0ca3f3a5f837f12737be324a9d43a5d2fa18a7cd
[gcc.git] / gcc / ipa-prop.c
1 /* Interprocedural analyses.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "langhooks.h"
26 #include "ggc.h"
27 #include "target.h"
28 #include "cgraph.h"
29 #include "ipa-prop.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-inline.h"
33 #include "gimple.h"
34 #include "flags.h"
35 #include "timevar.h"
36 #include "flags.h"
37 #include "diagnostic.h"
38 #include "tree-pretty-print.h"
39 #include "gimple-pretty-print.h"
40 #include "lto-streamer.h"
41 #include "data-streamer.h"
42 #include "tree-streamer.h"
43
44
45 /* Intermediate information about a parameter that is only useful during the
46 run of ipa_analyze_node and is not kept afterwards. */
47
48 struct param_analysis_info
49 {
50 bool modified;
51 bitmap visited_statements;
52 };
53
54 /* Vector where the parameter infos are actually stored. */
55 VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
56 /* Vector where the parameter infos are actually stored. */
57 VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector;
58
59 /* Holders of ipa cgraph hooks: */
60 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
61 static struct cgraph_node_hook_list *node_removal_hook_holder;
62 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
63 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
64 static struct cgraph_node_hook_list *function_insertion_hook_holder;
65
66 /* Return index of the formal whose tree is PTREE in function which corresponds
67 to INFO. */
68
69 int
70 ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
71 {
72 int i, count;
73
74 count = ipa_get_param_count (info);
75 for (i = 0; i < count; i++)
76 if (ipa_get_param (info, i) == ptree)
77 return i;
78
79 return -1;
80 }
81
82 /* Populate the param_decl field in parameter descriptors of INFO that
83 corresponds to NODE. */
84
85 static void
86 ipa_populate_param_decls (struct cgraph_node *node,
87 struct ipa_node_params *info)
88 {
89 tree fndecl;
90 tree fnargs;
91 tree parm;
92 int param_num;
93
94 fndecl = node->decl;
95 fnargs = DECL_ARGUMENTS (fndecl);
96 param_num = 0;
97 for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
98 {
99 VEC_index (ipa_param_descriptor_t,
100 info->descriptors, param_num)->decl = parm;
101 param_num++;
102 }
103 }
104
105 /* Return how many formal parameters FNDECL has. */
106
107 static inline int
108 count_formal_params (tree fndecl)
109 {
110 tree parm;
111 int count = 0;
112
113 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
114 count++;
115
116 return count;
117 }
118
119 /* Initialize the ipa_node_params structure associated with NODE by counting
120 the function parameters, creating the descriptors and populating their
121 param_decls. */
122
123 void
124 ipa_initialize_node_params (struct cgraph_node *node)
125 {
126 struct ipa_node_params *info = IPA_NODE_REF (node);
127
128 if (!info->descriptors)
129 {
130 int param_count;
131
132 param_count = count_formal_params (node->decl);
133 if (param_count)
134 {
135 VEC_safe_grow_cleared (ipa_param_descriptor_t, heap,
136 info->descriptors, param_count);
137 ipa_populate_param_decls (node, info);
138 }
139 }
140 }
141
142 /* Print the jump functions associated with call graph edge CS to file F. */
143
144 static void
145 ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
146 {
147 int i, count;
148
149 count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
150 for (i = 0; i < count; i++)
151 {
152 struct ipa_jump_func *jump_func;
153 enum jump_func_type type;
154
155 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
156 type = jump_func->type;
157
158 fprintf (f, " param %d: ", i);
159 if (type == IPA_JF_UNKNOWN)
160 fprintf (f, "UNKNOWN\n");
161 else if (type == IPA_JF_KNOWN_TYPE)
162 {
163 fprintf (f, "KNOWN TYPE: base ");
164 print_generic_expr (f, jump_func->value.known_type.base_type, 0);
165 fprintf (f, ", offset "HOST_WIDE_INT_PRINT_DEC", component ",
166 jump_func->value.known_type.offset);
167 print_generic_expr (f, jump_func->value.known_type.component_type, 0);
168 fprintf (f, "\n");
169 }
170 else if (type == IPA_JF_CONST)
171 {
172 tree val = jump_func->value.constant;
173 fprintf (f, "CONST: ");
174 print_generic_expr (f, val, 0);
175 if (TREE_CODE (val) == ADDR_EXPR
176 && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
177 {
178 fprintf (f, " -> ");
179 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
180 0);
181 }
182 fprintf (f, "\n");
183 }
184 else if (type == IPA_JF_CONST_MEMBER_PTR)
185 {
186 fprintf (f, "CONST MEMBER PTR: ");
187 print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
188 fprintf (f, ", ");
189 print_generic_expr (f, jump_func->value.member_cst.delta, 0);
190 fprintf (f, "\n");
191 }
192 else if (type == IPA_JF_PASS_THROUGH)
193 {
194 fprintf (f, "PASS THROUGH: ");
195 fprintf (f, "%d, op %s ",
196 jump_func->value.pass_through.formal_id,
197 tree_code_name[(int)
198 jump_func->value.pass_through.operation]);
199 if (jump_func->value.pass_through.operation != NOP_EXPR)
200 print_generic_expr (f,
201 jump_func->value.pass_through.operand, 0);
202 fprintf (f, "\n");
203 }
204 else if (type == IPA_JF_ANCESTOR)
205 {
206 fprintf (f, "ANCESTOR: ");
207 fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
208 jump_func->value.ancestor.formal_id,
209 jump_func->value.ancestor.offset);
210 print_generic_expr (f, jump_func->value.ancestor.type, 0);
211 fprintf (f, "\n");
212 }
213 }
214 }
215
216
217 /* Print the jump functions of all arguments on all call graph edges going from
218 NODE to file F. */
219
220 void
221 ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
222 {
223 struct cgraph_edge *cs;
224 int i;
225
226 fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
227 for (cs = node->callees; cs; cs = cs->next_callee)
228 {
229 if (!ipa_edge_args_info_available_for_edge_p (cs))
230 continue;
231
232 fprintf (f, " callsite %s/%i -> %s/%i : \n",
233 cgraph_node_name (node), node->uid,
234 cgraph_node_name (cs->callee), cs->callee->uid);
235 ipa_print_node_jump_functions_for_edge (f, cs);
236 }
237
238 for (cs = node->indirect_calls, i = 0; cs; cs = cs->next_callee, i++)
239 {
240 if (!ipa_edge_args_info_available_for_edge_p (cs))
241 continue;
242
243 if (cs->call_stmt)
244 {
245 fprintf (f, " indirect callsite %d for stmt ", i);
246 print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
247 }
248 else
249 fprintf (f, " indirect callsite %d :\n", i);
250 ipa_print_node_jump_functions_for_edge (f, cs);
251
252 }
253 }
254
255 /* Print ipa_jump_func data structures of all nodes in the call graph to F. */
256
257 void
258 ipa_print_all_jump_functions (FILE *f)
259 {
260 struct cgraph_node *node;
261
262 fprintf (f, "\nJump functions:\n");
263 for (node = cgraph_nodes; node; node = node->next)
264 {
265 ipa_print_node_jump_functions (f, node);
266 }
267 }
268
269 /* Structure to be passed in between detect_type_change and
270 check_stmt_for_type_change. */
271
272 struct type_change_info
273 {
274 /* Offset into the object where there is the virtual method pointer we are
275 looking for. */
276 HOST_WIDE_INT offset;
277 /* The declaration or SSA_NAME pointer of the base that we are checking for
278 type change. */
279 tree object;
280 /* If we actually can tell the type that the object has changed to, it is
281 stored in this field. Otherwise it remains NULL_TREE. */
282 tree known_current_type;
283 /* Set to true if dynamic type change has been detected. */
284 bool type_maybe_changed;
285 /* Set to true if multiple types have been encountered. known_current_type
286 must be disregarded in that case. */
287 bool multiple_types_encountered;
288 };
289
290 /* Return true if STMT can modify a virtual method table pointer.
291
292 This function makes special assumptions about both constructors and
293 destructors which are all the functions that are allowed to alter the VMT
294 pointers. It assumes that destructors begin with assignment into all VMT
295 pointers and that constructors essentially look in the following way:
296
297 1) The very first thing they do is that they call constructors of ancestor
298 sub-objects that have them.
299
300 2) Then VMT pointers of this and all its ancestors is set to new values
301 corresponding to the type corresponding to the constructor.
302
303 3) Only afterwards, other stuff such as constructor of member sub-objects
304 and the code written by the user is run. Only this may include calling
305 virtual functions, directly or indirectly.
306
307 There is no way to call a constructor of an ancestor sub-object in any
308 other way.
309
310 This means that we do not have to care whether constructors get the correct
311 type information because they will always change it (in fact, if we define
312 the type to be given by the VMT pointer, it is undefined).
313
314 The most important fact to derive from the above is that if, for some
315 statement in the section 3, we try to detect whether the dynamic type has
316 changed, we can safely ignore all calls as we examine the function body
317 backwards until we reach statements in section 2 because these calls cannot
318 be ancestor constructors or destructors (if the input is not bogus) and so
319 do not change the dynamic type (this holds true only for automatically
320 allocated objects but at the moment we devirtualize only these). We then
321 must detect that statements in section 2 change the dynamic type and can try
322 to derive the new type. That is enough and we can stop, we will never see
323 the calls into constructors of sub-objects in this code. Therefore we can
324 safely ignore all call statements that we traverse.
325 */
326
327 static bool
328 stmt_may_be_vtbl_ptr_store (gimple stmt)
329 {
330 if (is_gimple_call (stmt))
331 return false;
332 else if (is_gimple_assign (stmt))
333 {
334 tree lhs = gimple_assign_lhs (stmt);
335
336 if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
337 {
338 if (flag_strict_aliasing
339 && !POINTER_TYPE_P (TREE_TYPE (lhs)))
340 return false;
341
342 if (TREE_CODE (lhs) == COMPONENT_REF
343 && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
344 return false;
345 /* In the future we might want to use get_base_ref_and_offset to find
346 if there is a field corresponding to the offset and if so, proceed
347 almost like if it was a component ref. */
348 }
349 }
350 return true;
351 }
352
353 /* If STMT can be proved to be an assignment to the virtual method table
354 pointer of ANALYZED_OBJ and the type associated with the new table
355 identified, return the type. Otherwise return NULL_TREE. */
356
357 static tree
358 extr_type_from_vtbl_ptr_store (gimple stmt, struct type_change_info *tci)
359 {
360 HOST_WIDE_INT offset, size, max_size;
361 tree lhs, rhs, base;
362
363 if (!gimple_assign_single_p (stmt))
364 return NULL_TREE;
365
366 lhs = gimple_assign_lhs (stmt);
367 rhs = gimple_assign_rhs1 (stmt);
368 if (TREE_CODE (lhs) != COMPONENT_REF
369 || !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1))
370 || TREE_CODE (rhs) != ADDR_EXPR)
371 return NULL_TREE;
372 rhs = get_base_address (TREE_OPERAND (rhs, 0));
373 if (!rhs
374 || TREE_CODE (rhs) != VAR_DECL
375 || !DECL_VIRTUAL_P (rhs))
376 return NULL_TREE;
377
378 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
379 if (offset != tci->offset
380 || size != POINTER_SIZE
381 || max_size != POINTER_SIZE)
382 return NULL_TREE;
383 if (TREE_CODE (base) == MEM_REF)
384 {
385 if (TREE_CODE (tci->object) != MEM_REF
386 || TREE_OPERAND (tci->object, 0) != TREE_OPERAND (base, 0)
387 || !tree_int_cst_equal (TREE_OPERAND (tci->object, 1),
388 TREE_OPERAND (base, 1)))
389 return NULL_TREE;
390 }
391 else if (tci->object != base)
392 return NULL_TREE;
393
394 return DECL_CONTEXT (rhs);
395 }
396
397 /* Callback of walk_aliased_vdefs and a helper function for
398 detect_type_change to check whether a particular statement may modify
399 the virtual table pointer, and if possible also determine the new type of
400 the (sub-)object. It stores its result into DATA, which points to a
401 type_change_info structure. */
402
403 static bool
404 check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
405 {
406 gimple stmt = SSA_NAME_DEF_STMT (vdef);
407 struct type_change_info *tci = (struct type_change_info *) data;
408
409 if (stmt_may_be_vtbl_ptr_store (stmt))
410 {
411 tree type;
412 type = extr_type_from_vtbl_ptr_store (stmt, tci);
413 if (tci->type_maybe_changed
414 && type != tci->known_current_type)
415 tci->multiple_types_encountered = true;
416 tci->known_current_type = type;
417 tci->type_maybe_changed = true;
418 return true;
419 }
420 else
421 return false;
422 }
423
424
425
426 /* Like detect_type_change but with extra argument COMP_TYPE which will become
427 the component type part of new JFUNC of dynamic type change is detected and
428 the new base type is identified. */
429
430 static bool
431 detect_type_change_1 (tree arg, tree base, tree comp_type, gimple call,
432 struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
433 {
434 struct type_change_info tci;
435 ao_ref ao;
436
437 gcc_checking_assert (DECL_P (arg)
438 || TREE_CODE (arg) == MEM_REF
439 || handled_component_p (arg));
440 /* Const calls cannot call virtual methods through VMT and so type changes do
441 not matter. */
442 if (!flag_devirtualize || !gimple_vuse (call))
443 return false;
444
445 ao.ref = arg;
446 ao.base = base;
447 ao.offset = offset;
448 ao.size = POINTER_SIZE;
449 ao.max_size = ao.size;
450 ao.ref_alias_set = -1;
451 ao.base_alias_set = -1;
452
453 tci.offset = offset;
454 tci.object = get_base_address (arg);
455 tci.known_current_type = NULL_TREE;
456 tci.type_maybe_changed = false;
457 tci.multiple_types_encountered = false;
458
459 walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
460 &tci, NULL);
461 if (!tci.type_maybe_changed)
462 return false;
463
464 if (!tci.known_current_type
465 || tci.multiple_types_encountered
466 || offset != 0)
467 jfunc->type = IPA_JF_UNKNOWN;
468 else
469 {
470 jfunc->type = IPA_JF_KNOWN_TYPE;
471 jfunc->value.known_type.base_type = tci.known_current_type;
472 jfunc->value.known_type.component_type = comp_type;
473 }
474
475 return true;
476 }
477
478 /* Detect whether the dynamic type of ARG has changed (before callsite CALL) by
479 looking for assignments to its virtual table pointer. If it is, return true
480 and fill in the jump function JFUNC with relevant type information or set it
481 to unknown. ARG is the object itself (not a pointer to it, unless
482 dereferenced). BASE is the base of the memory access as returned by
483 get_ref_base_and_extent, as is the offset. */
484
485 static bool
486 detect_type_change (tree arg, tree base, gimple call,
487 struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
488 {
489 return detect_type_change_1 (arg, base, TREE_TYPE (arg), call, jfunc, offset);
490 }
491
492 /* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
493 SSA name (its dereference will become the base and the offset is assumed to
494 be zero). */
495
496 static bool
497 detect_type_change_ssa (tree arg, gimple call, struct ipa_jump_func *jfunc)
498 {
499 tree comp_type;
500
501 gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
502 if (!flag_devirtualize
503 || !POINTER_TYPE_P (TREE_TYPE (arg))
504 || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != RECORD_TYPE)
505 return false;
506
507 comp_type = TREE_TYPE (TREE_TYPE (arg));
508 arg = build2 (MEM_REF, ptr_type_node, arg,
509 build_int_cst (ptr_type_node, 0));
510
511 return detect_type_change_1 (arg, arg, comp_type, call, jfunc, 0);
512 }
513
514 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
515 boolean variable pointed to by DATA. */
516
517 static bool
518 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
519 void *data)
520 {
521 bool *b = (bool *) data;
522 *b = true;
523 return true;
524 }
525
526 /* Return true if the formal parameter PARM might have been modified in this
527 function before reaching the statement STMT. PARM_AINFO is a pointer to a
528 structure containing temporary information about PARM. */
529
530 static bool
531 is_parm_modified_before_stmt (struct param_analysis_info *parm_ainfo,
532 gimple stmt, tree parm)
533 {
534 bool modified = false;
535 ao_ref refd;
536
537 if (parm_ainfo->modified)
538 return true;
539
540 gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
541 ao_ref_init (&refd, parm);
542 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
543 &modified, &parm_ainfo->visited_statements);
544 if (modified)
545 {
546 parm_ainfo->modified = true;
547 return true;
548 }
549 return false;
550 }
551
552 /* If STMT is an assignment that loads a value from an parameter declaration,
553 return the index of the parameter in ipa_node_params which has not been
554 modified. Otherwise return -1. */
555
556 static int
557 load_from_unmodified_param (struct ipa_node_params *info,
558 struct param_analysis_info *parms_ainfo,
559 gimple stmt)
560 {
561 int index;
562 tree op1;
563
564 if (!gimple_assign_single_p (stmt))
565 return -1;
566
567 op1 = gimple_assign_rhs1 (stmt);
568 if (TREE_CODE (op1) != PARM_DECL)
569 return -1;
570
571 index = ipa_get_param_decl_index (info, op1);
572 if (index < 0
573 || is_parm_modified_before_stmt (&parms_ainfo[index], stmt, op1))
574 return -1;
575
576 return index;
577 }
578
579 /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
580 of an assignment statement STMT, try to determine whether we are actually
581 handling any of the following cases and construct an appropriate jump
582 function into JFUNC if so:
583
584 1) The passed value is loaded from a formal parameter which is not a gimple
585 register (most probably because it is addressable, the value has to be
586 scalar) and we can guarantee the value has not changed. This case can
587 therefore be described by a simple pass-through jump function. For example:
588
589 foo (int a)
590 {
591 int a.0;
592
593 a.0_2 = a;
594 bar (a.0_2);
595
596 2) The passed value can be described by a simple arithmetic pass-through
597 jump function. E.g.
598
599 foo (int a)
600 {
601 int D.2064;
602
603 D.2064_4 = a.1(D) + 4;
604 bar (D.2064_4);
605
606 This case can also occur in combination of the previous one, e.g.:
607
608 foo (int a, int z)
609 {
610 int a.0;
611 int D.2064;
612
613 a.0_3 = a;
614 D.2064_4 = a.0_3 + 4;
615 foo (D.2064_4);
616
617 3) The passed value is an address of an object within another one (which
618 also passed by reference). Such situations are described by an ancestor
619 jump function and describe situations such as:
620
621 B::foo() (struct B * const this)
622 {
623 struct A * D.1845;
624
625 D.1845_2 = &this_1(D)->D.1748;
626 A::bar (D.1845_2);
627
628 INFO is the structure describing individual parameters access different
629 stages of IPA optimizations. PARMS_AINFO contains the information that is
630 only needed for intraprocedural analysis. */
631
632 static void
633 compute_complex_assign_jump_func (struct ipa_node_params *info,
634 struct param_analysis_info *parms_ainfo,
635 struct ipa_jump_func *jfunc,
636 gimple call, gimple stmt, tree name)
637 {
638 HOST_WIDE_INT offset, size, max_size;
639 tree op1, tc_ssa, base, ssa;
640 int index;
641
642 op1 = gimple_assign_rhs1 (stmt);
643
644 if (TREE_CODE (op1) == SSA_NAME)
645 {
646 if (SSA_NAME_IS_DEFAULT_DEF (op1))
647 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
648 else
649 index = load_from_unmodified_param (info, parms_ainfo,
650 SSA_NAME_DEF_STMT (op1));
651 tc_ssa = op1;
652 }
653 else
654 {
655 index = load_from_unmodified_param (info, parms_ainfo, stmt);
656 tc_ssa = gimple_assign_lhs (stmt);
657 }
658
659 if (index >= 0)
660 {
661 tree op2 = gimple_assign_rhs2 (stmt);
662
663 if (op2)
664 {
665 if (!is_gimple_ip_invariant (op2)
666 || (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
667 && !useless_type_conversion_p (TREE_TYPE (name),
668 TREE_TYPE (op1))))
669 return;
670
671 jfunc->type = IPA_JF_PASS_THROUGH;
672 jfunc->value.pass_through.formal_id = index;
673 jfunc->value.pass_through.operation = gimple_assign_rhs_code (stmt);
674 jfunc->value.pass_through.operand = op2;
675 }
676 else if (gimple_assign_single_p (stmt)
677 && !detect_type_change_ssa (tc_ssa, call, jfunc))
678 {
679 jfunc->type = IPA_JF_PASS_THROUGH;
680 jfunc->value.pass_through.formal_id = index;
681 jfunc->value.pass_through.operation = NOP_EXPR;
682 }
683 return;
684 }
685
686 if (TREE_CODE (op1) != ADDR_EXPR)
687 return;
688 op1 = TREE_OPERAND (op1, 0);
689 if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
690 return;
691 base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
692 if (TREE_CODE (base) != MEM_REF
693 /* If this is a varying address, punt. */
694 || max_size == -1
695 || max_size != size)
696 return;
697 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
698 ssa = TREE_OPERAND (base, 0);
699 if (TREE_CODE (ssa) != SSA_NAME
700 || !SSA_NAME_IS_DEFAULT_DEF (ssa)
701 || offset < 0)
702 return;
703
704 /* Dynamic types are changed only in constructors and destructors and */
705 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
706 if (index >= 0
707 && !detect_type_change (op1, base, call, jfunc, offset))
708 {
709 jfunc->type = IPA_JF_ANCESTOR;
710 jfunc->value.ancestor.formal_id = index;
711 jfunc->value.ancestor.offset = offset;
712 jfunc->value.ancestor.type = TREE_TYPE (op1);
713 }
714 }
715
716 /* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
717 it looks like:
718
719 iftmp.1_3 = &obj_2(D)->D.1762;
720
721 The base of the MEM_REF must be a default definition SSA NAME of a
722 parameter. Return NULL_TREE if it looks otherwise. If case of success, the
723 whole MEM_REF expression is returned and the offset calculated from any
724 handled components and the MEM_REF itself is stored into *OFFSET. The whole
725 RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
726
727 static tree
728 get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
729 {
730 HOST_WIDE_INT size, max_size;
731 tree expr, parm, obj;
732
733 if (!gimple_assign_single_p (assign))
734 return NULL_TREE;
735 expr = gimple_assign_rhs1 (assign);
736
737 if (TREE_CODE (expr) != ADDR_EXPR)
738 return NULL_TREE;
739 expr = TREE_OPERAND (expr, 0);
740 obj = expr;
741 expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
742
743 if (TREE_CODE (expr) != MEM_REF
744 /* If this is a varying address, punt. */
745 || max_size == -1
746 || max_size != size
747 || *offset < 0)
748 return NULL_TREE;
749 parm = TREE_OPERAND (expr, 0);
750 if (TREE_CODE (parm) != SSA_NAME
751 || !SSA_NAME_IS_DEFAULT_DEF (parm)
752 || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
753 return NULL_TREE;
754
755 *offset += mem_ref_offset (expr).low * BITS_PER_UNIT;
756 *obj_p = obj;
757 return expr;
758 }
759
760
761 /* Given that an actual argument is an SSA_NAME that is a result of a phi
762 statement PHI, try to find out whether NAME is in fact a
763 multiple-inheritance typecast from a descendant into an ancestor of a formal
764 parameter and thus can be described by an ancestor jump function and if so,
765 write the appropriate function into JFUNC.
766
767 Essentially we want to match the following pattern:
768
769 if (obj_2(D) != 0B)
770 goto <bb 3>;
771 else
772 goto <bb 4>;
773
774 <bb 3>:
775 iftmp.1_3 = &obj_2(D)->D.1762;
776
777 <bb 4>:
778 # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
779 D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
780 return D.1879_6; */
781
782 static void
783 compute_complex_ancestor_jump_func (struct ipa_node_params *info,
784 struct ipa_jump_func *jfunc,
785 gimple call, gimple phi)
786 {
787 HOST_WIDE_INT offset;
788 gimple assign, cond;
789 basic_block phi_bb, assign_bb, cond_bb;
790 tree tmp, parm, expr, obj;
791 int index, i;
792
793 if (gimple_phi_num_args (phi) != 2)
794 return;
795
796 if (integer_zerop (PHI_ARG_DEF (phi, 1)))
797 tmp = PHI_ARG_DEF (phi, 0);
798 else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
799 tmp = PHI_ARG_DEF (phi, 1);
800 else
801 return;
802 if (TREE_CODE (tmp) != SSA_NAME
803 || SSA_NAME_IS_DEFAULT_DEF (tmp)
804 || !POINTER_TYPE_P (TREE_TYPE (tmp))
805 || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
806 return;
807
808 assign = SSA_NAME_DEF_STMT (tmp);
809 assign_bb = gimple_bb (assign);
810 if (!single_pred_p (assign_bb))
811 return;
812 expr = get_ancestor_addr_info (assign, &obj, &offset);
813 if (!expr)
814 return;
815 parm = TREE_OPERAND (expr, 0);
816 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
817 gcc_assert (index >= 0);
818
819 cond_bb = single_pred (assign_bb);
820 cond = last_stmt (cond_bb);
821 if (!cond
822 || gimple_code (cond) != GIMPLE_COND
823 || gimple_cond_code (cond) != NE_EXPR
824 || gimple_cond_lhs (cond) != parm
825 || !integer_zerop (gimple_cond_rhs (cond)))
826 return;
827
828 phi_bb = gimple_bb (phi);
829 for (i = 0; i < 2; i++)
830 {
831 basic_block pred = EDGE_PRED (phi_bb, i)->src;
832 if (pred != assign_bb && pred != cond_bb)
833 return;
834 }
835
836 if (!detect_type_change (obj, expr, call, jfunc, offset))
837 {
838 jfunc->type = IPA_JF_ANCESTOR;
839 jfunc->value.ancestor.formal_id = index;
840 jfunc->value.ancestor.offset = offset;
841 jfunc->value.ancestor.type = TREE_TYPE (obj);
842 }
843 }
844
845 /* Given OP which is passed as an actual argument to a called function,
846 determine if it is possible to construct a KNOWN_TYPE jump function for it
847 and if so, create one and store it to JFUNC. */
848
849 static void
850 compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
851 gimple call)
852 {
853 HOST_WIDE_INT offset, size, max_size;
854 tree base;
855
856 if (!flag_devirtualize
857 || TREE_CODE (op) != ADDR_EXPR
858 || TREE_CODE (TREE_TYPE (TREE_TYPE (op))) != RECORD_TYPE)
859 return;
860
861 op = TREE_OPERAND (op, 0);
862 base = get_ref_base_and_extent (op, &offset, &size, &max_size);
863 if (!DECL_P (base)
864 || max_size == -1
865 || max_size != size
866 || TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
867 || is_global_var (base))
868 return;
869
870 if (detect_type_change (op, base, call, jfunc, offset)
871 || !TYPE_BINFO (TREE_TYPE (base)))
872 return;
873
874 jfunc->type = IPA_JF_KNOWN_TYPE;
875 jfunc->value.known_type.base_type = TREE_TYPE (base);
876 jfunc->value.known_type.offset = offset;
877 jfunc->value.known_type.component_type = TREE_TYPE (op);
878 }
879
880
881 /* Determine the jump functions of scalar arguments. Scalar means SSA names
882 and constants of a number of selected types. INFO is the ipa_node_params
883 structure associated with the caller, PARMS_AINFO describes state of
884 analysis with respect to individual formal parameters. ARGS is the
885 ipa_edge_args structure describing the callsite CALL which is the call
886 statement being examined.*/
887
888 static void
889 compute_scalar_jump_functions (struct ipa_node_params *info,
890 struct param_analysis_info *parms_ainfo,
891 struct ipa_edge_args *args,
892 gimple call)
893 {
894 tree arg;
895 unsigned num = 0;
896
897 for (num = 0; num < gimple_call_num_args (call); num++)
898 {
899 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, num);
900 arg = gimple_call_arg (call, num);
901
902 if (is_gimple_ip_invariant (arg))
903 {
904 jfunc->type = IPA_JF_CONST;
905 jfunc->value.constant = arg;
906 }
907 else if (TREE_CODE (arg) == SSA_NAME)
908 {
909 if (SSA_NAME_IS_DEFAULT_DEF (arg))
910 {
911 int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
912
913 if (index >= 0
914 && !detect_type_change_ssa (arg, call, jfunc))
915 {
916 jfunc->type = IPA_JF_PASS_THROUGH;
917 jfunc->value.pass_through.formal_id = index;
918 jfunc->value.pass_through.operation = NOP_EXPR;
919 }
920 }
921 else
922 {
923 gimple stmt = SSA_NAME_DEF_STMT (arg);
924 if (is_gimple_assign (stmt))
925 compute_complex_assign_jump_func (info, parms_ainfo, jfunc,
926 call, stmt, arg);
927 else if (gimple_code (stmt) == GIMPLE_PHI)
928 compute_complex_ancestor_jump_func (info, jfunc, call, stmt);
929 }
930 }
931 else
932 compute_known_type_jump_func (arg, jfunc, call);
933 }
934 }
935
936 /* Inspect the given TYPE and return true iff it has the same structure (the
937 same number of fields of the same types) as a C++ member pointer. If
938 METHOD_PTR and DELTA are non-NULL, store the trees representing the
939 corresponding fields there. */
940
941 static bool
942 type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
943 {
944 tree fld;
945
946 if (TREE_CODE (type) != RECORD_TYPE)
947 return false;
948
949 fld = TYPE_FIELDS (type);
950 if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
951 || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
952 return false;
953
954 if (method_ptr)
955 *method_ptr = fld;
956
957 fld = DECL_CHAIN (fld);
958 if (!fld || INTEGRAL_TYPE_P (fld))
959 return false;
960 if (delta)
961 *delta = fld;
962
963 if (DECL_CHAIN (fld))
964 return false;
965
966 return true;
967 }
968
969 /* Go through arguments of the CALL and for every one that looks like a member
970 pointer, check whether it can be safely declared pass-through and if so,
971 mark that to the corresponding item of jump FUNCTIONS. Return true iff
972 there are non-pass-through member pointers within the arguments. INFO
973 describes formal parameters of the caller. PARMS_INFO is a pointer to a
974 vector containing intermediate information about each formal parameter. */
975
976 static bool
977 compute_pass_through_member_ptrs (struct ipa_node_params *info,
978 struct param_analysis_info *parms_ainfo,
979 struct ipa_edge_args *args,
980 gimple call)
981 {
982 bool undecided_members = false;
983 unsigned num;
984 tree arg;
985
986 for (num = 0; num < gimple_call_num_args (call); num++)
987 {
988 arg = gimple_call_arg (call, num);
989
990 if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
991 {
992 if (TREE_CODE (arg) == PARM_DECL)
993 {
994 int index = ipa_get_param_decl_index (info, arg);
995
996 gcc_assert (index >=0);
997 if (!is_parm_modified_before_stmt (&parms_ainfo[index], call,
998 arg))
999 {
1000 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args,
1001 num);
1002 jfunc->type = IPA_JF_PASS_THROUGH;
1003 jfunc->value.pass_through.formal_id = index;
1004 jfunc->value.pass_through.operation = NOP_EXPR;
1005 }
1006 else
1007 undecided_members = true;
1008 }
1009 else
1010 undecided_members = true;
1011 }
1012 }
1013
1014 return undecided_members;
1015 }
1016
1017 /* Simple function filling in a member pointer constant jump function (with PFN
1018 and DELTA as the constant value) into JFUNC. */
1019
1020 static void
1021 fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
1022 tree pfn, tree delta)
1023 {
1024 jfunc->type = IPA_JF_CONST_MEMBER_PTR;
1025 jfunc->value.member_cst.pfn = pfn;
1026 jfunc->value.member_cst.delta = delta;
1027 }
1028
1029 /* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
1030 return the rhs of its defining statement. */
1031
1032 static inline tree
1033 get_ssa_def_if_simple_copy (tree rhs)
1034 {
1035 while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
1036 {
1037 gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
1038
1039 if (gimple_assign_single_p (def_stmt))
1040 rhs = gimple_assign_rhs1 (def_stmt);
1041 else
1042 break;
1043 }
1044 return rhs;
1045 }
1046
1047 /* Traverse statements from CALL backwards, scanning whether the argument ARG
1048 which is a member pointer is filled in with constant values. If it is, fill
1049 the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
1050 fields of the record type of the member pointer. To give an example, we
1051 look for a pattern looking like the following:
1052
1053 D.2515.__pfn ={v} printStuff;
1054 D.2515.__delta ={v} 0;
1055 i_1 = doprinting (D.2515); */
1056
1057 static void
1058 determine_cst_member_ptr (gimple call, tree arg, tree method_field,
1059 tree delta_field, struct ipa_jump_func *jfunc)
1060 {
1061 gimple_stmt_iterator gsi;
1062 tree method = NULL_TREE;
1063 tree delta = NULL_TREE;
1064
1065 gsi = gsi_for_stmt (call);
1066
1067 gsi_prev (&gsi);
1068 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
1069 {
1070 gimple stmt = gsi_stmt (gsi);
1071 tree lhs, rhs, fld;
1072
1073 if (!stmt_may_clobber_ref_p (stmt, arg))
1074 continue;
1075 if (!gimple_assign_single_p (stmt))
1076 return;
1077
1078 lhs = gimple_assign_lhs (stmt);
1079 rhs = gimple_assign_rhs1 (stmt);
1080
1081 if (TREE_CODE (lhs) != COMPONENT_REF
1082 || TREE_OPERAND (lhs, 0) != arg)
1083 return;
1084
1085 fld = TREE_OPERAND (lhs, 1);
1086 if (!method && fld == method_field)
1087 {
1088 rhs = get_ssa_def_if_simple_copy (rhs);
1089 if (TREE_CODE (rhs) == ADDR_EXPR
1090 && TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
1091 && TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
1092 {
1093 method = TREE_OPERAND (rhs, 0);
1094 if (delta)
1095 {
1096 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
1097 return;
1098 }
1099 }
1100 else
1101 return;
1102 }
1103
1104 if (!delta && fld == delta_field)
1105 {
1106 rhs = get_ssa_def_if_simple_copy (rhs);
1107 if (TREE_CODE (rhs) == INTEGER_CST)
1108 {
1109 delta = rhs;
1110 if (method)
1111 {
1112 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
1113 return;
1114 }
1115 }
1116 else
1117 return;
1118 }
1119 }
1120
1121 return;
1122 }
1123
1124 /* Go through the arguments of the CALL and for every member pointer within
1125 tries determine whether it is a constant. If it is, create a corresponding
1126 constant jump function in FUNCTIONS which is an array of jump functions
1127 associated with the call. */
1128
1129 static void
1130 compute_cst_member_ptr_arguments (struct ipa_edge_args *args,
1131 gimple call)
1132 {
1133 unsigned num;
1134 tree arg, method_field, delta_field;
1135
1136 for (num = 0; num < gimple_call_num_args (call); num++)
1137 {
1138 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, num);
1139 arg = gimple_call_arg (call, num);
1140
1141 if (jfunc->type == IPA_JF_UNKNOWN
1142 && type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
1143 &delta_field))
1144 determine_cst_member_ptr (call, arg, method_field, delta_field, jfunc);
1145 }
1146 }
1147
1148 /* Compute jump function for all arguments of callsite CS and insert the
1149 information in the jump_functions array in the ipa_edge_args corresponding
1150 to this callsite. */
1151
1152 static void
1153 ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_ainfo,
1154 struct cgraph_edge *cs)
1155 {
1156 struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
1157 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
1158 gimple call = cs->call_stmt;
1159 int arg_num = gimple_call_num_args (call);
1160
1161 if (arg_num == 0 || args->jump_functions)
1162 return;
1163 VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions, arg_num);
1164
1165 /* We will deal with constants and SSA scalars first: */
1166 compute_scalar_jump_functions (info, parms_ainfo, args, call);
1167
1168 /* Let's check whether there are any potential member pointers and if so,
1169 whether we can determine their functions as pass_through. */
1170 if (!compute_pass_through_member_ptrs (info, parms_ainfo, args, call))
1171 return;
1172
1173 /* Finally, let's check whether we actually pass a new constant member
1174 pointer here... */
1175 compute_cst_member_ptr_arguments (args, call);
1176 }
1177
1178 /* Compute jump functions for all edges - both direct and indirect - outgoing
1179 from NODE. Also count the actual arguments in the process. */
1180
1181 static void
1182 ipa_compute_jump_functions (struct cgraph_node *node,
1183 struct param_analysis_info *parms_ainfo)
1184 {
1185 struct cgraph_edge *cs;
1186
1187 for (cs = node->callees; cs; cs = cs->next_callee)
1188 {
1189 struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee,
1190 NULL);
1191 /* We do not need to bother analyzing calls to unknown
1192 functions unless they may become known during lto/whopr. */
1193 if (!callee->analyzed && !flag_lto)
1194 continue;
1195 ipa_compute_jump_functions_for_edge (parms_ainfo, cs);
1196 }
1197
1198 for (cs = node->indirect_calls; cs; cs = cs->next_callee)
1199 ipa_compute_jump_functions_for_edge (parms_ainfo, cs);
1200 }
1201
1202 /* If RHS looks like a rhs of a statement loading pfn from a member
1203 pointer formal parameter, return the parameter, otherwise return
1204 NULL. If USE_DELTA, then we look for a use of the delta field
1205 rather than the pfn. */
1206
1207 static tree
1208 ipa_get_member_ptr_load_param (tree rhs, bool use_delta)
1209 {
1210 tree rec, ref_field, ref_offset, fld, fld_offset, ptr_field, delta_field;
1211
1212 if (TREE_CODE (rhs) == COMPONENT_REF)
1213 {
1214 ref_field = TREE_OPERAND (rhs, 1);
1215 rhs = TREE_OPERAND (rhs, 0);
1216 }
1217 else
1218 ref_field = NULL_TREE;
1219 if (TREE_CODE (rhs) != MEM_REF)
1220 return NULL_TREE;
1221 rec = TREE_OPERAND (rhs, 0);
1222 if (TREE_CODE (rec) != ADDR_EXPR)
1223 return NULL_TREE;
1224 rec = TREE_OPERAND (rec, 0);
1225 if (TREE_CODE (rec) != PARM_DECL
1226 || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
1227 return NULL_TREE;
1228
1229 ref_offset = TREE_OPERAND (rhs, 1);
1230
1231 if (ref_field)
1232 {
1233 if (integer_nonzerop (ref_offset))
1234 return NULL_TREE;
1235
1236 if (use_delta)
1237 fld = delta_field;
1238 else
1239 fld = ptr_field;
1240
1241 return ref_field == fld ? rec : NULL_TREE;
1242 }
1243
1244 if (use_delta)
1245 fld_offset = byte_position (delta_field);
1246 else
1247 fld_offset = byte_position (ptr_field);
1248
1249 return tree_int_cst_equal (ref_offset, fld_offset) ? rec : NULL_TREE;
1250 }
1251
1252 /* If STMT looks like a statement loading a value from a member pointer formal
1253 parameter, this function returns that parameter. */
1254
1255 static tree
1256 ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta)
1257 {
1258 tree rhs;
1259
1260 if (!gimple_assign_single_p (stmt))
1261 return NULL_TREE;
1262
1263 rhs = gimple_assign_rhs1 (stmt);
1264 return ipa_get_member_ptr_load_param (rhs, use_delta);
1265 }
1266
1267 /* Returns true iff T is an SSA_NAME defined by a statement. */
1268
1269 static bool
1270 ipa_is_ssa_with_stmt_def (tree t)
1271 {
1272 if (TREE_CODE (t) == SSA_NAME
1273 && !SSA_NAME_IS_DEFAULT_DEF (t))
1274 return true;
1275 else
1276 return false;
1277 }
1278
1279 /* Find the indirect call graph edge corresponding to STMT and mark it as a
1280 call to a parameter number PARAM_INDEX. NODE is the caller. Return the
1281 indirect call graph edge. */
1282
1283 static struct cgraph_edge *
1284 ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
1285 {
1286 struct cgraph_edge *cs;
1287
1288 cs = cgraph_edge (node, stmt);
1289 cs->indirect_info->param_index = param_index;
1290 cs->indirect_info->anc_offset = 0;
1291 cs->indirect_info->polymorphic = 0;
1292 return cs;
1293 }
1294
1295 /* Analyze the CALL and examine uses of formal parameters of the caller NODE
1296 (described by INFO). PARMS_AINFO is a pointer to a vector containing
1297 intermediate information about each formal parameter. Currently it checks
1298 whether the call calls a pointer that is a formal parameter and if so, the
1299 parameter is marked with the called flag and an indirect call graph edge
1300 describing the call is created. This is very simple for ordinary pointers
1301 represented in SSA but not-so-nice when it comes to member pointers. The
1302 ugly part of this function does nothing more than trying to match the
1303 pattern of such a call. An example of such a pattern is the gimple dump
1304 below, the call is on the last line:
1305
1306 <bb 2>:
1307 f$__delta_5 = f.__delta;
1308 f$__pfn_24 = f.__pfn;
1309
1310 or
1311 <bb 2>:
1312 f$__delta_5 = MEM[(struct *)&f];
1313 f$__pfn_24 = MEM[(struct *)&f + 4B];
1314
1315 and a few lines below:
1316
1317 <bb 5>
1318 D.2496_3 = (int) f$__pfn_24;
1319 D.2497_4 = D.2496_3 & 1;
1320 if (D.2497_4 != 0)
1321 goto <bb 3>;
1322 else
1323 goto <bb 4>;
1324
1325 <bb 6>:
1326 D.2500_7 = (unsigned int) f$__delta_5;
1327 D.2501_8 = &S + D.2500_7;
1328 D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
1329 D.2503_10 = *D.2502_9;
1330 D.2504_12 = f$__pfn_24 + -1;
1331 D.2505_13 = (unsigned int) D.2504_12;
1332 D.2506_14 = D.2503_10 + D.2505_13;
1333 D.2507_15 = *D.2506_14;
1334 iftmp.11_16 = (String:: *) D.2507_15;
1335
1336 <bb 7>:
1337 # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
1338 D.2500_19 = (unsigned int) f$__delta_5;
1339 D.2508_20 = &S + D.2500_19;
1340 D.2493_21 = iftmp.11_1 (D.2508_20, 4);
1341
1342 Such patterns are results of simple calls to a member pointer:
1343
1344 int doprinting (int (MyString::* f)(int) const)
1345 {
1346 MyString S ("somestring");
1347
1348 return (S.*f)(4);
1349 }
1350 */
1351
1352 static void
1353 ipa_analyze_indirect_call_uses (struct cgraph_node *node,
1354 struct ipa_node_params *info,
1355 struct param_analysis_info *parms_ainfo,
1356 gimple call, tree target)
1357 {
1358 gimple def;
1359 tree n1, n2;
1360 gimple d1, d2;
1361 tree rec, rec2, cond;
1362 gimple branch;
1363 int index;
1364 basic_block bb, virt_bb, join;
1365
1366 if (SSA_NAME_IS_DEFAULT_DEF (target))
1367 {
1368 tree var = SSA_NAME_VAR (target);
1369 index = ipa_get_param_decl_index (info, var);
1370 if (index >= 0)
1371 ipa_note_param_call (node, index, call);
1372 return;
1373 }
1374
1375 /* Now we need to try to match the complex pattern of calling a member
1376 pointer. */
1377
1378 if (!POINTER_TYPE_P (TREE_TYPE (target))
1379 || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
1380 return;
1381
1382 def = SSA_NAME_DEF_STMT (target);
1383 if (gimple_code (def) != GIMPLE_PHI)
1384 return;
1385
1386 if (gimple_phi_num_args (def) != 2)
1387 return;
1388
1389 /* First, we need to check whether one of these is a load from a member
1390 pointer that is a parameter to this function. */
1391 n1 = PHI_ARG_DEF (def, 0);
1392 n2 = PHI_ARG_DEF (def, 1);
1393 if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
1394 return;
1395 d1 = SSA_NAME_DEF_STMT (n1);
1396 d2 = SSA_NAME_DEF_STMT (n2);
1397
1398 join = gimple_bb (def);
1399 if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false)))
1400 {
1401 if (ipa_get_stmt_member_ptr_load_param (d2, false))
1402 return;
1403
1404 bb = EDGE_PRED (join, 0)->src;
1405 virt_bb = gimple_bb (d2);
1406 }
1407 else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false)))
1408 {
1409 bb = EDGE_PRED (join, 1)->src;
1410 virt_bb = gimple_bb (d1);
1411 }
1412 else
1413 return;
1414
1415 /* Second, we need to check that the basic blocks are laid out in the way
1416 corresponding to the pattern. */
1417
1418 if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
1419 || single_pred (virt_bb) != bb
1420 || single_succ (virt_bb) != join)
1421 return;
1422
1423 /* Third, let's see that the branching is done depending on the least
1424 significant bit of the pfn. */
1425
1426 branch = last_stmt (bb);
1427 if (!branch || gimple_code (branch) != GIMPLE_COND)
1428 return;
1429
1430 if ((gimple_cond_code (branch) != NE_EXPR
1431 && gimple_cond_code (branch) != EQ_EXPR)
1432 || !integer_zerop (gimple_cond_rhs (branch)))
1433 return;
1434
1435 cond = gimple_cond_lhs (branch);
1436 if (!ipa_is_ssa_with_stmt_def (cond))
1437 return;
1438
1439 def = SSA_NAME_DEF_STMT (cond);
1440 if (!is_gimple_assign (def)
1441 || gimple_assign_rhs_code (def) != BIT_AND_EXPR
1442 || !integer_onep (gimple_assign_rhs2 (def)))
1443 return;
1444
1445 cond = gimple_assign_rhs1 (def);
1446 if (!ipa_is_ssa_with_stmt_def (cond))
1447 return;
1448
1449 def = SSA_NAME_DEF_STMT (cond);
1450
1451 if (is_gimple_assign (def)
1452 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
1453 {
1454 cond = gimple_assign_rhs1 (def);
1455 if (!ipa_is_ssa_with_stmt_def (cond))
1456 return;
1457 def = SSA_NAME_DEF_STMT (cond);
1458 }
1459
1460 rec2 = ipa_get_stmt_member_ptr_load_param (def,
1461 (TARGET_PTRMEMFUNC_VBIT_LOCATION
1462 == ptrmemfunc_vbit_in_delta));
1463
1464 if (rec != rec2)
1465 return;
1466
1467 index = ipa_get_param_decl_index (info, rec);
1468 if (index >= 0 && !is_parm_modified_before_stmt (&parms_ainfo[index],
1469 call, rec))
1470 ipa_note_param_call (node, index, call);
1471
1472 return;
1473 }
1474
1475 /* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
1476 object referenced in the expression is a formal parameter of the caller
1477 (described by INFO), create a call note for the statement. */
1478
1479 static void
1480 ipa_analyze_virtual_call_uses (struct cgraph_node *node,
1481 struct ipa_node_params *info, gimple call,
1482 tree target)
1483 {
1484 struct cgraph_edge *cs;
1485 struct cgraph_indirect_call_info *ii;
1486 struct ipa_jump_func jfunc;
1487 tree obj = OBJ_TYPE_REF_OBJECT (target);
1488 int index;
1489 HOST_WIDE_INT anc_offset;
1490
1491 if (!flag_devirtualize)
1492 return;
1493
1494 if (TREE_CODE (obj) != SSA_NAME)
1495 return;
1496
1497 if (SSA_NAME_IS_DEFAULT_DEF (obj))
1498 {
1499 if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
1500 return;
1501
1502 anc_offset = 0;
1503 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
1504 gcc_assert (index >= 0);
1505 if (detect_type_change_ssa (obj, call, &jfunc))
1506 return;
1507 }
1508 else
1509 {
1510 gimple stmt = SSA_NAME_DEF_STMT (obj);
1511 tree expr;
1512
1513 expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
1514 if (!expr)
1515 return;
1516 index = ipa_get_param_decl_index (info,
1517 SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
1518 gcc_assert (index >= 0);
1519 if (detect_type_change (obj, expr, call, &jfunc, anc_offset))
1520 return;
1521 }
1522
1523 cs = ipa_note_param_call (node, index, call);
1524 ii = cs->indirect_info;
1525 ii->anc_offset = anc_offset;
1526 ii->otr_token = tree_low_cst (OBJ_TYPE_REF_TOKEN (target), 1);
1527 ii->otr_type = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (target)));
1528 ii->polymorphic = 1;
1529 }
1530
1531 /* Analyze a call statement CALL whether and how it utilizes formal parameters
1532 of the caller (described by INFO). PARMS_AINFO is a pointer to a vector
1533 containing intermediate information about each formal parameter. */
1534
1535 static void
1536 ipa_analyze_call_uses (struct cgraph_node *node,
1537 struct ipa_node_params *info,
1538 struct param_analysis_info *parms_ainfo, gimple call)
1539 {
1540 tree target = gimple_call_fn (call);
1541
1542 if (!target)
1543 return;
1544 if (TREE_CODE (target) == SSA_NAME)
1545 ipa_analyze_indirect_call_uses (node, info, parms_ainfo, call, target);
1546 else if (TREE_CODE (target) == OBJ_TYPE_REF)
1547 ipa_analyze_virtual_call_uses (node, info, call, target);
1548 }
1549
1550
1551 /* Analyze the call statement STMT with respect to formal parameters (described
1552 in INFO) of caller given by NODE. Currently it only checks whether formal
1553 parameters are called. PARMS_AINFO is a pointer to a vector containing
1554 intermediate information about each formal parameter. */
1555
1556 static void
1557 ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
1558 struct param_analysis_info *parms_ainfo, gimple stmt)
1559 {
1560 if (is_gimple_call (stmt))
1561 ipa_analyze_call_uses (node, info, parms_ainfo, stmt);
1562 }
1563
1564 /* Callback of walk_stmt_load_store_addr_ops for the visit_load.
1565 If OP is a parameter declaration, mark it as used in the info structure
1566 passed in DATA. */
1567
1568 static bool
1569 visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
1570 tree op, void *data)
1571 {
1572 struct ipa_node_params *info = (struct ipa_node_params *) data;
1573
1574 op = get_base_address (op);
1575 if (op
1576 && TREE_CODE (op) == PARM_DECL)
1577 {
1578 int index = ipa_get_param_decl_index (info, op);
1579 gcc_assert (index >= 0);
1580 ipa_set_param_used (info, index, true);
1581 }
1582
1583 return false;
1584 }
1585
1586 /* Scan the function body of NODE and inspect the uses of formal parameters.
1587 Store the findings in various structures of the associated ipa_node_params
1588 structure, such as parameter flags, notes etc. PARMS_AINFO is a pointer to a
1589 vector containing intermediate information about each formal parameter. */
1590
1591 static void
1592 ipa_analyze_params_uses (struct cgraph_node *node,
1593 struct param_analysis_info *parms_ainfo)
1594 {
1595 tree decl = node->decl;
1596 basic_block bb;
1597 struct function *func;
1598 gimple_stmt_iterator gsi;
1599 struct ipa_node_params *info = IPA_NODE_REF (node);
1600 int i;
1601
1602 if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
1603 return;
1604
1605 for (i = 0; i < ipa_get_param_count (info); i++)
1606 {
1607 tree parm = ipa_get_param (info, i);
1608 /* For SSA regs see if parameter is used. For non-SSA we compute
1609 the flag during modification analysis. */
1610 if (is_gimple_reg (parm)
1611 && gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
1612 ipa_set_param_used (info, i, true);
1613 }
1614
1615 func = DECL_STRUCT_FUNCTION (decl);
1616 FOR_EACH_BB_FN (bb, func)
1617 {
1618 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1619 {
1620 gimple stmt = gsi_stmt (gsi);
1621
1622 if (is_gimple_debug (stmt))
1623 continue;
1624
1625 ipa_analyze_stmt_uses (node, info, parms_ainfo, stmt);
1626 walk_stmt_load_store_addr_ops (stmt, info,
1627 visit_ref_for_mod_analysis,
1628 visit_ref_for_mod_analysis,
1629 visit_ref_for_mod_analysis);
1630 }
1631 for (gsi = gsi_start (phi_nodes (bb)); !gsi_end_p (gsi); gsi_next (&gsi))
1632 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
1633 visit_ref_for_mod_analysis,
1634 visit_ref_for_mod_analysis,
1635 visit_ref_for_mod_analysis);
1636 }
1637
1638 info->uses_analysis_done = 1;
1639 }
1640
1641 /* Initialize the array describing properties of of formal parameters
1642 of NODE, analyze their uses and compute jump functions associated
1643 with actual arguments of calls from within NODE. */
1644
1645 void
1646 ipa_analyze_node (struct cgraph_node *node)
1647 {
1648 struct ipa_node_params *info;
1649 struct param_analysis_info *parms_ainfo;
1650 int i, param_count;
1651
1652 ipa_check_create_node_params ();
1653 ipa_check_create_edge_args ();
1654 info = IPA_NODE_REF (node);
1655 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
1656 current_function_decl = node->decl;
1657 ipa_initialize_node_params (node);
1658
1659 param_count = ipa_get_param_count (info);
1660 parms_ainfo = XALLOCAVEC (struct param_analysis_info, param_count);
1661 memset (parms_ainfo, 0, sizeof (struct param_analysis_info) * param_count);
1662
1663 ipa_analyze_params_uses (node, parms_ainfo);
1664 ipa_compute_jump_functions (node, parms_ainfo);
1665
1666 for (i = 0; i < param_count; i++)
1667 if (parms_ainfo[i].visited_statements)
1668 BITMAP_FREE (parms_ainfo[i].visited_statements);
1669
1670 current_function_decl = NULL;
1671 pop_cfun ();
1672 }
1673
1674
1675 /* Update the jump function DST when the call graph edge corresponding to SRC is
1676 is being inlined, knowing that DST is of type ancestor and src of known
1677 type. */
1678
1679 static void
1680 combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
1681 struct ipa_jump_func *dst)
1682 {
1683 HOST_WIDE_INT combined_offset;
1684 tree combined_type;
1685
1686 combined_offset = src->value.known_type.offset + dst->value.ancestor.offset;
1687 combined_type = dst->value.ancestor.type;
1688
1689 dst->type = IPA_JF_KNOWN_TYPE;
1690 dst->value.known_type.base_type = src->value.known_type.base_type;
1691 dst->value.known_type.offset = combined_offset;
1692 dst->value.known_type.component_type = combined_type;
1693 }
1694
1695 /* Update the jump functions associated with call graph edge E when the call
1696 graph edge CS is being inlined, assuming that E->caller is already (possibly
1697 indirectly) inlined into CS->callee and that E has not been inlined. */
1698
1699 static void
1700 update_jump_functions_after_inlining (struct cgraph_edge *cs,
1701 struct cgraph_edge *e)
1702 {
1703 struct ipa_edge_args *top = IPA_EDGE_REF (cs);
1704 struct ipa_edge_args *args = IPA_EDGE_REF (e);
1705 int count = ipa_get_cs_argument_count (args);
1706 int i;
1707
1708 for (i = 0; i < count; i++)
1709 {
1710 struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
1711
1712 if (dst->type == IPA_JF_ANCESTOR)
1713 {
1714 struct ipa_jump_func *src;
1715
1716 /* Variable number of arguments can cause havoc if we try to access
1717 one that does not exist in the inlined edge. So make sure we
1718 don't. */
1719 if (dst->value.ancestor.formal_id >= ipa_get_cs_argument_count (top))
1720 {
1721 dst->type = IPA_JF_UNKNOWN;
1722 continue;
1723 }
1724
1725 src = ipa_get_ith_jump_func (top, dst->value.ancestor.formal_id);
1726 if (src->type == IPA_JF_KNOWN_TYPE)
1727 combine_known_type_and_ancestor_jfs (src, dst);
1728 else if (src->type == IPA_JF_PASS_THROUGH
1729 && src->value.pass_through.operation == NOP_EXPR)
1730 dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
1731 else if (src->type == IPA_JF_ANCESTOR)
1732 {
1733 dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
1734 dst->value.ancestor.offset += src->value.ancestor.offset;
1735 }
1736 else
1737 dst->type = IPA_JF_UNKNOWN;
1738 }
1739 else if (dst->type == IPA_JF_PASS_THROUGH)
1740 {
1741 struct ipa_jump_func *src;
1742 /* We must check range due to calls with variable number of arguments
1743 and we cannot combine jump functions with operations. */
1744 if (dst->value.pass_through.operation == NOP_EXPR
1745 && (dst->value.pass_through.formal_id
1746 < ipa_get_cs_argument_count (top)))
1747 {
1748 src = ipa_get_ith_jump_func (top,
1749 dst->value.pass_through.formal_id);
1750 *dst = *src;
1751 }
1752 else
1753 dst->type = IPA_JF_UNKNOWN;
1754 }
1755 }
1756 }
1757
1758 /* If TARGET is an addr_expr of a function declaration, make it the destination
1759 of an indirect edge IE and return the edge. Otherwise, return NULL. */
1760
1761 struct cgraph_edge *
1762 ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
1763 {
1764 struct cgraph_node *callee;
1765
1766 if (TREE_CODE (target) == ADDR_EXPR)
1767 target = TREE_OPERAND (target, 0);
1768 if (TREE_CODE (target) != FUNCTION_DECL)
1769 return NULL;
1770 callee = cgraph_get_node (target);
1771 if (!callee)
1772 return NULL;
1773 ipa_check_create_node_params ();
1774
1775 /* We can not make edges to inline clones. It is bug that someone removed
1776 the cgraph node too early. */
1777 gcc_assert (!callee->global.inlined_to);
1778
1779 cgraph_make_edge_direct (ie, callee);
1780 if (dump_file)
1781 {
1782 fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
1783 "(%s/%i -> %s/%i), for stmt ",
1784 ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
1785 cgraph_node_name (ie->caller), ie->caller->uid,
1786 cgraph_node_name (ie->callee), ie->callee->uid);
1787 if (ie->call_stmt)
1788 print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
1789 else
1790 fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
1791 }
1792 callee = cgraph_function_or_thunk_node (callee, NULL);
1793
1794 return ie;
1795 }
1796
1797 /* Try to find a destination for indirect edge IE that corresponds to a simple
1798 call or a call of a member function pointer and where the destination is a
1799 pointer formal parameter described by jump function JFUNC. If it can be
1800 determined, return the newly direct edge, otherwise return NULL. */
1801
1802 static struct cgraph_edge *
1803 try_make_edge_direct_simple_call (struct cgraph_edge *ie,
1804 struct ipa_jump_func *jfunc)
1805 {
1806 tree target;
1807
1808 if (jfunc->type == IPA_JF_CONST)
1809 target = jfunc->value.constant;
1810 else if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
1811 target = jfunc->value.member_cst.pfn;
1812 else
1813 return NULL;
1814
1815 return ipa_make_edge_direct_to_target (ie, target);
1816 }
1817
1818 /* Try to find a destination for indirect edge IE that corresponds to a
1819 virtual call based on a formal parameter which is described by jump
1820 function JFUNC and if it can be determined, make it direct and return the
1821 direct edge. Otherwise, return NULL. */
1822
1823 static struct cgraph_edge *
1824 try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
1825 struct ipa_jump_func *jfunc)
1826 {
1827 tree binfo, target;
1828
1829 if (jfunc->type != IPA_JF_KNOWN_TYPE)
1830 return NULL;
1831
1832 binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
1833 gcc_checking_assert (binfo);
1834 binfo = get_binfo_at_offset (binfo, jfunc->value.known_type.offset
1835 + ie->indirect_info->anc_offset,
1836 ie->indirect_info->otr_type);
1837 if (binfo)
1838 target = gimple_get_virt_method_for_binfo (ie->indirect_info->otr_token,
1839 binfo);
1840 else
1841 return NULL;
1842
1843 if (target)
1844 return ipa_make_edge_direct_to_target (ie, target);
1845 else
1846 return NULL;
1847 }
1848
1849 /* Update the param called notes associated with NODE when CS is being inlined,
1850 assuming NODE is (potentially indirectly) inlined into CS->callee.
1851 Moreover, if the callee is discovered to be constant, create a new cgraph
1852 edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
1853 unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
1854
1855 static bool
1856 update_indirect_edges_after_inlining (struct cgraph_edge *cs,
1857 struct cgraph_node *node,
1858 VEC (cgraph_edge_p, heap) **new_edges)
1859 {
1860 struct ipa_edge_args *top;
1861 struct cgraph_edge *ie, *next_ie, *new_direct_edge;
1862 bool res = false;
1863
1864 ipa_check_create_edge_args ();
1865 top = IPA_EDGE_REF (cs);
1866
1867 for (ie = node->indirect_calls; ie; ie = next_ie)
1868 {
1869 struct cgraph_indirect_call_info *ici = ie->indirect_info;
1870 struct ipa_jump_func *jfunc;
1871
1872 next_ie = ie->next_callee;
1873
1874 if (ici->param_index == -1)
1875 continue;
1876
1877 /* We must check range due to calls with variable number of arguments: */
1878 if (ici->param_index >= ipa_get_cs_argument_count (top))
1879 {
1880 ici->param_index = -1;
1881 continue;
1882 }
1883
1884 jfunc = ipa_get_ith_jump_func (top, ici->param_index);
1885 if (jfunc->type == IPA_JF_PASS_THROUGH
1886 && jfunc->value.pass_through.operation == NOP_EXPR)
1887 ici->param_index = jfunc->value.pass_through.formal_id;
1888 else if (jfunc->type == IPA_JF_ANCESTOR)
1889 {
1890 ici->param_index = jfunc->value.ancestor.formal_id;
1891 ici->anc_offset += jfunc->value.ancestor.offset;
1892 }
1893 else
1894 /* Either we can find a destination for this edge now or never. */
1895 ici->param_index = -1;
1896
1897 if (!flag_indirect_inlining)
1898 continue;
1899
1900 if (ici->polymorphic)
1901 new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc);
1902 else
1903 new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc);
1904
1905 if (new_direct_edge)
1906 {
1907 new_direct_edge->indirect_inlining_edge = 1;
1908 if (new_edges)
1909 {
1910 VEC_safe_push (cgraph_edge_p, heap, *new_edges,
1911 new_direct_edge);
1912 top = IPA_EDGE_REF (cs);
1913 res = true;
1914 }
1915 }
1916 }
1917
1918 return res;
1919 }
1920
1921 /* Recursively traverse subtree of NODE (including node) made of inlined
1922 cgraph_edges when CS has been inlined and invoke
1923 update_indirect_edges_after_inlining on all nodes and
1924 update_jump_functions_after_inlining on all non-inlined edges that lead out
1925 of this subtree. Newly discovered indirect edges will be added to
1926 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
1927 created. */
1928
1929 static bool
1930 propagate_info_to_inlined_callees (struct cgraph_edge *cs,
1931 struct cgraph_node *node,
1932 VEC (cgraph_edge_p, heap) **new_edges)
1933 {
1934 struct cgraph_edge *e;
1935 bool res;
1936
1937 res = update_indirect_edges_after_inlining (cs, node, new_edges);
1938
1939 for (e = node->callees; e; e = e->next_callee)
1940 if (!e->inline_failed)
1941 res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
1942 else
1943 update_jump_functions_after_inlining (cs, e);
1944 for (e = node->indirect_calls; e; e = e->next_callee)
1945 update_jump_functions_after_inlining (cs, e);
1946
1947 return res;
1948 }
1949
1950 /* Update jump functions and call note functions on inlining the call site CS.
1951 CS is expected to lead to a node already cloned by
1952 cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
1953 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
1954 created. */
1955
1956 bool
1957 ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
1958 VEC (cgraph_edge_p, heap) **new_edges)
1959 {
1960 bool changed;
1961 /* Do nothing if the preparation phase has not been carried out yet
1962 (i.e. during early inlining). */
1963 if (!ipa_node_params_vector)
1964 return false;
1965 gcc_assert (ipa_edge_args_vector);
1966
1967 changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
1968
1969 /* We do not keep jump functions of inlined edges up to date. Better to free
1970 them so we do not access them accidentally. */
1971 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
1972 return changed;
1973 }
1974
1975 /* Frees all dynamically allocated structures that the argument info points
1976 to. */
1977
1978 void
1979 ipa_free_edge_args_substructures (struct ipa_edge_args *args)
1980 {
1981 if (args->jump_functions)
1982 ggc_free (args->jump_functions);
1983
1984 memset (args, 0, sizeof (*args));
1985 }
1986
1987 /* Free all ipa_edge structures. */
1988
1989 void
1990 ipa_free_all_edge_args (void)
1991 {
1992 int i;
1993 struct ipa_edge_args *args;
1994
1995 FOR_EACH_VEC_ELT (ipa_edge_args_t, ipa_edge_args_vector, i, args)
1996 ipa_free_edge_args_substructures (args);
1997
1998 VEC_free (ipa_edge_args_t, gc, ipa_edge_args_vector);
1999 ipa_edge_args_vector = NULL;
2000 }
2001
2002 /* Frees all dynamically allocated structures that the param info points
2003 to. */
2004
2005 void
2006 ipa_free_node_params_substructures (struct ipa_node_params *info)
2007 {
2008 VEC_free (ipa_param_descriptor_t, heap, info->descriptors);
2009 free (info->lattices);
2010 /* Lattice values and their sources are deallocated with their alocation
2011 pool. */
2012 VEC_free (tree, heap, info->known_vals);
2013 memset (info, 0, sizeof (*info));
2014 }
2015
2016 /* Free all ipa_node_params structures. */
2017
2018 void
2019 ipa_free_all_node_params (void)
2020 {
2021 int i;
2022 struct ipa_node_params *info;
2023
2024 FOR_EACH_VEC_ELT (ipa_node_params_t, ipa_node_params_vector, i, info)
2025 ipa_free_node_params_substructures (info);
2026
2027 VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
2028 ipa_node_params_vector = NULL;
2029 }
2030
2031 /* Hook that is called by cgraph.c when an edge is removed. */
2032
2033 static void
2034 ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
2035 {
2036 /* During IPA-CP updating we can be called on not-yet analyze clones. */
2037 if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
2038 <= (unsigned)cs->uid)
2039 return;
2040 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
2041 }
2042
2043 /* Hook that is called by cgraph.c when a node is removed. */
2044
2045 static void
2046 ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
2047 {
2048 /* During IPA-CP updating we can be called on not-yet analyze clones. */
2049 if (VEC_length (ipa_node_params_t, ipa_node_params_vector)
2050 <= (unsigned)node->uid)
2051 return;
2052 ipa_free_node_params_substructures (IPA_NODE_REF (node));
2053 }
2054
2055 /* Hook that is called by cgraph.c when a node is duplicated. */
2056
2057 static void
2058 ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
2059 __attribute__((unused)) void *data)
2060 {
2061 struct ipa_edge_args *old_args, *new_args;
2062
2063 ipa_check_create_edge_args ();
2064
2065 old_args = IPA_EDGE_REF (src);
2066 new_args = IPA_EDGE_REF (dst);
2067
2068 new_args->jump_functions = VEC_copy (ipa_jump_func_t, gc,
2069 old_args->jump_functions);
2070 }
2071
2072 /* Hook that is called by cgraph.c when a node is duplicated. */
2073
2074 static void
2075 ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
2076 ATTRIBUTE_UNUSED void *data)
2077 {
2078 struct ipa_node_params *old_info, *new_info;
2079
2080 ipa_check_create_node_params ();
2081 old_info = IPA_NODE_REF (src);
2082 new_info = IPA_NODE_REF (dst);
2083
2084 new_info->descriptors = VEC_copy (ipa_param_descriptor_t, heap,
2085 old_info->descriptors);
2086 new_info->lattices = NULL;
2087 new_info->ipcp_orig_node = old_info->ipcp_orig_node;
2088
2089 new_info->uses_analysis_done = old_info->uses_analysis_done;
2090 new_info->node_enqueued = old_info->node_enqueued;
2091 }
2092
2093
2094 /* Analyze newly added function into callgraph. */
2095
2096 static void
2097 ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
2098 {
2099 ipa_analyze_node (node);
2100 }
2101
2102 /* Register our cgraph hooks if they are not already there. */
2103
2104 void
2105 ipa_register_cgraph_hooks (void)
2106 {
2107 if (!edge_removal_hook_holder)
2108 edge_removal_hook_holder =
2109 cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
2110 if (!node_removal_hook_holder)
2111 node_removal_hook_holder =
2112 cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
2113 if (!edge_duplication_hook_holder)
2114 edge_duplication_hook_holder =
2115 cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
2116 if (!node_duplication_hook_holder)
2117 node_duplication_hook_holder =
2118 cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
2119 function_insertion_hook_holder =
2120 cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
2121 }
2122
2123 /* Unregister our cgraph hooks if they are not already there. */
2124
2125 static void
2126 ipa_unregister_cgraph_hooks (void)
2127 {
2128 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
2129 edge_removal_hook_holder = NULL;
2130 cgraph_remove_node_removal_hook (node_removal_hook_holder);
2131 node_removal_hook_holder = NULL;
2132 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
2133 edge_duplication_hook_holder = NULL;
2134 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
2135 node_duplication_hook_holder = NULL;
2136 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
2137 function_insertion_hook_holder = NULL;
2138 }
2139
2140 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
2141 longer needed after ipa-cp. */
2142
2143 void
2144 ipa_free_all_structures_after_ipa_cp (void)
2145 {
2146 if (!optimize)
2147 {
2148 ipa_free_all_edge_args ();
2149 ipa_free_all_node_params ();
2150 free_alloc_pool (ipcp_sources_pool);
2151 free_alloc_pool (ipcp_values_pool);
2152 ipa_unregister_cgraph_hooks ();
2153 }
2154 }
2155
2156 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
2157 longer needed after indirect inlining. */
2158
2159 void
2160 ipa_free_all_structures_after_iinln (void)
2161 {
2162 ipa_free_all_edge_args ();
2163 ipa_free_all_node_params ();
2164 ipa_unregister_cgraph_hooks ();
2165 if (ipcp_sources_pool)
2166 free_alloc_pool (ipcp_sources_pool);
2167 if (ipcp_values_pool)
2168 free_alloc_pool (ipcp_values_pool);
2169 }
2170
2171 /* Print ipa_tree_map data structures of all functions in the
2172 callgraph to F. */
2173
2174 void
2175 ipa_print_node_params (FILE * f, struct cgraph_node *node)
2176 {
2177 int i, count;
2178 tree temp;
2179 struct ipa_node_params *info;
2180
2181 if (!node->analyzed)
2182 return;
2183 info = IPA_NODE_REF (node);
2184 fprintf (f, " function %s parameter descriptors:\n",
2185 cgraph_node_name (node));
2186 count = ipa_get_param_count (info);
2187 for (i = 0; i < count; i++)
2188 {
2189 temp = ipa_get_param (info, i);
2190 if (TREE_CODE (temp) == PARM_DECL)
2191 fprintf (f, " param %d : %s", i,
2192 (DECL_NAME (temp)
2193 ? (*lang_hooks.decl_printable_name) (temp, 2)
2194 : "(unnamed)"));
2195 if (ipa_is_param_used (info, i))
2196 fprintf (f, " used");
2197 fprintf (f, "\n");
2198 }
2199 }
2200
2201 /* Print ipa_tree_map data structures of all functions in the
2202 callgraph to F. */
2203
2204 void
2205 ipa_print_all_params (FILE * f)
2206 {
2207 struct cgraph_node *node;
2208
2209 fprintf (f, "\nFunction parameters:\n");
2210 for (node = cgraph_nodes; node; node = node->next)
2211 ipa_print_node_params (f, node);
2212 }
2213
2214 /* Return a heap allocated vector containing formal parameters of FNDECL. */
2215
2216 VEC(tree, heap) *
2217 ipa_get_vector_of_formal_parms (tree fndecl)
2218 {
2219 VEC(tree, heap) *args;
2220 int count;
2221 tree parm;
2222
2223 count = count_formal_params (fndecl);
2224 args = VEC_alloc (tree, heap, count);
2225 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
2226 VEC_quick_push (tree, args, parm);
2227
2228 return args;
2229 }
2230
2231 /* Return a heap allocated vector containing types of formal parameters of
2232 function type FNTYPE. */
2233
2234 static inline VEC(tree, heap) *
2235 get_vector_of_formal_parm_types (tree fntype)
2236 {
2237 VEC(tree, heap) *types;
2238 int count = 0;
2239 tree t;
2240
2241 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
2242 count++;
2243
2244 types = VEC_alloc (tree, heap, count);
2245 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
2246 VEC_quick_push (tree, types, TREE_VALUE (t));
2247
2248 return types;
2249 }
2250
2251 /* Modify the function declaration FNDECL and its type according to the plan in
2252 ADJUSTMENTS. It also sets base fields of individual adjustments structures
2253 to reflect the actual parameters being modified which are determined by the
2254 base_index field. */
2255
2256 void
2257 ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
2258 const char *synth_parm_prefix)
2259 {
2260 VEC(tree, heap) *oparms, *otypes;
2261 tree orig_type, new_type = NULL;
2262 tree old_arg_types, t, new_arg_types = NULL;
2263 tree parm, *link = &DECL_ARGUMENTS (fndecl);
2264 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2265 tree new_reversed = NULL;
2266 bool care_for_types, last_parm_void;
2267
2268 if (!synth_parm_prefix)
2269 synth_parm_prefix = "SYNTH";
2270
2271 oparms = ipa_get_vector_of_formal_parms (fndecl);
2272 orig_type = TREE_TYPE (fndecl);
2273 old_arg_types = TYPE_ARG_TYPES (orig_type);
2274
2275 /* The following test is an ugly hack, some functions simply don't have any
2276 arguments in their type. This is probably a bug but well... */
2277 care_for_types = (old_arg_types != NULL_TREE);
2278 if (care_for_types)
2279 {
2280 last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
2281 == void_type_node);
2282 otypes = get_vector_of_formal_parm_types (orig_type);
2283 if (last_parm_void)
2284 gcc_assert (VEC_length (tree, oparms) + 1 == VEC_length (tree, otypes));
2285 else
2286 gcc_assert (VEC_length (tree, oparms) == VEC_length (tree, otypes));
2287 }
2288 else
2289 {
2290 last_parm_void = false;
2291 otypes = NULL;
2292 }
2293
2294 for (i = 0; i < len; i++)
2295 {
2296 struct ipa_parm_adjustment *adj;
2297 gcc_assert (link);
2298
2299 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2300 parm = VEC_index (tree, oparms, adj->base_index);
2301 adj->base = parm;
2302
2303 if (adj->copy_param)
2304 {
2305 if (care_for_types)
2306 new_arg_types = tree_cons (NULL_TREE, VEC_index (tree, otypes,
2307 adj->base_index),
2308 new_arg_types);
2309 *link = parm;
2310 link = &DECL_CHAIN (parm);
2311 }
2312 else if (!adj->remove_param)
2313 {
2314 tree new_parm;
2315 tree ptype;
2316
2317 if (adj->by_ref)
2318 ptype = build_pointer_type (adj->type);
2319 else
2320 ptype = adj->type;
2321
2322 if (care_for_types)
2323 new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
2324
2325 new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
2326 ptype);
2327 DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
2328
2329 DECL_ARTIFICIAL (new_parm) = 1;
2330 DECL_ARG_TYPE (new_parm) = ptype;
2331 DECL_CONTEXT (new_parm) = fndecl;
2332 TREE_USED (new_parm) = 1;
2333 DECL_IGNORED_P (new_parm) = 1;
2334 layout_decl (new_parm, 0);
2335
2336 add_referenced_var (new_parm);
2337 mark_sym_for_renaming (new_parm);
2338 adj->base = parm;
2339 adj->reduction = new_parm;
2340
2341 *link = new_parm;
2342
2343 link = &DECL_CHAIN (new_parm);
2344 }
2345 }
2346
2347 *link = NULL_TREE;
2348
2349 if (care_for_types)
2350 {
2351 new_reversed = nreverse (new_arg_types);
2352 if (last_parm_void)
2353 {
2354 if (new_reversed)
2355 TREE_CHAIN (new_arg_types) = void_list_node;
2356 else
2357 new_reversed = void_list_node;
2358 }
2359 }
2360
2361 /* Use copy_node to preserve as much as possible from original type
2362 (debug info, attribute lists etc.)
2363 Exception is METHOD_TYPEs must have THIS argument.
2364 When we are asked to remove it, we need to build new FUNCTION_TYPE
2365 instead. */
2366 if (TREE_CODE (orig_type) != METHOD_TYPE
2367 || (VEC_index (ipa_parm_adjustment_t, adjustments, 0)->copy_param
2368 && VEC_index (ipa_parm_adjustment_t, adjustments, 0)->base_index == 0))
2369 {
2370 new_type = build_distinct_type_copy (orig_type);
2371 TYPE_ARG_TYPES (new_type) = new_reversed;
2372 }
2373 else
2374 {
2375 new_type
2376 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
2377 new_reversed));
2378 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
2379 DECL_VINDEX (fndecl) = NULL_TREE;
2380 }
2381
2382 /* When signature changes, we need to clear builtin info. */
2383 if (DECL_BUILT_IN (fndecl))
2384 {
2385 DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
2386 DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
2387 }
2388
2389 /* This is a new type, not a copy of an old type. Need to reassociate
2390 variants. We can handle everything except the main variant lazily. */
2391 t = TYPE_MAIN_VARIANT (orig_type);
2392 if (orig_type != t)
2393 {
2394 TYPE_MAIN_VARIANT (new_type) = t;
2395 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
2396 TYPE_NEXT_VARIANT (t) = new_type;
2397 }
2398 else
2399 {
2400 TYPE_MAIN_VARIANT (new_type) = new_type;
2401 TYPE_NEXT_VARIANT (new_type) = NULL;
2402 }
2403
2404 TREE_TYPE (fndecl) = new_type;
2405 DECL_VIRTUAL_P (fndecl) = 0;
2406 if (otypes)
2407 VEC_free (tree, heap, otypes);
2408 VEC_free (tree, heap, oparms);
2409 }
2410
2411 /* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
2412 If this is a directly recursive call, CS must be NULL. Otherwise it must
2413 contain the corresponding call graph edge. */
2414
2415 void
2416 ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
2417 ipa_parm_adjustment_vec adjustments)
2418 {
2419 VEC(tree, heap) *vargs;
2420 VEC(tree, gc) **debug_args = NULL;
2421 gimple new_stmt;
2422 gimple_stmt_iterator gsi;
2423 tree callee_decl;
2424 int i, len;
2425
2426 len = VEC_length (ipa_parm_adjustment_t, adjustments);
2427 vargs = VEC_alloc (tree, heap, len);
2428 callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
2429
2430 gsi = gsi_for_stmt (stmt);
2431 for (i = 0; i < len; i++)
2432 {
2433 struct ipa_parm_adjustment *adj;
2434
2435 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2436
2437 if (adj->copy_param)
2438 {
2439 tree arg = gimple_call_arg (stmt, adj->base_index);
2440
2441 VEC_quick_push (tree, vargs, arg);
2442 }
2443 else if (!adj->remove_param)
2444 {
2445 tree expr, base, off;
2446 location_t loc;
2447
2448 /* We create a new parameter out of the value of the old one, we can
2449 do the following kind of transformations:
2450
2451 - A scalar passed by reference is converted to a scalar passed by
2452 value. (adj->by_ref is false and the type of the original
2453 actual argument is a pointer to a scalar).
2454
2455 - A part of an aggregate is passed instead of the whole aggregate.
2456 The part can be passed either by value or by reference, this is
2457 determined by value of adj->by_ref. Moreover, the code below
2458 handles both situations when the original aggregate is passed by
2459 value (its type is not a pointer) and when it is passed by
2460 reference (it is a pointer to an aggregate).
2461
2462 When the new argument is passed by reference (adj->by_ref is true)
2463 it must be a part of an aggregate and therefore we form it by
2464 simply taking the address of a reference inside the original
2465 aggregate. */
2466
2467 gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
2468 base = gimple_call_arg (stmt, adj->base_index);
2469 loc = EXPR_LOCATION (base);
2470
2471 if (TREE_CODE (base) != ADDR_EXPR
2472 && POINTER_TYPE_P (TREE_TYPE (base)))
2473 off = build_int_cst (adj->alias_ptr_type,
2474 adj->offset / BITS_PER_UNIT);
2475 else
2476 {
2477 HOST_WIDE_INT base_offset;
2478 tree prev_base;
2479
2480 if (TREE_CODE (base) == ADDR_EXPR)
2481 base = TREE_OPERAND (base, 0);
2482 prev_base = base;
2483 base = get_addr_base_and_unit_offset (base, &base_offset);
2484 /* Aggregate arguments can have non-invariant addresses. */
2485 if (!base)
2486 {
2487 base = build_fold_addr_expr (prev_base);
2488 off = build_int_cst (adj->alias_ptr_type,
2489 adj->offset / BITS_PER_UNIT);
2490 }
2491 else if (TREE_CODE (base) == MEM_REF)
2492 {
2493 off = build_int_cst (adj->alias_ptr_type,
2494 base_offset
2495 + adj->offset / BITS_PER_UNIT);
2496 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
2497 off);
2498 base = TREE_OPERAND (base, 0);
2499 }
2500 else
2501 {
2502 off = build_int_cst (adj->alias_ptr_type,
2503 base_offset
2504 + adj->offset / BITS_PER_UNIT);
2505 base = build_fold_addr_expr (base);
2506 }
2507 }
2508
2509 expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
2510 if (adj->by_ref)
2511 expr = build_fold_addr_expr (expr);
2512
2513 expr = force_gimple_operand_gsi (&gsi, expr,
2514 adj->by_ref
2515 || is_gimple_reg_type (adj->type),
2516 NULL, true, GSI_SAME_STMT);
2517 VEC_quick_push (tree, vargs, expr);
2518 }
2519 if (!adj->copy_param && MAY_HAVE_DEBUG_STMTS)
2520 {
2521 unsigned int ix;
2522 tree ddecl = NULL_TREE, origin = DECL_ORIGIN (adj->base), arg;
2523 gimple def_temp;
2524
2525 arg = gimple_call_arg (stmt, adj->base_index);
2526 if (!useless_type_conversion_p (TREE_TYPE (origin), TREE_TYPE (arg)))
2527 {
2528 if (!fold_convertible_p (TREE_TYPE (origin), arg))
2529 continue;
2530 arg = fold_convert_loc (gimple_location (stmt),
2531 TREE_TYPE (origin), arg);
2532 }
2533 if (debug_args == NULL)
2534 debug_args = decl_debug_args_insert (callee_decl);
2535 for (ix = 0; VEC_iterate (tree, *debug_args, ix, ddecl); ix += 2)
2536 if (ddecl == origin)
2537 {
2538 ddecl = VEC_index (tree, *debug_args, ix + 1);
2539 break;
2540 }
2541 if (ddecl == NULL)
2542 {
2543 ddecl = make_node (DEBUG_EXPR_DECL);
2544 DECL_ARTIFICIAL (ddecl) = 1;
2545 TREE_TYPE (ddecl) = TREE_TYPE (origin);
2546 DECL_MODE (ddecl) = DECL_MODE (origin);
2547
2548 VEC_safe_push (tree, gc, *debug_args, origin);
2549 VEC_safe_push (tree, gc, *debug_args, ddecl);
2550 }
2551 def_temp = gimple_build_debug_bind (ddecl, unshare_expr (arg),
2552 stmt);
2553 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
2554 }
2555 }
2556
2557 if (dump_file && (dump_flags & TDF_DETAILS))
2558 {
2559 fprintf (dump_file, "replacing stmt:");
2560 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
2561 }
2562
2563 new_stmt = gimple_build_call_vec (callee_decl, vargs);
2564 VEC_free (tree, heap, vargs);
2565 if (gimple_call_lhs (stmt))
2566 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2567
2568 gimple_set_block (new_stmt, gimple_block (stmt));
2569 if (gimple_has_location (stmt))
2570 gimple_set_location (new_stmt, gimple_location (stmt));
2571 gimple_call_copy_flags (new_stmt, stmt);
2572 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2573
2574 if (dump_file && (dump_flags & TDF_DETAILS))
2575 {
2576 fprintf (dump_file, "with stmt:");
2577 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2578 fprintf (dump_file, "\n");
2579 }
2580 gsi_replace (&gsi, new_stmt, true);
2581 if (cs)
2582 cgraph_set_call_stmt (cs, new_stmt);
2583 update_ssa (TODO_update_ssa);
2584 free_dominance_info (CDI_DOMINATORS);
2585 }
2586
2587 /* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
2588
2589 static bool
2590 index_in_adjustments_multiple_times_p (int base_index,
2591 ipa_parm_adjustment_vec adjustments)
2592 {
2593 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2594 bool one = false;
2595
2596 for (i = 0; i < len; i++)
2597 {
2598 struct ipa_parm_adjustment *adj;
2599 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2600
2601 if (adj->base_index == base_index)
2602 {
2603 if (one)
2604 return true;
2605 else
2606 one = true;
2607 }
2608 }
2609 return false;
2610 }
2611
2612
2613 /* Return adjustments that should have the same effect on function parameters
2614 and call arguments as if they were first changed according to adjustments in
2615 INNER and then by adjustments in OUTER. */
2616
2617 ipa_parm_adjustment_vec
2618 ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
2619 ipa_parm_adjustment_vec outer)
2620 {
2621 int i, outlen = VEC_length (ipa_parm_adjustment_t, outer);
2622 int inlen = VEC_length (ipa_parm_adjustment_t, inner);
2623 int removals = 0;
2624 ipa_parm_adjustment_vec adjustments, tmp;
2625
2626 tmp = VEC_alloc (ipa_parm_adjustment_t, heap, inlen);
2627 for (i = 0; i < inlen; i++)
2628 {
2629 struct ipa_parm_adjustment *n;
2630 n = VEC_index (ipa_parm_adjustment_t, inner, i);
2631
2632 if (n->remove_param)
2633 removals++;
2634 else
2635 VEC_quick_push (ipa_parm_adjustment_t, tmp, n);
2636 }
2637
2638 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, outlen + removals);
2639 for (i = 0; i < outlen; i++)
2640 {
2641 struct ipa_parm_adjustment *r;
2642 struct ipa_parm_adjustment *out = VEC_index (ipa_parm_adjustment_t,
2643 outer, i);
2644 struct ipa_parm_adjustment *in = VEC_index (ipa_parm_adjustment_t, tmp,
2645 out->base_index);
2646
2647 gcc_assert (!in->remove_param);
2648 if (out->remove_param)
2649 {
2650 if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
2651 {
2652 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2653 memset (r, 0, sizeof (*r));
2654 r->remove_param = true;
2655 }
2656 continue;
2657 }
2658
2659 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2660 memset (r, 0, sizeof (*r));
2661 r->base_index = in->base_index;
2662 r->type = out->type;
2663
2664 /* FIXME: Create nonlocal value too. */
2665
2666 if (in->copy_param && out->copy_param)
2667 r->copy_param = true;
2668 else if (in->copy_param)
2669 r->offset = out->offset;
2670 else if (out->copy_param)
2671 r->offset = in->offset;
2672 else
2673 r->offset = in->offset + out->offset;
2674 }
2675
2676 for (i = 0; i < inlen; i++)
2677 {
2678 struct ipa_parm_adjustment *n = VEC_index (ipa_parm_adjustment_t,
2679 inner, i);
2680
2681 if (n->remove_param)
2682 VEC_quick_push (ipa_parm_adjustment_t, adjustments, n);
2683 }
2684
2685 VEC_free (ipa_parm_adjustment_t, heap, tmp);
2686 return adjustments;
2687 }
2688
2689 /* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
2690 friendly way, assuming they are meant to be applied to FNDECL. */
2691
2692 void
2693 ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
2694 tree fndecl)
2695 {
2696 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2697 bool first = true;
2698 VEC(tree, heap) *parms = ipa_get_vector_of_formal_parms (fndecl);
2699
2700 fprintf (file, "IPA param adjustments: ");
2701 for (i = 0; i < len; i++)
2702 {
2703 struct ipa_parm_adjustment *adj;
2704 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2705
2706 if (!first)
2707 fprintf (file, " ");
2708 else
2709 first = false;
2710
2711 fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
2712 print_generic_expr (file, VEC_index (tree, parms, adj->base_index), 0);
2713 if (adj->base)
2714 {
2715 fprintf (file, ", base: ");
2716 print_generic_expr (file, adj->base, 0);
2717 }
2718 if (adj->reduction)
2719 {
2720 fprintf (file, ", reduction: ");
2721 print_generic_expr (file, adj->reduction, 0);
2722 }
2723 if (adj->new_ssa_base)
2724 {
2725 fprintf (file, ", new_ssa_base: ");
2726 print_generic_expr (file, adj->new_ssa_base, 0);
2727 }
2728
2729 if (adj->copy_param)
2730 fprintf (file, ", copy_param");
2731 else if (adj->remove_param)
2732 fprintf (file, ", remove_param");
2733 else
2734 fprintf (file, ", offset %li", (long) adj->offset);
2735 if (adj->by_ref)
2736 fprintf (file, ", by_ref");
2737 print_node_brief (file, ", type: ", adj->type, 0);
2738 fprintf (file, "\n");
2739 }
2740 VEC_free (tree, heap, parms);
2741 }
2742
2743 /* Stream out jump function JUMP_FUNC to OB. */
2744
2745 static void
2746 ipa_write_jump_function (struct output_block *ob,
2747 struct ipa_jump_func *jump_func)
2748 {
2749 streamer_write_uhwi (ob, jump_func->type);
2750
2751 switch (jump_func->type)
2752 {
2753 case IPA_JF_UNKNOWN:
2754 break;
2755 case IPA_JF_KNOWN_TYPE:
2756 streamer_write_uhwi (ob, jump_func->value.known_type.offset);
2757 stream_write_tree (ob, jump_func->value.known_type.base_type, true);
2758 stream_write_tree (ob, jump_func->value.known_type.component_type, true);
2759 break;
2760 case IPA_JF_CONST:
2761 stream_write_tree (ob, jump_func->value.constant, true);
2762 break;
2763 case IPA_JF_PASS_THROUGH:
2764 stream_write_tree (ob, jump_func->value.pass_through.operand, true);
2765 streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
2766 streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
2767 break;
2768 case IPA_JF_ANCESTOR:
2769 streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
2770 stream_write_tree (ob, jump_func->value.ancestor.type, true);
2771 streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
2772 break;
2773 case IPA_JF_CONST_MEMBER_PTR:
2774 stream_write_tree (ob, jump_func->value.member_cst.pfn, true);
2775 stream_write_tree (ob, jump_func->value.member_cst.delta, false);
2776 break;
2777 }
2778 }
2779
2780 /* Read in jump function JUMP_FUNC from IB. */
2781
2782 static void
2783 ipa_read_jump_function (struct lto_input_block *ib,
2784 struct ipa_jump_func *jump_func,
2785 struct data_in *data_in)
2786 {
2787 jump_func->type = (enum jump_func_type) streamer_read_uhwi (ib);
2788
2789 switch (jump_func->type)
2790 {
2791 case IPA_JF_UNKNOWN:
2792 break;
2793 case IPA_JF_KNOWN_TYPE:
2794 jump_func->value.known_type.offset = streamer_read_uhwi (ib);
2795 jump_func->value.known_type.base_type = stream_read_tree (ib, data_in);
2796 jump_func->value.known_type.component_type = stream_read_tree (ib,
2797 data_in);
2798 break;
2799 case IPA_JF_CONST:
2800 jump_func->value.constant = stream_read_tree (ib, data_in);
2801 break;
2802 case IPA_JF_PASS_THROUGH:
2803 jump_func->value.pass_through.operand = stream_read_tree (ib, data_in);
2804 jump_func->value.pass_through.formal_id = streamer_read_uhwi (ib);
2805 jump_func->value.pass_through.operation
2806 = (enum tree_code) streamer_read_uhwi (ib);
2807 break;
2808 case IPA_JF_ANCESTOR:
2809 jump_func->value.ancestor.offset = streamer_read_uhwi (ib);
2810 jump_func->value.ancestor.type = stream_read_tree (ib, data_in);
2811 jump_func->value.ancestor.formal_id = streamer_read_uhwi (ib);
2812 break;
2813 case IPA_JF_CONST_MEMBER_PTR:
2814 jump_func->value.member_cst.pfn = stream_read_tree (ib, data_in);
2815 jump_func->value.member_cst.delta = stream_read_tree (ib, data_in);
2816 break;
2817 }
2818 }
2819
2820 /* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
2821 relevant to indirect inlining to OB. */
2822
2823 static void
2824 ipa_write_indirect_edge_info (struct output_block *ob,
2825 struct cgraph_edge *cs)
2826 {
2827 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2828 struct bitpack_d bp;
2829
2830 streamer_write_hwi (ob, ii->param_index);
2831 streamer_write_hwi (ob, ii->anc_offset);
2832 bp = bitpack_create (ob->main_stream);
2833 bp_pack_value (&bp, ii->polymorphic, 1);
2834 streamer_write_bitpack (&bp);
2835
2836 if (ii->polymorphic)
2837 {
2838 streamer_write_hwi (ob, ii->otr_token);
2839 stream_write_tree (ob, ii->otr_type, true);
2840 }
2841 }
2842
2843 /* Read in parts of cgraph_indirect_call_info corresponding to CS that are
2844 relevant to indirect inlining from IB. */
2845
2846 static void
2847 ipa_read_indirect_edge_info (struct lto_input_block *ib,
2848 struct data_in *data_in ATTRIBUTE_UNUSED,
2849 struct cgraph_edge *cs)
2850 {
2851 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2852 struct bitpack_d bp;
2853
2854 ii->param_index = (int) streamer_read_hwi (ib);
2855 ii->anc_offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
2856 bp = streamer_read_bitpack (ib);
2857 ii->polymorphic = bp_unpack_value (&bp, 1);
2858 if (ii->polymorphic)
2859 {
2860 ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
2861 ii->otr_type = stream_read_tree (ib, data_in);
2862 }
2863 }
2864
2865 /* Stream out NODE info to OB. */
2866
2867 static void
2868 ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
2869 {
2870 int node_ref;
2871 lto_cgraph_encoder_t encoder;
2872 struct ipa_node_params *info = IPA_NODE_REF (node);
2873 int j;
2874 struct cgraph_edge *e;
2875 struct bitpack_d bp;
2876
2877 encoder = ob->decl_state->cgraph_node_encoder;
2878 node_ref = lto_cgraph_encoder_encode (encoder, node);
2879 streamer_write_uhwi (ob, node_ref);
2880
2881 bp = bitpack_create (ob->main_stream);
2882 gcc_assert (info->uses_analysis_done
2883 || ipa_get_param_count (info) == 0);
2884 gcc_assert (!info->node_enqueued);
2885 gcc_assert (!info->ipcp_orig_node);
2886 for (j = 0; j < ipa_get_param_count (info); j++)
2887 bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
2888 streamer_write_bitpack (&bp);
2889 for (e = node->callees; e; e = e->next_callee)
2890 {
2891 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2892
2893 streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
2894 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
2895 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
2896 }
2897 for (e = node->indirect_calls; e; e = e->next_callee)
2898 {
2899 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2900
2901 streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
2902 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
2903 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
2904 ipa_write_indirect_edge_info (ob, e);
2905 }
2906 }
2907
2908 /* Stream in NODE info from IB. */
2909
2910 static void
2911 ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
2912 struct data_in *data_in)
2913 {
2914 struct ipa_node_params *info = IPA_NODE_REF (node);
2915 int k;
2916 struct cgraph_edge *e;
2917 struct bitpack_d bp;
2918
2919 ipa_initialize_node_params (node);
2920
2921 bp = streamer_read_bitpack (ib);
2922 if (ipa_get_param_count (info) != 0)
2923 info->uses_analysis_done = true;
2924 info->node_enqueued = false;
2925 for (k = 0; k < ipa_get_param_count (info); k++)
2926 ipa_set_param_used (info, k, bp_unpack_value (&bp, 1));
2927 for (e = node->callees; e; e = e->next_callee)
2928 {
2929 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2930 int count = streamer_read_uhwi (ib);
2931
2932 if (!count)
2933 continue;
2934 VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions, count);
2935
2936 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
2937 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
2938 }
2939 for (e = node->indirect_calls; e; e = e->next_callee)
2940 {
2941 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2942 int count = streamer_read_uhwi (ib);
2943
2944 if (count)
2945 {
2946 VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions,
2947 count);
2948 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
2949 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k),
2950 data_in);
2951 }
2952 ipa_read_indirect_edge_info (ib, data_in, e);
2953 }
2954 }
2955
2956 /* Write jump functions for nodes in SET. */
2957
2958 void
2959 ipa_prop_write_jump_functions (cgraph_node_set set)
2960 {
2961 struct cgraph_node *node;
2962 struct output_block *ob;
2963 unsigned int count = 0;
2964 cgraph_node_set_iterator csi;
2965
2966 if (!ipa_node_params_vector)
2967 return;
2968
2969 ob = create_output_block (LTO_section_jump_functions);
2970 ob->cgraph_node = NULL;
2971 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2972 {
2973 node = csi_node (csi);
2974 if (cgraph_function_with_gimple_body_p (node)
2975 && IPA_NODE_REF (node) != NULL)
2976 count++;
2977 }
2978
2979 streamer_write_uhwi (ob, count);
2980
2981 /* Process all of the functions. */
2982 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2983 {
2984 node = csi_node (csi);
2985 if (cgraph_function_with_gimple_body_p (node)
2986 && IPA_NODE_REF (node) != NULL)
2987 ipa_write_node_info (ob, node);
2988 }
2989 streamer_write_char_stream (ob->main_stream, 0);
2990 produce_asm (ob, NULL);
2991 destroy_output_block (ob);
2992 }
2993
2994 /* Read section in file FILE_DATA of length LEN with data DATA. */
2995
2996 static void
2997 ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
2998 size_t len)
2999 {
3000 const struct lto_function_header *header =
3001 (const struct lto_function_header *) data;
3002 const int32_t cfg_offset = sizeof (struct lto_function_header);
3003 const int32_t main_offset = cfg_offset + header->cfg_size;
3004 const int32_t string_offset = main_offset + header->main_size;
3005 struct data_in *data_in;
3006 struct lto_input_block ib_main;
3007 unsigned int i;
3008 unsigned int count;
3009
3010 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
3011 header->main_size);
3012
3013 data_in =
3014 lto_data_in_create (file_data, (const char *) data + string_offset,
3015 header->string_size, NULL);
3016 count = streamer_read_uhwi (&ib_main);
3017
3018 for (i = 0; i < count; i++)
3019 {
3020 unsigned int index;
3021 struct cgraph_node *node;
3022 lto_cgraph_encoder_t encoder;
3023
3024 index = streamer_read_uhwi (&ib_main);
3025 encoder = file_data->cgraph_node_encoder;
3026 node = lto_cgraph_encoder_deref (encoder, index);
3027 gcc_assert (node->analyzed);
3028 ipa_read_node_info (&ib_main, node, data_in);
3029 }
3030 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
3031 len);
3032 lto_data_in_delete (data_in);
3033 }
3034
3035 /* Read ipcp jump functions. */
3036
3037 void
3038 ipa_prop_read_jump_functions (void)
3039 {
3040 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
3041 struct lto_file_decl_data *file_data;
3042 unsigned int j = 0;
3043
3044 ipa_check_create_node_params ();
3045 ipa_check_create_edge_args ();
3046 ipa_register_cgraph_hooks ();
3047
3048 while ((file_data = file_data_vec[j++]))
3049 {
3050 size_t len;
3051 const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
3052
3053 if (data)
3054 ipa_prop_read_section (file_data, data, len);
3055 }
3056 }
3057
3058 /* After merging units, we can get mismatch in argument counts.
3059 Also decl merging might've rendered parameter lists obsolete.
3060 Also compute called_with_variable_arg info. */
3061
3062 void
3063 ipa_update_after_lto_read (void)
3064 {
3065 struct cgraph_node *node;
3066
3067 ipa_check_create_node_params ();
3068 ipa_check_create_edge_args ();
3069
3070 for (node = cgraph_nodes; node; node = node->next)
3071 if (node->analyzed)
3072 ipa_initialize_node_params (node);
3073 }