ipa-devirt.c: Include gimple-pretty-print.h
[gcc.git] / gcc / ipa-prop.c
1 /* Interprocedural analyses.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "basic-block.h"
25 #include "tree-ssa-alias.h"
26 #include "internal-fn.h"
27 #include "gimple-fold.h"
28 #include "tree-eh.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "expr.h"
33 #include "stor-layout.h"
34 #include "print-tree.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "gimple-walk.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "ipa-prop.h"
42 #include "bitmap.h"
43 #include "gimple-ssa.h"
44 #include "tree-cfg.h"
45 #include "tree-phinodes.h"
46 #include "ssa-iterators.h"
47 #include "tree-into-ssa.h"
48 #include "tree-dfa.h"
49 #include "tree-pass.h"
50 #include "tree-inline.h"
51 #include "ipa-inline.h"
52 #include "flags.h"
53 #include "diagnostic.h"
54 #include "gimple-pretty-print.h"
55 #include "lto-streamer.h"
56 #include "data-streamer.h"
57 #include "tree-streamer.h"
58 #include "params.h"
59 #include "ipa-utils.h"
60 #include "stringpool.h"
61 #include "tree-ssanames.h"
62 #include "dbgcnt.h"
63 #include "domwalk.h"
64 #include "builtins.h"
65 #include "calls.h"
66
67 /* Intermediate information that we get from alias analysis about a particular
68 parameter in a particular basic_block. When a parameter or the memory it
69 references is marked modified, we use that information in all dominatd
70 blocks without cosulting alias analysis oracle. */
71
72 struct param_aa_status
73 {
74 /* Set when this structure contains meaningful information. If not, the
75 structure describing a dominating BB should be used instead. */
76 bool valid;
77
78 /* Whether we have seen something which might have modified the data in
79 question. PARM is for the parameter itself, REF is for data it points to
80 but using the alias type of individual accesses and PT is the same thing
81 but for computing aggregate pass-through functions using a very inclusive
82 ao_ref. */
83 bool parm_modified, ref_modified, pt_modified;
84 };
85
86 /* Information related to a given BB that used only when looking at function
87 body. */
88
89 struct ipa_bb_info
90 {
91 /* Call graph edges going out of this BB. */
92 vec<cgraph_edge *> cg_edges;
93 /* Alias analysis statuses of each formal parameter at this bb. */
94 vec<param_aa_status> param_aa_statuses;
95 };
96
97 /* Structure with global information that is only used when looking at function
98 body. */
99
100 struct func_body_info
101 {
102 /* The node that is being analyzed. */
103 cgraph_node *node;
104
105 /* Its info. */
106 struct ipa_node_params *info;
107
108 /* Information about individual BBs. */
109 vec<ipa_bb_info> bb_infos;
110
111 /* Number of parameters. */
112 int param_count;
113
114 /* Number of statements already walked by when analyzing this function. */
115 unsigned int aa_walked;
116 };
117
118 /* Vector where the parameter infos are actually stored. */
119 vec<ipa_node_params> ipa_node_params_vector;
120 /* Vector of known aggregate values in cloned nodes. */
121 vec<ipa_agg_replacement_value_p, va_gc> *ipa_node_agg_replacements;
122 /* Vector where the parameter infos are actually stored. */
123 vec<ipa_edge_args, va_gc> *ipa_edge_args_vector;
124
125 /* Holders of ipa cgraph hooks: */
126 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
127 static struct cgraph_node_hook_list *node_removal_hook_holder;
128 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
129 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
130 static struct cgraph_node_hook_list *function_insertion_hook_holder;
131
132 /* Description of a reference to an IPA constant. */
133 struct ipa_cst_ref_desc
134 {
135 /* Edge that corresponds to the statement which took the reference. */
136 struct cgraph_edge *cs;
137 /* Linked list of duplicates created when call graph edges are cloned. */
138 struct ipa_cst_ref_desc *next_duplicate;
139 /* Number of references in IPA structures, IPA_UNDESCRIBED_USE if the value
140 if out of control. */
141 int refcount;
142 };
143
144 /* Allocation pool for reference descriptions. */
145
146 static alloc_pool ipa_refdesc_pool;
147
148 /* Return true if DECL_FUNCTION_SPECIFIC_OPTIMIZATION of the decl associated
149 with NODE should prevent us from analyzing it for the purposes of IPA-CP. */
150
151 static bool
152 ipa_func_spec_opts_forbid_analysis_p (struct cgraph_node *node)
153 {
154 tree fs_opts = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (node->decl);
155 struct cl_optimization *os;
156
157 if (!fs_opts)
158 return false;
159 os = TREE_OPTIMIZATION (fs_opts);
160 return !os->x_optimize || !os->x_flag_ipa_cp;
161 }
162
163 /* Return index of the formal whose tree is PTREE in function which corresponds
164 to INFO. */
165
166 static int
167 ipa_get_param_decl_index_1 (vec<ipa_param_descriptor> descriptors, tree ptree)
168 {
169 int i, count;
170
171 count = descriptors.length ();
172 for (i = 0; i < count; i++)
173 if (descriptors[i].decl == ptree)
174 return i;
175
176 return -1;
177 }
178
179 /* Return index of the formal whose tree is PTREE in function which corresponds
180 to INFO. */
181
182 int
183 ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
184 {
185 return ipa_get_param_decl_index_1 (info->descriptors, ptree);
186 }
187
188 /* Populate the param_decl field in parameter DESCRIPTORS that correspond to
189 NODE. */
190
191 static void
192 ipa_populate_param_decls (struct cgraph_node *node,
193 vec<ipa_param_descriptor> &descriptors)
194 {
195 tree fndecl;
196 tree fnargs;
197 tree parm;
198 int param_num;
199
200 fndecl = node->decl;
201 gcc_assert (gimple_has_body_p (fndecl));
202 fnargs = DECL_ARGUMENTS (fndecl);
203 param_num = 0;
204 for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
205 {
206 descriptors[param_num].decl = parm;
207 descriptors[param_num].move_cost = estimate_move_cost (TREE_TYPE (parm),
208 true);
209 param_num++;
210 }
211 }
212
213 /* Return how many formal parameters FNDECL has. */
214
215 int
216 count_formal_params (tree fndecl)
217 {
218 tree parm;
219 int count = 0;
220 gcc_assert (gimple_has_body_p (fndecl));
221
222 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
223 count++;
224
225 return count;
226 }
227
228 /* Return the declaration of Ith formal parameter of the function corresponding
229 to INFO. Note there is no setter function as this array is built just once
230 using ipa_initialize_node_params. */
231
232 void
233 ipa_dump_param (FILE *file, struct ipa_node_params *info, int i)
234 {
235 fprintf (file, "param #%i", i);
236 if (info->descriptors[i].decl)
237 {
238 fprintf (file, " ");
239 print_generic_expr (file, info->descriptors[i].decl, 0);
240 }
241 }
242
243 /* Initialize the ipa_node_params structure associated with NODE
244 to hold PARAM_COUNT parameters. */
245
246 void
247 ipa_alloc_node_params (struct cgraph_node *node, int param_count)
248 {
249 struct ipa_node_params *info = IPA_NODE_REF (node);
250
251 if (!info->descriptors.exists () && param_count)
252 info->descriptors.safe_grow_cleared (param_count);
253 }
254
255 /* Initialize the ipa_node_params structure associated with NODE by counting
256 the function parameters, creating the descriptors and populating their
257 param_decls. */
258
259 void
260 ipa_initialize_node_params (struct cgraph_node *node)
261 {
262 struct ipa_node_params *info = IPA_NODE_REF (node);
263
264 if (!info->descriptors.exists ())
265 {
266 ipa_alloc_node_params (node, count_formal_params (node->decl));
267 ipa_populate_param_decls (node, info->descriptors);
268 }
269 }
270
271 /* Print the jump functions associated with call graph edge CS to file F. */
272
273 static void
274 ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
275 {
276 int i, count;
277
278 count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
279 for (i = 0; i < count; i++)
280 {
281 struct ipa_jump_func *jump_func;
282 enum jump_func_type type;
283
284 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
285 type = jump_func->type;
286
287 fprintf (f, " param %d: ", i);
288 if (type == IPA_JF_UNKNOWN)
289 fprintf (f, "UNKNOWN\n");
290 else if (type == IPA_JF_KNOWN_TYPE)
291 {
292 fprintf (f, "KNOWN TYPE: base ");
293 print_generic_expr (f, jump_func->value.known_type.base_type, 0);
294 fprintf (f, ", offset "HOST_WIDE_INT_PRINT_DEC", component ",
295 jump_func->value.known_type.offset);
296 print_generic_expr (f, jump_func->value.known_type.component_type, 0);
297 fprintf (f, "\n");
298 }
299 else if (type == IPA_JF_CONST)
300 {
301 tree val = jump_func->value.constant.value;
302 fprintf (f, "CONST: ");
303 print_generic_expr (f, val, 0);
304 if (TREE_CODE (val) == ADDR_EXPR
305 && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
306 {
307 fprintf (f, " -> ");
308 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
309 0);
310 }
311 fprintf (f, "\n");
312 }
313 else if (type == IPA_JF_PASS_THROUGH)
314 {
315 fprintf (f, "PASS THROUGH: ");
316 fprintf (f, "%d, op %s",
317 jump_func->value.pass_through.formal_id,
318 get_tree_code_name(jump_func->value.pass_through.operation));
319 if (jump_func->value.pass_through.operation != NOP_EXPR)
320 {
321 fprintf (f, " ");
322 print_generic_expr (f,
323 jump_func->value.pass_through.operand, 0);
324 }
325 if (jump_func->value.pass_through.agg_preserved)
326 fprintf (f, ", agg_preserved");
327 if (jump_func->value.pass_through.type_preserved)
328 fprintf (f, ", type_preserved");
329 fprintf (f, "\n");
330 }
331 else if (type == IPA_JF_ANCESTOR)
332 {
333 fprintf (f, "ANCESTOR: ");
334 fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
335 jump_func->value.ancestor.formal_id,
336 jump_func->value.ancestor.offset);
337 print_generic_expr (f, jump_func->value.ancestor.type, 0);
338 if (jump_func->value.ancestor.agg_preserved)
339 fprintf (f, ", agg_preserved");
340 if (jump_func->value.ancestor.type_preserved)
341 fprintf (f, ", type_preserved");
342 fprintf (f, "\n");
343 }
344
345 if (jump_func->agg.items)
346 {
347 struct ipa_agg_jf_item *item;
348 int j;
349
350 fprintf (f, " Aggregate passed by %s:\n",
351 jump_func->agg.by_ref ? "reference" : "value");
352 FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, j, item)
353 {
354 fprintf (f, " offset: " HOST_WIDE_INT_PRINT_DEC ", ",
355 item->offset);
356 if (TYPE_P (item->value))
357 fprintf (f, "clobber of " HOST_WIDE_INT_PRINT_DEC " bits",
358 tree_to_uhwi (TYPE_SIZE (item->value)));
359 else
360 {
361 fprintf (f, "cst: ");
362 print_generic_expr (f, item->value, 0);
363 }
364 fprintf (f, "\n");
365 }
366 }
367 }
368 }
369
370
371 /* Print the jump functions of all arguments on all call graph edges going from
372 NODE to file F. */
373
374 void
375 ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
376 {
377 struct cgraph_edge *cs;
378
379 fprintf (f, " Jump functions of caller %s/%i:\n", node->name (),
380 node->order);
381 for (cs = node->callees; cs; cs = cs->next_callee)
382 {
383 if (!ipa_edge_args_info_available_for_edge_p (cs))
384 continue;
385
386 fprintf (f, " callsite %s/%i -> %s/%i : \n",
387 xstrdup (node->name ()), node->order,
388 xstrdup (cs->callee->name ()),
389 cs->callee->order);
390 ipa_print_node_jump_functions_for_edge (f, cs);
391 }
392
393 for (cs = node->indirect_calls; cs; cs = cs->next_callee)
394 {
395 struct cgraph_indirect_call_info *ii;
396 if (!ipa_edge_args_info_available_for_edge_p (cs))
397 continue;
398
399 ii = cs->indirect_info;
400 if (ii->agg_contents)
401 fprintf (f, " indirect %s callsite, calling param %i, "
402 "offset " HOST_WIDE_INT_PRINT_DEC ", %s",
403 ii->member_ptr ? "member ptr" : "aggregate",
404 ii->param_index, ii->offset,
405 ii->by_ref ? "by reference" : "by_value");
406 else
407 fprintf (f, " indirect %s callsite, calling param %i, "
408 "offset " HOST_WIDE_INT_PRINT_DEC,
409 ii->polymorphic ? "polymorphic" : "simple", ii->param_index,
410 ii->offset);
411
412 if (cs->call_stmt)
413 {
414 fprintf (f, ", for stmt ");
415 print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
416 }
417 else
418 fprintf (f, "\n");
419 ipa_print_node_jump_functions_for_edge (f, cs);
420 }
421 }
422
423 /* Print ipa_jump_func data structures of all nodes in the call graph to F. */
424
425 void
426 ipa_print_all_jump_functions (FILE *f)
427 {
428 struct cgraph_node *node;
429
430 fprintf (f, "\nJump functions:\n");
431 FOR_EACH_FUNCTION (node)
432 {
433 ipa_print_node_jump_functions (f, node);
434 }
435 }
436
437 /* Set JFUNC to be a known type jump function. */
438
439 static void
440 ipa_set_jf_known_type (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
441 tree base_type, tree component_type)
442 {
443 /* Recording and propagating main variants increases change that types
444 will match. */
445 base_type = TYPE_MAIN_VARIANT (base_type);
446 component_type = TYPE_MAIN_VARIANT (component_type);
447
448 gcc_assert (contains_polymorphic_type_p (base_type)
449 && contains_polymorphic_type_p (component_type));
450 if (!flag_devirtualize)
451 return;
452 jfunc->type = IPA_JF_KNOWN_TYPE;
453 jfunc->value.known_type.offset = offset,
454 jfunc->value.known_type.base_type = base_type;
455 jfunc->value.known_type.component_type = component_type;
456 gcc_assert (component_type);
457 }
458
459 /* Set JFUNC to be a copy of another jmp (to be used by jump function
460 combination code). The two functions will share their rdesc. */
461
462 static void
463 ipa_set_jf_cst_copy (struct ipa_jump_func *dst,
464 struct ipa_jump_func *src)
465
466 {
467 gcc_checking_assert (src->type == IPA_JF_CONST);
468 dst->type = IPA_JF_CONST;
469 dst->value.constant = src->value.constant;
470 }
471
472 /* Set JFUNC to be a constant jmp function. */
473
474 static void
475 ipa_set_jf_constant (struct ipa_jump_func *jfunc, tree constant,
476 struct cgraph_edge *cs)
477 {
478 constant = unshare_expr (constant);
479 if (constant && EXPR_P (constant))
480 SET_EXPR_LOCATION (constant, UNKNOWN_LOCATION);
481 jfunc->type = IPA_JF_CONST;
482 jfunc->value.constant.value = unshare_expr_without_location (constant);
483
484 if (TREE_CODE (constant) == ADDR_EXPR
485 && TREE_CODE (TREE_OPERAND (constant, 0)) == FUNCTION_DECL)
486 {
487 struct ipa_cst_ref_desc *rdesc;
488 if (!ipa_refdesc_pool)
489 ipa_refdesc_pool = create_alloc_pool ("IPA-PROP ref descriptions",
490 sizeof (struct ipa_cst_ref_desc), 32);
491
492 rdesc = (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
493 rdesc->cs = cs;
494 rdesc->next_duplicate = NULL;
495 rdesc->refcount = 1;
496 jfunc->value.constant.rdesc = rdesc;
497 }
498 else
499 jfunc->value.constant.rdesc = NULL;
500 }
501
502 /* Set JFUNC to be a simple pass-through jump function. */
503 static void
504 ipa_set_jf_simple_pass_through (struct ipa_jump_func *jfunc, int formal_id,
505 bool agg_preserved, bool type_preserved)
506 {
507 jfunc->type = IPA_JF_PASS_THROUGH;
508 jfunc->value.pass_through.operand = NULL_TREE;
509 jfunc->value.pass_through.formal_id = formal_id;
510 jfunc->value.pass_through.operation = NOP_EXPR;
511 jfunc->value.pass_through.agg_preserved = agg_preserved;
512 jfunc->value.pass_through.type_preserved = type_preserved;
513 }
514
515 /* Set JFUNC to be an arithmetic pass through jump function. */
516
517 static void
518 ipa_set_jf_arith_pass_through (struct ipa_jump_func *jfunc, int formal_id,
519 tree operand, enum tree_code operation)
520 {
521 jfunc->type = IPA_JF_PASS_THROUGH;
522 jfunc->value.pass_through.operand = unshare_expr_without_location (operand);
523 jfunc->value.pass_through.formal_id = formal_id;
524 jfunc->value.pass_through.operation = operation;
525 jfunc->value.pass_through.agg_preserved = false;
526 jfunc->value.pass_through.type_preserved = false;
527 }
528
529 /* Set JFUNC to be an ancestor jump function. */
530
531 static void
532 ipa_set_ancestor_jf (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
533 tree type, int formal_id, bool agg_preserved,
534 bool type_preserved)
535 {
536 if (!flag_devirtualize)
537 type_preserved = false;
538 if (!type_preserved)
539 type = NULL_TREE;
540 if (type)
541 type = TYPE_MAIN_VARIANT (type);
542 gcc_assert (!type_preserved || contains_polymorphic_type_p (type));
543 jfunc->type = IPA_JF_ANCESTOR;
544 jfunc->value.ancestor.formal_id = formal_id;
545 jfunc->value.ancestor.offset = offset;
546 jfunc->value.ancestor.type = type_preserved ? type : NULL;
547 jfunc->value.ancestor.agg_preserved = agg_preserved;
548 jfunc->value.ancestor.type_preserved = type_preserved;
549 }
550
551 /* Extract the acual BINFO being described by JFUNC which must be a known type
552 jump function. */
553
554 tree
555 ipa_binfo_from_known_type_jfunc (struct ipa_jump_func *jfunc)
556 {
557 if (!RECORD_OR_UNION_TYPE_P (jfunc->value.known_type.base_type))
558 return NULL_TREE;
559
560 tree base_binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
561
562 if (!base_binfo)
563 return NULL_TREE;
564 /* FIXME: At LTO we can't propagate to non-polymorphic type, because
565 we have no ODR equivalency on those. This should be fixed by
566 propagating on types rather than binfos that would make type
567 matching here unnecesary. */
568 if (in_lto_p
569 && (TREE_CODE (jfunc->value.known_type.component_type) != RECORD_TYPE
570 || !TYPE_BINFO (jfunc->value.known_type.component_type)
571 || !BINFO_VTABLE (TYPE_BINFO (jfunc->value.known_type.component_type))))
572 {
573 if (!jfunc->value.known_type.offset)
574 return base_binfo;
575 return NULL;
576 }
577 return get_binfo_at_offset (base_binfo,
578 jfunc->value.known_type.offset,
579 jfunc->value.known_type.component_type);
580 }
581
582 /* Get IPA BB information about the given BB. FBI is the context of analyzis
583 of this function body. */
584
585 static struct ipa_bb_info *
586 ipa_get_bb_info (struct func_body_info *fbi, basic_block bb)
587 {
588 gcc_checking_assert (fbi);
589 return &fbi->bb_infos[bb->index];
590 }
591
592 /* Structure to be passed in between detect_type_change and
593 check_stmt_for_type_change. */
594
595 struct type_change_info
596 {
597 /* Offset into the object where there is the virtual method pointer we are
598 looking for. */
599 HOST_WIDE_INT offset;
600 /* The declaration or SSA_NAME pointer of the base that we are checking for
601 type change. */
602 tree object;
603 /* If we actually can tell the type that the object has changed to, it is
604 stored in this field. Otherwise it remains NULL_TREE. */
605 tree known_current_type;
606 /* Set to true if dynamic type change has been detected. */
607 bool type_maybe_changed;
608 /* Set to true if multiple types have been encountered. known_current_type
609 must be disregarded in that case. */
610 bool multiple_types_encountered;
611 };
612
613 /* Return true if STMT can modify a virtual method table pointer.
614
615 This function makes special assumptions about both constructors and
616 destructors which are all the functions that are allowed to alter the VMT
617 pointers. It assumes that destructors begin with assignment into all VMT
618 pointers and that constructors essentially look in the following way:
619
620 1) The very first thing they do is that they call constructors of ancestor
621 sub-objects that have them.
622
623 2) Then VMT pointers of this and all its ancestors is set to new values
624 corresponding to the type corresponding to the constructor.
625
626 3) Only afterwards, other stuff such as constructor of member sub-objects
627 and the code written by the user is run. Only this may include calling
628 virtual functions, directly or indirectly.
629
630 There is no way to call a constructor of an ancestor sub-object in any
631 other way.
632
633 This means that we do not have to care whether constructors get the correct
634 type information because they will always change it (in fact, if we define
635 the type to be given by the VMT pointer, it is undefined).
636
637 The most important fact to derive from the above is that if, for some
638 statement in the section 3, we try to detect whether the dynamic type has
639 changed, we can safely ignore all calls as we examine the function body
640 backwards until we reach statements in section 2 because these calls cannot
641 be ancestor constructors or destructors (if the input is not bogus) and so
642 do not change the dynamic type (this holds true only for automatically
643 allocated objects but at the moment we devirtualize only these). We then
644 must detect that statements in section 2 change the dynamic type and can try
645 to derive the new type. That is enough and we can stop, we will never see
646 the calls into constructors of sub-objects in this code. Therefore we can
647 safely ignore all call statements that we traverse.
648 */
649
650 static bool
651 stmt_may_be_vtbl_ptr_store (gimple stmt)
652 {
653 if (is_gimple_call (stmt))
654 return false;
655 if (gimple_clobber_p (stmt))
656 return false;
657 else if (is_gimple_assign (stmt))
658 {
659 tree lhs = gimple_assign_lhs (stmt);
660
661 if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
662 {
663 if (flag_strict_aliasing
664 && !POINTER_TYPE_P (TREE_TYPE (lhs)))
665 return false;
666
667 if (TREE_CODE (lhs) == COMPONENT_REF
668 && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
669 return false;
670 /* In the future we might want to use get_base_ref_and_offset to find
671 if there is a field corresponding to the offset and if so, proceed
672 almost like if it was a component ref. */
673 }
674 }
675 return true;
676 }
677
678 /* If STMT can be proved to be an assignment to the virtual method table
679 pointer of ANALYZED_OBJ and the type associated with the new table
680 identified, return the type. Otherwise return NULL_TREE. */
681
682 static tree
683 extr_type_from_vtbl_ptr_store (gimple stmt, struct type_change_info *tci)
684 {
685 HOST_WIDE_INT offset, size, max_size;
686 tree lhs, rhs, base, binfo;
687
688 if (!gimple_assign_single_p (stmt))
689 return NULL_TREE;
690
691 lhs = gimple_assign_lhs (stmt);
692 rhs = gimple_assign_rhs1 (stmt);
693 if (TREE_CODE (lhs) != COMPONENT_REF
694 || !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
695 return NULL_TREE;
696
697 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
698 if (offset != tci->offset
699 || size != POINTER_SIZE
700 || max_size != POINTER_SIZE)
701 return NULL_TREE;
702 if (TREE_CODE (base) == MEM_REF)
703 {
704 if (TREE_CODE (tci->object) != MEM_REF
705 || TREE_OPERAND (tci->object, 0) != TREE_OPERAND (base, 0)
706 || !tree_int_cst_equal (TREE_OPERAND (tci->object, 1),
707 TREE_OPERAND (base, 1)))
708 return NULL_TREE;
709 }
710 else if (tci->object != base)
711 return NULL_TREE;
712
713 binfo = vtable_pointer_value_to_binfo (rhs);
714
715 /* FIXME: vtable_pointer_value_to_binfo may return BINFO of a
716 base of outer type. In this case we would need to either
717 work on binfos or translate it back to outer type and offset.
718 KNOWN_TYPE jump functions are not ready for that, yet. */
719 if (!binfo || TYPE_BINFO (BINFO_TYPE (binfo)) != binfo)
720 return NULL;
721
722 return BINFO_TYPE (binfo);
723 }
724
725 /* Callback of walk_aliased_vdefs and a helper function for
726 detect_type_change to check whether a particular statement may modify
727 the virtual table pointer, and if possible also determine the new type of
728 the (sub-)object. It stores its result into DATA, which points to a
729 type_change_info structure. */
730
731 static bool
732 check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
733 {
734 gimple stmt = SSA_NAME_DEF_STMT (vdef);
735 struct type_change_info *tci = (struct type_change_info *) data;
736
737 if (stmt_may_be_vtbl_ptr_store (stmt))
738 {
739 tree type;
740
741 type = extr_type_from_vtbl_ptr_store (stmt, tci);
742 gcc_assert (!type || TYPE_MAIN_VARIANT (type) == type);
743 if (tci->type_maybe_changed
744 && type != tci->known_current_type)
745 tci->multiple_types_encountered = true;
746 tci->known_current_type = type;
747 tci->type_maybe_changed = true;
748 return true;
749 }
750 else
751 return false;
752 }
753
754 /* See if ARG is PARAM_DECl describing instance passed by pointer
755 or reference in FUNCTION. Return false if the dynamic type may change
756 in between beggining of the function until CALL is invoked.
757
758 Generally functions are not allowed to change type of such instances,
759 but they call destructors. We assume that methods can not destroy the THIS
760 pointer. Also as a special cases, constructor and destructors may change
761 type of the THIS pointer. */
762
763 static bool
764 param_type_may_change_p (tree function, tree arg, gimple call)
765 {
766 /* Pure functions can not do any changes on the dynamic type;
767 that require writting to memory. */
768 if (flags_from_decl_or_type (function) & (ECF_PURE | ECF_CONST))
769 return false;
770 /* We need to check if we are within inlined consturctor
771 or destructor (ideally we would have way to check that the
772 inline cdtor is actually working on ARG, but we don't have
773 easy tie on this, so punt on all non-pure cdtors.
774 We may also record the types of cdtors and once we know type
775 of the instance match them.
776
777 Also code unification optimizations may merge calls from
778 different blocks making return values unreliable. So
779 do nothing during late optimization. */
780 if (DECL_STRUCT_FUNCTION (function)->after_inlining)
781 return true;
782 if (TREE_CODE (arg) == SSA_NAME
783 && SSA_NAME_IS_DEFAULT_DEF (arg)
784 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
785 {
786 /* Normal (non-THIS) argument. */
787 if ((SSA_NAME_VAR (arg) != DECL_ARGUMENTS (function)
788 || TREE_CODE (TREE_TYPE (function)) != METHOD_TYPE)
789 /* THIS pointer of an method - here we we want to watch constructors
790 and destructors as those definitely may change the dynamic
791 type. */
792 || (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE
793 && !DECL_CXX_CONSTRUCTOR_P (function)
794 && !DECL_CXX_DESTRUCTOR_P (function)
795 && (SSA_NAME_VAR (arg) == DECL_ARGUMENTS (function))))
796 {
797 /* Walk the inline stack and watch out for ctors/dtors. */
798 for (tree block = gimple_block (call); block && TREE_CODE (block) == BLOCK;
799 block = BLOCK_SUPERCONTEXT (block))
800 if (BLOCK_ABSTRACT_ORIGIN (block)
801 && TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block)) == FUNCTION_DECL)
802 {
803 tree fn = BLOCK_ABSTRACT_ORIGIN (block);
804
805 if (flags_from_decl_or_type (fn) & (ECF_PURE | ECF_CONST))
806 continue;
807 if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE
808 && (DECL_CXX_CONSTRUCTOR_P (fn)
809 || DECL_CXX_DESTRUCTOR_P (fn)))
810 return true;
811 }
812 return false;
813 }
814 }
815 return true;
816 }
817
818 /* Detect whether the dynamic type of ARG of COMP_TYPE has changed (before
819 callsite CALL) by looking for assignments to its virtual table pointer. If
820 it is, return true and fill in the jump function JFUNC with relevant type
821 information or set it to unknown. ARG is the object itself (not a pointer
822 to it, unless dereferenced). BASE is the base of the memory access as
823 returned by get_ref_base_and_extent, as is the offset.
824
825 This is helper function for detect_type_change and detect_type_change_ssa
826 that does the heavy work which is usually unnecesary. */
827
828 static bool
829 detect_type_change_from_memory_writes (tree arg, tree base, tree comp_type,
830 gimple call, struct ipa_jump_func *jfunc,
831 HOST_WIDE_INT offset)
832 {
833 struct type_change_info tci;
834 ao_ref ao;
835 bool entry_reached = false;
836
837 gcc_checking_assert (DECL_P (arg)
838 || TREE_CODE (arg) == MEM_REF
839 || handled_component_p (arg));
840
841 comp_type = TYPE_MAIN_VARIANT (comp_type);
842
843 /* Const calls cannot call virtual methods through VMT and so type changes do
844 not matter. */
845 if (!flag_devirtualize || !gimple_vuse (call)
846 /* Be sure expected_type is polymorphic. */
847 || !comp_type
848 || TREE_CODE (comp_type) != RECORD_TYPE
849 || !TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))
850 || !BINFO_VTABLE (TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))))
851 return true;
852
853 ao_ref_init (&ao, arg);
854 ao.base = base;
855 ao.offset = offset;
856 ao.size = POINTER_SIZE;
857 ao.max_size = ao.size;
858
859 tci.offset = offset;
860 tci.object = get_base_address (arg);
861 tci.known_current_type = NULL_TREE;
862 tci.type_maybe_changed = false;
863 tci.multiple_types_encountered = false;
864
865 walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
866 &tci, NULL, &entry_reached);
867 if (!tci.type_maybe_changed)
868 return false;
869
870 if (!tci.known_current_type
871 || tci.multiple_types_encountered
872 || offset != 0
873 /* When the walk reached function entry, it means that type
874 is set along some paths but not along others. */
875 || entry_reached)
876 jfunc->type = IPA_JF_UNKNOWN;
877 else
878 ipa_set_jf_known_type (jfunc, 0, tci.known_current_type, comp_type);
879
880 return true;
881 }
882
883 /* Detect whether the dynamic type of ARG of COMP_TYPE may have changed.
884 If it is, return true and fill in the jump function JFUNC with relevant type
885 information or set it to unknown. ARG is the object itself (not a pointer
886 to it, unless dereferenced). BASE is the base of the memory access as
887 returned by get_ref_base_and_extent, as is the offset. */
888
889 static bool
890 detect_type_change (tree arg, tree base, tree comp_type, gimple call,
891 struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
892 {
893 if (!flag_devirtualize)
894 return false;
895
896 if (TREE_CODE (base) == MEM_REF
897 && !param_type_may_change_p (current_function_decl,
898 TREE_OPERAND (base, 0),
899 call))
900 return false;
901 return detect_type_change_from_memory_writes (arg, base, comp_type,
902 call, jfunc, offset);
903 }
904
905 /* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
906 SSA name (its dereference will become the base and the offset is assumed to
907 be zero). */
908
909 static bool
910 detect_type_change_ssa (tree arg, tree comp_type,
911 gimple call, struct ipa_jump_func *jfunc)
912 {
913 gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
914 if (!flag_devirtualize
915 || !POINTER_TYPE_P (TREE_TYPE (arg)))
916 return false;
917
918 if (!param_type_may_change_p (current_function_decl, arg, call))
919 return false;
920
921 arg = build2 (MEM_REF, ptr_type_node, arg,
922 build_int_cst (ptr_type_node, 0));
923
924 return detect_type_change_from_memory_writes (arg, arg, comp_type,
925 call, jfunc, 0);
926 }
927
928 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
929 boolean variable pointed to by DATA. */
930
931 static bool
932 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
933 void *data)
934 {
935 bool *b = (bool *) data;
936 *b = true;
937 return true;
938 }
939
940 /* Return true if we have already walked so many statements in AA that we
941 should really just start giving up. */
942
943 static bool
944 aa_overwalked (struct func_body_info *fbi)
945 {
946 gcc_checking_assert (fbi);
947 return fbi->aa_walked > (unsigned) PARAM_VALUE (PARAM_IPA_MAX_AA_STEPS);
948 }
949
950 /* Find the nearest valid aa status for parameter specified by INDEX that
951 dominates BB. */
952
953 static struct param_aa_status *
954 find_dominating_aa_status (struct func_body_info *fbi, basic_block bb,
955 int index)
956 {
957 while (true)
958 {
959 bb = get_immediate_dominator (CDI_DOMINATORS, bb);
960 if (!bb)
961 return NULL;
962 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
963 if (!bi->param_aa_statuses.is_empty ()
964 && bi->param_aa_statuses[index].valid)
965 return &bi->param_aa_statuses[index];
966 }
967 }
968
969 /* Get AA status structure for the given BB and parameter with INDEX. Allocate
970 structures and/or intialize the result with a dominating description as
971 necessary. */
972
973 static struct param_aa_status *
974 parm_bb_aa_status_for_bb (struct func_body_info *fbi, basic_block bb,
975 int index)
976 {
977 gcc_checking_assert (fbi);
978 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
979 if (bi->param_aa_statuses.is_empty ())
980 bi->param_aa_statuses.safe_grow_cleared (fbi->param_count);
981 struct param_aa_status *paa = &bi->param_aa_statuses[index];
982 if (!paa->valid)
983 {
984 gcc_checking_assert (!paa->parm_modified
985 && !paa->ref_modified
986 && !paa->pt_modified);
987 struct param_aa_status *dom_paa;
988 dom_paa = find_dominating_aa_status (fbi, bb, index);
989 if (dom_paa)
990 *paa = *dom_paa;
991 else
992 paa->valid = true;
993 }
994
995 return paa;
996 }
997
998 /* Return true if a load from a formal parameter PARM_LOAD is known to retrieve
999 a value known not to be modified in this function before reaching the
1000 statement STMT. FBI holds information about the function we have so far
1001 gathered but do not survive the summary building stage. */
1002
1003 static bool
1004 parm_preserved_before_stmt_p (struct func_body_info *fbi, int index,
1005 gimple stmt, tree parm_load)
1006 {
1007 struct param_aa_status *paa;
1008 bool modified = false;
1009 ao_ref refd;
1010
1011 /* FIXME: FBI can be NULL if we are being called from outside
1012 ipa_node_analysis or ipcp_transform_function, which currently happens
1013 during inlining analysis. It would be great to extend fbi's lifetime and
1014 always have it. Currently, we are just not afraid of too much walking in
1015 that case. */
1016 if (fbi)
1017 {
1018 if (aa_overwalked (fbi))
1019 return false;
1020 paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
1021 if (paa->parm_modified)
1022 return false;
1023 }
1024 else
1025 paa = NULL;
1026
1027 gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
1028 ao_ref_init (&refd, parm_load);
1029 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
1030 &modified, NULL);
1031 if (fbi)
1032 fbi->aa_walked += walked;
1033 if (paa && modified)
1034 paa->parm_modified = true;
1035 return !modified;
1036 }
1037
1038 /* If STMT is an assignment that loads a value from an parameter declaration,
1039 return the index of the parameter in ipa_node_params which has not been
1040 modified. Otherwise return -1. */
1041
1042 static int
1043 load_from_unmodified_param (struct func_body_info *fbi,
1044 vec<ipa_param_descriptor> descriptors,
1045 gimple stmt)
1046 {
1047 int index;
1048 tree op1;
1049
1050 if (!gimple_assign_single_p (stmt))
1051 return -1;
1052
1053 op1 = gimple_assign_rhs1 (stmt);
1054 if (TREE_CODE (op1) != PARM_DECL)
1055 return -1;
1056
1057 index = ipa_get_param_decl_index_1 (descriptors, op1);
1058 if (index < 0
1059 || !parm_preserved_before_stmt_p (fbi, index, stmt, op1))
1060 return -1;
1061
1062 return index;
1063 }
1064
1065 /* Return true if memory reference REF (which must be a load through parameter
1066 with INDEX) loads data that are known to be unmodified in this function
1067 before reaching statement STMT. */
1068
1069 static bool
1070 parm_ref_data_preserved_p (struct func_body_info *fbi,
1071 int index, gimple stmt, tree ref)
1072 {
1073 struct param_aa_status *paa;
1074 bool modified = false;
1075 ao_ref refd;
1076
1077 /* FIXME: FBI can be NULL if we are being called from outside
1078 ipa_node_analysis or ipcp_transform_function, which currently happens
1079 during inlining analysis. It would be great to extend fbi's lifetime and
1080 always have it. Currently, we are just not afraid of too much walking in
1081 that case. */
1082 if (fbi)
1083 {
1084 if (aa_overwalked (fbi))
1085 return false;
1086 paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
1087 if (paa->ref_modified)
1088 return false;
1089 }
1090 else
1091 paa = NULL;
1092
1093 gcc_checking_assert (gimple_vuse (stmt));
1094 ao_ref_init (&refd, ref);
1095 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
1096 &modified, NULL);
1097 if (fbi)
1098 fbi->aa_walked += walked;
1099 if (paa && modified)
1100 paa->ref_modified = true;
1101 return !modified;
1102 }
1103
1104 /* Return true if the data pointed to by PARM (which is a parameter with INDEX)
1105 is known to be unmodified in this function before reaching call statement
1106 CALL into which it is passed. FBI describes the function body. */
1107
1108 static bool
1109 parm_ref_data_pass_through_p (struct func_body_info *fbi, int index,
1110 gimple call, tree parm)
1111 {
1112 bool modified = false;
1113 ao_ref refd;
1114
1115 /* It's unnecessary to calculate anything about memory contnets for a const
1116 function because it is not goin to use it. But do not cache the result
1117 either. Also, no such calculations for non-pointers. */
1118 if (!gimple_vuse (call)
1119 || !POINTER_TYPE_P (TREE_TYPE (parm))
1120 || aa_overwalked (fbi))
1121 return false;
1122
1123 struct param_aa_status *paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (call),
1124 index);
1125 if (paa->pt_modified)
1126 return false;
1127
1128 ao_ref_init_from_ptr_and_size (&refd, parm, NULL_TREE);
1129 int walked = walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
1130 &modified, NULL);
1131 fbi->aa_walked += walked;
1132 if (modified)
1133 paa->pt_modified = true;
1134 return !modified;
1135 }
1136
1137 /* Return true if we can prove that OP is a memory reference loading unmodified
1138 data from an aggregate passed as a parameter and if the aggregate is passed
1139 by reference, that the alias type of the load corresponds to the type of the
1140 formal parameter (so that we can rely on this type for TBAA in callers).
1141 INFO and PARMS_AINFO describe parameters of the current function (but the
1142 latter can be NULL), STMT is the load statement. If function returns true,
1143 *INDEX_P, *OFFSET_P and *BY_REF is filled with the parameter index, offset
1144 within the aggregate and whether it is a load from a value passed by
1145 reference respectively. */
1146
1147 static bool
1148 ipa_load_from_parm_agg_1 (struct func_body_info *fbi,
1149 vec<ipa_param_descriptor> descriptors,
1150 gimple stmt, tree op, int *index_p,
1151 HOST_WIDE_INT *offset_p, HOST_WIDE_INT *size_p,
1152 bool *by_ref_p)
1153 {
1154 int index;
1155 HOST_WIDE_INT size, max_size;
1156 tree base = get_ref_base_and_extent (op, offset_p, &size, &max_size);
1157
1158 if (max_size == -1 || max_size != size || *offset_p < 0)
1159 return false;
1160
1161 if (DECL_P (base))
1162 {
1163 int index = ipa_get_param_decl_index_1 (descriptors, base);
1164 if (index >= 0
1165 && parm_preserved_before_stmt_p (fbi, index, stmt, op))
1166 {
1167 *index_p = index;
1168 *by_ref_p = false;
1169 if (size_p)
1170 *size_p = size;
1171 return true;
1172 }
1173 return false;
1174 }
1175
1176 if (TREE_CODE (base) != MEM_REF
1177 || TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME
1178 || !integer_zerop (TREE_OPERAND (base, 1)))
1179 return false;
1180
1181 if (SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0)))
1182 {
1183 tree parm = SSA_NAME_VAR (TREE_OPERAND (base, 0));
1184 index = ipa_get_param_decl_index_1 (descriptors, parm);
1185 }
1186 else
1187 {
1188 /* This branch catches situations where a pointer parameter is not a
1189 gimple register, for example:
1190
1191 void hip7(S*) (struct S * p)
1192 {
1193 void (*<T2e4>) (struct S *) D.1867;
1194 struct S * p.1;
1195
1196 <bb 2>:
1197 p.1_1 = p;
1198 D.1867_2 = p.1_1->f;
1199 D.1867_2 ();
1200 gdp = &p;
1201 */
1202
1203 gimple def = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
1204 index = load_from_unmodified_param (fbi, descriptors, def);
1205 }
1206
1207 if (index >= 0
1208 && parm_ref_data_preserved_p (fbi, index, stmt, op))
1209 {
1210 *index_p = index;
1211 *by_ref_p = true;
1212 if (size_p)
1213 *size_p = size;
1214 return true;
1215 }
1216 return false;
1217 }
1218
1219 /* Just like the previous function, just without the param_analysis_info
1220 pointer, for users outside of this file. */
1221
1222 bool
1223 ipa_load_from_parm_agg (struct ipa_node_params *info, gimple stmt,
1224 tree op, int *index_p, HOST_WIDE_INT *offset_p,
1225 bool *by_ref_p)
1226 {
1227 return ipa_load_from_parm_agg_1 (NULL, info->descriptors, stmt, op, index_p,
1228 offset_p, NULL, by_ref_p);
1229 }
1230
1231 /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
1232 of an assignment statement STMT, try to determine whether we are actually
1233 handling any of the following cases and construct an appropriate jump
1234 function into JFUNC if so:
1235
1236 1) The passed value is loaded from a formal parameter which is not a gimple
1237 register (most probably because it is addressable, the value has to be
1238 scalar) and we can guarantee the value has not changed. This case can
1239 therefore be described by a simple pass-through jump function. For example:
1240
1241 foo (int a)
1242 {
1243 int a.0;
1244
1245 a.0_2 = a;
1246 bar (a.0_2);
1247
1248 2) The passed value can be described by a simple arithmetic pass-through
1249 jump function. E.g.
1250
1251 foo (int a)
1252 {
1253 int D.2064;
1254
1255 D.2064_4 = a.1(D) + 4;
1256 bar (D.2064_4);
1257
1258 This case can also occur in combination of the previous one, e.g.:
1259
1260 foo (int a, int z)
1261 {
1262 int a.0;
1263 int D.2064;
1264
1265 a.0_3 = a;
1266 D.2064_4 = a.0_3 + 4;
1267 foo (D.2064_4);
1268
1269 3) The passed value is an address of an object within another one (which
1270 also passed by reference). Such situations are described by an ancestor
1271 jump function and describe situations such as:
1272
1273 B::foo() (struct B * const this)
1274 {
1275 struct A * D.1845;
1276
1277 D.1845_2 = &this_1(D)->D.1748;
1278 A::bar (D.1845_2);
1279
1280 INFO is the structure describing individual parameters access different
1281 stages of IPA optimizations. PARMS_AINFO contains the information that is
1282 only needed for intraprocedural analysis. */
1283
1284 static void
1285 compute_complex_assign_jump_func (struct func_body_info *fbi,
1286 struct ipa_node_params *info,
1287 struct ipa_jump_func *jfunc,
1288 gimple call, gimple stmt, tree name,
1289 tree param_type)
1290 {
1291 HOST_WIDE_INT offset, size, max_size;
1292 tree op1, tc_ssa, base, ssa;
1293 int index;
1294
1295 op1 = gimple_assign_rhs1 (stmt);
1296
1297 if (TREE_CODE (op1) == SSA_NAME)
1298 {
1299 if (SSA_NAME_IS_DEFAULT_DEF (op1))
1300 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
1301 else
1302 index = load_from_unmodified_param (fbi, info->descriptors,
1303 SSA_NAME_DEF_STMT (op1));
1304 tc_ssa = op1;
1305 }
1306 else
1307 {
1308 index = load_from_unmodified_param (fbi, info->descriptors, stmt);
1309 tc_ssa = gimple_assign_lhs (stmt);
1310 }
1311
1312 if (index >= 0)
1313 {
1314 tree op2 = gimple_assign_rhs2 (stmt);
1315
1316 if (op2)
1317 {
1318 if (!is_gimple_ip_invariant (op2)
1319 || (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
1320 && !useless_type_conversion_p (TREE_TYPE (name),
1321 TREE_TYPE (op1))))
1322 return;
1323
1324 ipa_set_jf_arith_pass_through (jfunc, index, op2,
1325 gimple_assign_rhs_code (stmt));
1326 }
1327 else if (gimple_assign_single_p (stmt))
1328 {
1329 bool agg_p = parm_ref_data_pass_through_p (fbi, index, call, tc_ssa);
1330 bool type_p = false;
1331
1332 if (param_type && POINTER_TYPE_P (param_type))
1333 type_p = !detect_type_change_ssa (tc_ssa, TREE_TYPE (param_type),
1334 call, jfunc);
1335 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1336 ipa_set_jf_simple_pass_through (jfunc, index, agg_p, type_p);
1337 }
1338 return;
1339 }
1340
1341 if (TREE_CODE (op1) != ADDR_EXPR)
1342 return;
1343 op1 = TREE_OPERAND (op1, 0);
1344 if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
1345 return;
1346 base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
1347 if (TREE_CODE (base) != MEM_REF
1348 /* If this is a varying address, punt. */
1349 || max_size == -1
1350 || max_size != size)
1351 return;
1352 offset += mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT;
1353 ssa = TREE_OPERAND (base, 0);
1354 if (TREE_CODE (ssa) != SSA_NAME
1355 || !SSA_NAME_IS_DEFAULT_DEF (ssa)
1356 || offset < 0)
1357 return;
1358
1359 /* Dynamic types are changed in constructors and destructors. */
1360 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
1361 if (index >= 0 && param_type && POINTER_TYPE_P (param_type))
1362 {
1363 bool type_p = (contains_polymorphic_type_p (TREE_TYPE (param_type))
1364 && !detect_type_change (op1, base, TREE_TYPE (param_type),
1365 call, jfunc, offset));
1366 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1367 ipa_set_ancestor_jf (jfunc, offset,
1368 type_p ? TREE_TYPE (param_type) : NULL, index,
1369 parm_ref_data_pass_through_p (fbi, index,
1370 call, ssa), type_p);
1371 }
1372 }
1373
1374 /* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
1375 it looks like:
1376
1377 iftmp.1_3 = &obj_2(D)->D.1762;
1378
1379 The base of the MEM_REF must be a default definition SSA NAME of a
1380 parameter. Return NULL_TREE if it looks otherwise. If case of success, the
1381 whole MEM_REF expression is returned and the offset calculated from any
1382 handled components and the MEM_REF itself is stored into *OFFSET. The whole
1383 RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
1384
1385 static tree
1386 get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
1387 {
1388 HOST_WIDE_INT size, max_size;
1389 tree expr, parm, obj;
1390
1391 if (!gimple_assign_single_p (assign))
1392 return NULL_TREE;
1393 expr = gimple_assign_rhs1 (assign);
1394
1395 if (TREE_CODE (expr) != ADDR_EXPR)
1396 return NULL_TREE;
1397 expr = TREE_OPERAND (expr, 0);
1398 obj = expr;
1399 expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
1400
1401 if (TREE_CODE (expr) != MEM_REF
1402 /* If this is a varying address, punt. */
1403 || max_size == -1
1404 || max_size != size
1405 || *offset < 0)
1406 return NULL_TREE;
1407 parm = TREE_OPERAND (expr, 0);
1408 if (TREE_CODE (parm) != SSA_NAME
1409 || !SSA_NAME_IS_DEFAULT_DEF (parm)
1410 || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
1411 return NULL_TREE;
1412
1413 *offset += mem_ref_offset (expr).to_short_addr () * BITS_PER_UNIT;
1414 *obj_p = obj;
1415 return expr;
1416 }
1417
1418
1419 /* Given that an actual argument is an SSA_NAME that is a result of a phi
1420 statement PHI, try to find out whether NAME is in fact a
1421 multiple-inheritance typecast from a descendant into an ancestor of a formal
1422 parameter and thus can be described by an ancestor jump function and if so,
1423 write the appropriate function into JFUNC.
1424
1425 Essentially we want to match the following pattern:
1426
1427 if (obj_2(D) != 0B)
1428 goto <bb 3>;
1429 else
1430 goto <bb 4>;
1431
1432 <bb 3>:
1433 iftmp.1_3 = &obj_2(D)->D.1762;
1434
1435 <bb 4>:
1436 # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
1437 D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
1438 return D.1879_6; */
1439
1440 static void
1441 compute_complex_ancestor_jump_func (struct func_body_info *fbi,
1442 struct ipa_node_params *info,
1443 struct ipa_jump_func *jfunc,
1444 gimple call, gimple phi, tree param_type)
1445 {
1446 HOST_WIDE_INT offset;
1447 gimple assign, cond;
1448 basic_block phi_bb, assign_bb, cond_bb;
1449 tree tmp, parm, expr, obj;
1450 int index, i;
1451
1452 if (gimple_phi_num_args (phi) != 2)
1453 return;
1454
1455 if (integer_zerop (PHI_ARG_DEF (phi, 1)))
1456 tmp = PHI_ARG_DEF (phi, 0);
1457 else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
1458 tmp = PHI_ARG_DEF (phi, 1);
1459 else
1460 return;
1461 if (TREE_CODE (tmp) != SSA_NAME
1462 || SSA_NAME_IS_DEFAULT_DEF (tmp)
1463 || !POINTER_TYPE_P (TREE_TYPE (tmp))
1464 || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
1465 return;
1466
1467 assign = SSA_NAME_DEF_STMT (tmp);
1468 assign_bb = gimple_bb (assign);
1469 if (!single_pred_p (assign_bb))
1470 return;
1471 expr = get_ancestor_addr_info (assign, &obj, &offset);
1472 if (!expr)
1473 return;
1474 parm = TREE_OPERAND (expr, 0);
1475 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
1476 if (index < 0)
1477 return;
1478
1479 cond_bb = single_pred (assign_bb);
1480 cond = last_stmt (cond_bb);
1481 if (!cond
1482 || gimple_code (cond) != GIMPLE_COND
1483 || gimple_cond_code (cond) != NE_EXPR
1484 || gimple_cond_lhs (cond) != parm
1485 || !integer_zerop (gimple_cond_rhs (cond)))
1486 return;
1487
1488 phi_bb = gimple_bb (phi);
1489 for (i = 0; i < 2; i++)
1490 {
1491 basic_block pred = EDGE_PRED (phi_bb, i)->src;
1492 if (pred != assign_bb && pred != cond_bb)
1493 return;
1494 }
1495
1496 bool type_p = false;
1497 if (param_type && POINTER_TYPE_P (param_type)
1498 && contains_polymorphic_type_p (TREE_TYPE (param_type)))
1499 type_p = !detect_type_change (obj, expr, TREE_TYPE (param_type),
1500 call, jfunc, offset);
1501 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1502 ipa_set_ancestor_jf (jfunc, offset, type_p ? TREE_TYPE (param_type) : NULL,
1503 index,
1504 parm_ref_data_pass_through_p (fbi, index, call, parm),
1505 type_p);
1506 }
1507
1508 /* Given OP which is passed as an actual argument to a called function,
1509 determine if it is possible to construct a KNOWN_TYPE jump function for it
1510 and if so, create one and store it to JFUNC.
1511 EXPECTED_TYPE represents a type the argument should be in */
1512
1513 static void
1514 compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
1515 gimple call, tree expected_type)
1516 {
1517 HOST_WIDE_INT offset, size, max_size;
1518 tree base;
1519
1520 if (!flag_devirtualize
1521 || TREE_CODE (op) != ADDR_EXPR
1522 || !contains_polymorphic_type_p (TREE_TYPE (TREE_TYPE (op)))
1523 /* Be sure expected_type is polymorphic. */
1524 || !expected_type
1525 || !contains_polymorphic_type_p (expected_type))
1526 return;
1527
1528 op = TREE_OPERAND (op, 0);
1529 base = get_ref_base_and_extent (op, &offset, &size, &max_size);
1530 if (!DECL_P (base)
1531 || max_size == -1
1532 || max_size != size
1533 || !contains_polymorphic_type_p (TREE_TYPE (base)))
1534 return;
1535
1536 if (decl_maybe_in_construction_p (base, TREE_TYPE (base),
1537 call, current_function_decl)
1538 /* Even if the var seems to be in construction by inline call stack,
1539 we may work out the actual type by walking memory writes. */
1540 && (!is_global_var (base)
1541 && detect_type_change (op, base, expected_type, call, jfunc, offset)))
1542 return;
1543
1544 ipa_set_jf_known_type (jfunc, offset, TREE_TYPE (base),
1545 expected_type);
1546 }
1547
1548 /* Inspect the given TYPE and return true iff it has the same structure (the
1549 same number of fields of the same types) as a C++ member pointer. If
1550 METHOD_PTR and DELTA are non-NULL, store the trees representing the
1551 corresponding fields there. */
1552
1553 static bool
1554 type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
1555 {
1556 tree fld;
1557
1558 if (TREE_CODE (type) != RECORD_TYPE)
1559 return false;
1560
1561 fld = TYPE_FIELDS (type);
1562 if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
1563 || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE
1564 || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
1565 return false;
1566
1567 if (method_ptr)
1568 *method_ptr = fld;
1569
1570 fld = DECL_CHAIN (fld);
1571 if (!fld || INTEGRAL_TYPE_P (fld)
1572 || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
1573 return false;
1574 if (delta)
1575 *delta = fld;
1576
1577 if (DECL_CHAIN (fld))
1578 return false;
1579
1580 return true;
1581 }
1582
1583 /* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
1584 return the rhs of its defining statement. Otherwise return RHS as it
1585 is. */
1586
1587 static inline tree
1588 get_ssa_def_if_simple_copy (tree rhs)
1589 {
1590 while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
1591 {
1592 gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
1593
1594 if (gimple_assign_single_p (def_stmt))
1595 rhs = gimple_assign_rhs1 (def_stmt);
1596 else
1597 break;
1598 }
1599 return rhs;
1600 }
1601
1602 /* Simple linked list, describing known contents of an aggregate beforere
1603 call. */
1604
1605 struct ipa_known_agg_contents_list
1606 {
1607 /* Offset and size of the described part of the aggregate. */
1608 HOST_WIDE_INT offset, size;
1609 /* Known constant value or NULL if the contents is known to be unknown. */
1610 tree constant;
1611 /* Pointer to the next structure in the list. */
1612 struct ipa_known_agg_contents_list *next;
1613 };
1614
1615 /* Find the proper place in linked list of ipa_known_agg_contents_list
1616 structures where to put a new one with the given LHS_OFFSET and LHS_SIZE,
1617 unless there is a partial overlap, in which case return NULL, or such
1618 element is already there, in which case set *ALREADY_THERE to true. */
1619
1620 static struct ipa_known_agg_contents_list **
1621 get_place_in_agg_contents_list (struct ipa_known_agg_contents_list **list,
1622 HOST_WIDE_INT lhs_offset,
1623 HOST_WIDE_INT lhs_size,
1624 bool *already_there)
1625 {
1626 struct ipa_known_agg_contents_list **p = list;
1627 while (*p && (*p)->offset < lhs_offset)
1628 {
1629 if ((*p)->offset + (*p)->size > lhs_offset)
1630 return NULL;
1631 p = &(*p)->next;
1632 }
1633
1634 if (*p && (*p)->offset < lhs_offset + lhs_size)
1635 {
1636 if ((*p)->offset == lhs_offset && (*p)->size == lhs_size)
1637 /* We already know this value is subsequently overwritten with
1638 something else. */
1639 *already_there = true;
1640 else
1641 /* Otherwise this is a partial overlap which we cannot
1642 represent. */
1643 return NULL;
1644 }
1645 return p;
1646 }
1647
1648 /* Build aggregate jump function from LIST, assuming there are exactly
1649 CONST_COUNT constant entries there and that th offset of the passed argument
1650 is ARG_OFFSET and store it into JFUNC. */
1651
1652 static void
1653 build_agg_jump_func_from_list (struct ipa_known_agg_contents_list *list,
1654 int const_count, HOST_WIDE_INT arg_offset,
1655 struct ipa_jump_func *jfunc)
1656 {
1657 vec_alloc (jfunc->agg.items, const_count);
1658 while (list)
1659 {
1660 if (list->constant)
1661 {
1662 struct ipa_agg_jf_item item;
1663 item.offset = list->offset - arg_offset;
1664 gcc_assert ((item.offset % BITS_PER_UNIT) == 0);
1665 item.value = unshare_expr_without_location (list->constant);
1666 jfunc->agg.items->quick_push (item);
1667 }
1668 list = list->next;
1669 }
1670 }
1671
1672 /* Traverse statements from CALL backwards, scanning whether an aggregate given
1673 in ARG is filled in with constant values. ARG can either be an aggregate
1674 expression or a pointer to an aggregate. ARG_TYPE is the type of the
1675 aggregate. JFUNC is the jump function into which the constants are
1676 subsequently stored. */
1677
1678 static void
1679 determine_locally_known_aggregate_parts (gimple call, tree arg, tree arg_type,
1680 struct ipa_jump_func *jfunc)
1681 {
1682 struct ipa_known_agg_contents_list *list = NULL;
1683 int item_count = 0, const_count = 0;
1684 HOST_WIDE_INT arg_offset, arg_size;
1685 gimple_stmt_iterator gsi;
1686 tree arg_base;
1687 bool check_ref, by_ref;
1688 ao_ref r;
1689
1690 /* The function operates in three stages. First, we prepare check_ref, r,
1691 arg_base and arg_offset based on what is actually passed as an actual
1692 argument. */
1693
1694 if (POINTER_TYPE_P (arg_type))
1695 {
1696 by_ref = true;
1697 if (TREE_CODE (arg) == SSA_NAME)
1698 {
1699 tree type_size;
1700 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (arg_type))))
1701 return;
1702 check_ref = true;
1703 arg_base = arg;
1704 arg_offset = 0;
1705 type_size = TYPE_SIZE (TREE_TYPE (arg_type));
1706 arg_size = tree_to_uhwi (type_size);
1707 ao_ref_init_from_ptr_and_size (&r, arg_base, NULL_TREE);
1708 }
1709 else if (TREE_CODE (arg) == ADDR_EXPR)
1710 {
1711 HOST_WIDE_INT arg_max_size;
1712
1713 arg = TREE_OPERAND (arg, 0);
1714 arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
1715 &arg_max_size);
1716 if (arg_max_size == -1
1717 || arg_max_size != arg_size
1718 || arg_offset < 0)
1719 return;
1720 if (DECL_P (arg_base))
1721 {
1722 check_ref = false;
1723 ao_ref_init (&r, arg_base);
1724 }
1725 else
1726 return;
1727 }
1728 else
1729 return;
1730 }
1731 else
1732 {
1733 HOST_WIDE_INT arg_max_size;
1734
1735 gcc_checking_assert (AGGREGATE_TYPE_P (TREE_TYPE (arg)));
1736
1737 by_ref = false;
1738 check_ref = false;
1739 arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
1740 &arg_max_size);
1741 if (arg_max_size == -1
1742 || arg_max_size != arg_size
1743 || arg_offset < 0)
1744 return;
1745
1746 ao_ref_init (&r, arg);
1747 }
1748
1749 /* Second stage walks back the BB, looks at individual statements and as long
1750 as it is confident of how the statements affect contents of the
1751 aggregates, it builds a sorted linked list of ipa_agg_jf_list structures
1752 describing it. */
1753 gsi = gsi_for_stmt (call);
1754 gsi_prev (&gsi);
1755 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
1756 {
1757 struct ipa_known_agg_contents_list *n, **p;
1758 gimple stmt = gsi_stmt (gsi);
1759 HOST_WIDE_INT lhs_offset, lhs_size, lhs_max_size;
1760 tree lhs, rhs, lhs_base;
1761
1762 if (!stmt_may_clobber_ref_p_1 (stmt, &r))
1763 continue;
1764 if (!gimple_assign_single_p (stmt))
1765 break;
1766
1767 lhs = gimple_assign_lhs (stmt);
1768 rhs = gimple_assign_rhs1 (stmt);
1769 if (!is_gimple_reg_type (TREE_TYPE (rhs))
1770 || TREE_CODE (lhs) == BIT_FIELD_REF
1771 || contains_bitfld_component_ref_p (lhs))
1772 break;
1773
1774 lhs_base = get_ref_base_and_extent (lhs, &lhs_offset, &lhs_size,
1775 &lhs_max_size);
1776 if (lhs_max_size == -1
1777 || lhs_max_size != lhs_size)
1778 break;
1779
1780 if (check_ref)
1781 {
1782 if (TREE_CODE (lhs_base) != MEM_REF
1783 || TREE_OPERAND (lhs_base, 0) != arg_base
1784 || !integer_zerop (TREE_OPERAND (lhs_base, 1)))
1785 break;
1786 }
1787 else if (lhs_base != arg_base)
1788 {
1789 if (DECL_P (lhs_base))
1790 continue;
1791 else
1792 break;
1793 }
1794
1795 bool already_there = false;
1796 p = get_place_in_agg_contents_list (&list, lhs_offset, lhs_size,
1797 &already_there);
1798 if (!p)
1799 break;
1800 if (already_there)
1801 continue;
1802
1803 rhs = get_ssa_def_if_simple_copy (rhs);
1804 n = XALLOCA (struct ipa_known_agg_contents_list);
1805 n->size = lhs_size;
1806 n->offset = lhs_offset;
1807 if (is_gimple_ip_invariant (rhs))
1808 {
1809 n->constant = rhs;
1810 const_count++;
1811 }
1812 else
1813 n->constant = NULL_TREE;
1814 n->next = *p;
1815 *p = n;
1816
1817 item_count++;
1818 if (const_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS)
1819 || item_count == 2 * PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1820 break;
1821 }
1822
1823 /* Third stage just goes over the list and creates an appropriate vector of
1824 ipa_agg_jf_item structures out of it, of sourse only if there are
1825 any known constants to begin with. */
1826
1827 if (const_count)
1828 {
1829 jfunc->agg.by_ref = by_ref;
1830 build_agg_jump_func_from_list (list, const_count, arg_offset, jfunc);
1831 }
1832 }
1833
1834 static tree
1835 ipa_get_callee_param_type (struct cgraph_edge *e, int i)
1836 {
1837 int n;
1838 tree type = (e->callee
1839 ? TREE_TYPE (e->callee->decl)
1840 : gimple_call_fntype (e->call_stmt));
1841 tree t = TYPE_ARG_TYPES (type);
1842
1843 for (n = 0; n < i; n++)
1844 {
1845 if (!t)
1846 break;
1847 t = TREE_CHAIN (t);
1848 }
1849 if (t)
1850 return TREE_VALUE (t);
1851 if (!e->callee)
1852 return NULL;
1853 t = DECL_ARGUMENTS (e->callee->decl);
1854 for (n = 0; n < i; n++)
1855 {
1856 if (!t)
1857 return NULL;
1858 t = TREE_CHAIN (t);
1859 }
1860 if (t)
1861 return TREE_TYPE (t);
1862 return NULL;
1863 }
1864
1865 /* Compute jump function for all arguments of callsite CS and insert the
1866 information in the jump_functions array in the ipa_edge_args corresponding
1867 to this callsite. */
1868
1869 static void
1870 ipa_compute_jump_functions_for_edge (struct func_body_info *fbi,
1871 struct cgraph_edge *cs)
1872 {
1873 struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
1874 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
1875 gimple call = cs->call_stmt;
1876 int n, arg_num = gimple_call_num_args (call);
1877
1878 if (arg_num == 0 || args->jump_functions)
1879 return;
1880 vec_safe_grow_cleared (args->jump_functions, arg_num);
1881
1882 if (gimple_call_internal_p (call))
1883 return;
1884 if (ipa_func_spec_opts_forbid_analysis_p (cs->caller))
1885 return;
1886
1887 for (n = 0; n < arg_num; n++)
1888 {
1889 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n);
1890 tree arg = gimple_call_arg (call, n);
1891 tree param_type = ipa_get_callee_param_type (cs, n);
1892
1893 if (is_gimple_ip_invariant (arg))
1894 ipa_set_jf_constant (jfunc, arg, cs);
1895 else if (!is_gimple_reg_type (TREE_TYPE (arg))
1896 && TREE_CODE (arg) == PARM_DECL)
1897 {
1898 int index = ipa_get_param_decl_index (info, arg);
1899
1900 gcc_assert (index >=0);
1901 /* Aggregate passed by value, check for pass-through, otherwise we
1902 will attempt to fill in aggregate contents later in this
1903 for cycle. */
1904 if (parm_preserved_before_stmt_p (fbi, index, call, arg))
1905 {
1906 ipa_set_jf_simple_pass_through (jfunc, index, false, false);
1907 continue;
1908 }
1909 }
1910 else if (TREE_CODE (arg) == SSA_NAME)
1911 {
1912 if (SSA_NAME_IS_DEFAULT_DEF (arg))
1913 {
1914 int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
1915 if (index >= 0)
1916 {
1917 bool agg_p, type_p;
1918 agg_p = parm_ref_data_pass_through_p (fbi, index, call, arg);
1919 if (param_type && POINTER_TYPE_P (param_type))
1920 type_p = !detect_type_change_ssa (arg, TREE_TYPE (param_type),
1921 call, jfunc);
1922 else
1923 type_p = false;
1924 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1925 ipa_set_jf_simple_pass_through (jfunc, index, agg_p,
1926 type_p);
1927 }
1928 }
1929 else
1930 {
1931 gimple stmt = SSA_NAME_DEF_STMT (arg);
1932 if (is_gimple_assign (stmt))
1933 compute_complex_assign_jump_func (fbi, info, jfunc,
1934 call, stmt, arg, param_type);
1935 else if (gimple_code (stmt) == GIMPLE_PHI)
1936 compute_complex_ancestor_jump_func (fbi, info, jfunc,
1937 call, stmt, param_type);
1938 }
1939 }
1940 else
1941 compute_known_type_jump_func (arg, jfunc, call,
1942 param_type
1943 && POINTER_TYPE_P (param_type)
1944 ? TREE_TYPE (param_type)
1945 : NULL);
1946
1947 /* If ARG is pointer, we can not use its type to determine the type of aggregate
1948 passed (because type conversions are ignored in gimple). Usually we can
1949 safely get type from function declaration, but in case of K&R prototypes or
1950 variadic functions we can try our luck with type of the pointer passed.
1951 TODO: Since we look for actual initialization of the memory object, we may better
1952 work out the type based on the memory stores we find. */
1953 if (!param_type)
1954 param_type = TREE_TYPE (arg);
1955
1956 if ((jfunc->type != IPA_JF_PASS_THROUGH
1957 || !ipa_get_jf_pass_through_agg_preserved (jfunc))
1958 && (jfunc->type != IPA_JF_ANCESTOR
1959 || !ipa_get_jf_ancestor_agg_preserved (jfunc))
1960 && (AGGREGATE_TYPE_P (TREE_TYPE (arg))
1961 || POINTER_TYPE_P (param_type)))
1962 determine_locally_known_aggregate_parts (call, arg, param_type, jfunc);
1963 }
1964 }
1965
1966 /* Compute jump functions for all edges - both direct and indirect - outgoing
1967 from BB. */
1968
1969 static void
1970 ipa_compute_jump_functions_for_bb (struct func_body_info *fbi, basic_block bb)
1971 {
1972 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
1973 int i;
1974 struct cgraph_edge *cs;
1975
1976 FOR_EACH_VEC_ELT_REVERSE (bi->cg_edges, i, cs)
1977 {
1978 struct cgraph_node *callee = cs->callee;
1979
1980 if (callee)
1981 {
1982 callee->ultimate_alias_target ();
1983 /* We do not need to bother analyzing calls to unknown functions
1984 unless they may become known during lto/whopr. */
1985 if (!callee->definition && !flag_lto)
1986 continue;
1987 }
1988 ipa_compute_jump_functions_for_edge (fbi, cs);
1989 }
1990 }
1991
1992 /* If STMT looks like a statement loading a value from a member pointer formal
1993 parameter, return that parameter and store the offset of the field to
1994 *OFFSET_P, if it is non-NULL. Otherwise return NULL (but *OFFSET_P still
1995 might be clobbered). If USE_DELTA, then we look for a use of the delta
1996 field rather than the pfn. */
1997
1998 static tree
1999 ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta,
2000 HOST_WIDE_INT *offset_p)
2001 {
2002 tree rhs, rec, ref_field, ref_offset, fld, ptr_field, delta_field;
2003
2004 if (!gimple_assign_single_p (stmt))
2005 return NULL_TREE;
2006
2007 rhs = gimple_assign_rhs1 (stmt);
2008 if (TREE_CODE (rhs) == COMPONENT_REF)
2009 {
2010 ref_field = TREE_OPERAND (rhs, 1);
2011 rhs = TREE_OPERAND (rhs, 0);
2012 }
2013 else
2014 ref_field = NULL_TREE;
2015 if (TREE_CODE (rhs) != MEM_REF)
2016 return NULL_TREE;
2017 rec = TREE_OPERAND (rhs, 0);
2018 if (TREE_CODE (rec) != ADDR_EXPR)
2019 return NULL_TREE;
2020 rec = TREE_OPERAND (rec, 0);
2021 if (TREE_CODE (rec) != PARM_DECL
2022 || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
2023 return NULL_TREE;
2024 ref_offset = TREE_OPERAND (rhs, 1);
2025
2026 if (use_delta)
2027 fld = delta_field;
2028 else
2029 fld = ptr_field;
2030 if (offset_p)
2031 *offset_p = int_bit_position (fld);
2032
2033 if (ref_field)
2034 {
2035 if (integer_nonzerop (ref_offset))
2036 return NULL_TREE;
2037 return ref_field == fld ? rec : NULL_TREE;
2038 }
2039 else
2040 return tree_int_cst_equal (byte_position (fld), ref_offset) ? rec
2041 : NULL_TREE;
2042 }
2043
2044 /* Returns true iff T is an SSA_NAME defined by a statement. */
2045
2046 static bool
2047 ipa_is_ssa_with_stmt_def (tree t)
2048 {
2049 if (TREE_CODE (t) == SSA_NAME
2050 && !SSA_NAME_IS_DEFAULT_DEF (t))
2051 return true;
2052 else
2053 return false;
2054 }
2055
2056 /* Find the indirect call graph edge corresponding to STMT and mark it as a
2057 call to a parameter number PARAM_INDEX. NODE is the caller. Return the
2058 indirect call graph edge. */
2059
2060 static struct cgraph_edge *
2061 ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
2062 {
2063 struct cgraph_edge *cs;
2064
2065 cs = node->get_edge (stmt);
2066 cs->indirect_info->param_index = param_index;
2067 cs->indirect_info->agg_contents = 0;
2068 cs->indirect_info->member_ptr = 0;
2069 return cs;
2070 }
2071
2072 /* Analyze the CALL and examine uses of formal parameters of the caller NODE
2073 (described by INFO). PARMS_AINFO is a pointer to a vector containing
2074 intermediate information about each formal parameter. Currently it checks
2075 whether the call calls a pointer that is a formal parameter and if so, the
2076 parameter is marked with the called flag and an indirect call graph edge
2077 describing the call is created. This is very simple for ordinary pointers
2078 represented in SSA but not-so-nice when it comes to member pointers. The
2079 ugly part of this function does nothing more than trying to match the
2080 pattern of such a call. An example of such a pattern is the gimple dump
2081 below, the call is on the last line:
2082
2083 <bb 2>:
2084 f$__delta_5 = f.__delta;
2085 f$__pfn_24 = f.__pfn;
2086
2087 or
2088 <bb 2>:
2089 f$__delta_5 = MEM[(struct *)&f];
2090 f$__pfn_24 = MEM[(struct *)&f + 4B];
2091
2092 and a few lines below:
2093
2094 <bb 5>
2095 D.2496_3 = (int) f$__pfn_24;
2096 D.2497_4 = D.2496_3 & 1;
2097 if (D.2497_4 != 0)
2098 goto <bb 3>;
2099 else
2100 goto <bb 4>;
2101
2102 <bb 6>:
2103 D.2500_7 = (unsigned int) f$__delta_5;
2104 D.2501_8 = &S + D.2500_7;
2105 D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
2106 D.2503_10 = *D.2502_9;
2107 D.2504_12 = f$__pfn_24 + -1;
2108 D.2505_13 = (unsigned int) D.2504_12;
2109 D.2506_14 = D.2503_10 + D.2505_13;
2110 D.2507_15 = *D.2506_14;
2111 iftmp.11_16 = (String:: *) D.2507_15;
2112
2113 <bb 7>:
2114 # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
2115 D.2500_19 = (unsigned int) f$__delta_5;
2116 D.2508_20 = &S + D.2500_19;
2117 D.2493_21 = iftmp.11_1 (D.2508_20, 4);
2118
2119 Such patterns are results of simple calls to a member pointer:
2120
2121 int doprinting (int (MyString::* f)(int) const)
2122 {
2123 MyString S ("somestring");
2124
2125 return (S.*f)(4);
2126 }
2127
2128 Moreover, the function also looks for called pointers loaded from aggregates
2129 passed by value or reference. */
2130
2131 static void
2132 ipa_analyze_indirect_call_uses (struct func_body_info *fbi, gimple call,
2133 tree target)
2134 {
2135 struct ipa_node_params *info = fbi->info;
2136 HOST_WIDE_INT offset;
2137 bool by_ref;
2138
2139 if (SSA_NAME_IS_DEFAULT_DEF (target))
2140 {
2141 tree var = SSA_NAME_VAR (target);
2142 int index = ipa_get_param_decl_index (info, var);
2143 if (index >= 0)
2144 ipa_note_param_call (fbi->node, index, call);
2145 return;
2146 }
2147
2148 int index;
2149 gimple def = SSA_NAME_DEF_STMT (target);
2150 if (gimple_assign_single_p (def)
2151 && ipa_load_from_parm_agg_1 (fbi, info->descriptors, def,
2152 gimple_assign_rhs1 (def), &index, &offset,
2153 NULL, &by_ref))
2154 {
2155 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2156 if (cs->indirect_info->offset != offset)
2157 cs->indirect_info->outer_type = NULL;
2158 cs->indirect_info->offset = offset;
2159 cs->indirect_info->agg_contents = 1;
2160 cs->indirect_info->by_ref = by_ref;
2161 return;
2162 }
2163
2164 /* Now we need to try to match the complex pattern of calling a member
2165 pointer. */
2166 if (gimple_code (def) != GIMPLE_PHI
2167 || gimple_phi_num_args (def) != 2
2168 || !POINTER_TYPE_P (TREE_TYPE (target))
2169 || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
2170 return;
2171
2172 /* First, we need to check whether one of these is a load from a member
2173 pointer that is a parameter to this function. */
2174 tree n1 = PHI_ARG_DEF (def, 0);
2175 tree n2 = PHI_ARG_DEF (def, 1);
2176 if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
2177 return;
2178 gimple d1 = SSA_NAME_DEF_STMT (n1);
2179 gimple d2 = SSA_NAME_DEF_STMT (n2);
2180
2181 tree rec;
2182 basic_block bb, virt_bb;
2183 basic_block join = gimple_bb (def);
2184 if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false, &offset)))
2185 {
2186 if (ipa_get_stmt_member_ptr_load_param (d2, false, NULL))
2187 return;
2188
2189 bb = EDGE_PRED (join, 0)->src;
2190 virt_bb = gimple_bb (d2);
2191 }
2192 else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false, &offset)))
2193 {
2194 bb = EDGE_PRED (join, 1)->src;
2195 virt_bb = gimple_bb (d1);
2196 }
2197 else
2198 return;
2199
2200 /* Second, we need to check that the basic blocks are laid out in the way
2201 corresponding to the pattern. */
2202
2203 if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
2204 || single_pred (virt_bb) != bb
2205 || single_succ (virt_bb) != join)
2206 return;
2207
2208 /* Third, let's see that the branching is done depending on the least
2209 significant bit of the pfn. */
2210
2211 gimple branch = last_stmt (bb);
2212 if (!branch || gimple_code (branch) != GIMPLE_COND)
2213 return;
2214
2215 if ((gimple_cond_code (branch) != NE_EXPR
2216 && gimple_cond_code (branch) != EQ_EXPR)
2217 || !integer_zerop (gimple_cond_rhs (branch)))
2218 return;
2219
2220 tree cond = gimple_cond_lhs (branch);
2221 if (!ipa_is_ssa_with_stmt_def (cond))
2222 return;
2223
2224 def = SSA_NAME_DEF_STMT (cond);
2225 if (!is_gimple_assign (def)
2226 || gimple_assign_rhs_code (def) != BIT_AND_EXPR
2227 || !integer_onep (gimple_assign_rhs2 (def)))
2228 return;
2229
2230 cond = gimple_assign_rhs1 (def);
2231 if (!ipa_is_ssa_with_stmt_def (cond))
2232 return;
2233
2234 def = SSA_NAME_DEF_STMT (cond);
2235
2236 if (is_gimple_assign (def)
2237 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
2238 {
2239 cond = gimple_assign_rhs1 (def);
2240 if (!ipa_is_ssa_with_stmt_def (cond))
2241 return;
2242 def = SSA_NAME_DEF_STMT (cond);
2243 }
2244
2245 tree rec2;
2246 rec2 = ipa_get_stmt_member_ptr_load_param (def,
2247 (TARGET_PTRMEMFUNC_VBIT_LOCATION
2248 == ptrmemfunc_vbit_in_delta),
2249 NULL);
2250 if (rec != rec2)
2251 return;
2252
2253 index = ipa_get_param_decl_index (info, rec);
2254 if (index >= 0
2255 && parm_preserved_before_stmt_p (fbi, index, call, rec))
2256 {
2257 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2258 if (cs->indirect_info->offset != offset)
2259 cs->indirect_info->outer_type = NULL;
2260 cs->indirect_info->offset = offset;
2261 cs->indirect_info->agg_contents = 1;
2262 cs->indirect_info->member_ptr = 1;
2263 }
2264
2265 return;
2266 }
2267
2268 /* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
2269 object referenced in the expression is a formal parameter of the caller
2270 FBI->node (described by FBI->info), create a call note for the
2271 statement. */
2272
2273 static void
2274 ipa_analyze_virtual_call_uses (struct func_body_info *fbi,
2275 gimple call, tree target)
2276 {
2277 tree obj = OBJ_TYPE_REF_OBJECT (target);
2278 int index;
2279 HOST_WIDE_INT anc_offset;
2280
2281 if (!flag_devirtualize)
2282 return;
2283
2284 if (TREE_CODE (obj) != SSA_NAME)
2285 return;
2286
2287 struct ipa_node_params *info = fbi->info;
2288 if (SSA_NAME_IS_DEFAULT_DEF (obj))
2289 {
2290 struct ipa_jump_func jfunc;
2291 if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
2292 return;
2293
2294 anc_offset = 0;
2295 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
2296 gcc_assert (index >= 0);
2297 if (detect_type_change_ssa (obj, obj_type_ref_class (target),
2298 call, &jfunc))
2299 return;
2300 }
2301 else
2302 {
2303 struct ipa_jump_func jfunc;
2304 gimple stmt = SSA_NAME_DEF_STMT (obj);
2305 tree expr;
2306
2307 expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
2308 if (!expr)
2309 return;
2310 index = ipa_get_param_decl_index (info,
2311 SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
2312 gcc_assert (index >= 0);
2313 if (detect_type_change (obj, expr, obj_type_ref_class (target),
2314 call, &jfunc, anc_offset))
2315 return;
2316 }
2317
2318 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2319 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2320 ii->offset = anc_offset;
2321 ii->otr_token = tree_to_uhwi (OBJ_TYPE_REF_TOKEN (target));
2322 ii->otr_type = obj_type_ref_class (target);
2323 ii->polymorphic = 1;
2324 }
2325
2326 /* Analyze a call statement CALL whether and how it utilizes formal parameters
2327 of the caller (described by INFO). PARMS_AINFO is a pointer to a vector
2328 containing intermediate information about each formal parameter. */
2329
2330 static void
2331 ipa_analyze_call_uses (struct func_body_info *fbi, gimple call)
2332 {
2333 tree target = gimple_call_fn (call);
2334
2335 if (!target
2336 || (TREE_CODE (target) != SSA_NAME
2337 && !virtual_method_call_p (target)))
2338 return;
2339
2340 struct cgraph_edge *cs = fbi->node->get_edge (call);
2341 /* If we previously turned the call into a direct call, there is
2342 no need to analyze. */
2343 if (cs && !cs->indirect_unknown_callee)
2344 return;
2345
2346 if (cs->indirect_info->polymorphic)
2347 {
2348 tree otr_type;
2349 HOST_WIDE_INT otr_token;
2350 ipa_polymorphic_call_context context;
2351 tree instance;
2352 tree target = gimple_call_fn (call);
2353
2354 instance = get_polymorphic_call_info (current_function_decl,
2355 target,
2356 &otr_type, &otr_token,
2357 &context, call);
2358
2359 if (get_dynamic_type (instance, &context,
2360 OBJ_TYPE_REF_OBJECT (target),
2361 otr_type, call))
2362 {
2363 gcc_assert (TREE_CODE (otr_type) == RECORD_TYPE);
2364 cs->indirect_info->polymorphic = true;
2365 cs->indirect_info->param_index = -1;
2366 cs->indirect_info->otr_token = otr_token;
2367 cs->indirect_info->otr_type = otr_type;
2368 cs->indirect_info->outer_type = context.outer_type;
2369 cs->indirect_info->speculative_outer_type = context.speculative_outer_type;
2370 cs->indirect_info->offset = context.offset;
2371 cs->indirect_info->speculative_offset = context.speculative_offset;
2372 cs->indirect_info->maybe_in_construction
2373 = context.maybe_in_construction;
2374 cs->indirect_info->maybe_derived_type = context.maybe_derived_type;
2375 cs->indirect_info->speculative_maybe_derived_type
2376 = context.speculative_maybe_derived_type;
2377 }
2378 }
2379
2380 if (TREE_CODE (target) == SSA_NAME)
2381 ipa_analyze_indirect_call_uses (fbi, call, target);
2382 else if (virtual_method_call_p (target))
2383 ipa_analyze_virtual_call_uses (fbi, call, target);
2384 }
2385
2386
2387 /* Analyze the call statement STMT with respect to formal parameters (described
2388 in INFO) of caller given by FBI->NODE. Currently it only checks whether
2389 formal parameters are called. */
2390
2391 static void
2392 ipa_analyze_stmt_uses (struct func_body_info *fbi, gimple stmt)
2393 {
2394 if (is_gimple_call (stmt))
2395 ipa_analyze_call_uses (fbi, stmt);
2396 }
2397
2398 /* Callback of walk_stmt_load_store_addr_ops for the visit_load.
2399 If OP is a parameter declaration, mark it as used in the info structure
2400 passed in DATA. */
2401
2402 static bool
2403 visit_ref_for_mod_analysis (gimple, tree op, tree, void *data)
2404 {
2405 struct ipa_node_params *info = (struct ipa_node_params *) data;
2406
2407 op = get_base_address (op);
2408 if (op
2409 && TREE_CODE (op) == PARM_DECL)
2410 {
2411 int index = ipa_get_param_decl_index (info, op);
2412 gcc_assert (index >= 0);
2413 ipa_set_param_used (info, index, true);
2414 }
2415
2416 return false;
2417 }
2418
2419 /* Scan the statements in BB and inspect the uses of formal parameters. Store
2420 the findings in various structures of the associated ipa_node_params
2421 structure, such as parameter flags, notes etc. FBI holds various data about
2422 the function being analyzed. */
2423
2424 static void
2425 ipa_analyze_params_uses_in_bb (struct func_body_info *fbi, basic_block bb)
2426 {
2427 gimple_stmt_iterator gsi;
2428 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2429 {
2430 gimple stmt = gsi_stmt (gsi);
2431
2432 if (is_gimple_debug (stmt))
2433 continue;
2434
2435 ipa_analyze_stmt_uses (fbi, stmt);
2436 walk_stmt_load_store_addr_ops (stmt, fbi->info,
2437 visit_ref_for_mod_analysis,
2438 visit_ref_for_mod_analysis,
2439 visit_ref_for_mod_analysis);
2440 }
2441 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2442 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), fbi->info,
2443 visit_ref_for_mod_analysis,
2444 visit_ref_for_mod_analysis,
2445 visit_ref_for_mod_analysis);
2446 }
2447
2448 /* Calculate controlled uses of parameters of NODE. */
2449
2450 static void
2451 ipa_analyze_controlled_uses (struct cgraph_node *node)
2452 {
2453 struct ipa_node_params *info = IPA_NODE_REF (node);
2454
2455 for (int i = 0; i < ipa_get_param_count (info); i++)
2456 {
2457 tree parm = ipa_get_param (info, i);
2458 int controlled_uses = 0;
2459
2460 /* For SSA regs see if parameter is used. For non-SSA we compute
2461 the flag during modification analysis. */
2462 if (is_gimple_reg (parm))
2463 {
2464 tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl),
2465 parm);
2466 if (ddef && !has_zero_uses (ddef))
2467 {
2468 imm_use_iterator imm_iter;
2469 use_operand_p use_p;
2470
2471 ipa_set_param_used (info, i, true);
2472 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ddef)
2473 if (!is_gimple_call (USE_STMT (use_p)))
2474 {
2475 if (!is_gimple_debug (USE_STMT (use_p)))
2476 {
2477 controlled_uses = IPA_UNDESCRIBED_USE;
2478 break;
2479 }
2480 }
2481 else
2482 controlled_uses++;
2483 }
2484 else
2485 controlled_uses = 0;
2486 }
2487 else
2488 controlled_uses = IPA_UNDESCRIBED_USE;
2489 ipa_set_controlled_uses (info, i, controlled_uses);
2490 }
2491 }
2492
2493 /* Free stuff in BI. */
2494
2495 static void
2496 free_ipa_bb_info (struct ipa_bb_info *bi)
2497 {
2498 bi->cg_edges.release ();
2499 bi->param_aa_statuses.release ();
2500 }
2501
2502 /* Dominator walker driving the analysis. */
2503
2504 class analysis_dom_walker : public dom_walker
2505 {
2506 public:
2507 analysis_dom_walker (struct func_body_info *fbi)
2508 : dom_walker (CDI_DOMINATORS), m_fbi (fbi) {}
2509
2510 virtual void before_dom_children (basic_block);
2511
2512 private:
2513 struct func_body_info *m_fbi;
2514 };
2515
2516 void
2517 analysis_dom_walker::before_dom_children (basic_block bb)
2518 {
2519 ipa_analyze_params_uses_in_bb (m_fbi, bb);
2520 ipa_compute_jump_functions_for_bb (m_fbi, bb);
2521 }
2522
2523 /* Initialize the array describing properties of of formal parameters
2524 of NODE, analyze their uses and compute jump functions associated
2525 with actual arguments of calls from within NODE. */
2526
2527 void
2528 ipa_analyze_node (struct cgraph_node *node)
2529 {
2530 struct func_body_info fbi;
2531 struct ipa_node_params *info;
2532
2533 ipa_check_create_node_params ();
2534 ipa_check_create_edge_args ();
2535 info = IPA_NODE_REF (node);
2536
2537 if (info->analysis_done)
2538 return;
2539 info->analysis_done = 1;
2540
2541 if (ipa_func_spec_opts_forbid_analysis_p (node))
2542 {
2543 for (int i = 0; i < ipa_get_param_count (info); i++)
2544 {
2545 ipa_set_param_used (info, i, true);
2546 ipa_set_controlled_uses (info, i, IPA_UNDESCRIBED_USE);
2547 }
2548 return;
2549 }
2550
2551 struct function *func = DECL_STRUCT_FUNCTION (node->decl);
2552 push_cfun (func);
2553 calculate_dominance_info (CDI_DOMINATORS);
2554 ipa_initialize_node_params (node);
2555 ipa_analyze_controlled_uses (node);
2556
2557 fbi.node = node;
2558 fbi.info = IPA_NODE_REF (node);
2559 fbi.bb_infos = vNULL;
2560 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
2561 fbi.param_count = ipa_get_param_count (info);
2562 fbi.aa_walked = 0;
2563
2564 for (struct cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
2565 {
2566 ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
2567 bi->cg_edges.safe_push (cs);
2568 }
2569
2570 for (struct cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
2571 {
2572 ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
2573 bi->cg_edges.safe_push (cs);
2574 }
2575
2576 analysis_dom_walker (&fbi).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2577
2578 int i;
2579 struct ipa_bb_info *bi;
2580 FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
2581 free_ipa_bb_info (bi);
2582 fbi.bb_infos.release ();
2583 free_dominance_info (CDI_DOMINATORS);
2584 pop_cfun ();
2585 }
2586
2587 /* Given a statement CALL which must be a GIMPLE_CALL calling an OBJ_TYPE_REF
2588 attempt a type-based devirtualization. If successful, return the
2589 target function declaration, otherwise return NULL. */
2590
2591 tree
2592 ipa_intraprocedural_devirtualization (gimple call)
2593 {
2594 tree binfo, token, fndecl;
2595 struct ipa_jump_func jfunc;
2596 tree otr = gimple_call_fn (call);
2597
2598 jfunc.type = IPA_JF_UNKNOWN;
2599 compute_known_type_jump_func (OBJ_TYPE_REF_OBJECT (otr), &jfunc,
2600 call, obj_type_ref_class (otr));
2601 if (jfunc.type != IPA_JF_KNOWN_TYPE)
2602 return NULL_TREE;
2603 binfo = ipa_binfo_from_known_type_jfunc (&jfunc);
2604 if (!binfo)
2605 return NULL_TREE;
2606 token = OBJ_TYPE_REF_TOKEN (otr);
2607 fndecl = gimple_get_virt_method_for_binfo (tree_to_uhwi (token),
2608 binfo);
2609 #ifdef ENABLE_CHECKING
2610 if (fndecl)
2611 gcc_assert (possible_polymorphic_call_target_p
2612 (otr, cgraph_node::get (fndecl)));
2613 #endif
2614 return fndecl;
2615 }
2616
2617 /* Update the jump function DST when the call graph edge corresponding to SRC is
2618 is being inlined, knowing that DST is of type ancestor and src of known
2619 type. */
2620
2621 static void
2622 combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
2623 struct ipa_jump_func *dst)
2624 {
2625 HOST_WIDE_INT combined_offset;
2626 tree combined_type;
2627
2628 if (!ipa_get_jf_ancestor_type_preserved (dst))
2629 {
2630 dst->type = IPA_JF_UNKNOWN;
2631 return;
2632 }
2633
2634 combined_offset = ipa_get_jf_known_type_offset (src)
2635 + ipa_get_jf_ancestor_offset (dst);
2636 combined_type = ipa_get_jf_ancestor_type (dst);
2637
2638 ipa_set_jf_known_type (dst, combined_offset,
2639 ipa_get_jf_known_type_base_type (src),
2640 combined_type);
2641 }
2642
2643 /* Update the jump functions associated with call graph edge E when the call
2644 graph edge CS is being inlined, assuming that E->caller is already (possibly
2645 indirectly) inlined into CS->callee and that E has not been inlined. */
2646
2647 static void
2648 update_jump_functions_after_inlining (struct cgraph_edge *cs,
2649 struct cgraph_edge *e)
2650 {
2651 struct ipa_edge_args *top = IPA_EDGE_REF (cs);
2652 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2653 int count = ipa_get_cs_argument_count (args);
2654 int i;
2655
2656 for (i = 0; i < count; i++)
2657 {
2658 struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
2659
2660 if (dst->type == IPA_JF_ANCESTOR)
2661 {
2662 struct ipa_jump_func *src;
2663 int dst_fid = dst->value.ancestor.formal_id;
2664
2665 /* Variable number of arguments can cause havoc if we try to access
2666 one that does not exist in the inlined edge. So make sure we
2667 don't. */
2668 if (dst_fid >= ipa_get_cs_argument_count (top))
2669 {
2670 dst->type = IPA_JF_UNKNOWN;
2671 continue;
2672 }
2673
2674 src = ipa_get_ith_jump_func (top, dst_fid);
2675
2676 if (src->agg.items
2677 && (dst->value.ancestor.agg_preserved || !src->agg.by_ref))
2678 {
2679 struct ipa_agg_jf_item *item;
2680 int j;
2681
2682 /* Currently we do not produce clobber aggregate jump functions,
2683 replace with merging when we do. */
2684 gcc_assert (!dst->agg.items);
2685
2686 dst->agg.items = vec_safe_copy (src->agg.items);
2687 dst->agg.by_ref = src->agg.by_ref;
2688 FOR_EACH_VEC_SAFE_ELT (dst->agg.items, j, item)
2689 item->offset -= dst->value.ancestor.offset;
2690 }
2691
2692 if (src->type == IPA_JF_KNOWN_TYPE)
2693 combine_known_type_and_ancestor_jfs (src, dst);
2694 else if (src->type == IPA_JF_PASS_THROUGH
2695 && src->value.pass_through.operation == NOP_EXPR)
2696 {
2697 dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
2698 dst->value.ancestor.agg_preserved &=
2699 src->value.pass_through.agg_preserved;
2700 dst->value.ancestor.type_preserved &=
2701 src->value.pass_through.type_preserved;
2702 }
2703 else if (src->type == IPA_JF_ANCESTOR)
2704 {
2705 dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
2706 dst->value.ancestor.offset += src->value.ancestor.offset;
2707 dst->value.ancestor.agg_preserved &=
2708 src->value.ancestor.agg_preserved;
2709 dst->value.ancestor.type_preserved &=
2710 src->value.ancestor.type_preserved;
2711 }
2712 else
2713 dst->type = IPA_JF_UNKNOWN;
2714 }
2715 else if (dst->type == IPA_JF_PASS_THROUGH)
2716 {
2717 struct ipa_jump_func *src;
2718 /* We must check range due to calls with variable number of arguments
2719 and we cannot combine jump functions with operations. */
2720 if (dst->value.pass_through.operation == NOP_EXPR
2721 && (dst->value.pass_through.formal_id
2722 < ipa_get_cs_argument_count (top)))
2723 {
2724 int dst_fid = dst->value.pass_through.formal_id;
2725 src = ipa_get_ith_jump_func (top, dst_fid);
2726 bool dst_agg_p = ipa_get_jf_pass_through_agg_preserved (dst);
2727
2728 switch (src->type)
2729 {
2730 case IPA_JF_UNKNOWN:
2731 dst->type = IPA_JF_UNKNOWN;
2732 break;
2733 case IPA_JF_KNOWN_TYPE:
2734 if (ipa_get_jf_pass_through_type_preserved (dst))
2735 ipa_set_jf_known_type (dst,
2736 ipa_get_jf_known_type_offset (src),
2737 ipa_get_jf_known_type_base_type (src),
2738 ipa_get_jf_known_type_component_type (src));
2739 else
2740 dst->type = IPA_JF_UNKNOWN;
2741 break;
2742 case IPA_JF_CONST:
2743 ipa_set_jf_cst_copy (dst, src);
2744 break;
2745
2746 case IPA_JF_PASS_THROUGH:
2747 {
2748 int formal_id = ipa_get_jf_pass_through_formal_id (src);
2749 enum tree_code operation;
2750 operation = ipa_get_jf_pass_through_operation (src);
2751
2752 if (operation == NOP_EXPR)
2753 {
2754 bool agg_p, type_p;
2755 agg_p = dst_agg_p
2756 && ipa_get_jf_pass_through_agg_preserved (src);
2757 type_p = ipa_get_jf_pass_through_type_preserved (src)
2758 && ipa_get_jf_pass_through_type_preserved (dst);
2759 ipa_set_jf_simple_pass_through (dst, formal_id,
2760 agg_p, type_p);
2761 }
2762 else
2763 {
2764 tree operand = ipa_get_jf_pass_through_operand (src);
2765 ipa_set_jf_arith_pass_through (dst, formal_id, operand,
2766 operation);
2767 }
2768 break;
2769 }
2770 case IPA_JF_ANCESTOR:
2771 {
2772 bool agg_p, type_p;
2773 agg_p = dst_agg_p
2774 && ipa_get_jf_ancestor_agg_preserved (src);
2775 type_p = ipa_get_jf_ancestor_type_preserved (src)
2776 && ipa_get_jf_pass_through_type_preserved (dst);
2777 ipa_set_ancestor_jf (dst,
2778 ipa_get_jf_ancestor_offset (src),
2779 ipa_get_jf_ancestor_type (src),
2780 ipa_get_jf_ancestor_formal_id (src),
2781 agg_p, type_p);
2782 break;
2783 }
2784 default:
2785 gcc_unreachable ();
2786 }
2787
2788 if (src->agg.items
2789 && (dst_agg_p || !src->agg.by_ref))
2790 {
2791 /* Currently we do not produce clobber aggregate jump
2792 functions, replace with merging when we do. */
2793 gcc_assert (!dst->agg.items);
2794
2795 dst->agg.by_ref = src->agg.by_ref;
2796 dst->agg.items = vec_safe_copy (src->agg.items);
2797 }
2798 }
2799 else
2800 dst->type = IPA_JF_UNKNOWN;
2801 }
2802 }
2803 }
2804
2805 /* If TARGET is an addr_expr of a function declaration, make it the destination
2806 of an indirect edge IE and return the edge. Otherwise, return NULL. */
2807
2808 struct cgraph_edge *
2809 ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
2810 {
2811 struct cgraph_node *callee;
2812 struct inline_edge_summary *es = inline_edge_summary (ie);
2813 bool unreachable = false;
2814
2815 if (TREE_CODE (target) == ADDR_EXPR)
2816 target = TREE_OPERAND (target, 0);
2817 if (TREE_CODE (target) != FUNCTION_DECL)
2818 {
2819 target = canonicalize_constructor_val (target, NULL);
2820 if (!target || TREE_CODE (target) != FUNCTION_DECL)
2821 {
2822 if (ie->indirect_info->member_ptr)
2823 /* Member pointer call that goes through a VMT lookup. */
2824 return NULL;
2825
2826 if (dump_enabled_p ())
2827 {
2828 location_t loc = gimple_location_safe (ie->call_stmt);
2829 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
2830 "discovered direct call to non-function in %s/%i, "
2831 "making it __builtin_unreachable\n",
2832 ie->caller->name (), ie->caller->order);
2833 }
2834
2835 target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
2836 callee = cgraph_node::get_create (target);
2837 unreachable = true;
2838 }
2839 else
2840 callee = cgraph_node::get (target);
2841 }
2842 else
2843 callee = cgraph_node::get (target);
2844
2845 /* Because may-edges are not explicitely represented and vtable may be external,
2846 we may create the first reference to the object in the unit. */
2847 if (!callee || callee->global.inlined_to)
2848 {
2849
2850 /* We are better to ensure we can refer to it.
2851 In the case of static functions we are out of luck, since we already
2852 removed its body. In the case of public functions we may or may
2853 not introduce the reference. */
2854 if (!canonicalize_constructor_val (target, NULL)
2855 || !TREE_PUBLIC (target))
2856 {
2857 if (dump_file)
2858 fprintf (dump_file, "ipa-prop: Discovered call to a known target "
2859 "(%s/%i -> %s/%i) but can not refer to it. Giving up.\n",
2860 xstrdup (ie->caller->name ()),
2861 ie->caller->order,
2862 xstrdup (ie->callee->name ()),
2863 ie->callee->order);
2864 return NULL;
2865 }
2866 callee = cgraph_node::get_create (target);
2867 }
2868
2869 if (!dbg_cnt (devirt))
2870 return NULL;
2871
2872 ipa_check_create_node_params ();
2873
2874 /* We can not make edges to inline clones. It is bug that someone removed
2875 the cgraph node too early. */
2876 gcc_assert (!callee->global.inlined_to);
2877
2878 if (dump_file && !unreachable)
2879 {
2880 fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
2881 "(%s/%i -> %s/%i), for stmt ",
2882 ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
2883 xstrdup (ie->caller->name ()),
2884 ie->caller->order,
2885 xstrdup (callee->name ()),
2886 callee->order);
2887 if (ie->call_stmt)
2888 print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
2889 else
2890 fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
2891 }
2892 if (dump_enabled_p ())
2893 {
2894 location_t loc = gimple_location_safe (ie->call_stmt);
2895
2896 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
2897 "converting indirect call in %s to direct call to %s\n",
2898 ie->caller->name (), callee->name ());
2899 }
2900 ie = cgraph_make_edge_direct (ie, callee);
2901 es = inline_edge_summary (ie);
2902 es->call_stmt_size -= (eni_size_weights.indirect_call_cost
2903 - eni_size_weights.call_cost);
2904 es->call_stmt_time -= (eni_time_weights.indirect_call_cost
2905 - eni_time_weights.call_cost);
2906
2907 return ie;
2908 }
2909
2910 /* Retrieve value from aggregate jump function AGG for the given OFFSET or
2911 return NULL if there is not any. BY_REF specifies whether the value has to
2912 be passed by reference or by value. */
2913
2914 tree
2915 ipa_find_agg_cst_for_param (struct ipa_agg_jump_function *agg,
2916 HOST_WIDE_INT offset, bool by_ref)
2917 {
2918 struct ipa_agg_jf_item *item;
2919 int i;
2920
2921 if (by_ref != agg->by_ref)
2922 return NULL;
2923
2924 FOR_EACH_VEC_SAFE_ELT (agg->items, i, item)
2925 if (item->offset == offset)
2926 {
2927 /* Currently we do not have clobber values, return NULL for them once
2928 we do. */
2929 gcc_checking_assert (is_gimple_ip_invariant (item->value));
2930 return item->value;
2931 }
2932 return NULL;
2933 }
2934
2935 /* Remove a reference to SYMBOL from the list of references of a node given by
2936 reference description RDESC. Return true if the reference has been
2937 successfully found and removed. */
2938
2939 static bool
2940 remove_described_reference (symtab_node *symbol, struct ipa_cst_ref_desc *rdesc)
2941 {
2942 struct ipa_ref *to_del;
2943 struct cgraph_edge *origin;
2944
2945 origin = rdesc->cs;
2946 if (!origin)
2947 return false;
2948 to_del = origin->caller->find_reference (symbol, origin->call_stmt,
2949 origin->lto_stmt_uid);
2950 if (!to_del)
2951 return false;
2952
2953 to_del->remove_reference ();
2954 if (dump_file)
2955 fprintf (dump_file, "ipa-prop: Removed a reference from %s/%i to %s.\n",
2956 xstrdup (origin->caller->name ()),
2957 origin->caller->order, xstrdup (symbol->name ()));
2958 return true;
2959 }
2960
2961 /* If JFUNC has a reference description with refcount different from
2962 IPA_UNDESCRIBED_USE, return the reference description, otherwise return
2963 NULL. JFUNC must be a constant jump function. */
2964
2965 static struct ipa_cst_ref_desc *
2966 jfunc_rdesc_usable (struct ipa_jump_func *jfunc)
2967 {
2968 struct ipa_cst_ref_desc *rdesc = ipa_get_jf_constant_rdesc (jfunc);
2969 if (rdesc && rdesc->refcount != IPA_UNDESCRIBED_USE)
2970 return rdesc;
2971 else
2972 return NULL;
2973 }
2974
2975 /* If the value of constant jump function JFUNC is an address of a function
2976 declaration, return the associated call graph node. Otherwise return
2977 NULL. */
2978
2979 static cgraph_node *
2980 cgraph_node_for_jfunc (struct ipa_jump_func *jfunc)
2981 {
2982 gcc_checking_assert (jfunc->type == IPA_JF_CONST);
2983 tree cst = ipa_get_jf_constant (jfunc);
2984 if (TREE_CODE (cst) != ADDR_EXPR
2985 || TREE_CODE (TREE_OPERAND (cst, 0)) != FUNCTION_DECL)
2986 return NULL;
2987
2988 return cgraph_node::get (TREE_OPERAND (cst, 0));
2989 }
2990
2991
2992 /* If JFUNC is a constant jump function with a usable rdesc, decrement its
2993 refcount and if it hits zero, remove reference to SYMBOL from the caller of
2994 the edge specified in the rdesc. Return false if either the symbol or the
2995 reference could not be found, otherwise return true. */
2996
2997 static bool
2998 try_decrement_rdesc_refcount (struct ipa_jump_func *jfunc)
2999 {
3000 struct ipa_cst_ref_desc *rdesc;
3001 if (jfunc->type == IPA_JF_CONST
3002 && (rdesc = jfunc_rdesc_usable (jfunc))
3003 && --rdesc->refcount == 0)
3004 {
3005 symtab_node *symbol = cgraph_node_for_jfunc (jfunc);
3006 if (!symbol)
3007 return false;
3008
3009 return remove_described_reference (symbol, rdesc);
3010 }
3011 return true;
3012 }
3013
3014 /* Try to find a destination for indirect edge IE that corresponds to a simple
3015 call or a call of a member function pointer and where the destination is a
3016 pointer formal parameter described by jump function JFUNC. If it can be
3017 determined, return the newly direct edge, otherwise return NULL.
3018 NEW_ROOT_INFO is the node info that JFUNC lattices are relative to. */
3019
3020 static struct cgraph_edge *
3021 try_make_edge_direct_simple_call (struct cgraph_edge *ie,
3022 struct ipa_jump_func *jfunc,
3023 struct ipa_node_params *new_root_info)
3024 {
3025 struct cgraph_edge *cs;
3026 tree target;
3027 bool agg_contents = ie->indirect_info->agg_contents;
3028
3029 if (ie->indirect_info->agg_contents)
3030 target = ipa_find_agg_cst_for_param (&jfunc->agg,
3031 ie->indirect_info->offset,
3032 ie->indirect_info->by_ref);
3033 else
3034 target = ipa_value_from_jfunc (new_root_info, jfunc);
3035 if (!target)
3036 return NULL;
3037 cs = ipa_make_edge_direct_to_target (ie, target);
3038
3039 if (cs && !agg_contents)
3040 {
3041 bool ok;
3042 gcc_checking_assert (cs->callee
3043 && (cs != ie
3044 || jfunc->type != IPA_JF_CONST
3045 || !cgraph_node_for_jfunc (jfunc)
3046 || cs->callee == cgraph_node_for_jfunc (jfunc)));
3047 ok = try_decrement_rdesc_refcount (jfunc);
3048 gcc_checking_assert (ok);
3049 }
3050
3051 return cs;
3052 }
3053
3054 /* Return the target to be used in cases of impossible devirtualization. IE
3055 and target (the latter can be NULL) are dumped when dumping is enabled. */
3056
3057 tree
3058 ipa_impossible_devirt_target (struct cgraph_edge *ie, tree target)
3059 {
3060 if (dump_file)
3061 {
3062 if (target)
3063 fprintf (dump_file,
3064 "Type inconsistent devirtualization: %s/%i->%s\n",
3065 ie->caller->name (), ie->caller->order,
3066 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
3067 else
3068 fprintf (dump_file,
3069 "No devirtualization target in %s/%i\n",
3070 ie->caller->name (), ie->caller->order);
3071 }
3072 tree new_target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
3073 cgraph_node::get_create (new_target);
3074 return new_target;
3075 }
3076
3077 /* Try to find a destination for indirect edge IE that corresponds to a virtual
3078 call based on a formal parameter which is described by jump function JFUNC
3079 and if it can be determined, make it direct and return the direct edge.
3080 Otherwise, return NULL. NEW_ROOT_INFO is the node info that JFUNC lattices
3081 are relative to. */
3082
3083 static struct cgraph_edge *
3084 try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
3085 struct ipa_jump_func *jfunc,
3086 struct ipa_node_params *new_root_info)
3087 {
3088 tree binfo, target;
3089
3090 if (!flag_devirtualize)
3091 return NULL;
3092
3093 /* First try to do lookup via known virtual table pointer value. */
3094 if (!ie->indirect_info->by_ref)
3095 {
3096 tree vtable;
3097 unsigned HOST_WIDE_INT offset;
3098 tree t = ipa_find_agg_cst_for_param (&jfunc->agg,
3099 ie->indirect_info->offset,
3100 true);
3101 if (t && vtable_pointer_value_to_vtable (t, &vtable, &offset))
3102 {
3103 target = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
3104 vtable, offset);
3105 if (target)
3106 {
3107 if ((TREE_CODE (TREE_TYPE (target)) == FUNCTION_TYPE
3108 && DECL_FUNCTION_CODE (target) == BUILT_IN_UNREACHABLE)
3109 || !possible_polymorphic_call_target_p
3110 (ie, cgraph_node::get (target)))
3111 target = ipa_impossible_devirt_target (ie, target);
3112 return ipa_make_edge_direct_to_target (ie, target);
3113 }
3114 }
3115 }
3116
3117 binfo = ipa_value_from_jfunc (new_root_info, jfunc);
3118
3119 if (!binfo)
3120 return NULL;
3121
3122 if (TREE_CODE (binfo) != TREE_BINFO)
3123 {
3124 ipa_polymorphic_call_context context;
3125 vec <cgraph_node *>targets;
3126 bool final;
3127
3128 if (!get_polymorphic_call_info_from_invariant
3129 (&context, binfo, ie->indirect_info->otr_type,
3130 ie->indirect_info->offset))
3131 return NULL;
3132 targets = possible_polymorphic_call_targets
3133 (ie->indirect_info->otr_type,
3134 ie->indirect_info->otr_token,
3135 context, &final);
3136 if (!final || targets.length () > 1)
3137 return NULL;
3138 if (targets.length () == 1)
3139 target = targets[0]->decl;
3140 else
3141 target = ipa_impossible_devirt_target (ie, NULL_TREE);
3142 }
3143 else
3144 {
3145 binfo = get_binfo_at_offset (binfo, ie->indirect_info->offset,
3146 ie->indirect_info->otr_type);
3147 if (binfo)
3148 target = gimple_get_virt_method_for_binfo (ie->indirect_info->otr_token,
3149 binfo);
3150 else
3151 return NULL;
3152 }
3153
3154 if (target)
3155 {
3156 if (!possible_polymorphic_call_target_p (ie, cgraph_node::get (target)))
3157 target = ipa_impossible_devirt_target (ie, target);
3158 return ipa_make_edge_direct_to_target (ie, target);
3159 }
3160 else
3161 return NULL;
3162 }
3163
3164 /* Update the param called notes associated with NODE when CS is being inlined,
3165 assuming NODE is (potentially indirectly) inlined into CS->callee.
3166 Moreover, if the callee is discovered to be constant, create a new cgraph
3167 edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
3168 unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
3169
3170 static bool
3171 update_indirect_edges_after_inlining (struct cgraph_edge *cs,
3172 struct cgraph_node *node,
3173 vec<cgraph_edge *> *new_edges)
3174 {
3175 struct ipa_edge_args *top;
3176 struct cgraph_edge *ie, *next_ie, *new_direct_edge;
3177 struct ipa_node_params *new_root_info;
3178 bool res = false;
3179
3180 ipa_check_create_edge_args ();
3181 top = IPA_EDGE_REF (cs);
3182 new_root_info = IPA_NODE_REF (cs->caller->global.inlined_to
3183 ? cs->caller->global.inlined_to
3184 : cs->caller);
3185
3186 for (ie = node->indirect_calls; ie; ie = next_ie)
3187 {
3188 struct cgraph_indirect_call_info *ici = ie->indirect_info;
3189 struct ipa_jump_func *jfunc;
3190 int param_index;
3191
3192 next_ie = ie->next_callee;
3193
3194 if (ici->param_index == -1)
3195 continue;
3196
3197 /* We must check range due to calls with variable number of arguments: */
3198 if (ici->param_index >= ipa_get_cs_argument_count (top))
3199 {
3200 ici->param_index = -1;
3201 continue;
3202 }
3203
3204 param_index = ici->param_index;
3205 jfunc = ipa_get_ith_jump_func (top, param_index);
3206
3207 if (!flag_indirect_inlining)
3208 new_direct_edge = NULL;
3209 else if (ici->polymorphic)
3210 new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc,
3211 new_root_info);
3212 else
3213 new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc,
3214 new_root_info);
3215 /* If speculation was removed, then we need to do nothing. */
3216 if (new_direct_edge && new_direct_edge != ie)
3217 {
3218 new_direct_edge->indirect_inlining_edge = 1;
3219 top = IPA_EDGE_REF (cs);
3220 res = true;
3221 }
3222 else if (new_direct_edge)
3223 {
3224 new_direct_edge->indirect_inlining_edge = 1;
3225 if (new_direct_edge->call_stmt)
3226 new_direct_edge->call_stmt_cannot_inline_p
3227 = !gimple_check_call_matching_types (
3228 new_direct_edge->call_stmt,
3229 new_direct_edge->callee->decl, false);
3230 if (new_edges)
3231 {
3232 new_edges->safe_push (new_direct_edge);
3233 res = true;
3234 }
3235 top = IPA_EDGE_REF (cs);
3236 }
3237 else if (jfunc->type == IPA_JF_PASS_THROUGH
3238 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3239 {
3240 if ((ici->agg_contents
3241 && !ipa_get_jf_pass_through_agg_preserved (jfunc))
3242 || (ici->polymorphic
3243 && !ipa_get_jf_pass_through_type_preserved (jfunc)))
3244 ici->param_index = -1;
3245 else
3246 ici->param_index = ipa_get_jf_pass_through_formal_id (jfunc);
3247 }
3248 else if (jfunc->type == IPA_JF_ANCESTOR)
3249 {
3250 if ((ici->agg_contents
3251 && !ipa_get_jf_ancestor_agg_preserved (jfunc))
3252 || (ici->polymorphic
3253 && !ipa_get_jf_ancestor_type_preserved (jfunc)))
3254 ici->param_index = -1;
3255 else
3256 {
3257 ici->param_index = ipa_get_jf_ancestor_formal_id (jfunc);
3258 if (ipa_get_jf_ancestor_offset (jfunc))
3259 ici->outer_type = NULL;
3260 ici->offset += ipa_get_jf_ancestor_offset (jfunc);
3261 }
3262 }
3263 else
3264 /* Either we can find a destination for this edge now or never. */
3265 ici->param_index = -1;
3266 }
3267
3268 return res;
3269 }
3270
3271 /* Recursively traverse subtree of NODE (including node) made of inlined
3272 cgraph_edges when CS has been inlined and invoke
3273 update_indirect_edges_after_inlining on all nodes and
3274 update_jump_functions_after_inlining on all non-inlined edges that lead out
3275 of this subtree. Newly discovered indirect edges will be added to
3276 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
3277 created. */
3278
3279 static bool
3280 propagate_info_to_inlined_callees (struct cgraph_edge *cs,
3281 struct cgraph_node *node,
3282 vec<cgraph_edge *> *new_edges)
3283 {
3284 struct cgraph_edge *e;
3285 bool res;
3286
3287 res = update_indirect_edges_after_inlining (cs, node, new_edges);
3288
3289 for (e = node->callees; e; e = e->next_callee)
3290 if (!e->inline_failed)
3291 res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
3292 else
3293 update_jump_functions_after_inlining (cs, e);
3294 for (e = node->indirect_calls; e; e = e->next_callee)
3295 update_jump_functions_after_inlining (cs, e);
3296
3297 return res;
3298 }
3299
3300 /* Combine two controlled uses counts as done during inlining. */
3301
3302 static int
3303 combine_controlled_uses_counters (int c, int d)
3304 {
3305 if (c == IPA_UNDESCRIBED_USE || d == IPA_UNDESCRIBED_USE)
3306 return IPA_UNDESCRIBED_USE;
3307 else
3308 return c + d - 1;
3309 }
3310
3311 /* Propagate number of controlled users from CS->caleee to the new root of the
3312 tree of inlined nodes. */
3313
3314 static void
3315 propagate_controlled_uses (struct cgraph_edge *cs)
3316 {
3317 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
3318 struct cgraph_node *new_root = cs->caller->global.inlined_to
3319 ? cs->caller->global.inlined_to : cs->caller;
3320 struct ipa_node_params *new_root_info = IPA_NODE_REF (new_root);
3321 struct ipa_node_params *old_root_info = IPA_NODE_REF (cs->callee);
3322 int count, i;
3323
3324 count = MIN (ipa_get_cs_argument_count (args),
3325 ipa_get_param_count (old_root_info));
3326 for (i = 0; i < count; i++)
3327 {
3328 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
3329 struct ipa_cst_ref_desc *rdesc;
3330
3331 if (jf->type == IPA_JF_PASS_THROUGH)
3332 {
3333 int src_idx, c, d;
3334 src_idx = ipa_get_jf_pass_through_formal_id (jf);
3335 c = ipa_get_controlled_uses (new_root_info, src_idx);
3336 d = ipa_get_controlled_uses (old_root_info, i);
3337
3338 gcc_checking_assert (ipa_get_jf_pass_through_operation (jf)
3339 == NOP_EXPR || c == IPA_UNDESCRIBED_USE);
3340 c = combine_controlled_uses_counters (c, d);
3341 ipa_set_controlled_uses (new_root_info, src_idx, c);
3342 if (c == 0 && new_root_info->ipcp_orig_node)
3343 {
3344 struct cgraph_node *n;
3345 struct ipa_ref *ref;
3346 tree t = new_root_info->known_vals[src_idx];
3347
3348 if (t && TREE_CODE (t) == ADDR_EXPR
3349 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL
3350 && (n = cgraph_node::get (TREE_OPERAND (t, 0)))
3351 && (ref = new_root->find_reference (n, NULL, 0)))
3352 {
3353 if (dump_file)
3354 fprintf (dump_file, "ipa-prop: Removing cloning-created "
3355 "reference from %s/%i to %s/%i.\n",
3356 xstrdup (new_root->name ()),
3357 new_root->order,
3358 xstrdup (n->name ()), n->order);
3359 ref->remove_reference ();
3360 }
3361 }
3362 }
3363 else if (jf->type == IPA_JF_CONST
3364 && (rdesc = jfunc_rdesc_usable (jf)))
3365 {
3366 int d = ipa_get_controlled_uses (old_root_info, i);
3367 int c = rdesc->refcount;
3368 rdesc->refcount = combine_controlled_uses_counters (c, d);
3369 if (rdesc->refcount == 0)
3370 {
3371 tree cst = ipa_get_jf_constant (jf);
3372 struct cgraph_node *n;
3373 gcc_checking_assert (TREE_CODE (cst) == ADDR_EXPR
3374 && TREE_CODE (TREE_OPERAND (cst, 0))
3375 == FUNCTION_DECL);
3376 n = cgraph_node::get (TREE_OPERAND (cst, 0));
3377 if (n)
3378 {
3379 struct cgraph_node *clone;
3380 bool ok;
3381 ok = remove_described_reference (n, rdesc);
3382 gcc_checking_assert (ok);
3383
3384 clone = cs->caller;
3385 while (clone->global.inlined_to
3386 && clone != rdesc->cs->caller
3387 && IPA_NODE_REF (clone)->ipcp_orig_node)
3388 {
3389 struct ipa_ref *ref;
3390 ref = clone->find_reference (n, NULL, 0);
3391 if (ref)
3392 {
3393 if (dump_file)
3394 fprintf (dump_file, "ipa-prop: Removing "
3395 "cloning-created reference "
3396 "from %s/%i to %s/%i.\n",
3397 xstrdup (clone->name ()),
3398 clone->order,
3399 xstrdup (n->name ()),
3400 n->order);
3401 ref->remove_reference ();
3402 }
3403 clone = clone->callers->caller;
3404 }
3405 }
3406 }
3407 }
3408 }
3409
3410 for (i = ipa_get_param_count (old_root_info);
3411 i < ipa_get_cs_argument_count (args);
3412 i++)
3413 {
3414 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
3415
3416 if (jf->type == IPA_JF_CONST)
3417 {
3418 struct ipa_cst_ref_desc *rdesc = jfunc_rdesc_usable (jf);
3419 if (rdesc)
3420 rdesc->refcount = IPA_UNDESCRIBED_USE;
3421 }
3422 else if (jf->type == IPA_JF_PASS_THROUGH)
3423 ipa_set_controlled_uses (new_root_info,
3424 jf->value.pass_through.formal_id,
3425 IPA_UNDESCRIBED_USE);
3426 }
3427 }
3428
3429 /* Update jump functions and call note functions on inlining the call site CS.
3430 CS is expected to lead to a node already cloned by
3431 cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
3432 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
3433 created. */
3434
3435 bool
3436 ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
3437 vec<cgraph_edge *> *new_edges)
3438 {
3439 bool changed;
3440 /* Do nothing if the preparation phase has not been carried out yet
3441 (i.e. during early inlining). */
3442 if (!ipa_node_params_vector.exists ())
3443 return false;
3444 gcc_assert (ipa_edge_args_vector);
3445
3446 propagate_controlled_uses (cs);
3447 changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
3448
3449 return changed;
3450 }
3451
3452 /* Frees all dynamically allocated structures that the argument info points
3453 to. */
3454
3455 void
3456 ipa_free_edge_args_substructures (struct ipa_edge_args *args)
3457 {
3458 vec_free (args->jump_functions);
3459 memset (args, 0, sizeof (*args));
3460 }
3461
3462 /* Free all ipa_edge structures. */
3463
3464 void
3465 ipa_free_all_edge_args (void)
3466 {
3467 int i;
3468 struct ipa_edge_args *args;
3469
3470 if (!ipa_edge_args_vector)
3471 return;
3472
3473 FOR_EACH_VEC_ELT (*ipa_edge_args_vector, i, args)
3474 ipa_free_edge_args_substructures (args);
3475
3476 vec_free (ipa_edge_args_vector);
3477 }
3478
3479 /* Frees all dynamically allocated structures that the param info points
3480 to. */
3481
3482 void
3483 ipa_free_node_params_substructures (struct ipa_node_params *info)
3484 {
3485 info->descriptors.release ();
3486 free (info->lattices);
3487 /* Lattice values and their sources are deallocated with their alocation
3488 pool. */
3489 info->known_vals.release ();
3490 memset (info, 0, sizeof (*info));
3491 }
3492
3493 /* Free all ipa_node_params structures. */
3494
3495 void
3496 ipa_free_all_node_params (void)
3497 {
3498 int i;
3499 struct ipa_node_params *info;
3500
3501 FOR_EACH_VEC_ELT (ipa_node_params_vector, i, info)
3502 ipa_free_node_params_substructures (info);
3503
3504 ipa_node_params_vector.release ();
3505 }
3506
3507 /* Set the aggregate replacements of NODE to be AGGVALS. */
3508
3509 void
3510 ipa_set_node_agg_value_chain (struct cgraph_node *node,
3511 struct ipa_agg_replacement_value *aggvals)
3512 {
3513 if (vec_safe_length (ipa_node_agg_replacements) <= (unsigned) cgraph_max_uid)
3514 vec_safe_grow_cleared (ipa_node_agg_replacements, cgraph_max_uid + 1);
3515
3516 (*ipa_node_agg_replacements)[node->uid] = aggvals;
3517 }
3518
3519 /* Hook that is called by cgraph.c when an edge is removed. */
3520
3521 static void
3522 ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
3523 {
3524 struct ipa_edge_args *args;
3525
3526 /* During IPA-CP updating we can be called on not-yet analyzed clones. */
3527 if (vec_safe_length (ipa_edge_args_vector) <= (unsigned)cs->uid)
3528 return;
3529
3530 args = IPA_EDGE_REF (cs);
3531 if (args->jump_functions)
3532 {
3533 struct ipa_jump_func *jf;
3534 int i;
3535 FOR_EACH_VEC_ELT (*args->jump_functions, i, jf)
3536 {
3537 struct ipa_cst_ref_desc *rdesc;
3538 try_decrement_rdesc_refcount (jf);
3539 if (jf->type == IPA_JF_CONST
3540 && (rdesc = ipa_get_jf_constant_rdesc (jf))
3541 && rdesc->cs == cs)
3542 rdesc->cs = NULL;
3543 }
3544 }
3545
3546 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
3547 }
3548
3549 /* Hook that is called by cgraph.c when a node is removed. */
3550
3551 static void
3552 ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3553 {
3554 /* During IPA-CP updating we can be called on not-yet analyze clones. */
3555 if (ipa_node_params_vector.length () > (unsigned)node->uid)
3556 ipa_free_node_params_substructures (IPA_NODE_REF (node));
3557 if (vec_safe_length (ipa_node_agg_replacements) > (unsigned)node->uid)
3558 (*ipa_node_agg_replacements)[(unsigned)node->uid] = NULL;
3559 }
3560
3561 /* Hook that is called by cgraph.c when an edge is duplicated. */
3562
3563 static void
3564 ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
3565 __attribute__((unused)) void *data)
3566 {
3567 struct ipa_edge_args *old_args, *new_args;
3568 unsigned int i;
3569
3570 ipa_check_create_edge_args ();
3571
3572 old_args = IPA_EDGE_REF (src);
3573 new_args = IPA_EDGE_REF (dst);
3574
3575 new_args->jump_functions = vec_safe_copy (old_args->jump_functions);
3576
3577 for (i = 0; i < vec_safe_length (old_args->jump_functions); i++)
3578 {
3579 struct ipa_jump_func *src_jf = ipa_get_ith_jump_func (old_args, i);
3580 struct ipa_jump_func *dst_jf = ipa_get_ith_jump_func (new_args, i);
3581
3582 dst_jf->agg.items = vec_safe_copy (dst_jf->agg.items);
3583
3584 if (src_jf->type == IPA_JF_CONST)
3585 {
3586 struct ipa_cst_ref_desc *src_rdesc = jfunc_rdesc_usable (src_jf);
3587
3588 if (!src_rdesc)
3589 dst_jf->value.constant.rdesc = NULL;
3590 else if (src->caller == dst->caller)
3591 {
3592 struct ipa_ref *ref;
3593 symtab_node *n = cgraph_node_for_jfunc (src_jf);
3594 gcc_checking_assert (n);
3595 ref = src->caller->find_reference (n, src->call_stmt,
3596 src->lto_stmt_uid);
3597 gcc_checking_assert (ref);
3598 dst->caller->clone_reference (ref, ref->stmt);
3599
3600 gcc_checking_assert (ipa_refdesc_pool);
3601 struct ipa_cst_ref_desc *dst_rdesc
3602 = (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
3603 dst_rdesc->cs = dst;
3604 dst_rdesc->refcount = src_rdesc->refcount;
3605 dst_rdesc->next_duplicate = NULL;
3606 dst_jf->value.constant.rdesc = dst_rdesc;
3607 }
3608 else if (src_rdesc->cs == src)
3609 {
3610 struct ipa_cst_ref_desc *dst_rdesc;
3611 gcc_checking_assert (ipa_refdesc_pool);
3612 dst_rdesc
3613 = (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
3614 dst_rdesc->cs = dst;
3615 dst_rdesc->refcount = src_rdesc->refcount;
3616 dst_rdesc->next_duplicate = src_rdesc->next_duplicate;
3617 src_rdesc->next_duplicate = dst_rdesc;
3618 dst_jf->value.constant.rdesc = dst_rdesc;
3619 }
3620 else
3621 {
3622 struct ipa_cst_ref_desc *dst_rdesc;
3623 /* This can happen during inlining, when a JFUNC can refer to a
3624 reference taken in a function up in the tree of inline clones.
3625 We need to find the duplicate that refers to our tree of
3626 inline clones. */
3627
3628 gcc_assert (dst->caller->global.inlined_to);
3629 for (dst_rdesc = src_rdesc->next_duplicate;
3630 dst_rdesc;
3631 dst_rdesc = dst_rdesc->next_duplicate)
3632 {
3633 struct cgraph_node *top;
3634 top = dst_rdesc->cs->caller->global.inlined_to
3635 ? dst_rdesc->cs->caller->global.inlined_to
3636 : dst_rdesc->cs->caller;
3637 if (dst->caller->global.inlined_to == top)
3638 break;
3639 }
3640 gcc_assert (dst_rdesc);
3641 dst_jf->value.constant.rdesc = dst_rdesc;
3642 }
3643 }
3644 }
3645 }
3646
3647 /* Hook that is called by cgraph.c when a node is duplicated. */
3648
3649 static void
3650 ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
3651 ATTRIBUTE_UNUSED void *data)
3652 {
3653 struct ipa_node_params *old_info, *new_info;
3654 struct ipa_agg_replacement_value *old_av, *new_av;
3655
3656 ipa_check_create_node_params ();
3657 old_info = IPA_NODE_REF (src);
3658 new_info = IPA_NODE_REF (dst);
3659
3660 new_info->descriptors = old_info->descriptors.copy ();
3661 new_info->lattices = NULL;
3662 new_info->ipcp_orig_node = old_info->ipcp_orig_node;
3663
3664 new_info->analysis_done = old_info->analysis_done;
3665 new_info->node_enqueued = old_info->node_enqueued;
3666
3667 old_av = ipa_get_agg_replacements_for_node (src);
3668 if (!old_av)
3669 return;
3670
3671 new_av = NULL;
3672 while (old_av)
3673 {
3674 struct ipa_agg_replacement_value *v;
3675
3676 v = ggc_alloc<ipa_agg_replacement_value> ();
3677 memcpy (v, old_av, sizeof (*v));
3678 v->next = new_av;
3679 new_av = v;
3680 old_av = old_av->next;
3681 }
3682 ipa_set_node_agg_value_chain (dst, new_av);
3683 }
3684
3685
3686 /* Analyze newly added function into callgraph. */
3687
3688 static void
3689 ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3690 {
3691 if (node->has_gimple_body_p ())
3692 ipa_analyze_node (node);
3693 }
3694
3695 /* Register our cgraph hooks if they are not already there. */
3696
3697 void
3698 ipa_register_cgraph_hooks (void)
3699 {
3700 if (!edge_removal_hook_holder)
3701 edge_removal_hook_holder =
3702 cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
3703 if (!node_removal_hook_holder)
3704 node_removal_hook_holder =
3705 cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
3706 if (!edge_duplication_hook_holder)
3707 edge_duplication_hook_holder =
3708 cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
3709 if (!node_duplication_hook_holder)
3710 node_duplication_hook_holder =
3711 cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
3712 function_insertion_hook_holder =
3713 cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
3714 }
3715
3716 /* Unregister our cgraph hooks if they are not already there. */
3717
3718 static void
3719 ipa_unregister_cgraph_hooks (void)
3720 {
3721 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
3722 edge_removal_hook_holder = NULL;
3723 cgraph_remove_node_removal_hook (node_removal_hook_holder);
3724 node_removal_hook_holder = NULL;
3725 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
3726 edge_duplication_hook_holder = NULL;
3727 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
3728 node_duplication_hook_holder = NULL;
3729 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
3730 function_insertion_hook_holder = NULL;
3731 }
3732
3733 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
3734 longer needed after ipa-cp. */
3735
3736 void
3737 ipa_free_all_structures_after_ipa_cp (void)
3738 {
3739 if (!optimize)
3740 {
3741 ipa_free_all_edge_args ();
3742 ipa_free_all_node_params ();
3743 free_alloc_pool (ipcp_sources_pool);
3744 free_alloc_pool (ipcp_values_pool);
3745 free_alloc_pool (ipcp_agg_lattice_pool);
3746 ipa_unregister_cgraph_hooks ();
3747 if (ipa_refdesc_pool)
3748 free_alloc_pool (ipa_refdesc_pool);
3749 }
3750 }
3751
3752 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
3753 longer needed after indirect inlining. */
3754
3755 void
3756 ipa_free_all_structures_after_iinln (void)
3757 {
3758 ipa_free_all_edge_args ();
3759 ipa_free_all_node_params ();
3760 ipa_unregister_cgraph_hooks ();
3761 if (ipcp_sources_pool)
3762 free_alloc_pool (ipcp_sources_pool);
3763 if (ipcp_values_pool)
3764 free_alloc_pool (ipcp_values_pool);
3765 if (ipcp_agg_lattice_pool)
3766 free_alloc_pool (ipcp_agg_lattice_pool);
3767 if (ipa_refdesc_pool)
3768 free_alloc_pool (ipa_refdesc_pool);
3769 }
3770
3771 /* Print ipa_tree_map data structures of all functions in the
3772 callgraph to F. */
3773
3774 void
3775 ipa_print_node_params (FILE *f, struct cgraph_node *node)
3776 {
3777 int i, count;
3778 struct ipa_node_params *info;
3779
3780 if (!node->definition)
3781 return;
3782 info = IPA_NODE_REF (node);
3783 fprintf (f, " function %s/%i parameter descriptors:\n",
3784 node->name (), node->order);
3785 count = ipa_get_param_count (info);
3786 for (i = 0; i < count; i++)
3787 {
3788 int c;
3789
3790 fprintf (f, " ");
3791 ipa_dump_param (f, info, i);
3792 if (ipa_is_param_used (info, i))
3793 fprintf (f, " used");
3794 c = ipa_get_controlled_uses (info, i);
3795 if (c == IPA_UNDESCRIBED_USE)
3796 fprintf (f, " undescribed_use");
3797 else
3798 fprintf (f, " controlled_uses=%i", c);
3799 fprintf (f, "\n");
3800 }
3801 }
3802
3803 /* Print ipa_tree_map data structures of all functions in the
3804 callgraph to F. */
3805
3806 void
3807 ipa_print_all_params (FILE * f)
3808 {
3809 struct cgraph_node *node;
3810
3811 fprintf (f, "\nFunction parameters:\n");
3812 FOR_EACH_FUNCTION (node)
3813 ipa_print_node_params (f, node);
3814 }
3815
3816 /* Return a heap allocated vector containing formal parameters of FNDECL. */
3817
3818 vec<tree>
3819 ipa_get_vector_of_formal_parms (tree fndecl)
3820 {
3821 vec<tree> args;
3822 int count;
3823 tree parm;
3824
3825 gcc_assert (!flag_wpa);
3826 count = count_formal_params (fndecl);
3827 args.create (count);
3828 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
3829 args.quick_push (parm);
3830
3831 return args;
3832 }
3833
3834 /* Return a heap allocated vector containing types of formal parameters of
3835 function type FNTYPE. */
3836
3837 vec<tree>
3838 ipa_get_vector_of_formal_parm_types (tree fntype)
3839 {
3840 vec<tree> types;
3841 int count = 0;
3842 tree t;
3843
3844 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
3845 count++;
3846
3847 types.create (count);
3848 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
3849 types.quick_push (TREE_VALUE (t));
3850
3851 return types;
3852 }
3853
3854 /* Modify the function declaration FNDECL and its type according to the plan in
3855 ADJUSTMENTS. It also sets base fields of individual adjustments structures
3856 to reflect the actual parameters being modified which are determined by the
3857 base_index field. */
3858
3859 void
3860 ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments)
3861 {
3862 vec<tree> oparms = ipa_get_vector_of_formal_parms (fndecl);
3863 tree orig_type = TREE_TYPE (fndecl);
3864 tree old_arg_types = TYPE_ARG_TYPES (orig_type);
3865
3866 /* The following test is an ugly hack, some functions simply don't have any
3867 arguments in their type. This is probably a bug but well... */
3868 bool care_for_types = (old_arg_types != NULL_TREE);
3869 bool last_parm_void;
3870 vec<tree> otypes;
3871 if (care_for_types)
3872 {
3873 last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
3874 == void_type_node);
3875 otypes = ipa_get_vector_of_formal_parm_types (orig_type);
3876 if (last_parm_void)
3877 gcc_assert (oparms.length () + 1 == otypes.length ());
3878 else
3879 gcc_assert (oparms.length () == otypes.length ());
3880 }
3881 else
3882 {
3883 last_parm_void = false;
3884 otypes.create (0);
3885 }
3886
3887 int len = adjustments.length ();
3888 tree *link = &DECL_ARGUMENTS (fndecl);
3889 tree new_arg_types = NULL;
3890 for (int i = 0; i < len; i++)
3891 {
3892 struct ipa_parm_adjustment *adj;
3893 gcc_assert (link);
3894
3895 adj = &adjustments[i];
3896 tree parm;
3897 if (adj->op == IPA_PARM_OP_NEW)
3898 parm = NULL;
3899 else
3900 parm = oparms[adj->base_index];
3901 adj->base = parm;
3902
3903 if (adj->op == IPA_PARM_OP_COPY)
3904 {
3905 if (care_for_types)
3906 new_arg_types = tree_cons (NULL_TREE, otypes[adj->base_index],
3907 new_arg_types);
3908 *link = parm;
3909 link = &DECL_CHAIN (parm);
3910 }
3911 else if (adj->op != IPA_PARM_OP_REMOVE)
3912 {
3913 tree new_parm;
3914 tree ptype;
3915
3916 if (adj->by_ref)
3917 ptype = build_pointer_type (adj->type);
3918 else
3919 {
3920 ptype = adj->type;
3921 if (is_gimple_reg_type (ptype))
3922 {
3923 unsigned malign = GET_MODE_ALIGNMENT (TYPE_MODE (ptype));
3924 if (TYPE_ALIGN (ptype) < malign)
3925 ptype = build_aligned_type (ptype, malign);
3926 }
3927 }
3928
3929 if (care_for_types)
3930 new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
3931
3932 new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
3933 ptype);
3934 const char *prefix = adj->arg_prefix ? adj->arg_prefix : "SYNTH";
3935 DECL_NAME (new_parm) = create_tmp_var_name (prefix);
3936 DECL_ARTIFICIAL (new_parm) = 1;
3937 DECL_ARG_TYPE (new_parm) = ptype;
3938 DECL_CONTEXT (new_parm) = fndecl;
3939 TREE_USED (new_parm) = 1;
3940 DECL_IGNORED_P (new_parm) = 1;
3941 layout_decl (new_parm, 0);
3942
3943 if (adj->op == IPA_PARM_OP_NEW)
3944 adj->base = NULL;
3945 else
3946 adj->base = parm;
3947 adj->new_decl = new_parm;
3948
3949 *link = new_parm;
3950 link = &DECL_CHAIN (new_parm);
3951 }
3952 }
3953
3954 *link = NULL_TREE;
3955
3956 tree new_reversed = NULL;
3957 if (care_for_types)
3958 {
3959 new_reversed = nreverse (new_arg_types);
3960 if (last_parm_void)
3961 {
3962 if (new_reversed)
3963 TREE_CHAIN (new_arg_types) = void_list_node;
3964 else
3965 new_reversed = void_list_node;
3966 }
3967 }
3968
3969 /* Use copy_node to preserve as much as possible from original type
3970 (debug info, attribute lists etc.)
3971 Exception is METHOD_TYPEs must have THIS argument.
3972 When we are asked to remove it, we need to build new FUNCTION_TYPE
3973 instead. */
3974 tree new_type = NULL;
3975 if (TREE_CODE (orig_type) != METHOD_TYPE
3976 || (adjustments[0].op == IPA_PARM_OP_COPY
3977 && adjustments[0].base_index == 0))
3978 {
3979 new_type = build_distinct_type_copy (orig_type);
3980 TYPE_ARG_TYPES (new_type) = new_reversed;
3981 }
3982 else
3983 {
3984 new_type
3985 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
3986 new_reversed));
3987 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
3988 DECL_VINDEX (fndecl) = NULL_TREE;
3989 }
3990
3991 /* When signature changes, we need to clear builtin info. */
3992 if (DECL_BUILT_IN (fndecl))
3993 {
3994 DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
3995 DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
3996 }
3997
3998 /* This is a new type, not a copy of an old type. Need to reassociate
3999 variants. We can handle everything except the main variant lazily. */
4000 tree t = TYPE_MAIN_VARIANT (orig_type);
4001 if (orig_type != t)
4002 {
4003 TYPE_MAIN_VARIANT (new_type) = t;
4004 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
4005 TYPE_NEXT_VARIANT (t) = new_type;
4006 }
4007 else
4008 {
4009 TYPE_MAIN_VARIANT (new_type) = new_type;
4010 TYPE_NEXT_VARIANT (new_type) = NULL;
4011 }
4012
4013 TREE_TYPE (fndecl) = new_type;
4014 DECL_VIRTUAL_P (fndecl) = 0;
4015 DECL_LANG_SPECIFIC (fndecl) = NULL;
4016 otypes.release ();
4017 oparms.release ();
4018 }
4019
4020 /* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
4021 If this is a directly recursive call, CS must be NULL. Otherwise it must
4022 contain the corresponding call graph edge. */
4023
4024 void
4025 ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
4026 ipa_parm_adjustment_vec adjustments)
4027 {
4028 struct cgraph_node *current_node = cgraph_node::get (current_function_decl);
4029 vec<tree> vargs;
4030 vec<tree, va_gc> **debug_args = NULL;
4031 gimple new_stmt;
4032 gimple_stmt_iterator gsi, prev_gsi;
4033 tree callee_decl;
4034 int i, len;
4035
4036 len = adjustments.length ();
4037 vargs.create (len);
4038 callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
4039 current_node->remove_stmt_references (stmt);
4040
4041 gsi = gsi_for_stmt (stmt);
4042 prev_gsi = gsi;
4043 gsi_prev (&prev_gsi);
4044 for (i = 0; i < len; i++)
4045 {
4046 struct ipa_parm_adjustment *adj;
4047
4048 adj = &adjustments[i];
4049
4050 if (adj->op == IPA_PARM_OP_COPY)
4051 {
4052 tree arg = gimple_call_arg (stmt, adj->base_index);
4053
4054 vargs.quick_push (arg);
4055 }
4056 else if (adj->op != IPA_PARM_OP_REMOVE)
4057 {
4058 tree expr, base, off;
4059 location_t loc;
4060 unsigned int deref_align = 0;
4061 bool deref_base = false;
4062
4063 /* We create a new parameter out of the value of the old one, we can
4064 do the following kind of transformations:
4065
4066 - A scalar passed by reference is converted to a scalar passed by
4067 value. (adj->by_ref is false and the type of the original
4068 actual argument is a pointer to a scalar).
4069
4070 - A part of an aggregate is passed instead of the whole aggregate.
4071 The part can be passed either by value or by reference, this is
4072 determined by value of adj->by_ref. Moreover, the code below
4073 handles both situations when the original aggregate is passed by
4074 value (its type is not a pointer) and when it is passed by
4075 reference (it is a pointer to an aggregate).
4076
4077 When the new argument is passed by reference (adj->by_ref is true)
4078 it must be a part of an aggregate and therefore we form it by
4079 simply taking the address of a reference inside the original
4080 aggregate. */
4081
4082 gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
4083 base = gimple_call_arg (stmt, adj->base_index);
4084 loc = DECL_P (base) ? DECL_SOURCE_LOCATION (base)
4085 : EXPR_LOCATION (base);
4086
4087 if (TREE_CODE (base) != ADDR_EXPR
4088 && POINTER_TYPE_P (TREE_TYPE (base)))
4089 off = build_int_cst (adj->alias_ptr_type,
4090 adj->offset / BITS_PER_UNIT);
4091 else
4092 {
4093 HOST_WIDE_INT base_offset;
4094 tree prev_base;
4095 bool addrof;
4096
4097 if (TREE_CODE (base) == ADDR_EXPR)
4098 {
4099 base = TREE_OPERAND (base, 0);
4100 addrof = true;
4101 }
4102 else
4103 addrof = false;
4104 prev_base = base;
4105 base = get_addr_base_and_unit_offset (base, &base_offset);
4106 /* Aggregate arguments can have non-invariant addresses. */
4107 if (!base)
4108 {
4109 base = build_fold_addr_expr (prev_base);
4110 off = build_int_cst (adj->alias_ptr_type,
4111 adj->offset / BITS_PER_UNIT);
4112 }
4113 else if (TREE_CODE (base) == MEM_REF)
4114 {
4115 if (!addrof)
4116 {
4117 deref_base = true;
4118 deref_align = TYPE_ALIGN (TREE_TYPE (base));
4119 }
4120 off = build_int_cst (adj->alias_ptr_type,
4121 base_offset
4122 + adj->offset / BITS_PER_UNIT);
4123 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
4124 off);
4125 base = TREE_OPERAND (base, 0);
4126 }
4127 else
4128 {
4129 off = build_int_cst (adj->alias_ptr_type,
4130 base_offset
4131 + adj->offset / BITS_PER_UNIT);
4132 base = build_fold_addr_expr (base);
4133 }
4134 }
4135
4136 if (!adj->by_ref)
4137 {
4138 tree type = adj->type;
4139 unsigned int align;
4140 unsigned HOST_WIDE_INT misalign;
4141
4142 if (deref_base)
4143 {
4144 align = deref_align;
4145 misalign = 0;
4146 }
4147 else
4148 {
4149 get_pointer_alignment_1 (base, &align, &misalign);
4150 if (TYPE_ALIGN (type) > align)
4151 align = TYPE_ALIGN (type);
4152 }
4153 misalign += (offset_int::from (off, SIGNED).to_short_addr ()
4154 * BITS_PER_UNIT);
4155 misalign = misalign & (align - 1);
4156 if (misalign != 0)
4157 align = (misalign & -misalign);
4158 if (align < TYPE_ALIGN (type))
4159 type = build_aligned_type (type, align);
4160 base = force_gimple_operand_gsi (&gsi, base,
4161 true, NULL, true, GSI_SAME_STMT);
4162 expr = fold_build2_loc (loc, MEM_REF, type, base, off);
4163 /* If expr is not a valid gimple call argument emit
4164 a load into a temporary. */
4165 if (is_gimple_reg_type (TREE_TYPE (expr)))
4166 {
4167 gimple tem = gimple_build_assign (NULL_TREE, expr);
4168 if (gimple_in_ssa_p (cfun))
4169 {
4170 gimple_set_vuse (tem, gimple_vuse (stmt));
4171 expr = make_ssa_name (TREE_TYPE (expr), tem);
4172 }
4173 else
4174 expr = create_tmp_reg (TREE_TYPE (expr), NULL);
4175 gimple_assign_set_lhs (tem, expr);
4176 gsi_insert_before (&gsi, tem, GSI_SAME_STMT);
4177 }
4178 }
4179 else
4180 {
4181 expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
4182 expr = build_fold_addr_expr (expr);
4183 expr = force_gimple_operand_gsi (&gsi, expr,
4184 true, NULL, true, GSI_SAME_STMT);
4185 }
4186 vargs.quick_push (expr);
4187 }
4188 if (adj->op != IPA_PARM_OP_COPY && MAY_HAVE_DEBUG_STMTS)
4189 {
4190 unsigned int ix;
4191 tree ddecl = NULL_TREE, origin = DECL_ORIGIN (adj->base), arg;
4192 gimple def_temp;
4193
4194 arg = gimple_call_arg (stmt, adj->base_index);
4195 if (!useless_type_conversion_p (TREE_TYPE (origin), TREE_TYPE (arg)))
4196 {
4197 if (!fold_convertible_p (TREE_TYPE (origin), arg))
4198 continue;
4199 arg = fold_convert_loc (gimple_location (stmt),
4200 TREE_TYPE (origin), arg);
4201 }
4202 if (debug_args == NULL)
4203 debug_args = decl_debug_args_insert (callee_decl);
4204 for (ix = 0; vec_safe_iterate (*debug_args, ix, &ddecl); ix += 2)
4205 if (ddecl == origin)
4206 {
4207 ddecl = (**debug_args)[ix + 1];
4208 break;
4209 }
4210 if (ddecl == NULL)
4211 {
4212 ddecl = make_node (DEBUG_EXPR_DECL);
4213 DECL_ARTIFICIAL (ddecl) = 1;
4214 TREE_TYPE (ddecl) = TREE_TYPE (origin);
4215 DECL_MODE (ddecl) = DECL_MODE (origin);
4216
4217 vec_safe_push (*debug_args, origin);
4218 vec_safe_push (*debug_args, ddecl);
4219 }
4220 def_temp = gimple_build_debug_bind (ddecl, unshare_expr (arg), stmt);
4221 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
4222 }
4223 }
4224
4225 if (dump_file && (dump_flags & TDF_DETAILS))
4226 {
4227 fprintf (dump_file, "replacing stmt:");
4228 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
4229 }
4230
4231 new_stmt = gimple_build_call_vec (callee_decl, vargs);
4232 vargs.release ();
4233 if (gimple_call_lhs (stmt))
4234 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
4235
4236 gimple_set_block (new_stmt, gimple_block (stmt));
4237 if (gimple_has_location (stmt))
4238 gimple_set_location (new_stmt, gimple_location (stmt));
4239 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
4240 gimple_call_copy_flags (new_stmt, stmt);
4241 if (gimple_in_ssa_p (cfun))
4242 {
4243 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
4244 if (gimple_vdef (stmt))
4245 {
4246 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
4247 SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
4248 }
4249 }
4250
4251 if (dump_file && (dump_flags & TDF_DETAILS))
4252 {
4253 fprintf (dump_file, "with stmt:");
4254 print_gimple_stmt (dump_file, new_stmt, 0, 0);
4255 fprintf (dump_file, "\n");
4256 }
4257 gsi_replace (&gsi, new_stmt, true);
4258 if (cs)
4259 cgraph_set_call_stmt (cs, new_stmt);
4260 do
4261 {
4262 current_node->record_stmt_references (gsi_stmt (gsi));
4263 gsi_prev (&gsi);
4264 }
4265 while (gsi_stmt (gsi) != gsi_stmt (prev_gsi));
4266 }
4267
4268 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4269 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4270 specifies whether the function should care about type incompatibility the
4271 current and new expressions. If it is false, the function will leave
4272 incompatibility issues to the caller. Return true iff the expression
4273 was modified. */
4274
4275 bool
4276 ipa_modify_expr (tree *expr, bool convert,
4277 ipa_parm_adjustment_vec adjustments)
4278 {
4279 struct ipa_parm_adjustment *cand
4280 = ipa_get_adjustment_candidate (&expr, &convert, adjustments, false);
4281 if (!cand)
4282 return false;
4283
4284 tree src;
4285 if (cand->by_ref)
4286 src = build_simple_mem_ref (cand->new_decl);
4287 else
4288 src = cand->new_decl;
4289
4290 if (dump_file && (dump_flags & TDF_DETAILS))
4291 {
4292 fprintf (dump_file, "About to replace expr ");
4293 print_generic_expr (dump_file, *expr, 0);
4294 fprintf (dump_file, " with ");
4295 print_generic_expr (dump_file, src, 0);
4296 fprintf (dump_file, "\n");
4297 }
4298
4299 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4300 {
4301 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4302 *expr = vce;
4303 }
4304 else
4305 *expr = src;
4306 return true;
4307 }
4308
4309 /* If T is an SSA_NAME, return NULL if it is not a default def or
4310 return its base variable if it is. If IGNORE_DEFAULT_DEF is true,
4311 the base variable is always returned, regardless if it is a default
4312 def. Return T if it is not an SSA_NAME. */
4313
4314 static tree
4315 get_ssa_base_param (tree t, bool ignore_default_def)
4316 {
4317 if (TREE_CODE (t) == SSA_NAME)
4318 {
4319 if (ignore_default_def || SSA_NAME_IS_DEFAULT_DEF (t))
4320 return SSA_NAME_VAR (t);
4321 else
4322 return NULL_TREE;
4323 }
4324 return t;
4325 }
4326
4327 /* Given an expression, return an adjustment entry specifying the
4328 transformation to be done on EXPR. If no suitable adjustment entry
4329 was found, returns NULL.
4330
4331 If IGNORE_DEFAULT_DEF is set, consider SSA_NAMEs which are not a
4332 default def, otherwise bail on them.
4333
4334 If CONVERT is non-NULL, this function will set *CONVERT if the
4335 expression provided is a component reference. ADJUSTMENTS is the
4336 adjustments vector. */
4337
4338 ipa_parm_adjustment *
4339 ipa_get_adjustment_candidate (tree **expr, bool *convert,
4340 ipa_parm_adjustment_vec adjustments,
4341 bool ignore_default_def)
4342 {
4343 if (TREE_CODE (**expr) == BIT_FIELD_REF
4344 || TREE_CODE (**expr) == IMAGPART_EXPR
4345 || TREE_CODE (**expr) == REALPART_EXPR)
4346 {
4347 *expr = &TREE_OPERAND (**expr, 0);
4348 if (convert)
4349 *convert = true;
4350 }
4351
4352 HOST_WIDE_INT offset, size, max_size;
4353 tree base = get_ref_base_and_extent (**expr, &offset, &size, &max_size);
4354 if (!base || size == -1 || max_size == -1)
4355 return NULL;
4356
4357 if (TREE_CODE (base) == MEM_REF)
4358 {
4359 offset += mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT;
4360 base = TREE_OPERAND (base, 0);
4361 }
4362
4363 base = get_ssa_base_param (base, ignore_default_def);
4364 if (!base || TREE_CODE (base) != PARM_DECL)
4365 return NULL;
4366
4367 struct ipa_parm_adjustment *cand = NULL;
4368 unsigned int len = adjustments.length ();
4369 for (unsigned i = 0; i < len; i++)
4370 {
4371 struct ipa_parm_adjustment *adj = &adjustments[i];
4372
4373 if (adj->base == base
4374 && (adj->offset == offset || adj->op == IPA_PARM_OP_REMOVE))
4375 {
4376 cand = adj;
4377 break;
4378 }
4379 }
4380
4381 if (!cand || cand->op == IPA_PARM_OP_COPY || cand->op == IPA_PARM_OP_REMOVE)
4382 return NULL;
4383 return cand;
4384 }
4385
4386 /* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
4387
4388 static bool
4389 index_in_adjustments_multiple_times_p (int base_index,
4390 ipa_parm_adjustment_vec adjustments)
4391 {
4392 int i, len = adjustments.length ();
4393 bool one = false;
4394
4395 for (i = 0; i < len; i++)
4396 {
4397 struct ipa_parm_adjustment *adj;
4398 adj = &adjustments[i];
4399
4400 if (adj->base_index == base_index)
4401 {
4402 if (one)
4403 return true;
4404 else
4405 one = true;
4406 }
4407 }
4408 return false;
4409 }
4410
4411
4412 /* Return adjustments that should have the same effect on function parameters
4413 and call arguments as if they were first changed according to adjustments in
4414 INNER and then by adjustments in OUTER. */
4415
4416 ipa_parm_adjustment_vec
4417 ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
4418 ipa_parm_adjustment_vec outer)
4419 {
4420 int i, outlen = outer.length ();
4421 int inlen = inner.length ();
4422 int removals = 0;
4423 ipa_parm_adjustment_vec adjustments, tmp;
4424
4425 tmp.create (inlen);
4426 for (i = 0; i < inlen; i++)
4427 {
4428 struct ipa_parm_adjustment *n;
4429 n = &inner[i];
4430
4431 if (n->op == IPA_PARM_OP_REMOVE)
4432 removals++;
4433 else
4434 {
4435 /* FIXME: Handling of new arguments are not implemented yet. */
4436 gcc_assert (n->op != IPA_PARM_OP_NEW);
4437 tmp.quick_push (*n);
4438 }
4439 }
4440
4441 adjustments.create (outlen + removals);
4442 for (i = 0; i < outlen; i++)
4443 {
4444 struct ipa_parm_adjustment r;
4445 struct ipa_parm_adjustment *out = &outer[i];
4446 struct ipa_parm_adjustment *in = &tmp[out->base_index];
4447
4448 memset (&r, 0, sizeof (r));
4449 gcc_assert (in->op != IPA_PARM_OP_REMOVE);
4450 if (out->op == IPA_PARM_OP_REMOVE)
4451 {
4452 if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
4453 {
4454 r.op = IPA_PARM_OP_REMOVE;
4455 adjustments.quick_push (r);
4456 }
4457 continue;
4458 }
4459 else
4460 {
4461 /* FIXME: Handling of new arguments are not implemented yet. */
4462 gcc_assert (out->op != IPA_PARM_OP_NEW);
4463 }
4464
4465 r.base_index = in->base_index;
4466 r.type = out->type;
4467
4468 /* FIXME: Create nonlocal value too. */
4469
4470 if (in->op == IPA_PARM_OP_COPY && out->op == IPA_PARM_OP_COPY)
4471 r.op = IPA_PARM_OP_COPY;
4472 else if (in->op == IPA_PARM_OP_COPY)
4473 r.offset = out->offset;
4474 else if (out->op == IPA_PARM_OP_COPY)
4475 r.offset = in->offset;
4476 else
4477 r.offset = in->offset + out->offset;
4478 adjustments.quick_push (r);
4479 }
4480
4481 for (i = 0; i < inlen; i++)
4482 {
4483 struct ipa_parm_adjustment *n = &inner[i];
4484
4485 if (n->op == IPA_PARM_OP_REMOVE)
4486 adjustments.quick_push (*n);
4487 }
4488
4489 tmp.release ();
4490 return adjustments;
4491 }
4492
4493 /* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
4494 friendly way, assuming they are meant to be applied to FNDECL. */
4495
4496 void
4497 ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
4498 tree fndecl)
4499 {
4500 int i, len = adjustments.length ();
4501 bool first = true;
4502 vec<tree> parms = ipa_get_vector_of_formal_parms (fndecl);
4503
4504 fprintf (file, "IPA param adjustments: ");
4505 for (i = 0; i < len; i++)
4506 {
4507 struct ipa_parm_adjustment *adj;
4508 adj = &adjustments[i];
4509
4510 if (!first)
4511 fprintf (file, " ");
4512 else
4513 first = false;
4514
4515 fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
4516 print_generic_expr (file, parms[adj->base_index], 0);
4517 if (adj->base)
4518 {
4519 fprintf (file, ", base: ");
4520 print_generic_expr (file, adj->base, 0);
4521 }
4522 if (adj->new_decl)
4523 {
4524 fprintf (file, ", new_decl: ");
4525 print_generic_expr (file, adj->new_decl, 0);
4526 }
4527 if (adj->new_ssa_base)
4528 {
4529 fprintf (file, ", new_ssa_base: ");
4530 print_generic_expr (file, adj->new_ssa_base, 0);
4531 }
4532
4533 if (adj->op == IPA_PARM_OP_COPY)
4534 fprintf (file, ", copy_param");
4535 else if (adj->op == IPA_PARM_OP_REMOVE)
4536 fprintf (file, ", remove_param");
4537 else
4538 fprintf (file, ", offset %li", (long) adj->offset);
4539 if (adj->by_ref)
4540 fprintf (file, ", by_ref");
4541 print_node_brief (file, ", type: ", adj->type, 0);
4542 fprintf (file, "\n");
4543 }
4544 parms.release ();
4545 }
4546
4547 /* Dump the AV linked list. */
4548
4549 void
4550 ipa_dump_agg_replacement_values (FILE *f, struct ipa_agg_replacement_value *av)
4551 {
4552 bool comma = false;
4553 fprintf (f, " Aggregate replacements:");
4554 for (; av; av = av->next)
4555 {
4556 fprintf (f, "%s %i[" HOST_WIDE_INT_PRINT_DEC "]=", comma ? "," : "",
4557 av->index, av->offset);
4558 print_generic_expr (f, av->value, 0);
4559 comma = true;
4560 }
4561 fprintf (f, "\n");
4562 }
4563
4564 /* Stream out jump function JUMP_FUNC to OB. */
4565
4566 static void
4567 ipa_write_jump_function (struct output_block *ob,
4568 struct ipa_jump_func *jump_func)
4569 {
4570 struct ipa_agg_jf_item *item;
4571 struct bitpack_d bp;
4572 int i, count;
4573
4574 streamer_write_uhwi (ob, jump_func->type);
4575 switch (jump_func->type)
4576 {
4577 case IPA_JF_UNKNOWN:
4578 break;
4579 case IPA_JF_KNOWN_TYPE:
4580 streamer_write_uhwi (ob, jump_func->value.known_type.offset);
4581 stream_write_tree (ob, jump_func->value.known_type.base_type, true);
4582 stream_write_tree (ob, jump_func->value.known_type.component_type, true);
4583 break;
4584 case IPA_JF_CONST:
4585 gcc_assert (
4586 EXPR_LOCATION (jump_func->value.constant.value) == UNKNOWN_LOCATION);
4587 stream_write_tree (ob, jump_func->value.constant.value, true);
4588 break;
4589 case IPA_JF_PASS_THROUGH:
4590 streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
4591 if (jump_func->value.pass_through.operation == NOP_EXPR)
4592 {
4593 streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
4594 bp = bitpack_create (ob->main_stream);
4595 bp_pack_value (&bp, jump_func->value.pass_through.agg_preserved, 1);
4596 bp_pack_value (&bp, jump_func->value.pass_through.type_preserved, 1);
4597 streamer_write_bitpack (&bp);
4598 }
4599 else
4600 {
4601 stream_write_tree (ob, jump_func->value.pass_through.operand, true);
4602 streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
4603 }
4604 break;
4605 case IPA_JF_ANCESTOR:
4606 streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
4607 stream_write_tree (ob, jump_func->value.ancestor.type, true);
4608 streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
4609 bp = bitpack_create (ob->main_stream);
4610 bp_pack_value (&bp, jump_func->value.ancestor.agg_preserved, 1);
4611 bp_pack_value (&bp, jump_func->value.ancestor.type_preserved, 1);
4612 streamer_write_bitpack (&bp);
4613 break;
4614 }
4615
4616 count = vec_safe_length (jump_func->agg.items);
4617 streamer_write_uhwi (ob, count);
4618 if (count)
4619 {
4620 bp = bitpack_create (ob->main_stream);
4621 bp_pack_value (&bp, jump_func->agg.by_ref, 1);
4622 streamer_write_bitpack (&bp);
4623 }
4624
4625 FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, i, item)
4626 {
4627 streamer_write_uhwi (ob, item->offset);
4628 stream_write_tree (ob, item->value, true);
4629 }
4630 }
4631
4632 /* Read in jump function JUMP_FUNC from IB. */
4633
4634 static void
4635 ipa_read_jump_function (struct lto_input_block *ib,
4636 struct ipa_jump_func *jump_func,
4637 struct cgraph_edge *cs,
4638 struct data_in *data_in)
4639 {
4640 enum jump_func_type jftype;
4641 enum tree_code operation;
4642 int i, count;
4643
4644 jftype = (enum jump_func_type) streamer_read_uhwi (ib);
4645 switch (jftype)
4646 {
4647 case IPA_JF_UNKNOWN:
4648 jump_func->type = IPA_JF_UNKNOWN;
4649 break;
4650 case IPA_JF_KNOWN_TYPE:
4651 {
4652 HOST_WIDE_INT offset = streamer_read_uhwi (ib);
4653 tree base_type = stream_read_tree (ib, data_in);
4654 tree component_type = stream_read_tree (ib, data_in);
4655
4656 ipa_set_jf_known_type (jump_func, offset, base_type, component_type);
4657 break;
4658 }
4659 case IPA_JF_CONST:
4660 ipa_set_jf_constant (jump_func, stream_read_tree (ib, data_in), cs);
4661 break;
4662 case IPA_JF_PASS_THROUGH:
4663 operation = (enum tree_code) streamer_read_uhwi (ib);
4664 if (operation == NOP_EXPR)
4665 {
4666 int formal_id = streamer_read_uhwi (ib);
4667 struct bitpack_d bp = streamer_read_bitpack (ib);
4668 bool agg_preserved = bp_unpack_value (&bp, 1);
4669 bool type_preserved = bp_unpack_value (&bp, 1);
4670 ipa_set_jf_simple_pass_through (jump_func, formal_id, agg_preserved,
4671 type_preserved);
4672 }
4673 else
4674 {
4675 tree operand = stream_read_tree (ib, data_in);
4676 int formal_id = streamer_read_uhwi (ib);
4677 ipa_set_jf_arith_pass_through (jump_func, formal_id, operand,
4678 operation);
4679 }
4680 break;
4681 case IPA_JF_ANCESTOR:
4682 {
4683 HOST_WIDE_INT offset = streamer_read_uhwi (ib);
4684 tree type = stream_read_tree (ib, data_in);
4685 int formal_id = streamer_read_uhwi (ib);
4686 struct bitpack_d bp = streamer_read_bitpack (ib);
4687 bool agg_preserved = bp_unpack_value (&bp, 1);
4688 bool type_preserved = bp_unpack_value (&bp, 1);
4689
4690 ipa_set_ancestor_jf (jump_func, offset, type, formal_id, agg_preserved,
4691 type_preserved);
4692 break;
4693 }
4694 }
4695
4696 count = streamer_read_uhwi (ib);
4697 vec_alloc (jump_func->agg.items, count);
4698 if (count)
4699 {
4700 struct bitpack_d bp = streamer_read_bitpack (ib);
4701 jump_func->agg.by_ref = bp_unpack_value (&bp, 1);
4702 }
4703 for (i = 0; i < count; i++)
4704 {
4705 struct ipa_agg_jf_item item;
4706 item.offset = streamer_read_uhwi (ib);
4707 item.value = stream_read_tree (ib, data_in);
4708 jump_func->agg.items->quick_push (item);
4709 }
4710 }
4711
4712 /* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
4713 relevant to indirect inlining to OB. */
4714
4715 static void
4716 ipa_write_indirect_edge_info (struct output_block *ob,
4717 struct cgraph_edge *cs)
4718 {
4719 struct cgraph_indirect_call_info *ii = cs->indirect_info;
4720 struct bitpack_d bp;
4721
4722 streamer_write_hwi (ob, ii->param_index);
4723 streamer_write_hwi (ob, ii->offset);
4724 bp = bitpack_create (ob->main_stream);
4725 bp_pack_value (&bp, ii->polymorphic, 1);
4726 bp_pack_value (&bp, ii->agg_contents, 1);
4727 bp_pack_value (&bp, ii->member_ptr, 1);
4728 bp_pack_value (&bp, ii->by_ref, 1);
4729 bp_pack_value (&bp, ii->maybe_in_construction, 1);
4730 bp_pack_value (&bp, ii->maybe_derived_type, 1);
4731 bp_pack_value (&bp, ii->speculative_maybe_derived_type, 1);
4732 streamer_write_bitpack (&bp);
4733
4734 if (ii->polymorphic)
4735 {
4736 streamer_write_hwi (ob, ii->otr_token);
4737 stream_write_tree (ob, ii->otr_type, true);
4738 stream_write_tree (ob, ii->outer_type, true);
4739 stream_write_tree (ob, ii->speculative_outer_type, true);
4740 if (ii->speculative_outer_type)
4741 streamer_write_hwi (ob, ii->speculative_offset);
4742 }
4743 }
4744
4745 /* Read in parts of cgraph_indirect_call_info corresponding to CS that are
4746 relevant to indirect inlining from IB. */
4747
4748 static void
4749 ipa_read_indirect_edge_info (struct lto_input_block *ib,
4750 struct data_in *data_in ATTRIBUTE_UNUSED,
4751 struct cgraph_edge *cs)
4752 {
4753 struct cgraph_indirect_call_info *ii = cs->indirect_info;
4754 struct bitpack_d bp;
4755
4756 ii->param_index = (int) streamer_read_hwi (ib);
4757 ii->offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
4758 bp = streamer_read_bitpack (ib);
4759 ii->polymorphic = bp_unpack_value (&bp, 1);
4760 ii->agg_contents = bp_unpack_value (&bp, 1);
4761 ii->member_ptr = bp_unpack_value (&bp, 1);
4762 ii->by_ref = bp_unpack_value (&bp, 1);
4763 ii->maybe_in_construction = bp_unpack_value (&bp, 1);
4764 ii->maybe_derived_type = bp_unpack_value (&bp, 1);
4765 ii->speculative_maybe_derived_type = bp_unpack_value (&bp, 1);
4766 if (ii->polymorphic)
4767 {
4768 ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
4769 ii->otr_type = stream_read_tree (ib, data_in);
4770 ii->outer_type = stream_read_tree (ib, data_in);
4771 ii->speculative_outer_type = stream_read_tree (ib, data_in);
4772 if (ii->speculative_outer_type)
4773 ii->speculative_offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
4774 }
4775 }
4776
4777 /* Stream out NODE info to OB. */
4778
4779 static void
4780 ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
4781 {
4782 int node_ref;
4783 lto_symtab_encoder_t encoder;
4784 struct ipa_node_params *info = IPA_NODE_REF (node);
4785 int j;
4786 struct cgraph_edge *e;
4787 struct bitpack_d bp;
4788
4789 encoder = ob->decl_state->symtab_node_encoder;
4790 node_ref = lto_symtab_encoder_encode (encoder, node);
4791 streamer_write_uhwi (ob, node_ref);
4792
4793 streamer_write_uhwi (ob, ipa_get_param_count (info));
4794 for (j = 0; j < ipa_get_param_count (info); j++)
4795 streamer_write_uhwi (ob, ipa_get_param_move_cost (info, j));
4796 bp = bitpack_create (ob->main_stream);
4797 gcc_assert (info->analysis_done
4798 || ipa_get_param_count (info) == 0);
4799 gcc_assert (!info->node_enqueued);
4800 gcc_assert (!info->ipcp_orig_node);
4801 for (j = 0; j < ipa_get_param_count (info); j++)
4802 bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
4803 streamer_write_bitpack (&bp);
4804 for (j = 0; j < ipa_get_param_count (info); j++)
4805 streamer_write_hwi (ob, ipa_get_controlled_uses (info, j));
4806 for (e = node->callees; e; e = e->next_callee)
4807 {
4808 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4809
4810 streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
4811 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
4812 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
4813 }
4814 for (e = node->indirect_calls; e; e = e->next_callee)
4815 {
4816 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4817
4818 streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
4819 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
4820 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
4821 ipa_write_indirect_edge_info (ob, e);
4822 }
4823 }
4824
4825 /* Stream in NODE info from IB. */
4826
4827 static void
4828 ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
4829 struct data_in *data_in)
4830 {
4831 struct ipa_node_params *info = IPA_NODE_REF (node);
4832 int k;
4833 struct cgraph_edge *e;
4834 struct bitpack_d bp;
4835
4836 ipa_alloc_node_params (node, streamer_read_uhwi (ib));
4837
4838 for (k = 0; k < ipa_get_param_count (info); k++)
4839 info->descriptors[k].move_cost = streamer_read_uhwi (ib);
4840
4841 bp = streamer_read_bitpack (ib);
4842 if (ipa_get_param_count (info) != 0)
4843 info->analysis_done = true;
4844 info->node_enqueued = false;
4845 for (k = 0; k < ipa_get_param_count (info); k++)
4846 ipa_set_param_used (info, k, bp_unpack_value (&bp, 1));
4847 for (k = 0; k < ipa_get_param_count (info); k++)
4848 ipa_set_controlled_uses (info, k, streamer_read_hwi (ib));
4849 for (e = node->callees; e; e = e->next_callee)
4850 {
4851 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4852 int count = streamer_read_uhwi (ib);
4853
4854 if (!count)
4855 continue;
4856 vec_safe_grow_cleared (args->jump_functions, count);
4857
4858 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
4859 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
4860 data_in);
4861 }
4862 for (e = node->indirect_calls; e; e = e->next_callee)
4863 {
4864 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4865 int count = streamer_read_uhwi (ib);
4866
4867 if (count)
4868 {
4869 vec_safe_grow_cleared (args->jump_functions, count);
4870 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
4871 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
4872 data_in);
4873 }
4874 ipa_read_indirect_edge_info (ib, data_in, e);
4875 }
4876 }
4877
4878 /* Write jump functions for nodes in SET. */
4879
4880 void
4881 ipa_prop_write_jump_functions (void)
4882 {
4883 struct cgraph_node *node;
4884 struct output_block *ob;
4885 unsigned int count = 0;
4886 lto_symtab_encoder_iterator lsei;
4887 lto_symtab_encoder_t encoder;
4888
4889
4890 if (!ipa_node_params_vector.exists ())
4891 return;
4892
4893 ob = create_output_block (LTO_section_jump_functions);
4894 encoder = ob->decl_state->symtab_node_encoder;
4895 ob->symbol = NULL;
4896 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4897 lsei_next_function_in_partition (&lsei))
4898 {
4899 node = lsei_cgraph_node (lsei);
4900 if (node->has_gimple_body_p ()
4901 && IPA_NODE_REF (node) != NULL)
4902 count++;
4903 }
4904
4905 streamer_write_uhwi (ob, count);
4906
4907 /* Process all of the functions. */
4908 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4909 lsei_next_function_in_partition (&lsei))
4910 {
4911 node = lsei_cgraph_node (lsei);
4912 if (node->has_gimple_body_p ()
4913 && IPA_NODE_REF (node) != NULL)
4914 ipa_write_node_info (ob, node);
4915 }
4916 streamer_write_char_stream (ob->main_stream, 0);
4917 produce_asm (ob, NULL);
4918 destroy_output_block (ob);
4919 }
4920
4921 /* Read section in file FILE_DATA of length LEN with data DATA. */
4922
4923 static void
4924 ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
4925 size_t len)
4926 {
4927 const struct lto_function_header *header =
4928 (const struct lto_function_header *) data;
4929 const int cfg_offset = sizeof (struct lto_function_header);
4930 const int main_offset = cfg_offset + header->cfg_size;
4931 const int string_offset = main_offset + header->main_size;
4932 struct data_in *data_in;
4933 struct lto_input_block ib_main;
4934 unsigned int i;
4935 unsigned int count;
4936
4937 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
4938 header->main_size);
4939
4940 data_in =
4941 lto_data_in_create (file_data, (const char *) data + string_offset,
4942 header->string_size, vNULL);
4943 count = streamer_read_uhwi (&ib_main);
4944
4945 for (i = 0; i < count; i++)
4946 {
4947 unsigned int index;
4948 struct cgraph_node *node;
4949 lto_symtab_encoder_t encoder;
4950
4951 index = streamer_read_uhwi (&ib_main);
4952 encoder = file_data->symtab_node_encoder;
4953 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4954 index));
4955 gcc_assert (node->definition);
4956 ipa_read_node_info (&ib_main, node, data_in);
4957 }
4958 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
4959 len);
4960 lto_data_in_delete (data_in);
4961 }
4962
4963 /* Read ipcp jump functions. */
4964
4965 void
4966 ipa_prop_read_jump_functions (void)
4967 {
4968 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4969 struct lto_file_decl_data *file_data;
4970 unsigned int j = 0;
4971
4972 ipa_check_create_node_params ();
4973 ipa_check_create_edge_args ();
4974 ipa_register_cgraph_hooks ();
4975
4976 while ((file_data = file_data_vec[j++]))
4977 {
4978 size_t len;
4979 const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
4980
4981 if (data)
4982 ipa_prop_read_section (file_data, data, len);
4983 }
4984 }
4985
4986 /* After merging units, we can get mismatch in argument counts.
4987 Also decl merging might've rendered parameter lists obsolete.
4988 Also compute called_with_variable_arg info. */
4989
4990 void
4991 ipa_update_after_lto_read (void)
4992 {
4993 ipa_check_create_node_params ();
4994 ipa_check_create_edge_args ();
4995 }
4996
4997 void
4998 write_agg_replacement_chain (struct output_block *ob, struct cgraph_node *node)
4999 {
5000 int node_ref;
5001 unsigned int count = 0;
5002 lto_symtab_encoder_t encoder;
5003 struct ipa_agg_replacement_value *aggvals, *av;
5004
5005 aggvals = ipa_get_agg_replacements_for_node (node);
5006 encoder = ob->decl_state->symtab_node_encoder;
5007 node_ref = lto_symtab_encoder_encode (encoder, node);
5008 streamer_write_uhwi (ob, node_ref);
5009
5010 for (av = aggvals; av; av = av->next)
5011 count++;
5012 streamer_write_uhwi (ob, count);
5013
5014 for (av = aggvals; av; av = av->next)
5015 {
5016 struct bitpack_d bp;
5017
5018 streamer_write_uhwi (ob, av->offset);
5019 streamer_write_uhwi (ob, av->index);
5020 stream_write_tree (ob, av->value, true);
5021
5022 bp = bitpack_create (ob->main_stream);
5023 bp_pack_value (&bp, av->by_ref, 1);
5024 streamer_write_bitpack (&bp);
5025 }
5026 }
5027
5028 /* Stream in the aggregate value replacement chain for NODE from IB. */
5029
5030 static void
5031 read_agg_replacement_chain (struct lto_input_block *ib,
5032 struct cgraph_node *node,
5033 struct data_in *data_in)
5034 {
5035 struct ipa_agg_replacement_value *aggvals = NULL;
5036 unsigned int count, i;
5037
5038 count = streamer_read_uhwi (ib);
5039 for (i = 0; i <count; i++)
5040 {
5041 struct ipa_agg_replacement_value *av;
5042 struct bitpack_d bp;
5043
5044 av = ggc_alloc<ipa_agg_replacement_value> ();
5045 av->offset = streamer_read_uhwi (ib);
5046 av->index = streamer_read_uhwi (ib);
5047 av->value = stream_read_tree (ib, data_in);
5048 bp = streamer_read_bitpack (ib);
5049 av->by_ref = bp_unpack_value (&bp, 1);
5050 av->next = aggvals;
5051 aggvals = av;
5052 }
5053 ipa_set_node_agg_value_chain (node, aggvals);
5054 }
5055
5056 /* Write all aggregate replacement for nodes in set. */
5057
5058 void
5059 ipa_prop_write_all_agg_replacement (void)
5060 {
5061 struct cgraph_node *node;
5062 struct output_block *ob;
5063 unsigned int count = 0;
5064 lto_symtab_encoder_iterator lsei;
5065 lto_symtab_encoder_t encoder;
5066
5067 if (!ipa_node_agg_replacements)
5068 return;
5069
5070 ob = create_output_block (LTO_section_ipcp_transform);
5071 encoder = ob->decl_state->symtab_node_encoder;
5072 ob->symbol = NULL;
5073 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
5074 lsei_next_function_in_partition (&lsei))
5075 {
5076 node = lsei_cgraph_node (lsei);
5077 if (node->has_gimple_body_p ()
5078 && ipa_get_agg_replacements_for_node (node) != NULL)
5079 count++;
5080 }
5081
5082 streamer_write_uhwi (ob, count);
5083
5084 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
5085 lsei_next_function_in_partition (&lsei))
5086 {
5087 node = lsei_cgraph_node (lsei);
5088 if (node->has_gimple_body_p ()
5089 && ipa_get_agg_replacements_for_node (node) != NULL)
5090 write_agg_replacement_chain (ob, node);
5091 }
5092 streamer_write_char_stream (ob->main_stream, 0);
5093 produce_asm (ob, NULL);
5094 destroy_output_block (ob);
5095 }
5096
5097 /* Read replacements section in file FILE_DATA of length LEN with data
5098 DATA. */
5099
5100 static void
5101 read_replacements_section (struct lto_file_decl_data *file_data,
5102 const char *data,
5103 size_t len)
5104 {
5105 const struct lto_function_header *header =
5106 (const struct lto_function_header *) data;
5107 const int cfg_offset = sizeof (struct lto_function_header);
5108 const int main_offset = cfg_offset + header->cfg_size;
5109 const int string_offset = main_offset + header->main_size;
5110 struct data_in *data_in;
5111 struct lto_input_block ib_main;
5112 unsigned int i;
5113 unsigned int count;
5114
5115 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
5116 header->main_size);
5117
5118 data_in = lto_data_in_create (file_data, (const char *) data + string_offset,
5119 header->string_size, vNULL);
5120 count = streamer_read_uhwi (&ib_main);
5121
5122 for (i = 0; i < count; i++)
5123 {
5124 unsigned int index;
5125 struct cgraph_node *node;
5126 lto_symtab_encoder_t encoder;
5127
5128 index = streamer_read_uhwi (&ib_main);
5129 encoder = file_data->symtab_node_encoder;
5130 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
5131 index));
5132 gcc_assert (node->definition);
5133 read_agg_replacement_chain (&ib_main, node, data_in);
5134 }
5135 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
5136 len);
5137 lto_data_in_delete (data_in);
5138 }
5139
5140 /* Read IPA-CP aggregate replacements. */
5141
5142 void
5143 ipa_prop_read_all_agg_replacement (void)
5144 {
5145 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
5146 struct lto_file_decl_data *file_data;
5147 unsigned int j = 0;
5148
5149 while ((file_data = file_data_vec[j++]))
5150 {
5151 size_t len;
5152 const char *data = lto_get_section_data (file_data,
5153 LTO_section_ipcp_transform,
5154 NULL, &len);
5155 if (data)
5156 read_replacements_section (file_data, data, len);
5157 }
5158 }
5159
5160 /* Adjust the aggregate replacements in AGGVAL to reflect parameters skipped in
5161 NODE. */
5162
5163 static void
5164 adjust_agg_replacement_values (struct cgraph_node *node,
5165 struct ipa_agg_replacement_value *aggval)
5166 {
5167 struct ipa_agg_replacement_value *v;
5168 int i, c = 0, d = 0, *adj;
5169
5170 if (!node->clone.combined_args_to_skip)
5171 return;
5172
5173 for (v = aggval; v; v = v->next)
5174 {
5175 gcc_assert (v->index >= 0);
5176 if (c < v->index)
5177 c = v->index;
5178 }
5179 c++;
5180
5181 adj = XALLOCAVEC (int, c);
5182 for (i = 0; i < c; i++)
5183 if (bitmap_bit_p (node->clone.combined_args_to_skip, i))
5184 {
5185 adj[i] = -1;
5186 d++;
5187 }
5188 else
5189 adj[i] = i - d;
5190
5191 for (v = aggval; v; v = v->next)
5192 v->index = adj[v->index];
5193 }
5194
5195 /* Dominator walker driving the ipcp modification phase. */
5196
5197 class ipcp_modif_dom_walker : public dom_walker
5198 {
5199 public:
5200 ipcp_modif_dom_walker (struct func_body_info *fbi,
5201 vec<ipa_param_descriptor> descs,
5202 struct ipa_agg_replacement_value *av,
5203 bool *sc, bool *cc)
5204 : dom_walker (CDI_DOMINATORS), m_fbi (fbi), m_descriptors (descs),
5205 m_aggval (av), m_something_changed (sc), m_cfg_changed (cc) {}
5206
5207 virtual void before_dom_children (basic_block);
5208
5209 private:
5210 struct func_body_info *m_fbi;
5211 vec<ipa_param_descriptor> m_descriptors;
5212 struct ipa_agg_replacement_value *m_aggval;
5213 bool *m_something_changed, *m_cfg_changed;
5214 };
5215
5216 void
5217 ipcp_modif_dom_walker::before_dom_children (basic_block bb)
5218 {
5219 gimple_stmt_iterator gsi;
5220 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5221 {
5222 struct ipa_agg_replacement_value *v;
5223 gimple stmt = gsi_stmt (gsi);
5224 tree rhs, val, t;
5225 HOST_WIDE_INT offset, size;
5226 int index;
5227 bool by_ref, vce;
5228
5229 if (!gimple_assign_load_p (stmt))
5230 continue;
5231 rhs = gimple_assign_rhs1 (stmt);
5232 if (!is_gimple_reg_type (TREE_TYPE (rhs)))
5233 continue;
5234
5235 vce = false;
5236 t = rhs;
5237 while (handled_component_p (t))
5238 {
5239 /* V_C_E can do things like convert an array of integers to one
5240 bigger integer and similar things we do not handle below. */
5241 if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
5242 {
5243 vce = true;
5244 break;
5245 }
5246 t = TREE_OPERAND (t, 0);
5247 }
5248 if (vce)
5249 continue;
5250
5251 if (!ipa_load_from_parm_agg_1 (m_fbi, m_descriptors, stmt, rhs, &index,
5252 &offset, &size, &by_ref))
5253 continue;
5254 for (v = m_aggval; v; v = v->next)
5255 if (v->index == index
5256 && v->offset == offset)
5257 break;
5258 if (!v
5259 || v->by_ref != by_ref
5260 || tree_to_shwi (TYPE_SIZE (TREE_TYPE (v->value))) != size)
5261 continue;
5262
5263 gcc_checking_assert (is_gimple_ip_invariant (v->value));
5264 if (!useless_type_conversion_p (TREE_TYPE (rhs), TREE_TYPE (v->value)))
5265 {
5266 if (fold_convertible_p (TREE_TYPE (rhs), v->value))
5267 val = fold_build1 (NOP_EXPR, TREE_TYPE (rhs), v->value);
5268 else if (TYPE_SIZE (TREE_TYPE (rhs))
5269 == TYPE_SIZE (TREE_TYPE (v->value)))
5270 val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), v->value);
5271 else
5272 {
5273 if (dump_file)
5274 {
5275 fprintf (dump_file, " const ");
5276 print_generic_expr (dump_file, v->value, 0);
5277 fprintf (dump_file, " can't be converted to type of ");
5278 print_generic_expr (dump_file, rhs, 0);
5279 fprintf (dump_file, "\n");
5280 }
5281 continue;
5282 }
5283 }
5284 else
5285 val = v->value;
5286
5287 if (dump_file && (dump_flags & TDF_DETAILS))
5288 {
5289 fprintf (dump_file, "Modifying stmt:\n ");
5290 print_gimple_stmt (dump_file, stmt, 0, 0);
5291 }
5292 gimple_assign_set_rhs_from_tree (&gsi, val);
5293 update_stmt (stmt);
5294
5295 if (dump_file && (dump_flags & TDF_DETAILS))
5296 {
5297 fprintf (dump_file, "into:\n ");
5298 print_gimple_stmt (dump_file, stmt, 0, 0);
5299 fprintf (dump_file, "\n");
5300 }
5301
5302 *m_something_changed = true;
5303 if (maybe_clean_eh_stmt (stmt)
5304 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
5305 *m_cfg_changed = true;
5306 }
5307
5308 }
5309
5310 /* IPCP transformation phase doing propagation of aggregate values. */
5311
5312 unsigned int
5313 ipcp_transform_function (struct cgraph_node *node)
5314 {
5315 vec<ipa_param_descriptor> descriptors = vNULL;
5316 struct func_body_info fbi;
5317 struct ipa_agg_replacement_value *aggval;
5318 int param_count;
5319 bool cfg_changed = false, something_changed = false;
5320
5321 gcc_checking_assert (cfun);
5322 gcc_checking_assert (current_function_decl);
5323
5324 if (dump_file)
5325 fprintf (dump_file, "Modification phase of node %s/%i\n",
5326 node->name (), node->order);
5327
5328 aggval = ipa_get_agg_replacements_for_node (node);
5329 if (!aggval)
5330 return 0;
5331 param_count = count_formal_params (node->decl);
5332 if (param_count == 0)
5333 return 0;
5334 adjust_agg_replacement_values (node, aggval);
5335 if (dump_file)
5336 ipa_dump_agg_replacement_values (dump_file, aggval);
5337
5338 fbi.node = node;
5339 fbi.info = NULL;
5340 fbi.bb_infos = vNULL;
5341 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
5342 fbi.param_count = param_count;
5343 fbi.aa_walked = 0;
5344
5345 descriptors.safe_grow_cleared (param_count);
5346 ipa_populate_param_decls (node, descriptors);
5347 calculate_dominance_info (CDI_DOMINATORS);
5348 ipcp_modif_dom_walker (&fbi, descriptors, aggval, &something_changed,
5349 &cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5350
5351 int i;
5352 struct ipa_bb_info *bi;
5353 FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
5354 free_ipa_bb_info (bi);
5355 fbi.bb_infos.release ();
5356 free_dominance_info (CDI_DOMINATORS);
5357 (*ipa_node_agg_replacements)[node->uid] = NULL;
5358 descriptors.release ();
5359
5360 if (!something_changed)
5361 return 0;
5362 else if (cfg_changed)
5363 return TODO_update_ssa_only_virtuals | TODO_cleanup_cfg;
5364 else
5365 return TODO_update_ssa_only_virtuals;
5366 }