Change use to type-based pool allocator in ipa-prop.c
[gcc.git] / gcc / ipa-prop.c
1 /* Interprocedural analyses.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-set.h"
24 #include "machmode.h"
25 #include "vec.h"
26 #include "double-int.h"
27 #include "input.h"
28 #include "alias.h"
29 #include "symtab.h"
30 #include "options.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "tree.h"
34 #include "fold-const.h"
35 #include "predict.h"
36 #include "tm.h"
37 #include "hard-reg-set.h"
38 #include "function.h"
39 #include "dominance.h"
40 #include "cfg.h"
41 #include "basic-block.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "gimple-fold.h"
45 #include "tree-eh.h"
46 #include "gimple-expr.h"
47 #include "is-a.h"
48 #include "gimple.h"
49 #include "hashtab.h"
50 #include "rtl.h"
51 #include "flags.h"
52 #include "statistics.h"
53 #include "real.h"
54 #include "fixed-value.h"
55 #include "insn-config.h"
56 #include "expmed.h"
57 #include "dojump.h"
58 #include "explow.h"
59 #include "calls.h"
60 #include "emit-rtl.h"
61 #include "varasm.h"
62 #include "stmt.h"
63 #include "expr.h"
64 #include "stor-layout.h"
65 #include "print-tree.h"
66 #include "gimplify.h"
67 #include "gimple-iterator.h"
68 #include "gimplify-me.h"
69 #include "gimple-walk.h"
70 #include "langhooks.h"
71 #include "target.h"
72 #include "hash-map.h"
73 #include "plugin-api.h"
74 #include "ipa-ref.h"
75 #include "cgraph.h"
76 #include "alloc-pool.h"
77 #include "symbol-summary.h"
78 #include "ipa-prop.h"
79 #include "bitmap.h"
80 #include "gimple-ssa.h"
81 #include "tree-cfg.h"
82 #include "tree-phinodes.h"
83 #include "ssa-iterators.h"
84 #include "tree-into-ssa.h"
85 #include "tree-dfa.h"
86 #include "tree-pass.h"
87 #include "tree-inline.h"
88 #include "ipa-inline.h"
89 #include "diagnostic.h"
90 #include "gimple-pretty-print.h"
91 #include "lto-streamer.h"
92 #include "data-streamer.h"
93 #include "tree-streamer.h"
94 #include "params.h"
95 #include "ipa-utils.h"
96 #include "stringpool.h"
97 #include "tree-ssanames.h"
98 #include "dbgcnt.h"
99 #include "domwalk.h"
100 #include "builtins.h"
101
102 /* Intermediate information that we get from alias analysis about a particular
103 parameter in a particular basic_block. When a parameter or the memory it
104 references is marked modified, we use that information in all dominatd
105 blocks without cosulting alias analysis oracle. */
106
107 struct param_aa_status
108 {
109 /* Set when this structure contains meaningful information. If not, the
110 structure describing a dominating BB should be used instead. */
111 bool valid;
112
113 /* Whether we have seen something which might have modified the data in
114 question. PARM is for the parameter itself, REF is for data it points to
115 but using the alias type of individual accesses and PT is the same thing
116 but for computing aggregate pass-through functions using a very inclusive
117 ao_ref. */
118 bool parm_modified, ref_modified, pt_modified;
119 };
120
121 /* Information related to a given BB that used only when looking at function
122 body. */
123
124 struct ipa_bb_info
125 {
126 /* Call graph edges going out of this BB. */
127 vec<cgraph_edge *> cg_edges;
128 /* Alias analysis statuses of each formal parameter at this bb. */
129 vec<param_aa_status> param_aa_statuses;
130 };
131
132 /* Structure with global information that is only used when looking at function
133 body. */
134
135 struct func_body_info
136 {
137 /* The node that is being analyzed. */
138 cgraph_node *node;
139
140 /* Its info. */
141 struct ipa_node_params *info;
142
143 /* Information about individual BBs. */
144 vec<ipa_bb_info> bb_infos;
145
146 /* Number of parameters. */
147 int param_count;
148
149 /* Number of statements already walked by when analyzing this function. */
150 unsigned int aa_walked;
151 };
152
153 /* Function summary where the parameter infos are actually stored. */
154 ipa_node_params_t *ipa_node_params_sum = NULL;
155 /* Vector of IPA-CP transformation data for each clone. */
156 vec<ipcp_transformation_summary, va_gc> *ipcp_transformations;
157 /* Vector where the parameter infos are actually stored. */
158 vec<ipa_edge_args, va_gc> *ipa_edge_args_vector;
159
160 /* Holders of ipa cgraph hooks: */
161 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
162 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
163 static struct cgraph_node_hook_list *function_insertion_hook_holder;
164
165 /* Description of a reference to an IPA constant. */
166 struct ipa_cst_ref_desc
167 {
168 /* Edge that corresponds to the statement which took the reference. */
169 struct cgraph_edge *cs;
170 /* Linked list of duplicates created when call graph edges are cloned. */
171 struct ipa_cst_ref_desc *next_duplicate;
172 /* Number of references in IPA structures, IPA_UNDESCRIBED_USE if the value
173 if out of control. */
174 int refcount;
175 };
176
177 /* Allocation pool for reference descriptions. */
178
179 static pool_allocator<ipa_cst_ref_desc> ipa_refdesc_pool
180 ("IPA-PROP ref descriptions", 32);
181
182 /* Return true if DECL_FUNCTION_SPECIFIC_OPTIMIZATION of the decl associated
183 with NODE should prevent us from analyzing it for the purposes of IPA-CP. */
184
185 static bool
186 ipa_func_spec_opts_forbid_analysis_p (struct cgraph_node *node)
187 {
188 tree fs_opts = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (node->decl);
189
190 if (!fs_opts)
191 return false;
192 return !opt_for_fn (node->decl, optimize) || !opt_for_fn (node->decl, flag_ipa_cp);
193 }
194
195 /* Return index of the formal whose tree is PTREE in function which corresponds
196 to INFO. */
197
198 static int
199 ipa_get_param_decl_index_1 (vec<ipa_param_descriptor> descriptors, tree ptree)
200 {
201 int i, count;
202
203 count = descriptors.length ();
204 for (i = 0; i < count; i++)
205 if (descriptors[i].decl == ptree)
206 return i;
207
208 return -1;
209 }
210
211 /* Return index of the formal whose tree is PTREE in function which corresponds
212 to INFO. */
213
214 int
215 ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
216 {
217 return ipa_get_param_decl_index_1 (info->descriptors, ptree);
218 }
219
220 /* Populate the param_decl field in parameter DESCRIPTORS that correspond to
221 NODE. */
222
223 static void
224 ipa_populate_param_decls (struct cgraph_node *node,
225 vec<ipa_param_descriptor> &descriptors)
226 {
227 tree fndecl;
228 tree fnargs;
229 tree parm;
230 int param_num;
231
232 fndecl = node->decl;
233 gcc_assert (gimple_has_body_p (fndecl));
234 fnargs = DECL_ARGUMENTS (fndecl);
235 param_num = 0;
236 for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
237 {
238 descriptors[param_num].decl = parm;
239 descriptors[param_num].move_cost = estimate_move_cost (TREE_TYPE (parm),
240 true);
241 param_num++;
242 }
243 }
244
245 /* Return how many formal parameters FNDECL has. */
246
247 int
248 count_formal_params (tree fndecl)
249 {
250 tree parm;
251 int count = 0;
252 gcc_assert (gimple_has_body_p (fndecl));
253
254 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
255 count++;
256
257 return count;
258 }
259
260 /* Return the declaration of Ith formal parameter of the function corresponding
261 to INFO. Note there is no setter function as this array is built just once
262 using ipa_initialize_node_params. */
263
264 void
265 ipa_dump_param (FILE *file, struct ipa_node_params *info, int i)
266 {
267 fprintf (file, "param #%i", i);
268 if (info->descriptors[i].decl)
269 {
270 fprintf (file, " ");
271 print_generic_expr (file, info->descriptors[i].decl, 0);
272 }
273 }
274
275 /* Initialize the ipa_node_params structure associated with NODE
276 to hold PARAM_COUNT parameters. */
277
278 void
279 ipa_alloc_node_params (struct cgraph_node *node, int param_count)
280 {
281 struct ipa_node_params *info = IPA_NODE_REF (node);
282
283 if (!info->descriptors.exists () && param_count)
284 info->descriptors.safe_grow_cleared (param_count);
285 }
286
287 /* Initialize the ipa_node_params structure associated with NODE by counting
288 the function parameters, creating the descriptors and populating their
289 param_decls. */
290
291 void
292 ipa_initialize_node_params (struct cgraph_node *node)
293 {
294 struct ipa_node_params *info = IPA_NODE_REF (node);
295
296 if (!info->descriptors.exists ())
297 {
298 ipa_alloc_node_params (node, count_formal_params (node->decl));
299 ipa_populate_param_decls (node, info->descriptors);
300 }
301 }
302
303 /* Print the jump functions associated with call graph edge CS to file F. */
304
305 static void
306 ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
307 {
308 int i, count;
309
310 count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
311 for (i = 0; i < count; i++)
312 {
313 struct ipa_jump_func *jump_func;
314 enum jump_func_type type;
315
316 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
317 type = jump_func->type;
318
319 fprintf (f, " param %d: ", i);
320 if (type == IPA_JF_UNKNOWN)
321 fprintf (f, "UNKNOWN\n");
322 else if (type == IPA_JF_CONST)
323 {
324 tree val = jump_func->value.constant.value;
325 fprintf (f, "CONST: ");
326 print_generic_expr (f, val, 0);
327 if (TREE_CODE (val) == ADDR_EXPR
328 && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
329 {
330 fprintf (f, " -> ");
331 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
332 0);
333 }
334 fprintf (f, "\n");
335 }
336 else if (type == IPA_JF_PASS_THROUGH)
337 {
338 fprintf (f, "PASS THROUGH: ");
339 fprintf (f, "%d, op %s",
340 jump_func->value.pass_through.formal_id,
341 get_tree_code_name(jump_func->value.pass_through.operation));
342 if (jump_func->value.pass_through.operation != NOP_EXPR)
343 {
344 fprintf (f, " ");
345 print_generic_expr (f,
346 jump_func->value.pass_through.operand, 0);
347 }
348 if (jump_func->value.pass_through.agg_preserved)
349 fprintf (f, ", agg_preserved");
350 fprintf (f, "\n");
351 }
352 else if (type == IPA_JF_ANCESTOR)
353 {
354 fprintf (f, "ANCESTOR: ");
355 fprintf (f, "%d, offset " HOST_WIDE_INT_PRINT_DEC,
356 jump_func->value.ancestor.formal_id,
357 jump_func->value.ancestor.offset);
358 if (jump_func->value.ancestor.agg_preserved)
359 fprintf (f, ", agg_preserved");
360 fprintf (f, "\n");
361 }
362
363 if (jump_func->agg.items)
364 {
365 struct ipa_agg_jf_item *item;
366 int j;
367
368 fprintf (f, " Aggregate passed by %s:\n",
369 jump_func->agg.by_ref ? "reference" : "value");
370 FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, j, item)
371 {
372 fprintf (f, " offset: " HOST_WIDE_INT_PRINT_DEC ", ",
373 item->offset);
374 if (TYPE_P (item->value))
375 fprintf (f, "clobber of " HOST_WIDE_INT_PRINT_DEC " bits",
376 tree_to_uhwi (TYPE_SIZE (item->value)));
377 else
378 {
379 fprintf (f, "cst: ");
380 print_generic_expr (f, item->value, 0);
381 }
382 fprintf (f, "\n");
383 }
384 }
385
386 struct ipa_polymorphic_call_context *ctx
387 = ipa_get_ith_polymorhic_call_context (IPA_EDGE_REF (cs), i);
388 if (ctx && !ctx->useless_p ())
389 {
390 fprintf (f, " Context: ");
391 ctx->dump (dump_file);
392 }
393
394 if (jump_func->alignment.known)
395 {
396 fprintf (f, " Alignment: %u, misalignment: %u\n",
397 jump_func->alignment.align,
398 jump_func->alignment.misalign);
399 }
400 else
401 fprintf (f, " Unknown alignment\n");
402 }
403 }
404
405
406 /* Print the jump functions of all arguments on all call graph edges going from
407 NODE to file F. */
408
409 void
410 ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
411 {
412 struct cgraph_edge *cs;
413
414 fprintf (f, " Jump functions of caller %s/%i:\n", node->name (),
415 node->order);
416 for (cs = node->callees; cs; cs = cs->next_callee)
417 {
418 if (!ipa_edge_args_info_available_for_edge_p (cs))
419 continue;
420
421 fprintf (f, " callsite %s/%i -> %s/%i : \n",
422 xstrdup_for_dump (node->name ()), node->order,
423 xstrdup_for_dump (cs->callee->name ()),
424 cs->callee->order);
425 ipa_print_node_jump_functions_for_edge (f, cs);
426 }
427
428 for (cs = node->indirect_calls; cs; cs = cs->next_callee)
429 {
430 struct cgraph_indirect_call_info *ii;
431 if (!ipa_edge_args_info_available_for_edge_p (cs))
432 continue;
433
434 ii = cs->indirect_info;
435 if (ii->agg_contents)
436 fprintf (f, " indirect %s callsite, calling param %i, "
437 "offset " HOST_WIDE_INT_PRINT_DEC ", %s",
438 ii->member_ptr ? "member ptr" : "aggregate",
439 ii->param_index, ii->offset,
440 ii->by_ref ? "by reference" : "by_value");
441 else
442 fprintf (f, " indirect %s callsite, calling param %i, "
443 "offset " HOST_WIDE_INT_PRINT_DEC,
444 ii->polymorphic ? "polymorphic" : "simple", ii->param_index,
445 ii->offset);
446
447 if (cs->call_stmt)
448 {
449 fprintf (f, ", for stmt ");
450 print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
451 }
452 else
453 fprintf (f, "\n");
454 if (ii->polymorphic)
455 ii->context.dump (f);
456 ipa_print_node_jump_functions_for_edge (f, cs);
457 }
458 }
459
460 /* Print ipa_jump_func data structures of all nodes in the call graph to F. */
461
462 void
463 ipa_print_all_jump_functions (FILE *f)
464 {
465 struct cgraph_node *node;
466
467 fprintf (f, "\nJump functions:\n");
468 FOR_EACH_FUNCTION (node)
469 {
470 ipa_print_node_jump_functions (f, node);
471 }
472 }
473
474 /* Set jfunc to be a know-really nothing jump function. */
475
476 static void
477 ipa_set_jf_unknown (struct ipa_jump_func *jfunc)
478 {
479 jfunc->type = IPA_JF_UNKNOWN;
480 jfunc->alignment.known = false;
481 }
482
483 /* Set JFUNC to be a copy of another jmp (to be used by jump function
484 combination code). The two functions will share their rdesc. */
485
486 static void
487 ipa_set_jf_cst_copy (struct ipa_jump_func *dst,
488 struct ipa_jump_func *src)
489
490 {
491 gcc_checking_assert (src->type == IPA_JF_CONST);
492 dst->type = IPA_JF_CONST;
493 dst->value.constant = src->value.constant;
494 }
495
496 /* Set JFUNC to be a constant jmp function. */
497
498 static void
499 ipa_set_jf_constant (struct ipa_jump_func *jfunc, tree constant,
500 struct cgraph_edge *cs)
501 {
502 constant = unshare_expr (constant);
503 if (constant && EXPR_P (constant))
504 SET_EXPR_LOCATION (constant, UNKNOWN_LOCATION);
505 jfunc->type = IPA_JF_CONST;
506 jfunc->value.constant.value = unshare_expr_without_location (constant);
507
508 if (TREE_CODE (constant) == ADDR_EXPR
509 && TREE_CODE (TREE_OPERAND (constant, 0)) == FUNCTION_DECL)
510 {
511 struct ipa_cst_ref_desc *rdesc;
512
513 rdesc = ipa_refdesc_pool.allocate ();
514 rdesc->cs = cs;
515 rdesc->next_duplicate = NULL;
516 rdesc->refcount = 1;
517 jfunc->value.constant.rdesc = rdesc;
518 }
519 else
520 jfunc->value.constant.rdesc = NULL;
521 }
522
523 /* Set JFUNC to be a simple pass-through jump function. */
524 static void
525 ipa_set_jf_simple_pass_through (struct ipa_jump_func *jfunc, int formal_id,
526 bool agg_preserved)
527 {
528 jfunc->type = IPA_JF_PASS_THROUGH;
529 jfunc->value.pass_through.operand = NULL_TREE;
530 jfunc->value.pass_through.formal_id = formal_id;
531 jfunc->value.pass_through.operation = NOP_EXPR;
532 jfunc->value.pass_through.agg_preserved = agg_preserved;
533 }
534
535 /* Set JFUNC to be an arithmetic pass through jump function. */
536
537 static void
538 ipa_set_jf_arith_pass_through (struct ipa_jump_func *jfunc, int formal_id,
539 tree operand, enum tree_code operation)
540 {
541 jfunc->type = IPA_JF_PASS_THROUGH;
542 jfunc->value.pass_through.operand = unshare_expr_without_location (operand);
543 jfunc->value.pass_through.formal_id = formal_id;
544 jfunc->value.pass_through.operation = operation;
545 jfunc->value.pass_through.agg_preserved = false;
546 }
547
548 /* Set JFUNC to be an ancestor jump function. */
549
550 static void
551 ipa_set_ancestor_jf (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
552 int formal_id, bool agg_preserved)
553 {
554 jfunc->type = IPA_JF_ANCESTOR;
555 jfunc->value.ancestor.formal_id = formal_id;
556 jfunc->value.ancestor.offset = offset;
557 jfunc->value.ancestor.agg_preserved = agg_preserved;
558 }
559
560 /* Get IPA BB information about the given BB. FBI is the context of analyzis
561 of this function body. */
562
563 static struct ipa_bb_info *
564 ipa_get_bb_info (struct func_body_info *fbi, basic_block bb)
565 {
566 gcc_checking_assert (fbi);
567 return &fbi->bb_infos[bb->index];
568 }
569
570 /* Structure to be passed in between detect_type_change and
571 check_stmt_for_type_change. */
572
573 struct prop_type_change_info
574 {
575 /* Offset into the object where there is the virtual method pointer we are
576 looking for. */
577 HOST_WIDE_INT offset;
578 /* The declaration or SSA_NAME pointer of the base that we are checking for
579 type change. */
580 tree object;
581 /* Set to true if dynamic type change has been detected. */
582 bool type_maybe_changed;
583 };
584
585 /* Return true if STMT can modify a virtual method table pointer.
586
587 This function makes special assumptions about both constructors and
588 destructors which are all the functions that are allowed to alter the VMT
589 pointers. It assumes that destructors begin with assignment into all VMT
590 pointers and that constructors essentially look in the following way:
591
592 1) The very first thing they do is that they call constructors of ancestor
593 sub-objects that have them.
594
595 2) Then VMT pointers of this and all its ancestors is set to new values
596 corresponding to the type corresponding to the constructor.
597
598 3) Only afterwards, other stuff such as constructor of member sub-objects
599 and the code written by the user is run. Only this may include calling
600 virtual functions, directly or indirectly.
601
602 There is no way to call a constructor of an ancestor sub-object in any
603 other way.
604
605 This means that we do not have to care whether constructors get the correct
606 type information because they will always change it (in fact, if we define
607 the type to be given by the VMT pointer, it is undefined).
608
609 The most important fact to derive from the above is that if, for some
610 statement in the section 3, we try to detect whether the dynamic type has
611 changed, we can safely ignore all calls as we examine the function body
612 backwards until we reach statements in section 2 because these calls cannot
613 be ancestor constructors or destructors (if the input is not bogus) and so
614 do not change the dynamic type (this holds true only for automatically
615 allocated objects but at the moment we devirtualize only these). We then
616 must detect that statements in section 2 change the dynamic type and can try
617 to derive the new type. That is enough and we can stop, we will never see
618 the calls into constructors of sub-objects in this code. Therefore we can
619 safely ignore all call statements that we traverse.
620 */
621
622 static bool
623 stmt_may_be_vtbl_ptr_store (gimple stmt)
624 {
625 if (is_gimple_call (stmt))
626 return false;
627 if (gimple_clobber_p (stmt))
628 return false;
629 else if (is_gimple_assign (stmt))
630 {
631 tree lhs = gimple_assign_lhs (stmt);
632
633 if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
634 {
635 if (flag_strict_aliasing
636 && !POINTER_TYPE_P (TREE_TYPE (lhs)))
637 return false;
638
639 if (TREE_CODE (lhs) == COMPONENT_REF
640 && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
641 return false;
642 /* In the future we might want to use get_base_ref_and_offset to find
643 if there is a field corresponding to the offset and if so, proceed
644 almost like if it was a component ref. */
645 }
646 }
647 return true;
648 }
649
650 /* Callback of walk_aliased_vdefs and a helper function for detect_type_change
651 to check whether a particular statement may modify the virtual table
652 pointerIt stores its result into DATA, which points to a
653 prop_type_change_info structure. */
654
655 static bool
656 check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
657 {
658 gimple stmt = SSA_NAME_DEF_STMT (vdef);
659 struct prop_type_change_info *tci = (struct prop_type_change_info *) data;
660
661 if (stmt_may_be_vtbl_ptr_store (stmt))
662 {
663 tci->type_maybe_changed = true;
664 return true;
665 }
666 else
667 return false;
668 }
669
670 /* See if ARG is PARAM_DECl describing instance passed by pointer
671 or reference in FUNCTION. Return false if the dynamic type may change
672 in between beggining of the function until CALL is invoked.
673
674 Generally functions are not allowed to change type of such instances,
675 but they call destructors. We assume that methods can not destroy the THIS
676 pointer. Also as a special cases, constructor and destructors may change
677 type of the THIS pointer. */
678
679 static bool
680 param_type_may_change_p (tree function, tree arg, gimple call)
681 {
682 /* Pure functions can not do any changes on the dynamic type;
683 that require writting to memory. */
684 if (flags_from_decl_or_type (function) & (ECF_PURE | ECF_CONST))
685 return false;
686 /* We need to check if we are within inlined consturctor
687 or destructor (ideally we would have way to check that the
688 inline cdtor is actually working on ARG, but we don't have
689 easy tie on this, so punt on all non-pure cdtors.
690 We may also record the types of cdtors and once we know type
691 of the instance match them.
692
693 Also code unification optimizations may merge calls from
694 different blocks making return values unreliable. So
695 do nothing during late optimization. */
696 if (DECL_STRUCT_FUNCTION (function)->after_inlining)
697 return true;
698 if (TREE_CODE (arg) == SSA_NAME
699 && SSA_NAME_IS_DEFAULT_DEF (arg)
700 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
701 {
702 /* Normal (non-THIS) argument. */
703 if ((SSA_NAME_VAR (arg) != DECL_ARGUMENTS (function)
704 || TREE_CODE (TREE_TYPE (function)) != METHOD_TYPE)
705 /* THIS pointer of an method - here we we want to watch constructors
706 and destructors as those definitely may change the dynamic
707 type. */
708 || (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE
709 && !DECL_CXX_CONSTRUCTOR_P (function)
710 && !DECL_CXX_DESTRUCTOR_P (function)
711 && (SSA_NAME_VAR (arg) == DECL_ARGUMENTS (function))))
712 {
713 /* Walk the inline stack and watch out for ctors/dtors. */
714 for (tree block = gimple_block (call); block && TREE_CODE (block) == BLOCK;
715 block = BLOCK_SUPERCONTEXT (block))
716 if (inlined_polymorphic_ctor_dtor_block_p (block, false))
717 return true;
718 return false;
719 }
720 }
721 return true;
722 }
723
724 /* Detect whether the dynamic type of ARG of COMP_TYPE has changed (before
725 callsite CALL) by looking for assignments to its virtual table pointer. If
726 it is, return true and fill in the jump function JFUNC with relevant type
727 information or set it to unknown. ARG is the object itself (not a pointer
728 to it, unless dereferenced). BASE is the base of the memory access as
729 returned by get_ref_base_and_extent, as is the offset.
730
731 This is helper function for detect_type_change and detect_type_change_ssa
732 that does the heavy work which is usually unnecesary. */
733
734 static bool
735 detect_type_change_from_memory_writes (tree arg, tree base, tree comp_type,
736 gcall *call, struct ipa_jump_func *jfunc,
737 HOST_WIDE_INT offset)
738 {
739 struct prop_type_change_info tci;
740 ao_ref ao;
741 bool entry_reached = false;
742
743 gcc_checking_assert (DECL_P (arg)
744 || TREE_CODE (arg) == MEM_REF
745 || handled_component_p (arg));
746
747 comp_type = TYPE_MAIN_VARIANT (comp_type);
748
749 /* Const calls cannot call virtual methods through VMT and so type changes do
750 not matter. */
751 if (!flag_devirtualize || !gimple_vuse (call)
752 /* Be sure expected_type is polymorphic. */
753 || !comp_type
754 || TREE_CODE (comp_type) != RECORD_TYPE
755 || !TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))
756 || !BINFO_VTABLE (TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))))
757 return true;
758
759 ao_ref_init (&ao, arg);
760 ao.base = base;
761 ao.offset = offset;
762 ao.size = POINTER_SIZE;
763 ao.max_size = ao.size;
764
765 tci.offset = offset;
766 tci.object = get_base_address (arg);
767 tci.type_maybe_changed = false;
768
769 walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
770 &tci, NULL, &entry_reached);
771 if (!tci.type_maybe_changed)
772 return false;
773
774 ipa_set_jf_unknown (jfunc);
775 return true;
776 }
777
778 /* Detect whether the dynamic type of ARG of COMP_TYPE may have changed.
779 If it is, return true and fill in the jump function JFUNC with relevant type
780 information or set it to unknown. ARG is the object itself (not a pointer
781 to it, unless dereferenced). BASE is the base of the memory access as
782 returned by get_ref_base_and_extent, as is the offset. */
783
784 static bool
785 detect_type_change (tree arg, tree base, tree comp_type, gcall *call,
786 struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
787 {
788 if (!flag_devirtualize)
789 return false;
790
791 if (TREE_CODE (base) == MEM_REF
792 && !param_type_may_change_p (current_function_decl,
793 TREE_OPERAND (base, 0),
794 call))
795 return false;
796 return detect_type_change_from_memory_writes (arg, base, comp_type,
797 call, jfunc, offset);
798 }
799
800 /* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
801 SSA name (its dereference will become the base and the offset is assumed to
802 be zero). */
803
804 static bool
805 detect_type_change_ssa (tree arg, tree comp_type,
806 gcall *call, struct ipa_jump_func *jfunc)
807 {
808 gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
809 if (!flag_devirtualize
810 || !POINTER_TYPE_P (TREE_TYPE (arg)))
811 return false;
812
813 if (!param_type_may_change_p (current_function_decl, arg, call))
814 return false;
815
816 arg = build2 (MEM_REF, ptr_type_node, arg,
817 build_int_cst (ptr_type_node, 0));
818
819 return detect_type_change_from_memory_writes (arg, arg, comp_type,
820 call, jfunc, 0);
821 }
822
823 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
824 boolean variable pointed to by DATA. */
825
826 static bool
827 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
828 void *data)
829 {
830 bool *b = (bool *) data;
831 *b = true;
832 return true;
833 }
834
835 /* Return true if we have already walked so many statements in AA that we
836 should really just start giving up. */
837
838 static bool
839 aa_overwalked (struct func_body_info *fbi)
840 {
841 gcc_checking_assert (fbi);
842 return fbi->aa_walked > (unsigned) PARAM_VALUE (PARAM_IPA_MAX_AA_STEPS);
843 }
844
845 /* Find the nearest valid aa status for parameter specified by INDEX that
846 dominates BB. */
847
848 static struct param_aa_status *
849 find_dominating_aa_status (struct func_body_info *fbi, basic_block bb,
850 int index)
851 {
852 while (true)
853 {
854 bb = get_immediate_dominator (CDI_DOMINATORS, bb);
855 if (!bb)
856 return NULL;
857 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
858 if (!bi->param_aa_statuses.is_empty ()
859 && bi->param_aa_statuses[index].valid)
860 return &bi->param_aa_statuses[index];
861 }
862 }
863
864 /* Get AA status structure for the given BB and parameter with INDEX. Allocate
865 structures and/or intialize the result with a dominating description as
866 necessary. */
867
868 static struct param_aa_status *
869 parm_bb_aa_status_for_bb (struct func_body_info *fbi, basic_block bb,
870 int index)
871 {
872 gcc_checking_assert (fbi);
873 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
874 if (bi->param_aa_statuses.is_empty ())
875 bi->param_aa_statuses.safe_grow_cleared (fbi->param_count);
876 struct param_aa_status *paa = &bi->param_aa_statuses[index];
877 if (!paa->valid)
878 {
879 gcc_checking_assert (!paa->parm_modified
880 && !paa->ref_modified
881 && !paa->pt_modified);
882 struct param_aa_status *dom_paa;
883 dom_paa = find_dominating_aa_status (fbi, bb, index);
884 if (dom_paa)
885 *paa = *dom_paa;
886 else
887 paa->valid = true;
888 }
889
890 return paa;
891 }
892
893 /* Return true if a load from a formal parameter PARM_LOAD is known to retrieve
894 a value known not to be modified in this function before reaching the
895 statement STMT. FBI holds information about the function we have so far
896 gathered but do not survive the summary building stage. */
897
898 static bool
899 parm_preserved_before_stmt_p (struct func_body_info *fbi, int index,
900 gimple stmt, tree parm_load)
901 {
902 struct param_aa_status *paa;
903 bool modified = false;
904 ao_ref refd;
905
906 /* FIXME: FBI can be NULL if we are being called from outside
907 ipa_node_analysis or ipcp_transform_function, which currently happens
908 during inlining analysis. It would be great to extend fbi's lifetime and
909 always have it. Currently, we are just not afraid of too much walking in
910 that case. */
911 if (fbi)
912 {
913 if (aa_overwalked (fbi))
914 return false;
915 paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
916 if (paa->parm_modified)
917 return false;
918 }
919 else
920 paa = NULL;
921
922 gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
923 ao_ref_init (&refd, parm_load);
924 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
925 &modified, NULL);
926 if (fbi)
927 fbi->aa_walked += walked;
928 if (paa && modified)
929 paa->parm_modified = true;
930 return !modified;
931 }
932
933 /* If STMT is an assignment that loads a value from an parameter declaration,
934 return the index of the parameter in ipa_node_params which has not been
935 modified. Otherwise return -1. */
936
937 static int
938 load_from_unmodified_param (struct func_body_info *fbi,
939 vec<ipa_param_descriptor> descriptors,
940 gimple stmt)
941 {
942 int index;
943 tree op1;
944
945 if (!gimple_assign_single_p (stmt))
946 return -1;
947
948 op1 = gimple_assign_rhs1 (stmt);
949 if (TREE_CODE (op1) != PARM_DECL)
950 return -1;
951
952 index = ipa_get_param_decl_index_1 (descriptors, op1);
953 if (index < 0
954 || !parm_preserved_before_stmt_p (fbi, index, stmt, op1))
955 return -1;
956
957 return index;
958 }
959
960 /* Return true if memory reference REF (which must be a load through parameter
961 with INDEX) loads data that are known to be unmodified in this function
962 before reaching statement STMT. */
963
964 static bool
965 parm_ref_data_preserved_p (struct func_body_info *fbi,
966 int index, gimple stmt, tree ref)
967 {
968 struct param_aa_status *paa;
969 bool modified = false;
970 ao_ref refd;
971
972 /* FIXME: FBI can be NULL if we are being called from outside
973 ipa_node_analysis or ipcp_transform_function, which currently happens
974 during inlining analysis. It would be great to extend fbi's lifetime and
975 always have it. Currently, we are just not afraid of too much walking in
976 that case. */
977 if (fbi)
978 {
979 if (aa_overwalked (fbi))
980 return false;
981 paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
982 if (paa->ref_modified)
983 return false;
984 }
985 else
986 paa = NULL;
987
988 gcc_checking_assert (gimple_vuse (stmt));
989 ao_ref_init (&refd, ref);
990 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
991 &modified, NULL);
992 if (fbi)
993 fbi->aa_walked += walked;
994 if (paa && modified)
995 paa->ref_modified = true;
996 return !modified;
997 }
998
999 /* Return true if the data pointed to by PARM (which is a parameter with INDEX)
1000 is known to be unmodified in this function before reaching call statement
1001 CALL into which it is passed. FBI describes the function body. */
1002
1003 static bool
1004 parm_ref_data_pass_through_p (struct func_body_info *fbi, int index,
1005 gimple call, tree parm)
1006 {
1007 bool modified = false;
1008 ao_ref refd;
1009
1010 /* It's unnecessary to calculate anything about memory contnets for a const
1011 function because it is not goin to use it. But do not cache the result
1012 either. Also, no such calculations for non-pointers. */
1013 if (!gimple_vuse (call)
1014 || !POINTER_TYPE_P (TREE_TYPE (parm))
1015 || aa_overwalked (fbi))
1016 return false;
1017
1018 struct param_aa_status *paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (call),
1019 index);
1020 if (paa->pt_modified)
1021 return false;
1022
1023 ao_ref_init_from_ptr_and_size (&refd, parm, NULL_TREE);
1024 int walked = walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
1025 &modified, NULL);
1026 fbi->aa_walked += walked;
1027 if (modified)
1028 paa->pt_modified = true;
1029 return !modified;
1030 }
1031
1032 /* Return true if we can prove that OP is a memory reference loading unmodified
1033 data from an aggregate passed as a parameter and if the aggregate is passed
1034 by reference, that the alias type of the load corresponds to the type of the
1035 formal parameter (so that we can rely on this type for TBAA in callers).
1036 INFO and PARMS_AINFO describe parameters of the current function (but the
1037 latter can be NULL), STMT is the load statement. If function returns true,
1038 *INDEX_P, *OFFSET_P and *BY_REF is filled with the parameter index, offset
1039 within the aggregate and whether it is a load from a value passed by
1040 reference respectively. */
1041
1042 static bool
1043 ipa_load_from_parm_agg_1 (struct func_body_info *fbi,
1044 vec<ipa_param_descriptor> descriptors,
1045 gimple stmt, tree op, int *index_p,
1046 HOST_WIDE_INT *offset_p, HOST_WIDE_INT *size_p,
1047 bool *by_ref_p)
1048 {
1049 int index;
1050 HOST_WIDE_INT size, max_size;
1051 tree base = get_ref_base_and_extent (op, offset_p, &size, &max_size);
1052
1053 if (max_size == -1 || max_size != size || *offset_p < 0)
1054 return false;
1055
1056 if (DECL_P (base))
1057 {
1058 int index = ipa_get_param_decl_index_1 (descriptors, base);
1059 if (index >= 0
1060 && parm_preserved_before_stmt_p (fbi, index, stmt, op))
1061 {
1062 *index_p = index;
1063 *by_ref_p = false;
1064 if (size_p)
1065 *size_p = size;
1066 return true;
1067 }
1068 return false;
1069 }
1070
1071 if (TREE_CODE (base) != MEM_REF
1072 || TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME
1073 || !integer_zerop (TREE_OPERAND (base, 1)))
1074 return false;
1075
1076 if (SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0)))
1077 {
1078 tree parm = SSA_NAME_VAR (TREE_OPERAND (base, 0));
1079 index = ipa_get_param_decl_index_1 (descriptors, parm);
1080 }
1081 else
1082 {
1083 /* This branch catches situations where a pointer parameter is not a
1084 gimple register, for example:
1085
1086 void hip7(S*) (struct S * p)
1087 {
1088 void (*<T2e4>) (struct S *) D.1867;
1089 struct S * p.1;
1090
1091 <bb 2>:
1092 p.1_1 = p;
1093 D.1867_2 = p.1_1->f;
1094 D.1867_2 ();
1095 gdp = &p;
1096 */
1097
1098 gimple def = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
1099 index = load_from_unmodified_param (fbi, descriptors, def);
1100 }
1101
1102 if (index >= 0
1103 && parm_ref_data_preserved_p (fbi, index, stmt, op))
1104 {
1105 *index_p = index;
1106 *by_ref_p = true;
1107 if (size_p)
1108 *size_p = size;
1109 return true;
1110 }
1111 return false;
1112 }
1113
1114 /* Just like the previous function, just without the param_analysis_info
1115 pointer, for users outside of this file. */
1116
1117 bool
1118 ipa_load_from_parm_agg (struct ipa_node_params *info, gimple stmt,
1119 tree op, int *index_p, HOST_WIDE_INT *offset_p,
1120 bool *by_ref_p)
1121 {
1122 return ipa_load_from_parm_agg_1 (NULL, info->descriptors, stmt, op, index_p,
1123 offset_p, NULL, by_ref_p);
1124 }
1125
1126 /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
1127 of an assignment statement STMT, try to determine whether we are actually
1128 handling any of the following cases and construct an appropriate jump
1129 function into JFUNC if so:
1130
1131 1) The passed value is loaded from a formal parameter which is not a gimple
1132 register (most probably because it is addressable, the value has to be
1133 scalar) and we can guarantee the value has not changed. This case can
1134 therefore be described by a simple pass-through jump function. For example:
1135
1136 foo (int a)
1137 {
1138 int a.0;
1139
1140 a.0_2 = a;
1141 bar (a.0_2);
1142
1143 2) The passed value can be described by a simple arithmetic pass-through
1144 jump function. E.g.
1145
1146 foo (int a)
1147 {
1148 int D.2064;
1149
1150 D.2064_4 = a.1(D) + 4;
1151 bar (D.2064_4);
1152
1153 This case can also occur in combination of the previous one, e.g.:
1154
1155 foo (int a, int z)
1156 {
1157 int a.0;
1158 int D.2064;
1159
1160 a.0_3 = a;
1161 D.2064_4 = a.0_3 + 4;
1162 foo (D.2064_4);
1163
1164 3) The passed value is an address of an object within another one (which
1165 also passed by reference). Such situations are described by an ancestor
1166 jump function and describe situations such as:
1167
1168 B::foo() (struct B * const this)
1169 {
1170 struct A * D.1845;
1171
1172 D.1845_2 = &this_1(D)->D.1748;
1173 A::bar (D.1845_2);
1174
1175 INFO is the structure describing individual parameters access different
1176 stages of IPA optimizations. PARMS_AINFO contains the information that is
1177 only needed for intraprocedural analysis. */
1178
1179 static void
1180 compute_complex_assign_jump_func (struct func_body_info *fbi,
1181 struct ipa_node_params *info,
1182 struct ipa_jump_func *jfunc,
1183 gcall *call, gimple stmt, tree name,
1184 tree param_type)
1185 {
1186 HOST_WIDE_INT offset, size, max_size;
1187 tree op1, tc_ssa, base, ssa;
1188 int index;
1189
1190 op1 = gimple_assign_rhs1 (stmt);
1191
1192 if (TREE_CODE (op1) == SSA_NAME)
1193 {
1194 if (SSA_NAME_IS_DEFAULT_DEF (op1))
1195 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
1196 else
1197 index = load_from_unmodified_param (fbi, info->descriptors,
1198 SSA_NAME_DEF_STMT (op1));
1199 tc_ssa = op1;
1200 }
1201 else
1202 {
1203 index = load_from_unmodified_param (fbi, info->descriptors, stmt);
1204 tc_ssa = gimple_assign_lhs (stmt);
1205 }
1206
1207 if (index >= 0)
1208 {
1209 tree op2 = gimple_assign_rhs2 (stmt);
1210
1211 if (op2)
1212 {
1213 if (!is_gimple_ip_invariant (op2)
1214 || (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
1215 && !useless_type_conversion_p (TREE_TYPE (name),
1216 TREE_TYPE (op1))))
1217 return;
1218
1219 ipa_set_jf_arith_pass_through (jfunc, index, op2,
1220 gimple_assign_rhs_code (stmt));
1221 }
1222 else if (gimple_assign_single_p (stmt))
1223 {
1224 bool agg_p = parm_ref_data_pass_through_p (fbi, index, call, tc_ssa);
1225 ipa_set_jf_simple_pass_through (jfunc, index, agg_p);
1226 }
1227 return;
1228 }
1229
1230 if (TREE_CODE (op1) != ADDR_EXPR)
1231 return;
1232 op1 = TREE_OPERAND (op1, 0);
1233 if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
1234 return;
1235 base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
1236 if (TREE_CODE (base) != MEM_REF
1237 /* If this is a varying address, punt. */
1238 || max_size == -1
1239 || max_size != size)
1240 return;
1241 offset += mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT;
1242 ssa = TREE_OPERAND (base, 0);
1243 if (TREE_CODE (ssa) != SSA_NAME
1244 || !SSA_NAME_IS_DEFAULT_DEF (ssa)
1245 || offset < 0)
1246 return;
1247
1248 /* Dynamic types are changed in constructors and destructors. */
1249 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
1250 if (index >= 0 && param_type && POINTER_TYPE_P (param_type))
1251 ipa_set_ancestor_jf (jfunc, offset, index,
1252 parm_ref_data_pass_through_p (fbi, index, call, ssa));
1253 }
1254
1255 /* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
1256 it looks like:
1257
1258 iftmp.1_3 = &obj_2(D)->D.1762;
1259
1260 The base of the MEM_REF must be a default definition SSA NAME of a
1261 parameter. Return NULL_TREE if it looks otherwise. If case of success, the
1262 whole MEM_REF expression is returned and the offset calculated from any
1263 handled components and the MEM_REF itself is stored into *OFFSET. The whole
1264 RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
1265
1266 static tree
1267 get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
1268 {
1269 HOST_WIDE_INT size, max_size;
1270 tree expr, parm, obj;
1271
1272 if (!gimple_assign_single_p (assign))
1273 return NULL_TREE;
1274 expr = gimple_assign_rhs1 (assign);
1275
1276 if (TREE_CODE (expr) != ADDR_EXPR)
1277 return NULL_TREE;
1278 expr = TREE_OPERAND (expr, 0);
1279 obj = expr;
1280 expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
1281
1282 if (TREE_CODE (expr) != MEM_REF
1283 /* If this is a varying address, punt. */
1284 || max_size == -1
1285 || max_size != size
1286 || *offset < 0)
1287 return NULL_TREE;
1288 parm = TREE_OPERAND (expr, 0);
1289 if (TREE_CODE (parm) != SSA_NAME
1290 || !SSA_NAME_IS_DEFAULT_DEF (parm)
1291 || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
1292 return NULL_TREE;
1293
1294 *offset += mem_ref_offset (expr).to_short_addr () * BITS_PER_UNIT;
1295 *obj_p = obj;
1296 return expr;
1297 }
1298
1299
1300 /* Given that an actual argument is an SSA_NAME that is a result of a phi
1301 statement PHI, try to find out whether NAME is in fact a
1302 multiple-inheritance typecast from a descendant into an ancestor of a formal
1303 parameter and thus can be described by an ancestor jump function and if so,
1304 write the appropriate function into JFUNC.
1305
1306 Essentially we want to match the following pattern:
1307
1308 if (obj_2(D) != 0B)
1309 goto <bb 3>;
1310 else
1311 goto <bb 4>;
1312
1313 <bb 3>:
1314 iftmp.1_3 = &obj_2(D)->D.1762;
1315
1316 <bb 4>:
1317 # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
1318 D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
1319 return D.1879_6; */
1320
1321 static void
1322 compute_complex_ancestor_jump_func (struct func_body_info *fbi,
1323 struct ipa_node_params *info,
1324 struct ipa_jump_func *jfunc,
1325 gcall *call, gphi *phi)
1326 {
1327 HOST_WIDE_INT offset;
1328 gimple assign, cond;
1329 basic_block phi_bb, assign_bb, cond_bb;
1330 tree tmp, parm, expr, obj;
1331 int index, i;
1332
1333 if (gimple_phi_num_args (phi) != 2)
1334 return;
1335
1336 if (integer_zerop (PHI_ARG_DEF (phi, 1)))
1337 tmp = PHI_ARG_DEF (phi, 0);
1338 else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
1339 tmp = PHI_ARG_DEF (phi, 1);
1340 else
1341 return;
1342 if (TREE_CODE (tmp) != SSA_NAME
1343 || SSA_NAME_IS_DEFAULT_DEF (tmp)
1344 || !POINTER_TYPE_P (TREE_TYPE (tmp))
1345 || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
1346 return;
1347
1348 assign = SSA_NAME_DEF_STMT (tmp);
1349 assign_bb = gimple_bb (assign);
1350 if (!single_pred_p (assign_bb))
1351 return;
1352 expr = get_ancestor_addr_info (assign, &obj, &offset);
1353 if (!expr)
1354 return;
1355 parm = TREE_OPERAND (expr, 0);
1356 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
1357 if (index < 0)
1358 return;
1359
1360 cond_bb = single_pred (assign_bb);
1361 cond = last_stmt (cond_bb);
1362 if (!cond
1363 || gimple_code (cond) != GIMPLE_COND
1364 || gimple_cond_code (cond) != NE_EXPR
1365 || gimple_cond_lhs (cond) != parm
1366 || !integer_zerop (gimple_cond_rhs (cond)))
1367 return;
1368
1369 phi_bb = gimple_bb (phi);
1370 for (i = 0; i < 2; i++)
1371 {
1372 basic_block pred = EDGE_PRED (phi_bb, i)->src;
1373 if (pred != assign_bb && pred != cond_bb)
1374 return;
1375 }
1376
1377 ipa_set_ancestor_jf (jfunc, offset, index,
1378 parm_ref_data_pass_through_p (fbi, index, call, parm));
1379 }
1380
1381 /* Inspect the given TYPE and return true iff it has the same structure (the
1382 same number of fields of the same types) as a C++ member pointer. If
1383 METHOD_PTR and DELTA are non-NULL, store the trees representing the
1384 corresponding fields there. */
1385
1386 static bool
1387 type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
1388 {
1389 tree fld;
1390
1391 if (TREE_CODE (type) != RECORD_TYPE)
1392 return false;
1393
1394 fld = TYPE_FIELDS (type);
1395 if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
1396 || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE
1397 || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
1398 return false;
1399
1400 if (method_ptr)
1401 *method_ptr = fld;
1402
1403 fld = DECL_CHAIN (fld);
1404 if (!fld || INTEGRAL_TYPE_P (fld)
1405 || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
1406 return false;
1407 if (delta)
1408 *delta = fld;
1409
1410 if (DECL_CHAIN (fld))
1411 return false;
1412
1413 return true;
1414 }
1415
1416 /* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
1417 return the rhs of its defining statement. Otherwise return RHS as it
1418 is. */
1419
1420 static inline tree
1421 get_ssa_def_if_simple_copy (tree rhs)
1422 {
1423 while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
1424 {
1425 gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
1426
1427 if (gimple_assign_single_p (def_stmt))
1428 rhs = gimple_assign_rhs1 (def_stmt);
1429 else
1430 break;
1431 }
1432 return rhs;
1433 }
1434
1435 /* Simple linked list, describing known contents of an aggregate beforere
1436 call. */
1437
1438 struct ipa_known_agg_contents_list
1439 {
1440 /* Offset and size of the described part of the aggregate. */
1441 HOST_WIDE_INT offset, size;
1442 /* Known constant value or NULL if the contents is known to be unknown. */
1443 tree constant;
1444 /* Pointer to the next structure in the list. */
1445 struct ipa_known_agg_contents_list *next;
1446 };
1447
1448 /* Find the proper place in linked list of ipa_known_agg_contents_list
1449 structures where to put a new one with the given LHS_OFFSET and LHS_SIZE,
1450 unless there is a partial overlap, in which case return NULL, or such
1451 element is already there, in which case set *ALREADY_THERE to true. */
1452
1453 static struct ipa_known_agg_contents_list **
1454 get_place_in_agg_contents_list (struct ipa_known_agg_contents_list **list,
1455 HOST_WIDE_INT lhs_offset,
1456 HOST_WIDE_INT lhs_size,
1457 bool *already_there)
1458 {
1459 struct ipa_known_agg_contents_list **p = list;
1460 while (*p && (*p)->offset < lhs_offset)
1461 {
1462 if ((*p)->offset + (*p)->size > lhs_offset)
1463 return NULL;
1464 p = &(*p)->next;
1465 }
1466
1467 if (*p && (*p)->offset < lhs_offset + lhs_size)
1468 {
1469 if ((*p)->offset == lhs_offset && (*p)->size == lhs_size)
1470 /* We already know this value is subsequently overwritten with
1471 something else. */
1472 *already_there = true;
1473 else
1474 /* Otherwise this is a partial overlap which we cannot
1475 represent. */
1476 return NULL;
1477 }
1478 return p;
1479 }
1480
1481 /* Build aggregate jump function from LIST, assuming there are exactly
1482 CONST_COUNT constant entries there and that th offset of the passed argument
1483 is ARG_OFFSET and store it into JFUNC. */
1484
1485 static void
1486 build_agg_jump_func_from_list (struct ipa_known_agg_contents_list *list,
1487 int const_count, HOST_WIDE_INT arg_offset,
1488 struct ipa_jump_func *jfunc)
1489 {
1490 vec_alloc (jfunc->agg.items, const_count);
1491 while (list)
1492 {
1493 if (list->constant)
1494 {
1495 struct ipa_agg_jf_item item;
1496 item.offset = list->offset - arg_offset;
1497 gcc_assert ((item.offset % BITS_PER_UNIT) == 0);
1498 item.value = unshare_expr_without_location (list->constant);
1499 jfunc->agg.items->quick_push (item);
1500 }
1501 list = list->next;
1502 }
1503 }
1504
1505 /* Traverse statements from CALL backwards, scanning whether an aggregate given
1506 in ARG is filled in with constant values. ARG can either be an aggregate
1507 expression or a pointer to an aggregate. ARG_TYPE is the type of the
1508 aggregate. JFUNC is the jump function into which the constants are
1509 subsequently stored. */
1510
1511 static void
1512 determine_locally_known_aggregate_parts (gcall *call, tree arg,
1513 tree arg_type,
1514 struct ipa_jump_func *jfunc)
1515 {
1516 struct ipa_known_agg_contents_list *list = NULL;
1517 int item_count = 0, const_count = 0;
1518 HOST_WIDE_INT arg_offset, arg_size;
1519 gimple_stmt_iterator gsi;
1520 tree arg_base;
1521 bool check_ref, by_ref;
1522 ao_ref r;
1523
1524 /* The function operates in three stages. First, we prepare check_ref, r,
1525 arg_base and arg_offset based on what is actually passed as an actual
1526 argument. */
1527
1528 if (POINTER_TYPE_P (arg_type))
1529 {
1530 by_ref = true;
1531 if (TREE_CODE (arg) == SSA_NAME)
1532 {
1533 tree type_size;
1534 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (arg_type))))
1535 return;
1536 check_ref = true;
1537 arg_base = arg;
1538 arg_offset = 0;
1539 type_size = TYPE_SIZE (TREE_TYPE (arg_type));
1540 arg_size = tree_to_uhwi (type_size);
1541 ao_ref_init_from_ptr_and_size (&r, arg_base, NULL_TREE);
1542 }
1543 else if (TREE_CODE (arg) == ADDR_EXPR)
1544 {
1545 HOST_WIDE_INT arg_max_size;
1546
1547 arg = TREE_OPERAND (arg, 0);
1548 arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
1549 &arg_max_size);
1550 if (arg_max_size == -1
1551 || arg_max_size != arg_size
1552 || arg_offset < 0)
1553 return;
1554 if (DECL_P (arg_base))
1555 {
1556 check_ref = false;
1557 ao_ref_init (&r, arg_base);
1558 }
1559 else
1560 return;
1561 }
1562 else
1563 return;
1564 }
1565 else
1566 {
1567 HOST_WIDE_INT arg_max_size;
1568
1569 gcc_checking_assert (AGGREGATE_TYPE_P (TREE_TYPE (arg)));
1570
1571 by_ref = false;
1572 check_ref = false;
1573 arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
1574 &arg_max_size);
1575 if (arg_max_size == -1
1576 || arg_max_size != arg_size
1577 || arg_offset < 0)
1578 return;
1579
1580 ao_ref_init (&r, arg);
1581 }
1582
1583 /* Second stage walks back the BB, looks at individual statements and as long
1584 as it is confident of how the statements affect contents of the
1585 aggregates, it builds a sorted linked list of ipa_agg_jf_list structures
1586 describing it. */
1587 gsi = gsi_for_stmt (call);
1588 gsi_prev (&gsi);
1589 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
1590 {
1591 struct ipa_known_agg_contents_list *n, **p;
1592 gimple stmt = gsi_stmt (gsi);
1593 HOST_WIDE_INT lhs_offset, lhs_size, lhs_max_size;
1594 tree lhs, rhs, lhs_base;
1595
1596 if (!stmt_may_clobber_ref_p_1 (stmt, &r))
1597 continue;
1598 if (!gimple_assign_single_p (stmt))
1599 break;
1600
1601 lhs = gimple_assign_lhs (stmt);
1602 rhs = gimple_assign_rhs1 (stmt);
1603 if (!is_gimple_reg_type (TREE_TYPE (rhs))
1604 || TREE_CODE (lhs) == BIT_FIELD_REF
1605 || contains_bitfld_component_ref_p (lhs))
1606 break;
1607
1608 lhs_base = get_ref_base_and_extent (lhs, &lhs_offset, &lhs_size,
1609 &lhs_max_size);
1610 if (lhs_max_size == -1
1611 || lhs_max_size != lhs_size)
1612 break;
1613
1614 if (check_ref)
1615 {
1616 if (TREE_CODE (lhs_base) != MEM_REF
1617 || TREE_OPERAND (lhs_base, 0) != arg_base
1618 || !integer_zerop (TREE_OPERAND (lhs_base, 1)))
1619 break;
1620 }
1621 else if (lhs_base != arg_base)
1622 {
1623 if (DECL_P (lhs_base))
1624 continue;
1625 else
1626 break;
1627 }
1628
1629 bool already_there = false;
1630 p = get_place_in_agg_contents_list (&list, lhs_offset, lhs_size,
1631 &already_there);
1632 if (!p)
1633 break;
1634 if (already_there)
1635 continue;
1636
1637 rhs = get_ssa_def_if_simple_copy (rhs);
1638 n = XALLOCA (struct ipa_known_agg_contents_list);
1639 n->size = lhs_size;
1640 n->offset = lhs_offset;
1641 if (is_gimple_ip_invariant (rhs))
1642 {
1643 n->constant = rhs;
1644 const_count++;
1645 }
1646 else
1647 n->constant = NULL_TREE;
1648 n->next = *p;
1649 *p = n;
1650
1651 item_count++;
1652 if (const_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS)
1653 || item_count == 2 * PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1654 break;
1655 }
1656
1657 /* Third stage just goes over the list and creates an appropriate vector of
1658 ipa_agg_jf_item structures out of it, of sourse only if there are
1659 any known constants to begin with. */
1660
1661 if (const_count)
1662 {
1663 jfunc->agg.by_ref = by_ref;
1664 build_agg_jump_func_from_list (list, const_count, arg_offset, jfunc);
1665 }
1666 }
1667
1668 static tree
1669 ipa_get_callee_param_type (struct cgraph_edge *e, int i)
1670 {
1671 int n;
1672 tree type = (e->callee
1673 ? TREE_TYPE (e->callee->decl)
1674 : gimple_call_fntype (e->call_stmt));
1675 tree t = TYPE_ARG_TYPES (type);
1676
1677 for (n = 0; n < i; n++)
1678 {
1679 if (!t)
1680 break;
1681 t = TREE_CHAIN (t);
1682 }
1683 if (t)
1684 return TREE_VALUE (t);
1685 if (!e->callee)
1686 return NULL;
1687 t = DECL_ARGUMENTS (e->callee->decl);
1688 for (n = 0; n < i; n++)
1689 {
1690 if (!t)
1691 return NULL;
1692 t = TREE_CHAIN (t);
1693 }
1694 if (t)
1695 return TREE_TYPE (t);
1696 return NULL;
1697 }
1698
1699 /* Compute jump function for all arguments of callsite CS and insert the
1700 information in the jump_functions array in the ipa_edge_args corresponding
1701 to this callsite. */
1702
1703 static void
1704 ipa_compute_jump_functions_for_edge (struct func_body_info *fbi,
1705 struct cgraph_edge *cs)
1706 {
1707 struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
1708 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
1709 gcall *call = cs->call_stmt;
1710 int n, arg_num = gimple_call_num_args (call);
1711 bool useful_context = false;
1712
1713 if (arg_num == 0 || args->jump_functions)
1714 return;
1715 vec_safe_grow_cleared (args->jump_functions, arg_num);
1716 if (flag_devirtualize)
1717 vec_safe_grow_cleared (args->polymorphic_call_contexts, arg_num);
1718
1719 if (gimple_call_internal_p (call))
1720 return;
1721 if (ipa_func_spec_opts_forbid_analysis_p (cs->caller))
1722 return;
1723
1724 for (n = 0; n < arg_num; n++)
1725 {
1726 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n);
1727 tree arg = gimple_call_arg (call, n);
1728 tree param_type = ipa_get_callee_param_type (cs, n);
1729 if (flag_devirtualize && POINTER_TYPE_P (TREE_TYPE (arg)))
1730 {
1731 tree instance;
1732 struct ipa_polymorphic_call_context context (cs->caller->decl,
1733 arg, cs->call_stmt,
1734 &instance);
1735 context.get_dynamic_type (instance, arg, NULL, cs->call_stmt);
1736 *ipa_get_ith_polymorhic_call_context (args, n) = context;
1737 if (!context.useless_p ())
1738 useful_context = true;
1739 }
1740
1741 if (POINTER_TYPE_P (TREE_TYPE(arg)))
1742 {
1743 unsigned HOST_WIDE_INT hwi_bitpos;
1744 unsigned align;
1745
1746 if (get_pointer_alignment_1 (arg, &align, &hwi_bitpos)
1747 && align % BITS_PER_UNIT == 0
1748 && hwi_bitpos % BITS_PER_UNIT == 0)
1749 {
1750 jfunc->alignment.known = true;
1751 jfunc->alignment.align = align / BITS_PER_UNIT;
1752 jfunc->alignment.misalign = hwi_bitpos / BITS_PER_UNIT;
1753 }
1754 else
1755 gcc_assert (!jfunc->alignment.known);
1756 }
1757 else
1758 gcc_assert (!jfunc->alignment.known);
1759
1760 if (is_gimple_ip_invariant (arg))
1761 ipa_set_jf_constant (jfunc, arg, cs);
1762 else if (!is_gimple_reg_type (TREE_TYPE (arg))
1763 && TREE_CODE (arg) == PARM_DECL)
1764 {
1765 int index = ipa_get_param_decl_index (info, arg);
1766
1767 gcc_assert (index >=0);
1768 /* Aggregate passed by value, check for pass-through, otherwise we
1769 will attempt to fill in aggregate contents later in this
1770 for cycle. */
1771 if (parm_preserved_before_stmt_p (fbi, index, call, arg))
1772 {
1773 ipa_set_jf_simple_pass_through (jfunc, index, false);
1774 continue;
1775 }
1776 }
1777 else if (TREE_CODE (arg) == SSA_NAME)
1778 {
1779 if (SSA_NAME_IS_DEFAULT_DEF (arg))
1780 {
1781 int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
1782 if (index >= 0)
1783 {
1784 bool agg_p;
1785 agg_p = parm_ref_data_pass_through_p (fbi, index, call, arg);
1786 ipa_set_jf_simple_pass_through (jfunc, index, agg_p);
1787 }
1788 }
1789 else
1790 {
1791 gimple stmt = SSA_NAME_DEF_STMT (arg);
1792 if (is_gimple_assign (stmt))
1793 compute_complex_assign_jump_func (fbi, info, jfunc,
1794 call, stmt, arg, param_type);
1795 else if (gimple_code (stmt) == GIMPLE_PHI)
1796 compute_complex_ancestor_jump_func (fbi, info, jfunc,
1797 call,
1798 as_a <gphi *> (stmt));
1799 }
1800 }
1801
1802 /* If ARG is pointer, we can not use its type to determine the type of aggregate
1803 passed (because type conversions are ignored in gimple). Usually we can
1804 safely get type from function declaration, but in case of K&R prototypes or
1805 variadic functions we can try our luck with type of the pointer passed.
1806 TODO: Since we look for actual initialization of the memory object, we may better
1807 work out the type based on the memory stores we find. */
1808 if (!param_type)
1809 param_type = TREE_TYPE (arg);
1810
1811 if ((jfunc->type != IPA_JF_PASS_THROUGH
1812 || !ipa_get_jf_pass_through_agg_preserved (jfunc))
1813 && (jfunc->type != IPA_JF_ANCESTOR
1814 || !ipa_get_jf_ancestor_agg_preserved (jfunc))
1815 && (AGGREGATE_TYPE_P (TREE_TYPE (arg))
1816 || POINTER_TYPE_P (param_type)))
1817 determine_locally_known_aggregate_parts (call, arg, param_type, jfunc);
1818 }
1819 if (!useful_context)
1820 vec_free (args->polymorphic_call_contexts);
1821 }
1822
1823 /* Compute jump functions for all edges - both direct and indirect - outgoing
1824 from BB. */
1825
1826 static void
1827 ipa_compute_jump_functions_for_bb (struct func_body_info *fbi, basic_block bb)
1828 {
1829 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
1830 int i;
1831 struct cgraph_edge *cs;
1832
1833 FOR_EACH_VEC_ELT_REVERSE (bi->cg_edges, i, cs)
1834 {
1835 struct cgraph_node *callee = cs->callee;
1836
1837 if (callee)
1838 {
1839 callee->ultimate_alias_target ();
1840 /* We do not need to bother analyzing calls to unknown functions
1841 unless they may become known during lto/whopr. */
1842 if (!callee->definition && !flag_lto)
1843 continue;
1844 }
1845 ipa_compute_jump_functions_for_edge (fbi, cs);
1846 }
1847 }
1848
1849 /* If STMT looks like a statement loading a value from a member pointer formal
1850 parameter, return that parameter and store the offset of the field to
1851 *OFFSET_P, if it is non-NULL. Otherwise return NULL (but *OFFSET_P still
1852 might be clobbered). If USE_DELTA, then we look for a use of the delta
1853 field rather than the pfn. */
1854
1855 static tree
1856 ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta,
1857 HOST_WIDE_INT *offset_p)
1858 {
1859 tree rhs, rec, ref_field, ref_offset, fld, ptr_field, delta_field;
1860
1861 if (!gimple_assign_single_p (stmt))
1862 return NULL_TREE;
1863
1864 rhs = gimple_assign_rhs1 (stmt);
1865 if (TREE_CODE (rhs) == COMPONENT_REF)
1866 {
1867 ref_field = TREE_OPERAND (rhs, 1);
1868 rhs = TREE_OPERAND (rhs, 0);
1869 }
1870 else
1871 ref_field = NULL_TREE;
1872 if (TREE_CODE (rhs) != MEM_REF)
1873 return NULL_TREE;
1874 rec = TREE_OPERAND (rhs, 0);
1875 if (TREE_CODE (rec) != ADDR_EXPR)
1876 return NULL_TREE;
1877 rec = TREE_OPERAND (rec, 0);
1878 if (TREE_CODE (rec) != PARM_DECL
1879 || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
1880 return NULL_TREE;
1881 ref_offset = TREE_OPERAND (rhs, 1);
1882
1883 if (use_delta)
1884 fld = delta_field;
1885 else
1886 fld = ptr_field;
1887 if (offset_p)
1888 *offset_p = int_bit_position (fld);
1889
1890 if (ref_field)
1891 {
1892 if (integer_nonzerop (ref_offset))
1893 return NULL_TREE;
1894 return ref_field == fld ? rec : NULL_TREE;
1895 }
1896 else
1897 return tree_int_cst_equal (byte_position (fld), ref_offset) ? rec
1898 : NULL_TREE;
1899 }
1900
1901 /* Returns true iff T is an SSA_NAME defined by a statement. */
1902
1903 static bool
1904 ipa_is_ssa_with_stmt_def (tree t)
1905 {
1906 if (TREE_CODE (t) == SSA_NAME
1907 && !SSA_NAME_IS_DEFAULT_DEF (t))
1908 return true;
1909 else
1910 return false;
1911 }
1912
1913 /* Find the indirect call graph edge corresponding to STMT and mark it as a
1914 call to a parameter number PARAM_INDEX. NODE is the caller. Return the
1915 indirect call graph edge. */
1916
1917 static struct cgraph_edge *
1918 ipa_note_param_call (struct cgraph_node *node, int param_index,
1919 gcall *stmt)
1920 {
1921 struct cgraph_edge *cs;
1922
1923 cs = node->get_edge (stmt);
1924 cs->indirect_info->param_index = param_index;
1925 cs->indirect_info->agg_contents = 0;
1926 cs->indirect_info->member_ptr = 0;
1927 return cs;
1928 }
1929
1930 /* Analyze the CALL and examine uses of formal parameters of the caller NODE
1931 (described by INFO). PARMS_AINFO is a pointer to a vector containing
1932 intermediate information about each formal parameter. Currently it checks
1933 whether the call calls a pointer that is a formal parameter and if so, the
1934 parameter is marked with the called flag and an indirect call graph edge
1935 describing the call is created. This is very simple for ordinary pointers
1936 represented in SSA but not-so-nice when it comes to member pointers. The
1937 ugly part of this function does nothing more than trying to match the
1938 pattern of such a call. An example of such a pattern is the gimple dump
1939 below, the call is on the last line:
1940
1941 <bb 2>:
1942 f$__delta_5 = f.__delta;
1943 f$__pfn_24 = f.__pfn;
1944
1945 or
1946 <bb 2>:
1947 f$__delta_5 = MEM[(struct *)&f];
1948 f$__pfn_24 = MEM[(struct *)&f + 4B];
1949
1950 and a few lines below:
1951
1952 <bb 5>
1953 D.2496_3 = (int) f$__pfn_24;
1954 D.2497_4 = D.2496_3 & 1;
1955 if (D.2497_4 != 0)
1956 goto <bb 3>;
1957 else
1958 goto <bb 4>;
1959
1960 <bb 6>:
1961 D.2500_7 = (unsigned int) f$__delta_5;
1962 D.2501_8 = &S + D.2500_7;
1963 D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
1964 D.2503_10 = *D.2502_9;
1965 D.2504_12 = f$__pfn_24 + -1;
1966 D.2505_13 = (unsigned int) D.2504_12;
1967 D.2506_14 = D.2503_10 + D.2505_13;
1968 D.2507_15 = *D.2506_14;
1969 iftmp.11_16 = (String:: *) D.2507_15;
1970
1971 <bb 7>:
1972 # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
1973 D.2500_19 = (unsigned int) f$__delta_5;
1974 D.2508_20 = &S + D.2500_19;
1975 D.2493_21 = iftmp.11_1 (D.2508_20, 4);
1976
1977 Such patterns are results of simple calls to a member pointer:
1978
1979 int doprinting (int (MyString::* f)(int) const)
1980 {
1981 MyString S ("somestring");
1982
1983 return (S.*f)(4);
1984 }
1985
1986 Moreover, the function also looks for called pointers loaded from aggregates
1987 passed by value or reference. */
1988
1989 static void
1990 ipa_analyze_indirect_call_uses (struct func_body_info *fbi, gcall *call,
1991 tree target)
1992 {
1993 struct ipa_node_params *info = fbi->info;
1994 HOST_WIDE_INT offset;
1995 bool by_ref;
1996
1997 if (SSA_NAME_IS_DEFAULT_DEF (target))
1998 {
1999 tree var = SSA_NAME_VAR (target);
2000 int index = ipa_get_param_decl_index (info, var);
2001 if (index >= 0)
2002 ipa_note_param_call (fbi->node, index, call);
2003 return;
2004 }
2005
2006 int index;
2007 gimple def = SSA_NAME_DEF_STMT (target);
2008 if (gimple_assign_single_p (def)
2009 && ipa_load_from_parm_agg_1 (fbi, info->descriptors, def,
2010 gimple_assign_rhs1 (def), &index, &offset,
2011 NULL, &by_ref))
2012 {
2013 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2014 cs->indirect_info->offset = offset;
2015 cs->indirect_info->agg_contents = 1;
2016 cs->indirect_info->by_ref = by_ref;
2017 return;
2018 }
2019
2020 /* Now we need to try to match the complex pattern of calling a member
2021 pointer. */
2022 if (gimple_code (def) != GIMPLE_PHI
2023 || gimple_phi_num_args (def) != 2
2024 || !POINTER_TYPE_P (TREE_TYPE (target))
2025 || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
2026 return;
2027
2028 /* First, we need to check whether one of these is a load from a member
2029 pointer that is a parameter to this function. */
2030 tree n1 = PHI_ARG_DEF (def, 0);
2031 tree n2 = PHI_ARG_DEF (def, 1);
2032 if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
2033 return;
2034 gimple d1 = SSA_NAME_DEF_STMT (n1);
2035 gimple d2 = SSA_NAME_DEF_STMT (n2);
2036
2037 tree rec;
2038 basic_block bb, virt_bb;
2039 basic_block join = gimple_bb (def);
2040 if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false, &offset)))
2041 {
2042 if (ipa_get_stmt_member_ptr_load_param (d2, false, NULL))
2043 return;
2044
2045 bb = EDGE_PRED (join, 0)->src;
2046 virt_bb = gimple_bb (d2);
2047 }
2048 else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false, &offset)))
2049 {
2050 bb = EDGE_PRED (join, 1)->src;
2051 virt_bb = gimple_bb (d1);
2052 }
2053 else
2054 return;
2055
2056 /* Second, we need to check that the basic blocks are laid out in the way
2057 corresponding to the pattern. */
2058
2059 if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
2060 || single_pred (virt_bb) != bb
2061 || single_succ (virt_bb) != join)
2062 return;
2063
2064 /* Third, let's see that the branching is done depending on the least
2065 significant bit of the pfn. */
2066
2067 gimple branch = last_stmt (bb);
2068 if (!branch || gimple_code (branch) != GIMPLE_COND)
2069 return;
2070
2071 if ((gimple_cond_code (branch) != NE_EXPR
2072 && gimple_cond_code (branch) != EQ_EXPR)
2073 || !integer_zerop (gimple_cond_rhs (branch)))
2074 return;
2075
2076 tree cond = gimple_cond_lhs (branch);
2077 if (!ipa_is_ssa_with_stmt_def (cond))
2078 return;
2079
2080 def = SSA_NAME_DEF_STMT (cond);
2081 if (!is_gimple_assign (def)
2082 || gimple_assign_rhs_code (def) != BIT_AND_EXPR
2083 || !integer_onep (gimple_assign_rhs2 (def)))
2084 return;
2085
2086 cond = gimple_assign_rhs1 (def);
2087 if (!ipa_is_ssa_with_stmt_def (cond))
2088 return;
2089
2090 def = SSA_NAME_DEF_STMT (cond);
2091
2092 if (is_gimple_assign (def)
2093 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
2094 {
2095 cond = gimple_assign_rhs1 (def);
2096 if (!ipa_is_ssa_with_stmt_def (cond))
2097 return;
2098 def = SSA_NAME_DEF_STMT (cond);
2099 }
2100
2101 tree rec2;
2102 rec2 = ipa_get_stmt_member_ptr_load_param (def,
2103 (TARGET_PTRMEMFUNC_VBIT_LOCATION
2104 == ptrmemfunc_vbit_in_delta),
2105 NULL);
2106 if (rec != rec2)
2107 return;
2108
2109 index = ipa_get_param_decl_index (info, rec);
2110 if (index >= 0
2111 && parm_preserved_before_stmt_p (fbi, index, call, rec))
2112 {
2113 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2114 cs->indirect_info->offset = offset;
2115 cs->indirect_info->agg_contents = 1;
2116 cs->indirect_info->member_ptr = 1;
2117 }
2118
2119 return;
2120 }
2121
2122 /* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
2123 object referenced in the expression is a formal parameter of the caller
2124 FBI->node (described by FBI->info), create a call note for the
2125 statement. */
2126
2127 static void
2128 ipa_analyze_virtual_call_uses (struct func_body_info *fbi,
2129 gcall *call, tree target)
2130 {
2131 tree obj = OBJ_TYPE_REF_OBJECT (target);
2132 int index;
2133 HOST_WIDE_INT anc_offset;
2134
2135 if (!flag_devirtualize)
2136 return;
2137
2138 if (TREE_CODE (obj) != SSA_NAME)
2139 return;
2140
2141 struct ipa_node_params *info = fbi->info;
2142 if (SSA_NAME_IS_DEFAULT_DEF (obj))
2143 {
2144 struct ipa_jump_func jfunc;
2145 if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
2146 return;
2147
2148 anc_offset = 0;
2149 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
2150 gcc_assert (index >= 0);
2151 if (detect_type_change_ssa (obj, obj_type_ref_class (target),
2152 call, &jfunc))
2153 return;
2154 }
2155 else
2156 {
2157 struct ipa_jump_func jfunc;
2158 gimple stmt = SSA_NAME_DEF_STMT (obj);
2159 tree expr;
2160
2161 expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
2162 if (!expr)
2163 return;
2164 index = ipa_get_param_decl_index (info,
2165 SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
2166 gcc_assert (index >= 0);
2167 if (detect_type_change (obj, expr, obj_type_ref_class (target),
2168 call, &jfunc, anc_offset))
2169 return;
2170 }
2171
2172 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2173 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2174 ii->offset = anc_offset;
2175 ii->otr_token = tree_to_uhwi (OBJ_TYPE_REF_TOKEN (target));
2176 ii->otr_type = obj_type_ref_class (target);
2177 ii->polymorphic = 1;
2178 }
2179
2180 /* Analyze a call statement CALL whether and how it utilizes formal parameters
2181 of the caller (described by INFO). PARMS_AINFO is a pointer to a vector
2182 containing intermediate information about each formal parameter. */
2183
2184 static void
2185 ipa_analyze_call_uses (struct func_body_info *fbi, gcall *call)
2186 {
2187 tree target = gimple_call_fn (call);
2188
2189 if (!target
2190 || (TREE_CODE (target) != SSA_NAME
2191 && !virtual_method_call_p (target)))
2192 return;
2193
2194 struct cgraph_edge *cs = fbi->node->get_edge (call);
2195 /* If we previously turned the call into a direct call, there is
2196 no need to analyze. */
2197 if (cs && !cs->indirect_unknown_callee)
2198 return;
2199
2200 if (cs->indirect_info->polymorphic && flag_devirtualize)
2201 {
2202 tree instance;
2203 tree target = gimple_call_fn (call);
2204 ipa_polymorphic_call_context context (current_function_decl,
2205 target, call, &instance);
2206
2207 gcc_checking_assert (cs->indirect_info->otr_type
2208 == obj_type_ref_class (target));
2209 gcc_checking_assert (cs->indirect_info->otr_token
2210 == tree_to_shwi (OBJ_TYPE_REF_TOKEN (target)));
2211
2212 cs->indirect_info->vptr_changed
2213 = !context.get_dynamic_type (instance,
2214 OBJ_TYPE_REF_OBJECT (target),
2215 obj_type_ref_class (target), call);
2216 cs->indirect_info->context = context;
2217 }
2218
2219 if (TREE_CODE (target) == SSA_NAME)
2220 ipa_analyze_indirect_call_uses (fbi, call, target);
2221 else if (virtual_method_call_p (target))
2222 ipa_analyze_virtual_call_uses (fbi, call, target);
2223 }
2224
2225
2226 /* Analyze the call statement STMT with respect to formal parameters (described
2227 in INFO) of caller given by FBI->NODE. Currently it only checks whether
2228 formal parameters are called. */
2229
2230 static void
2231 ipa_analyze_stmt_uses (struct func_body_info *fbi, gimple stmt)
2232 {
2233 if (is_gimple_call (stmt))
2234 ipa_analyze_call_uses (fbi, as_a <gcall *> (stmt));
2235 }
2236
2237 /* Callback of walk_stmt_load_store_addr_ops for the visit_load.
2238 If OP is a parameter declaration, mark it as used in the info structure
2239 passed in DATA. */
2240
2241 static bool
2242 visit_ref_for_mod_analysis (gimple, tree op, tree, void *data)
2243 {
2244 struct ipa_node_params *info = (struct ipa_node_params *) data;
2245
2246 op = get_base_address (op);
2247 if (op
2248 && TREE_CODE (op) == PARM_DECL)
2249 {
2250 int index = ipa_get_param_decl_index (info, op);
2251 gcc_assert (index >= 0);
2252 ipa_set_param_used (info, index, true);
2253 }
2254
2255 return false;
2256 }
2257
2258 /* Scan the statements in BB and inspect the uses of formal parameters. Store
2259 the findings in various structures of the associated ipa_node_params
2260 structure, such as parameter flags, notes etc. FBI holds various data about
2261 the function being analyzed. */
2262
2263 static void
2264 ipa_analyze_params_uses_in_bb (struct func_body_info *fbi, basic_block bb)
2265 {
2266 gimple_stmt_iterator gsi;
2267 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2268 {
2269 gimple stmt = gsi_stmt (gsi);
2270
2271 if (is_gimple_debug (stmt))
2272 continue;
2273
2274 ipa_analyze_stmt_uses (fbi, stmt);
2275 walk_stmt_load_store_addr_ops (stmt, fbi->info,
2276 visit_ref_for_mod_analysis,
2277 visit_ref_for_mod_analysis,
2278 visit_ref_for_mod_analysis);
2279 }
2280 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2281 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), fbi->info,
2282 visit_ref_for_mod_analysis,
2283 visit_ref_for_mod_analysis,
2284 visit_ref_for_mod_analysis);
2285 }
2286
2287 /* Calculate controlled uses of parameters of NODE. */
2288
2289 static void
2290 ipa_analyze_controlled_uses (struct cgraph_node *node)
2291 {
2292 struct ipa_node_params *info = IPA_NODE_REF (node);
2293
2294 for (int i = 0; i < ipa_get_param_count (info); i++)
2295 {
2296 tree parm = ipa_get_param (info, i);
2297 int controlled_uses = 0;
2298
2299 /* For SSA regs see if parameter is used. For non-SSA we compute
2300 the flag during modification analysis. */
2301 if (is_gimple_reg (parm))
2302 {
2303 tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl),
2304 parm);
2305 if (ddef && !has_zero_uses (ddef))
2306 {
2307 imm_use_iterator imm_iter;
2308 use_operand_p use_p;
2309
2310 ipa_set_param_used (info, i, true);
2311 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ddef)
2312 if (!is_gimple_call (USE_STMT (use_p)))
2313 {
2314 if (!is_gimple_debug (USE_STMT (use_p)))
2315 {
2316 controlled_uses = IPA_UNDESCRIBED_USE;
2317 break;
2318 }
2319 }
2320 else
2321 controlled_uses++;
2322 }
2323 else
2324 controlled_uses = 0;
2325 }
2326 else
2327 controlled_uses = IPA_UNDESCRIBED_USE;
2328 ipa_set_controlled_uses (info, i, controlled_uses);
2329 }
2330 }
2331
2332 /* Free stuff in BI. */
2333
2334 static void
2335 free_ipa_bb_info (struct ipa_bb_info *bi)
2336 {
2337 bi->cg_edges.release ();
2338 bi->param_aa_statuses.release ();
2339 }
2340
2341 /* Dominator walker driving the analysis. */
2342
2343 class analysis_dom_walker : public dom_walker
2344 {
2345 public:
2346 analysis_dom_walker (struct func_body_info *fbi)
2347 : dom_walker (CDI_DOMINATORS), m_fbi (fbi) {}
2348
2349 virtual void before_dom_children (basic_block);
2350
2351 private:
2352 struct func_body_info *m_fbi;
2353 };
2354
2355 void
2356 analysis_dom_walker::before_dom_children (basic_block bb)
2357 {
2358 ipa_analyze_params_uses_in_bb (m_fbi, bb);
2359 ipa_compute_jump_functions_for_bb (m_fbi, bb);
2360 }
2361
2362 /* Initialize the array describing properties of of formal parameters
2363 of NODE, analyze their uses and compute jump functions associated
2364 with actual arguments of calls from within NODE. */
2365
2366 void
2367 ipa_analyze_node (struct cgraph_node *node)
2368 {
2369 struct func_body_info fbi;
2370 struct ipa_node_params *info;
2371
2372 ipa_check_create_node_params ();
2373 ipa_check_create_edge_args ();
2374 info = IPA_NODE_REF (node);
2375
2376 if (info->analysis_done)
2377 return;
2378 info->analysis_done = 1;
2379
2380 if (ipa_func_spec_opts_forbid_analysis_p (node))
2381 {
2382 for (int i = 0; i < ipa_get_param_count (info); i++)
2383 {
2384 ipa_set_param_used (info, i, true);
2385 ipa_set_controlled_uses (info, i, IPA_UNDESCRIBED_USE);
2386 }
2387 return;
2388 }
2389
2390 struct function *func = DECL_STRUCT_FUNCTION (node->decl);
2391 push_cfun (func);
2392 calculate_dominance_info (CDI_DOMINATORS);
2393 ipa_initialize_node_params (node);
2394 ipa_analyze_controlled_uses (node);
2395
2396 fbi.node = node;
2397 fbi.info = IPA_NODE_REF (node);
2398 fbi.bb_infos = vNULL;
2399 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
2400 fbi.param_count = ipa_get_param_count (info);
2401 fbi.aa_walked = 0;
2402
2403 for (struct cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
2404 {
2405 ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
2406 bi->cg_edges.safe_push (cs);
2407 }
2408
2409 for (struct cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
2410 {
2411 ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
2412 bi->cg_edges.safe_push (cs);
2413 }
2414
2415 analysis_dom_walker (&fbi).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2416
2417 int i;
2418 struct ipa_bb_info *bi;
2419 FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
2420 free_ipa_bb_info (bi);
2421 fbi.bb_infos.release ();
2422 free_dominance_info (CDI_DOMINATORS);
2423 pop_cfun ();
2424 }
2425
2426 /* Update the jump functions associated with call graph edge E when the call
2427 graph edge CS is being inlined, assuming that E->caller is already (possibly
2428 indirectly) inlined into CS->callee and that E has not been inlined. */
2429
2430 static void
2431 update_jump_functions_after_inlining (struct cgraph_edge *cs,
2432 struct cgraph_edge *e)
2433 {
2434 struct ipa_edge_args *top = IPA_EDGE_REF (cs);
2435 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2436 int count = ipa_get_cs_argument_count (args);
2437 int i;
2438
2439 for (i = 0; i < count; i++)
2440 {
2441 struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
2442 struct ipa_polymorphic_call_context *dst_ctx
2443 = ipa_get_ith_polymorhic_call_context (args, i);
2444
2445 if (dst->type == IPA_JF_ANCESTOR)
2446 {
2447 struct ipa_jump_func *src;
2448 int dst_fid = dst->value.ancestor.formal_id;
2449 struct ipa_polymorphic_call_context *src_ctx
2450 = ipa_get_ith_polymorhic_call_context (top, dst_fid);
2451
2452 /* Variable number of arguments can cause havoc if we try to access
2453 one that does not exist in the inlined edge. So make sure we
2454 don't. */
2455 if (dst_fid >= ipa_get_cs_argument_count (top))
2456 {
2457 ipa_set_jf_unknown (dst);
2458 continue;
2459 }
2460
2461 src = ipa_get_ith_jump_func (top, dst_fid);
2462
2463 if (src_ctx && !src_ctx->useless_p ())
2464 {
2465 struct ipa_polymorphic_call_context ctx = *src_ctx;
2466
2467 /* TODO: Make type preserved safe WRT contexts. */
2468 if (!ipa_get_jf_ancestor_type_preserved (dst))
2469 ctx.possible_dynamic_type_change (e->in_polymorphic_cdtor);
2470 ctx.offset_by (dst->value.ancestor.offset);
2471 if (!ctx.useless_p ())
2472 {
2473 vec_safe_grow_cleared (args->polymorphic_call_contexts,
2474 count);
2475 dst_ctx = ipa_get_ith_polymorhic_call_context (args, i);
2476 }
2477 dst_ctx->combine_with (ctx);
2478 }
2479
2480 if (src->agg.items
2481 && (dst->value.ancestor.agg_preserved || !src->agg.by_ref))
2482 {
2483 struct ipa_agg_jf_item *item;
2484 int j;
2485
2486 /* Currently we do not produce clobber aggregate jump functions,
2487 replace with merging when we do. */
2488 gcc_assert (!dst->agg.items);
2489
2490 dst->agg.items = vec_safe_copy (src->agg.items);
2491 dst->agg.by_ref = src->agg.by_ref;
2492 FOR_EACH_VEC_SAFE_ELT (dst->agg.items, j, item)
2493 item->offset -= dst->value.ancestor.offset;
2494 }
2495
2496 if (src->type == IPA_JF_PASS_THROUGH
2497 && src->value.pass_through.operation == NOP_EXPR)
2498 {
2499 dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
2500 dst->value.ancestor.agg_preserved &=
2501 src->value.pass_through.agg_preserved;
2502 }
2503 else if (src->type == IPA_JF_ANCESTOR)
2504 {
2505 dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
2506 dst->value.ancestor.offset += src->value.ancestor.offset;
2507 dst->value.ancestor.agg_preserved &=
2508 src->value.ancestor.agg_preserved;
2509 }
2510 else
2511 ipa_set_jf_unknown (dst);
2512 }
2513 else if (dst->type == IPA_JF_PASS_THROUGH)
2514 {
2515 struct ipa_jump_func *src;
2516 /* We must check range due to calls with variable number of arguments
2517 and we cannot combine jump functions with operations. */
2518 if (dst->value.pass_through.operation == NOP_EXPR
2519 && (dst->value.pass_through.formal_id
2520 < ipa_get_cs_argument_count (top)))
2521 {
2522 int dst_fid = dst->value.pass_through.formal_id;
2523 src = ipa_get_ith_jump_func (top, dst_fid);
2524 bool dst_agg_p = ipa_get_jf_pass_through_agg_preserved (dst);
2525 struct ipa_polymorphic_call_context *src_ctx
2526 = ipa_get_ith_polymorhic_call_context (top, dst_fid);
2527
2528 if (src_ctx && !src_ctx->useless_p ())
2529 {
2530 struct ipa_polymorphic_call_context ctx = *src_ctx;
2531
2532 /* TODO: Make type preserved safe WRT contexts. */
2533 if (!ipa_get_jf_pass_through_type_preserved (dst))
2534 ctx.possible_dynamic_type_change (e->in_polymorphic_cdtor);
2535 if (!ctx.useless_p ())
2536 {
2537 if (!dst_ctx)
2538 {
2539 vec_safe_grow_cleared (args->polymorphic_call_contexts,
2540 count);
2541 dst_ctx = ipa_get_ith_polymorhic_call_context (args, i);
2542 }
2543 dst_ctx->combine_with (ctx);
2544 }
2545 }
2546 switch (src->type)
2547 {
2548 case IPA_JF_UNKNOWN:
2549 ipa_set_jf_unknown (dst);
2550 break;
2551 case IPA_JF_CONST:
2552 ipa_set_jf_cst_copy (dst, src);
2553 break;
2554
2555 case IPA_JF_PASS_THROUGH:
2556 {
2557 int formal_id = ipa_get_jf_pass_through_formal_id (src);
2558 enum tree_code operation;
2559 operation = ipa_get_jf_pass_through_operation (src);
2560
2561 if (operation == NOP_EXPR)
2562 {
2563 bool agg_p;
2564 agg_p = dst_agg_p
2565 && ipa_get_jf_pass_through_agg_preserved (src);
2566 ipa_set_jf_simple_pass_through (dst, formal_id, agg_p);
2567 }
2568 else
2569 {
2570 tree operand = ipa_get_jf_pass_through_operand (src);
2571 ipa_set_jf_arith_pass_through (dst, formal_id, operand,
2572 operation);
2573 }
2574 break;
2575 }
2576 case IPA_JF_ANCESTOR:
2577 {
2578 bool agg_p;
2579 agg_p = dst_agg_p
2580 && ipa_get_jf_ancestor_agg_preserved (src);
2581 ipa_set_ancestor_jf (dst,
2582 ipa_get_jf_ancestor_offset (src),
2583 ipa_get_jf_ancestor_formal_id (src),
2584 agg_p);
2585 break;
2586 }
2587 default:
2588 gcc_unreachable ();
2589 }
2590
2591 if (src->agg.items
2592 && (dst_agg_p || !src->agg.by_ref))
2593 {
2594 /* Currently we do not produce clobber aggregate jump
2595 functions, replace with merging when we do. */
2596 gcc_assert (!dst->agg.items);
2597
2598 dst->agg.by_ref = src->agg.by_ref;
2599 dst->agg.items = vec_safe_copy (src->agg.items);
2600 }
2601 }
2602 else
2603 ipa_set_jf_unknown (dst);
2604 }
2605 }
2606 }
2607
2608 /* If TARGET is an addr_expr of a function declaration, make it the
2609 (SPECULATIVE)destination of an indirect edge IE and return the edge.
2610 Otherwise, return NULL. */
2611
2612 struct cgraph_edge *
2613 ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target,
2614 bool speculative)
2615 {
2616 struct cgraph_node *callee;
2617 struct inline_edge_summary *es = inline_edge_summary (ie);
2618 bool unreachable = false;
2619
2620 if (TREE_CODE (target) == ADDR_EXPR)
2621 target = TREE_OPERAND (target, 0);
2622 if (TREE_CODE (target) != FUNCTION_DECL)
2623 {
2624 target = canonicalize_constructor_val (target, NULL);
2625 if (!target || TREE_CODE (target) != FUNCTION_DECL)
2626 {
2627 /* Member pointer call that goes through a VMT lookup. */
2628 if (ie->indirect_info->member_ptr
2629 /* Or if target is not an invariant expression and we do not
2630 know if it will evaulate to function at runtime.
2631 This can happen when folding through &VAR, where &VAR
2632 is IP invariant, but VAR itself is not.
2633
2634 TODO: Revisit this when GCC 5 is branched. It seems that
2635 member_ptr check is not needed and that we may try to fold
2636 the expression and see if VAR is readonly. */
2637 || !is_gimple_ip_invariant (target))
2638 {
2639 if (dump_enabled_p ())
2640 {
2641 location_t loc = gimple_location_safe (ie->call_stmt);
2642 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
2643 "discovered direct call non-invariant "
2644 "%s/%i\n",
2645 ie->caller->name (), ie->caller->order);
2646 }
2647 return NULL;
2648 }
2649
2650
2651 if (dump_enabled_p ())
2652 {
2653 location_t loc = gimple_location_safe (ie->call_stmt);
2654 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
2655 "discovered direct call to non-function in %s/%i, "
2656 "making it __builtin_unreachable\n",
2657 ie->caller->name (), ie->caller->order);
2658 }
2659
2660 target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
2661 callee = cgraph_node::get_create (target);
2662 unreachable = true;
2663 }
2664 else
2665 callee = cgraph_node::get (target);
2666 }
2667 else
2668 callee = cgraph_node::get (target);
2669
2670 /* Because may-edges are not explicitely represented and vtable may be external,
2671 we may create the first reference to the object in the unit. */
2672 if (!callee || callee->global.inlined_to)
2673 {
2674
2675 /* We are better to ensure we can refer to it.
2676 In the case of static functions we are out of luck, since we already
2677 removed its body. In the case of public functions we may or may
2678 not introduce the reference. */
2679 if (!canonicalize_constructor_val (target, NULL)
2680 || !TREE_PUBLIC (target))
2681 {
2682 if (dump_file)
2683 fprintf (dump_file, "ipa-prop: Discovered call to a known target "
2684 "(%s/%i -> %s/%i) but can not refer to it. Giving up.\n",
2685 xstrdup_for_dump (ie->caller->name ()),
2686 ie->caller->order,
2687 xstrdup_for_dump (ie->callee->name ()),
2688 ie->callee->order);
2689 return NULL;
2690 }
2691 callee = cgraph_node::get_create (target);
2692 }
2693
2694 /* If the edge is already speculated. */
2695 if (speculative && ie->speculative)
2696 {
2697 struct cgraph_edge *e2;
2698 struct ipa_ref *ref;
2699 ie->speculative_call_info (e2, ie, ref);
2700 if (e2->callee->ultimate_alias_target ()
2701 != callee->ultimate_alias_target ())
2702 {
2703 if (dump_file)
2704 fprintf (dump_file, "ipa-prop: Discovered call to a speculative target "
2705 "(%s/%i -> %s/%i) but the call is already speculated to %s/%i. Giving up.\n",
2706 xstrdup_for_dump (ie->caller->name ()),
2707 ie->caller->order,
2708 xstrdup_for_dump (callee->name ()),
2709 callee->order,
2710 xstrdup_for_dump (e2->callee->name ()),
2711 e2->callee->order);
2712 }
2713 else
2714 {
2715 if (dump_file)
2716 fprintf (dump_file, "ipa-prop: Discovered call to a speculative target "
2717 "(%s/%i -> %s/%i) this agree with previous speculation.\n",
2718 xstrdup_for_dump (ie->caller->name ()),
2719 ie->caller->order,
2720 xstrdup_for_dump (callee->name ()),
2721 callee->order);
2722 }
2723 return NULL;
2724 }
2725
2726 if (!dbg_cnt (devirt))
2727 return NULL;
2728
2729 ipa_check_create_node_params ();
2730
2731 /* We can not make edges to inline clones. It is bug that someone removed
2732 the cgraph node too early. */
2733 gcc_assert (!callee->global.inlined_to);
2734
2735 if (dump_file && !unreachable)
2736 {
2737 fprintf (dump_file, "ipa-prop: Discovered %s call to a %s target "
2738 "(%s/%i -> %s/%i), for stmt ",
2739 ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
2740 speculative ? "speculative" : "known",
2741 xstrdup_for_dump (ie->caller->name ()),
2742 ie->caller->order,
2743 xstrdup_for_dump (callee->name ()),
2744 callee->order);
2745 if (ie->call_stmt)
2746 print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
2747 else
2748 fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
2749 }
2750 if (dump_enabled_p ())
2751 {
2752 location_t loc = gimple_location_safe (ie->call_stmt);
2753
2754 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
2755 "converting indirect call in %s to direct call to %s\n",
2756 ie->caller->name (), callee->name ());
2757 }
2758 if (!speculative)
2759 {
2760 struct cgraph_edge *orig = ie;
2761 ie = ie->make_direct (callee);
2762 /* If we resolved speculative edge the cost is already up to date
2763 for direct call (adjusted by inline_edge_duplication_hook). */
2764 if (ie == orig)
2765 {
2766 es = inline_edge_summary (ie);
2767 es->call_stmt_size -= (eni_size_weights.indirect_call_cost
2768 - eni_size_weights.call_cost);
2769 es->call_stmt_time -= (eni_time_weights.indirect_call_cost
2770 - eni_time_weights.call_cost);
2771 }
2772 }
2773 else
2774 {
2775 if (!callee->can_be_discarded_p ())
2776 {
2777 cgraph_node *alias;
2778 alias = dyn_cast<cgraph_node *> (callee->noninterposable_alias ());
2779 if (alias)
2780 callee = alias;
2781 }
2782 /* make_speculative will update ie's cost to direct call cost. */
2783 ie = ie->make_speculative
2784 (callee, ie->count * 8 / 10, ie->frequency * 8 / 10);
2785 }
2786
2787 return ie;
2788 }
2789
2790 /* Retrieve value from aggregate jump function AGG for the given OFFSET or
2791 return NULL if there is not any. BY_REF specifies whether the value has to
2792 be passed by reference or by value. */
2793
2794 tree
2795 ipa_find_agg_cst_for_param (struct ipa_agg_jump_function *agg,
2796 HOST_WIDE_INT offset, bool by_ref)
2797 {
2798 struct ipa_agg_jf_item *item;
2799 int i;
2800
2801 if (by_ref != agg->by_ref)
2802 return NULL;
2803
2804 FOR_EACH_VEC_SAFE_ELT (agg->items, i, item)
2805 if (item->offset == offset)
2806 {
2807 /* Currently we do not have clobber values, return NULL for them once
2808 we do. */
2809 gcc_checking_assert (is_gimple_ip_invariant (item->value));
2810 return item->value;
2811 }
2812 return NULL;
2813 }
2814
2815 /* Remove a reference to SYMBOL from the list of references of a node given by
2816 reference description RDESC. Return true if the reference has been
2817 successfully found and removed. */
2818
2819 static bool
2820 remove_described_reference (symtab_node *symbol, struct ipa_cst_ref_desc *rdesc)
2821 {
2822 struct ipa_ref *to_del;
2823 struct cgraph_edge *origin;
2824
2825 origin = rdesc->cs;
2826 if (!origin)
2827 return false;
2828 to_del = origin->caller->find_reference (symbol, origin->call_stmt,
2829 origin->lto_stmt_uid);
2830 if (!to_del)
2831 return false;
2832
2833 to_del->remove_reference ();
2834 if (dump_file)
2835 fprintf (dump_file, "ipa-prop: Removed a reference from %s/%i to %s.\n",
2836 xstrdup_for_dump (origin->caller->name ()),
2837 origin->caller->order, xstrdup_for_dump (symbol->name ()));
2838 return true;
2839 }
2840
2841 /* If JFUNC has a reference description with refcount different from
2842 IPA_UNDESCRIBED_USE, return the reference description, otherwise return
2843 NULL. JFUNC must be a constant jump function. */
2844
2845 static struct ipa_cst_ref_desc *
2846 jfunc_rdesc_usable (struct ipa_jump_func *jfunc)
2847 {
2848 struct ipa_cst_ref_desc *rdesc = ipa_get_jf_constant_rdesc (jfunc);
2849 if (rdesc && rdesc->refcount != IPA_UNDESCRIBED_USE)
2850 return rdesc;
2851 else
2852 return NULL;
2853 }
2854
2855 /* If the value of constant jump function JFUNC is an address of a function
2856 declaration, return the associated call graph node. Otherwise return
2857 NULL. */
2858
2859 static cgraph_node *
2860 cgraph_node_for_jfunc (struct ipa_jump_func *jfunc)
2861 {
2862 gcc_checking_assert (jfunc->type == IPA_JF_CONST);
2863 tree cst = ipa_get_jf_constant (jfunc);
2864 if (TREE_CODE (cst) != ADDR_EXPR
2865 || TREE_CODE (TREE_OPERAND (cst, 0)) != FUNCTION_DECL)
2866 return NULL;
2867
2868 return cgraph_node::get (TREE_OPERAND (cst, 0));
2869 }
2870
2871
2872 /* If JFUNC is a constant jump function with a usable rdesc, decrement its
2873 refcount and if it hits zero, remove reference to SYMBOL from the caller of
2874 the edge specified in the rdesc. Return false if either the symbol or the
2875 reference could not be found, otherwise return true. */
2876
2877 static bool
2878 try_decrement_rdesc_refcount (struct ipa_jump_func *jfunc)
2879 {
2880 struct ipa_cst_ref_desc *rdesc;
2881 if (jfunc->type == IPA_JF_CONST
2882 && (rdesc = jfunc_rdesc_usable (jfunc))
2883 && --rdesc->refcount == 0)
2884 {
2885 symtab_node *symbol = cgraph_node_for_jfunc (jfunc);
2886 if (!symbol)
2887 return false;
2888
2889 return remove_described_reference (symbol, rdesc);
2890 }
2891 return true;
2892 }
2893
2894 /* Try to find a destination for indirect edge IE that corresponds to a simple
2895 call or a call of a member function pointer and where the destination is a
2896 pointer formal parameter described by jump function JFUNC. If it can be
2897 determined, return the newly direct edge, otherwise return NULL.
2898 NEW_ROOT_INFO is the node info that JFUNC lattices are relative to. */
2899
2900 static struct cgraph_edge *
2901 try_make_edge_direct_simple_call (struct cgraph_edge *ie,
2902 struct ipa_jump_func *jfunc,
2903 struct ipa_node_params *new_root_info)
2904 {
2905 struct cgraph_edge *cs;
2906 tree target;
2907 bool agg_contents = ie->indirect_info->agg_contents;
2908
2909 if (ie->indirect_info->agg_contents)
2910 target = ipa_find_agg_cst_for_param (&jfunc->agg,
2911 ie->indirect_info->offset,
2912 ie->indirect_info->by_ref);
2913 else
2914 target = ipa_value_from_jfunc (new_root_info, jfunc);
2915 if (!target)
2916 return NULL;
2917 cs = ipa_make_edge_direct_to_target (ie, target);
2918
2919 if (cs && !agg_contents)
2920 {
2921 bool ok;
2922 gcc_checking_assert (cs->callee
2923 && (cs != ie
2924 || jfunc->type != IPA_JF_CONST
2925 || !cgraph_node_for_jfunc (jfunc)
2926 || cs->callee == cgraph_node_for_jfunc (jfunc)));
2927 ok = try_decrement_rdesc_refcount (jfunc);
2928 gcc_checking_assert (ok);
2929 }
2930
2931 return cs;
2932 }
2933
2934 /* Return the target to be used in cases of impossible devirtualization. IE
2935 and target (the latter can be NULL) are dumped when dumping is enabled. */
2936
2937 tree
2938 ipa_impossible_devirt_target (struct cgraph_edge *ie, tree target)
2939 {
2940 if (dump_file)
2941 {
2942 if (target)
2943 fprintf (dump_file,
2944 "Type inconsistent devirtualization: %s/%i->%s\n",
2945 ie->caller->name (), ie->caller->order,
2946 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
2947 else
2948 fprintf (dump_file,
2949 "No devirtualization target in %s/%i\n",
2950 ie->caller->name (), ie->caller->order);
2951 }
2952 tree new_target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
2953 cgraph_node::get_create (new_target);
2954 return new_target;
2955 }
2956
2957 /* Try to find a destination for indirect edge IE that corresponds to a virtual
2958 call based on a formal parameter which is described by jump function JFUNC
2959 and if it can be determined, make it direct and return the direct edge.
2960 Otherwise, return NULL. CTX describes the polymorphic context that the
2961 parameter the call is based on brings along with it. */
2962
2963 static struct cgraph_edge *
2964 try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
2965 struct ipa_jump_func *jfunc,
2966 struct ipa_polymorphic_call_context ctx)
2967 {
2968 tree target = NULL;
2969 bool speculative = false;
2970
2971 if (!opt_for_fn (ie->caller->decl, flag_devirtualize))
2972 return NULL;
2973
2974 gcc_assert (!ie->indirect_info->by_ref);
2975
2976 /* Try to do lookup via known virtual table pointer value. */
2977 if (!ie->indirect_info->vptr_changed
2978 || opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively))
2979 {
2980 tree vtable;
2981 unsigned HOST_WIDE_INT offset;
2982 tree t = ipa_find_agg_cst_for_param (&jfunc->agg,
2983 ie->indirect_info->offset,
2984 true);
2985 if (t && vtable_pointer_value_to_vtable (t, &vtable, &offset))
2986 {
2987 t = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
2988 vtable, offset);
2989 if (t)
2990 {
2991 if ((TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE
2992 && DECL_FUNCTION_CODE (t) == BUILT_IN_UNREACHABLE)
2993 || !possible_polymorphic_call_target_p
2994 (ie, cgraph_node::get (t)))
2995 {
2996 /* Do not speculate builtin_unreachable, it is stupid! */
2997 if (!ie->indirect_info->vptr_changed)
2998 target = ipa_impossible_devirt_target (ie, target);
2999 }
3000 else
3001 {
3002 target = t;
3003 speculative = ie->indirect_info->vptr_changed;
3004 }
3005 }
3006 }
3007 }
3008
3009 ipa_polymorphic_call_context ie_context (ie);
3010 vec <cgraph_node *>targets;
3011 bool final;
3012
3013 ctx.offset_by (ie->indirect_info->offset);
3014 if (ie->indirect_info->vptr_changed)
3015 ctx.possible_dynamic_type_change (ie->in_polymorphic_cdtor,
3016 ie->indirect_info->otr_type);
3017 ctx.combine_with (ie_context, ie->indirect_info->otr_type);
3018 targets = possible_polymorphic_call_targets
3019 (ie->indirect_info->otr_type,
3020 ie->indirect_info->otr_token,
3021 ctx, &final);
3022 if (final && targets.length () <= 1)
3023 {
3024 speculative = false;
3025 if (targets.length () == 1)
3026 target = targets[0]->decl;
3027 else
3028 target = ipa_impossible_devirt_target (ie, NULL_TREE);
3029 }
3030 else if (!target && opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively)
3031 && !ie->speculative && ie->maybe_hot_p ())
3032 {
3033 cgraph_node *n;
3034 n = try_speculative_devirtualization (ie->indirect_info->otr_type,
3035 ie->indirect_info->otr_token,
3036 ie->indirect_info->context);
3037 if (n)
3038 {
3039 target = n->decl;
3040 speculative = true;
3041 }
3042 }
3043
3044 if (target)
3045 {
3046 if (!possible_polymorphic_call_target_p
3047 (ie, cgraph_node::get_create (target)))
3048 {
3049 if (speculative)
3050 return NULL;
3051 target = ipa_impossible_devirt_target (ie, target);
3052 }
3053 return ipa_make_edge_direct_to_target (ie, target, speculative);
3054 }
3055 else
3056 return NULL;
3057 }
3058
3059 /* Update the param called notes associated with NODE when CS is being inlined,
3060 assuming NODE is (potentially indirectly) inlined into CS->callee.
3061 Moreover, if the callee is discovered to be constant, create a new cgraph
3062 edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
3063 unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
3064
3065 static bool
3066 update_indirect_edges_after_inlining (struct cgraph_edge *cs,
3067 struct cgraph_node *node,
3068 vec<cgraph_edge *> *new_edges)
3069 {
3070 struct ipa_edge_args *top;
3071 struct cgraph_edge *ie, *next_ie, *new_direct_edge;
3072 struct ipa_node_params *new_root_info;
3073 bool res = false;
3074
3075 ipa_check_create_edge_args ();
3076 top = IPA_EDGE_REF (cs);
3077 new_root_info = IPA_NODE_REF (cs->caller->global.inlined_to
3078 ? cs->caller->global.inlined_to
3079 : cs->caller);
3080
3081 for (ie = node->indirect_calls; ie; ie = next_ie)
3082 {
3083 struct cgraph_indirect_call_info *ici = ie->indirect_info;
3084 struct ipa_jump_func *jfunc;
3085 int param_index;
3086 cgraph_node *spec_target = NULL;
3087
3088 next_ie = ie->next_callee;
3089
3090 if (ici->param_index == -1)
3091 continue;
3092
3093 /* We must check range due to calls with variable number of arguments: */
3094 if (ici->param_index >= ipa_get_cs_argument_count (top))
3095 {
3096 ici->param_index = -1;
3097 continue;
3098 }
3099
3100 param_index = ici->param_index;
3101 jfunc = ipa_get_ith_jump_func (top, param_index);
3102
3103 if (ie->speculative)
3104 {
3105 struct cgraph_edge *de;
3106 struct ipa_ref *ref;
3107 ie->speculative_call_info (de, ie, ref);
3108 spec_target = de->callee;
3109 }
3110
3111 if (!opt_for_fn (node->decl, flag_indirect_inlining))
3112 new_direct_edge = NULL;
3113 else if (ici->polymorphic)
3114 {
3115 ipa_polymorphic_call_context ctx;
3116 ctx = ipa_context_from_jfunc (new_root_info, cs, param_index, jfunc);
3117 new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc, ctx);
3118 }
3119 else
3120 new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc,
3121 new_root_info);
3122 /* If speculation was removed, then we need to do nothing. */
3123 if (new_direct_edge && new_direct_edge != ie
3124 && new_direct_edge->callee == spec_target)
3125 {
3126 new_direct_edge->indirect_inlining_edge = 1;
3127 top = IPA_EDGE_REF (cs);
3128 res = true;
3129 if (!new_direct_edge->speculative)
3130 continue;
3131 }
3132 else if (new_direct_edge)
3133 {
3134 new_direct_edge->indirect_inlining_edge = 1;
3135 if (new_direct_edge->call_stmt)
3136 new_direct_edge->call_stmt_cannot_inline_p
3137 = !gimple_check_call_matching_types (
3138 new_direct_edge->call_stmt,
3139 new_direct_edge->callee->decl, false);
3140 if (new_edges)
3141 {
3142 new_edges->safe_push (new_direct_edge);
3143 res = true;
3144 }
3145 top = IPA_EDGE_REF (cs);
3146 /* If speculative edge was introduced we still need to update
3147 call info of the indirect edge. */
3148 if (!new_direct_edge->speculative)
3149 continue;
3150 }
3151 if (jfunc->type == IPA_JF_PASS_THROUGH
3152 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3153 {
3154 if (ici->agg_contents
3155 && !ipa_get_jf_pass_through_agg_preserved (jfunc)
3156 && !ici->polymorphic)
3157 ici->param_index = -1;
3158 else
3159 {
3160 ici->param_index = ipa_get_jf_pass_through_formal_id (jfunc);
3161 if (ici->polymorphic
3162 && !ipa_get_jf_pass_through_type_preserved (jfunc))
3163 ici->vptr_changed = true;
3164 }
3165 }
3166 else if (jfunc->type == IPA_JF_ANCESTOR)
3167 {
3168 if (ici->agg_contents
3169 && !ipa_get_jf_ancestor_agg_preserved (jfunc)
3170 && !ici->polymorphic)
3171 ici->param_index = -1;
3172 else
3173 {
3174 ici->param_index = ipa_get_jf_ancestor_formal_id (jfunc);
3175 ici->offset += ipa_get_jf_ancestor_offset (jfunc);
3176 if (ici->polymorphic
3177 && !ipa_get_jf_ancestor_type_preserved (jfunc))
3178 ici->vptr_changed = true;
3179 }
3180 }
3181 else
3182 /* Either we can find a destination for this edge now or never. */
3183 ici->param_index = -1;
3184 }
3185
3186 return res;
3187 }
3188
3189 /* Recursively traverse subtree of NODE (including node) made of inlined
3190 cgraph_edges when CS has been inlined and invoke
3191 update_indirect_edges_after_inlining on all nodes and
3192 update_jump_functions_after_inlining on all non-inlined edges that lead out
3193 of this subtree. Newly discovered indirect edges will be added to
3194 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
3195 created. */
3196
3197 static bool
3198 propagate_info_to_inlined_callees (struct cgraph_edge *cs,
3199 struct cgraph_node *node,
3200 vec<cgraph_edge *> *new_edges)
3201 {
3202 struct cgraph_edge *e;
3203 bool res;
3204
3205 res = update_indirect_edges_after_inlining (cs, node, new_edges);
3206
3207 for (e = node->callees; e; e = e->next_callee)
3208 if (!e->inline_failed)
3209 res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
3210 else
3211 update_jump_functions_after_inlining (cs, e);
3212 for (e = node->indirect_calls; e; e = e->next_callee)
3213 update_jump_functions_after_inlining (cs, e);
3214
3215 return res;
3216 }
3217
3218 /* Combine two controlled uses counts as done during inlining. */
3219
3220 static int
3221 combine_controlled_uses_counters (int c, int d)
3222 {
3223 if (c == IPA_UNDESCRIBED_USE || d == IPA_UNDESCRIBED_USE)
3224 return IPA_UNDESCRIBED_USE;
3225 else
3226 return c + d - 1;
3227 }
3228
3229 /* Propagate number of controlled users from CS->caleee to the new root of the
3230 tree of inlined nodes. */
3231
3232 static void
3233 propagate_controlled_uses (struct cgraph_edge *cs)
3234 {
3235 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
3236 struct cgraph_node *new_root = cs->caller->global.inlined_to
3237 ? cs->caller->global.inlined_to : cs->caller;
3238 struct ipa_node_params *new_root_info = IPA_NODE_REF (new_root);
3239 struct ipa_node_params *old_root_info = IPA_NODE_REF (cs->callee);
3240 int count, i;
3241
3242 count = MIN (ipa_get_cs_argument_count (args),
3243 ipa_get_param_count (old_root_info));
3244 for (i = 0; i < count; i++)
3245 {
3246 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
3247 struct ipa_cst_ref_desc *rdesc;
3248
3249 if (jf->type == IPA_JF_PASS_THROUGH)
3250 {
3251 int src_idx, c, d;
3252 src_idx = ipa_get_jf_pass_through_formal_id (jf);
3253 c = ipa_get_controlled_uses (new_root_info, src_idx);
3254 d = ipa_get_controlled_uses (old_root_info, i);
3255
3256 gcc_checking_assert (ipa_get_jf_pass_through_operation (jf)
3257 == NOP_EXPR || c == IPA_UNDESCRIBED_USE);
3258 c = combine_controlled_uses_counters (c, d);
3259 ipa_set_controlled_uses (new_root_info, src_idx, c);
3260 if (c == 0 && new_root_info->ipcp_orig_node)
3261 {
3262 struct cgraph_node *n;
3263 struct ipa_ref *ref;
3264 tree t = new_root_info->known_csts[src_idx];
3265
3266 if (t && TREE_CODE (t) == ADDR_EXPR
3267 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL
3268 && (n = cgraph_node::get (TREE_OPERAND (t, 0)))
3269 && (ref = new_root->find_reference (n, NULL, 0)))
3270 {
3271 if (dump_file)
3272 fprintf (dump_file, "ipa-prop: Removing cloning-created "
3273 "reference from %s/%i to %s/%i.\n",
3274 xstrdup_for_dump (new_root->name ()),
3275 new_root->order,
3276 xstrdup_for_dump (n->name ()), n->order);
3277 ref->remove_reference ();
3278 }
3279 }
3280 }
3281 else if (jf->type == IPA_JF_CONST
3282 && (rdesc = jfunc_rdesc_usable (jf)))
3283 {
3284 int d = ipa_get_controlled_uses (old_root_info, i);
3285 int c = rdesc->refcount;
3286 rdesc->refcount = combine_controlled_uses_counters (c, d);
3287 if (rdesc->refcount == 0)
3288 {
3289 tree cst = ipa_get_jf_constant (jf);
3290 struct cgraph_node *n;
3291 gcc_checking_assert (TREE_CODE (cst) == ADDR_EXPR
3292 && TREE_CODE (TREE_OPERAND (cst, 0))
3293 == FUNCTION_DECL);
3294 n = cgraph_node::get (TREE_OPERAND (cst, 0));
3295 if (n)
3296 {
3297 struct cgraph_node *clone;
3298 bool ok;
3299 ok = remove_described_reference (n, rdesc);
3300 gcc_checking_assert (ok);
3301
3302 clone = cs->caller;
3303 while (clone->global.inlined_to
3304 && clone != rdesc->cs->caller
3305 && IPA_NODE_REF (clone)->ipcp_orig_node)
3306 {
3307 struct ipa_ref *ref;
3308 ref = clone->find_reference (n, NULL, 0);
3309 if (ref)
3310 {
3311 if (dump_file)
3312 fprintf (dump_file, "ipa-prop: Removing "
3313 "cloning-created reference "
3314 "from %s/%i to %s/%i.\n",
3315 xstrdup_for_dump (clone->name ()),
3316 clone->order,
3317 xstrdup_for_dump (n->name ()),
3318 n->order);
3319 ref->remove_reference ();
3320 }
3321 clone = clone->callers->caller;
3322 }
3323 }
3324 }
3325 }
3326 }
3327
3328 for (i = ipa_get_param_count (old_root_info);
3329 i < ipa_get_cs_argument_count (args);
3330 i++)
3331 {
3332 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
3333
3334 if (jf->type == IPA_JF_CONST)
3335 {
3336 struct ipa_cst_ref_desc *rdesc = jfunc_rdesc_usable (jf);
3337 if (rdesc)
3338 rdesc->refcount = IPA_UNDESCRIBED_USE;
3339 }
3340 else if (jf->type == IPA_JF_PASS_THROUGH)
3341 ipa_set_controlled_uses (new_root_info,
3342 jf->value.pass_through.formal_id,
3343 IPA_UNDESCRIBED_USE);
3344 }
3345 }
3346
3347 /* Update jump functions and call note functions on inlining the call site CS.
3348 CS is expected to lead to a node already cloned by
3349 cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
3350 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
3351 created. */
3352
3353 bool
3354 ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
3355 vec<cgraph_edge *> *new_edges)
3356 {
3357 bool changed;
3358 /* Do nothing if the preparation phase has not been carried out yet
3359 (i.e. during early inlining). */
3360 if (!ipa_node_params_sum)
3361 return false;
3362 gcc_assert (ipa_edge_args_vector);
3363
3364 propagate_controlled_uses (cs);
3365 changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
3366
3367 return changed;
3368 }
3369
3370 /* Frees all dynamically allocated structures that the argument info points
3371 to. */
3372
3373 void
3374 ipa_free_edge_args_substructures (struct ipa_edge_args *args)
3375 {
3376 vec_free (args->jump_functions);
3377 memset (args, 0, sizeof (*args));
3378 }
3379
3380 /* Free all ipa_edge structures. */
3381
3382 void
3383 ipa_free_all_edge_args (void)
3384 {
3385 int i;
3386 struct ipa_edge_args *args;
3387
3388 if (!ipa_edge_args_vector)
3389 return;
3390
3391 FOR_EACH_VEC_ELT (*ipa_edge_args_vector, i, args)
3392 ipa_free_edge_args_substructures (args);
3393
3394 vec_free (ipa_edge_args_vector);
3395 }
3396
3397 /* Frees all dynamically allocated structures that the param info points
3398 to. */
3399
3400 ipa_node_params::~ipa_node_params ()
3401 {
3402 descriptors.release ();
3403 free (lattices);
3404 /* Lattice values and their sources are deallocated with their alocation
3405 pool. */
3406 known_contexts.release ();
3407
3408 lattices = NULL;
3409 ipcp_orig_node = NULL;
3410 analysis_done = 0;
3411 node_enqueued = 0;
3412 do_clone_for_all_contexts = 0;
3413 is_all_contexts_clone = 0;
3414 node_dead = 0;
3415 }
3416
3417 /* Free all ipa_node_params structures. */
3418
3419 void
3420 ipa_free_all_node_params (void)
3421 {
3422 delete ipa_node_params_sum;
3423 ipa_node_params_sum = NULL;
3424 }
3425
3426 /* Grow ipcp_transformations if necessary. */
3427
3428 void
3429 ipcp_grow_transformations_if_necessary (void)
3430 {
3431 if (vec_safe_length (ipcp_transformations)
3432 <= (unsigned) symtab->cgraph_max_uid)
3433 vec_safe_grow_cleared (ipcp_transformations, symtab->cgraph_max_uid + 1);
3434 }
3435
3436 /* Set the aggregate replacements of NODE to be AGGVALS. */
3437
3438 void
3439 ipa_set_node_agg_value_chain (struct cgraph_node *node,
3440 struct ipa_agg_replacement_value *aggvals)
3441 {
3442 ipcp_grow_transformations_if_necessary ();
3443 (*ipcp_transformations)[node->uid].agg_values = aggvals;
3444 }
3445
3446 /* Hook that is called by cgraph.c when an edge is removed. */
3447
3448 static void
3449 ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
3450 {
3451 struct ipa_edge_args *args;
3452
3453 /* During IPA-CP updating we can be called on not-yet analyzed clones. */
3454 if (vec_safe_length (ipa_edge_args_vector) <= (unsigned)cs->uid)
3455 return;
3456
3457 args = IPA_EDGE_REF (cs);
3458 if (args->jump_functions)
3459 {
3460 struct ipa_jump_func *jf;
3461 int i;
3462 FOR_EACH_VEC_ELT (*args->jump_functions, i, jf)
3463 {
3464 struct ipa_cst_ref_desc *rdesc;
3465 try_decrement_rdesc_refcount (jf);
3466 if (jf->type == IPA_JF_CONST
3467 && (rdesc = ipa_get_jf_constant_rdesc (jf))
3468 && rdesc->cs == cs)
3469 rdesc->cs = NULL;
3470 }
3471 }
3472
3473 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
3474 }
3475
3476 /* Hook that is called by cgraph.c when an edge is duplicated. */
3477
3478 static void
3479 ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
3480 void *)
3481 {
3482 struct ipa_edge_args *old_args, *new_args;
3483 unsigned int i;
3484
3485 ipa_check_create_edge_args ();
3486
3487 old_args = IPA_EDGE_REF (src);
3488 new_args = IPA_EDGE_REF (dst);
3489
3490 new_args->jump_functions = vec_safe_copy (old_args->jump_functions);
3491 if (old_args->polymorphic_call_contexts)
3492 new_args->polymorphic_call_contexts
3493 = vec_safe_copy (old_args->polymorphic_call_contexts);
3494
3495 for (i = 0; i < vec_safe_length (old_args->jump_functions); i++)
3496 {
3497 struct ipa_jump_func *src_jf = ipa_get_ith_jump_func (old_args, i);
3498 struct ipa_jump_func *dst_jf = ipa_get_ith_jump_func (new_args, i);
3499
3500 dst_jf->agg.items = vec_safe_copy (dst_jf->agg.items);
3501
3502 if (src_jf->type == IPA_JF_CONST)
3503 {
3504 struct ipa_cst_ref_desc *src_rdesc = jfunc_rdesc_usable (src_jf);
3505
3506 if (!src_rdesc)
3507 dst_jf->value.constant.rdesc = NULL;
3508 else if (src->caller == dst->caller)
3509 {
3510 struct ipa_ref *ref;
3511 symtab_node *n = cgraph_node_for_jfunc (src_jf);
3512 gcc_checking_assert (n);
3513 ref = src->caller->find_reference (n, src->call_stmt,
3514 src->lto_stmt_uid);
3515 gcc_checking_assert (ref);
3516 dst->caller->clone_reference (ref, ref->stmt);
3517
3518 struct ipa_cst_ref_desc *dst_rdesc = ipa_refdesc_pool.allocate ();
3519 dst_rdesc->cs = dst;
3520 dst_rdesc->refcount = src_rdesc->refcount;
3521 dst_rdesc->next_duplicate = NULL;
3522 dst_jf->value.constant.rdesc = dst_rdesc;
3523 }
3524 else if (src_rdesc->cs == src)
3525 {
3526 struct ipa_cst_ref_desc *dst_rdesc = ipa_refdesc_pool.allocate ();
3527 dst_rdesc->cs = dst;
3528 dst_rdesc->refcount = src_rdesc->refcount;
3529 dst_rdesc->next_duplicate = src_rdesc->next_duplicate;
3530 src_rdesc->next_duplicate = dst_rdesc;
3531 dst_jf->value.constant.rdesc = dst_rdesc;
3532 }
3533 else
3534 {
3535 struct ipa_cst_ref_desc *dst_rdesc;
3536 /* This can happen during inlining, when a JFUNC can refer to a
3537 reference taken in a function up in the tree of inline clones.
3538 We need to find the duplicate that refers to our tree of
3539 inline clones. */
3540
3541 gcc_assert (dst->caller->global.inlined_to);
3542 for (dst_rdesc = src_rdesc->next_duplicate;
3543 dst_rdesc;
3544 dst_rdesc = dst_rdesc->next_duplicate)
3545 {
3546 struct cgraph_node *top;
3547 top = dst_rdesc->cs->caller->global.inlined_to
3548 ? dst_rdesc->cs->caller->global.inlined_to
3549 : dst_rdesc->cs->caller;
3550 if (dst->caller->global.inlined_to == top)
3551 break;
3552 }
3553 gcc_assert (dst_rdesc);
3554 dst_jf->value.constant.rdesc = dst_rdesc;
3555 }
3556 }
3557 else if (dst_jf->type == IPA_JF_PASS_THROUGH
3558 && src->caller == dst->caller)
3559 {
3560 struct cgraph_node *inline_root = dst->caller->global.inlined_to
3561 ? dst->caller->global.inlined_to : dst->caller;
3562 struct ipa_node_params *root_info = IPA_NODE_REF (inline_root);
3563 int idx = ipa_get_jf_pass_through_formal_id (dst_jf);
3564
3565 int c = ipa_get_controlled_uses (root_info, idx);
3566 if (c != IPA_UNDESCRIBED_USE)
3567 {
3568 c++;
3569 ipa_set_controlled_uses (root_info, idx, c);
3570 }
3571 }
3572 }
3573 }
3574
3575 /* Analyze newly added function into callgraph. */
3576
3577 static void
3578 ipa_add_new_function (cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3579 {
3580 if (node->has_gimple_body_p ())
3581 ipa_analyze_node (node);
3582 }
3583
3584 /* Hook that is called by summary when a node is duplicated. */
3585
3586 void
3587 ipa_node_params_t::duplicate(cgraph_node *src, cgraph_node *dst,
3588 ipa_node_params *old_info,
3589 ipa_node_params *new_info)
3590 {
3591 ipa_agg_replacement_value *old_av, *new_av;
3592
3593 new_info->descriptors = old_info->descriptors.copy ();
3594 new_info->lattices = NULL;
3595 new_info->ipcp_orig_node = old_info->ipcp_orig_node;
3596
3597 new_info->analysis_done = old_info->analysis_done;
3598 new_info->node_enqueued = old_info->node_enqueued;
3599
3600 old_av = ipa_get_agg_replacements_for_node (src);
3601 if (old_av)
3602 {
3603 new_av = NULL;
3604 while (old_av)
3605 {
3606 struct ipa_agg_replacement_value *v;
3607
3608 v = ggc_alloc<ipa_agg_replacement_value> ();
3609 memcpy (v, old_av, sizeof (*v));
3610 v->next = new_av;
3611 new_av = v;
3612 old_av = old_av->next;
3613 }
3614 ipa_set_node_agg_value_chain (dst, new_av);
3615 }
3616
3617 ipcp_transformation_summary *src_trans = ipcp_get_transformation_summary (src);
3618
3619 if (src_trans && vec_safe_length (src_trans->alignments) > 0)
3620 {
3621 ipcp_grow_transformations_if_necessary ();
3622 src_trans = ipcp_get_transformation_summary (src);
3623 const vec<ipa_alignment, va_gc> *src_alignments = src_trans->alignments;
3624 vec<ipa_alignment, va_gc> *&dst_alignments
3625 = ipcp_get_transformation_summary (dst)->alignments;
3626 vec_safe_reserve_exact (dst_alignments, src_alignments->length ());
3627 for (unsigned i = 0; i < src_alignments->length (); ++i)
3628 dst_alignments->quick_push ((*src_alignments)[i]);
3629 }
3630 }
3631
3632 /* Register our cgraph hooks if they are not already there. */
3633
3634 void
3635 ipa_register_cgraph_hooks (void)
3636 {
3637 ipa_check_create_node_params ();
3638
3639 if (!edge_removal_hook_holder)
3640 edge_removal_hook_holder =
3641 symtab->add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
3642 if (!edge_duplication_hook_holder)
3643 edge_duplication_hook_holder =
3644 symtab->add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
3645 function_insertion_hook_holder =
3646 symtab->add_cgraph_insertion_hook (&ipa_add_new_function, NULL);
3647 }
3648
3649 /* Unregister our cgraph hooks if they are not already there. */
3650
3651 static void
3652 ipa_unregister_cgraph_hooks (void)
3653 {
3654 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
3655 edge_removal_hook_holder = NULL;
3656 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
3657 edge_duplication_hook_holder = NULL;
3658 symtab->remove_cgraph_insertion_hook (function_insertion_hook_holder);
3659 function_insertion_hook_holder = NULL;
3660 }
3661
3662 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
3663 longer needed after ipa-cp. */
3664
3665 void
3666 ipa_free_all_structures_after_ipa_cp (void)
3667 {
3668 if (!optimize && !in_lto_p)
3669 {
3670 ipa_free_all_edge_args ();
3671 ipa_free_all_node_params ();
3672 ipcp_sources_pool.release ();
3673 ipcp_cst_values_pool.release ();
3674 ipcp_poly_ctx_values_pool.release ();
3675 ipcp_agg_lattice_pool.release ();
3676 ipa_unregister_cgraph_hooks ();
3677 ipa_refdesc_pool.release ();
3678 }
3679 }
3680
3681 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
3682 longer needed after indirect inlining. */
3683
3684 void
3685 ipa_free_all_structures_after_iinln (void)
3686 {
3687 ipa_free_all_edge_args ();
3688 ipa_free_all_node_params ();
3689 ipa_unregister_cgraph_hooks ();
3690 ipcp_sources_pool.release ();
3691 ipcp_cst_values_pool.release ();
3692 ipcp_poly_ctx_values_pool.release ();
3693 ipcp_agg_lattice_pool.release ();
3694 ipa_refdesc_pool.release ();
3695 }
3696
3697 /* Print ipa_tree_map data structures of all functions in the
3698 callgraph to F. */
3699
3700 void
3701 ipa_print_node_params (FILE *f, struct cgraph_node *node)
3702 {
3703 int i, count;
3704 struct ipa_node_params *info;
3705
3706 if (!node->definition)
3707 return;
3708 info = IPA_NODE_REF (node);
3709 fprintf (f, " function %s/%i parameter descriptors:\n",
3710 node->name (), node->order);
3711 count = ipa_get_param_count (info);
3712 for (i = 0; i < count; i++)
3713 {
3714 int c;
3715
3716 fprintf (f, " ");
3717 ipa_dump_param (f, info, i);
3718 if (ipa_is_param_used (info, i))
3719 fprintf (f, " used");
3720 c = ipa_get_controlled_uses (info, i);
3721 if (c == IPA_UNDESCRIBED_USE)
3722 fprintf (f, " undescribed_use");
3723 else
3724 fprintf (f, " controlled_uses=%i", c);
3725 fprintf (f, "\n");
3726 }
3727 }
3728
3729 /* Print ipa_tree_map data structures of all functions in the
3730 callgraph to F. */
3731
3732 void
3733 ipa_print_all_params (FILE * f)
3734 {
3735 struct cgraph_node *node;
3736
3737 fprintf (f, "\nFunction parameters:\n");
3738 FOR_EACH_FUNCTION (node)
3739 ipa_print_node_params (f, node);
3740 }
3741
3742 /* Return a heap allocated vector containing formal parameters of FNDECL. */
3743
3744 vec<tree>
3745 ipa_get_vector_of_formal_parms (tree fndecl)
3746 {
3747 vec<tree> args;
3748 int count;
3749 tree parm;
3750
3751 gcc_assert (!flag_wpa);
3752 count = count_formal_params (fndecl);
3753 args.create (count);
3754 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
3755 args.quick_push (parm);
3756
3757 return args;
3758 }
3759
3760 /* Return a heap allocated vector containing types of formal parameters of
3761 function type FNTYPE. */
3762
3763 vec<tree>
3764 ipa_get_vector_of_formal_parm_types (tree fntype)
3765 {
3766 vec<tree> types;
3767 int count = 0;
3768 tree t;
3769
3770 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
3771 count++;
3772
3773 types.create (count);
3774 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
3775 types.quick_push (TREE_VALUE (t));
3776
3777 return types;
3778 }
3779
3780 /* Modify the function declaration FNDECL and its type according to the plan in
3781 ADJUSTMENTS. It also sets base fields of individual adjustments structures
3782 to reflect the actual parameters being modified which are determined by the
3783 base_index field. */
3784
3785 void
3786 ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments)
3787 {
3788 vec<tree> oparms = ipa_get_vector_of_formal_parms (fndecl);
3789 tree orig_type = TREE_TYPE (fndecl);
3790 tree old_arg_types = TYPE_ARG_TYPES (orig_type);
3791
3792 /* The following test is an ugly hack, some functions simply don't have any
3793 arguments in their type. This is probably a bug but well... */
3794 bool care_for_types = (old_arg_types != NULL_TREE);
3795 bool last_parm_void;
3796 vec<tree> otypes;
3797 if (care_for_types)
3798 {
3799 last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
3800 == void_type_node);
3801 otypes = ipa_get_vector_of_formal_parm_types (orig_type);
3802 if (last_parm_void)
3803 gcc_assert (oparms.length () + 1 == otypes.length ());
3804 else
3805 gcc_assert (oparms.length () == otypes.length ());
3806 }
3807 else
3808 {
3809 last_parm_void = false;
3810 otypes.create (0);
3811 }
3812
3813 int len = adjustments.length ();
3814 tree *link = &DECL_ARGUMENTS (fndecl);
3815 tree new_arg_types = NULL;
3816 for (int i = 0; i < len; i++)
3817 {
3818 struct ipa_parm_adjustment *adj;
3819 gcc_assert (link);
3820
3821 adj = &adjustments[i];
3822 tree parm;
3823 if (adj->op == IPA_PARM_OP_NEW)
3824 parm = NULL;
3825 else
3826 parm = oparms[adj->base_index];
3827 adj->base = parm;
3828
3829 if (adj->op == IPA_PARM_OP_COPY)
3830 {
3831 if (care_for_types)
3832 new_arg_types = tree_cons (NULL_TREE, otypes[adj->base_index],
3833 new_arg_types);
3834 *link = parm;
3835 link = &DECL_CHAIN (parm);
3836 }
3837 else if (adj->op != IPA_PARM_OP_REMOVE)
3838 {
3839 tree new_parm;
3840 tree ptype;
3841
3842 if (adj->by_ref)
3843 ptype = build_pointer_type (adj->type);
3844 else
3845 {
3846 ptype = adj->type;
3847 if (is_gimple_reg_type (ptype))
3848 {
3849 unsigned malign = GET_MODE_ALIGNMENT (TYPE_MODE (ptype));
3850 if (TYPE_ALIGN (ptype) < malign)
3851 ptype = build_aligned_type (ptype, malign);
3852 }
3853 }
3854
3855 if (care_for_types)
3856 new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
3857
3858 new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
3859 ptype);
3860 const char *prefix = adj->arg_prefix ? adj->arg_prefix : "SYNTH";
3861 DECL_NAME (new_parm) = create_tmp_var_name (prefix);
3862 DECL_ARTIFICIAL (new_parm) = 1;
3863 DECL_ARG_TYPE (new_parm) = ptype;
3864 DECL_CONTEXT (new_parm) = fndecl;
3865 TREE_USED (new_parm) = 1;
3866 DECL_IGNORED_P (new_parm) = 1;
3867 layout_decl (new_parm, 0);
3868
3869 if (adj->op == IPA_PARM_OP_NEW)
3870 adj->base = NULL;
3871 else
3872 adj->base = parm;
3873 adj->new_decl = new_parm;
3874
3875 *link = new_parm;
3876 link = &DECL_CHAIN (new_parm);
3877 }
3878 }
3879
3880 *link = NULL_TREE;
3881
3882 tree new_reversed = NULL;
3883 if (care_for_types)
3884 {
3885 new_reversed = nreverse (new_arg_types);
3886 if (last_parm_void)
3887 {
3888 if (new_reversed)
3889 TREE_CHAIN (new_arg_types) = void_list_node;
3890 else
3891 new_reversed = void_list_node;
3892 }
3893 }
3894
3895 /* Use copy_node to preserve as much as possible from original type
3896 (debug info, attribute lists etc.)
3897 Exception is METHOD_TYPEs must have THIS argument.
3898 When we are asked to remove it, we need to build new FUNCTION_TYPE
3899 instead. */
3900 tree new_type = NULL;
3901 if (TREE_CODE (orig_type) != METHOD_TYPE
3902 || (adjustments[0].op == IPA_PARM_OP_COPY
3903 && adjustments[0].base_index == 0))
3904 {
3905 new_type = build_distinct_type_copy (orig_type);
3906 TYPE_ARG_TYPES (new_type) = new_reversed;
3907 }
3908 else
3909 {
3910 new_type
3911 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
3912 new_reversed));
3913 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
3914 DECL_VINDEX (fndecl) = NULL_TREE;
3915 }
3916
3917 /* When signature changes, we need to clear builtin info. */
3918 if (DECL_BUILT_IN (fndecl))
3919 {
3920 DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
3921 DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
3922 }
3923
3924 TREE_TYPE (fndecl) = new_type;
3925 DECL_VIRTUAL_P (fndecl) = 0;
3926 DECL_LANG_SPECIFIC (fndecl) = NULL;
3927 otypes.release ();
3928 oparms.release ();
3929 }
3930
3931 /* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
3932 If this is a directly recursive call, CS must be NULL. Otherwise it must
3933 contain the corresponding call graph edge. */
3934
3935 void
3936 ipa_modify_call_arguments (struct cgraph_edge *cs, gcall *stmt,
3937 ipa_parm_adjustment_vec adjustments)
3938 {
3939 struct cgraph_node *current_node = cgraph_node::get (current_function_decl);
3940 vec<tree> vargs;
3941 vec<tree, va_gc> **debug_args = NULL;
3942 gcall *new_stmt;
3943 gimple_stmt_iterator gsi, prev_gsi;
3944 tree callee_decl;
3945 int i, len;
3946
3947 len = adjustments.length ();
3948 vargs.create (len);
3949 callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
3950 current_node->remove_stmt_references (stmt);
3951
3952 gsi = gsi_for_stmt (stmt);
3953 prev_gsi = gsi;
3954 gsi_prev (&prev_gsi);
3955 for (i = 0; i < len; i++)
3956 {
3957 struct ipa_parm_adjustment *adj;
3958
3959 adj = &adjustments[i];
3960
3961 if (adj->op == IPA_PARM_OP_COPY)
3962 {
3963 tree arg = gimple_call_arg (stmt, adj->base_index);
3964
3965 vargs.quick_push (arg);
3966 }
3967 else if (adj->op != IPA_PARM_OP_REMOVE)
3968 {
3969 tree expr, base, off;
3970 location_t loc;
3971 unsigned int deref_align = 0;
3972 bool deref_base = false;
3973
3974 /* We create a new parameter out of the value of the old one, we can
3975 do the following kind of transformations:
3976
3977 - A scalar passed by reference is converted to a scalar passed by
3978 value. (adj->by_ref is false and the type of the original
3979 actual argument is a pointer to a scalar).
3980
3981 - A part of an aggregate is passed instead of the whole aggregate.
3982 The part can be passed either by value or by reference, this is
3983 determined by value of adj->by_ref. Moreover, the code below
3984 handles both situations when the original aggregate is passed by
3985 value (its type is not a pointer) and when it is passed by
3986 reference (it is a pointer to an aggregate).
3987
3988 When the new argument is passed by reference (adj->by_ref is true)
3989 it must be a part of an aggregate and therefore we form it by
3990 simply taking the address of a reference inside the original
3991 aggregate. */
3992
3993 gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
3994 base = gimple_call_arg (stmt, adj->base_index);
3995 loc = DECL_P (base) ? DECL_SOURCE_LOCATION (base)
3996 : EXPR_LOCATION (base);
3997
3998 if (TREE_CODE (base) != ADDR_EXPR
3999 && POINTER_TYPE_P (TREE_TYPE (base)))
4000 off = build_int_cst (adj->alias_ptr_type,
4001 adj->offset / BITS_PER_UNIT);
4002 else
4003 {
4004 HOST_WIDE_INT base_offset;
4005 tree prev_base;
4006 bool addrof;
4007
4008 if (TREE_CODE (base) == ADDR_EXPR)
4009 {
4010 base = TREE_OPERAND (base, 0);
4011 addrof = true;
4012 }
4013 else
4014 addrof = false;
4015 prev_base = base;
4016 base = get_addr_base_and_unit_offset (base, &base_offset);
4017 /* Aggregate arguments can have non-invariant addresses. */
4018 if (!base)
4019 {
4020 base = build_fold_addr_expr (prev_base);
4021 off = build_int_cst (adj->alias_ptr_type,
4022 adj->offset / BITS_PER_UNIT);
4023 }
4024 else if (TREE_CODE (base) == MEM_REF)
4025 {
4026 if (!addrof)
4027 {
4028 deref_base = true;
4029 deref_align = TYPE_ALIGN (TREE_TYPE (base));
4030 }
4031 off = build_int_cst (adj->alias_ptr_type,
4032 base_offset
4033 + adj->offset / BITS_PER_UNIT);
4034 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
4035 off);
4036 base = TREE_OPERAND (base, 0);
4037 }
4038 else
4039 {
4040 off = build_int_cst (adj->alias_ptr_type,
4041 base_offset
4042 + adj->offset / BITS_PER_UNIT);
4043 base = build_fold_addr_expr (base);
4044 }
4045 }
4046
4047 if (!adj->by_ref)
4048 {
4049 tree type = adj->type;
4050 unsigned int align;
4051 unsigned HOST_WIDE_INT misalign;
4052
4053 if (deref_base)
4054 {
4055 align = deref_align;
4056 misalign = 0;
4057 }
4058 else
4059 {
4060 get_pointer_alignment_1 (base, &align, &misalign);
4061 if (TYPE_ALIGN (type) > align)
4062 align = TYPE_ALIGN (type);
4063 }
4064 misalign += (offset_int::from (off, SIGNED).to_short_addr ()
4065 * BITS_PER_UNIT);
4066 misalign = misalign & (align - 1);
4067 if (misalign != 0)
4068 align = (misalign & -misalign);
4069 if (align < TYPE_ALIGN (type))
4070 type = build_aligned_type (type, align);
4071 base = force_gimple_operand_gsi (&gsi, base,
4072 true, NULL, true, GSI_SAME_STMT);
4073 expr = fold_build2_loc (loc, MEM_REF, type, base, off);
4074 /* If expr is not a valid gimple call argument emit
4075 a load into a temporary. */
4076 if (is_gimple_reg_type (TREE_TYPE (expr)))
4077 {
4078 gimple tem = gimple_build_assign (NULL_TREE, expr);
4079 if (gimple_in_ssa_p (cfun))
4080 {
4081 gimple_set_vuse (tem, gimple_vuse (stmt));
4082 expr = make_ssa_name (TREE_TYPE (expr), tem);
4083 }
4084 else
4085 expr = create_tmp_reg (TREE_TYPE (expr));
4086 gimple_assign_set_lhs (tem, expr);
4087 gsi_insert_before (&gsi, tem, GSI_SAME_STMT);
4088 }
4089 }
4090 else
4091 {
4092 expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
4093 expr = build_fold_addr_expr (expr);
4094 expr = force_gimple_operand_gsi (&gsi, expr,
4095 true, NULL, true, GSI_SAME_STMT);
4096 }
4097 vargs.quick_push (expr);
4098 }
4099 if (adj->op != IPA_PARM_OP_COPY && MAY_HAVE_DEBUG_STMTS)
4100 {
4101 unsigned int ix;
4102 tree ddecl = NULL_TREE, origin = DECL_ORIGIN (adj->base), arg;
4103 gimple def_temp;
4104
4105 arg = gimple_call_arg (stmt, adj->base_index);
4106 if (!useless_type_conversion_p (TREE_TYPE (origin), TREE_TYPE (arg)))
4107 {
4108 if (!fold_convertible_p (TREE_TYPE (origin), arg))
4109 continue;
4110 arg = fold_convert_loc (gimple_location (stmt),
4111 TREE_TYPE (origin), arg);
4112 }
4113 if (debug_args == NULL)
4114 debug_args = decl_debug_args_insert (callee_decl);
4115 for (ix = 0; vec_safe_iterate (*debug_args, ix, &ddecl); ix += 2)
4116 if (ddecl == origin)
4117 {
4118 ddecl = (**debug_args)[ix + 1];
4119 break;
4120 }
4121 if (ddecl == NULL)
4122 {
4123 ddecl = make_node (DEBUG_EXPR_DECL);
4124 DECL_ARTIFICIAL (ddecl) = 1;
4125 TREE_TYPE (ddecl) = TREE_TYPE (origin);
4126 DECL_MODE (ddecl) = DECL_MODE (origin);
4127
4128 vec_safe_push (*debug_args, origin);
4129 vec_safe_push (*debug_args, ddecl);
4130 }
4131 def_temp = gimple_build_debug_bind (ddecl, unshare_expr (arg), stmt);
4132 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
4133 }
4134 }
4135
4136 if (dump_file && (dump_flags & TDF_DETAILS))
4137 {
4138 fprintf (dump_file, "replacing stmt:");
4139 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
4140 }
4141
4142 new_stmt = gimple_build_call_vec (callee_decl, vargs);
4143 vargs.release ();
4144 if (gimple_call_lhs (stmt))
4145 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
4146
4147 gimple_set_block (new_stmt, gimple_block (stmt));
4148 if (gimple_has_location (stmt))
4149 gimple_set_location (new_stmt, gimple_location (stmt));
4150 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
4151 gimple_call_copy_flags (new_stmt, stmt);
4152 if (gimple_in_ssa_p (cfun))
4153 {
4154 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
4155 if (gimple_vdef (stmt))
4156 {
4157 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
4158 SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
4159 }
4160 }
4161
4162 if (dump_file && (dump_flags & TDF_DETAILS))
4163 {
4164 fprintf (dump_file, "with stmt:");
4165 print_gimple_stmt (dump_file, new_stmt, 0, 0);
4166 fprintf (dump_file, "\n");
4167 }
4168 gsi_replace (&gsi, new_stmt, true);
4169 if (cs)
4170 cs->set_call_stmt (new_stmt);
4171 do
4172 {
4173 current_node->record_stmt_references (gsi_stmt (gsi));
4174 gsi_prev (&gsi);
4175 }
4176 while (gsi_stmt (gsi) != gsi_stmt (prev_gsi));
4177 }
4178
4179 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4180 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4181 specifies whether the function should care about type incompatibility the
4182 current and new expressions. If it is false, the function will leave
4183 incompatibility issues to the caller. Return true iff the expression
4184 was modified. */
4185
4186 bool
4187 ipa_modify_expr (tree *expr, bool convert,
4188 ipa_parm_adjustment_vec adjustments)
4189 {
4190 struct ipa_parm_adjustment *cand
4191 = ipa_get_adjustment_candidate (&expr, &convert, adjustments, false);
4192 if (!cand)
4193 return false;
4194
4195 tree src;
4196 if (cand->by_ref)
4197 src = build_simple_mem_ref (cand->new_decl);
4198 else
4199 src = cand->new_decl;
4200
4201 if (dump_file && (dump_flags & TDF_DETAILS))
4202 {
4203 fprintf (dump_file, "About to replace expr ");
4204 print_generic_expr (dump_file, *expr, 0);
4205 fprintf (dump_file, " with ");
4206 print_generic_expr (dump_file, src, 0);
4207 fprintf (dump_file, "\n");
4208 }
4209
4210 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4211 {
4212 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4213 *expr = vce;
4214 }
4215 else
4216 *expr = src;
4217 return true;
4218 }
4219
4220 /* If T is an SSA_NAME, return NULL if it is not a default def or
4221 return its base variable if it is. If IGNORE_DEFAULT_DEF is true,
4222 the base variable is always returned, regardless if it is a default
4223 def. Return T if it is not an SSA_NAME. */
4224
4225 static tree
4226 get_ssa_base_param (tree t, bool ignore_default_def)
4227 {
4228 if (TREE_CODE (t) == SSA_NAME)
4229 {
4230 if (ignore_default_def || SSA_NAME_IS_DEFAULT_DEF (t))
4231 return SSA_NAME_VAR (t);
4232 else
4233 return NULL_TREE;
4234 }
4235 return t;
4236 }
4237
4238 /* Given an expression, return an adjustment entry specifying the
4239 transformation to be done on EXPR. If no suitable adjustment entry
4240 was found, returns NULL.
4241
4242 If IGNORE_DEFAULT_DEF is set, consider SSA_NAMEs which are not a
4243 default def, otherwise bail on them.
4244
4245 If CONVERT is non-NULL, this function will set *CONVERT if the
4246 expression provided is a component reference. ADJUSTMENTS is the
4247 adjustments vector. */
4248
4249 ipa_parm_adjustment *
4250 ipa_get_adjustment_candidate (tree **expr, bool *convert,
4251 ipa_parm_adjustment_vec adjustments,
4252 bool ignore_default_def)
4253 {
4254 if (TREE_CODE (**expr) == BIT_FIELD_REF
4255 || TREE_CODE (**expr) == IMAGPART_EXPR
4256 || TREE_CODE (**expr) == REALPART_EXPR)
4257 {
4258 *expr = &TREE_OPERAND (**expr, 0);
4259 if (convert)
4260 *convert = true;
4261 }
4262
4263 HOST_WIDE_INT offset, size, max_size;
4264 tree base = get_ref_base_and_extent (**expr, &offset, &size, &max_size);
4265 if (!base || size == -1 || max_size == -1)
4266 return NULL;
4267
4268 if (TREE_CODE (base) == MEM_REF)
4269 {
4270 offset += mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT;
4271 base = TREE_OPERAND (base, 0);
4272 }
4273
4274 base = get_ssa_base_param (base, ignore_default_def);
4275 if (!base || TREE_CODE (base) != PARM_DECL)
4276 return NULL;
4277
4278 struct ipa_parm_adjustment *cand = NULL;
4279 unsigned int len = adjustments.length ();
4280 for (unsigned i = 0; i < len; i++)
4281 {
4282 struct ipa_parm_adjustment *adj = &adjustments[i];
4283
4284 if (adj->base == base
4285 && (adj->offset == offset || adj->op == IPA_PARM_OP_REMOVE))
4286 {
4287 cand = adj;
4288 break;
4289 }
4290 }
4291
4292 if (!cand || cand->op == IPA_PARM_OP_COPY || cand->op == IPA_PARM_OP_REMOVE)
4293 return NULL;
4294 return cand;
4295 }
4296
4297 /* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
4298
4299 static bool
4300 index_in_adjustments_multiple_times_p (int base_index,
4301 ipa_parm_adjustment_vec adjustments)
4302 {
4303 int i, len = adjustments.length ();
4304 bool one = false;
4305
4306 for (i = 0; i < len; i++)
4307 {
4308 struct ipa_parm_adjustment *adj;
4309 adj = &adjustments[i];
4310
4311 if (adj->base_index == base_index)
4312 {
4313 if (one)
4314 return true;
4315 else
4316 one = true;
4317 }
4318 }
4319 return false;
4320 }
4321
4322
4323 /* Return adjustments that should have the same effect on function parameters
4324 and call arguments as if they were first changed according to adjustments in
4325 INNER and then by adjustments in OUTER. */
4326
4327 ipa_parm_adjustment_vec
4328 ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
4329 ipa_parm_adjustment_vec outer)
4330 {
4331 int i, outlen = outer.length ();
4332 int inlen = inner.length ();
4333 int removals = 0;
4334 ipa_parm_adjustment_vec adjustments, tmp;
4335
4336 tmp.create (inlen);
4337 for (i = 0; i < inlen; i++)
4338 {
4339 struct ipa_parm_adjustment *n;
4340 n = &inner[i];
4341
4342 if (n->op == IPA_PARM_OP_REMOVE)
4343 removals++;
4344 else
4345 {
4346 /* FIXME: Handling of new arguments are not implemented yet. */
4347 gcc_assert (n->op != IPA_PARM_OP_NEW);
4348 tmp.quick_push (*n);
4349 }
4350 }
4351
4352 adjustments.create (outlen + removals);
4353 for (i = 0; i < outlen; i++)
4354 {
4355 struct ipa_parm_adjustment r;
4356 struct ipa_parm_adjustment *out = &outer[i];
4357 struct ipa_parm_adjustment *in = &tmp[out->base_index];
4358
4359 memset (&r, 0, sizeof (r));
4360 gcc_assert (in->op != IPA_PARM_OP_REMOVE);
4361 if (out->op == IPA_PARM_OP_REMOVE)
4362 {
4363 if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
4364 {
4365 r.op = IPA_PARM_OP_REMOVE;
4366 adjustments.quick_push (r);
4367 }
4368 continue;
4369 }
4370 else
4371 {
4372 /* FIXME: Handling of new arguments are not implemented yet. */
4373 gcc_assert (out->op != IPA_PARM_OP_NEW);
4374 }
4375
4376 r.base_index = in->base_index;
4377 r.type = out->type;
4378
4379 /* FIXME: Create nonlocal value too. */
4380
4381 if (in->op == IPA_PARM_OP_COPY && out->op == IPA_PARM_OP_COPY)
4382 r.op = IPA_PARM_OP_COPY;
4383 else if (in->op == IPA_PARM_OP_COPY)
4384 r.offset = out->offset;
4385 else if (out->op == IPA_PARM_OP_COPY)
4386 r.offset = in->offset;
4387 else
4388 r.offset = in->offset + out->offset;
4389 adjustments.quick_push (r);
4390 }
4391
4392 for (i = 0; i < inlen; i++)
4393 {
4394 struct ipa_parm_adjustment *n = &inner[i];
4395
4396 if (n->op == IPA_PARM_OP_REMOVE)
4397 adjustments.quick_push (*n);
4398 }
4399
4400 tmp.release ();
4401 return adjustments;
4402 }
4403
4404 /* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
4405 friendly way, assuming they are meant to be applied to FNDECL. */
4406
4407 void
4408 ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
4409 tree fndecl)
4410 {
4411 int i, len = adjustments.length ();
4412 bool first = true;
4413 vec<tree> parms = ipa_get_vector_of_formal_parms (fndecl);
4414
4415 fprintf (file, "IPA param adjustments: ");
4416 for (i = 0; i < len; i++)
4417 {
4418 struct ipa_parm_adjustment *adj;
4419 adj = &adjustments[i];
4420
4421 if (!first)
4422 fprintf (file, " ");
4423 else
4424 first = false;
4425
4426 fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
4427 print_generic_expr (file, parms[adj->base_index], 0);
4428 if (adj->base)
4429 {
4430 fprintf (file, ", base: ");
4431 print_generic_expr (file, adj->base, 0);
4432 }
4433 if (adj->new_decl)
4434 {
4435 fprintf (file, ", new_decl: ");
4436 print_generic_expr (file, adj->new_decl, 0);
4437 }
4438 if (adj->new_ssa_base)
4439 {
4440 fprintf (file, ", new_ssa_base: ");
4441 print_generic_expr (file, adj->new_ssa_base, 0);
4442 }
4443
4444 if (adj->op == IPA_PARM_OP_COPY)
4445 fprintf (file, ", copy_param");
4446 else if (adj->op == IPA_PARM_OP_REMOVE)
4447 fprintf (file, ", remove_param");
4448 else
4449 fprintf (file, ", offset %li", (long) adj->offset);
4450 if (adj->by_ref)
4451 fprintf (file, ", by_ref");
4452 print_node_brief (file, ", type: ", adj->type, 0);
4453 fprintf (file, "\n");
4454 }
4455 parms.release ();
4456 }
4457
4458 /* Dump the AV linked list. */
4459
4460 void
4461 ipa_dump_agg_replacement_values (FILE *f, struct ipa_agg_replacement_value *av)
4462 {
4463 bool comma = false;
4464 fprintf (f, " Aggregate replacements:");
4465 for (; av; av = av->next)
4466 {
4467 fprintf (f, "%s %i[" HOST_WIDE_INT_PRINT_DEC "]=", comma ? "," : "",
4468 av->index, av->offset);
4469 print_generic_expr (f, av->value, 0);
4470 comma = true;
4471 }
4472 fprintf (f, "\n");
4473 }
4474
4475 /* Stream out jump function JUMP_FUNC to OB. */
4476
4477 static void
4478 ipa_write_jump_function (struct output_block *ob,
4479 struct ipa_jump_func *jump_func)
4480 {
4481 struct ipa_agg_jf_item *item;
4482 struct bitpack_d bp;
4483 int i, count;
4484
4485 streamer_write_uhwi (ob, jump_func->type);
4486 switch (jump_func->type)
4487 {
4488 case IPA_JF_UNKNOWN:
4489 break;
4490 case IPA_JF_CONST:
4491 gcc_assert (
4492 EXPR_LOCATION (jump_func->value.constant.value) == UNKNOWN_LOCATION);
4493 stream_write_tree (ob, jump_func->value.constant.value, true);
4494 break;
4495 case IPA_JF_PASS_THROUGH:
4496 streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
4497 if (jump_func->value.pass_through.operation == NOP_EXPR)
4498 {
4499 streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
4500 bp = bitpack_create (ob->main_stream);
4501 bp_pack_value (&bp, jump_func->value.pass_through.agg_preserved, 1);
4502 streamer_write_bitpack (&bp);
4503 }
4504 else
4505 {
4506 stream_write_tree (ob, jump_func->value.pass_through.operand, true);
4507 streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
4508 }
4509 break;
4510 case IPA_JF_ANCESTOR:
4511 streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
4512 streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
4513 bp = bitpack_create (ob->main_stream);
4514 bp_pack_value (&bp, jump_func->value.ancestor.agg_preserved, 1);
4515 streamer_write_bitpack (&bp);
4516 break;
4517 }
4518
4519 count = vec_safe_length (jump_func->agg.items);
4520 streamer_write_uhwi (ob, count);
4521 if (count)
4522 {
4523 bp = bitpack_create (ob->main_stream);
4524 bp_pack_value (&bp, jump_func->agg.by_ref, 1);
4525 streamer_write_bitpack (&bp);
4526 }
4527
4528 FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, i, item)
4529 {
4530 streamer_write_uhwi (ob, item->offset);
4531 stream_write_tree (ob, item->value, true);
4532 }
4533
4534 bp = bitpack_create (ob->main_stream);
4535 bp_pack_value (&bp, jump_func->alignment.known, 1);
4536 streamer_write_bitpack (&bp);
4537 if (jump_func->alignment.known)
4538 {
4539 streamer_write_uhwi (ob, jump_func->alignment.align);
4540 streamer_write_uhwi (ob, jump_func->alignment.misalign);
4541 }
4542 }
4543
4544 /* Read in jump function JUMP_FUNC from IB. */
4545
4546 static void
4547 ipa_read_jump_function (struct lto_input_block *ib,
4548 struct ipa_jump_func *jump_func,
4549 struct cgraph_edge *cs,
4550 struct data_in *data_in)
4551 {
4552 enum jump_func_type jftype;
4553 enum tree_code operation;
4554 int i, count;
4555
4556 jftype = (enum jump_func_type) streamer_read_uhwi (ib);
4557 switch (jftype)
4558 {
4559 case IPA_JF_UNKNOWN:
4560 ipa_set_jf_unknown (jump_func);
4561 break;
4562 case IPA_JF_CONST:
4563 ipa_set_jf_constant (jump_func, stream_read_tree (ib, data_in), cs);
4564 break;
4565 case IPA_JF_PASS_THROUGH:
4566 operation = (enum tree_code) streamer_read_uhwi (ib);
4567 if (operation == NOP_EXPR)
4568 {
4569 int formal_id = streamer_read_uhwi (ib);
4570 struct bitpack_d bp = streamer_read_bitpack (ib);
4571 bool agg_preserved = bp_unpack_value (&bp, 1);
4572 ipa_set_jf_simple_pass_through (jump_func, formal_id, agg_preserved);
4573 }
4574 else
4575 {
4576 tree operand = stream_read_tree (ib, data_in);
4577 int formal_id = streamer_read_uhwi (ib);
4578 ipa_set_jf_arith_pass_through (jump_func, formal_id, operand,
4579 operation);
4580 }
4581 break;
4582 case IPA_JF_ANCESTOR:
4583 {
4584 HOST_WIDE_INT offset = streamer_read_uhwi (ib);
4585 int formal_id = streamer_read_uhwi (ib);
4586 struct bitpack_d bp = streamer_read_bitpack (ib);
4587 bool agg_preserved = bp_unpack_value (&bp, 1);
4588 ipa_set_ancestor_jf (jump_func, offset, formal_id, agg_preserved);
4589 break;
4590 }
4591 }
4592
4593 count = streamer_read_uhwi (ib);
4594 vec_alloc (jump_func->agg.items, count);
4595 if (count)
4596 {
4597 struct bitpack_d bp = streamer_read_bitpack (ib);
4598 jump_func->agg.by_ref = bp_unpack_value (&bp, 1);
4599 }
4600 for (i = 0; i < count; i++)
4601 {
4602 struct ipa_agg_jf_item item;
4603 item.offset = streamer_read_uhwi (ib);
4604 item.value = stream_read_tree (ib, data_in);
4605 jump_func->agg.items->quick_push (item);
4606 }
4607
4608 struct bitpack_d bp = streamer_read_bitpack (ib);
4609 bool alignment_known = bp_unpack_value (&bp, 1);
4610 if (alignment_known)
4611 {
4612 jump_func->alignment.known = true;
4613 jump_func->alignment.align = streamer_read_uhwi (ib);
4614 jump_func->alignment.misalign = streamer_read_uhwi (ib);
4615 }
4616 else
4617 jump_func->alignment.known = false;
4618 }
4619
4620 /* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
4621 relevant to indirect inlining to OB. */
4622
4623 static void
4624 ipa_write_indirect_edge_info (struct output_block *ob,
4625 struct cgraph_edge *cs)
4626 {
4627 struct cgraph_indirect_call_info *ii = cs->indirect_info;
4628 struct bitpack_d bp;
4629
4630 streamer_write_hwi (ob, ii->param_index);
4631 bp = bitpack_create (ob->main_stream);
4632 bp_pack_value (&bp, ii->polymorphic, 1);
4633 bp_pack_value (&bp, ii->agg_contents, 1);
4634 bp_pack_value (&bp, ii->member_ptr, 1);
4635 bp_pack_value (&bp, ii->by_ref, 1);
4636 bp_pack_value (&bp, ii->vptr_changed, 1);
4637 streamer_write_bitpack (&bp);
4638 if (ii->agg_contents || ii->polymorphic)
4639 streamer_write_hwi (ob, ii->offset);
4640 else
4641 gcc_assert (ii->offset == 0);
4642
4643 if (ii->polymorphic)
4644 {
4645 streamer_write_hwi (ob, ii->otr_token);
4646 stream_write_tree (ob, ii->otr_type, true);
4647 ii->context.stream_out (ob);
4648 }
4649 }
4650
4651 /* Read in parts of cgraph_indirect_call_info corresponding to CS that are
4652 relevant to indirect inlining from IB. */
4653
4654 static void
4655 ipa_read_indirect_edge_info (struct lto_input_block *ib,
4656 struct data_in *data_in,
4657 struct cgraph_edge *cs)
4658 {
4659 struct cgraph_indirect_call_info *ii = cs->indirect_info;
4660 struct bitpack_d bp;
4661
4662 ii->param_index = (int) streamer_read_hwi (ib);
4663 bp = streamer_read_bitpack (ib);
4664 ii->polymorphic = bp_unpack_value (&bp, 1);
4665 ii->agg_contents = bp_unpack_value (&bp, 1);
4666 ii->member_ptr = bp_unpack_value (&bp, 1);
4667 ii->by_ref = bp_unpack_value (&bp, 1);
4668 ii->vptr_changed = bp_unpack_value (&bp, 1);
4669 if (ii->agg_contents || ii->polymorphic)
4670 ii->offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
4671 else
4672 ii->offset = 0;
4673 if (ii->polymorphic)
4674 {
4675 ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
4676 ii->otr_type = stream_read_tree (ib, data_in);
4677 ii->context.stream_in (ib, data_in);
4678 }
4679 }
4680
4681 /* Stream out NODE info to OB. */
4682
4683 static void
4684 ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
4685 {
4686 int node_ref;
4687 lto_symtab_encoder_t encoder;
4688 struct ipa_node_params *info = IPA_NODE_REF (node);
4689 int j;
4690 struct cgraph_edge *e;
4691 struct bitpack_d bp;
4692
4693 encoder = ob->decl_state->symtab_node_encoder;
4694 node_ref = lto_symtab_encoder_encode (encoder, node);
4695 streamer_write_uhwi (ob, node_ref);
4696
4697 streamer_write_uhwi (ob, ipa_get_param_count (info));
4698 for (j = 0; j < ipa_get_param_count (info); j++)
4699 streamer_write_uhwi (ob, ipa_get_param_move_cost (info, j));
4700 bp = bitpack_create (ob->main_stream);
4701 gcc_assert (info->analysis_done
4702 || ipa_get_param_count (info) == 0);
4703 gcc_assert (!info->node_enqueued);
4704 gcc_assert (!info->ipcp_orig_node);
4705 for (j = 0; j < ipa_get_param_count (info); j++)
4706 bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
4707 streamer_write_bitpack (&bp);
4708 for (j = 0; j < ipa_get_param_count (info); j++)
4709 streamer_write_hwi (ob, ipa_get_controlled_uses (info, j));
4710 for (e = node->callees; e; e = e->next_callee)
4711 {
4712 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4713
4714 streamer_write_uhwi (ob,
4715 ipa_get_cs_argument_count (args) * 2
4716 + (args->polymorphic_call_contexts != NULL));
4717 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
4718 {
4719 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
4720 if (args->polymorphic_call_contexts != NULL)
4721 ipa_get_ith_polymorhic_call_context (args, j)->stream_out (ob);
4722 }
4723 }
4724 for (e = node->indirect_calls; e; e = e->next_callee)
4725 {
4726 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4727
4728 streamer_write_uhwi (ob,
4729 ipa_get_cs_argument_count (args) * 2
4730 + (args->polymorphic_call_contexts != NULL));
4731 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
4732 {
4733 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
4734 if (args->polymorphic_call_contexts != NULL)
4735 ipa_get_ith_polymorhic_call_context (args, j)->stream_out (ob);
4736 }
4737 ipa_write_indirect_edge_info (ob, e);
4738 }
4739 }
4740
4741 /* Stream in NODE info from IB. */
4742
4743 static void
4744 ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
4745 struct data_in *data_in)
4746 {
4747 struct ipa_node_params *info = IPA_NODE_REF (node);
4748 int k;
4749 struct cgraph_edge *e;
4750 struct bitpack_d bp;
4751
4752 ipa_alloc_node_params (node, streamer_read_uhwi (ib));
4753
4754 for (k = 0; k < ipa_get_param_count (info); k++)
4755 info->descriptors[k].move_cost = streamer_read_uhwi (ib);
4756
4757 bp = streamer_read_bitpack (ib);
4758 if (ipa_get_param_count (info) != 0)
4759 info->analysis_done = true;
4760 info->node_enqueued = false;
4761 for (k = 0; k < ipa_get_param_count (info); k++)
4762 ipa_set_param_used (info, k, bp_unpack_value (&bp, 1));
4763 for (k = 0; k < ipa_get_param_count (info); k++)
4764 ipa_set_controlled_uses (info, k, streamer_read_hwi (ib));
4765 for (e = node->callees; e; e = e->next_callee)
4766 {
4767 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4768 int count = streamer_read_uhwi (ib);
4769 bool contexts_computed = count & 1;
4770 count /= 2;
4771
4772 if (!count)
4773 continue;
4774 vec_safe_grow_cleared (args->jump_functions, count);
4775 if (contexts_computed)
4776 vec_safe_grow_cleared (args->polymorphic_call_contexts, count);
4777
4778 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
4779 {
4780 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
4781 data_in);
4782 if (contexts_computed)
4783 ipa_get_ith_polymorhic_call_context (args, k)->stream_in (ib, data_in);
4784 }
4785 }
4786 for (e = node->indirect_calls; e; e = e->next_callee)
4787 {
4788 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4789 int count = streamer_read_uhwi (ib);
4790 bool contexts_computed = count & 1;
4791 count /= 2;
4792
4793 if (count)
4794 {
4795 vec_safe_grow_cleared (args->jump_functions, count);
4796 if (contexts_computed)
4797 vec_safe_grow_cleared (args->polymorphic_call_contexts, count);
4798 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
4799 {
4800 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
4801 data_in);
4802 if (contexts_computed)
4803 ipa_get_ith_polymorhic_call_context (args, k)->stream_in (ib, data_in);
4804 }
4805 }
4806 ipa_read_indirect_edge_info (ib, data_in, e);
4807 }
4808 }
4809
4810 /* Write jump functions for nodes in SET. */
4811
4812 void
4813 ipa_prop_write_jump_functions (void)
4814 {
4815 struct cgraph_node *node;
4816 struct output_block *ob;
4817 unsigned int count = 0;
4818 lto_symtab_encoder_iterator lsei;
4819 lto_symtab_encoder_t encoder;
4820
4821 if (!ipa_node_params_sum)
4822 return;
4823
4824 ob = create_output_block (LTO_section_jump_functions);
4825 encoder = ob->decl_state->symtab_node_encoder;
4826 ob->symbol = NULL;
4827 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4828 lsei_next_function_in_partition (&lsei))
4829 {
4830 node = lsei_cgraph_node (lsei);
4831 if (node->has_gimple_body_p ()
4832 && IPA_NODE_REF (node) != NULL)
4833 count++;
4834 }
4835
4836 streamer_write_uhwi (ob, count);
4837
4838 /* Process all of the functions. */
4839 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4840 lsei_next_function_in_partition (&lsei))
4841 {
4842 node = lsei_cgraph_node (lsei);
4843 if (node->has_gimple_body_p ()
4844 && IPA_NODE_REF (node) != NULL)
4845 ipa_write_node_info (ob, node);
4846 }
4847 streamer_write_char_stream (ob->main_stream, 0);
4848 produce_asm (ob, NULL);
4849 destroy_output_block (ob);
4850 }
4851
4852 /* Read section in file FILE_DATA of length LEN with data DATA. */
4853
4854 static void
4855 ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
4856 size_t len)
4857 {
4858 const struct lto_function_header *header =
4859 (const struct lto_function_header *) data;
4860 const int cfg_offset = sizeof (struct lto_function_header);
4861 const int main_offset = cfg_offset + header->cfg_size;
4862 const int string_offset = main_offset + header->main_size;
4863 struct data_in *data_in;
4864 unsigned int i;
4865 unsigned int count;
4866
4867 lto_input_block ib_main ((const char *) data + main_offset,
4868 header->main_size, file_data->mode_table);
4869
4870 data_in =
4871 lto_data_in_create (file_data, (const char *) data + string_offset,
4872 header->string_size, vNULL);
4873 count = streamer_read_uhwi (&ib_main);
4874
4875 for (i = 0; i < count; i++)
4876 {
4877 unsigned int index;
4878 struct cgraph_node *node;
4879 lto_symtab_encoder_t encoder;
4880
4881 index = streamer_read_uhwi (&ib_main);
4882 encoder = file_data->symtab_node_encoder;
4883 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4884 index));
4885 gcc_assert (node->definition);
4886 ipa_read_node_info (&ib_main, node, data_in);
4887 }
4888 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
4889 len);
4890 lto_data_in_delete (data_in);
4891 }
4892
4893 /* Read ipcp jump functions. */
4894
4895 void
4896 ipa_prop_read_jump_functions (void)
4897 {
4898 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4899 struct lto_file_decl_data *file_data;
4900 unsigned int j = 0;
4901
4902 ipa_check_create_node_params ();
4903 ipa_check_create_edge_args ();
4904 ipa_register_cgraph_hooks ();
4905
4906 while ((file_data = file_data_vec[j++]))
4907 {
4908 size_t len;
4909 const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
4910
4911 if (data)
4912 ipa_prop_read_section (file_data, data, len);
4913 }
4914 }
4915
4916 /* After merging units, we can get mismatch in argument counts.
4917 Also decl merging might've rendered parameter lists obsolete.
4918 Also compute called_with_variable_arg info. */
4919
4920 void
4921 ipa_update_after_lto_read (void)
4922 {
4923 ipa_check_create_node_params ();
4924 ipa_check_create_edge_args ();
4925 }
4926
4927 void
4928 write_ipcp_transformation_info (output_block *ob, cgraph_node *node)
4929 {
4930 int node_ref;
4931 unsigned int count = 0;
4932 lto_symtab_encoder_t encoder;
4933 struct ipa_agg_replacement_value *aggvals, *av;
4934
4935 aggvals = ipa_get_agg_replacements_for_node (node);
4936 encoder = ob->decl_state->symtab_node_encoder;
4937 node_ref = lto_symtab_encoder_encode (encoder, node);
4938 streamer_write_uhwi (ob, node_ref);
4939
4940 for (av = aggvals; av; av = av->next)
4941 count++;
4942 streamer_write_uhwi (ob, count);
4943
4944 for (av = aggvals; av; av = av->next)
4945 {
4946 struct bitpack_d bp;
4947
4948 streamer_write_uhwi (ob, av->offset);
4949 streamer_write_uhwi (ob, av->index);
4950 stream_write_tree (ob, av->value, true);
4951
4952 bp = bitpack_create (ob->main_stream);
4953 bp_pack_value (&bp, av->by_ref, 1);
4954 streamer_write_bitpack (&bp);
4955 }
4956
4957 ipcp_transformation_summary *ts = ipcp_get_transformation_summary (node);
4958 if (ts && vec_safe_length (ts->alignments) > 0)
4959 {
4960 count = ts->alignments->length ();
4961
4962 streamer_write_uhwi (ob, count);
4963 for (unsigned i = 0; i < count; ++i)
4964 {
4965 ipa_alignment *parm_al = &(*ts->alignments)[i];
4966
4967 struct bitpack_d bp;
4968 bp = bitpack_create (ob->main_stream);
4969 bp_pack_value (&bp, parm_al->known, 1);
4970 streamer_write_bitpack (&bp);
4971 if (parm_al->known)
4972 {
4973 streamer_write_uhwi (ob, parm_al->align);
4974 streamer_write_hwi_in_range (ob->main_stream, 0, parm_al->align,
4975 parm_al->misalign);
4976 }
4977 }
4978 }
4979 else
4980 streamer_write_uhwi (ob, 0);
4981 }
4982
4983 /* Stream in the aggregate value replacement chain for NODE from IB. */
4984
4985 static void
4986 read_ipcp_transformation_info (lto_input_block *ib, cgraph_node *node,
4987 data_in *data_in)
4988 {
4989 struct ipa_agg_replacement_value *aggvals = NULL;
4990 unsigned int count, i;
4991
4992 count = streamer_read_uhwi (ib);
4993 for (i = 0; i <count; i++)
4994 {
4995 struct ipa_agg_replacement_value *av;
4996 struct bitpack_d bp;
4997
4998 av = ggc_alloc<ipa_agg_replacement_value> ();
4999 av->offset = streamer_read_uhwi (ib);
5000 av->index = streamer_read_uhwi (ib);
5001 av->value = stream_read_tree (ib, data_in);
5002 bp = streamer_read_bitpack (ib);
5003 av->by_ref = bp_unpack_value (&bp, 1);
5004 av->next = aggvals;
5005 aggvals = av;
5006 }
5007 ipa_set_node_agg_value_chain (node, aggvals);
5008
5009 count = streamer_read_uhwi (ib);
5010 if (count > 0)
5011 {
5012 ipcp_grow_transformations_if_necessary ();
5013
5014 ipcp_transformation_summary *ts = ipcp_get_transformation_summary (node);
5015 vec_safe_grow_cleared (ts->alignments, count);
5016
5017 for (i = 0; i < count; i++)
5018 {
5019 ipa_alignment *parm_al;
5020 parm_al = &(*ts->alignments)[i];
5021 struct bitpack_d bp;
5022 bp = streamer_read_bitpack (ib);
5023 parm_al->known = bp_unpack_value (&bp, 1);
5024 if (parm_al->known)
5025 {
5026 parm_al->align = streamer_read_uhwi (ib);
5027 parm_al->misalign
5028 = streamer_read_hwi_in_range (ib, "ipa-prop misalign",
5029 0, parm_al->align);
5030 }
5031 }
5032 }
5033 }
5034
5035 /* Write all aggregate replacement for nodes in set. */
5036
5037 void
5038 ipcp_write_transformation_summaries (void)
5039 {
5040 struct cgraph_node *node;
5041 struct output_block *ob;
5042 unsigned int count = 0;
5043 lto_symtab_encoder_iterator lsei;
5044 lto_symtab_encoder_t encoder;
5045
5046 ob = create_output_block (LTO_section_ipcp_transform);
5047 encoder = ob->decl_state->symtab_node_encoder;
5048 ob->symbol = NULL;
5049 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
5050 lsei_next_function_in_partition (&lsei))
5051 {
5052 node = lsei_cgraph_node (lsei);
5053 if (node->has_gimple_body_p ())
5054 count++;
5055 }
5056
5057 streamer_write_uhwi (ob, count);
5058
5059 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
5060 lsei_next_function_in_partition (&lsei))
5061 {
5062 node = lsei_cgraph_node (lsei);
5063 if (node->has_gimple_body_p ())
5064 write_ipcp_transformation_info (ob, node);
5065 }
5066 streamer_write_char_stream (ob->main_stream, 0);
5067 produce_asm (ob, NULL);
5068 destroy_output_block (ob);
5069 }
5070
5071 /* Read replacements section in file FILE_DATA of length LEN with data
5072 DATA. */
5073
5074 static void
5075 read_replacements_section (struct lto_file_decl_data *file_data,
5076 const char *data,
5077 size_t len)
5078 {
5079 const struct lto_function_header *header =
5080 (const struct lto_function_header *) data;
5081 const int cfg_offset = sizeof (struct lto_function_header);
5082 const int main_offset = cfg_offset + header->cfg_size;
5083 const int string_offset = main_offset + header->main_size;
5084 struct data_in *data_in;
5085 unsigned int i;
5086 unsigned int count;
5087
5088 lto_input_block ib_main ((const char *) data + main_offset,
5089 header->main_size, file_data->mode_table);
5090
5091 data_in = lto_data_in_create (file_data, (const char *) data + string_offset,
5092 header->string_size, vNULL);
5093 count = streamer_read_uhwi (&ib_main);
5094
5095 for (i = 0; i < count; i++)
5096 {
5097 unsigned int index;
5098 struct cgraph_node *node;
5099 lto_symtab_encoder_t encoder;
5100
5101 index = streamer_read_uhwi (&ib_main);
5102 encoder = file_data->symtab_node_encoder;
5103 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
5104 index));
5105 gcc_assert (node->definition);
5106 read_ipcp_transformation_info (&ib_main, node, data_in);
5107 }
5108 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
5109 len);
5110 lto_data_in_delete (data_in);
5111 }
5112
5113 /* Read IPA-CP aggregate replacements. */
5114
5115 void
5116 ipcp_read_transformation_summaries (void)
5117 {
5118 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
5119 struct lto_file_decl_data *file_data;
5120 unsigned int j = 0;
5121
5122 while ((file_data = file_data_vec[j++]))
5123 {
5124 size_t len;
5125 const char *data = lto_get_section_data (file_data,
5126 LTO_section_ipcp_transform,
5127 NULL, &len);
5128 if (data)
5129 read_replacements_section (file_data, data, len);
5130 }
5131 }
5132
5133 /* Adjust the aggregate replacements in AGGVAL to reflect parameters skipped in
5134 NODE. */
5135
5136 static void
5137 adjust_agg_replacement_values (struct cgraph_node *node,
5138 struct ipa_agg_replacement_value *aggval)
5139 {
5140 struct ipa_agg_replacement_value *v;
5141 int i, c = 0, d = 0, *adj;
5142
5143 if (!node->clone.combined_args_to_skip)
5144 return;
5145
5146 for (v = aggval; v; v = v->next)
5147 {
5148 gcc_assert (v->index >= 0);
5149 if (c < v->index)
5150 c = v->index;
5151 }
5152 c++;
5153
5154 adj = XALLOCAVEC (int, c);
5155 for (i = 0; i < c; i++)
5156 if (bitmap_bit_p (node->clone.combined_args_to_skip, i))
5157 {
5158 adj[i] = -1;
5159 d++;
5160 }
5161 else
5162 adj[i] = i - d;
5163
5164 for (v = aggval; v; v = v->next)
5165 v->index = adj[v->index];
5166 }
5167
5168 /* Dominator walker driving the ipcp modification phase. */
5169
5170 class ipcp_modif_dom_walker : public dom_walker
5171 {
5172 public:
5173 ipcp_modif_dom_walker (struct func_body_info *fbi,
5174 vec<ipa_param_descriptor> descs,
5175 struct ipa_agg_replacement_value *av,
5176 bool *sc, bool *cc)
5177 : dom_walker (CDI_DOMINATORS), m_fbi (fbi), m_descriptors (descs),
5178 m_aggval (av), m_something_changed (sc), m_cfg_changed (cc) {}
5179
5180 virtual void before_dom_children (basic_block);
5181
5182 private:
5183 struct func_body_info *m_fbi;
5184 vec<ipa_param_descriptor> m_descriptors;
5185 struct ipa_agg_replacement_value *m_aggval;
5186 bool *m_something_changed, *m_cfg_changed;
5187 };
5188
5189 void
5190 ipcp_modif_dom_walker::before_dom_children (basic_block bb)
5191 {
5192 gimple_stmt_iterator gsi;
5193 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5194 {
5195 struct ipa_agg_replacement_value *v;
5196 gimple stmt = gsi_stmt (gsi);
5197 tree rhs, val, t;
5198 HOST_WIDE_INT offset, size;
5199 int index;
5200 bool by_ref, vce;
5201
5202 if (!gimple_assign_load_p (stmt))
5203 continue;
5204 rhs = gimple_assign_rhs1 (stmt);
5205 if (!is_gimple_reg_type (TREE_TYPE (rhs)))
5206 continue;
5207
5208 vce = false;
5209 t = rhs;
5210 while (handled_component_p (t))
5211 {
5212 /* V_C_E can do things like convert an array of integers to one
5213 bigger integer and similar things we do not handle below. */
5214 if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
5215 {
5216 vce = true;
5217 break;
5218 }
5219 t = TREE_OPERAND (t, 0);
5220 }
5221 if (vce)
5222 continue;
5223
5224 if (!ipa_load_from_parm_agg_1 (m_fbi, m_descriptors, stmt, rhs, &index,
5225 &offset, &size, &by_ref))
5226 continue;
5227 for (v = m_aggval; v; v = v->next)
5228 if (v->index == index
5229 && v->offset == offset)
5230 break;
5231 if (!v
5232 || v->by_ref != by_ref
5233 || tree_to_shwi (TYPE_SIZE (TREE_TYPE (v->value))) != size)
5234 continue;
5235
5236 gcc_checking_assert (is_gimple_ip_invariant (v->value));
5237 if (!useless_type_conversion_p (TREE_TYPE (rhs), TREE_TYPE (v->value)))
5238 {
5239 if (fold_convertible_p (TREE_TYPE (rhs), v->value))
5240 val = fold_build1 (NOP_EXPR, TREE_TYPE (rhs), v->value);
5241 else if (TYPE_SIZE (TREE_TYPE (rhs))
5242 == TYPE_SIZE (TREE_TYPE (v->value)))
5243 val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), v->value);
5244 else
5245 {
5246 if (dump_file)
5247 {
5248 fprintf (dump_file, " const ");
5249 print_generic_expr (dump_file, v->value, 0);
5250 fprintf (dump_file, " can't be converted to type of ");
5251 print_generic_expr (dump_file, rhs, 0);
5252 fprintf (dump_file, "\n");
5253 }
5254 continue;
5255 }
5256 }
5257 else
5258 val = v->value;
5259
5260 if (dump_file && (dump_flags & TDF_DETAILS))
5261 {
5262 fprintf (dump_file, "Modifying stmt:\n ");
5263 print_gimple_stmt (dump_file, stmt, 0, 0);
5264 }
5265 gimple_assign_set_rhs_from_tree (&gsi, val);
5266 update_stmt (stmt);
5267
5268 if (dump_file && (dump_flags & TDF_DETAILS))
5269 {
5270 fprintf (dump_file, "into:\n ");
5271 print_gimple_stmt (dump_file, stmt, 0, 0);
5272 fprintf (dump_file, "\n");
5273 }
5274
5275 *m_something_changed = true;
5276 if (maybe_clean_eh_stmt (stmt)
5277 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
5278 *m_cfg_changed = true;
5279 }
5280
5281 }
5282
5283 /* Update alignment of formal parameters as described in
5284 ipcp_transformation_summary. */
5285
5286 static void
5287 ipcp_update_alignments (struct cgraph_node *node)
5288 {
5289 tree fndecl = node->decl;
5290 tree parm = DECL_ARGUMENTS (fndecl);
5291 tree next_parm = parm;
5292 ipcp_transformation_summary *ts = ipcp_get_transformation_summary (node);
5293 if (!ts || vec_safe_length (ts->alignments) == 0)
5294 return;
5295 const vec<ipa_alignment, va_gc> &alignments = *ts->alignments;
5296 unsigned count = alignments.length ();
5297
5298 for (unsigned i = 0; i < count; ++i, parm = next_parm)
5299 {
5300 if (node->clone.combined_args_to_skip
5301 && bitmap_bit_p (node->clone.combined_args_to_skip, i))
5302 continue;
5303 gcc_checking_assert (parm);
5304 next_parm = DECL_CHAIN (parm);
5305
5306 if (!alignments[i].known || !is_gimple_reg (parm))
5307 continue;
5308 tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl), parm);
5309 if (!ddef)
5310 continue;
5311
5312 if (dump_file)
5313 fprintf (dump_file, " Adjusting alignment of param %u to %u, "
5314 "misalignment to %u\n", i, alignments[i].align,
5315 alignments[i].misalign);
5316
5317 struct ptr_info_def *pi = get_ptr_info (ddef);
5318 gcc_checking_assert (pi);
5319 unsigned old_align;
5320 unsigned old_misalign;
5321 bool old_known = get_ptr_info_alignment (pi, &old_align, &old_misalign);
5322
5323 if (old_known
5324 && old_align >= alignments[i].align)
5325 {
5326 if (dump_file)
5327 fprintf (dump_file, " But the alignment was already %u.\n",
5328 old_align);
5329 continue;
5330 }
5331 set_ptr_info_alignment (pi, alignments[i].align, alignments[i].misalign);
5332 }
5333 }
5334
5335 /* IPCP transformation phase doing propagation of aggregate values. */
5336
5337 unsigned int
5338 ipcp_transform_function (struct cgraph_node *node)
5339 {
5340 vec<ipa_param_descriptor> descriptors = vNULL;
5341 struct func_body_info fbi;
5342 struct ipa_agg_replacement_value *aggval;
5343 int param_count;
5344 bool cfg_changed = false, something_changed = false;
5345
5346 gcc_checking_assert (cfun);
5347 gcc_checking_assert (current_function_decl);
5348
5349 if (dump_file)
5350 fprintf (dump_file, "Modification phase of node %s/%i\n",
5351 node->name (), node->order);
5352
5353 ipcp_update_alignments (node);
5354 aggval = ipa_get_agg_replacements_for_node (node);
5355 if (!aggval)
5356 return 0;
5357 param_count = count_formal_params (node->decl);
5358 if (param_count == 0)
5359 return 0;
5360 adjust_agg_replacement_values (node, aggval);
5361 if (dump_file)
5362 ipa_dump_agg_replacement_values (dump_file, aggval);
5363
5364 fbi.node = node;
5365 fbi.info = NULL;
5366 fbi.bb_infos = vNULL;
5367 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
5368 fbi.param_count = param_count;
5369 fbi.aa_walked = 0;
5370
5371 descriptors.safe_grow_cleared (param_count);
5372 ipa_populate_param_decls (node, descriptors);
5373 calculate_dominance_info (CDI_DOMINATORS);
5374 ipcp_modif_dom_walker (&fbi, descriptors, aggval, &something_changed,
5375 &cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5376
5377 int i;
5378 struct ipa_bb_info *bi;
5379 FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
5380 free_ipa_bb_info (bi);
5381 fbi.bb_infos.release ();
5382 free_dominance_info (CDI_DOMINATORS);
5383 (*ipcp_transformations)[node->uid].agg_values = NULL;
5384 (*ipcp_transformations)[node->uid].alignments = NULL;
5385 descriptors.release ();
5386
5387 if (!something_changed)
5388 return 0;
5389 else if (cfg_changed)
5390 return TODO_update_ssa_only_virtuals | TODO_cleanup_cfg;
5391 else
5392 return TODO_update_ssa_only_virtuals;
5393 }