl)))
321 {
322 e->inline_failed = CIF_EH_PERSONALITY;
323 inlinable = false;
324 }
325 /* TM pure functions should not be inlined into non-TM_pure
326 functions. */
327 else if (is_tm_pure (callee->decl)
328 && !is_tm_pure (e->caller->decl))
329 {
330 e->inline_failed = CIF_UNSPECIFIED;
331 inlinable = false;
332 }
333 /* Don't inline if the callee can throw non-call exceptions but the
334 caller cannot.
335 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
336 Move the flag into cgraph node or mirror it in the inline summary. */
337 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
338 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
339 {
340 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
341 inlinable = false;
342 }
343 /* Check compatibility of target optimization options. */
344 else if (!targetm.target_option.can_inline_p (e->caller->decl,
345 callee->decl))
346 {
347 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
348 inlinable = false;
349 }
350 /* Don't inline a function with mismatched sanitization attributes. */
351 else if (!sanitize_attrs_match_for_inline_p (e->caller->decl, callee->decl))
352 {
353 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
354 inlinable = false;
355 }
356 /* Check if caller growth allows the inlining. */
357 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
358 && !disregard_limits
359 && !lookup_attribute ("flatten",
360 DECL_ATTRIBUTES
361 (e->caller->global.inlined_to
362 ? e->caller->global.inlined_to->decl
363 : e->caller->decl))
364 && !caller_growth_limits (e))
365 inlinable = false;
366 /* Don't inline a function with a higher optimization level than the
367 caller. FIXME: this is really just tip of iceberg of handling
368 optimization attribute. */
369 else if (caller_tree != callee_tree)
370 {
371 struct cl_optimization *caller_opt
372 = TREE_OPTIMIZATION ((caller_tree)
373 ? caller_tree
374 : optimization_default_node);
375
376 struct cl_optimization *callee_opt
377 = TREE_OPTIMIZATION ((callee_tree)
378 ? callee_tree
379 : optimization_default_node);
380
381 if (((caller_opt->x_optimize > callee_opt->x_optimize)
382 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
383 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
384 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->decl))
385 {
386 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
387 inlinable = false;
388 }
389 }
390
391 if (!inlinable && report)
392 report_inline_failed_reason (e);
393 return inlinable;
394 }
395
396
397 /* Return true if the edge E is inlinable during early inlining. */
398
399 static bool
400 can_early_inline_edge_p (struct cgraph_edge *e)
401 {
402 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
403 NULL);
404 /* Early inliner might get called at WPA stage when IPA pass adds new
405 function. In this case we can not really do any of early inlining
406 because function bodies are missing. */
407 if (!gimple_has_body_p (callee->decl))
408 {
409 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
410 return false;
411 }
412 /* In early inliner some of callees may not be in SSA form yet
413 (i.e. the callgraph is cyclic and we did not process
414 the callee by early inliner, yet). We don't have CIF code for this
415 case; later we will re-do the decision in the real inliner. */
416 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
417 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
418 {
419 if (dump_file)
420 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
421 return false;
422 }
423 if (!can_inline_edge_p (e, true))
424 return false;
425 return true;
426 }
427
428
429 /* Return number of calls in N. Ignore cheap builtins. */
430
431 static int
432 num_calls (struct cgraph_node *n)
433 {
434 struct cgraph_edge *e;
435 int num = 0;
436
437 for (e = n->callees; e; e = e->next_callee)
438 if (!is_inexpensive_builtin (e->callee->decl))
439 num++;
440 return num;
441 }
442
443
444 /* Return true if we are interested in inlining small function. */
445
446 static bool
447 want_early_inline_function_p (struct cgraph_edge *e)
448 {
449 bool want_inline = true;
450 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
451
452 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
453 ;
454 else if (!DECL_DECLARED_INLINE_P (callee->decl)
455 && !flag_inline_small_functions)
456 {
457 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
458 report_inline_failed_reason (e);
459 want_inline = false;
460 }
461 else
462 {
463 int growth = estimate_edge_growth (e);
464 int n;
465
466 if (growth <= 0)
467 ;
468 else if (!cgraph_maybe_hot_edge_p (e)
469 && growth > 0)
470 {
471 if (dump_file)
472 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
473 "call is cold and code would grow by %i\n",
474 xstrdup (e->caller->name ()),
475 e->caller->order,
476 xstrdup (callee->name ()), callee->order,
477 growth);
478 want_inline = false;
479 }
480 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
481 {
482 if (dump_file)
483 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
484 "growth %i exceeds --param early-inlining-insns\n",
485 xstrdup (e->caller->name ()),
486 e->caller->order,
487 xstrdup (callee->name ()), callee->order,
488 growth);
489 want_inline = false;
490 }
491 else if ((n = num_calls (callee)) != 0
492 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
493 {
494 if (dump_file)
495 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
496 "growth %i exceeds --param early-inlining-insns "
497 "divided by number of calls\n",
498 xstrdup (e->caller->name ()),
499 e->caller->order,
500 xstrdup (callee->name ()), callee->order,
501 growth);
502 want_inline = false;
503 }
504 }
505 return want_inline;
506 }
507
508 /* Compute time of the edge->caller + edge->callee execution when inlining
509 does not happen. */
510
511 inline gcov_type
512 compute_uninlined_call_time (struct inline_summary *callee_info,
513 struct cgraph_edge *edge)
514 {
515 gcov_type uninlined_call_time =
516 RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1),
517 CGRAPH_FREQ_BASE);
518 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
519 ? edge->caller->global.inlined_to
520 : edge->caller)->time;
521 return uninlined_call_time + caller_time;
522 }
523
524 /* Same as compute_uinlined_call_time but compute time when inlining
525 does happen. */
526
527 inline gcov_type
528 compute_inlined_call_time (struct cgraph_edge *edge,
529 int edge_time)
530 {
531 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
532 ? edge->caller->global.inlined_to
533 : edge->caller)->time;
534 gcov_type time = (caller_time
535 + RDIV (((gcov_type) edge_time
536 - inline_edge_summary (edge)->call_stmt_time)
537 * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE));
538 /* Possible one roundoff error, but watch for overflows. */
539 gcc_checking_assert (time >= INT_MIN / 2);
540 if (time < 0)
541 time = 0;
542 return time;
543 }
544
545 /* Return true if the speedup for inlining E is bigger than
546 PARAM_MAX_INLINE_MIN_SPEEDUP. */
547
548 static bool
549 big_speedup_p (struct cgraph_edge *e)
550 {
551 gcov_type time = compute_uninlined_call_time (inline_summary (e->callee),
552 e);
553 gcov_type inlined_time = compute_inlined_call_time (e,
554 estimate_edge_time (e));
555 if (time - inlined_time
556 > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100))
557 return true;
558 return false;
559 }
560
561 /* Return true if we are interested in inlining small function.
562 When REPORT is true, report reason to dump file. */
563
564 static bool
565 want_inline_small_function_p (struct cgraph_edge *e, bool report)
566 {
567 bool want_inline = true;
568 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
569
570 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
571 ;
572 else if (!DECL_DECLARED_INLINE_P (callee->decl)
573 && !flag_inline_small_functions)
574 {
575 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
576 want_inline = false;
577 }
578 /* Do fast and conservative check if the function can be good
579 inline cnadidate. At themoment we allow inline hints to
580 promote non-inline function to inline and we increase
581 MAX_INLINE_INSNS_SINGLE 16fold for inline functions. */
582 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
583 && (!e->count || !cgraph_maybe_hot_edge_p (e)))
584 && inline_summary (callee)->min_size - inline_edge_summary (e)->call_stmt_size
585 > MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
586 {
587 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
588 want_inline = false;
589 }
590 else if ((DECL_DECLARED_INLINE_P (callee->decl) || e->count)
591 && inline_summary (callee)->min_size - inline_edge_summary (e)->call_stmt_size
592 > 16 * MAX_INLINE_INSNS_SINGLE)
593 {
594 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
595 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
596 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
597 want_inline = false;
598 }
599 else
600 {
601 int growth = estimate_edge_growth (e);
602 inline_hints hints = estimate_edge_hints (e);
603 bool big_speedup = big_speedup_p (e);
604
605 if (growth <= 0)
606 ;
607 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
608 hints suggests that inlining given function is very profitable. */
609 else if (DECL_DECLARED_INLINE_P (callee->decl)
610 && growth >= MAX_INLINE_INSNS_SINGLE
611 && ((!big_speedup
612 && !(hints & (INLINE_HINT_indirect_call
613 | INLINE_HINT_known_hot
614 | INLINE_HINT_loop_iterations
615 | INLINE_HINT_array_index
616 | INLINE_HINT_loop_stride)))
617 || growth >= MAX_INLINE_INSNS_SINGLE * 16))
618 {
619 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
620 want_inline = false;
621 }
622 else if (!DECL_DECLARED_INLINE_P (callee->decl)
623 && !flag_inline_functions)
624 {
625 /* growth_likely_positive is expensive, always test it last. */
626 if (growth >= MAX_INLINE_INSNS_SINGLE
627 || growth_likely_positive (callee, growth))
628 {
629 e->inline_failed = CIF_NOT_DECLARED_INLINED;
630 want_inline = false;
631 }
632 }
633 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
634 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
635 inlining given function is very profitable. */
636 else if (!DECL_DECLARED_INLINE_P (callee->decl)
637 && !big_speedup
638 && !(hints & INLINE_HINT_known_hot)
639 && growth >= ((hints & (INLINE_HINT_indirect_call
640 | INLINE_HINT_loop_iterations
641 | INLINE_HINT_array_index
642 | INLINE_HINT_loop_stride))
643 ? MAX (MAX_INLINE_INSNS_AUTO,
644 MAX_INLINE_INSNS_SINGLE)
645 : MAX_INLINE_INSNS_AUTO))
646 {
647 /* growth_likely_positive is expensive, always test it last. */
648 if (growth >= MAX_INLINE_INSNS_SINGLE
649 || growth_likely_positive (callee, growth))
650 {
651 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
652 want_inline = false;
653 }
654 }
655 /* If call is cold, do not inline when function body would grow. */
656 else if (!cgraph_maybe_hot_edge_p (e)
657 && (growth >= MAX_INLINE_INSNS_SINGLE
658 || growth_likely_positive (callee, growth)))
659 {
660 e->inline_failed = CIF_UNLIKELY_CALL;
661 want_inline = false;
662 }
663 }
664 if (!want_inline && report)
665 report_inline_failed_reason (e);
666 return want_inline;
667 }
668
669 /* EDGE is self recursive edge.
670 We hand two cases - when function A is inlining into itself
671 or when function A is being inlined into another inliner copy of function
672 A within function B.
673
674 In first case OUTER_NODE points to the toplevel copy of A, while
675 in the second case OUTER_NODE points to the outermost copy of A in B.
676
677 In both cases we want to be extra selective since
678 inlining the call will just introduce new recursive calls to appear. */
679
680 static bool
681 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
682 struct cgraph_node *outer_node,
683 bool peeling,
684 int depth)
685 {
686 char const *reason = NULL;
687 bool want_inline = true;
688 int caller_freq = CGRAPH_FREQ_BASE;
689 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
690
691 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
692 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
693
694 if (!cgraph_maybe_hot_edge_p (edge))
695 {
696 reason = "recursive call is cold";
697 want_inline = false;
698 }
699 else if (max_count && !outer_node->count)
700 {
701 reason = "not executed in profile";
702 want_inline = false;
703 }
704 else if (depth > max_depth)
705 {
706 reason = "--param max-inline-recursive-depth exceeded.";
707 want_inline = false;
708 }
709
710 if (outer_node->global.inlined_to)
711 caller_freq = outer_node->callers->frequency;
712
713 if (!caller_freq)
714 {
715 reason = "function is inlined and unlikely";
716 want_inline = false;
717 }
718
719 if (!want_inline)
720 ;
721 /* Inlining of self recursive function into copy of itself within other function
722 is transformation similar to loop peeling.
723
724 Peeling is profitable if we can inline enough copies to make probability
725 of actual call to the self recursive function very small. Be sure that
726 the probability of recursion is small.
727
728 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
729 This way the expected number of recision is at most max_depth. */
730 else if (peeling)
731 {
732 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
733 / max_depth);
734 int i;
735 for (i = 1; i < depth; i++)
736 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
737 if (max_count
738 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
739 >= max_prob))
740 {
741 reason = "profile of recursive call is too large";
742 want_inline = false;
743 }
744 if (!max_count
745 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
746 >= max_prob))
747 {
748 reason = "frequency of recursive call is too large";
749 want_inline = false;
750 }
751 }
752 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
753 depth is large. We reduce function call overhead and increase chances that
754 things fit in hardware return predictor.
755
756 Recursive inlining might however increase cost of stack frame setup
757 actually slowing down functions whose recursion tree is wide rather than
758 deep.
759
760 Deciding reliably on when to do recursive inlining without profile feedback
761 is tricky. For now we disable recursive inlining when probability of self
762 recursion is low.
763
764 Recursive inlining of self recursive call within loop also results in large loop
765 depths that generally optimize badly. We may want to throttle down inlining
766 in those cases. In particular this seems to happen in one of libstdc++ rb tree
767 methods. */
768 else
769 {
770 if (max_count
771 && (edge->count * 100 / outer_node->count
772 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
773 {
774 reason = "profile of recursive call is too small";
775 want_inline = false;
776 }
777 else if (!max_count
778 && (edge->frequency * 100 / caller_freq
779 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
780 {
781 reason = "frequency of recursive call is too small";
782 want_inline = false;
783 }
784 }
785 if (!want_inline && dump_file)
786 fprintf (dump_file, " not inlining recursively: %s\n", reason);
787 return want_inline;
788 }
789
790 /* Return true when NODE has uninlinable caller;
791 set HAS_HOT_CALL if it has hot call.
792 Worker for cgraph_for_node_and_aliases. */
793
794 static bool
795 check_callers (struct cgraph_node *node, void *has_hot_call)
796 {
797 struct cgraph_edge *e;
798 for (e = node->callers; e; e = e->next_caller)
799 {
800 if (!can_inline_edge_p (e, true))
801 return true;
802 if (!(*(bool *)has_hot_call) && cgraph_maybe_hot_edge_p (e))
803 *(bool *)has_hot_call = true;
804 }
805 return false;
806 }
807
808 /* If NODE has a caller, return true. */
809
810 static bool
811 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
812 {
813 if (node->callers)
814 return true;
815 return false;
816 }
817
818 /* Decide if inlining NODE would reduce unit size by eliminating
819 the offline copy of function.
820 When COLD is true the cold calls are considered, too. */
821
822 static bool
823 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
824 {
825 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
826 bool has_hot_call = false;
827
828 /* Does it have callers? */
829 if (!cgraph_for_node_and_aliases (node, has_caller_p, NULL, true))
830 return false;
831 /* Already inlined? */
832 if (function->global.inlined_to)
833 return false;
834 if (cgraph_function_or_thunk_node (node, NULL) != node)
835 return false;
836 /* Inlining into all callers would increase size? */
837 if (estimate_growth (node) > 0)
838 return false;
839 /* All inlines must be possible. */
840 if (cgraph_for_node_and_aliases (node, check_callers, &has_hot_call, true))
841 return false;
842 if (!cold && !has_hot_call)
843 return false;
844 return true;
845 }
846
847 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
848
849 /* Return relative time improvement for inlining EDGE in range
850 1...RELATIVE_TIME_BENEFIT_RANGE */
851
852 static inline int
853 relative_time_benefit (struct inline_summary *callee_info,
854 struct cgraph_edge *edge,
855 int edge_time)
856 {
857 gcov_type relbenefit;
858 gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
859 gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time);
860
861 /* Inlining into extern inline function is not a win. */
862 if (DECL_EXTERNAL (edge->caller->global.inlined_to
863 ? edge->caller->global.inlined_to->decl
864 : edge->caller->decl))
865 return 1;
866
867 /* Watch overflows. */
868 gcc_checking_assert (uninlined_call_time >= 0);
869 gcc_checking_assert (inlined_call_time >= 0);
870 gcc_checking_assert (uninlined_call_time >= inlined_call_time);
871
872 /* Compute relative time benefit, i.e. how much the call becomes faster.
873 ??? perhaps computing how much the caller+calle together become faster
874 would lead to more realistic results. */
875 if (!uninlined_call_time)
876 uninlined_call_time = 1;
877 relbenefit =
878 RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE,
879 uninlined_call_time);
880 relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE);
881 gcc_checking_assert (relbenefit >= 0);
882 relbenefit = MAX (relbenefit, 1);
883 return relbenefit;
884 }
885
886
887 /* A cost model driving the inlining heuristics in a way so the edges with
888 smallest badness are inlined first. After each inlining is performed
889 the costs of all caller edges of nodes affected are recomputed so the
890 metrics may accurately depend on values such as number of inlinable callers
891 of the function or function body size. */
892
893 static int
894 edge_badness (struct cgraph_edge *edge, bool dump)
895 {
896 gcov_type badness;
897 int growth, edge_time;
898 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
899 NULL);
900 struct inline_summary *callee_info = inline_summary (callee);
901 inline_hints hints;
902
903 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
904 return INT_MIN;
905
906 growth = estimate_edge_growth (edge);
907 edge_time = estimate_edge_time (edge);
908 hints = estimate_edge_hints (edge);
909 gcc_checking_assert (edge_time >= 0);
910 gcc_checking_assert (edge_time <= callee_info->time);
911 gcc_checking_assert (growth <= callee_info->size);
912
913 if (dump)
914 {
915 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
916 xstrdup (edge->caller->name ()),
917 edge->caller->order,
918 xstrdup (callee->name ()),
919 edge->callee->order);
920 fprintf (dump_file, " size growth %i, time %i ",
921 growth,
922 edge_time);
923 dump_inline_hints (dump_file, hints);
924 if (big_speedup_p (edge))
925 fprintf (dump_file, " big_speedup");
926 fprintf (dump_file, "\n");
927 }
928
929 /* Always prefer inlining saving code size. */
930 if (growth <= 0)
931 {
932 badness = INT_MIN / 2 + growth;
933 if (dump)
934 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
935 growth);
936 }
937
938 /* When profiling is available, compute badness as:
939
940 relative_edge_count * relative_time_benefit
941 goodness = -------------------------------------------
942 growth_f_caller
943 badness = -goodness
944
945 The fraction is upside down, because on edge counts and time beneits
946 the bounds are known. Edge growth is essentially unlimited. */
947
948 else if (max_count)
949 {
950 sreal tmp, relbenefit_real, growth_real;
951 int relbenefit = relative_time_benefit (callee_info, edge, edge_time);
952 /* Capping edge->count to max_count. edge->count can be larger than
953 max_count if an inline adds new edges which increase max_count
954 after max_count is computed. */
955 gcov_type edge_count = edge->count > max_count ? max_count : edge->count;
956
957 sreal_init (&relbenefit_real, relbenefit, 0);
958 sreal_init (&growth_real, growth, 0);
959
960 /* relative_edge_count. */
961 sreal_init (&tmp, edge_count, 0);
962 sreal_div (&tmp, &tmp, &max_count_real);
963
964 /* relative_time_benefit. */
965 sreal_mul (&tmp, &tmp, &relbenefit_real);
966 sreal_div (&tmp, &tmp, &max_relbenefit_real);
967
968 /* growth_f_caller. */
969 sreal_mul (&tmp, &tmp, &half_int_min_real);
970 sreal_div (&tmp, &tmp, &growth_real);
971
972 badness = -1 * sreal_to_int (&tmp);
973
974 if (dump)
975 {
976 fprintf (dump_file,
977 " %i (relative %f): profile info. Relative count %f%s"
978 " * Relative benefit %f\n",
979 (int) badness, (double) badness / INT_MIN,
980 (double) edge_count / max_count,
981 edge->count > max_count ? " (capped to max_count)" : "",
982 relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE);
983 }
984 }
985
986 /* When function local profile is available. Compute badness as:
987
988 relative_time_benefit
989 goodness = ---------------------------------
990 growth_of_caller * overall_growth
991
992 badness = - goodness
993
994 compensated by the inline hints.
995 */
996 else if (flag_guess_branch_prob)
997 {
998 badness = (relative_time_benefit (callee_info, edge, edge_time)
999 * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE));
1000 badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth)));
1001 gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16);
1002 if ((hints & (INLINE_HINT_indirect_call
1003 | INLINE_HINT_loop_iterations
1004 | INLINE_HINT_array_index
1005 | INLINE_HINT_loop_stride))
1006 || callee_info->growth <= 0)
1007 badness *= 8;
1008 if (hints & (INLINE_HINT_same_scc))
1009 badness /= 16;
1010 else if (hints & (INLINE_HINT_in_scc))
1011 badness /= 8;
1012 else if (hints & (INLINE_HINT_cross_module))
1013 badness /= 2;
1014 gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2);
1015 if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32)
1016 badness *= 16;
1017 if (dump)
1018 {
1019 fprintf (dump_file,
1020 " %i: guessed profile. frequency %f,"
1021 " benefit %f%%, time w/o inlining %i, time w inlining %i"
1022 " overall growth %i (current) %i (original)\n",
1023 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
1024 relative_time_benefit (callee_info, edge, edge_time) * 100.0
1025 / RELATIVE_TIME_BENEFIT_RANGE,
1026 (int)compute_uninlined_call_time (callee_info, edge),
1027 (int)compute_inlined_call_time (edge, edge_time),
1028 estimate_growth (callee),
1029 callee_info->growth);
1030 }
1031 }
1032 /* When function local profile is not available or it does not give
1033 useful information (ie frequency is zero), base the cost on
1034 loop nest and overall size growth, so we optimize for overall number
1035 of functions fully inlined in program. */
1036 else
1037 {
1038 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
1039 badness = growth * 256;
1040
1041 /* Decrease badness if call is nested. */
1042 if (badness > 0)
1043 badness >>= nest;
1044 else
1045 {
1046 badness <<= nest;
1047 }
1048 if (dump)
1049 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
1050 nest);
1051 }
1052
1053 /* Ensure that we did not overflow in all the fixed point math above. */
1054 gcc_assert (badness >= INT_MIN);
1055 gcc_assert (badness <= INT_MAX - 1);
1056 /* Make recursive inlining happen always after other inlining is done. */
1057 if (cgraph_edge_recursive_p (edge))
1058 return badness + 1;
1059 else
1060 return badness;
1061 }
1062
1063 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1064 static inline void
1065 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
1066 {
1067 int badness = edge_badness (edge, false);
1068 if (edge->aux)
1069 {
1070 fibnode_t n = (fibnode_t) edge->aux;
1071 gcc_checking_assert (n->data == edge);
1072
1073 /* fibheap_replace_key only decrease the keys.
1074 When we increase the key we do not update heap
1075 and instead re-insert the element once it becomes
1076 a minimum of heap. */
1077 if (badness < n->key)
1078 {
1079 if (dump_file && (dump_flags & TDF_DETAILS))
1080 {
1081 fprintf (dump_file,
1082 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
1083 xstrdup (edge->caller->name ()),
1084 edge->caller->order,
1085 xstrdup (edge->callee->name ()),
1086 edge->callee->order,
1087 (int)n->key,
1088 badness);
1089 }
1090 fibheap_replace_key (heap, n, badness);
1091 gcc_checking_assert (n->key == badness);
1092 }
1093 }
1094 else
1095 {
1096 if (dump_file && (dump_flags & TDF_DETAILS))
1097 {
1098 fprintf (dump_file,
1099 " enqueuing call %s/%i -> %s/%i, badness %i\n",
1100 xstrdup (edge->caller->name ()),
1101 edge->caller->order,
1102 xstrdup (edge->callee->name ()),
1103 edge->callee->order,
1104 badness);
1105 }
1106 edge->aux = fibheap_insert (heap, badness, edge);
1107 }
1108 }
1109
1110
1111 /* NODE was inlined.
1112 All caller edges needs to be resetted because
1113 size estimates change. Similarly callees needs reset
1114 because better context may be known. */
1115
1116 static void
1117 reset_edge_caches (struct cgraph_node *node)
1118 {
1119 struct cgraph_edge *edge;
1120 struct cgraph_edge *e = node->callees;
1121 struct cgraph_node *where = node;
1122 struct ipa_ref *ref;
1123
1124 if (where->global.inlined_to)
1125 where = where->global.inlined_to;
1126
1127 /* WHERE body size has changed, the cached growth is invalid. */
1128 reset_node_growth_cache (where);
1129
1130 for (edge = where->callers; edge; edge = edge->next_caller)
1131 if (edge->inline_failed)
1132 reset_edge_growth_cache (edge);
1133
1134 FOR_EACH_ALIAS (where, ref)
1135 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1136
1137 if (!e)
1138 return;
1139
1140 while (true)
1141 if (!e->inline_failed && e->callee->callees)
1142 e = e->callee->callees;
1143 else
1144 {
1145 if (e->inline_failed)
1146 reset_edge_growth_cache (e);
1147 if (e->next_callee)
1148 e = e->next_callee;
1149 else
1150 {
1151 do
1152 {
1153 if (e->caller == node)
1154 return;
1155 e = e->caller->callers;
1156 }
1157 while (!e->next_callee);
1158 e = e->next_callee;
1159 }
1160 }
1161 }
1162
1163 /* Recompute HEAP nodes for each of caller of NODE.
1164 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1165 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1166 it is inlinable. Otherwise check all edges. */
1167
1168 static void
1169 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1170 bitmap updated_nodes,
1171 struct cgraph_edge *check_inlinablity_for)
1172 {
1173 struct cgraph_edge *edge;
1174 struct ipa_ref *ref;
1175
1176 if ((!node->alias && !inline_summary (node)->inlinable)
1177 || node->global.inlined_to)
1178 return;
1179 if (!bitmap_set_bit (updated_nodes, node->uid))
1180 return;
1181
1182 FOR_EACH_ALIAS (node, ref)
1183 {
1184 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1185 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1186 }
1187
1188 for (edge = node->callers; edge; edge = edge->next_caller)
1189 if (edge->inline_failed)
1190 {
1191 if (!check_inlinablity_for
1192 || check_inlinablity_for == edge)
1193 {
1194 if (can_inline_edge_p (edge, false)
1195 && want_inline_small_function_p (edge, false))
1196 update_edge_key (heap, edge);
1197 else if (edge->aux)
1198 {
1199 report_inline_failed_reason (edge);
1200 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1201 edge->aux = NULL;
1202 }
1203 }
1204 else if (edge->aux)
1205 update_edge_key (heap, edge);
1206 }
1207 }
1208
1209 /* Recompute HEAP nodes for each uninlined call in NODE.
1210 This is used when we know that edge badnesses are going only to increase
1211 (we introduced new call site) and thus all we need is to insert newly
1212 created edges into heap. */
1213
1214 static void
1215 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1216 bitmap updated_nodes)
1217 {
1218 struct cgraph_edge *e = node->callees;
1219
1220 if (!e)
1221 return;
1222 while (true)
1223 if (!e->inline_failed && e->callee->callees)
1224 e = e->callee->callees;
1225 else
1226 {
1227 enum availability avail;
1228 struct cgraph_node *callee;
1229 /* We do not reset callee growth cache here. Since we added a new call,
1230 growth chould have just increased and consequentely badness metric
1231 don't need updating. */
1232 if (e->inline_failed
1233 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1234 && inline_summary (callee)->inlinable
1235 && avail >= AVAIL_AVAILABLE
1236 && !bitmap_bit_p (updated_nodes, callee->uid))
1237 {
1238 if (can_inline_edge_p (e, false)
1239 && want_inline_small_function_p (e, false))
1240 update_edge_key (heap, e);
1241 else if (e->aux)
1242 {
1243 report_inline_failed_reason (e);
1244 fibheap_delete_node (heap, (fibnode_t) e->aux);
1245 e->aux = NULL;
1246 }
1247 }
1248 if (e->next_callee)
1249 e = e->next_callee;
1250 else
1251 {
1252 do
1253 {
1254 if (e->caller == node)
1255 return;
1256 e = e->caller->callers;
1257 }
1258 while (!e->next_callee);
1259 e = e->next_callee;
1260 }
1261 }
1262 }
1263
1264 /* Enqueue all recursive calls from NODE into priority queue depending on
1265 how likely we want to recursively inline the call. */
1266
1267 static void
1268 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1269 fibheap_t heap)
1270 {
1271 struct cgraph_edge *e;
1272 enum availability avail;
1273
1274 for (e = where->callees; e; e = e->next_callee)
1275 if (e->callee == node
1276 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1277 && avail > AVAIL_OVERWRITABLE))
1278 {
1279 /* When profile feedback is available, prioritize by expected number
1280 of calls. */
1281 fibheap_insert (heap,
1282 !max_count ? -e->frequency
1283 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1284 e);
1285 }
1286 for (e = where->callees; e; e = e->next_callee)
1287 if (!e->inline_failed)
1288 lookup_recursive_calls (node, e->callee, heap);
1289 }
1290
1291 /* Decide on recursive inlining: in the case function has recursive calls,
1292 inline until body size reaches given argument. If any new indirect edges
1293 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1294 is NULL. */
1295
1296 static bool
1297 recursive_inlining (struct cgraph_edge *edge,
1298 vec<cgraph_edge_p> *new_edges)
1299 {
1300 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1301 fibheap_t heap;
1302 struct cgraph_node *node;
1303 struct cgraph_edge *e;
1304 struct cgraph_node *master_clone = NULL, *next;
1305 int depth = 0;
1306 int n = 0;
1307
1308 node = edge->caller;
1309 if (node->global.inlined_to)
1310 node = node->global.inlined_to;
1311
1312 if (DECL_DECLARED_INLINE_P (node->decl))
1313 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1314
1315 /* Make sure that function is small enough to be considered for inlining. */
1316 if (estimate_size_after_inlining (node, edge) >= limit)
1317 return false;
1318 heap = fibheap_new ();
1319 lookup_recursive_calls (node, node, heap);
1320 if (fibheap_empty (heap))
1321 {
1322 fibheap_delete (heap);
1323 return false;
1324 }
1325
1326 if (dump_file)
1327 fprintf (dump_file,
1328 " Performing recursive inlining on %s\n",
1329 node->name ());
1330
1331 /* Do the inlining and update list of recursive call during process. */
1332 while (!fibheap_empty (heap))
1333 {
1334 struct cgraph_edge *curr
1335 = (struct cgraph_edge *) fibheap_extract_min (heap);
1336 struct cgraph_node *cnode, *dest = curr->callee;
1337
1338 if (!can_inline_edge_p (curr, true))
1339 continue;
1340
1341 /* MASTER_CLONE is produced in the case we already started modified
1342 the function. Be sure to redirect edge to the original body before
1343 estimating growths otherwise we will be seeing growths after inlining
1344 the already modified body. */
1345 if (master_clone)
1346 {
1347 cgraph_redirect_edge_callee (curr, master_clone);
1348 reset_edge_growth_cache (curr);
1349 }
1350
1351 if (estimate_size_after_inlining (node, curr) > limit)
1352 {
1353 cgraph_redirect_edge_callee (curr, dest);
1354 reset_edge_growth_cache (curr);
1355 break;
1356 }
1357
1358 depth = 1;
1359 for (cnode = curr->caller;
1360 cnode->global.inlined_to; cnode = cnode->callers->caller)
1361 if (node->decl
1362 == cgraph_function_or_thunk_node (curr->callee, NULL)->decl)
1363 depth++;
1364
1365 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1366 {
1367 cgraph_redirect_edge_callee (curr, dest);
1368 reset_edge_growth_cache (curr);
1369 continue;
1370 }
1371
1372 if (dump_file)
1373 {
1374 fprintf (dump_file,
1375 " Inlining call of depth %i", depth);
1376 if (node->count)
1377 {
1378 fprintf (dump_file, " called approx. %.2f times per call",
1379 (double)curr->count / node->count);
1380 }
1381 fprintf (dump_file, "\n");
1382 }
1383 if (!master_clone)
1384 {
1385 /* We need original clone to copy around. */
1386 master_clone = cgraph_clone_node (node, node->decl,
1387 node->count, CGRAPH_FREQ_BASE,
1388 false, vNULL, true, NULL, NULL);
1389 for (e = master_clone->callees; e; e = e->next_callee)
1390 if (!e->inline_failed)
1391 clone_inlined_nodes (e, true, false, NULL, CGRAPH_FREQ_BASE);
1392 cgraph_redirect_edge_callee (curr, master_clone);
1393 reset_edge_growth_cache (curr);
1394 }
1395
1396 inline_call (curr, false, new_edges, &overall_size, true);
1397 lookup_recursive_calls (node, curr->callee, heap);
1398 n++;
1399 }
1400
1401 if (!fibheap_empty (heap) && dump_file)
1402 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1403 fibheap_delete (heap);
1404
1405 if (!master_clone)
1406 return false;
1407
1408 if (dump_file)
1409 fprintf (dump_file,
1410 "\n Inlined %i times, "
1411 "body grown from size %i to %i, time %i to %i\n", n,
1412 inline_summary (master_clone)->size, inline_summary (node)->size,
1413 inline_summary (master_clone)->time, inline_summary (node)->time);
1414
1415 /* Remove master clone we used for inlining. We rely that clones inlined
1416 into master clone gets queued just before master clone so we don't
1417 need recursion. */
1418 for (node = cgraph_first_function (); node != master_clone;
1419 node = next)
1420 {
1421 next = cgraph_next_function (node);
1422 if (node->global.inlined_to == master_clone)
1423 cgraph_remove_node (node);
1424 }
1425 cgraph_remove_node (master_clone);
1426 return true;
1427 }
1428
1429
1430 /* Given whole compilation unit estimate of INSNS, compute how large we can
1431 allow the unit to grow. */
1432
1433 static int
1434 compute_max_insns (int insns)
1435 {
1436 int max_insns = insns;
1437 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1438 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1439
1440 return ((int64_t) max_insns
1441 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1442 }
1443
1444
1445 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1446
1447 static void
1448 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges)
1449 {
1450 while (new_edges.length () > 0)
1451 {
1452 struct cgraph_edge *edge = new_edges.pop ();
1453
1454 gcc_assert (!edge->aux);
1455 if (edge->inline_failed
1456 && can_inline_edge_p (edge, true)
1457 && want_inline_small_function_p (edge, true))
1458 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1459 }
1460 }
1461
1462 /* Remove EDGE from the fibheap. */
1463
1464 static void
1465 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1466 {
1467 if (e->callee)
1468 reset_node_growth_cache (e->callee);
1469 if (e->aux)
1470 {
1471 fibheap_delete_node ((fibheap_t)data, (fibnode_t)e->aux);
1472 e->aux = NULL;
1473 }
1474 }
1475
1476 /* Return true if speculation of edge E seems useful.
1477 If ANTICIPATE_INLINING is true, be conservative and hope that E
1478 may get inlined. */
1479
1480 bool
1481 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1482 {
1483 enum availability avail;
1484 struct cgraph_node *target = cgraph_function_or_thunk_node (e->callee, &avail);
1485 struct cgraph_edge *direct, *indirect;
1486 struct ipa_ref *ref;
1487
1488 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1489
1490 if (!cgraph_maybe_hot_edge_p (e))
1491 return false;
1492
1493 /* See if IP optimizations found something potentially useful about the
1494 function. For now we look only for CONST/PURE flags. Almost everything
1495 else we propagate is useless. */
1496 if (avail >= AVAIL_AVAILABLE)
1497 {
1498 int ecf_flags = flags_from_decl_or_type (target->decl);
1499 if (ecf_flags & ECF_CONST)
1500 {
1501 cgraph_speculative_call_info (e, direct, indirect, ref);
1502 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1503 return true;
1504 }
1505 else if (ecf_flags & ECF_PURE)
1506 {
1507 cgraph_speculative_call_info (e, direct, indirect, ref);
1508 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1509 return true;
1510 }
1511 }
1512 /* If we did not managed to inline the function nor redirect
1513 to an ipa-cp clone (that are seen by having local flag set),
1514 it is probably pointless to inline it unless hardware is missing
1515 indirect call predictor. */
1516 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1517 return false;
1518 /* For overwritable targets there is not much to do. */
1519 if (e->inline_failed && !can_inline_edge_p (e, false, true))
1520 return false;
1521 /* OK, speculation seems interesting. */
1522 return true;
1523 }
1524
1525 /* We know that EDGE is not going to be inlined.
1526 See if we can remove speculation. */
1527
1528 static void
1529 resolve_noninline_speculation (fibheap_t edge_heap, struct cgraph_edge *edge)
1530 {
1531 if (edge->speculative && !speculation_useful_p (edge, false))
1532 {
1533 struct cgraph_node *node = edge->caller;
1534 struct cgraph_node *where = node->global.inlined_to
1535 ? node->global.inlined_to : node;
1536 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1537
1538 spec_rem += edge->count;
1539 cgraph_resolve_speculation (edge, NULL);
1540 reset_edge_caches (where);
1541 inline_update_overall_summary (where);
1542 update_caller_keys (edge_heap, where,
1543 updated_nodes, NULL);
1544 update_callee_keys (edge_heap, where,
1545 updated_nodes);
1546 BITMAP_FREE (updated_nodes);
1547 }
1548 }
1549
1550 /* We use greedy algorithm for inlining of small functions:
1551 All inline candidates are put into prioritized heap ordered in
1552 increasing badness.
1553
1554 The inlining of small functions is bounded by unit growth parameters. */
1555
1556 static void
1557 inline_small_functions (void)
1558 {
1559 struct cgraph_node *node;
1560 struct cgraph_edge *edge;
1561 fibheap_t edge_heap = fibheap_new ();
1562 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1563 int min_size, max_size;
1564 auto_vec<cgraph_edge_p> new_indirect_edges;
1565 int initial_size = 0;
1566 struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1567 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1568
1569 if (flag_indirect_inlining)
1570 new_indirect_edges.create (8);
1571
1572 edge_removal_hook_holder
1573 = cgraph_add_edge_removal_hook (&heap_edge_removal_hook, edge_heap);
1574
1575 /* Compute overall unit size and other global parameters used by badness
1576 metrics. */
1577
1578 max_count = 0;
1579 ipa_reduced_postorder (order, true, true, NULL);
1580 free (order);
1581
1582 FOR_EACH_DEFINED_FUNCTION (node)
1583 if (!node->global.inlined_to)
1584 {
1585 if (cgraph_function_with_gimple_body_p (node)
1586 || node->thunk.thunk_p)
1587 {
1588 struct inline_summary *info = inline_summary (node);
1589 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1590
1591 /* Do not account external functions, they will be optimized out
1592 if not inlined. Also only count the non-cold portion of program. */
1593 if (!DECL_EXTERNAL (node->decl)
1594 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED)
1595 initial_size += info->size;
1596 info->growth = estimate_growth (node);
1597 if (dfs && dfs->next_cycle)
1598 {
1599 struct cgraph_node *n2;
1600 int id = dfs->scc_no + 1;
1601 for (n2 = node; n2;
1602 n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
1603 {
1604 struct inline_summary *info2 = inline_summary (n2);
1605 if (info2->scc_no)
1606 break;
1607 info2->scc_no = id;
1608 }
1609 }
1610 }
1611
1612 for (edge = node->callers; edge; edge = edge->next_caller)
1613 if (max_count < edge->count)
1614 max_count = edge->count;
1615 }
1616 sreal_init (&max_count_real, max_count, 0);
1617 sreal_init (&max_relbenefit_real, RELATIVE_TIME_BENEFIT_RANGE, 0);
1618 sreal_init (&half_int_min_real, INT_MAX / 2, 0);
1619 ipa_free_postorder_info ();
1620 initialize_growth_caches ();
1621
1622 if (dump_file)
1623 fprintf (dump_file,
1624 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1625 initial_size);
1626
1627 overall_size = initial_size;
1628 max_size = compute_max_insns (overall_size);
1629 min_size = overall_size;
1630
1631 /* Populate the heap with all edges we might inline. */
1632
1633 FOR_EACH_DEFINED_FUNCTION (node)
1634 {
1635 bool update = false;
1636 struct cgraph_edge *next;
1637
1638 if (dump_file)
1639 fprintf (dump_file, "Enqueueing calls in %s/%i.\n",
1640 node->name (), node->order);
1641
1642 for (edge = node->callees; edge; edge = next)
1643 {
1644 next = edge->next_callee;
1645 if (edge->inline_failed
1646 && !edge->aux
1647 && can_inline_edge_p (edge, true)
1648 && want_inline_small_function_p (edge, true)
1649 && edge->inline_failed)
1650 {
1651 gcc_assert (!edge->aux);
1652 update_edge_key (edge_heap, edge);
1653 }
1654 if (edge->speculative && !speculation_useful_p (edge, edge->aux != NULL))
1655 {
1656 cgraph_resolve_speculation (edge, NULL);
1657 update = true;
1658 }
1659 }
1660 if (update)
1661 {
1662 struct cgraph_node *where = node->global.inlined_to
1663 ? node->global.inlined_to : node;
1664 inline_update_overall_summary (where);
1665 reset_node_growth_cache (where);
1666 reset_edge_caches (where);
1667 update_caller_keys (edge_heap, where,
1668 updated_nodes, NULL);
1669 bitmap_clear (updated_nodes);
1670 }
1671 }
1672
1673 gcc_assert (in_lto_p
1674 || !max_count
1675 || (profile_info && flag_branch_probabilities));
1676
1677 while (!fibheap_empty (edge_heap))
1678 {
1679 int old_size = overall_size;
1680 struct cgraph_node *where, *callee;
1681 int badness = fibheap_min_key (edge_heap);
1682 int current_badness;
1683 int cached_badness;
1684 int growth;
1685
1686 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1687 gcc_assert (edge->aux);
1688 edge->aux = NULL;
1689 if (!edge->inline_failed || !edge->callee->analyzed)
1690 continue;
1691
1692 /* Be sure that caches are maintained consistent.
1693 We can not make this ENABLE_CHECKING only because it cause different
1694 updates of the fibheap queue. */
1695 cached_badness = edge_badness (edge, false);
1696 reset_edge_growth_cache (edge);
1697 reset_node_growth_cache (edge->callee);
1698
1699 /* When updating the edge costs, we only decrease badness in the keys.
1700 Increases of badness are handled lazilly; when we see key with out
1701 of date value on it, we re-insert it now. */
1702 current_badness = edge_badness (edge, false);
1703 gcc_assert (cached_badness == current_badness);
1704 gcc_assert (current_badness >= badness);
1705 if (current_badness != badness)
1706 {
1707 edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1708 continue;
1709 }
1710
1711 if (!can_inline_edge_p (edge, true))
1712 {
1713 resolve_noninline_speculation (edge_heap, edge);
1714 continue;
1715 }
1716
1717 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1718 growth = estimate_edge_growth (edge);
1719 if (dump_file)
1720 {
1721 fprintf (dump_file,
1722 "\nConsidering %s/%i with %i size\n",
1723 callee->name (), callee->order,
1724 inline_summary (callee)->size);
1725 fprintf (dump_file,
1726 " to be inlined into %s/%i in %s:%i\n"
1727 " Estimated badness is %i, frequency %.2f.\n",
1728 edge->caller->name (), edge->caller->order,
1729 flag_wpa ? "unknown"
1730 : gimple_filename ((const_gimple) edge->call_stmt),
1731 flag_wpa ? -1
1732 : gimple_lineno ((const_gimple) edge->call_stmt),
1733 badness,
1734 edge->frequency / (double)CGRAPH_FREQ_BASE);
1735 if (edge->count)
1736 fprintf (dump_file," Called %"PRId64"x\n",
1737 edge->count);
1738 if (dump_flags & TDF_DETAILS)
1739 edge_badness (edge, true);
1740 }
1741
1742 if (overall_size + growth > max_size
1743 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1744 {
1745 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1746 report_inline_failed_reason (edge);
1747 resolve_noninline_speculation (edge_heap, edge);
1748 continue;
1749 }
1750
1751 if (!want_inline_small_function_p (edge, true))
1752 {
1753 resolve_noninline_speculation (edge_heap, edge);
1754 continue;
1755 }
1756
1757 /* Heuristics for inlining small functions work poorly for
1758 recursive calls where we do effects similar to loop unrolling.
1759 When inlining such edge seems profitable, leave decision on
1760 specific inliner. */
1761 if (cgraph_edge_recursive_p (edge))
1762 {
1763 where = edge->caller;
1764 if (where->global.inlined_to)
1765 where = where->global.inlined_to;
1766 if (!recursive_inlining (edge,
1767 flag_indirect_inlining
1768 ? &new_indirect_edges : NULL))
1769 {
1770 edge->inline_failed = CIF_RECURSIVE_INLINING;
1771 resolve_noninline_speculation (edge_heap, edge);
1772 continue;
1773 }
1774 reset_edge_caches (where);
1775 /* Recursive inliner inlines all recursive calls of the function
1776 at once. Consequently we need to update all callee keys. */
1777 if (flag_indirect_inlining)
1778 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1779 update_callee_keys (edge_heap, where, updated_nodes);
1780 bitmap_clear (updated_nodes);
1781 }
1782 else
1783 {
1784 struct cgraph_node *outer_node = NULL;
1785 int depth = 0;
1786
1787 /* Consider the case where self recursive function A is inlined
1788 into B. This is desired optimization in some cases, since it
1789 leads to effect similar of loop peeling and we might completely
1790 optimize out the recursive call. However we must be extra
1791 selective. */
1792
1793 where = edge->caller;
1794 while (where->global.inlined_to)
1795 {
1796 if (where->decl == callee->decl)
1797 outer_node = where, depth++;
1798 where = where->callers->caller;
1799 }
1800 if (outer_node
1801 && !want_inline_self_recursive_call_p (edge, outer_node,
1802 true, depth))
1803 {
1804 edge->inline_failed
1805 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1806 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1807 resolve_noninline_speculation (edge_heap, edge);
1808 continue;
1809 }
1810 else if (depth && dump_file)
1811 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1812
1813 gcc_checking_assert (!callee->global.inlined_to);
1814 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1815 if (flag_indirect_inlining)
1816 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1817
1818 reset_edge_caches (edge->callee);
1819 reset_node_growth_cache (callee);
1820
1821 update_callee_keys (edge_heap, where, updated_nodes);
1822 }
1823 where = edge->caller;
1824 if (where->global.inlined_to)
1825 where = where->global.inlined_to;
1826
1827 /* Our profitability metric can depend on local properties
1828 such as number of inlinable calls and size of the function body.
1829 After inlining these properties might change for the function we
1830 inlined into (since it's body size changed) and for the functions
1831 called by function we inlined (since number of it inlinable callers
1832 might change). */
1833 update_caller_keys (edge_heap, where, updated_nodes, NULL);
1834 bitmap_clear (updated_nodes);
1835
1836 if (dump_file)
1837 {
1838 fprintf (dump_file,
1839 " Inlined into %s which now has time %i and size %i,"
1840 "net change of %+i.\n",
1841 edge->caller->name (),
1842 inline_summary (edge->caller)->time,
1843 inline_summary (edge->caller)->size,
1844 overall_size - old_size);
1845 }
1846 if (min_size > overall_size)
1847 {
1848 min_size = overall_size;
1849 max_size = compute_max_insns (min_size);
1850
1851 if (dump_file)
1852 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1853 }
1854 }
1855
1856 free_growth_caches ();
1857 fibheap_delete (edge_heap);
1858 if (dump_file)
1859 fprintf (dump_file,
1860 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1861 initial_size, overall_size,
1862 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1863 BITMAP_FREE (updated_nodes);
1864 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
1865 }
1866
1867 /* Flatten NODE. Performed both during early inlining and
1868 at IPA inlining time. */
1869
1870 static void
1871 flatten_function (struct cgraph_node *node, bool early)
1872 {
1873 struct cgraph_edge *e;
1874
1875 /* We shouldn't be called recursively when we are being processed. */
1876 gcc_assert (node->aux == NULL);
1877
1878 node->aux = (void *) node;
1879
1880 for (e = node->callees; e; e = e->next_callee)
1881 {
1882 struct cgraph_node *orig_callee;
1883 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1884
1885 /* We've hit cycle? It is time to give up. */
1886 if (callee->aux)
1887 {
1888 if (dump_file)
1889 fprintf (dump_file,
1890 "Not inlining %s into %s to avoid cycle.\n",
1891 xstrdup (callee->name ()),
1892 xstrdup (e->caller->name ()));
1893 e->inline_failed = CIF_RECURSIVE_INLINING;
1894 continue;
1895 }
1896
1897 /* When the edge is already inlined, we just need to recurse into
1898 it in order to fully flatten the leaves. */
1899 if (!e->inline_failed)
1900 {
1901 flatten_function (callee, early);
1902 continue;
1903 }
1904
1905 /* Flatten attribute needs to be processed during late inlining. For
1906 extra code quality we however do flattening during early optimization,
1907 too. */
1908 if (!early
1909 ? !can_inline_edge_p (e, true)
1910 : !can_early_inline_edge_p (e))
1911 continue;
1912
1913 if (cgraph_edge_recursive_p (e))
1914 {
1915 if (dump_file)
1916 fprintf (dump_file, "Not inlining: recursive call.\n");
1917 continue;
1918 }
1919
1920 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
1921 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
1922 {
1923 if (dump_file)
1924 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1925 continue;
1926 }
1927
1928 /* Inline the edge and flatten the inline clone. Avoid
1929 recursing through the original node if the node was cloned. */
1930 if (dump_file)
1931 fprintf (dump_file, " Inlining %s into %s.\n",
1932 xstrdup (callee->name ()),
1933 xstrdup (e->caller->name ()));
1934 orig_callee = callee;
1935 inline_call (e, true, NULL, NULL, false);
1936 if (e->callee != orig_callee)
1937 orig_callee->aux = (void *) node;
1938 flatten_function (e->callee, early);
1939 if (e->callee != orig_callee)
1940 orig_callee->aux = NULL;
1941 }
1942
1943 node->aux = NULL;
1944 if (!node->global.inlined_to)
1945 inline_update_overall_summary (node);
1946 }
1947
1948 /* Count number of callers of NODE and store it into DATA (that
1949 points to int. Worker for cgraph_for_node_and_aliases. */
1950
1951 static bool
1952 sum_callers (struct cgraph_node *node, void *data)
1953 {
1954 struct cgraph_edge *e;
1955 int *num_calls = (int *)data;
1956
1957 for (e = node->callers; e; e = e->next_caller)
1958 (*num_calls)++;
1959 return false;
1960 }
1961
1962 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
1963 DATA points to number of calls originally found so we avoid infinite
1964 recursion. */
1965
1966 static bool
1967 inline_to_all_callers (struct cgraph_node *node, void *data)
1968 {
1969 int *num_calls = (int *)data;
1970 bool callee_removed = false;
1971
1972 while (node->callers && !node->global.inlined_to)
1973 {
1974 struct cgraph_node *caller = node->callers->caller;
1975
1976 if (dump_file)
1977 {
1978 fprintf (dump_file,
1979 "\nInlining %s size %i.\n",
1980 node->name (),
1981 inline_summary (node)->size);
1982 fprintf (dump_file,
1983 " Called once from %s %i insns.\n",
1984 node->callers->caller->name (),
1985 inline_summary (node->callers->caller)->size);
1986 }
1987
1988 inline_call (node->callers, true, NULL, NULL, true, &callee_removed);
1989 if (dump_file)
1990 fprintf (dump_file,
1991 " Inlined into %s which now has %i size\n",
1992 caller->name (),
1993 inline_summary (caller)->size);
1994 if (!(*num_calls)--)
1995 {
1996 if (dump_file)
1997 fprintf (dump_file, "New calls found; giving up.\n");
1998 return callee_removed;
1999 }
2000 if (callee_removed)
2001 return true;
2002 }
2003 return false;
2004 }
2005
2006 /* Output overall time estimate. */
2007 static void
2008 dump_overall_stats (void)
2009 {
2010 int64_t sum_weighted = 0, sum = 0;
2011 struct cgraph_node *node;
2012
2013 FOR_EACH_DEFINED_FUNCTION (node)
2014 if (!node->global.inlined_to
2015 && !node->alias)
2016 {
2017 int time = inline_summary (node)->time;
2018 sum += time;
2019 sum_weighted += time * node->count;
2020 }
2021 fprintf (dump_file, "Overall time estimate: "
2022 "%"PRId64" weighted by profile: "
2023 "%"PRId64"\n", sum, sum_weighted);
2024 }
2025
2026 /* Output some useful stats about inlining. */
2027
2028 static void
2029 dump_inline_stats (void)
2030 {
2031 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2032 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2033 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2034 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2035 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2036 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2037 int64_t reason[CIF_N_REASONS][3];
2038 int i;
2039 struct cgraph_node *node;
2040
2041 memset (reason, 0, sizeof (reason));
2042 FOR_EACH_DEFINED_FUNCTION (node)
2043 {
2044 struct cgraph_edge *e;
2045 for (e = node->callees; e; e = e->next_callee)
2046 {
2047 if (e->inline_failed)
2048 {
2049 reason[(int) e->inline_failed][0] += e->count;
2050 reason[(int) e->inline_failed][1] += e->frequency;
2051 reason[(int) e->inline_failed][2] ++;
2052 if (DECL_VIRTUAL_P (e->callee->decl))
2053 {
2054 if (e->indirect_inlining_edge)
2055 noninlined_virt_indir_cnt += e->count;
2056 else
2057 noninlined_virt_cnt += e->count;
2058 }
2059 else
2060 {
2061 if (e->indirect_inlining_edge)
2062 noninlined_indir_cnt += e->count;
2063 else
2064 noninlined_cnt += e->count;
2065 }
2066 }
2067 else
2068 {
2069 if (e->speculative)
2070 {
2071 if (DECL_VIRTUAL_P (e->callee->decl))
2072 inlined_speculative_ply += e->count;
2073 else
2074 inlined_speculative += e->count;
2075 }
2076 else if (DECL_VIRTUAL_P (e->callee->decl))
2077 {
2078 if (e->indirect_inlining_edge)
2079 inlined_virt_indir_cnt += e->count;
2080 else
2081 inlined_virt_cnt += e->count;
2082 }
2083 else
2084 {
2085 if (e->indirect_inlining_edge)
2086 inlined_indir_cnt += e->count;
2087 else
2088 inlined_cnt += e->count;
2089 }
2090 }
2091 }
2092 for (e = node->indirect_calls; e; e = e->next_callee)
2093 if (e->indirect_info->polymorphic)
2094 indirect_poly_cnt += e->count;
2095 else
2096 indirect_cnt += e->count;
2097 }
2098 if (max_count)
2099 {
2100 fprintf (dump_file,
2101 "Inlined %"PRId64 " + speculative "
2102 "%"PRId64 " + speculative polymorphic "
2103 "%"PRId64 " + previously indirect "
2104 "%"PRId64 " + virtual "
2105 "%"PRId64 " + virtual and previously indirect "
2106 "%"PRId64 "\n" "Not inlined "
2107 "%"PRId64 " + previously indirect "
2108 "%"PRId64 " + virtual "
2109 "%"PRId64 " + virtual and previously indirect "
2110 "%"PRId64 " + stil indirect "
2111 "%"PRId64 " + still indirect polymorphic "
2112 "%"PRId64 "\n", inlined_cnt,
2113 inlined_speculative, inlined_speculative_ply,
2114 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2115 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2116 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2117 fprintf (dump_file,
2118 "Removed speculations %"PRId64 "\n",
2119 spec_rem);
2120 }
2121 dump_overall_stats ();
2122 fprintf (dump_file, "\nWhy inlining failed?\n");
2123 for (i = 0; i < CIF_N_REASONS; i++)
2124 if (reason[i][2])
2125 fprintf (dump_file, "%-50s: %8i calls, %8i freq, %"PRId64" count\n",
2126 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2127 (int) reason[i][2], (int) reason[i][1], reason[i][0]);
2128 }
2129
2130 /* Decide on the inlining. We do so in the topological order to avoid
2131 expenses on updating data structures. */
2132
2133 static unsigned int
2134 ipa_inline (void)
2135 {
2136 struct cgraph_node *node;
2137 int nnodes;
2138 struct cgraph_node **order;
2139 int i;
2140 int cold;
2141 bool remove_functions = false;
2142
2143 if (!optimize)
2144 return 0;
2145
2146 order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
2147
2148 if (in_lto_p && optimize)
2149 ipa_update_after_lto_read ();
2150
2151 if (dump_file)
2152 dump_inline_summaries (dump_file);
2153
2154 nnodes = ipa_reverse_postorder (order);
2155
2156 FOR_EACH_FUNCTION (node)
2157 node->aux = 0;
2158
2159 if (dump_file)
2160 fprintf (dump_file, "\nFlattening functions:\n");
2161
2162 /* In the first pass handle functions to be flattened. Do this with
2163 a priority so none of our later choices will make this impossible. */
2164 for (i = nnodes - 1; i >= 0; i--)
2165 {
2166 node = order[i];
2167
2168 /* Handle nodes to be flattened.
2169 Ideally when processing callees we stop inlining at the
2170 entry of cycles, possibly cloning that entry point and
2171 try to flatten itself turning it into a self-recursive
2172 function. */
2173 if (lookup_attribute ("flatten",
2174 DECL_ATTRIBUTES (node->decl)) != NULL)
2175 {
2176 if (dump_file)
2177 fprintf (dump_file,
2178 "Flattening %s\n", node->name ());
2179 flatten_function (node, false);
2180 }
2181 }
2182 if (dump_file)
2183 dump_overall_stats ();
2184
2185 inline_small_functions ();
2186
2187 /* Do first after-inlining removal. We want to remove all "stale" extern inline
2188 functions and virtual functions so we really know what is called once. */
2189 symtab_remove_unreachable_nodes (false, dump_file);
2190 free (order);
2191
2192 /* Inline functions with a property that after inlining into all callers the
2193 code size will shrink because the out-of-line copy is eliminated.
2194 We do this regardless on the callee size as long as function growth limits
2195 are met. */
2196 if (dump_file)
2197 fprintf (dump_file,
2198 "\nDeciding on functions to be inlined into all callers and removing useless speculations:\n");
2199
2200 /* Inlining one function called once has good chance of preventing
2201 inlining other function into the same callee. Ideally we should
2202 work in priority order, but probably inlining hot functions first
2203 is good cut without the extra pain of maintaining the queue.
2204
2205 ??? this is not really fitting the bill perfectly: inlining function
2206 into callee often leads to better optimization of callee due to
2207 increased context for optimization.
2208 For example if main() function calls a function that outputs help
2209 and then function that does the main optmization, we should inline
2210 the second with priority even if both calls are cold by themselves.
2211
2212 We probably want to implement new predicate replacing our use of
2213 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2214 to be hot. */
2215 for (cold = 0; cold <= 1; cold ++)
2216 {
2217 FOR_EACH_DEFINED_FUNCTION (node)
2218 {
2219 struct cgraph_edge *edge, *next;
2220 bool update=false;
2221
2222 for (edge = node->callees; edge; edge = next)
2223 {
2224 next = edge->next_callee;
2225 if (edge->speculative && !speculation_useful_p (edge, false))
2226 {
2227 cgraph_resolve_speculation (edge, NULL);
2228 spec_rem += edge->count;
2229 update = true;
2230 remove_functions = true;
2231 }
2232 }
2233 if (update)
2234 {
2235 struct cgraph_node *where = node->global.inlined_to
2236 ? node->global.inlined_to : node;
2237 reset_node_growth_cache (where);
2238 reset_edge_caches (where);
2239 inline_update_overall_summary (where);
2240 }
2241 if (flag_inline_functions_called_once
2242 && want_inline_function_to_all_callers_p (node, cold))
2243 {
2244 int num_calls = 0;
2245 cgraph_for_node_and_aliases (node, sum_callers,
2246 &num_calls, true);
2247 while (cgraph_for_node_and_aliases (node, inline_to_all_callers,
2248 &num_calls, true))
2249 ;
2250 remove_functions = true;
2251 }
2252 }
2253 }
2254
2255 /* Free ipa-prop structures if they are no longer needed. */
2256 if (optimize)
2257 ipa_free_all_structures_after_iinln ();
2258
2259 if (dump_file)
2260 {
2261 fprintf (dump_file,
2262 "\nInlined %i calls, eliminated %i functions\n\n",
2263 ncalls_inlined, nfunctions_inlined);
2264 dump_inline_stats ();
2265 }
2266
2267 if (dump_file)
2268 dump_inline_summaries (dump_file);
2269 /* In WPA we use inline summaries for partitioning process. */
2270 if (!flag_wpa)
2271 inline_free_summary ();
2272 return remove_functions ? TODO_remove_functions : 0;
2273 }
2274
2275 /* Inline always-inline function calls in NODE. */
2276
2277 static bool
2278 inline_always_inline_functions (struct cgraph_node *node)
2279 {
2280 struct cgraph_edge *e;
2281 bool inlined = false;
2282
2283 for (e = node->callees; e; e = e->next_callee)
2284 {
2285 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
2286 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2287 continue;
2288
2289 if (cgraph_edge_recursive_p (e))
2290 {
2291 if (dump_file)
2292 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2293 e->callee->name ());
2294 e->inline_failed = CIF_RECURSIVE_INLINING;
2295 continue;
2296 }
2297
2298 if (!can_early_inline_edge_p (e))
2299 {
2300 /* Set inlined to true if the callee is marked "always_inline" but
2301 is not inlinable. This will allow flagging an error later in
2302 expand_call_inline in tree-inline.c. */
2303 if (lookup_attribute ("always_inline",
2304 DECL_ATTRIBUTES (callee->decl)) != NULL)
2305 inlined = true;
2306 continue;
2307 }
2308
2309 if (dump_file)
2310 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2311 xstrdup (e->callee->name ()),
2312 xstrdup (e->caller->name ()));
2313 inline_call (e, true, NULL, NULL, false);
2314 inlined = true;
2315 }
2316 if (inlined)
2317 inline_update_overall_summary (node);
2318
2319 return inlined;
2320 }
2321
2322 /* Decide on the inlining. We do so in the topological order to avoid
2323 expenses on updating data structures. */
2324
2325 static bool
2326 early_inline_small_functions (struct cgraph_node *node)
2327 {
2328 struct cgraph_edge *e;
2329 bool inlined = false;
2330
2331 for (e = node->callees; e; e = e->next_callee)
2332 {
2333 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
2334 if (!inline_summary (callee)->inlinable
2335 || !e->inline_failed)
2336 continue;
2337
2338 /* Do not consider functions not declared inline. */
2339 if (!DECL_DECLARED_INLINE_P (callee->decl)
2340 && !flag_inline_small_functions
2341 && !flag_inline_functions)
2342 continue;
2343
2344 if (dump_file)
2345 fprintf (dump_file, "Considering inline candidate %s.\n",
2346 callee->name ());
2347
2348 if (!can_early_inline_edge_p (e))
2349 continue;
2350
2351 if (cgraph_edge_recursive_p (e))
2352 {
2353 if (dump_file)
2354 fprintf (dump_file, " Not inlining: recursive call.\n");
2355 continue;
2356 }
2357
2358 if (!want_early_inline_function_p (e))
2359 continue;
2360
2361 if (dump_file)
2362 fprintf (dump_file, " Inlining %s into %s.\n",
2363 xstrdup (callee->name ()),
2364 xstrdup (e->caller->name ()));
2365 inline_call (e, true, NULL, NULL, true);
2366 inlined = true;
2367 }
2368
2369 return inlined;
2370 }
2371
2372 /* Do inlining of small functions. Doing so early helps profiling and other
2373 passes to be somewhat more effective and avoids some code duplication in
2374 later real inlining pass for testcases with very many function calls. */
2375
2376 namespace {
2377
2378 const pass_data pass_data_early_inline =
2379 {
2380 GIMPLE_PASS, /* type */
2381 "einline", /* name */
2382 OPTGROUP_INLINE, /* optinfo_flags */
2383 true, /* has_execute */
2384 TV_EARLY_INLINING, /* tv_id */
2385 PROP_ssa, /* properties_required */
2386 0, /* properties_provided */
2387 0, /* properties_destroyed */
2388 0, /* todo_flags_start */
2389 0, /* todo_flags_finish */
2390 };
2391
2392 class pass_early_inline : public gimple_opt_pass
2393 {
2394 public:
2395 pass_early_inline (gcc::context *ctxt)
2396 : gimple_opt_pass (pass_data_early_inline, ctxt)
2397 {}
2398
2399 /* opt_pass methods: */
2400 virtual unsigned int execute (function *);
2401
2402 }; // class pass_early_inline
2403
2404 unsigned int
2405 pass_early_inline::execute (function *fun)
2406 {
2407 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2408 struct cgraph_edge *edge;
2409 unsigned int todo = 0;
2410 int iterations = 0;
2411 bool inlined = false;
2412
2413 if (seen_error ())
2414 return 0;
2415
2416 /* Do nothing if datastructures for ipa-inliner are already computed. This
2417 happens when some pass decides to construct new function and
2418 cgraph_add_new_function calls lowering passes and early optimization on
2419 it. This may confuse ourself when early inliner decide to inline call to
2420 function clone, because function clones don't have parameter list in
2421 ipa-prop matching their signature. */
2422 if (ipa_node_params_vector.exists ())
2423 return 0;
2424
2425 #ifdef ENABLE_CHECKING
2426 verify_cgraph_node (node);
2427 #endif
2428 node->remove_all_references ();
2429
2430 /* Even when not optimizing or not inlining inline always-inline
2431 functions. */
2432 inlined = inline_always_inline_functions (node);
2433
2434 if (!optimize
2435 || flag_no_inline
2436 || !flag_early_inlining
2437 /* Never inline regular functions into always-inline functions
2438 during incremental inlining. This sucks as functions calling
2439 always inline functions will get less optimized, but at the
2440 same time inlining of functions calling always inline
2441 function into an always inline function might introduce
2442 cycles of edges to be always inlined in the callgraph.
2443
2444 We might want to be smarter and just avoid this type of inlining. */
2445 || DECL_DISREGARD_INLINE_LIMITS (node->decl))
2446 ;
2447 else if (lookup_attribute ("flatten",
2448 DECL_ATTRIBUTES (node->decl)) != NULL)
2449 {
2450 /* When the function is marked to be flattened, recursively inline
2451 all calls in it. */
2452 if (dump_file)
2453 fprintf (dump_file,
2454 "Flattening %s\n", node->name ());
2455 flatten_function (node, true);
2456 inlined = true;
2457 }
2458 else
2459 {
2460 /* We iterate incremental inlining to get trivial cases of indirect
2461 inlining. */
2462 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2463 && early_inline_small_functions (node))
2464 {
2465 timevar_push (TV_INTEGRATION);
2466 todo |= optimize_inline_calls (current_function_decl);
2467
2468 /* Technically we ought to recompute inline parameters so the new
2469 iteration of early inliner works as expected. We however have
2470 values approximately right and thus we only need to update edge
2471 info that might be cleared out for newly discovered edges. */
2472 for (edge = node->callees; edge; edge = edge->next_callee)
2473 {
2474 struct inline_edge_summary *es = inline_edge_summary (edge);
2475 es->call_stmt_size
2476 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2477 es->call_stmt_time
2478 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2479 if (edge->callee->decl
2480 && !gimple_check_call_matching_types (
2481 edge->call_stmt, edge->callee->decl, false))
2482 edge->call_stmt_cannot_inline_p = true;
2483 }
2484 if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
2485 inline_update_overall_summary (node);
2486 timevar_pop (TV_INTEGRATION);
2487 iterations++;
2488 inlined = false;
2489 }
2490 if (dump_file)
2491 fprintf (dump_file, "Iterations: %i\n", iterations);
2492 }
2493
2494 if (inlined)
2495 {
2496 timevar_push (TV_INTEGRATION);
2497 todo |= optimize_inline_calls (current_function_decl);
2498 timevar_pop (TV_INTEGRATION);
2499 }
2500
2501 fun->always_inline_functions_inlined = true;
2502
2503 return todo;
2504 }
2505
2506 } // anon namespace
2507
2508 gimple_opt_pass *
2509 make_pass_early_inline (gcc::context *ctxt)
2510 {
2511 return new pass_early_inline (ctxt);
2512 }
2513
2514 namespace {
2515
2516 const pass_data pass_data_ipa_inline =
2517 {
2518 IPA_PASS, /* type */
2519 "inline", /* name */
2520 OPTGROUP_INLINE, /* optinfo_flags */
2521 true, /* has_execute */
2522 TV_IPA_INLINING, /* tv_id */
2523 0, /* properties_required */
2524 0, /* properties_provided */
2525 0, /* properties_destroyed */
2526 TODO_remove_functions, /* todo_flags_start */
2527 ( TODO_dump_symtab ), /* todo_flags_finish */
2528 };
2529
2530 class pass_ipa_inline : public ipa_opt_pass_d
2531 {
2532 public:
2533 pass_ipa_inline (gcc::context *ctxt)
2534 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2535 inline_generate_summary, /* generate_summary */
2536 inline_write_summary, /* write_summary */
2537 inline_read_summary, /* read_summary */
2538 NULL, /* write_optimization_summary */
2539 NULL, /* read_optimization_summary */
2540 NULL, /* stmt_fixup */
2541 0, /* function_transform_todo_flags_start */
2542 inline_transform, /* function_transform */
2543 NULL) /* variable_transform */
2544 {}
2545
2546 /* opt_pass methods: */
2547 virtual unsigned int execute (function *) { return ipa_inline (); }
2548
2549 }; // class pass_ipa_inline
2550
2551 } // anon namespace
2552
2553 ipa_opt_pass_d *
2554 make_pass_ipa_inline (gcc::context *ctxt)
2555 {
2556 return new pass_ipa_inline (ctxt);
2557 }