gengtype.c (open_base_files): Add ipa-inline.h include.
[gcc.git] / gcc / ipa-inline.h
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Representation of inline parameters that do depend on context function is
23 inlined into (i.e. known constant values of function parameters.
24
25 Conditions that are interesting for function body are collected into CONDS
26 vector. They are of simple for function_param OP VAL, where VAL is
27 IPA invariant. The conditions are then refered by predicates. */
28
29 typedef struct GTY(()) condition
30 {
31 tree val;
32 int operand_num;
33 enum tree_code code;
34 } condition;
35
36 DEF_VEC_O (condition);
37 DEF_VEC_ALLOC_O (condition, gc);
38
39 typedef VEC(condition,gc) *conditions;
40
41 /* Representation of predicates i.e. formulas using conditions defined
42 above. Predicates are simple logical formulas in conjunctive-disjunctive
43 form.
44
45 Predicate is array of clauses terminated by 0. Every clause must be true
46 in order to make predicate true.
47 Clauses are represented as bitmaps of conditions. One of conditions
48 must be true in order for clause to be true. */
49
50 #define MAX_CLAUSES 8
51 typedef int clause_t;
52 struct GTY(()) predicate
53 {
54 clause_t clause[MAX_CLAUSES + 1];
55 };
56
57 /* Represnetation of function body size and time depending on the inline
58 context. We keep simple array of record, every containing of predicate
59 and time/size to account.
60
61 We keep values scaled up, so fractional sizes and times can be
62 accounted. */
63 #define INLINE_SIZE_SCALE 2
64 #define INLINE_TIME_SCALE (CGRAPH_FREQ_BASE * 2)
65 typedef struct GTY(()) size_time_entry
66 {
67 struct predicate predicate;
68 int size;
69 int time;
70 } size_time_entry;
71 DEF_VEC_O (size_time_entry);
72 DEF_VEC_ALLOC_O (size_time_entry, gc);
73
74 /* Function inlining information. */
75 struct GTY(()) inline_summary
76 {
77 /* Information about the function body itself. */
78
79 /* Estimated stack frame consumption by the function. */
80 HOST_WIDE_INT estimated_self_stack_size;
81 /* Size of the function body. */
82 int self_size;
83 /* Time of the function body. */
84 int self_time;
85
86 /* False when there something makes inlining impossible (such as va_arg). */
87 unsigned inlinable : 1;
88 /* False when there something makes versioning impossible.
89 Currently computed and used only by ipa-cp. */
90 unsigned versionable : 1;
91
92 /* Information about function that will result after applying all the
93 inline decisions present in the callgraph. Generally kept up to
94 date only for functions that are not inline clones. */
95
96 /* Estimated stack frame consumption by the function. */
97 HOST_WIDE_INT estimated_stack_size;
98 /* Expected offset of the stack frame of inlined function. */
99 HOST_WIDE_INT stack_frame_offset;
100 /* Estimated size of the function after inlining. */
101 int time;
102 int size;
103
104 conditions conds;
105 VEC(size_time_entry,gc) *entry;
106 };
107
108 typedef struct inline_summary inline_summary_t;
109 DEF_VEC_O(inline_summary_t);
110 DEF_VEC_ALLOC_O(inline_summary_t,gc);
111 extern GTY(()) VEC(inline_summary_t,gc) *inline_summary_vec;
112
113 typedef struct edge_growth_cache_entry
114 {
115 int time, size;
116 } edge_growth_cache_entry;
117 DEF_VEC_O(edge_growth_cache_entry);
118 DEF_VEC_ALLOC_O(edge_growth_cache_entry,heap);
119
120 extern VEC(int,heap) *node_growth_cache;
121 extern VEC(edge_growth_cache_entry,heap) *edge_growth_cache;
122
123 /* In ipa-inline-analysis.c */
124 void debug_inline_summary (struct cgraph_node *);
125 void dump_inline_summaries (FILE *f);
126 void inline_generate_summary (void);
127 void inline_read_summary (void);
128 void inline_write_summary (cgraph_node_set, varpool_node_set);
129 void inline_free_summary (void);
130 void initialize_inline_failed (struct cgraph_edge *);
131 int estimate_time_after_inlining (struct cgraph_node *, struct cgraph_edge *);
132 int estimate_size_after_inlining (struct cgraph_node *, struct cgraph_edge *);
133 int do_estimate_growth (struct cgraph_node *);
134 void inline_merge_summary (struct cgraph_edge *edge);
135 int do_estimate_edge_growth (struct cgraph_edge *edge);
136 int do_estimate_edge_time (struct cgraph_edge *edge);
137 void initialize_growth_caches (void);
138 void free_growth_caches (void);
139 void compute_inline_parameters (struct cgraph_node *, bool);
140
141 /* In ipa-inline-transform.c */
142 bool inline_call (struct cgraph_edge *, bool, VEC (cgraph_edge_p, heap) **, int *);
143 unsigned int inline_transform (struct cgraph_node *);
144 void clone_inlined_nodes (struct cgraph_edge *e, bool, bool, int *);
145
146 extern int ncalls_inlined;
147 extern int nfunctions_inlined;
148
149 static inline struct inline_summary *
150 inline_summary (struct cgraph_node *node)
151 {
152 return VEC_index (inline_summary_t, inline_summary_vec, node->uid);
153 }
154
155
156 /* Return estimated unit growth after inlning all calls to NODE.
157 Quick accesors to the inline growth caches.
158 For convenience we keep zero 0 as unknown. Because growth
159 can be both positive and negative, we simply increase positive
160 growths by 1. */
161 static inline int
162 estimate_growth (struct cgraph_node *node)
163 {
164 int ret;
165 if ((int)VEC_length (int, node_growth_cache) <= node->uid
166 || !(ret = VEC_index (int, node_growth_cache, node->uid)))
167 return do_estimate_growth (node);
168 return ret - (ret > 0);
169 }
170
171
172 /* Return estimated callee growth after inlining EDGE. */
173
174 static inline int
175 estimate_edge_growth (struct cgraph_edge *edge)
176 {
177 int ret;
178 if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) <= edge->uid
179 || !(ret = VEC_index (edge_growth_cache_entry,
180 edge_growth_cache,
181 edge->uid)->size))
182 return do_estimate_edge_growth (edge);
183 return ret - (ret > 0);
184 }
185
186
187 /* Return estimated callee runtime increase after inlning
188 EDGE. */
189
190 static inline int
191 estimate_edge_time (struct cgraph_edge *edge)
192 {
193 int ret;
194 if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) <= edge->uid
195 || !(ret = VEC_index (edge_growth_cache_entry,
196 edge_growth_cache,
197 edge->uid)->size))
198 return do_estimate_edge_time (edge);
199 return ret - (ret > 0);
200 }
201
202
203 /* Reset cached value for NODE. */
204
205 static inline void
206 reset_node_growth_cache (struct cgraph_node *node)
207 {
208 if ((int)VEC_length (int, node_growth_cache) > node->uid)
209 VEC_replace (int, node_growth_cache, node->uid, 0);
210 }
211
212 /* Reset cached value for EDGE. */
213
214 static inline void
215 reset_edge_growth_cache (struct cgraph_edge *edge)
216 {
217 if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) > edge->uid)
218 {
219 struct edge_growth_cache_entry zero = {0, 0};
220 VEC_replace (edge_growth_cache_entry, edge_growth_cache, edge->uid, &zero);
221 }
222 }