10c11d41ae63c8dc2af1ad50abce011afc3434d6
[gcc.git] / gcc / ipa-prop.c
1 /* Interprocedural analyses.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "langhooks.h"
26 #include "ggc.h"
27 #include "target.h"
28 #include "cgraph.h"
29 #include "ipa-prop.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-inline.h"
33 #include "gimple.h"
34 #include "flags.h"
35 #include "timevar.h"
36 #include "flags.h"
37 #include "diagnostic.h"
38 #include "tree-pretty-print.h"
39 #include "gimple-pretty-print.h"
40 #include "lto-streamer.h"
41
42
43 /* Intermediate information about a parameter that is only useful during the
44 run of ipa_analyze_node and is not kept afterwards. */
45
46 struct param_analysis_info
47 {
48 bool modified;
49 bitmap visited_statements;
50 };
51
52 /* Vector where the parameter infos are actually stored. */
53 VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
54 /* Vector where the parameter infos are actually stored. */
55 VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector;
56
57 /* Bitmap with all UIDs of call graph edges that have been already processed
58 by indirect inlining. */
59 static bitmap iinlining_processed_edges;
60
61 /* Holders of ipa cgraph hooks: */
62 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
63 static struct cgraph_node_hook_list *node_removal_hook_holder;
64 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
65 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
66 static struct cgraph_node_hook_list *function_insertion_hook_holder;
67
68 /* Add cgraph NODE described by INFO to the worklist WL regardless of whether
69 it is in one or not. It should almost never be used directly, as opposed to
70 ipa_push_func_to_list. */
71
72 void
73 ipa_push_func_to_list_1 (struct ipa_func_list **wl,
74 struct cgraph_node *node,
75 struct ipa_node_params *info)
76 {
77 struct ipa_func_list *temp;
78
79 info->node_enqueued = 1;
80 temp = XCNEW (struct ipa_func_list);
81 temp->node = node;
82 temp->next = *wl;
83 *wl = temp;
84 }
85
86 /* Initialize worklist to contain all functions. */
87
88 struct ipa_func_list *
89 ipa_init_func_list (void)
90 {
91 struct cgraph_node *node;
92 struct ipa_func_list * wl;
93
94 wl = NULL;
95 for (node = cgraph_nodes; node; node = node->next)
96 if (node->analyzed && !node->alias)
97 {
98 struct ipa_node_params *info = IPA_NODE_REF (node);
99 /* Unreachable nodes should have been eliminated before ipcp and
100 inlining. */
101 gcc_assert (node->needed || node->reachable);
102 ipa_push_func_to_list_1 (&wl, node, info);
103 }
104
105 return wl;
106 }
107
108 /* Remove a function from the worklist WL and return it. */
109
110 struct cgraph_node *
111 ipa_pop_func_from_list (struct ipa_func_list **wl)
112 {
113 struct ipa_node_params *info;
114 struct ipa_func_list *first;
115 struct cgraph_node *node;
116
117 first = *wl;
118 *wl = (*wl)->next;
119 node = first->node;
120 free (first);
121
122 info = IPA_NODE_REF (node);
123 info->node_enqueued = 0;
124 return node;
125 }
126
127 /* Return index of the formal whose tree is PTREE in function which corresponds
128 to INFO. */
129
130 int
131 ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
132 {
133 int i, count;
134
135 count = ipa_get_param_count (info);
136 for (i = 0; i < count; i++)
137 if (ipa_get_param(info, i) == ptree)
138 return i;
139
140 return -1;
141 }
142
143 /* Populate the param_decl field in parameter descriptors of INFO that
144 corresponds to NODE. */
145
146 static void
147 ipa_populate_param_decls (struct cgraph_node *node,
148 struct ipa_node_params *info)
149 {
150 tree fndecl;
151 tree fnargs;
152 tree parm;
153 int param_num;
154
155 fndecl = node->decl;
156 fnargs = DECL_ARGUMENTS (fndecl);
157 param_num = 0;
158 for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
159 {
160 info->params[param_num].decl = parm;
161 param_num++;
162 }
163 }
164
165 /* Return how many formal parameters FNDECL has. */
166
167 static inline int
168 count_formal_params_1 (tree fndecl)
169 {
170 tree parm;
171 int count = 0;
172
173 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
174 count++;
175
176 return count;
177 }
178
179 /* Count number of formal parameters in NOTE. Store the result to the
180 appropriate field of INFO. */
181
182 static void
183 ipa_count_formal_params (struct cgraph_node *node,
184 struct ipa_node_params *info)
185 {
186 int param_num;
187
188 param_num = count_formal_params_1 (node->decl);
189 ipa_set_param_count (info, param_num);
190 }
191
192 /* Initialize the ipa_node_params structure associated with NODE by counting
193 the function parameters, creating the descriptors and populating their
194 param_decls. */
195
196 void
197 ipa_initialize_node_params (struct cgraph_node *node)
198 {
199 struct ipa_node_params *info = IPA_NODE_REF (node);
200
201 if (!info->params)
202 {
203 ipa_count_formal_params (node, info);
204 info->params = XCNEWVEC (struct ipa_param_descriptor,
205 ipa_get_param_count (info));
206 ipa_populate_param_decls (node, info);
207 }
208 }
209
210 /* Count number of arguments callsite CS has and store it in
211 ipa_edge_args structure corresponding to this callsite. */
212
213 static void
214 ipa_count_arguments (struct cgraph_edge *cs)
215 {
216 gimple stmt;
217 int arg_num;
218
219 stmt = cs->call_stmt;
220 gcc_assert (is_gimple_call (stmt));
221 arg_num = gimple_call_num_args (stmt);
222 if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
223 <= (unsigned) cgraph_edge_max_uid)
224 VEC_safe_grow_cleared (ipa_edge_args_t, gc,
225 ipa_edge_args_vector, cgraph_edge_max_uid + 1);
226 ipa_set_cs_argument_count (IPA_EDGE_REF (cs), arg_num);
227 }
228
229 /* Print the jump functions associated with call graph edge CS to file F. */
230
231 static void
232 ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
233 {
234 int i, count;
235
236 count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
237 for (i = 0; i < count; i++)
238 {
239 struct ipa_jump_func *jump_func;
240 enum jump_func_type type;
241
242 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
243 type = jump_func->type;
244
245 fprintf (f, " param %d: ", i);
246 if (type == IPA_JF_UNKNOWN)
247 fprintf (f, "UNKNOWN\n");
248 else if (type == IPA_JF_KNOWN_TYPE)
249 {
250 tree binfo_type = TREE_TYPE (jump_func->value.base_binfo);
251 fprintf (f, "KNOWN TYPE, type in binfo is: ");
252 print_generic_expr (f, binfo_type, 0);
253 fprintf (f, " (%u)\n", TYPE_UID (binfo_type));
254 }
255 else if (type == IPA_JF_CONST)
256 {
257 tree val = jump_func->value.constant;
258 fprintf (f, "CONST: ");
259 print_generic_expr (f, val, 0);
260 if (TREE_CODE (val) == ADDR_EXPR
261 && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
262 {
263 fprintf (f, " -> ");
264 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
265 0);
266 }
267 fprintf (f, "\n");
268 }
269 else if (type == IPA_JF_CONST_MEMBER_PTR)
270 {
271 fprintf (f, "CONST MEMBER PTR: ");
272 print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
273 fprintf (f, ", ");
274 print_generic_expr (f, jump_func->value.member_cst.delta, 0);
275 fprintf (f, "\n");
276 }
277 else if (type == IPA_JF_PASS_THROUGH)
278 {
279 fprintf (f, "PASS THROUGH: ");
280 fprintf (f, "%d, op %s ",
281 jump_func->value.pass_through.formal_id,
282 tree_code_name[(int)
283 jump_func->value.pass_through.operation]);
284 if (jump_func->value.pass_through.operation != NOP_EXPR)
285 print_generic_expr (dump_file,
286 jump_func->value.pass_through.operand, 0);
287 fprintf (dump_file, "\n");
288 }
289 else if (type == IPA_JF_ANCESTOR)
290 {
291 fprintf (f, "ANCESTOR: ");
292 fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
293 jump_func->value.ancestor.formal_id,
294 jump_func->value.ancestor.offset);
295 print_generic_expr (f, jump_func->value.ancestor.type, 0);
296 fprintf (dump_file, "\n");
297 }
298 }
299 }
300
301
302 /* Print the jump functions of all arguments on all call graph edges going from
303 NODE to file F. */
304
305 void
306 ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
307 {
308 struct cgraph_edge *cs;
309 int i;
310
311 fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
312 for (cs = node->callees; cs; cs = cs->next_callee)
313 {
314 if (!ipa_edge_args_info_available_for_edge_p (cs))
315 continue;
316
317 fprintf (f, " callsite %s/%i -> %s/%i : \n",
318 cgraph_node_name (node), node->uid,
319 cgraph_node_name (cs->callee), cs->callee->uid);
320 ipa_print_node_jump_functions_for_edge (f, cs);
321 }
322
323 for (cs = node->indirect_calls, i = 0; cs; cs = cs->next_callee, i++)
324 {
325 if (!ipa_edge_args_info_available_for_edge_p (cs))
326 continue;
327
328 if (cs->call_stmt)
329 {
330 fprintf (f, " indirect callsite %d for stmt ", i);
331 print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
332 }
333 else
334 fprintf (f, " indirect callsite %d :\n", i);
335 ipa_print_node_jump_functions_for_edge (f, cs);
336
337 }
338 }
339
340 /* Print ipa_jump_func data structures of all nodes in the call graph to F. */
341
342 void
343 ipa_print_all_jump_functions (FILE *f)
344 {
345 struct cgraph_node *node;
346
347 fprintf (f, "\nJump functions:\n");
348 for (node = cgraph_nodes; node; node = node->next)
349 {
350 ipa_print_node_jump_functions (f, node);
351 }
352 }
353
354 /* Structure to be passed in between detect_type_change and
355 check_stmt_for_type_change. */
356
357 struct type_change_info
358 {
359 /* Set to true if dynamic type change has been detected. */
360 bool type_maybe_changed;
361 };
362
363 /* Return true if STMT can modify a virtual method table pointer.
364
365 This function makes special assumptions about both constructors and
366 destructors which are all the functions that are allowed to alter the VMT
367 pointers. It assumes that destructors begin with assignment into all VMT
368 pointers and that constructors essentially look in the following way:
369
370 1) The very first thing they do is that they call constructors of ancestor
371 sub-objects that have them.
372
373 2) Then VMT pointers of this and all its ancestors is set to new values
374 corresponding to the type corresponding to the constructor.
375
376 3) Only afterwards, other stuff such as constructor of member sub-objects
377 and the code written by the user is run. Only this may include calling
378 virtual functions, directly or indirectly.
379
380 There is no way to call a constructor of an ancestor sub-object in any
381 other way.
382
383 This means that we do not have to care whether constructors get the correct
384 type information because they will always change it (in fact, if we define
385 the type to be given by the VMT pointer, it is undefined).
386
387 The most important fact to derive from the above is that if, for some
388 statement in the section 3, we try to detect whether the dynamic type has
389 changed, we can safely ignore all calls as we examine the function body
390 backwards until we reach statements in section 2 because these calls cannot
391 be ancestor constructors or destructors (if the input is not bogus) and so
392 do not change the dynamic type (this holds true only for automatically
393 allocated objects but at the moment we devirtualize only these). We then
394 must detect that statements in section 2 change the dynamic type and can try
395 to derive the new type. That is enough and we can stop, we will never see
396 the calls into constructors of sub-objects in this code. Therefore we can
397 safely ignore all call statements that we traverse.
398 */
399
400 static bool
401 stmt_may_be_vtbl_ptr_store (gimple stmt)
402 {
403 if (is_gimple_call (stmt))
404 return false;
405 else if (is_gimple_assign (stmt))
406 {
407 tree lhs = gimple_assign_lhs (stmt);
408
409 if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
410 {
411 if (flag_strict_aliasing
412 && !POINTER_TYPE_P (TREE_TYPE (lhs)))
413 return false;
414
415 if (TREE_CODE (lhs) == COMPONENT_REF
416 && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
417 return false;
418 /* In the future we might want to use get_base_ref_and_offset to find
419 if there is a field corresponding to the offset and if so, proceed
420 almost like if it was a component ref. */
421 }
422 }
423 return true;
424 }
425
426 /* Callback of walk_aliased_vdefs and a helper function for
427 detect_type_change to check whether a particular statement may modify
428 the virtual table pointer, and if possible also determine the new type of
429 the (sub-)object. It stores its result into DATA, which points to a
430 type_change_info structure. */
431
432 static bool
433 check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
434 {
435 gimple stmt = SSA_NAME_DEF_STMT (vdef);
436 struct type_change_info *tci = (struct type_change_info *) data;
437
438 if (stmt_may_be_vtbl_ptr_store (stmt))
439 {
440 tci->type_maybe_changed = true;
441 return true;
442 }
443 else
444 return false;
445 }
446
447 /* Detect whether the dynamic type of ARG has changed (before callsite CALL) by
448 looking for assignments to its virtual table pointer. If it is, return true
449 and fill in the jump function JFUNC with relevant type information or set it
450 to unknown. ARG is the object itself (not a pointer to it, unless
451 dereferenced). BASE is the base of the memory access as returned by
452 get_ref_base_and_extent, as is the offset. */
453
454 static bool
455 detect_type_change (tree arg, tree base, gimple call,
456 struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
457 {
458 struct type_change_info tci;
459 ao_ref ao;
460
461 gcc_checking_assert (DECL_P (arg)
462 || TREE_CODE (arg) == MEM_REF
463 || handled_component_p (arg));
464 /* Const calls cannot call virtual methods through VMT and so type changes do
465 not matter. */
466 if (!flag_devirtualize || !gimple_vuse (call))
467 return false;
468
469 tci.type_maybe_changed = false;
470
471 ao.ref = arg;
472 ao.base = base;
473 ao.offset = offset;
474 ao.size = POINTER_SIZE;
475 ao.max_size = ao.size;
476 ao.ref_alias_set = -1;
477 ao.base_alias_set = -1;
478
479 walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
480 &tci, NULL);
481 if (!tci.type_maybe_changed)
482 return false;
483
484 jfunc->type = IPA_JF_UNKNOWN;
485 return true;
486 }
487
488 /* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
489 SSA name (its dereference will become the base and the offset is assumed to
490 be zero). */
491
492 static bool
493 detect_type_change_ssa (tree arg, gimple call, struct ipa_jump_func *jfunc)
494 {
495 gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
496 if (!flag_devirtualize
497 || !POINTER_TYPE_P (TREE_TYPE (arg))
498 || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != RECORD_TYPE)
499 return false;
500
501 arg = build2 (MEM_REF, ptr_type_node, arg,
502 build_int_cst (ptr_type_node, 0));
503
504 return detect_type_change (arg, arg, call, jfunc, 0);
505 }
506
507
508 /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
509 of an assignment statement STMT, try to find out whether NAME can be
510 described by a (possibly polynomial) pass-through jump-function or an
511 ancestor jump function and if so, write the appropriate function into
512 JFUNC */
513
514 static void
515 compute_complex_assign_jump_func (struct ipa_node_params *info,
516 struct ipa_jump_func *jfunc,
517 gimple call, gimple stmt, tree name)
518 {
519 HOST_WIDE_INT offset, size, max_size;
520 tree op1, op2, base, ssa;
521 int index;
522
523 op1 = gimple_assign_rhs1 (stmt);
524 op2 = gimple_assign_rhs2 (stmt);
525
526 if (TREE_CODE (op1) == SSA_NAME
527 && SSA_NAME_IS_DEFAULT_DEF (op1))
528 {
529 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
530 if (index < 0)
531 return;
532
533 if (op2)
534 {
535 if (!is_gimple_ip_invariant (op2)
536 || (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
537 && !useless_type_conversion_p (TREE_TYPE (name),
538 TREE_TYPE (op1))))
539 return;
540
541 jfunc->type = IPA_JF_PASS_THROUGH;
542 jfunc->value.pass_through.formal_id = index;
543 jfunc->value.pass_through.operation = gimple_assign_rhs_code (stmt);
544 jfunc->value.pass_through.operand = op2;
545 }
546 else if (gimple_assign_unary_nop_p (stmt)
547 && !detect_type_change_ssa (op1, call, jfunc))
548 {
549 jfunc->type = IPA_JF_PASS_THROUGH;
550 jfunc->value.pass_through.formal_id = index;
551 jfunc->value.pass_through.operation = NOP_EXPR;
552 }
553 return;
554 }
555
556 if (TREE_CODE (op1) != ADDR_EXPR)
557 return;
558 op1 = TREE_OPERAND (op1, 0);
559 if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
560 return;
561 base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
562 if (TREE_CODE (base) != MEM_REF
563 /* If this is a varying address, punt. */
564 || max_size == -1
565 || max_size != size)
566 return;
567 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
568 ssa = TREE_OPERAND (base, 0);
569 if (TREE_CODE (ssa) != SSA_NAME
570 || !SSA_NAME_IS_DEFAULT_DEF (ssa)
571 || offset < 0)
572 return;
573
574 /* Dynamic types are changed only in constructors and destructors and */
575 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
576 if (index >= 0
577 && !detect_type_change (op1, base, call, jfunc, offset))
578 {
579 jfunc->type = IPA_JF_ANCESTOR;
580 jfunc->value.ancestor.formal_id = index;
581 jfunc->value.ancestor.offset = offset;
582 jfunc->value.ancestor.type = TREE_TYPE (op1);
583 }
584 }
585
586 /* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
587 it looks like:
588
589 iftmp.1_3 = &obj_2(D)->D.1762;
590
591 The base of the MEM_REF must be a default definition SSA NAME of a
592 parameter. Return NULL_TREE if it looks otherwise. If case of success, the
593 whole MEM_REF expression is returned and the offset calculated from any
594 handled components and the MEM_REF itself is stored into *OFFSET. The whole
595 RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
596
597 static tree
598 get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
599 {
600 HOST_WIDE_INT size, max_size;
601 tree expr, parm, obj;
602
603 if (!gimple_assign_single_p (assign))
604 return NULL_TREE;
605 expr = gimple_assign_rhs1 (assign);
606
607 if (TREE_CODE (expr) != ADDR_EXPR)
608 return NULL_TREE;
609 expr = TREE_OPERAND (expr, 0);
610 obj = expr;
611 expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
612
613 if (TREE_CODE (expr) != MEM_REF
614 /* If this is a varying address, punt. */
615 || max_size == -1
616 || max_size != size
617 || *offset < 0)
618 return NULL_TREE;
619 parm = TREE_OPERAND (expr, 0);
620 if (TREE_CODE (parm) != SSA_NAME
621 || !SSA_NAME_IS_DEFAULT_DEF (parm)
622 || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
623 return NULL_TREE;
624
625 *offset += mem_ref_offset (expr).low * BITS_PER_UNIT;
626 *obj_p = obj;
627 return expr;
628 }
629
630
631 /* Given that an actual argument is an SSA_NAME that is a result of a phi
632 statement PHI, try to find out whether NAME is in fact a
633 multiple-inheritance typecast from a descendant into an ancestor of a formal
634 parameter and thus can be described by an ancestor jump function and if so,
635 write the appropriate function into JFUNC.
636
637 Essentially we want to match the following pattern:
638
639 if (obj_2(D) != 0B)
640 goto <bb 3>;
641 else
642 goto <bb 4>;
643
644 <bb 3>:
645 iftmp.1_3 = &obj_2(D)->D.1762;
646
647 <bb 4>:
648 # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
649 D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
650 return D.1879_6; */
651
652 static void
653 compute_complex_ancestor_jump_func (struct ipa_node_params *info,
654 struct ipa_jump_func *jfunc,
655 gimple call, gimple phi)
656 {
657 HOST_WIDE_INT offset;
658 gimple assign, cond;
659 basic_block phi_bb, assign_bb, cond_bb;
660 tree tmp, parm, expr, obj;
661 int index, i;
662
663 if (gimple_phi_num_args (phi) != 2)
664 return;
665
666 if (integer_zerop (PHI_ARG_DEF (phi, 1)))
667 tmp = PHI_ARG_DEF (phi, 0);
668 else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
669 tmp = PHI_ARG_DEF (phi, 1);
670 else
671 return;
672 if (TREE_CODE (tmp) != SSA_NAME
673 || SSA_NAME_IS_DEFAULT_DEF (tmp)
674 || !POINTER_TYPE_P (TREE_TYPE (tmp))
675 || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
676 return;
677
678 assign = SSA_NAME_DEF_STMT (tmp);
679 assign_bb = gimple_bb (assign);
680 if (!single_pred_p (assign_bb))
681 return;
682 expr = get_ancestor_addr_info (assign, &obj, &offset);
683 if (!expr)
684 return;
685 parm = TREE_OPERAND (expr, 0);
686 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
687 gcc_assert (index >= 0);
688
689 cond_bb = single_pred (assign_bb);
690 cond = last_stmt (cond_bb);
691 if (!cond
692 || gimple_code (cond) != GIMPLE_COND
693 || gimple_cond_code (cond) != NE_EXPR
694 || gimple_cond_lhs (cond) != parm
695 || !integer_zerop (gimple_cond_rhs (cond)))
696 return;
697
698 phi_bb = gimple_bb (phi);
699 for (i = 0; i < 2; i++)
700 {
701 basic_block pred = EDGE_PRED (phi_bb, i)->src;
702 if (pred != assign_bb && pred != cond_bb)
703 return;
704 }
705
706 if (!detect_type_change (obj, expr, call, jfunc, offset))
707 {
708 jfunc->type = IPA_JF_ANCESTOR;
709 jfunc->value.ancestor.formal_id = index;
710 jfunc->value.ancestor.offset = offset;
711 jfunc->value.ancestor.type = TREE_TYPE (obj);
712 }
713 }
714
715 /* Given OP which is passed as an actual argument to a called function,
716 determine if it is possible to construct a KNOWN_TYPE jump function for it
717 and if so, create one and store it to JFUNC. */
718
719 static void
720 compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
721 gimple call)
722 {
723 HOST_WIDE_INT offset, size, max_size;
724 tree base, binfo;
725
726 if (!flag_devirtualize
727 || TREE_CODE (op) != ADDR_EXPR
728 || TREE_CODE (TREE_TYPE (TREE_TYPE (op))) != RECORD_TYPE)
729 return;
730
731 op = TREE_OPERAND (op, 0);
732 base = get_ref_base_and_extent (op, &offset, &size, &max_size);
733 if (!DECL_P (base)
734 || max_size == -1
735 || max_size != size
736 || TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
737 || is_global_var (base))
738 return;
739
740 if (detect_type_change (op, base, call, jfunc, offset))
741 return;
742
743 binfo = TYPE_BINFO (TREE_TYPE (base));
744 if (!binfo)
745 return;
746 binfo = get_binfo_at_offset (binfo, offset, TREE_TYPE (op));
747 if (binfo)
748 {
749 jfunc->type = IPA_JF_KNOWN_TYPE;
750 jfunc->value.base_binfo = binfo;
751 }
752 }
753
754
755 /* Determine the jump functions of scalar arguments. Scalar means SSA names
756 and constants of a number of selected types. INFO is the ipa_node_params
757 structure associated with the caller, FUNCTIONS is a pointer to an array of
758 jump function structures associated with CALL which is the call statement
759 being examined.*/
760
761 static void
762 compute_scalar_jump_functions (struct ipa_node_params *info,
763 struct ipa_jump_func *functions,
764 gimple call)
765 {
766 tree arg;
767 unsigned num = 0;
768
769 for (num = 0; num < gimple_call_num_args (call); num++)
770 {
771 arg = gimple_call_arg (call, num);
772
773 if (is_gimple_ip_invariant (arg))
774 {
775 functions[num].type = IPA_JF_CONST;
776 functions[num].value.constant = arg;
777 }
778 else if (TREE_CODE (arg) == SSA_NAME)
779 {
780 if (SSA_NAME_IS_DEFAULT_DEF (arg))
781 {
782 int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
783
784 if (index >= 0
785 && !detect_type_change_ssa (arg, call, &functions[num]))
786 {
787 functions[num].type = IPA_JF_PASS_THROUGH;
788 functions[num].value.pass_through.formal_id = index;
789 functions[num].value.pass_through.operation = NOP_EXPR;
790 }
791 }
792 else
793 {
794 gimple stmt = SSA_NAME_DEF_STMT (arg);
795 if (is_gimple_assign (stmt))
796 compute_complex_assign_jump_func (info, &functions[num],
797 call, stmt, arg);
798 else if (gimple_code (stmt) == GIMPLE_PHI)
799 compute_complex_ancestor_jump_func (info, &functions[num],
800 call, stmt);
801 }
802 }
803 else
804 compute_known_type_jump_func (arg, &functions[num], call);
805 }
806 }
807
808 /* Inspect the given TYPE and return true iff it has the same structure (the
809 same number of fields of the same types) as a C++ member pointer. If
810 METHOD_PTR and DELTA are non-NULL, store the trees representing the
811 corresponding fields there. */
812
813 static bool
814 type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
815 {
816 tree fld;
817
818 if (TREE_CODE (type) != RECORD_TYPE)
819 return false;
820
821 fld = TYPE_FIELDS (type);
822 if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
823 || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
824 return false;
825
826 if (method_ptr)
827 *method_ptr = fld;
828
829 fld = DECL_CHAIN (fld);
830 if (!fld || INTEGRAL_TYPE_P (fld))
831 return false;
832 if (delta)
833 *delta = fld;
834
835 if (DECL_CHAIN (fld))
836 return false;
837
838 return true;
839 }
840
841 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
842 boolean variable pointed to by DATA. */
843
844 static bool
845 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
846 void *data)
847 {
848 bool *b = (bool *) data;
849 *b = true;
850 return true;
851 }
852
853 /* Return true if the formal parameter PARM might have been modified in this
854 function before reaching the statement CALL. PARM_INFO is a pointer to a
855 structure containing intermediate information about PARM. */
856
857 static bool
858 is_parm_modified_before_call (struct param_analysis_info *parm_info,
859 gimple call, tree parm)
860 {
861 bool modified = false;
862 ao_ref refd;
863
864 if (parm_info->modified)
865 return true;
866
867 ao_ref_init (&refd, parm);
868 walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
869 &modified, &parm_info->visited_statements);
870 if (modified)
871 {
872 parm_info->modified = true;
873 return true;
874 }
875 return false;
876 }
877
878 /* Go through arguments of the CALL and for every one that looks like a member
879 pointer, check whether it can be safely declared pass-through and if so,
880 mark that to the corresponding item of jump FUNCTIONS. Return true iff
881 there are non-pass-through member pointers within the arguments. INFO
882 describes formal parameters of the caller. PARMS_INFO is a pointer to a
883 vector containing intermediate information about each formal parameter. */
884
885 static bool
886 compute_pass_through_member_ptrs (struct ipa_node_params *info,
887 struct param_analysis_info *parms_info,
888 struct ipa_jump_func *functions,
889 gimple call)
890 {
891 bool undecided_members = false;
892 unsigned num;
893 tree arg;
894
895 for (num = 0; num < gimple_call_num_args (call); num++)
896 {
897 arg = gimple_call_arg (call, num);
898
899 if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
900 {
901 if (TREE_CODE (arg) == PARM_DECL)
902 {
903 int index = ipa_get_param_decl_index (info, arg);
904
905 gcc_assert (index >=0);
906 if (!is_parm_modified_before_call (&parms_info[index], call, arg))
907 {
908 functions[num].type = IPA_JF_PASS_THROUGH;
909 functions[num].value.pass_through.formal_id = index;
910 functions[num].value.pass_through.operation = NOP_EXPR;
911 }
912 else
913 undecided_members = true;
914 }
915 else
916 undecided_members = true;
917 }
918 }
919
920 return undecided_members;
921 }
922
923 /* Simple function filling in a member pointer constant jump function (with PFN
924 and DELTA as the constant value) into JFUNC. */
925
926 static void
927 fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
928 tree pfn, tree delta)
929 {
930 jfunc->type = IPA_JF_CONST_MEMBER_PTR;
931 jfunc->value.member_cst.pfn = pfn;
932 jfunc->value.member_cst.delta = delta;
933 }
934
935 /* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
936 return the rhs of its defining statement. */
937
938 static inline tree
939 get_ssa_def_if_simple_copy (tree rhs)
940 {
941 while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
942 {
943 gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
944
945 if (gimple_assign_single_p (def_stmt))
946 rhs = gimple_assign_rhs1 (def_stmt);
947 else
948 break;
949 }
950 return rhs;
951 }
952
953 /* Traverse statements from CALL backwards, scanning whether the argument ARG
954 which is a member pointer is filled in with constant values. If it is, fill
955 the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
956 fields of the record type of the member pointer. To give an example, we
957 look for a pattern looking like the following:
958
959 D.2515.__pfn ={v} printStuff;
960 D.2515.__delta ={v} 0;
961 i_1 = doprinting (D.2515); */
962
963 static void
964 determine_cst_member_ptr (gimple call, tree arg, tree method_field,
965 tree delta_field, struct ipa_jump_func *jfunc)
966 {
967 gimple_stmt_iterator gsi;
968 tree method = NULL_TREE;
969 tree delta = NULL_TREE;
970
971 gsi = gsi_for_stmt (call);
972
973 gsi_prev (&gsi);
974 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
975 {
976 gimple stmt = gsi_stmt (gsi);
977 tree lhs, rhs, fld;
978
979 if (!stmt_may_clobber_ref_p (stmt, arg))
980 continue;
981 if (!gimple_assign_single_p (stmt))
982 return;
983
984 lhs = gimple_assign_lhs (stmt);
985 rhs = gimple_assign_rhs1 (stmt);
986
987 if (TREE_CODE (lhs) != COMPONENT_REF
988 || TREE_OPERAND (lhs, 0) != arg)
989 return;
990
991 fld = TREE_OPERAND (lhs, 1);
992 if (!method && fld == method_field)
993 {
994 rhs = get_ssa_def_if_simple_copy (rhs);
995 if (TREE_CODE (rhs) == ADDR_EXPR
996 && TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
997 && TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
998 {
999 method = TREE_OPERAND (rhs, 0);
1000 if (delta)
1001 {
1002 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
1003 return;
1004 }
1005 }
1006 else
1007 return;
1008 }
1009
1010 if (!delta && fld == delta_field)
1011 {
1012 rhs = get_ssa_def_if_simple_copy (rhs);
1013 if (TREE_CODE (rhs) == INTEGER_CST)
1014 {
1015 delta = rhs;
1016 if (method)
1017 {
1018 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
1019 return;
1020 }
1021 }
1022 else
1023 return;
1024 }
1025 }
1026
1027 return;
1028 }
1029
1030 /* Go through the arguments of the CALL and for every member pointer within
1031 tries determine whether it is a constant. If it is, create a corresponding
1032 constant jump function in FUNCTIONS which is an array of jump functions
1033 associated with the call. */
1034
1035 static void
1036 compute_cst_member_ptr_arguments (struct ipa_jump_func *functions,
1037 gimple call)
1038 {
1039 unsigned num;
1040 tree arg, method_field, delta_field;
1041
1042 for (num = 0; num < gimple_call_num_args (call); num++)
1043 {
1044 arg = gimple_call_arg (call, num);
1045
1046 if (functions[num].type == IPA_JF_UNKNOWN
1047 && type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
1048 &delta_field))
1049 determine_cst_member_ptr (call, arg, method_field, delta_field,
1050 &functions[num]);
1051 }
1052 }
1053
1054 /* Compute jump function for all arguments of callsite CS and insert the
1055 information in the jump_functions array in the ipa_edge_args corresponding
1056 to this callsite. */
1057
1058 static void
1059 ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_info,
1060 struct cgraph_edge *cs)
1061 {
1062 struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
1063 struct ipa_edge_args *arguments = IPA_EDGE_REF (cs);
1064 gimple call;
1065
1066 if (ipa_get_cs_argument_count (arguments) == 0 || arguments->jump_functions)
1067 return;
1068 arguments->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
1069 (ipa_get_cs_argument_count (arguments));
1070
1071 call = cs->call_stmt;
1072 gcc_assert (is_gimple_call (call));
1073
1074 /* We will deal with constants and SSA scalars first: */
1075 compute_scalar_jump_functions (info, arguments->jump_functions, call);
1076
1077 /* Let's check whether there are any potential member pointers and if so,
1078 whether we can determine their functions as pass_through. */
1079 if (!compute_pass_through_member_ptrs (info, parms_info,
1080 arguments->jump_functions, call))
1081 return;
1082
1083 /* Finally, let's check whether we actually pass a new constant member
1084 pointer here... */
1085 compute_cst_member_ptr_arguments (arguments->jump_functions, call);
1086 }
1087
1088 /* Compute jump functions for all edges - both direct and indirect - outgoing
1089 from NODE. Also count the actual arguments in the process. */
1090
1091 static void
1092 ipa_compute_jump_functions (struct cgraph_node *node,
1093 struct param_analysis_info *parms_info)
1094 {
1095 struct cgraph_edge *cs;
1096
1097 for (cs = node->callees; cs; cs = cs->next_callee)
1098 {
1099 struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee, NULL);
1100 /* We do not need to bother analyzing calls to unknown
1101 functions unless they may become known during lto/whopr. */
1102 if (!cs->callee->analyzed && !flag_lto)
1103 continue;
1104 ipa_count_arguments (cs);
1105 /* If the descriptor of the callee is not initialized yet, we have to do
1106 it now. */
1107 if (callee->analyzed)
1108 ipa_initialize_node_params (callee);
1109 if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
1110 != ipa_get_param_count (IPA_NODE_REF (callee)))
1111 ipa_set_called_with_variable_arg (IPA_NODE_REF (callee));
1112 ipa_compute_jump_functions_for_edge (parms_info, cs);
1113 }
1114
1115 for (cs = node->indirect_calls; cs; cs = cs->next_callee)
1116 {
1117 ipa_count_arguments (cs);
1118 ipa_compute_jump_functions_for_edge (parms_info, cs);
1119 }
1120 }
1121
1122 /* If RHS looks like a rhs of a statement loading pfn from a member
1123 pointer formal parameter, return the parameter, otherwise return
1124 NULL. If USE_DELTA, then we look for a use of the delta field
1125 rather than the pfn. */
1126
1127 static tree
1128 ipa_get_member_ptr_load_param (tree rhs, bool use_delta)
1129 {
1130 tree rec, ref_field, ref_offset, fld, fld_offset, ptr_field, delta_field;
1131
1132 if (TREE_CODE (rhs) == COMPONENT_REF)
1133 {
1134 ref_field = TREE_OPERAND (rhs, 1);
1135 rhs = TREE_OPERAND (rhs, 0);
1136 }
1137 else
1138 ref_field = NULL_TREE;
1139 if (TREE_CODE (rhs) != MEM_REF)
1140 return NULL_TREE;
1141 rec = TREE_OPERAND (rhs, 0);
1142 if (TREE_CODE (rec) != ADDR_EXPR)
1143 return NULL_TREE;
1144 rec = TREE_OPERAND (rec, 0);
1145 if (TREE_CODE (rec) != PARM_DECL
1146 || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
1147 return NULL_TREE;
1148
1149 ref_offset = TREE_OPERAND (rhs, 1);
1150
1151 if (ref_field)
1152 {
1153 if (integer_nonzerop (ref_offset))
1154 return NULL_TREE;
1155
1156 if (use_delta)
1157 fld = delta_field;
1158 else
1159 fld = ptr_field;
1160
1161 return ref_field == fld ? rec : NULL_TREE;
1162 }
1163
1164 if (use_delta)
1165 fld_offset = byte_position (delta_field);
1166 else
1167 fld_offset = byte_position (ptr_field);
1168
1169 return tree_int_cst_equal (ref_offset, fld_offset) ? rec : NULL_TREE;
1170 }
1171
1172 /* If STMT looks like a statement loading a value from a member pointer formal
1173 parameter, this function returns that parameter. */
1174
1175 static tree
1176 ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta)
1177 {
1178 tree rhs;
1179
1180 if (!gimple_assign_single_p (stmt))
1181 return NULL_TREE;
1182
1183 rhs = gimple_assign_rhs1 (stmt);
1184 return ipa_get_member_ptr_load_param (rhs, use_delta);
1185 }
1186
1187 /* Returns true iff T is an SSA_NAME defined by a statement. */
1188
1189 static bool
1190 ipa_is_ssa_with_stmt_def (tree t)
1191 {
1192 if (TREE_CODE (t) == SSA_NAME
1193 && !SSA_NAME_IS_DEFAULT_DEF (t))
1194 return true;
1195 else
1196 return false;
1197 }
1198
1199 /* Find the indirect call graph edge corresponding to STMT and mark it as a
1200 call to a parameter number PARAM_INDEX. NODE is the caller. Return the
1201 indirect call graph edge. */
1202
1203 static struct cgraph_edge *
1204 ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
1205 {
1206 struct cgraph_edge *cs;
1207
1208 cs = cgraph_edge (node, stmt);
1209 cs->indirect_info->param_index = param_index;
1210 cs->indirect_info->anc_offset = 0;
1211 cs->indirect_info->polymorphic = 0;
1212 return cs;
1213 }
1214
1215 /* Analyze the CALL and examine uses of formal parameters of the caller NODE
1216 (described by INFO). PARMS_INFO is a pointer to a vector containing
1217 intermediate information about each formal parameter. Currently it checks
1218 whether the call calls a pointer that is a formal parameter and if so, the
1219 parameter is marked with the called flag and an indirect call graph edge
1220 describing the call is created. This is very simple for ordinary pointers
1221 represented in SSA but not-so-nice when it comes to member pointers. The
1222 ugly part of this function does nothing more than trying to match the
1223 pattern of such a call. An example of such a pattern is the gimple dump
1224 below, the call is on the last line:
1225
1226 <bb 2>:
1227 f$__delta_5 = f.__delta;
1228 f$__pfn_24 = f.__pfn;
1229
1230 or
1231 <bb 2>:
1232 f$__delta_5 = MEM[(struct *)&f];
1233 f$__pfn_24 = MEM[(struct *)&f + 4B];
1234
1235 and a few lines below:
1236
1237 <bb 5>
1238 D.2496_3 = (int) f$__pfn_24;
1239 D.2497_4 = D.2496_3 & 1;
1240 if (D.2497_4 != 0)
1241 goto <bb 3>;
1242 else
1243 goto <bb 4>;
1244
1245 <bb 6>:
1246 D.2500_7 = (unsigned int) f$__delta_5;
1247 D.2501_8 = &S + D.2500_7;
1248 D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
1249 D.2503_10 = *D.2502_9;
1250 D.2504_12 = f$__pfn_24 + -1;
1251 D.2505_13 = (unsigned int) D.2504_12;
1252 D.2506_14 = D.2503_10 + D.2505_13;
1253 D.2507_15 = *D.2506_14;
1254 iftmp.11_16 = (String:: *) D.2507_15;
1255
1256 <bb 7>:
1257 # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
1258 D.2500_19 = (unsigned int) f$__delta_5;
1259 D.2508_20 = &S + D.2500_19;
1260 D.2493_21 = iftmp.11_1 (D.2508_20, 4);
1261
1262 Such patterns are results of simple calls to a member pointer:
1263
1264 int doprinting (int (MyString::* f)(int) const)
1265 {
1266 MyString S ("somestring");
1267
1268 return (S.*f)(4);
1269 }
1270 */
1271
1272 static void
1273 ipa_analyze_indirect_call_uses (struct cgraph_node *node,
1274 struct ipa_node_params *info,
1275 struct param_analysis_info *parms_info,
1276 gimple call, tree target)
1277 {
1278 gimple def;
1279 tree n1, n2;
1280 gimple d1, d2;
1281 tree rec, rec2, cond;
1282 gimple branch;
1283 int index;
1284 basic_block bb, virt_bb, join;
1285
1286 if (SSA_NAME_IS_DEFAULT_DEF (target))
1287 {
1288 tree var = SSA_NAME_VAR (target);
1289 index = ipa_get_param_decl_index (info, var);
1290 if (index >= 0)
1291 ipa_note_param_call (node, index, call);
1292 return;
1293 }
1294
1295 /* Now we need to try to match the complex pattern of calling a member
1296 pointer. */
1297
1298 if (!POINTER_TYPE_P (TREE_TYPE (target))
1299 || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
1300 return;
1301
1302 def = SSA_NAME_DEF_STMT (target);
1303 if (gimple_code (def) != GIMPLE_PHI)
1304 return;
1305
1306 if (gimple_phi_num_args (def) != 2)
1307 return;
1308
1309 /* First, we need to check whether one of these is a load from a member
1310 pointer that is a parameter to this function. */
1311 n1 = PHI_ARG_DEF (def, 0);
1312 n2 = PHI_ARG_DEF (def, 1);
1313 if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
1314 return;
1315 d1 = SSA_NAME_DEF_STMT (n1);
1316 d2 = SSA_NAME_DEF_STMT (n2);
1317
1318 join = gimple_bb (def);
1319 if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false)))
1320 {
1321 if (ipa_get_stmt_member_ptr_load_param (d2, false))
1322 return;
1323
1324 bb = EDGE_PRED (join, 0)->src;
1325 virt_bb = gimple_bb (d2);
1326 }
1327 else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false)))
1328 {
1329 bb = EDGE_PRED (join, 1)->src;
1330 virt_bb = gimple_bb (d1);
1331 }
1332 else
1333 return;
1334
1335 /* Second, we need to check that the basic blocks are laid out in the way
1336 corresponding to the pattern. */
1337
1338 if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
1339 || single_pred (virt_bb) != bb
1340 || single_succ (virt_bb) != join)
1341 return;
1342
1343 /* Third, let's see that the branching is done depending on the least
1344 significant bit of the pfn. */
1345
1346 branch = last_stmt (bb);
1347 if (!branch || gimple_code (branch) != GIMPLE_COND)
1348 return;
1349
1350 if ((gimple_cond_code (branch) != NE_EXPR
1351 && gimple_cond_code (branch) != EQ_EXPR)
1352 || !integer_zerop (gimple_cond_rhs (branch)))
1353 return;
1354
1355 cond = gimple_cond_lhs (branch);
1356 if (!ipa_is_ssa_with_stmt_def (cond))
1357 return;
1358
1359 def = SSA_NAME_DEF_STMT (cond);
1360 if (!is_gimple_assign (def)
1361 || gimple_assign_rhs_code (def) != BIT_AND_EXPR
1362 || !integer_onep (gimple_assign_rhs2 (def)))
1363 return;
1364
1365 cond = gimple_assign_rhs1 (def);
1366 if (!ipa_is_ssa_with_stmt_def (cond))
1367 return;
1368
1369 def = SSA_NAME_DEF_STMT (cond);
1370
1371 if (is_gimple_assign (def)
1372 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
1373 {
1374 cond = gimple_assign_rhs1 (def);
1375 if (!ipa_is_ssa_with_stmt_def (cond))
1376 return;
1377 def = SSA_NAME_DEF_STMT (cond);
1378 }
1379
1380 rec2 = ipa_get_stmt_member_ptr_load_param (def,
1381 (TARGET_PTRMEMFUNC_VBIT_LOCATION
1382 == ptrmemfunc_vbit_in_delta));
1383
1384 if (rec != rec2)
1385 return;
1386
1387 index = ipa_get_param_decl_index (info, rec);
1388 if (index >= 0 && !is_parm_modified_before_call (&parms_info[index],
1389 call, rec))
1390 ipa_note_param_call (node, index, call);
1391
1392 return;
1393 }
1394
1395 /* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
1396 object referenced in the expression is a formal parameter of the caller
1397 (described by INFO), create a call note for the statement. */
1398
1399 static void
1400 ipa_analyze_virtual_call_uses (struct cgraph_node *node,
1401 struct ipa_node_params *info, gimple call,
1402 tree target)
1403 {
1404 struct cgraph_edge *cs;
1405 struct cgraph_indirect_call_info *ii;
1406 struct ipa_jump_func jfunc;
1407 tree obj = OBJ_TYPE_REF_OBJECT (target);
1408 int index;
1409 HOST_WIDE_INT anc_offset;
1410
1411 if (!flag_devirtualize)
1412 return;
1413
1414 if (TREE_CODE (obj) != SSA_NAME)
1415 return;
1416
1417 if (SSA_NAME_IS_DEFAULT_DEF (obj))
1418 {
1419 if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
1420 return;
1421
1422 anc_offset = 0;
1423 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
1424 gcc_assert (index >= 0);
1425 if (detect_type_change_ssa (obj, call, &jfunc))
1426 return;
1427 }
1428 else
1429 {
1430 gimple stmt = SSA_NAME_DEF_STMT (obj);
1431 tree expr;
1432
1433 expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
1434 if (!expr)
1435 return;
1436 index = ipa_get_param_decl_index (info,
1437 SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
1438 gcc_assert (index >= 0);
1439 if (detect_type_change (obj, expr, call, &jfunc, anc_offset))
1440 return;
1441 }
1442
1443 cs = ipa_note_param_call (node, index, call);
1444 ii = cs->indirect_info;
1445 ii->anc_offset = anc_offset;
1446 ii->otr_token = tree_low_cst (OBJ_TYPE_REF_TOKEN (target), 1);
1447 ii->otr_type = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (target)));
1448 ii->polymorphic = 1;
1449 }
1450
1451 /* Analyze a call statement CALL whether and how it utilizes formal parameters
1452 of the caller (described by INFO). PARMS_INFO is a pointer to a vector
1453 containing intermediate information about each formal parameter. */
1454
1455 static void
1456 ipa_analyze_call_uses (struct cgraph_node *node,
1457 struct ipa_node_params *info,
1458 struct param_analysis_info *parms_info, gimple call)
1459 {
1460 tree target = gimple_call_fn (call);
1461
1462 if (!target)
1463 return;
1464 if (TREE_CODE (target) == SSA_NAME)
1465 ipa_analyze_indirect_call_uses (node, info, parms_info, call, target);
1466 else if (TREE_CODE (target) == OBJ_TYPE_REF)
1467 ipa_analyze_virtual_call_uses (node, info, call, target);
1468 }
1469
1470
1471 /* Analyze the call statement STMT with respect to formal parameters (described
1472 in INFO) of caller given by NODE. Currently it only checks whether formal
1473 parameters are called. PARMS_INFO is a pointer to a vector containing
1474 intermediate information about each formal parameter. */
1475
1476 static void
1477 ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
1478 struct param_analysis_info *parms_info, gimple stmt)
1479 {
1480 if (is_gimple_call (stmt))
1481 ipa_analyze_call_uses (node, info, parms_info, stmt);
1482 }
1483
1484 /* Callback of walk_stmt_load_store_addr_ops for the visit_load.
1485 If OP is a parameter declaration, mark it as used in the info structure
1486 passed in DATA. */
1487
1488 static bool
1489 visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
1490 tree op, void *data)
1491 {
1492 struct ipa_node_params *info = (struct ipa_node_params *) data;
1493
1494 op = get_base_address (op);
1495 if (op
1496 && TREE_CODE (op) == PARM_DECL)
1497 {
1498 int index = ipa_get_param_decl_index (info, op);
1499 gcc_assert (index >= 0);
1500 info->params[index].used = true;
1501 }
1502
1503 return false;
1504 }
1505
1506 /* Scan the function body of NODE and inspect the uses of formal parameters.
1507 Store the findings in various structures of the associated ipa_node_params
1508 structure, such as parameter flags, notes etc. PARMS_INFO is a pointer to a
1509 vector containing intermediate information about each formal parameter. */
1510
1511 static void
1512 ipa_analyze_params_uses (struct cgraph_node *node,
1513 struct param_analysis_info *parms_info)
1514 {
1515 tree decl = node->decl;
1516 basic_block bb;
1517 struct function *func;
1518 gimple_stmt_iterator gsi;
1519 struct ipa_node_params *info = IPA_NODE_REF (node);
1520 int i;
1521
1522 if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
1523 return;
1524
1525 for (i = 0; i < ipa_get_param_count (info); i++)
1526 {
1527 tree parm = ipa_get_param (info, i);
1528 /* For SSA regs see if parameter is used. For non-SSA we compute
1529 the flag during modification analysis. */
1530 if (is_gimple_reg (parm)
1531 && gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
1532 info->params[i].used = true;
1533 }
1534
1535 func = DECL_STRUCT_FUNCTION (decl);
1536 FOR_EACH_BB_FN (bb, func)
1537 {
1538 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1539 {
1540 gimple stmt = gsi_stmt (gsi);
1541
1542 if (is_gimple_debug (stmt))
1543 continue;
1544
1545 ipa_analyze_stmt_uses (node, info, parms_info, stmt);
1546 walk_stmt_load_store_addr_ops (stmt, info,
1547 visit_ref_for_mod_analysis,
1548 visit_ref_for_mod_analysis,
1549 visit_ref_for_mod_analysis);
1550 }
1551 for (gsi = gsi_start (phi_nodes (bb)); !gsi_end_p (gsi); gsi_next (&gsi))
1552 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
1553 visit_ref_for_mod_analysis,
1554 visit_ref_for_mod_analysis,
1555 visit_ref_for_mod_analysis);
1556 }
1557
1558 info->uses_analysis_done = 1;
1559 }
1560
1561 /* Initialize the array describing properties of of formal parameters
1562 of NODE, analyze their uses and compute jump functions associated
1563 with actual arguments of calls from within NODE. */
1564
1565 void
1566 ipa_analyze_node (struct cgraph_node *node)
1567 {
1568 struct ipa_node_params *info;
1569 struct param_analysis_info *parms_info;
1570 int i, param_count;
1571
1572 ipa_check_create_node_params ();
1573 ipa_check_create_edge_args ();
1574 info = IPA_NODE_REF (node);
1575 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
1576 current_function_decl = node->decl;
1577 ipa_initialize_node_params (node);
1578
1579 param_count = ipa_get_param_count (info);
1580 parms_info = XALLOCAVEC (struct param_analysis_info, param_count);
1581 memset (parms_info, 0, sizeof (struct param_analysis_info) * param_count);
1582
1583 ipa_analyze_params_uses (node, parms_info);
1584 ipa_compute_jump_functions (node, parms_info);
1585
1586 for (i = 0; i < param_count; i++)
1587 if (parms_info[i].visited_statements)
1588 BITMAP_FREE (parms_info[i].visited_statements);
1589
1590 current_function_decl = NULL;
1591 pop_cfun ();
1592 }
1593
1594
1595 /* Update the jump function DST when the call graph edge corresponding to SRC is
1596 is being inlined, knowing that DST is of type ancestor and src of known
1597 type. */
1598
1599 static void
1600 combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
1601 struct ipa_jump_func *dst)
1602 {
1603 tree new_binfo;
1604
1605 new_binfo = get_binfo_at_offset (src->value.base_binfo,
1606 dst->value.ancestor.offset,
1607 dst->value.ancestor.type);
1608 if (new_binfo)
1609 {
1610 dst->type = IPA_JF_KNOWN_TYPE;
1611 dst->value.base_binfo = new_binfo;
1612 }
1613 else
1614 dst->type = IPA_JF_UNKNOWN;
1615 }
1616
1617 /* Update the jump functions associated with call graph edge E when the call
1618 graph edge CS is being inlined, assuming that E->caller is already (possibly
1619 indirectly) inlined into CS->callee and that E has not been inlined. */
1620
1621 static void
1622 update_jump_functions_after_inlining (struct cgraph_edge *cs,
1623 struct cgraph_edge *e)
1624 {
1625 struct ipa_edge_args *top = IPA_EDGE_REF (cs);
1626 struct ipa_edge_args *args = IPA_EDGE_REF (e);
1627 int count = ipa_get_cs_argument_count (args);
1628 int i;
1629
1630 for (i = 0; i < count; i++)
1631 {
1632 struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
1633
1634 if (dst->type == IPA_JF_ANCESTOR)
1635 {
1636 struct ipa_jump_func *src;
1637
1638 /* Variable number of arguments can cause havoc if we try to access
1639 one that does not exist in the inlined edge. So make sure we
1640 don't. */
1641 if (dst->value.ancestor.formal_id >= ipa_get_cs_argument_count (top))
1642 {
1643 dst->type = IPA_JF_UNKNOWN;
1644 continue;
1645 }
1646
1647 src = ipa_get_ith_jump_func (top, dst->value.ancestor.formal_id);
1648 if (src->type == IPA_JF_KNOWN_TYPE)
1649 combine_known_type_and_ancestor_jfs (src, dst);
1650 else if (src->type == IPA_JF_PASS_THROUGH
1651 && src->value.pass_through.operation == NOP_EXPR)
1652 dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
1653 else if (src->type == IPA_JF_ANCESTOR)
1654 {
1655 dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
1656 dst->value.ancestor.offset += src->value.ancestor.offset;
1657 }
1658 else
1659 dst->type = IPA_JF_UNKNOWN;
1660 }
1661 else if (dst->type == IPA_JF_PASS_THROUGH)
1662 {
1663 struct ipa_jump_func *src;
1664 /* We must check range due to calls with variable number of arguments
1665 and we cannot combine jump functions with operations. */
1666 if (dst->value.pass_through.operation == NOP_EXPR
1667 && (dst->value.pass_through.formal_id
1668 < ipa_get_cs_argument_count (top)))
1669 {
1670 src = ipa_get_ith_jump_func (top,
1671 dst->value.pass_through.formal_id);
1672 *dst = *src;
1673 }
1674 else
1675 dst->type = IPA_JF_UNKNOWN;
1676 }
1677 }
1678 }
1679
1680 /* If TARGET is an addr_expr of a function declaration, make it the destination
1681 of an indirect edge IE and return the edge. Otherwise, return NULL. Delta,
1682 if non-NULL, is an integer constant that must be added to this pointer
1683 (first parameter). */
1684
1685 struct cgraph_edge *
1686 ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target, tree delta)
1687 {
1688 struct cgraph_node *callee;
1689
1690 if (TREE_CODE (target) == ADDR_EXPR)
1691 target = TREE_OPERAND (target, 0);
1692 if (TREE_CODE (target) != FUNCTION_DECL)
1693 return NULL;
1694 callee = cgraph_get_node (target);
1695 if (!callee)
1696 return NULL;
1697 ipa_check_create_node_params ();
1698
1699 /* We can not make edges to inline clones. It is bug that someone removed the cgraph
1700 node too early. */
1701 gcc_assert (!callee->global.inlined_to);
1702
1703 cgraph_make_edge_direct (ie, callee, delta ? tree_low_cst (delta, 0) : 0);
1704 if (dump_file)
1705 {
1706 fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
1707 "(%s/%i -> %s/%i), for stmt ",
1708 ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
1709 cgraph_node_name (ie->caller), ie->caller->uid,
1710 cgraph_node_name (ie->callee), ie->callee->uid);
1711 if (ie->call_stmt)
1712 print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
1713 else
1714 fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
1715
1716 if (delta)
1717 {
1718 fprintf (dump_file, " Thunk delta is ");
1719 print_generic_expr (dump_file, delta, 0);
1720 fprintf (dump_file, "\n");
1721 }
1722 }
1723 callee = cgraph_function_or_thunk_node (callee, NULL);
1724
1725 if (ipa_get_cs_argument_count (IPA_EDGE_REF (ie))
1726 != ipa_get_param_count (IPA_NODE_REF (callee)))
1727 ipa_set_called_with_variable_arg (IPA_NODE_REF (callee));
1728
1729 return ie;
1730 }
1731
1732 /* Try to find a destination for indirect edge IE that corresponds to a simple
1733 call or a call of a member function pointer and where the destination is a
1734 pointer formal parameter described by jump function JFUNC. If it can be
1735 determined, return the newly direct edge, otherwise return NULL. */
1736
1737 static struct cgraph_edge *
1738 try_make_edge_direct_simple_call (struct cgraph_edge *ie,
1739 struct ipa_jump_func *jfunc)
1740 {
1741 tree target;
1742
1743 if (jfunc->type == IPA_JF_CONST)
1744 target = jfunc->value.constant;
1745 else if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
1746 target = jfunc->value.member_cst.pfn;
1747 else
1748 return NULL;
1749
1750 return ipa_make_edge_direct_to_target (ie, target, NULL_TREE);
1751 }
1752
1753 /* Try to find a destination for indirect edge IE that corresponds to a
1754 virtual call based on a formal parameter which is described by jump
1755 function JFUNC and if it can be determined, make it direct and return the
1756 direct edge. Otherwise, return NULL. */
1757
1758 static struct cgraph_edge *
1759 try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
1760 struct ipa_jump_func *jfunc)
1761 {
1762 tree binfo, type, target, delta;
1763 HOST_WIDE_INT token;
1764
1765 if (jfunc->type == IPA_JF_KNOWN_TYPE)
1766 binfo = jfunc->value.base_binfo;
1767 else
1768 return NULL;
1769
1770 if (!binfo)
1771 return NULL;
1772
1773 token = ie->indirect_info->otr_token;
1774 type = ie->indirect_info->otr_type;
1775 binfo = get_binfo_at_offset (binfo, ie->indirect_info->anc_offset, type);
1776 if (binfo)
1777 target = gimple_get_virt_method_for_binfo (token, binfo, &delta);
1778 else
1779 return NULL;
1780
1781 if (target)
1782 return ipa_make_edge_direct_to_target (ie, target, delta);
1783 else
1784 return NULL;
1785 }
1786
1787 /* Update the param called notes associated with NODE when CS is being inlined,
1788 assuming NODE is (potentially indirectly) inlined into CS->callee.
1789 Moreover, if the callee is discovered to be constant, create a new cgraph
1790 edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
1791 unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
1792
1793 static bool
1794 update_indirect_edges_after_inlining (struct cgraph_edge *cs,
1795 struct cgraph_node *node,
1796 VEC (cgraph_edge_p, heap) **new_edges)
1797 {
1798 struct ipa_edge_args *top;
1799 struct cgraph_edge *ie, *next_ie, *new_direct_edge;
1800 bool res = false;
1801
1802 ipa_check_create_edge_args ();
1803 top = IPA_EDGE_REF (cs);
1804
1805 for (ie = node->indirect_calls; ie; ie = next_ie)
1806 {
1807 struct cgraph_indirect_call_info *ici = ie->indirect_info;
1808 struct ipa_jump_func *jfunc;
1809
1810 next_ie = ie->next_callee;
1811 if (bitmap_bit_p (iinlining_processed_edges, ie->uid))
1812 continue;
1813
1814 /* If we ever use indirect edges for anything other than indirect
1815 inlining, we will need to skip those with negative param_indices. */
1816 if (ici->param_index == -1)
1817 continue;
1818
1819 /* We must check range due to calls with variable number of arguments: */
1820 if (ici->param_index >= ipa_get_cs_argument_count (top))
1821 {
1822 bitmap_set_bit (iinlining_processed_edges, ie->uid);
1823 continue;
1824 }
1825
1826 jfunc = ipa_get_ith_jump_func (top, ici->param_index);
1827 if (jfunc->type == IPA_JF_PASS_THROUGH
1828 && jfunc->value.pass_through.operation == NOP_EXPR)
1829 ici->param_index = jfunc->value.pass_through.formal_id;
1830 else if (jfunc->type == IPA_JF_ANCESTOR)
1831 {
1832 ici->param_index = jfunc->value.ancestor.formal_id;
1833 ici->anc_offset += jfunc->value.ancestor.offset;
1834 }
1835 else
1836 /* Either we can find a destination for this edge now or never. */
1837 bitmap_set_bit (iinlining_processed_edges, ie->uid);
1838
1839 if (ici->polymorphic)
1840 new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc);
1841 else
1842 new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc);
1843
1844 if (new_direct_edge)
1845 {
1846 new_direct_edge->indirect_inlining_edge = 1;
1847 if (new_edges)
1848 {
1849 VEC_safe_push (cgraph_edge_p, heap, *new_edges,
1850 new_direct_edge);
1851 top = IPA_EDGE_REF (cs);
1852 res = true;
1853 }
1854 }
1855 }
1856
1857 return res;
1858 }
1859
1860 /* Recursively traverse subtree of NODE (including node) made of inlined
1861 cgraph_edges when CS has been inlined and invoke
1862 update_indirect_edges_after_inlining on all nodes and
1863 update_jump_functions_after_inlining on all non-inlined edges that lead out
1864 of this subtree. Newly discovered indirect edges will be added to
1865 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
1866 created. */
1867
1868 static bool
1869 propagate_info_to_inlined_callees (struct cgraph_edge *cs,
1870 struct cgraph_node *node,
1871 VEC (cgraph_edge_p, heap) **new_edges)
1872 {
1873 struct cgraph_edge *e;
1874 bool res;
1875
1876 res = update_indirect_edges_after_inlining (cs, node, new_edges);
1877
1878 for (e = node->callees; e; e = e->next_callee)
1879 if (!e->inline_failed)
1880 res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
1881 else
1882 update_jump_functions_after_inlining (cs, e);
1883
1884 return res;
1885 }
1886
1887 /* Update jump functions and call note functions on inlining the call site CS.
1888 CS is expected to lead to a node already cloned by
1889 cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
1890 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
1891 created. */
1892
1893 bool
1894 ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
1895 VEC (cgraph_edge_p, heap) **new_edges)
1896 {
1897 /* Do nothing if the preparation phase has not been carried out yet
1898 (i.e. during early inlining). */
1899 if (!ipa_node_params_vector)
1900 return false;
1901 gcc_assert (ipa_edge_args_vector);
1902
1903 return propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
1904 }
1905
1906 /* Frees all dynamically allocated structures that the argument info points
1907 to. */
1908
1909 void
1910 ipa_free_edge_args_substructures (struct ipa_edge_args *args)
1911 {
1912 if (args->jump_functions)
1913 ggc_free (args->jump_functions);
1914
1915 memset (args, 0, sizeof (*args));
1916 }
1917
1918 /* Free all ipa_edge structures. */
1919
1920 void
1921 ipa_free_all_edge_args (void)
1922 {
1923 int i;
1924 struct ipa_edge_args *args;
1925
1926 FOR_EACH_VEC_ELT (ipa_edge_args_t, ipa_edge_args_vector, i, args)
1927 ipa_free_edge_args_substructures (args);
1928
1929 VEC_free (ipa_edge_args_t, gc, ipa_edge_args_vector);
1930 ipa_edge_args_vector = NULL;
1931 }
1932
1933 /* Frees all dynamically allocated structures that the param info points
1934 to. */
1935
1936 void
1937 ipa_free_node_params_substructures (struct ipa_node_params *info)
1938 {
1939 free (info->params);
1940
1941 memset (info, 0, sizeof (*info));
1942 }
1943
1944 /* Free all ipa_node_params structures. */
1945
1946 void
1947 ipa_free_all_node_params (void)
1948 {
1949 int i;
1950 struct ipa_node_params *info;
1951
1952 FOR_EACH_VEC_ELT (ipa_node_params_t, ipa_node_params_vector, i, info)
1953 ipa_free_node_params_substructures (info);
1954
1955 VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
1956 ipa_node_params_vector = NULL;
1957 }
1958
1959 /* Hook that is called by cgraph.c when an edge is removed. */
1960
1961 static void
1962 ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
1963 {
1964 /* During IPA-CP updating we can be called on not-yet analyze clones. */
1965 if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
1966 <= (unsigned)cs->uid)
1967 return;
1968 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
1969 }
1970
1971 /* Hook that is called by cgraph.c when a node is removed. */
1972
1973 static void
1974 ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
1975 {
1976 /* During IPA-CP updating we can be called on not-yet analyze clones. */
1977 if (VEC_length (ipa_node_params_t, ipa_node_params_vector)
1978 <= (unsigned)node->uid)
1979 return;
1980 ipa_free_node_params_substructures (IPA_NODE_REF (node));
1981 }
1982
1983 /* Helper function to duplicate an array of size N that is at SRC and store a
1984 pointer to it to DST. Nothing is done if SRC is NULL. */
1985
1986 static void *
1987 duplicate_array (void *src, size_t n)
1988 {
1989 void *p;
1990
1991 if (!src)
1992 return NULL;
1993
1994 p = xmalloc (n);
1995 memcpy (p, src, n);
1996 return p;
1997 }
1998
1999 static struct ipa_jump_func *
2000 duplicate_ipa_jump_func_array (const struct ipa_jump_func * src, size_t n)
2001 {
2002 struct ipa_jump_func *p;
2003
2004 if (!src)
2005 return NULL;
2006
2007 p = ggc_alloc_vec_ipa_jump_func (n);
2008 memcpy (p, src, n * sizeof (struct ipa_jump_func));
2009 return p;
2010 }
2011
2012 /* Hook that is called by cgraph.c when a node is duplicated. */
2013
2014 static void
2015 ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
2016 __attribute__((unused)) void *data)
2017 {
2018 struct ipa_edge_args *old_args, *new_args;
2019 int arg_count;
2020
2021 ipa_check_create_edge_args ();
2022
2023 old_args = IPA_EDGE_REF (src);
2024 new_args = IPA_EDGE_REF (dst);
2025
2026 arg_count = ipa_get_cs_argument_count (old_args);
2027 ipa_set_cs_argument_count (new_args, arg_count);
2028 new_args->jump_functions =
2029 duplicate_ipa_jump_func_array (old_args->jump_functions, arg_count);
2030
2031 if (iinlining_processed_edges
2032 && bitmap_bit_p (iinlining_processed_edges, src->uid))
2033 bitmap_set_bit (iinlining_processed_edges, dst->uid);
2034 }
2035
2036 /* Hook that is called by cgraph.c when a node is duplicated. */
2037
2038 static void
2039 ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
2040 ATTRIBUTE_UNUSED void *data)
2041 {
2042 struct ipa_node_params *old_info, *new_info;
2043 int param_count, i;
2044
2045 ipa_check_create_node_params ();
2046 old_info = IPA_NODE_REF (src);
2047 new_info = IPA_NODE_REF (dst);
2048 param_count = ipa_get_param_count (old_info);
2049
2050 ipa_set_param_count (new_info, param_count);
2051 new_info->params = (struct ipa_param_descriptor *)
2052 duplicate_array (old_info->params,
2053 sizeof (struct ipa_param_descriptor) * param_count);
2054 for (i = 0; i < param_count; i++)
2055 new_info->params[i].types = VEC_copy (tree, heap,
2056 old_info->params[i].types);
2057 new_info->ipcp_orig_node = old_info->ipcp_orig_node;
2058 new_info->count_scale = old_info->count_scale;
2059
2060 new_info->called_with_var_arguments = old_info->called_with_var_arguments;
2061 new_info->uses_analysis_done = old_info->uses_analysis_done;
2062 new_info->node_enqueued = old_info->node_enqueued;
2063 }
2064
2065
2066 /* Analyze newly added function into callgraph. */
2067
2068 static void
2069 ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
2070 {
2071 ipa_analyze_node (node);
2072 }
2073
2074 /* Register our cgraph hooks if they are not already there. */
2075
2076 void
2077 ipa_register_cgraph_hooks (void)
2078 {
2079 if (!edge_removal_hook_holder)
2080 edge_removal_hook_holder =
2081 cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
2082 if (!node_removal_hook_holder)
2083 node_removal_hook_holder =
2084 cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
2085 if (!edge_duplication_hook_holder)
2086 edge_duplication_hook_holder =
2087 cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
2088 if (!node_duplication_hook_holder)
2089 node_duplication_hook_holder =
2090 cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
2091 function_insertion_hook_holder =
2092 cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
2093 }
2094
2095 /* Unregister our cgraph hooks if they are not already there. */
2096
2097 static void
2098 ipa_unregister_cgraph_hooks (void)
2099 {
2100 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
2101 edge_removal_hook_holder = NULL;
2102 cgraph_remove_node_removal_hook (node_removal_hook_holder);
2103 node_removal_hook_holder = NULL;
2104 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
2105 edge_duplication_hook_holder = NULL;
2106 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
2107 node_duplication_hook_holder = NULL;
2108 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
2109 function_insertion_hook_holder = NULL;
2110 }
2111
2112 /* Allocate all necessary data structures necessary for indirect inlining. */
2113
2114 void
2115 ipa_create_all_structures_for_iinln (void)
2116 {
2117 iinlining_processed_edges = BITMAP_ALLOC (NULL);
2118 }
2119
2120 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
2121 longer needed after ipa-cp. */
2122
2123 void
2124 ipa_free_all_structures_after_ipa_cp (void)
2125 {
2126 if (!flag_indirect_inlining)
2127 {
2128 ipa_free_all_edge_args ();
2129 ipa_free_all_node_params ();
2130 ipa_unregister_cgraph_hooks ();
2131 }
2132 }
2133
2134 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
2135 longer needed after indirect inlining. */
2136
2137 void
2138 ipa_free_all_structures_after_iinln (void)
2139 {
2140 BITMAP_FREE (iinlining_processed_edges);
2141
2142 ipa_free_all_edge_args ();
2143 ipa_free_all_node_params ();
2144 ipa_unregister_cgraph_hooks ();
2145 }
2146
2147 /* Print ipa_tree_map data structures of all functions in the
2148 callgraph to F. */
2149
2150 void
2151 ipa_print_node_params (FILE * f, struct cgraph_node *node)
2152 {
2153 int i, count;
2154 tree temp;
2155 struct ipa_node_params *info;
2156
2157 if (!node->analyzed)
2158 return;
2159 info = IPA_NODE_REF (node);
2160 fprintf (f, " function %s parameter descriptors:\n",
2161 cgraph_node_name (node));
2162 count = ipa_get_param_count (info);
2163 for (i = 0; i < count; i++)
2164 {
2165 temp = ipa_get_param (info, i);
2166 if (TREE_CODE (temp) == PARM_DECL)
2167 fprintf (f, " param %d : %s", i,
2168 (DECL_NAME (temp)
2169 ? (*lang_hooks.decl_printable_name) (temp, 2)
2170 : "(unnamed)"));
2171 if (ipa_is_param_used (info, i))
2172 fprintf (f, " used");
2173 fprintf (f, "\n");
2174 }
2175 }
2176
2177 /* Print ipa_tree_map data structures of all functions in the
2178 callgraph to F. */
2179
2180 void
2181 ipa_print_all_params (FILE * f)
2182 {
2183 struct cgraph_node *node;
2184
2185 fprintf (f, "\nFunction parameters:\n");
2186 for (node = cgraph_nodes; node; node = node->next)
2187 ipa_print_node_params (f, node);
2188 }
2189
2190 /* Return a heap allocated vector containing formal parameters of FNDECL. */
2191
2192 VEC(tree, heap) *
2193 ipa_get_vector_of_formal_parms (tree fndecl)
2194 {
2195 VEC(tree, heap) *args;
2196 int count;
2197 tree parm;
2198
2199 count = count_formal_params_1 (fndecl);
2200 args = VEC_alloc (tree, heap, count);
2201 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
2202 VEC_quick_push (tree, args, parm);
2203
2204 return args;
2205 }
2206
2207 /* Return a heap allocated vector containing types of formal parameters of
2208 function type FNTYPE. */
2209
2210 static inline VEC(tree, heap) *
2211 get_vector_of_formal_parm_types (tree fntype)
2212 {
2213 VEC(tree, heap) *types;
2214 int count = 0;
2215 tree t;
2216
2217 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
2218 count++;
2219
2220 types = VEC_alloc (tree, heap, count);
2221 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
2222 VEC_quick_push (tree, types, TREE_VALUE (t));
2223
2224 return types;
2225 }
2226
2227 /* Modify the function declaration FNDECL and its type according to the plan in
2228 ADJUSTMENTS. It also sets base fields of individual adjustments structures
2229 to reflect the actual parameters being modified which are determined by the
2230 base_index field. */
2231
2232 void
2233 ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
2234 const char *synth_parm_prefix)
2235 {
2236 VEC(tree, heap) *oparms, *otypes;
2237 tree orig_type, new_type = NULL;
2238 tree old_arg_types, t, new_arg_types = NULL;
2239 tree parm, *link = &DECL_ARGUMENTS (fndecl);
2240 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2241 tree new_reversed = NULL;
2242 bool care_for_types, last_parm_void;
2243
2244 if (!synth_parm_prefix)
2245 synth_parm_prefix = "SYNTH";
2246
2247 oparms = ipa_get_vector_of_formal_parms (fndecl);
2248 orig_type = TREE_TYPE (fndecl);
2249 old_arg_types = TYPE_ARG_TYPES (orig_type);
2250
2251 /* The following test is an ugly hack, some functions simply don't have any
2252 arguments in their type. This is probably a bug but well... */
2253 care_for_types = (old_arg_types != NULL_TREE);
2254 if (care_for_types)
2255 {
2256 last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
2257 == void_type_node);
2258 otypes = get_vector_of_formal_parm_types (orig_type);
2259 if (last_parm_void)
2260 gcc_assert (VEC_length (tree, oparms) + 1 == VEC_length (tree, otypes));
2261 else
2262 gcc_assert (VEC_length (tree, oparms) == VEC_length (tree, otypes));
2263 }
2264 else
2265 {
2266 last_parm_void = false;
2267 otypes = NULL;
2268 }
2269
2270 for (i = 0; i < len; i++)
2271 {
2272 struct ipa_parm_adjustment *adj;
2273 gcc_assert (link);
2274
2275 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2276 parm = VEC_index (tree, oparms, adj->base_index);
2277 adj->base = parm;
2278
2279 if (adj->copy_param)
2280 {
2281 if (care_for_types)
2282 new_arg_types = tree_cons (NULL_TREE, VEC_index (tree, otypes,
2283 adj->base_index),
2284 new_arg_types);
2285 *link = parm;
2286 link = &DECL_CHAIN (parm);
2287 }
2288 else if (!adj->remove_param)
2289 {
2290 tree new_parm;
2291 tree ptype;
2292
2293 if (adj->by_ref)
2294 ptype = build_pointer_type (adj->type);
2295 else
2296 ptype = adj->type;
2297
2298 if (care_for_types)
2299 new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
2300
2301 new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
2302 ptype);
2303 DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
2304
2305 DECL_ARTIFICIAL (new_parm) = 1;
2306 DECL_ARG_TYPE (new_parm) = ptype;
2307 DECL_CONTEXT (new_parm) = fndecl;
2308 TREE_USED (new_parm) = 1;
2309 DECL_IGNORED_P (new_parm) = 1;
2310 layout_decl (new_parm, 0);
2311
2312 add_referenced_var (new_parm);
2313 mark_sym_for_renaming (new_parm);
2314 adj->base = parm;
2315 adj->reduction = new_parm;
2316
2317 *link = new_parm;
2318
2319 link = &DECL_CHAIN (new_parm);
2320 }
2321 }
2322
2323 *link = NULL_TREE;
2324
2325 if (care_for_types)
2326 {
2327 new_reversed = nreverse (new_arg_types);
2328 if (last_parm_void)
2329 {
2330 if (new_reversed)
2331 TREE_CHAIN (new_arg_types) = void_list_node;
2332 else
2333 new_reversed = void_list_node;
2334 }
2335 }
2336
2337 /* Use copy_node to preserve as much as possible from original type
2338 (debug info, attribute lists etc.)
2339 Exception is METHOD_TYPEs must have THIS argument.
2340 When we are asked to remove it, we need to build new FUNCTION_TYPE
2341 instead. */
2342 if (TREE_CODE (orig_type) != METHOD_TYPE
2343 || (VEC_index (ipa_parm_adjustment_t, adjustments, 0)->copy_param
2344 && VEC_index (ipa_parm_adjustment_t, adjustments, 0)->base_index == 0))
2345 {
2346 new_type = build_distinct_type_copy (orig_type);
2347 TYPE_ARG_TYPES (new_type) = new_reversed;
2348 }
2349 else
2350 {
2351 new_type
2352 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
2353 new_reversed));
2354 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
2355 DECL_VINDEX (fndecl) = NULL_TREE;
2356 }
2357
2358 /* When signature changes, we need to clear builtin info. */
2359 if (DECL_BUILT_IN (fndecl))
2360 {
2361 DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
2362 DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
2363 }
2364
2365 /* This is a new type, not a copy of an old type. Need to reassociate
2366 variants. We can handle everything except the main variant lazily. */
2367 t = TYPE_MAIN_VARIANT (orig_type);
2368 if (orig_type != t)
2369 {
2370 TYPE_MAIN_VARIANT (new_type) = t;
2371 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
2372 TYPE_NEXT_VARIANT (t) = new_type;
2373 }
2374 else
2375 {
2376 TYPE_MAIN_VARIANT (new_type) = new_type;
2377 TYPE_NEXT_VARIANT (new_type) = NULL;
2378 }
2379
2380 TREE_TYPE (fndecl) = new_type;
2381 DECL_VIRTUAL_P (fndecl) = 0;
2382 if (otypes)
2383 VEC_free (tree, heap, otypes);
2384 VEC_free (tree, heap, oparms);
2385 }
2386
2387 /* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
2388 If this is a directly recursive call, CS must be NULL. Otherwise it must
2389 contain the corresponding call graph edge. */
2390
2391 void
2392 ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
2393 ipa_parm_adjustment_vec adjustments)
2394 {
2395 VEC(tree, heap) *vargs;
2396 gimple new_stmt;
2397 gimple_stmt_iterator gsi;
2398 tree callee_decl;
2399 int i, len;
2400
2401 len = VEC_length (ipa_parm_adjustment_t, adjustments);
2402 vargs = VEC_alloc (tree, heap, len);
2403
2404 gsi = gsi_for_stmt (stmt);
2405 for (i = 0; i < len; i++)
2406 {
2407 struct ipa_parm_adjustment *adj;
2408
2409 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2410
2411 if (adj->copy_param)
2412 {
2413 tree arg = gimple_call_arg (stmt, adj->base_index);
2414
2415 VEC_quick_push (tree, vargs, arg);
2416 }
2417 else if (!adj->remove_param)
2418 {
2419 tree expr, base, off;
2420 location_t loc;
2421
2422 /* We create a new parameter out of the value of the old one, we can
2423 do the following kind of transformations:
2424
2425 - A scalar passed by reference is converted to a scalar passed by
2426 value. (adj->by_ref is false and the type of the original
2427 actual argument is a pointer to a scalar).
2428
2429 - A part of an aggregate is passed instead of the whole aggregate.
2430 The part can be passed either by value or by reference, this is
2431 determined by value of adj->by_ref. Moreover, the code below
2432 handles both situations when the original aggregate is passed by
2433 value (its type is not a pointer) and when it is passed by
2434 reference (it is a pointer to an aggregate).
2435
2436 When the new argument is passed by reference (adj->by_ref is true)
2437 it must be a part of an aggregate and therefore we form it by
2438 simply taking the address of a reference inside the original
2439 aggregate. */
2440
2441 gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
2442 base = gimple_call_arg (stmt, adj->base_index);
2443 loc = EXPR_LOCATION (base);
2444
2445 if (TREE_CODE (base) != ADDR_EXPR
2446 && POINTER_TYPE_P (TREE_TYPE (base)))
2447 off = build_int_cst (adj->alias_ptr_type,
2448 adj->offset / BITS_PER_UNIT);
2449 else
2450 {
2451 HOST_WIDE_INT base_offset;
2452 tree prev_base;
2453
2454 if (TREE_CODE (base) == ADDR_EXPR)
2455 base = TREE_OPERAND (base, 0);
2456 prev_base = base;
2457 base = get_addr_base_and_unit_offset (base, &base_offset);
2458 /* Aggregate arguments can have non-invariant addresses. */
2459 if (!base)
2460 {
2461 base = build_fold_addr_expr (prev_base);
2462 off = build_int_cst (adj->alias_ptr_type,
2463 adj->offset / BITS_PER_UNIT);
2464 }
2465 else if (TREE_CODE (base) == MEM_REF)
2466 {
2467 off = build_int_cst (adj->alias_ptr_type,
2468 base_offset
2469 + adj->offset / BITS_PER_UNIT);
2470 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
2471 off);
2472 base = TREE_OPERAND (base, 0);
2473 }
2474 else
2475 {
2476 off = build_int_cst (adj->alias_ptr_type,
2477 base_offset
2478 + adj->offset / BITS_PER_UNIT);
2479 base = build_fold_addr_expr (base);
2480 }
2481 }
2482
2483 expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
2484 if (adj->by_ref)
2485 expr = build_fold_addr_expr (expr);
2486
2487 expr = force_gimple_operand_gsi (&gsi, expr,
2488 adj->by_ref
2489 || is_gimple_reg_type (adj->type),
2490 NULL, true, GSI_SAME_STMT);
2491 VEC_quick_push (tree, vargs, expr);
2492 }
2493 }
2494
2495 if (dump_file && (dump_flags & TDF_DETAILS))
2496 {
2497 fprintf (dump_file, "replacing stmt:");
2498 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
2499 }
2500
2501 callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
2502 new_stmt = gimple_build_call_vec (callee_decl, vargs);
2503 VEC_free (tree, heap, vargs);
2504 if (gimple_call_lhs (stmt))
2505 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2506
2507 gimple_set_block (new_stmt, gimple_block (stmt));
2508 if (gimple_has_location (stmt))
2509 gimple_set_location (new_stmt, gimple_location (stmt));
2510 gimple_call_copy_flags (new_stmt, stmt);
2511 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2512
2513 if (dump_file && (dump_flags & TDF_DETAILS))
2514 {
2515 fprintf (dump_file, "with stmt:");
2516 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2517 fprintf (dump_file, "\n");
2518 }
2519 gsi_replace (&gsi, new_stmt, true);
2520 if (cs)
2521 cgraph_set_call_stmt (cs, new_stmt);
2522 update_ssa (TODO_update_ssa);
2523 free_dominance_info (CDI_DOMINATORS);
2524 }
2525
2526 /* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
2527
2528 static bool
2529 index_in_adjustments_multiple_times_p (int base_index,
2530 ipa_parm_adjustment_vec adjustments)
2531 {
2532 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2533 bool one = false;
2534
2535 for (i = 0; i < len; i++)
2536 {
2537 struct ipa_parm_adjustment *adj;
2538 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2539
2540 if (adj->base_index == base_index)
2541 {
2542 if (one)
2543 return true;
2544 else
2545 one = true;
2546 }
2547 }
2548 return false;
2549 }
2550
2551
2552 /* Return adjustments that should have the same effect on function parameters
2553 and call arguments as if they were first changed according to adjustments in
2554 INNER and then by adjustments in OUTER. */
2555
2556 ipa_parm_adjustment_vec
2557 ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
2558 ipa_parm_adjustment_vec outer)
2559 {
2560 int i, outlen = VEC_length (ipa_parm_adjustment_t, outer);
2561 int inlen = VEC_length (ipa_parm_adjustment_t, inner);
2562 int removals = 0;
2563 ipa_parm_adjustment_vec adjustments, tmp;
2564
2565 tmp = VEC_alloc (ipa_parm_adjustment_t, heap, inlen);
2566 for (i = 0; i < inlen; i++)
2567 {
2568 struct ipa_parm_adjustment *n;
2569 n = VEC_index (ipa_parm_adjustment_t, inner, i);
2570
2571 if (n->remove_param)
2572 removals++;
2573 else
2574 VEC_quick_push (ipa_parm_adjustment_t, tmp, n);
2575 }
2576
2577 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, outlen + removals);
2578 for (i = 0; i < outlen; i++)
2579 {
2580 struct ipa_parm_adjustment *r;
2581 struct ipa_parm_adjustment *out = VEC_index (ipa_parm_adjustment_t,
2582 outer, i);
2583 struct ipa_parm_adjustment *in = VEC_index (ipa_parm_adjustment_t, tmp,
2584 out->base_index);
2585
2586 gcc_assert (!in->remove_param);
2587 if (out->remove_param)
2588 {
2589 if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
2590 {
2591 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2592 memset (r, 0, sizeof (*r));
2593 r->remove_param = true;
2594 }
2595 continue;
2596 }
2597
2598 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2599 memset (r, 0, sizeof (*r));
2600 r->base_index = in->base_index;
2601 r->type = out->type;
2602
2603 /* FIXME: Create nonlocal value too. */
2604
2605 if (in->copy_param && out->copy_param)
2606 r->copy_param = true;
2607 else if (in->copy_param)
2608 r->offset = out->offset;
2609 else if (out->copy_param)
2610 r->offset = in->offset;
2611 else
2612 r->offset = in->offset + out->offset;
2613 }
2614
2615 for (i = 0; i < inlen; i++)
2616 {
2617 struct ipa_parm_adjustment *n = VEC_index (ipa_parm_adjustment_t,
2618 inner, i);
2619
2620 if (n->remove_param)
2621 VEC_quick_push (ipa_parm_adjustment_t, adjustments, n);
2622 }
2623
2624 VEC_free (ipa_parm_adjustment_t, heap, tmp);
2625 return adjustments;
2626 }
2627
2628 /* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
2629 friendly way, assuming they are meant to be applied to FNDECL. */
2630
2631 void
2632 ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
2633 tree fndecl)
2634 {
2635 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2636 bool first = true;
2637 VEC(tree, heap) *parms = ipa_get_vector_of_formal_parms (fndecl);
2638
2639 fprintf (file, "IPA param adjustments: ");
2640 for (i = 0; i < len; i++)
2641 {
2642 struct ipa_parm_adjustment *adj;
2643 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2644
2645 if (!first)
2646 fprintf (file, " ");
2647 else
2648 first = false;
2649
2650 fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
2651 print_generic_expr (file, VEC_index (tree, parms, adj->base_index), 0);
2652 if (adj->base)
2653 {
2654 fprintf (file, ", base: ");
2655 print_generic_expr (file, adj->base, 0);
2656 }
2657 if (adj->reduction)
2658 {
2659 fprintf (file, ", reduction: ");
2660 print_generic_expr (file, adj->reduction, 0);
2661 }
2662 if (adj->new_ssa_base)
2663 {
2664 fprintf (file, ", new_ssa_base: ");
2665 print_generic_expr (file, adj->new_ssa_base, 0);
2666 }
2667
2668 if (adj->copy_param)
2669 fprintf (file, ", copy_param");
2670 else if (adj->remove_param)
2671 fprintf (file, ", remove_param");
2672 else
2673 fprintf (file, ", offset %li", (long) adj->offset);
2674 if (adj->by_ref)
2675 fprintf (file, ", by_ref");
2676 print_node_brief (file, ", type: ", adj->type, 0);
2677 fprintf (file, "\n");
2678 }
2679 VEC_free (tree, heap, parms);
2680 }
2681
2682 /* Stream out jump function JUMP_FUNC to OB. */
2683
2684 static void
2685 ipa_write_jump_function (struct output_block *ob,
2686 struct ipa_jump_func *jump_func)
2687 {
2688 lto_output_uleb128_stream (ob->main_stream,
2689 jump_func->type);
2690
2691 switch (jump_func->type)
2692 {
2693 case IPA_JF_UNKNOWN:
2694 break;
2695 case IPA_JF_KNOWN_TYPE:
2696 lto_output_tree (ob, jump_func->value.base_binfo, true);
2697 break;
2698 case IPA_JF_CONST:
2699 lto_output_tree (ob, jump_func->value.constant, true);
2700 break;
2701 case IPA_JF_PASS_THROUGH:
2702 lto_output_tree (ob, jump_func->value.pass_through.operand, true);
2703 lto_output_uleb128_stream (ob->main_stream,
2704 jump_func->value.pass_through.formal_id);
2705 lto_output_uleb128_stream (ob->main_stream,
2706 jump_func->value.pass_through.operation);
2707 break;
2708 case IPA_JF_ANCESTOR:
2709 lto_output_uleb128_stream (ob->main_stream,
2710 jump_func->value.ancestor.offset);
2711 lto_output_tree (ob, jump_func->value.ancestor.type, true);
2712 lto_output_uleb128_stream (ob->main_stream,
2713 jump_func->value.ancestor.formal_id);
2714 break;
2715 case IPA_JF_CONST_MEMBER_PTR:
2716 lto_output_tree (ob, jump_func->value.member_cst.pfn, true);
2717 lto_output_tree (ob, jump_func->value.member_cst.delta, false);
2718 break;
2719 }
2720 }
2721
2722 /* Read in jump function JUMP_FUNC from IB. */
2723
2724 static void
2725 ipa_read_jump_function (struct lto_input_block *ib,
2726 struct ipa_jump_func *jump_func,
2727 struct data_in *data_in)
2728 {
2729 jump_func->type = (enum jump_func_type) lto_input_uleb128 (ib);
2730
2731 switch (jump_func->type)
2732 {
2733 case IPA_JF_UNKNOWN:
2734 break;
2735 case IPA_JF_KNOWN_TYPE:
2736 jump_func->value.base_binfo = lto_input_tree (ib, data_in);
2737 break;
2738 case IPA_JF_CONST:
2739 jump_func->value.constant = lto_input_tree (ib, data_in);
2740 break;
2741 case IPA_JF_PASS_THROUGH:
2742 jump_func->value.pass_through.operand = lto_input_tree (ib, data_in);
2743 jump_func->value.pass_through.formal_id = lto_input_uleb128 (ib);
2744 jump_func->value.pass_through.operation = (enum tree_code) lto_input_uleb128 (ib);
2745 break;
2746 case IPA_JF_ANCESTOR:
2747 jump_func->value.ancestor.offset = lto_input_uleb128 (ib);
2748 jump_func->value.ancestor.type = lto_input_tree (ib, data_in);
2749 jump_func->value.ancestor.formal_id = lto_input_uleb128 (ib);
2750 break;
2751 case IPA_JF_CONST_MEMBER_PTR:
2752 jump_func->value.member_cst.pfn = lto_input_tree (ib, data_in);
2753 jump_func->value.member_cst.delta = lto_input_tree (ib, data_in);
2754 break;
2755 }
2756 }
2757
2758 /* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
2759 relevant to indirect inlining to OB. */
2760
2761 static void
2762 ipa_write_indirect_edge_info (struct output_block *ob,
2763 struct cgraph_edge *cs)
2764 {
2765 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2766 struct bitpack_d bp;
2767
2768 lto_output_sleb128_stream (ob->main_stream, ii->param_index);
2769 lto_output_sleb128_stream (ob->main_stream, ii->anc_offset);
2770 bp = bitpack_create (ob->main_stream);
2771 bp_pack_value (&bp, ii->polymorphic, 1);
2772 lto_output_bitpack (&bp);
2773
2774 if (ii->polymorphic)
2775 {
2776 lto_output_sleb128_stream (ob->main_stream, ii->otr_token);
2777 lto_output_tree (ob, ii->otr_type, true);
2778 }
2779 }
2780
2781 /* Read in parts of cgraph_indirect_call_info corresponding to CS that are
2782 relevant to indirect inlining from IB. */
2783
2784 static void
2785 ipa_read_indirect_edge_info (struct lto_input_block *ib,
2786 struct data_in *data_in ATTRIBUTE_UNUSED,
2787 struct cgraph_edge *cs)
2788 {
2789 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2790 struct bitpack_d bp;
2791
2792 ii->param_index = (int) lto_input_sleb128 (ib);
2793 ii->anc_offset = (HOST_WIDE_INT) lto_input_sleb128 (ib);
2794 bp = lto_input_bitpack (ib);
2795 ii->polymorphic = bp_unpack_value (&bp, 1);
2796 if (ii->polymorphic)
2797 {
2798 ii->otr_token = (HOST_WIDE_INT) lto_input_sleb128 (ib);
2799 ii->otr_type = lto_input_tree (ib, data_in);
2800 }
2801 }
2802
2803 /* Stream out NODE info to OB. */
2804
2805 static void
2806 ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
2807 {
2808 int node_ref;
2809 lto_cgraph_encoder_t encoder;
2810 struct ipa_node_params *info = IPA_NODE_REF (node);
2811 int j;
2812 struct cgraph_edge *e;
2813 struct bitpack_d bp;
2814
2815 encoder = ob->decl_state->cgraph_node_encoder;
2816 node_ref = lto_cgraph_encoder_encode (encoder, node);
2817 lto_output_uleb128_stream (ob->main_stream, node_ref);
2818
2819 bp = bitpack_create (ob->main_stream);
2820 gcc_assert (info->uses_analysis_done
2821 || ipa_get_param_count (info) == 0);
2822 gcc_assert (!info->node_enqueued);
2823 gcc_assert (!info->ipcp_orig_node);
2824 for (j = 0; j < ipa_get_param_count (info); j++)
2825 bp_pack_value (&bp, info->params[j].used, 1);
2826 lto_output_bitpack (&bp);
2827 for (e = node->callees; e; e = e->next_callee)
2828 {
2829 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2830
2831 lto_output_uleb128_stream (ob->main_stream,
2832 ipa_get_cs_argument_count (args));
2833 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
2834 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
2835 }
2836 for (e = node->indirect_calls; e; e = e->next_callee)
2837 {
2838 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2839
2840 lto_output_uleb128_stream (ob->main_stream,
2841 ipa_get_cs_argument_count (args));
2842 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
2843 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
2844 ipa_write_indirect_edge_info (ob, e);
2845 }
2846 }
2847
2848 /* Stream in NODE info from IB. */
2849
2850 static void
2851 ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
2852 struct data_in *data_in)
2853 {
2854 struct ipa_node_params *info = IPA_NODE_REF (node);
2855 int k;
2856 struct cgraph_edge *e;
2857 struct bitpack_d bp;
2858
2859 ipa_initialize_node_params (node);
2860
2861 bp = lto_input_bitpack (ib);
2862 if (ipa_get_param_count (info) != 0)
2863 info->uses_analysis_done = true;
2864 info->node_enqueued = false;
2865 for (k = 0; k < ipa_get_param_count (info); k++)
2866 info->params[k].used = bp_unpack_value (&bp, 1);
2867 for (e = node->callees; e; e = e->next_callee)
2868 {
2869 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2870 int count = lto_input_uleb128 (ib);
2871
2872 ipa_set_cs_argument_count (args, count);
2873 if (!count)
2874 continue;
2875
2876 args->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
2877 (ipa_get_cs_argument_count (args));
2878 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
2879 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
2880 }
2881 for (e = node->indirect_calls; e; e = e->next_callee)
2882 {
2883 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2884 int count = lto_input_uleb128 (ib);
2885
2886 ipa_set_cs_argument_count (args, count);
2887 if (count)
2888 {
2889 args->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
2890 (ipa_get_cs_argument_count (args));
2891 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
2892 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
2893 }
2894 ipa_read_indirect_edge_info (ib, data_in, e);
2895 }
2896 }
2897
2898 /* Write jump functions for nodes in SET. */
2899
2900 void
2901 ipa_prop_write_jump_functions (cgraph_node_set set)
2902 {
2903 struct cgraph_node *node;
2904 struct output_block *ob;
2905 unsigned int count = 0;
2906 cgraph_node_set_iterator csi;
2907
2908 if (!ipa_node_params_vector)
2909 return;
2910
2911 ob = create_output_block (LTO_section_jump_functions);
2912 ob->cgraph_node = NULL;
2913 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2914 {
2915 node = csi_node (csi);
2916 if (cgraph_function_with_gimple_body_p (node)
2917 && IPA_NODE_REF (node) != NULL)
2918 count++;
2919 }
2920
2921 lto_output_uleb128_stream (ob->main_stream, count);
2922
2923 /* Process all of the functions. */
2924 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2925 {
2926 node = csi_node (csi);
2927 if (cgraph_function_with_gimple_body_p (node)
2928 && IPA_NODE_REF (node) != NULL)
2929 ipa_write_node_info (ob, node);
2930 }
2931 lto_output_1_stream (ob->main_stream, 0);
2932 produce_asm (ob, NULL);
2933 destroy_output_block (ob);
2934 }
2935
2936 /* Read section in file FILE_DATA of length LEN with data DATA. */
2937
2938 static void
2939 ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
2940 size_t len)
2941 {
2942 const struct lto_function_header *header =
2943 (const struct lto_function_header *) data;
2944 const int32_t cfg_offset = sizeof (struct lto_function_header);
2945 const int32_t main_offset = cfg_offset + header->cfg_size;
2946 const int32_t string_offset = main_offset + header->main_size;
2947 struct data_in *data_in;
2948 struct lto_input_block ib_main;
2949 unsigned int i;
2950 unsigned int count;
2951
2952 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
2953 header->main_size);
2954
2955 data_in =
2956 lto_data_in_create (file_data, (const char *) data + string_offset,
2957 header->string_size, NULL);
2958 count = lto_input_uleb128 (&ib_main);
2959
2960 for (i = 0; i < count; i++)
2961 {
2962 unsigned int index;
2963 struct cgraph_node *node;
2964 lto_cgraph_encoder_t encoder;
2965
2966 index = lto_input_uleb128 (&ib_main);
2967 encoder = file_data->cgraph_node_encoder;
2968 node = lto_cgraph_encoder_deref (encoder, index);
2969 gcc_assert (node->analyzed);
2970 ipa_read_node_info (&ib_main, node, data_in);
2971 }
2972 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
2973 len);
2974 lto_data_in_delete (data_in);
2975 }
2976
2977 /* Read ipcp jump functions. */
2978
2979 void
2980 ipa_prop_read_jump_functions (void)
2981 {
2982 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
2983 struct lto_file_decl_data *file_data;
2984 unsigned int j = 0;
2985
2986 ipa_check_create_node_params ();
2987 ipa_check_create_edge_args ();
2988 ipa_register_cgraph_hooks ();
2989
2990 while ((file_data = file_data_vec[j++]))
2991 {
2992 size_t len;
2993 const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
2994
2995 if (data)
2996 ipa_prop_read_section (file_data, data, len);
2997 }
2998 }
2999
3000 /* After merging units, we can get mismatch in argument counts.
3001 Also decl merging might've rendered parameter lists obsolete.
3002 Also compute called_with_variable_arg info. */
3003
3004 void
3005 ipa_update_after_lto_read (void)
3006 {
3007 struct cgraph_node *node;
3008 struct cgraph_edge *cs;
3009
3010 ipa_check_create_node_params ();
3011 ipa_check_create_edge_args ();
3012
3013 for (node = cgraph_nodes; node; node = node->next)
3014 if (node->analyzed)
3015 ipa_initialize_node_params (node);
3016
3017 for (node = cgraph_nodes; node; node = node->next)
3018 if (node->analyzed)
3019 for (cs = node->callees; cs; cs = cs->next_callee)
3020 {
3021 struct cgraph_node *callee;
3022
3023 callee = cgraph_function_or_thunk_node (cs->callee, NULL);
3024 if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
3025 != ipa_get_param_count (IPA_NODE_REF (callee)))
3026 ipa_set_called_with_variable_arg (IPA_NODE_REF (callee));
3027 }
3028 }
3029
3030 /* Given the jump function JFUNC, compute the lattice LAT that describes the
3031 value coming down the callsite. INFO describes the caller node so that
3032 pass-through jump functions can be evaluated. */
3033
3034 void
3035 ipa_lattice_from_jfunc (struct ipa_node_params *info, struct ipcp_lattice *lat,
3036 struct ipa_jump_func *jfunc)
3037 {
3038 if (jfunc->type == IPA_JF_CONST)
3039 {
3040 lat->type = IPA_CONST_VALUE;
3041 lat->constant = jfunc->value.constant;
3042 }
3043 else if (jfunc->type == IPA_JF_PASS_THROUGH)
3044 {
3045 struct ipcp_lattice *caller_lat;
3046 tree cst;
3047
3048 caller_lat = ipa_get_lattice (info, jfunc->value.pass_through.formal_id);
3049 lat->type = caller_lat->type;
3050 if (caller_lat->type != IPA_CONST_VALUE)
3051 return;
3052 cst = caller_lat->constant;
3053
3054 if (jfunc->value.pass_through.operation != NOP_EXPR)
3055 {
3056 tree restype;
3057 if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
3058 == tcc_comparison)
3059 restype = boolean_type_node;
3060 else
3061 restype = TREE_TYPE (cst);
3062 cst = fold_binary (jfunc->value.pass_through.operation,
3063 restype, cst, jfunc->value.pass_through.operand);
3064 }
3065 if (!cst || !is_gimple_ip_invariant (cst))
3066 lat->type = IPA_BOTTOM;
3067 lat->constant = cst;
3068 }
3069 else if (jfunc->type == IPA_JF_ANCESTOR)
3070 {
3071 struct ipcp_lattice *caller_lat;
3072 tree t;
3073
3074 caller_lat = ipa_get_lattice (info, jfunc->value.ancestor.formal_id);
3075 lat->type = caller_lat->type;
3076 if (caller_lat->type != IPA_CONST_VALUE)
3077 return;
3078 if (TREE_CODE (caller_lat->constant) != ADDR_EXPR)
3079 {
3080 /* This can happen when the constant is a NULL pointer. */
3081 lat->type = IPA_BOTTOM;
3082 return;
3083 }
3084 t = TREE_OPERAND (caller_lat->constant, 0);
3085 t = build_ref_for_offset (EXPR_LOCATION (t), t,
3086 jfunc->value.ancestor.offset,
3087 jfunc->value.ancestor.type, NULL, false);
3088 lat->constant = build_fold_addr_expr (t);
3089 }
3090 else
3091 lat->type = IPA_BOTTOM;
3092 }
3093
3094 /* Determine whether JFUNC evaluates to a constant and if so, return it.
3095 Otherwise return NULL. INFO describes the caller node so that pass-through
3096 jump functions can be evaluated. */
3097
3098 tree
3099 ipa_cst_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
3100 {
3101 struct ipcp_lattice lat;
3102
3103 ipa_lattice_from_jfunc (info, &lat, jfunc);
3104 if (lat.type == IPA_CONST_VALUE)
3105 return lat.constant;
3106 else
3107 return NULL_TREE;
3108 }