IPA REF refactoring
[gcc.git] / gcc / ipa-prop.c
1 /* Interprocedural analyses.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "basic-block.h"
25 #include "tree-ssa-alias.h"
26 #include "internal-fn.h"
27 #include "gimple-fold.h"
28 #include "tree-eh.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "expr.h"
33 #include "stor-layout.h"
34 #include "print-tree.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "gimple-walk.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "ipa-prop.h"
42 #include "bitmap.h"
43 #include "gimple-ssa.h"
44 #include "tree-cfg.h"
45 #include "tree-phinodes.h"
46 #include "ssa-iterators.h"
47 #include "tree-into-ssa.h"
48 #include "tree-dfa.h"
49 #include "tree-pass.h"
50 #include "tree-inline.h"
51 #include "ipa-inline.h"
52 #include "flags.h"
53 #include "diagnostic.h"
54 #include "gimple-pretty-print.h"
55 #include "lto-streamer.h"
56 #include "data-streamer.h"
57 #include "tree-streamer.h"
58 #include "params.h"
59 #include "ipa-utils.h"
60 #include "stringpool.h"
61 #include "tree-ssanames.h"
62 #include "dbgcnt.h"
63 #include "domwalk.h"
64 #include "builtins.h"
65
66 /* Intermediate information that we get from alias analysis about a particular
67 parameter in a particular basic_block. When a parameter or the memory it
68 references is marked modified, we use that information in all dominatd
69 blocks without cosulting alias analysis oracle. */
70
71 struct param_aa_status
72 {
73 /* Set when this structure contains meaningful information. If not, the
74 structure describing a dominating BB should be used instead. */
75 bool valid;
76
77 /* Whether we have seen something which might have modified the data in
78 question. PARM is for the parameter itself, REF is for data it points to
79 but using the alias type of individual accesses and PT is the same thing
80 but for computing aggregate pass-through functions using a very inclusive
81 ao_ref. */
82 bool parm_modified, ref_modified, pt_modified;
83 };
84
85 /* Information related to a given BB that used only when looking at function
86 body. */
87
88 struct ipa_bb_info
89 {
90 /* Call graph edges going out of this BB. */
91 vec<cgraph_edge_p> cg_edges;
92 /* Alias analysis statuses of each formal parameter at this bb. */
93 vec<param_aa_status> param_aa_statuses;
94 };
95
96 /* Structure with global information that is only used when looking at function
97 body. */
98
99 struct func_body_info
100 {
101 /* The node that is being analyzed. */
102 cgraph_node *node;
103
104 /* Its info. */
105 struct ipa_node_params *info;
106
107 /* Information about individual BBs. */
108 vec<ipa_bb_info> bb_infos;
109
110 /* Number of parameters. */
111 int param_count;
112
113 /* Number of statements already walked by when analyzing this function. */
114 unsigned int aa_walked;
115 };
116
117 /* Vector where the parameter infos are actually stored. */
118 vec<ipa_node_params> ipa_node_params_vector;
119 /* Vector of known aggregate values in cloned nodes. */
120 vec<ipa_agg_replacement_value_p, va_gc> *ipa_node_agg_replacements;
121 /* Vector where the parameter infos are actually stored. */
122 vec<ipa_edge_args, va_gc> *ipa_edge_args_vector;
123
124 /* Holders of ipa cgraph hooks: */
125 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
126 static struct cgraph_node_hook_list *node_removal_hook_holder;
127 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
128 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
129 static struct cgraph_node_hook_list *function_insertion_hook_holder;
130
131 /* Description of a reference to an IPA constant. */
132 struct ipa_cst_ref_desc
133 {
134 /* Edge that corresponds to the statement which took the reference. */
135 struct cgraph_edge *cs;
136 /* Linked list of duplicates created when call graph edges are cloned. */
137 struct ipa_cst_ref_desc *next_duplicate;
138 /* Number of references in IPA structures, IPA_UNDESCRIBED_USE if the value
139 if out of control. */
140 int refcount;
141 };
142
143 /* Allocation pool for reference descriptions. */
144
145 static alloc_pool ipa_refdesc_pool;
146
147 /* Return true if DECL_FUNCTION_SPECIFIC_OPTIMIZATION of the decl associated
148 with NODE should prevent us from analyzing it for the purposes of IPA-CP. */
149
150 static bool
151 ipa_func_spec_opts_forbid_analysis_p (struct cgraph_node *node)
152 {
153 tree fs_opts = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (node->decl);
154 struct cl_optimization *os;
155
156 if (!fs_opts)
157 return false;
158 os = TREE_OPTIMIZATION (fs_opts);
159 return !os->x_optimize || !os->x_flag_ipa_cp;
160 }
161
162 /* Return index of the formal whose tree is PTREE in function which corresponds
163 to INFO. */
164
165 static int
166 ipa_get_param_decl_index_1 (vec<ipa_param_descriptor> descriptors, tree ptree)
167 {
168 int i, count;
169
170 count = descriptors.length ();
171 for (i = 0; i < count; i++)
172 if (descriptors[i].decl == ptree)
173 return i;
174
175 return -1;
176 }
177
178 /* Return index of the formal whose tree is PTREE in function which corresponds
179 to INFO. */
180
181 int
182 ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
183 {
184 return ipa_get_param_decl_index_1 (info->descriptors, ptree);
185 }
186
187 /* Populate the param_decl field in parameter DESCRIPTORS that correspond to
188 NODE. */
189
190 static void
191 ipa_populate_param_decls (struct cgraph_node *node,
192 vec<ipa_param_descriptor> &descriptors)
193 {
194 tree fndecl;
195 tree fnargs;
196 tree parm;
197 int param_num;
198
199 fndecl = node->decl;
200 gcc_assert (gimple_has_body_p (fndecl));
201 fnargs = DECL_ARGUMENTS (fndecl);
202 param_num = 0;
203 for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
204 {
205 descriptors[param_num].decl = parm;
206 descriptors[param_num].move_cost = estimate_move_cost (TREE_TYPE (parm));
207 param_num++;
208 }
209 }
210
211 /* Return how many formal parameters FNDECL has. */
212
213 static inline int
214 count_formal_params (tree fndecl)
215 {
216 tree parm;
217 int count = 0;
218 gcc_assert (gimple_has_body_p (fndecl));
219
220 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
221 count++;
222
223 return count;
224 }
225
226 /* Return the declaration of Ith formal parameter of the function corresponding
227 to INFO. Note there is no setter function as this array is built just once
228 using ipa_initialize_node_params. */
229
230 void
231 ipa_dump_param (FILE *file, struct ipa_node_params *info, int i)
232 {
233 fprintf (file, "param #%i", i);
234 if (info->descriptors[i].decl)
235 {
236 fprintf (file, " ");
237 print_generic_expr (file, info->descriptors[i].decl, 0);
238 }
239 }
240
241 /* Initialize the ipa_node_params structure associated with NODE
242 to hold PARAM_COUNT parameters. */
243
244 void
245 ipa_alloc_node_params (struct cgraph_node *node, int param_count)
246 {
247 struct ipa_node_params *info = IPA_NODE_REF (node);
248
249 if (!info->descriptors.exists () && param_count)
250 info->descriptors.safe_grow_cleared (param_count);
251 }
252
253 /* Initialize the ipa_node_params structure associated with NODE by counting
254 the function parameters, creating the descriptors and populating their
255 param_decls. */
256
257 void
258 ipa_initialize_node_params (struct cgraph_node *node)
259 {
260 struct ipa_node_params *info = IPA_NODE_REF (node);
261
262 if (!info->descriptors.exists ())
263 {
264 ipa_alloc_node_params (node, count_formal_params (node->decl));
265 ipa_populate_param_decls (node, info->descriptors);
266 }
267 }
268
269 /* Print the jump functions associated with call graph edge CS to file F. */
270
271 static void
272 ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
273 {
274 int i, count;
275
276 count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
277 for (i = 0; i < count; i++)
278 {
279 struct ipa_jump_func *jump_func;
280 enum jump_func_type type;
281
282 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
283 type = jump_func->type;
284
285 fprintf (f, " param %d: ", i);
286 if (type == IPA_JF_UNKNOWN)
287 fprintf (f, "UNKNOWN\n");
288 else if (type == IPA_JF_KNOWN_TYPE)
289 {
290 fprintf (f, "KNOWN TYPE: base ");
291 print_generic_expr (f, jump_func->value.known_type.base_type, 0);
292 fprintf (f, ", offset "HOST_WIDE_INT_PRINT_DEC", component ",
293 jump_func->value.known_type.offset);
294 print_generic_expr (f, jump_func->value.known_type.component_type, 0);
295 fprintf (f, "\n");
296 }
297 else if (type == IPA_JF_CONST)
298 {
299 tree val = jump_func->value.constant.value;
300 fprintf (f, "CONST: ");
301 print_generic_expr (f, val, 0);
302 if (TREE_CODE (val) == ADDR_EXPR
303 && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
304 {
305 fprintf (f, " -> ");
306 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
307 0);
308 }
309 fprintf (f, "\n");
310 }
311 else if (type == IPA_JF_PASS_THROUGH)
312 {
313 fprintf (f, "PASS THROUGH: ");
314 fprintf (f, "%d, op %s",
315 jump_func->value.pass_through.formal_id,
316 get_tree_code_name(jump_func->value.pass_through.operation));
317 if (jump_func->value.pass_through.operation != NOP_EXPR)
318 {
319 fprintf (f, " ");
320 print_generic_expr (f,
321 jump_func->value.pass_through.operand, 0);
322 }
323 if (jump_func->value.pass_through.agg_preserved)
324 fprintf (f, ", agg_preserved");
325 if (jump_func->value.pass_through.type_preserved)
326 fprintf (f, ", type_preserved");
327 fprintf (f, "\n");
328 }
329 else if (type == IPA_JF_ANCESTOR)
330 {
331 fprintf (f, "ANCESTOR: ");
332 fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
333 jump_func->value.ancestor.formal_id,
334 jump_func->value.ancestor.offset);
335 print_generic_expr (f, jump_func->value.ancestor.type, 0);
336 if (jump_func->value.ancestor.agg_preserved)
337 fprintf (f, ", agg_preserved");
338 if (jump_func->value.ancestor.type_preserved)
339 fprintf (f, ", type_preserved");
340 fprintf (f, "\n");
341 }
342
343 if (jump_func->agg.items)
344 {
345 struct ipa_agg_jf_item *item;
346 int j;
347
348 fprintf (f, " Aggregate passed by %s:\n",
349 jump_func->agg.by_ref ? "reference" : "value");
350 FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, j, item)
351 {
352 fprintf (f, " offset: " HOST_WIDE_INT_PRINT_DEC ", ",
353 item->offset);
354 if (TYPE_P (item->value))
355 fprintf (f, "clobber of " HOST_WIDE_INT_PRINT_DEC " bits",
356 tree_to_uhwi (TYPE_SIZE (item->value)));
357 else
358 {
359 fprintf (f, "cst: ");
360 print_generic_expr (f, item->value, 0);
361 }
362 fprintf (f, "\n");
363 }
364 }
365 }
366 }
367
368
369 /* Print the jump functions of all arguments on all call graph edges going from
370 NODE to file F. */
371
372 void
373 ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
374 {
375 struct cgraph_edge *cs;
376
377 fprintf (f, " Jump functions of caller %s/%i:\n", node->name (),
378 node->order);
379 for (cs = node->callees; cs; cs = cs->next_callee)
380 {
381 if (!ipa_edge_args_info_available_for_edge_p (cs))
382 continue;
383
384 fprintf (f, " callsite %s/%i -> %s/%i : \n",
385 xstrdup (node->name ()), node->order,
386 xstrdup (cs->callee->name ()),
387 cs->callee->order);
388 ipa_print_node_jump_functions_for_edge (f, cs);
389 }
390
391 for (cs = node->indirect_calls; cs; cs = cs->next_callee)
392 {
393 struct cgraph_indirect_call_info *ii;
394 if (!ipa_edge_args_info_available_for_edge_p (cs))
395 continue;
396
397 ii = cs->indirect_info;
398 if (ii->agg_contents)
399 fprintf (f, " indirect %s callsite, calling param %i, "
400 "offset " HOST_WIDE_INT_PRINT_DEC ", %s",
401 ii->member_ptr ? "member ptr" : "aggregate",
402 ii->param_index, ii->offset,
403 ii->by_ref ? "by reference" : "by_value");
404 else
405 fprintf (f, " indirect %s callsite, calling param %i, "
406 "offset " HOST_WIDE_INT_PRINT_DEC,
407 ii->polymorphic ? "polymorphic" : "simple", ii->param_index,
408 ii->offset);
409
410 if (cs->call_stmt)
411 {
412 fprintf (f, ", for stmt ");
413 print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
414 }
415 else
416 fprintf (f, "\n");
417 ipa_print_node_jump_functions_for_edge (f, cs);
418 }
419 }
420
421 /* Print ipa_jump_func data structures of all nodes in the call graph to F. */
422
423 void
424 ipa_print_all_jump_functions (FILE *f)
425 {
426 struct cgraph_node *node;
427
428 fprintf (f, "\nJump functions:\n");
429 FOR_EACH_FUNCTION (node)
430 {
431 ipa_print_node_jump_functions (f, node);
432 }
433 }
434
435 /* Set JFUNC to be a known type jump function. */
436
437 static void
438 ipa_set_jf_known_type (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
439 tree base_type, tree component_type)
440 {
441 gcc_assert (TREE_CODE (component_type) == RECORD_TYPE
442 && TYPE_BINFO (component_type));
443 if (!flag_devirtualize)
444 return;
445 gcc_assert (BINFO_VTABLE (TYPE_BINFO (component_type)));
446 jfunc->type = IPA_JF_KNOWN_TYPE;
447 jfunc->value.known_type.offset = offset,
448 jfunc->value.known_type.base_type = base_type;
449 jfunc->value.known_type.component_type = component_type;
450 gcc_assert (component_type);
451 }
452
453 /* Set JFUNC to be a copy of another jmp (to be used by jump function
454 combination code). The two functions will share their rdesc. */
455
456 static void
457 ipa_set_jf_cst_copy (struct ipa_jump_func *dst,
458 struct ipa_jump_func *src)
459
460 {
461 gcc_checking_assert (src->type == IPA_JF_CONST);
462 dst->type = IPA_JF_CONST;
463 dst->value.constant = src->value.constant;
464 }
465
466 /* Set JFUNC to be a constant jmp function. */
467
468 static void
469 ipa_set_jf_constant (struct ipa_jump_func *jfunc, tree constant,
470 struct cgraph_edge *cs)
471 {
472 constant = unshare_expr (constant);
473 if (constant && EXPR_P (constant))
474 SET_EXPR_LOCATION (constant, UNKNOWN_LOCATION);
475 jfunc->type = IPA_JF_CONST;
476 jfunc->value.constant.value = unshare_expr_without_location (constant);
477
478 if (TREE_CODE (constant) == ADDR_EXPR
479 && TREE_CODE (TREE_OPERAND (constant, 0)) == FUNCTION_DECL)
480 {
481 struct ipa_cst_ref_desc *rdesc;
482 if (!ipa_refdesc_pool)
483 ipa_refdesc_pool = create_alloc_pool ("IPA-PROP ref descriptions",
484 sizeof (struct ipa_cst_ref_desc), 32);
485
486 rdesc = (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
487 rdesc->cs = cs;
488 rdesc->next_duplicate = NULL;
489 rdesc->refcount = 1;
490 jfunc->value.constant.rdesc = rdesc;
491 }
492 else
493 jfunc->value.constant.rdesc = NULL;
494 }
495
496 /* Set JFUNC to be a simple pass-through jump function. */
497 static void
498 ipa_set_jf_simple_pass_through (struct ipa_jump_func *jfunc, int formal_id,
499 bool agg_preserved, bool type_preserved)
500 {
501 jfunc->type = IPA_JF_PASS_THROUGH;
502 jfunc->value.pass_through.operand = NULL_TREE;
503 jfunc->value.pass_through.formal_id = formal_id;
504 jfunc->value.pass_through.operation = NOP_EXPR;
505 jfunc->value.pass_through.agg_preserved = agg_preserved;
506 jfunc->value.pass_through.type_preserved = type_preserved;
507 }
508
509 /* Set JFUNC to be an arithmetic pass through jump function. */
510
511 static void
512 ipa_set_jf_arith_pass_through (struct ipa_jump_func *jfunc, int formal_id,
513 tree operand, enum tree_code operation)
514 {
515 jfunc->type = IPA_JF_PASS_THROUGH;
516 jfunc->value.pass_through.operand = unshare_expr_without_location (operand);
517 jfunc->value.pass_through.formal_id = formal_id;
518 jfunc->value.pass_through.operation = operation;
519 jfunc->value.pass_through.agg_preserved = false;
520 jfunc->value.pass_through.type_preserved = false;
521 }
522
523 /* Set JFUNC to be an ancestor jump function. */
524
525 static void
526 ipa_set_ancestor_jf (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
527 tree type, int formal_id, bool agg_preserved,
528 bool type_preserved)
529 {
530 if (!flag_devirtualize)
531 type_preserved = false;
532 gcc_assert (!type_preserved
533 || (TREE_CODE (type) == RECORD_TYPE
534 && TYPE_BINFO (type)
535 && BINFO_VTABLE (TYPE_BINFO (type))));
536 jfunc->type = IPA_JF_ANCESTOR;
537 jfunc->value.ancestor.formal_id = formal_id;
538 jfunc->value.ancestor.offset = offset;
539 jfunc->value.ancestor.type = type_preserved ? type : NULL;
540 jfunc->value.ancestor.agg_preserved = agg_preserved;
541 jfunc->value.ancestor.type_preserved = type_preserved;
542 }
543
544 /* Extract the acual BINFO being described by JFUNC which must be a known type
545 jump function. */
546
547 tree
548 ipa_binfo_from_known_type_jfunc (struct ipa_jump_func *jfunc)
549 {
550 tree base_binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
551 if (!base_binfo)
552 return NULL_TREE;
553 return get_binfo_at_offset (base_binfo,
554 jfunc->value.known_type.offset,
555 jfunc->value.known_type.component_type);
556 }
557
558 /* Get IPA BB information about the given BB. FBI is the context of analyzis
559 of this function body. */
560
561 static struct ipa_bb_info *
562 ipa_get_bb_info (struct func_body_info *fbi, basic_block bb)
563 {
564 gcc_checking_assert (fbi);
565 return &fbi->bb_infos[bb->index];
566 }
567
568 /* Structure to be passed in between detect_type_change and
569 check_stmt_for_type_change. */
570
571 struct type_change_info
572 {
573 /* Offset into the object where there is the virtual method pointer we are
574 looking for. */
575 HOST_WIDE_INT offset;
576 /* The declaration or SSA_NAME pointer of the base that we are checking for
577 type change. */
578 tree object;
579 /* If we actually can tell the type that the object has changed to, it is
580 stored in this field. Otherwise it remains NULL_TREE. */
581 tree known_current_type;
582 /* Set to true if dynamic type change has been detected. */
583 bool type_maybe_changed;
584 /* Set to true if multiple types have been encountered. known_current_type
585 must be disregarded in that case. */
586 bool multiple_types_encountered;
587 };
588
589 /* Return true if STMT can modify a virtual method table pointer.
590
591 This function makes special assumptions about both constructors and
592 destructors which are all the functions that are allowed to alter the VMT
593 pointers. It assumes that destructors begin with assignment into all VMT
594 pointers and that constructors essentially look in the following way:
595
596 1) The very first thing they do is that they call constructors of ancestor
597 sub-objects that have them.
598
599 2) Then VMT pointers of this and all its ancestors is set to new values
600 corresponding to the type corresponding to the constructor.
601
602 3) Only afterwards, other stuff such as constructor of member sub-objects
603 and the code written by the user is run. Only this may include calling
604 virtual functions, directly or indirectly.
605
606 There is no way to call a constructor of an ancestor sub-object in any
607 other way.
608
609 This means that we do not have to care whether constructors get the correct
610 type information because they will always change it (in fact, if we define
611 the type to be given by the VMT pointer, it is undefined).
612
613 The most important fact to derive from the above is that if, for some
614 statement in the section 3, we try to detect whether the dynamic type has
615 changed, we can safely ignore all calls as we examine the function body
616 backwards until we reach statements in section 2 because these calls cannot
617 be ancestor constructors or destructors (if the input is not bogus) and so
618 do not change the dynamic type (this holds true only for automatically
619 allocated objects but at the moment we devirtualize only these). We then
620 must detect that statements in section 2 change the dynamic type and can try
621 to derive the new type. That is enough and we can stop, we will never see
622 the calls into constructors of sub-objects in this code. Therefore we can
623 safely ignore all call statements that we traverse.
624 */
625
626 static bool
627 stmt_may_be_vtbl_ptr_store (gimple stmt)
628 {
629 if (is_gimple_call (stmt))
630 return false;
631 /* TODO: Skip clobbers, doing so triggers problem in PR60306. */
632 else if (is_gimple_assign (stmt))
633 {
634 tree lhs = gimple_assign_lhs (stmt);
635
636 if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
637 {
638 if (flag_strict_aliasing
639 && !POINTER_TYPE_P (TREE_TYPE (lhs)))
640 return false;
641
642 if (TREE_CODE (lhs) == COMPONENT_REF
643 && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
644 return false;
645 /* In the future we might want to use get_base_ref_and_offset to find
646 if there is a field corresponding to the offset and if so, proceed
647 almost like if it was a component ref. */
648 }
649 }
650 return true;
651 }
652
653 /* If STMT can be proved to be an assignment to the virtual method table
654 pointer of ANALYZED_OBJ and the type associated with the new table
655 identified, return the type. Otherwise return NULL_TREE. */
656
657 static tree
658 extr_type_from_vtbl_ptr_store (gimple stmt, struct type_change_info *tci)
659 {
660 HOST_WIDE_INT offset, size, max_size;
661 tree lhs, rhs, base, binfo;
662
663 if (!gimple_assign_single_p (stmt))
664 return NULL_TREE;
665
666 lhs = gimple_assign_lhs (stmt);
667 rhs = gimple_assign_rhs1 (stmt);
668 if (TREE_CODE (lhs) != COMPONENT_REF
669 || !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
670 return NULL_TREE;
671
672 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
673 if (offset != tci->offset
674 || size != POINTER_SIZE
675 || max_size != POINTER_SIZE)
676 return NULL_TREE;
677 if (TREE_CODE (base) == MEM_REF)
678 {
679 if (TREE_CODE (tci->object) != MEM_REF
680 || TREE_OPERAND (tci->object, 0) != TREE_OPERAND (base, 0)
681 || !tree_int_cst_equal (TREE_OPERAND (tci->object, 1),
682 TREE_OPERAND (base, 1)))
683 return NULL_TREE;
684 }
685 else if (tci->object != base)
686 return NULL_TREE;
687
688 binfo = vtable_pointer_value_to_binfo (rhs);
689
690 /* FIXME: vtable_pointer_value_to_binfo may return BINFO of a
691 base of outer type. In this case we would need to either
692 work on binfos or translate it back to outer type and offset.
693 KNOWN_TYPE jump functions are not ready for that, yet. */
694 if (!binfo || TYPE_BINFO (BINFO_TYPE (binfo)) != binfo)
695 return NULL;
696
697 return BINFO_TYPE (binfo);
698 }
699
700 /* Callback of walk_aliased_vdefs and a helper function for
701 detect_type_change to check whether a particular statement may modify
702 the virtual table pointer, and if possible also determine the new type of
703 the (sub-)object. It stores its result into DATA, which points to a
704 type_change_info structure. */
705
706 static bool
707 check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
708 {
709 gimple stmt = SSA_NAME_DEF_STMT (vdef);
710 struct type_change_info *tci = (struct type_change_info *) data;
711
712 if (stmt_may_be_vtbl_ptr_store (stmt))
713 {
714 tree type;
715 type = extr_type_from_vtbl_ptr_store (stmt, tci);
716 if (tci->type_maybe_changed
717 && type != tci->known_current_type)
718 tci->multiple_types_encountered = true;
719 tci->known_current_type = type;
720 tci->type_maybe_changed = true;
721 return true;
722 }
723 else
724 return false;
725 }
726
727
728
729 /* Detect whether the dynamic type of ARG of COMP_TYPE has changed (before
730 callsite CALL) by looking for assignments to its virtual table pointer. If
731 it is, return true and fill in the jump function JFUNC with relevant type
732 information or set it to unknown. ARG is the object itself (not a pointer
733 to it, unless dereferenced). BASE is the base of the memory access as
734 returned by get_ref_base_and_extent, as is the offset. */
735
736 static bool
737 detect_type_change (tree arg, tree base, tree comp_type, gimple call,
738 struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
739 {
740 struct type_change_info tci;
741 ao_ref ao;
742
743 gcc_checking_assert (DECL_P (arg)
744 || TREE_CODE (arg) == MEM_REF
745 || handled_component_p (arg));
746 /* Const calls cannot call virtual methods through VMT and so type changes do
747 not matter. */
748 if (!flag_devirtualize || !gimple_vuse (call)
749 /* Be sure expected_type is polymorphic. */
750 || !comp_type
751 || TREE_CODE (comp_type) != RECORD_TYPE
752 || !TYPE_BINFO (comp_type)
753 || !BINFO_VTABLE (TYPE_BINFO (comp_type)))
754 return true;
755
756 /* C++ methods are not allowed to change THIS pointer unless they
757 are constructors or destructors. */
758 if (TREE_CODE (base) == MEM_REF
759 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
760 && SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0))
761 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND (base, 0))) == PARM_DECL
762 && TREE_CODE (TREE_TYPE (current_function_decl)) == METHOD_TYPE
763 && !DECL_CXX_CONSTRUCTOR_P (current_function_decl)
764 && !DECL_CXX_DESTRUCTOR_P (current_function_decl)
765 && (SSA_NAME_VAR (TREE_OPERAND (base, 0))
766 == DECL_ARGUMENTS (current_function_decl)))
767 return false;
768
769 ao_ref_init (&ao, arg);
770 ao.base = base;
771 ao.offset = offset;
772 ao.size = POINTER_SIZE;
773 ao.max_size = ao.size;
774
775 tci.offset = offset;
776 tci.object = get_base_address (arg);
777 tci.known_current_type = NULL_TREE;
778 tci.type_maybe_changed = false;
779 tci.multiple_types_encountered = false;
780
781 walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
782 &tci, NULL);
783 if (!tci.type_maybe_changed)
784 return false;
785
786 if (!tci.known_current_type
787 || tci.multiple_types_encountered
788 || offset != 0)
789 jfunc->type = IPA_JF_UNKNOWN;
790 else
791 ipa_set_jf_known_type (jfunc, 0, tci.known_current_type, comp_type);
792
793 return true;
794 }
795
796 /* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
797 SSA name (its dereference will become the base and the offset is assumed to
798 be zero). */
799
800 static bool
801 detect_type_change_ssa (tree arg, tree comp_type,
802 gimple call, struct ipa_jump_func *jfunc)
803 {
804 gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
805 if (!flag_devirtualize
806 || !POINTER_TYPE_P (TREE_TYPE (arg)))
807 return false;
808
809 arg = build2 (MEM_REF, ptr_type_node, arg,
810 build_int_cst (ptr_type_node, 0));
811
812 return detect_type_change (arg, arg, comp_type, call, jfunc, 0);
813 }
814
815 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
816 boolean variable pointed to by DATA. */
817
818 static bool
819 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
820 void *data)
821 {
822 bool *b = (bool *) data;
823 *b = true;
824 return true;
825 }
826
827 /* Return true if we have already walked so many statements in AA that we
828 should really just start giving up. */
829
830 static bool
831 aa_overwalked (struct func_body_info *fbi)
832 {
833 gcc_checking_assert (fbi);
834 return fbi->aa_walked > (unsigned) PARAM_VALUE (PARAM_IPA_MAX_AA_STEPS);
835 }
836
837 /* Find the nearest valid aa status for parameter specified by INDEX that
838 dominates BB. */
839
840 static struct param_aa_status *
841 find_dominating_aa_status (struct func_body_info *fbi, basic_block bb,
842 int index)
843 {
844 while (true)
845 {
846 bb = get_immediate_dominator (CDI_DOMINATORS, bb);
847 if (!bb)
848 return NULL;
849 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
850 if (!bi->param_aa_statuses.is_empty ()
851 && bi->param_aa_statuses[index].valid)
852 return &bi->param_aa_statuses[index];
853 }
854 }
855
856 /* Get AA status structure for the given BB and parameter with INDEX. Allocate
857 structures and/or intialize the result with a dominating description as
858 necessary. */
859
860 static struct param_aa_status *
861 parm_bb_aa_status_for_bb (struct func_body_info *fbi, basic_block bb,
862 int index)
863 {
864 gcc_checking_assert (fbi);
865 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
866 if (bi->param_aa_statuses.is_empty ())
867 bi->param_aa_statuses.safe_grow_cleared (fbi->param_count);
868 struct param_aa_status *paa = &bi->param_aa_statuses[index];
869 if (!paa->valid)
870 {
871 gcc_checking_assert (!paa->parm_modified
872 && !paa->ref_modified
873 && !paa->pt_modified);
874 struct param_aa_status *dom_paa;
875 dom_paa = find_dominating_aa_status (fbi, bb, index);
876 if (dom_paa)
877 *paa = *dom_paa;
878 else
879 paa->valid = true;
880 }
881
882 return paa;
883 }
884
885 /* Return true if a load from a formal parameter PARM_LOAD is known to retrieve
886 a value known not to be modified in this function before reaching the
887 statement STMT. FBI holds information about the function we have so far
888 gathered but do not survive the summary building stage. */
889
890 static bool
891 parm_preserved_before_stmt_p (struct func_body_info *fbi, int index,
892 gimple stmt, tree parm_load)
893 {
894 struct param_aa_status *paa;
895 bool modified = false;
896 ao_ref refd;
897
898 /* FIXME: FBI can be NULL if we are being called from outside
899 ipa_node_analysis or ipcp_transform_function, which currently happens
900 during inlining analysis. It would be great to extend fbi's lifetime and
901 always have it. Currently, we are just not afraid of too much walking in
902 that case. */
903 if (fbi)
904 {
905 if (aa_overwalked (fbi))
906 return false;
907 paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
908 if (paa->parm_modified)
909 return false;
910 }
911 else
912 paa = NULL;
913
914 gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
915 ao_ref_init (&refd, parm_load);
916 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
917 &modified, NULL);
918 if (fbi)
919 fbi->aa_walked += walked;
920 if (paa && modified)
921 paa->parm_modified = true;
922 return !modified;
923 }
924
925 /* If STMT is an assignment that loads a value from an parameter declaration,
926 return the index of the parameter in ipa_node_params which has not been
927 modified. Otherwise return -1. */
928
929 static int
930 load_from_unmodified_param (struct func_body_info *fbi,
931 vec<ipa_param_descriptor> descriptors,
932 gimple stmt)
933 {
934 int index;
935 tree op1;
936
937 if (!gimple_assign_single_p (stmt))
938 return -1;
939
940 op1 = gimple_assign_rhs1 (stmt);
941 if (TREE_CODE (op1) != PARM_DECL)
942 return -1;
943
944 index = ipa_get_param_decl_index_1 (descriptors, op1);
945 if (index < 0
946 || !parm_preserved_before_stmt_p (fbi, index, stmt, op1))
947 return -1;
948
949 return index;
950 }
951
952 /* Return true if memory reference REF (which must be a load through parameter
953 with INDEX) loads data that are known to be unmodified in this function
954 before reaching statement STMT. */
955
956 static bool
957 parm_ref_data_preserved_p (struct func_body_info *fbi,
958 int index, gimple stmt, tree ref)
959 {
960 struct param_aa_status *paa;
961 bool modified = false;
962 ao_ref refd;
963
964 /* FIXME: FBI can be NULL if we are being called from outside
965 ipa_node_analysis or ipcp_transform_function, which currently happens
966 during inlining analysis. It would be great to extend fbi's lifetime and
967 always have it. Currently, we are just not afraid of too much walking in
968 that case. */
969 if (fbi)
970 {
971 if (aa_overwalked (fbi))
972 return false;
973 paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
974 if (paa->ref_modified)
975 return false;
976 }
977 else
978 paa = NULL;
979
980 gcc_checking_assert (gimple_vuse (stmt));
981 ao_ref_init (&refd, ref);
982 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
983 &modified, NULL);
984 if (fbi)
985 fbi->aa_walked += walked;
986 if (paa && modified)
987 paa->ref_modified = true;
988 return !modified;
989 }
990
991 /* Return true if the data pointed to by PARM (which is a parameter with INDEX)
992 is known to be unmodified in this function before reaching call statement
993 CALL into which it is passed. FBI describes the function body. */
994
995 static bool
996 parm_ref_data_pass_through_p (struct func_body_info *fbi, int index,
997 gimple call, tree parm)
998 {
999 bool modified = false;
1000 ao_ref refd;
1001
1002 /* It's unnecessary to calculate anything about memory contnets for a const
1003 function because it is not goin to use it. But do not cache the result
1004 either. Also, no such calculations for non-pointers. */
1005 if (!gimple_vuse (call)
1006 || !POINTER_TYPE_P (TREE_TYPE (parm))
1007 || aa_overwalked (fbi))
1008 return false;
1009
1010 struct param_aa_status *paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (call),
1011 index);
1012 if (paa->pt_modified)
1013 return false;
1014
1015 ao_ref_init_from_ptr_and_size (&refd, parm, NULL_TREE);
1016 int walked = walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
1017 &modified, NULL);
1018 fbi->aa_walked += walked;
1019 if (modified)
1020 paa->pt_modified = true;
1021 return !modified;
1022 }
1023
1024 /* Return true if we can prove that OP is a memory reference loading unmodified
1025 data from an aggregate passed as a parameter and if the aggregate is passed
1026 by reference, that the alias type of the load corresponds to the type of the
1027 formal parameter (so that we can rely on this type for TBAA in callers).
1028 INFO and PARMS_AINFO describe parameters of the current function (but the
1029 latter can be NULL), STMT is the load statement. If function returns true,
1030 *INDEX_P, *OFFSET_P and *BY_REF is filled with the parameter index, offset
1031 within the aggregate and whether it is a load from a value passed by
1032 reference respectively. */
1033
1034 static bool
1035 ipa_load_from_parm_agg_1 (struct func_body_info *fbi,
1036 vec<ipa_param_descriptor> descriptors,
1037 gimple stmt, tree op, int *index_p,
1038 HOST_WIDE_INT *offset_p, HOST_WIDE_INT *size_p,
1039 bool *by_ref_p)
1040 {
1041 int index;
1042 HOST_WIDE_INT size, max_size;
1043 tree base = get_ref_base_and_extent (op, offset_p, &size, &max_size);
1044
1045 if (max_size == -1 || max_size != size || *offset_p < 0)
1046 return false;
1047
1048 if (DECL_P (base))
1049 {
1050 int index = ipa_get_param_decl_index_1 (descriptors, base);
1051 if (index >= 0
1052 && parm_preserved_before_stmt_p (fbi, index, stmt, op))
1053 {
1054 *index_p = index;
1055 *by_ref_p = false;
1056 if (size_p)
1057 *size_p = size;
1058 return true;
1059 }
1060 return false;
1061 }
1062
1063 if (TREE_CODE (base) != MEM_REF
1064 || TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME
1065 || !integer_zerop (TREE_OPERAND (base, 1)))
1066 return false;
1067
1068 if (SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0)))
1069 {
1070 tree parm = SSA_NAME_VAR (TREE_OPERAND (base, 0));
1071 index = ipa_get_param_decl_index_1 (descriptors, parm);
1072 }
1073 else
1074 {
1075 /* This branch catches situations where a pointer parameter is not a
1076 gimple register, for example:
1077
1078 void hip7(S*) (struct S * p)
1079 {
1080 void (*<T2e4>) (struct S *) D.1867;
1081 struct S * p.1;
1082
1083 <bb 2>:
1084 p.1_1 = p;
1085 D.1867_2 = p.1_1->f;
1086 D.1867_2 ();
1087 gdp = &p;
1088 */
1089
1090 gimple def = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
1091 index = load_from_unmodified_param (fbi, descriptors, def);
1092 }
1093
1094 if (index >= 0
1095 && parm_ref_data_preserved_p (fbi, index, stmt, op))
1096 {
1097 *index_p = index;
1098 *by_ref_p = true;
1099 if (size_p)
1100 *size_p = size;
1101 return true;
1102 }
1103 return false;
1104 }
1105
1106 /* Just like the previous function, just without the param_analysis_info
1107 pointer, for users outside of this file. */
1108
1109 bool
1110 ipa_load_from_parm_agg (struct ipa_node_params *info, gimple stmt,
1111 tree op, int *index_p, HOST_WIDE_INT *offset_p,
1112 bool *by_ref_p)
1113 {
1114 return ipa_load_from_parm_agg_1 (NULL, info->descriptors, stmt, op, index_p,
1115 offset_p, NULL, by_ref_p);
1116 }
1117
1118 /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
1119 of an assignment statement STMT, try to determine whether we are actually
1120 handling any of the following cases and construct an appropriate jump
1121 function into JFUNC if so:
1122
1123 1) The passed value is loaded from a formal parameter which is not a gimple
1124 register (most probably because it is addressable, the value has to be
1125 scalar) and we can guarantee the value has not changed. This case can
1126 therefore be described by a simple pass-through jump function. For example:
1127
1128 foo (int a)
1129 {
1130 int a.0;
1131
1132 a.0_2 = a;
1133 bar (a.0_2);
1134
1135 2) The passed value can be described by a simple arithmetic pass-through
1136 jump function. E.g.
1137
1138 foo (int a)
1139 {
1140 int D.2064;
1141
1142 D.2064_4 = a.1(D) + 4;
1143 bar (D.2064_4);
1144
1145 This case can also occur in combination of the previous one, e.g.:
1146
1147 foo (int a, int z)
1148 {
1149 int a.0;
1150 int D.2064;
1151
1152 a.0_3 = a;
1153 D.2064_4 = a.0_3 + 4;
1154 foo (D.2064_4);
1155
1156 3) The passed value is an address of an object within another one (which
1157 also passed by reference). Such situations are described by an ancestor
1158 jump function and describe situations such as:
1159
1160 B::foo() (struct B * const this)
1161 {
1162 struct A * D.1845;
1163
1164 D.1845_2 = &this_1(D)->D.1748;
1165 A::bar (D.1845_2);
1166
1167 INFO is the structure describing individual parameters access different
1168 stages of IPA optimizations. PARMS_AINFO contains the information that is
1169 only needed for intraprocedural analysis. */
1170
1171 static void
1172 compute_complex_assign_jump_func (struct func_body_info *fbi,
1173 struct ipa_node_params *info,
1174 struct ipa_jump_func *jfunc,
1175 gimple call, gimple stmt, tree name,
1176 tree param_type)
1177 {
1178 HOST_WIDE_INT offset, size, max_size;
1179 tree op1, tc_ssa, base, ssa;
1180 int index;
1181
1182 op1 = gimple_assign_rhs1 (stmt);
1183
1184 if (TREE_CODE (op1) == SSA_NAME)
1185 {
1186 if (SSA_NAME_IS_DEFAULT_DEF (op1))
1187 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
1188 else
1189 index = load_from_unmodified_param (fbi, info->descriptors,
1190 SSA_NAME_DEF_STMT (op1));
1191 tc_ssa = op1;
1192 }
1193 else
1194 {
1195 index = load_from_unmodified_param (fbi, info->descriptors, stmt);
1196 tc_ssa = gimple_assign_lhs (stmt);
1197 }
1198
1199 if (index >= 0)
1200 {
1201 tree op2 = gimple_assign_rhs2 (stmt);
1202
1203 if (op2)
1204 {
1205 if (!is_gimple_ip_invariant (op2)
1206 || (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
1207 && !useless_type_conversion_p (TREE_TYPE (name),
1208 TREE_TYPE (op1))))
1209 return;
1210
1211 ipa_set_jf_arith_pass_through (jfunc, index, op2,
1212 gimple_assign_rhs_code (stmt));
1213 }
1214 else if (gimple_assign_single_p (stmt))
1215 {
1216 bool agg_p = parm_ref_data_pass_through_p (fbi, index, call, tc_ssa);
1217 bool type_p = false;
1218
1219 if (param_type && POINTER_TYPE_P (param_type))
1220 type_p = !detect_type_change_ssa (tc_ssa, TREE_TYPE (param_type),
1221 call, jfunc);
1222 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1223 ipa_set_jf_simple_pass_through (jfunc, index, agg_p, type_p);
1224 }
1225 return;
1226 }
1227
1228 if (TREE_CODE (op1) != ADDR_EXPR)
1229 return;
1230 op1 = TREE_OPERAND (op1, 0);
1231 if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
1232 return;
1233 base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
1234 if (TREE_CODE (base) != MEM_REF
1235 /* If this is a varying address, punt. */
1236 || max_size == -1
1237 || max_size != size)
1238 return;
1239 offset += mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT;
1240 ssa = TREE_OPERAND (base, 0);
1241 if (TREE_CODE (ssa) != SSA_NAME
1242 || !SSA_NAME_IS_DEFAULT_DEF (ssa)
1243 || offset < 0)
1244 return;
1245
1246 /* Dynamic types are changed in constructors and destructors. */
1247 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
1248 if (index >= 0 && param_type && POINTER_TYPE_P (param_type))
1249 {
1250 bool type_p = !detect_type_change (op1, base, TREE_TYPE (param_type),
1251 call, jfunc, offset);
1252 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1253 ipa_set_ancestor_jf (jfunc, offset,
1254 type_p ? TREE_TYPE (param_type) : NULL, index,
1255 parm_ref_data_pass_through_p (fbi, index,
1256 call, ssa), type_p);
1257 }
1258 }
1259
1260 /* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
1261 it looks like:
1262
1263 iftmp.1_3 = &obj_2(D)->D.1762;
1264
1265 The base of the MEM_REF must be a default definition SSA NAME of a
1266 parameter. Return NULL_TREE if it looks otherwise. If case of success, the
1267 whole MEM_REF expression is returned and the offset calculated from any
1268 handled components and the MEM_REF itself is stored into *OFFSET. The whole
1269 RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
1270
1271 static tree
1272 get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
1273 {
1274 HOST_WIDE_INT size, max_size;
1275 tree expr, parm, obj;
1276
1277 if (!gimple_assign_single_p (assign))
1278 return NULL_TREE;
1279 expr = gimple_assign_rhs1 (assign);
1280
1281 if (TREE_CODE (expr) != ADDR_EXPR)
1282 return NULL_TREE;
1283 expr = TREE_OPERAND (expr, 0);
1284 obj = expr;
1285 expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
1286
1287 if (TREE_CODE (expr) != MEM_REF
1288 /* If this is a varying address, punt. */
1289 || max_size == -1
1290 || max_size != size
1291 || *offset < 0)
1292 return NULL_TREE;
1293 parm = TREE_OPERAND (expr, 0);
1294 if (TREE_CODE (parm) != SSA_NAME
1295 || !SSA_NAME_IS_DEFAULT_DEF (parm)
1296 || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
1297 return NULL_TREE;
1298
1299 *offset += mem_ref_offset (expr).to_short_addr () * BITS_PER_UNIT;
1300 *obj_p = obj;
1301 return expr;
1302 }
1303
1304
1305 /* Given that an actual argument is an SSA_NAME that is a result of a phi
1306 statement PHI, try to find out whether NAME is in fact a
1307 multiple-inheritance typecast from a descendant into an ancestor of a formal
1308 parameter and thus can be described by an ancestor jump function and if so,
1309 write the appropriate function into JFUNC.
1310
1311 Essentially we want to match the following pattern:
1312
1313 if (obj_2(D) != 0B)
1314 goto <bb 3>;
1315 else
1316 goto <bb 4>;
1317
1318 <bb 3>:
1319 iftmp.1_3 = &obj_2(D)->D.1762;
1320
1321 <bb 4>:
1322 # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
1323 D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
1324 return D.1879_6; */
1325
1326 static void
1327 compute_complex_ancestor_jump_func (struct func_body_info *fbi,
1328 struct ipa_node_params *info,
1329 struct ipa_jump_func *jfunc,
1330 gimple call, gimple phi, tree param_type)
1331 {
1332 HOST_WIDE_INT offset;
1333 gimple assign, cond;
1334 basic_block phi_bb, assign_bb, cond_bb;
1335 tree tmp, parm, expr, obj;
1336 int index, i;
1337
1338 if (gimple_phi_num_args (phi) != 2)
1339 return;
1340
1341 if (integer_zerop (PHI_ARG_DEF (phi, 1)))
1342 tmp = PHI_ARG_DEF (phi, 0);
1343 else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
1344 tmp = PHI_ARG_DEF (phi, 1);
1345 else
1346 return;
1347 if (TREE_CODE (tmp) != SSA_NAME
1348 || SSA_NAME_IS_DEFAULT_DEF (tmp)
1349 || !POINTER_TYPE_P (TREE_TYPE (tmp))
1350 || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
1351 return;
1352
1353 assign = SSA_NAME_DEF_STMT (tmp);
1354 assign_bb = gimple_bb (assign);
1355 if (!single_pred_p (assign_bb))
1356 return;
1357 expr = get_ancestor_addr_info (assign, &obj, &offset);
1358 if (!expr)
1359 return;
1360 parm = TREE_OPERAND (expr, 0);
1361 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
1362 if (index < 0)
1363 return;
1364
1365 cond_bb = single_pred (assign_bb);
1366 cond = last_stmt (cond_bb);
1367 if (!cond
1368 || gimple_code (cond) != GIMPLE_COND
1369 || gimple_cond_code (cond) != NE_EXPR
1370 || gimple_cond_lhs (cond) != parm
1371 || !integer_zerop (gimple_cond_rhs (cond)))
1372 return;
1373
1374 phi_bb = gimple_bb (phi);
1375 for (i = 0; i < 2; i++)
1376 {
1377 basic_block pred = EDGE_PRED (phi_bb, i)->src;
1378 if (pred != assign_bb && pred != cond_bb)
1379 return;
1380 }
1381
1382 bool type_p = false;
1383 if (param_type && POINTER_TYPE_P (param_type))
1384 type_p = !detect_type_change (obj, expr, TREE_TYPE (param_type),
1385 call, jfunc, offset);
1386 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1387 ipa_set_ancestor_jf (jfunc, offset, type_p ? TREE_TYPE (param_type) : NULL,
1388 index,
1389 parm_ref_data_pass_through_p (fbi, index, call, parm),
1390 type_p);
1391 }
1392
1393 /* Given OP which is passed as an actual argument to a called function,
1394 determine if it is possible to construct a KNOWN_TYPE jump function for it
1395 and if so, create one and store it to JFUNC.
1396 EXPECTED_TYPE represents a type the argument should be in */
1397
1398 static void
1399 compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
1400 gimple call, tree expected_type)
1401 {
1402 HOST_WIDE_INT offset, size, max_size;
1403 tree base;
1404
1405 if (!flag_devirtualize
1406 || TREE_CODE (op) != ADDR_EXPR
1407 || TREE_CODE (TREE_TYPE (TREE_TYPE (op))) != RECORD_TYPE
1408 /* Be sure expected_type is polymorphic. */
1409 || !expected_type
1410 || TREE_CODE (expected_type) != RECORD_TYPE
1411 || !TYPE_BINFO (expected_type)
1412 || !BINFO_VTABLE (TYPE_BINFO (expected_type)))
1413 return;
1414
1415 op = TREE_OPERAND (op, 0);
1416 base = get_ref_base_and_extent (op, &offset, &size, &max_size);
1417 if (!DECL_P (base)
1418 || max_size == -1
1419 || max_size != size
1420 || TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
1421 || is_global_var (base))
1422 return;
1423
1424 if (detect_type_change (op, base, expected_type, call, jfunc, offset))
1425 return;
1426
1427 ipa_set_jf_known_type (jfunc, offset, TREE_TYPE (base),
1428 expected_type);
1429 }
1430
1431 /* Inspect the given TYPE and return true iff it has the same structure (the
1432 same number of fields of the same types) as a C++ member pointer. If
1433 METHOD_PTR and DELTA are non-NULL, store the trees representing the
1434 corresponding fields there. */
1435
1436 static bool
1437 type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
1438 {
1439 tree fld;
1440
1441 if (TREE_CODE (type) != RECORD_TYPE)
1442 return false;
1443
1444 fld = TYPE_FIELDS (type);
1445 if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
1446 || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE
1447 || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
1448 return false;
1449
1450 if (method_ptr)
1451 *method_ptr = fld;
1452
1453 fld = DECL_CHAIN (fld);
1454 if (!fld || INTEGRAL_TYPE_P (fld)
1455 || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
1456 return false;
1457 if (delta)
1458 *delta = fld;
1459
1460 if (DECL_CHAIN (fld))
1461 return false;
1462
1463 return true;
1464 }
1465
1466 /* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
1467 return the rhs of its defining statement. Otherwise return RHS as it
1468 is. */
1469
1470 static inline tree
1471 get_ssa_def_if_simple_copy (tree rhs)
1472 {
1473 while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
1474 {
1475 gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
1476
1477 if (gimple_assign_single_p (def_stmt))
1478 rhs = gimple_assign_rhs1 (def_stmt);
1479 else
1480 break;
1481 }
1482 return rhs;
1483 }
1484
1485 /* Simple linked list, describing known contents of an aggregate beforere
1486 call. */
1487
1488 struct ipa_known_agg_contents_list
1489 {
1490 /* Offset and size of the described part of the aggregate. */
1491 HOST_WIDE_INT offset, size;
1492 /* Known constant value or NULL if the contents is known to be unknown. */
1493 tree constant;
1494 /* Pointer to the next structure in the list. */
1495 struct ipa_known_agg_contents_list *next;
1496 };
1497
1498 /* Find the proper place in linked list of ipa_known_agg_contents_list
1499 structures where to put a new one with the given LHS_OFFSET and LHS_SIZE,
1500 unless there is a partial overlap, in which case return NULL, or such
1501 element is already there, in which case set *ALREADY_THERE to true. */
1502
1503 static struct ipa_known_agg_contents_list **
1504 get_place_in_agg_contents_list (struct ipa_known_agg_contents_list **list,
1505 HOST_WIDE_INT lhs_offset,
1506 HOST_WIDE_INT lhs_size,
1507 bool *already_there)
1508 {
1509 struct ipa_known_agg_contents_list **p = list;
1510 while (*p && (*p)->offset < lhs_offset)
1511 {
1512 if ((*p)->offset + (*p)->size > lhs_offset)
1513 return NULL;
1514 p = &(*p)->next;
1515 }
1516
1517 if (*p && (*p)->offset < lhs_offset + lhs_size)
1518 {
1519 if ((*p)->offset == lhs_offset && (*p)->size == lhs_size)
1520 /* We already know this value is subsequently overwritten with
1521 something else. */
1522 *already_there = true;
1523 else
1524 /* Otherwise this is a partial overlap which we cannot
1525 represent. */
1526 return NULL;
1527 }
1528 return p;
1529 }
1530
1531 /* Build aggregate jump function from LIST, assuming there are exactly
1532 CONST_COUNT constant entries there and that th offset of the passed argument
1533 is ARG_OFFSET and store it into JFUNC. */
1534
1535 static void
1536 build_agg_jump_func_from_list (struct ipa_known_agg_contents_list *list,
1537 int const_count, HOST_WIDE_INT arg_offset,
1538 struct ipa_jump_func *jfunc)
1539 {
1540 vec_alloc (jfunc->agg.items, const_count);
1541 while (list)
1542 {
1543 if (list->constant)
1544 {
1545 struct ipa_agg_jf_item item;
1546 item.offset = list->offset - arg_offset;
1547 gcc_assert ((item.offset % BITS_PER_UNIT) == 0);
1548 item.value = unshare_expr_without_location (list->constant);
1549 jfunc->agg.items->quick_push (item);
1550 }
1551 list = list->next;
1552 }
1553 }
1554
1555 /* Traverse statements from CALL backwards, scanning whether an aggregate given
1556 in ARG is filled in with constant values. ARG can either be an aggregate
1557 expression or a pointer to an aggregate. ARG_TYPE is the type of the
1558 aggregate. JFUNC is the jump function into which the constants are
1559 subsequently stored. */
1560
1561 static void
1562 determine_locally_known_aggregate_parts (gimple call, tree arg, tree arg_type,
1563 struct ipa_jump_func *jfunc)
1564 {
1565 struct ipa_known_agg_contents_list *list = NULL;
1566 int item_count = 0, const_count = 0;
1567 HOST_WIDE_INT arg_offset, arg_size;
1568 gimple_stmt_iterator gsi;
1569 tree arg_base;
1570 bool check_ref, by_ref;
1571 ao_ref r;
1572
1573 /* The function operates in three stages. First, we prepare check_ref, r,
1574 arg_base and arg_offset based on what is actually passed as an actual
1575 argument. */
1576
1577 if (POINTER_TYPE_P (arg_type))
1578 {
1579 by_ref = true;
1580 if (TREE_CODE (arg) == SSA_NAME)
1581 {
1582 tree type_size;
1583 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (arg_type))))
1584 return;
1585 check_ref = true;
1586 arg_base = arg;
1587 arg_offset = 0;
1588 type_size = TYPE_SIZE (TREE_TYPE (arg_type));
1589 arg_size = tree_to_uhwi (type_size);
1590 ao_ref_init_from_ptr_and_size (&r, arg_base, NULL_TREE);
1591 }
1592 else if (TREE_CODE (arg) == ADDR_EXPR)
1593 {
1594 HOST_WIDE_INT arg_max_size;
1595
1596 arg = TREE_OPERAND (arg, 0);
1597 arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
1598 &arg_max_size);
1599 if (arg_max_size == -1
1600 || arg_max_size != arg_size
1601 || arg_offset < 0)
1602 return;
1603 if (DECL_P (arg_base))
1604 {
1605 check_ref = false;
1606 ao_ref_init (&r, arg_base);
1607 }
1608 else
1609 return;
1610 }
1611 else
1612 return;
1613 }
1614 else
1615 {
1616 HOST_WIDE_INT arg_max_size;
1617
1618 gcc_checking_assert (AGGREGATE_TYPE_P (TREE_TYPE (arg)));
1619
1620 by_ref = false;
1621 check_ref = false;
1622 arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
1623 &arg_max_size);
1624 if (arg_max_size == -1
1625 || arg_max_size != arg_size
1626 || arg_offset < 0)
1627 return;
1628
1629 ao_ref_init (&r, arg);
1630 }
1631
1632 /* Second stage walks back the BB, looks at individual statements and as long
1633 as it is confident of how the statements affect contents of the
1634 aggregates, it builds a sorted linked list of ipa_agg_jf_list structures
1635 describing it. */
1636 gsi = gsi_for_stmt (call);
1637 gsi_prev (&gsi);
1638 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
1639 {
1640 struct ipa_known_agg_contents_list *n, **p;
1641 gimple stmt = gsi_stmt (gsi);
1642 HOST_WIDE_INT lhs_offset, lhs_size, lhs_max_size;
1643 tree lhs, rhs, lhs_base;
1644
1645 if (!stmt_may_clobber_ref_p_1 (stmt, &r))
1646 continue;
1647 if (!gimple_assign_single_p (stmt))
1648 break;
1649
1650 lhs = gimple_assign_lhs (stmt);
1651 rhs = gimple_assign_rhs1 (stmt);
1652 if (!is_gimple_reg_type (TREE_TYPE (rhs))
1653 || TREE_CODE (lhs) == BIT_FIELD_REF
1654 || contains_bitfld_component_ref_p (lhs))
1655 break;
1656
1657 lhs_base = get_ref_base_and_extent (lhs, &lhs_offset, &lhs_size,
1658 &lhs_max_size);
1659 if (lhs_max_size == -1
1660 || lhs_max_size != lhs_size)
1661 break;
1662
1663 if (check_ref)
1664 {
1665 if (TREE_CODE (lhs_base) != MEM_REF
1666 || TREE_OPERAND (lhs_base, 0) != arg_base
1667 || !integer_zerop (TREE_OPERAND (lhs_base, 1)))
1668 break;
1669 }
1670 else if (lhs_base != arg_base)
1671 {
1672 if (DECL_P (lhs_base))
1673 continue;
1674 else
1675 break;
1676 }
1677
1678 bool already_there = false;
1679 p = get_place_in_agg_contents_list (&list, lhs_offset, lhs_size,
1680 &already_there);
1681 if (!p)
1682 break;
1683 if (already_there)
1684 continue;
1685
1686 rhs = get_ssa_def_if_simple_copy (rhs);
1687 n = XALLOCA (struct ipa_known_agg_contents_list);
1688 n->size = lhs_size;
1689 n->offset = lhs_offset;
1690 if (is_gimple_ip_invariant (rhs))
1691 {
1692 n->constant = rhs;
1693 const_count++;
1694 }
1695 else
1696 n->constant = NULL_TREE;
1697 n->next = *p;
1698 *p = n;
1699
1700 item_count++;
1701 if (const_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS)
1702 || item_count == 2 * PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1703 break;
1704 }
1705
1706 /* Third stage just goes over the list and creates an appropriate vector of
1707 ipa_agg_jf_item structures out of it, of sourse only if there are
1708 any known constants to begin with. */
1709
1710 if (const_count)
1711 {
1712 jfunc->agg.by_ref = by_ref;
1713 build_agg_jump_func_from_list (list, const_count, arg_offset, jfunc);
1714 }
1715 }
1716
1717 static tree
1718 ipa_get_callee_param_type (struct cgraph_edge *e, int i)
1719 {
1720 int n;
1721 tree type = (e->callee
1722 ? TREE_TYPE (e->callee->decl)
1723 : gimple_call_fntype (e->call_stmt));
1724 tree t = TYPE_ARG_TYPES (type);
1725
1726 for (n = 0; n < i; n++)
1727 {
1728 if (!t)
1729 break;
1730 t = TREE_CHAIN (t);
1731 }
1732 if (t)
1733 return TREE_VALUE (t);
1734 if (!e->callee)
1735 return NULL;
1736 t = DECL_ARGUMENTS (e->callee->decl);
1737 for (n = 0; n < i; n++)
1738 {
1739 if (!t)
1740 return NULL;
1741 t = TREE_CHAIN (t);
1742 }
1743 if (t)
1744 return TREE_TYPE (t);
1745 return NULL;
1746 }
1747
1748 /* Compute jump function for all arguments of callsite CS and insert the
1749 information in the jump_functions array in the ipa_edge_args corresponding
1750 to this callsite. */
1751
1752 static void
1753 ipa_compute_jump_functions_for_edge (struct func_body_info *fbi,
1754 struct cgraph_edge *cs)
1755 {
1756 struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
1757 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
1758 gimple call = cs->call_stmt;
1759 int n, arg_num = gimple_call_num_args (call);
1760
1761 if (arg_num == 0 || args->jump_functions)
1762 return;
1763 vec_safe_grow_cleared (args->jump_functions, arg_num);
1764
1765 if (gimple_call_internal_p (call))
1766 return;
1767 if (ipa_func_spec_opts_forbid_analysis_p (cs->caller))
1768 return;
1769
1770 for (n = 0; n < arg_num; n++)
1771 {
1772 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n);
1773 tree arg = gimple_call_arg (call, n);
1774 tree param_type = ipa_get_callee_param_type (cs, n);
1775
1776 if (is_gimple_ip_invariant (arg))
1777 ipa_set_jf_constant (jfunc, arg, cs);
1778 else if (!is_gimple_reg_type (TREE_TYPE (arg))
1779 && TREE_CODE (arg) == PARM_DECL)
1780 {
1781 int index = ipa_get_param_decl_index (info, arg);
1782
1783 gcc_assert (index >=0);
1784 /* Aggregate passed by value, check for pass-through, otherwise we
1785 will attempt to fill in aggregate contents later in this
1786 for cycle. */
1787 if (parm_preserved_before_stmt_p (fbi, index, call, arg))
1788 {
1789 ipa_set_jf_simple_pass_through (jfunc, index, false, false);
1790 continue;
1791 }
1792 }
1793 else if (TREE_CODE (arg) == SSA_NAME)
1794 {
1795 if (SSA_NAME_IS_DEFAULT_DEF (arg))
1796 {
1797 int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
1798 if (index >= 0)
1799 {
1800 bool agg_p, type_p;
1801 agg_p = parm_ref_data_pass_through_p (fbi, index, call, arg);
1802 if (param_type && POINTER_TYPE_P (param_type))
1803 type_p = !detect_type_change_ssa (arg, TREE_TYPE (param_type),
1804 call, jfunc);
1805 else
1806 type_p = false;
1807 if (type_p || jfunc->type == IPA_JF_UNKNOWN)
1808 ipa_set_jf_simple_pass_through (jfunc, index, agg_p,
1809 type_p);
1810 }
1811 }
1812 else
1813 {
1814 gimple stmt = SSA_NAME_DEF_STMT (arg);
1815 if (is_gimple_assign (stmt))
1816 compute_complex_assign_jump_func (fbi, info, jfunc,
1817 call, stmt, arg, param_type);
1818 else if (gimple_code (stmt) == GIMPLE_PHI)
1819 compute_complex_ancestor_jump_func (fbi, info, jfunc,
1820 call, stmt, param_type);
1821 }
1822 }
1823 else
1824 compute_known_type_jump_func (arg, jfunc, call,
1825 param_type
1826 && POINTER_TYPE_P (param_type)
1827 ? TREE_TYPE (param_type)
1828 : NULL);
1829
1830 /* If ARG is pointer, we can not use its type to determine the type of aggregate
1831 passed (because type conversions are ignored in gimple). Usually we can
1832 safely get type from function declaration, but in case of K&R prototypes or
1833 variadic functions we can try our luck with type of the pointer passed.
1834 TODO: Since we look for actual initialization of the memory object, we may better
1835 work out the type based on the memory stores we find. */
1836 if (!param_type)
1837 param_type = TREE_TYPE (arg);
1838
1839 if ((jfunc->type != IPA_JF_PASS_THROUGH
1840 || !ipa_get_jf_pass_through_agg_preserved (jfunc))
1841 && (jfunc->type != IPA_JF_ANCESTOR
1842 || !ipa_get_jf_ancestor_agg_preserved (jfunc))
1843 && (AGGREGATE_TYPE_P (TREE_TYPE (arg))
1844 || POINTER_TYPE_P (param_type)))
1845 determine_locally_known_aggregate_parts (call, arg, param_type, jfunc);
1846 }
1847 }
1848
1849 /* Compute jump functions for all edges - both direct and indirect - outgoing
1850 from BB. */
1851
1852 static void
1853 ipa_compute_jump_functions_for_bb (struct func_body_info *fbi, basic_block bb)
1854 {
1855 struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
1856 int i;
1857 struct cgraph_edge *cs;
1858
1859 FOR_EACH_VEC_ELT_REVERSE (bi->cg_edges, i, cs)
1860 {
1861 struct cgraph_node *callee = cs->callee;
1862
1863 if (callee)
1864 {
1865 cgraph_function_or_thunk_node (callee, NULL);
1866 /* We do not need to bother analyzing calls to unknown functions
1867 unless they may become known during lto/whopr. */
1868 if (!callee->definition && !flag_lto)
1869 continue;
1870 }
1871 ipa_compute_jump_functions_for_edge (fbi, cs);
1872 }
1873 }
1874
1875 /* If STMT looks like a statement loading a value from a member pointer formal
1876 parameter, return that parameter and store the offset of the field to
1877 *OFFSET_P, if it is non-NULL. Otherwise return NULL (but *OFFSET_P still
1878 might be clobbered). If USE_DELTA, then we look for a use of the delta
1879 field rather than the pfn. */
1880
1881 static tree
1882 ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta,
1883 HOST_WIDE_INT *offset_p)
1884 {
1885 tree rhs, rec, ref_field, ref_offset, fld, ptr_field, delta_field;
1886
1887 if (!gimple_assign_single_p (stmt))
1888 return NULL_TREE;
1889
1890 rhs = gimple_assign_rhs1 (stmt);
1891 if (TREE_CODE (rhs) == COMPONENT_REF)
1892 {
1893 ref_field = TREE_OPERAND (rhs, 1);
1894 rhs = TREE_OPERAND (rhs, 0);
1895 }
1896 else
1897 ref_field = NULL_TREE;
1898 if (TREE_CODE (rhs) != MEM_REF)
1899 return NULL_TREE;
1900 rec = TREE_OPERAND (rhs, 0);
1901 if (TREE_CODE (rec) != ADDR_EXPR)
1902 return NULL_TREE;
1903 rec = TREE_OPERAND (rec, 0);
1904 if (TREE_CODE (rec) != PARM_DECL
1905 || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
1906 return NULL_TREE;
1907 ref_offset = TREE_OPERAND (rhs, 1);
1908
1909 if (use_delta)
1910 fld = delta_field;
1911 else
1912 fld = ptr_field;
1913 if (offset_p)
1914 *offset_p = int_bit_position (fld);
1915
1916 if (ref_field)
1917 {
1918 if (integer_nonzerop (ref_offset))
1919 return NULL_TREE;
1920 return ref_field == fld ? rec : NULL_TREE;
1921 }
1922 else
1923 return tree_int_cst_equal (byte_position (fld), ref_offset) ? rec
1924 : NULL_TREE;
1925 }
1926
1927 /* Returns true iff T is an SSA_NAME defined by a statement. */
1928
1929 static bool
1930 ipa_is_ssa_with_stmt_def (tree t)
1931 {
1932 if (TREE_CODE (t) == SSA_NAME
1933 && !SSA_NAME_IS_DEFAULT_DEF (t))
1934 return true;
1935 else
1936 return false;
1937 }
1938
1939 /* Find the indirect call graph edge corresponding to STMT and mark it as a
1940 call to a parameter number PARAM_INDEX. NODE is the caller. Return the
1941 indirect call graph edge. */
1942
1943 static struct cgraph_edge *
1944 ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
1945 {
1946 struct cgraph_edge *cs;
1947
1948 cs = cgraph_edge (node, stmt);
1949 cs->indirect_info->param_index = param_index;
1950 cs->indirect_info->agg_contents = 0;
1951 cs->indirect_info->member_ptr = 0;
1952 return cs;
1953 }
1954
1955 /* Analyze the CALL and examine uses of formal parameters of the caller NODE
1956 (described by INFO). PARMS_AINFO is a pointer to a vector containing
1957 intermediate information about each formal parameter. Currently it checks
1958 whether the call calls a pointer that is a formal parameter and if so, the
1959 parameter is marked with the called flag and an indirect call graph edge
1960 describing the call is created. This is very simple for ordinary pointers
1961 represented in SSA but not-so-nice when it comes to member pointers. The
1962 ugly part of this function does nothing more than trying to match the
1963 pattern of such a call. An example of such a pattern is the gimple dump
1964 below, the call is on the last line:
1965
1966 <bb 2>:
1967 f$__delta_5 = f.__delta;
1968 f$__pfn_24 = f.__pfn;
1969
1970 or
1971 <bb 2>:
1972 f$__delta_5 = MEM[(struct *)&f];
1973 f$__pfn_24 = MEM[(struct *)&f + 4B];
1974
1975 and a few lines below:
1976
1977 <bb 5>
1978 D.2496_3 = (int) f$__pfn_24;
1979 D.2497_4 = D.2496_3 & 1;
1980 if (D.2497_4 != 0)
1981 goto <bb 3>;
1982 else
1983 goto <bb 4>;
1984
1985 <bb 6>:
1986 D.2500_7 = (unsigned int) f$__delta_5;
1987 D.2501_8 = &S + D.2500_7;
1988 D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
1989 D.2503_10 = *D.2502_9;
1990 D.2504_12 = f$__pfn_24 + -1;
1991 D.2505_13 = (unsigned int) D.2504_12;
1992 D.2506_14 = D.2503_10 + D.2505_13;
1993 D.2507_15 = *D.2506_14;
1994 iftmp.11_16 = (String:: *) D.2507_15;
1995
1996 <bb 7>:
1997 # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
1998 D.2500_19 = (unsigned int) f$__delta_5;
1999 D.2508_20 = &S + D.2500_19;
2000 D.2493_21 = iftmp.11_1 (D.2508_20, 4);
2001
2002 Such patterns are results of simple calls to a member pointer:
2003
2004 int doprinting (int (MyString::* f)(int) const)
2005 {
2006 MyString S ("somestring");
2007
2008 return (S.*f)(4);
2009 }
2010
2011 Moreover, the function also looks for called pointers loaded from aggregates
2012 passed by value or reference. */
2013
2014 static void
2015 ipa_analyze_indirect_call_uses (struct func_body_info *fbi, gimple call,
2016 tree target)
2017 {
2018 struct ipa_node_params *info = fbi->info;
2019 HOST_WIDE_INT offset;
2020 bool by_ref;
2021
2022 if (SSA_NAME_IS_DEFAULT_DEF (target))
2023 {
2024 tree var = SSA_NAME_VAR (target);
2025 int index = ipa_get_param_decl_index (info, var);
2026 if (index >= 0)
2027 ipa_note_param_call (fbi->node, index, call);
2028 return;
2029 }
2030
2031 int index;
2032 gimple def = SSA_NAME_DEF_STMT (target);
2033 if (gimple_assign_single_p (def)
2034 && ipa_load_from_parm_agg_1 (fbi, info->descriptors, def,
2035 gimple_assign_rhs1 (def), &index, &offset,
2036 NULL, &by_ref))
2037 {
2038 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2039 if (cs->indirect_info->offset != offset)
2040 cs->indirect_info->outer_type = NULL;
2041 cs->indirect_info->offset = offset;
2042 cs->indirect_info->agg_contents = 1;
2043 cs->indirect_info->by_ref = by_ref;
2044 return;
2045 }
2046
2047 /* Now we need to try to match the complex pattern of calling a member
2048 pointer. */
2049 if (gimple_code (def) != GIMPLE_PHI
2050 || gimple_phi_num_args (def) != 2
2051 || !POINTER_TYPE_P (TREE_TYPE (target))
2052 || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
2053 return;
2054
2055 /* First, we need to check whether one of these is a load from a member
2056 pointer that is a parameter to this function. */
2057 tree n1 = PHI_ARG_DEF (def, 0);
2058 tree n2 = PHI_ARG_DEF (def, 1);
2059 if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
2060 return;
2061 gimple d1 = SSA_NAME_DEF_STMT (n1);
2062 gimple d2 = SSA_NAME_DEF_STMT (n2);
2063
2064 tree rec;
2065 basic_block bb, virt_bb;
2066 basic_block join = gimple_bb (def);
2067 if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false, &offset)))
2068 {
2069 if (ipa_get_stmt_member_ptr_load_param (d2, false, NULL))
2070 return;
2071
2072 bb = EDGE_PRED (join, 0)->src;
2073 virt_bb = gimple_bb (d2);
2074 }
2075 else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false, &offset)))
2076 {
2077 bb = EDGE_PRED (join, 1)->src;
2078 virt_bb = gimple_bb (d1);
2079 }
2080 else
2081 return;
2082
2083 /* Second, we need to check that the basic blocks are laid out in the way
2084 corresponding to the pattern. */
2085
2086 if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
2087 || single_pred (virt_bb) != bb
2088 || single_succ (virt_bb) != join)
2089 return;
2090
2091 /* Third, let's see that the branching is done depending on the least
2092 significant bit of the pfn. */
2093
2094 gimple branch = last_stmt (bb);
2095 if (!branch || gimple_code (branch) != GIMPLE_COND)
2096 return;
2097
2098 if ((gimple_cond_code (branch) != NE_EXPR
2099 && gimple_cond_code (branch) != EQ_EXPR)
2100 || !integer_zerop (gimple_cond_rhs (branch)))
2101 return;
2102
2103 tree cond = gimple_cond_lhs (branch);
2104 if (!ipa_is_ssa_with_stmt_def (cond))
2105 return;
2106
2107 def = SSA_NAME_DEF_STMT (cond);
2108 if (!is_gimple_assign (def)
2109 || gimple_assign_rhs_code (def) != BIT_AND_EXPR
2110 || !integer_onep (gimple_assign_rhs2 (def)))
2111 return;
2112
2113 cond = gimple_assign_rhs1 (def);
2114 if (!ipa_is_ssa_with_stmt_def (cond))
2115 return;
2116
2117 def = SSA_NAME_DEF_STMT (cond);
2118
2119 if (is_gimple_assign (def)
2120 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
2121 {
2122 cond = gimple_assign_rhs1 (def);
2123 if (!ipa_is_ssa_with_stmt_def (cond))
2124 return;
2125 def = SSA_NAME_DEF_STMT (cond);
2126 }
2127
2128 tree rec2;
2129 rec2 = ipa_get_stmt_member_ptr_load_param (def,
2130 (TARGET_PTRMEMFUNC_VBIT_LOCATION
2131 == ptrmemfunc_vbit_in_delta),
2132 NULL);
2133 if (rec != rec2)
2134 return;
2135
2136 index = ipa_get_param_decl_index (info, rec);
2137 if (index >= 0
2138 && parm_preserved_before_stmt_p (fbi, index, call, rec))
2139 {
2140 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2141 if (cs->indirect_info->offset != offset)
2142 cs->indirect_info->outer_type = NULL;
2143 cs->indirect_info->offset = offset;
2144 cs->indirect_info->agg_contents = 1;
2145 cs->indirect_info->member_ptr = 1;
2146 }
2147
2148 return;
2149 }
2150
2151 /* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
2152 object referenced in the expression is a formal parameter of the caller
2153 FBI->node (described by FBI->info), create a call note for the
2154 statement. */
2155
2156 static void
2157 ipa_analyze_virtual_call_uses (struct func_body_info *fbi,
2158 gimple call, tree target)
2159 {
2160 tree obj = OBJ_TYPE_REF_OBJECT (target);
2161 int index;
2162 HOST_WIDE_INT anc_offset;
2163
2164 if (!flag_devirtualize)
2165 return;
2166
2167 if (TREE_CODE (obj) != SSA_NAME)
2168 return;
2169
2170 struct ipa_node_params *info = fbi->info;
2171 if (SSA_NAME_IS_DEFAULT_DEF (obj))
2172 {
2173 struct ipa_jump_func jfunc;
2174 if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
2175 return;
2176
2177 anc_offset = 0;
2178 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
2179 gcc_assert (index >= 0);
2180 if (detect_type_change_ssa (obj, obj_type_ref_class (target),
2181 call, &jfunc))
2182 return;
2183 }
2184 else
2185 {
2186 struct ipa_jump_func jfunc;
2187 gimple stmt = SSA_NAME_DEF_STMT (obj);
2188 tree expr;
2189
2190 expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
2191 if (!expr)
2192 return;
2193 index = ipa_get_param_decl_index (info,
2194 SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
2195 gcc_assert (index >= 0);
2196 if (detect_type_change (obj, expr, obj_type_ref_class (target),
2197 call, &jfunc, anc_offset))
2198 return;
2199 }
2200
2201 struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, call);
2202 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2203 ii->offset = anc_offset;
2204 ii->otr_token = tree_to_uhwi (OBJ_TYPE_REF_TOKEN (target));
2205 ii->otr_type = obj_type_ref_class (target);
2206 ii->polymorphic = 1;
2207 }
2208
2209 /* Analyze a call statement CALL whether and how it utilizes formal parameters
2210 of the caller (described by INFO). PARMS_AINFO is a pointer to a vector
2211 containing intermediate information about each formal parameter. */
2212
2213 static void
2214 ipa_analyze_call_uses (struct func_body_info *fbi, gimple call)
2215 {
2216 tree target = gimple_call_fn (call);
2217
2218 if (!target
2219 || (TREE_CODE (target) != SSA_NAME
2220 && !virtual_method_call_p (target)))
2221 return;
2222
2223 /* If we previously turned the call into a direct call, there is
2224 no need to analyze. */
2225 struct cgraph_edge *cs = cgraph_edge (fbi->node, call);
2226 if (cs && !cs->indirect_unknown_callee)
2227 return;
2228 if (TREE_CODE (target) == SSA_NAME)
2229 ipa_analyze_indirect_call_uses (fbi, call, target);
2230 else if (virtual_method_call_p (target))
2231 ipa_analyze_virtual_call_uses (fbi, call, target);
2232 }
2233
2234
2235 /* Analyze the call statement STMT with respect to formal parameters (described
2236 in INFO) of caller given by FBI->NODE. Currently it only checks whether
2237 formal parameters are called. */
2238
2239 static void
2240 ipa_analyze_stmt_uses (struct func_body_info *fbi, gimple stmt)
2241 {
2242 if (is_gimple_call (stmt))
2243 ipa_analyze_call_uses (fbi, stmt);
2244 }
2245
2246 /* Callback of walk_stmt_load_store_addr_ops for the visit_load.
2247 If OP is a parameter declaration, mark it as used in the info structure
2248 passed in DATA. */
2249
2250 static bool
2251 visit_ref_for_mod_analysis (gimple, tree op, tree, void *data)
2252 {
2253 struct ipa_node_params *info = (struct ipa_node_params *) data;
2254
2255 op = get_base_address (op);
2256 if (op
2257 && TREE_CODE (op) == PARM_DECL)
2258 {
2259 int index = ipa_get_param_decl_index (info, op);
2260 gcc_assert (index >= 0);
2261 ipa_set_param_used (info, index, true);
2262 }
2263
2264 return false;
2265 }
2266
2267 /* Scan the statements in BB and inspect the uses of formal parameters. Store
2268 the findings in various structures of the associated ipa_node_params
2269 structure, such as parameter flags, notes etc. FBI holds various data about
2270 the function being analyzed. */
2271
2272 static void
2273 ipa_analyze_params_uses_in_bb (struct func_body_info *fbi, basic_block bb)
2274 {
2275 gimple_stmt_iterator gsi;
2276 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2277 {
2278 gimple stmt = gsi_stmt (gsi);
2279
2280 if (is_gimple_debug (stmt))
2281 continue;
2282
2283 ipa_analyze_stmt_uses (fbi, stmt);
2284 walk_stmt_load_store_addr_ops (stmt, fbi->info,
2285 visit_ref_for_mod_analysis,
2286 visit_ref_for_mod_analysis,
2287 visit_ref_for_mod_analysis);
2288 }
2289 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2290 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), fbi->info,
2291 visit_ref_for_mod_analysis,
2292 visit_ref_for_mod_analysis,
2293 visit_ref_for_mod_analysis);
2294 }
2295
2296 /* Calculate controlled uses of parameters of NODE. */
2297
2298 static void
2299 ipa_analyze_controlled_uses (struct cgraph_node *node)
2300 {
2301 struct ipa_node_params *info = IPA_NODE_REF (node);
2302
2303 for (int i = 0; i < ipa_get_param_count (info); i++)
2304 {
2305 tree parm = ipa_get_param (info, i);
2306 int controlled_uses = 0;
2307
2308 /* For SSA regs see if parameter is used. For non-SSA we compute
2309 the flag during modification analysis. */
2310 if (is_gimple_reg (parm))
2311 {
2312 tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl),
2313 parm);
2314 if (ddef && !has_zero_uses (ddef))
2315 {
2316 imm_use_iterator imm_iter;
2317 use_operand_p use_p;
2318
2319 ipa_set_param_used (info, i, true);
2320 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ddef)
2321 if (!is_gimple_call (USE_STMT (use_p)))
2322 {
2323 if (!is_gimple_debug (USE_STMT (use_p)))
2324 {
2325 controlled_uses = IPA_UNDESCRIBED_USE;
2326 break;
2327 }
2328 }
2329 else
2330 controlled_uses++;
2331 }
2332 else
2333 controlled_uses = 0;
2334 }
2335 else
2336 controlled_uses = IPA_UNDESCRIBED_USE;
2337 ipa_set_controlled_uses (info, i, controlled_uses);
2338 }
2339 }
2340
2341 /* Free stuff in BI. */
2342
2343 static void
2344 free_ipa_bb_info (struct ipa_bb_info *bi)
2345 {
2346 bi->cg_edges.release ();
2347 bi->param_aa_statuses.release ();
2348 }
2349
2350 /* Dominator walker driving the analysis. */
2351
2352 class analysis_dom_walker : public dom_walker
2353 {
2354 public:
2355 analysis_dom_walker (struct func_body_info *fbi)
2356 : dom_walker (CDI_DOMINATORS), m_fbi (fbi) {}
2357
2358 virtual void before_dom_children (basic_block);
2359
2360 private:
2361 struct func_body_info *m_fbi;
2362 };
2363
2364 void
2365 analysis_dom_walker::before_dom_children (basic_block bb)
2366 {
2367 ipa_analyze_params_uses_in_bb (m_fbi, bb);
2368 ipa_compute_jump_functions_for_bb (m_fbi, bb);
2369 }
2370
2371 /* Initialize the array describing properties of of formal parameters
2372 of NODE, analyze their uses and compute jump functions associated
2373 with actual arguments of calls from within NODE. */
2374
2375 void
2376 ipa_analyze_node (struct cgraph_node *node)
2377 {
2378 struct func_body_info fbi;
2379 struct ipa_node_params *info;
2380
2381 ipa_check_create_node_params ();
2382 ipa_check_create_edge_args ();
2383 info = IPA_NODE_REF (node);
2384
2385 if (info->analysis_done)
2386 return;
2387 info->analysis_done = 1;
2388
2389 if (ipa_func_spec_opts_forbid_analysis_p (node))
2390 {
2391 for (int i = 0; i < ipa_get_param_count (info); i++)
2392 {
2393 ipa_set_param_used (info, i, true);
2394 ipa_set_controlled_uses (info, i, IPA_UNDESCRIBED_USE);
2395 }
2396 return;
2397 }
2398
2399 struct function *func = DECL_STRUCT_FUNCTION (node->decl);
2400 push_cfun (func);
2401 calculate_dominance_info (CDI_DOMINATORS);
2402 ipa_initialize_node_params (node);
2403 ipa_analyze_controlled_uses (node);
2404
2405 fbi.node = node;
2406 fbi.info = IPA_NODE_REF (node);
2407 fbi.bb_infos = vNULL;
2408 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
2409 fbi.param_count = ipa_get_param_count (info);
2410 fbi.aa_walked = 0;
2411
2412 for (struct cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
2413 {
2414 ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
2415 bi->cg_edges.safe_push (cs);
2416 }
2417
2418 for (struct cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
2419 {
2420 ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
2421 bi->cg_edges.safe_push (cs);
2422 }
2423
2424 analysis_dom_walker (&fbi).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2425
2426 int i;
2427 struct ipa_bb_info *bi;
2428 FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
2429 free_ipa_bb_info (bi);
2430 fbi.bb_infos.release ();
2431 free_dominance_info (CDI_DOMINATORS);
2432 pop_cfun ();
2433 }
2434
2435 /* Given a statement CALL which must be a GIMPLE_CALL calling an OBJ_TYPE_REF
2436 attempt a type-based devirtualization. If successful, return the
2437 target function declaration, otherwise return NULL. */
2438
2439 tree
2440 ipa_intraprocedural_devirtualization (gimple call)
2441 {
2442 tree binfo, token, fndecl;
2443 struct ipa_jump_func jfunc;
2444 tree otr = gimple_call_fn (call);
2445
2446 jfunc.type = IPA_JF_UNKNOWN;
2447 compute_known_type_jump_func (OBJ_TYPE_REF_OBJECT (otr), &jfunc,
2448 call, obj_type_ref_class (otr));
2449 if (jfunc.type != IPA_JF_KNOWN_TYPE)
2450 return NULL_TREE;
2451 binfo = ipa_binfo_from_known_type_jfunc (&jfunc);
2452 if (!binfo)
2453 return NULL_TREE;
2454 token = OBJ_TYPE_REF_TOKEN (otr);
2455 fndecl = gimple_get_virt_method_for_binfo (tree_to_uhwi (token),
2456 binfo);
2457 #ifdef ENABLE_CHECKING
2458 if (fndecl)
2459 gcc_assert (possible_polymorphic_call_target_p
2460 (otr, cgraph_get_node (fndecl)));
2461 #endif
2462 return fndecl;
2463 }
2464
2465 /* Update the jump function DST when the call graph edge corresponding to SRC is
2466 is being inlined, knowing that DST is of type ancestor and src of known
2467 type. */
2468
2469 static void
2470 combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
2471 struct ipa_jump_func *dst)
2472 {
2473 HOST_WIDE_INT combined_offset;
2474 tree combined_type;
2475
2476 if (!ipa_get_jf_ancestor_type_preserved (dst))
2477 {
2478 dst->type = IPA_JF_UNKNOWN;
2479 return;
2480 }
2481
2482 combined_offset = ipa_get_jf_known_type_offset (src)
2483 + ipa_get_jf_ancestor_offset (dst);
2484 combined_type = ipa_get_jf_ancestor_type (dst);
2485
2486 ipa_set_jf_known_type (dst, combined_offset,
2487 ipa_get_jf_known_type_base_type (src),
2488 combined_type);
2489 }
2490
2491 /* Update the jump functions associated with call graph edge E when the call
2492 graph edge CS is being inlined, assuming that E->caller is already (possibly
2493 indirectly) inlined into CS->callee and that E has not been inlined. */
2494
2495 static void
2496 update_jump_functions_after_inlining (struct cgraph_edge *cs,
2497 struct cgraph_edge *e)
2498 {
2499 struct ipa_edge_args *top = IPA_EDGE_REF (cs);
2500 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2501 int count = ipa_get_cs_argument_count (args);
2502 int i;
2503
2504 for (i = 0; i < count; i++)
2505 {
2506 struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
2507
2508 if (dst->type == IPA_JF_ANCESTOR)
2509 {
2510 struct ipa_jump_func *src;
2511 int dst_fid = dst->value.ancestor.formal_id;
2512
2513 /* Variable number of arguments can cause havoc if we try to access
2514 one that does not exist in the inlined edge. So make sure we
2515 don't. */
2516 if (dst_fid >= ipa_get_cs_argument_count (top))
2517 {
2518 dst->type = IPA_JF_UNKNOWN;
2519 continue;
2520 }
2521
2522 src = ipa_get_ith_jump_func (top, dst_fid);
2523
2524 if (src->agg.items
2525 && (dst->value.ancestor.agg_preserved || !src->agg.by_ref))
2526 {
2527 struct ipa_agg_jf_item *item;
2528 int j;
2529
2530 /* Currently we do not produce clobber aggregate jump functions,
2531 replace with merging when we do. */
2532 gcc_assert (!dst->agg.items);
2533
2534 dst->agg.items = vec_safe_copy (src->agg.items);
2535 dst->agg.by_ref = src->agg.by_ref;
2536 FOR_EACH_VEC_SAFE_ELT (dst->agg.items, j, item)
2537 item->offset -= dst->value.ancestor.offset;
2538 }
2539
2540 if (src->type == IPA_JF_KNOWN_TYPE)
2541 combine_known_type_and_ancestor_jfs (src, dst);
2542 else if (src->type == IPA_JF_PASS_THROUGH
2543 && src->value.pass_through.operation == NOP_EXPR)
2544 {
2545 dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
2546 dst->value.ancestor.agg_preserved &=
2547 src->value.pass_through.agg_preserved;
2548 dst->value.ancestor.type_preserved &=
2549 src->value.pass_through.type_preserved;
2550 }
2551 else if (src->type == IPA_JF_ANCESTOR)
2552 {
2553 dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
2554 dst->value.ancestor.offset += src->value.ancestor.offset;
2555 dst->value.ancestor.agg_preserved &=
2556 src->value.ancestor.agg_preserved;
2557 dst->value.ancestor.type_preserved &=
2558 src->value.ancestor.type_preserved;
2559 }
2560 else
2561 dst->type = IPA_JF_UNKNOWN;
2562 }
2563 else if (dst->type == IPA_JF_PASS_THROUGH)
2564 {
2565 struct ipa_jump_func *src;
2566 /* We must check range due to calls with variable number of arguments
2567 and we cannot combine jump functions with operations. */
2568 if (dst->value.pass_through.operation == NOP_EXPR
2569 && (dst->value.pass_through.formal_id
2570 < ipa_get_cs_argument_count (top)))
2571 {
2572 int dst_fid = dst->value.pass_through.formal_id;
2573 src = ipa_get_ith_jump_func (top, dst_fid);
2574 bool dst_agg_p = ipa_get_jf_pass_through_agg_preserved (dst);
2575
2576 switch (src->type)
2577 {
2578 case IPA_JF_UNKNOWN:
2579 dst->type = IPA_JF_UNKNOWN;
2580 break;
2581 case IPA_JF_KNOWN_TYPE:
2582 if (ipa_get_jf_pass_through_type_preserved (dst))
2583 ipa_set_jf_known_type (dst,
2584 ipa_get_jf_known_type_offset (src),
2585 ipa_get_jf_known_type_base_type (src),
2586 ipa_get_jf_known_type_component_type (src));
2587 else
2588 dst->type = IPA_JF_UNKNOWN;
2589 break;
2590 case IPA_JF_CONST:
2591 ipa_set_jf_cst_copy (dst, src);
2592 break;
2593
2594 case IPA_JF_PASS_THROUGH:
2595 {
2596 int formal_id = ipa_get_jf_pass_through_formal_id (src);
2597 enum tree_code operation;
2598 operation = ipa_get_jf_pass_through_operation (src);
2599
2600 if (operation == NOP_EXPR)
2601 {
2602 bool agg_p, type_p;
2603 agg_p = dst_agg_p
2604 && ipa_get_jf_pass_through_agg_preserved (src);
2605 type_p = ipa_get_jf_pass_through_type_preserved (src)
2606 && ipa_get_jf_pass_through_type_preserved (dst);
2607 ipa_set_jf_simple_pass_through (dst, formal_id,
2608 agg_p, type_p);
2609 }
2610 else
2611 {
2612 tree operand = ipa_get_jf_pass_through_operand (src);
2613 ipa_set_jf_arith_pass_through (dst, formal_id, operand,
2614 operation);
2615 }
2616 break;
2617 }
2618 case IPA_JF_ANCESTOR:
2619 {
2620 bool agg_p, type_p;
2621 agg_p = dst_agg_p
2622 && ipa_get_jf_ancestor_agg_preserved (src);
2623 type_p = ipa_get_jf_ancestor_type_preserved (src)
2624 && ipa_get_jf_pass_through_type_preserved (dst);
2625 ipa_set_ancestor_jf (dst,
2626 ipa_get_jf_ancestor_offset (src),
2627 ipa_get_jf_ancestor_type (src),
2628 ipa_get_jf_ancestor_formal_id (src),
2629 agg_p, type_p);
2630 break;
2631 }
2632 default:
2633 gcc_unreachable ();
2634 }
2635
2636 if (src->agg.items
2637 && (dst_agg_p || !src->agg.by_ref))
2638 {
2639 /* Currently we do not produce clobber aggregate jump
2640 functions, replace with merging when we do. */
2641 gcc_assert (!dst->agg.items);
2642
2643 dst->agg.by_ref = src->agg.by_ref;
2644 dst->agg.items = vec_safe_copy (src->agg.items);
2645 }
2646 }
2647 else
2648 dst->type = IPA_JF_UNKNOWN;
2649 }
2650 }
2651 }
2652
2653 /* If TARGET is an addr_expr of a function declaration, make it the destination
2654 of an indirect edge IE and return the edge. Otherwise, return NULL. */
2655
2656 struct cgraph_edge *
2657 ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
2658 {
2659 struct cgraph_node *callee;
2660 struct inline_edge_summary *es = inline_edge_summary (ie);
2661 bool unreachable = false;
2662
2663 if (TREE_CODE (target) == ADDR_EXPR)
2664 target = TREE_OPERAND (target, 0);
2665 if (TREE_CODE (target) != FUNCTION_DECL)
2666 {
2667 target = canonicalize_constructor_val (target, NULL);
2668 if (!target || TREE_CODE (target) != FUNCTION_DECL)
2669 {
2670 if (ie->indirect_info->member_ptr)
2671 /* Member pointer call that goes through a VMT lookup. */
2672 return NULL;
2673
2674 if (dump_enabled_p ())
2675 {
2676 const char *fmt = "discovered direct call to non-function in %s/%i, "
2677 "making it __builtin_unreachable\n";
2678
2679 if (ie->call_stmt)
2680 {
2681 location_t loc = gimple_location (ie->call_stmt);
2682 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc, fmt,
2683 ie->caller->name (), ie->caller->order);
2684 }
2685 else if (dump_file)
2686 fprintf (dump_file, fmt, ie->caller->name (), ie->caller->order);
2687 }
2688
2689 target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
2690 callee = cgraph_get_create_node (target);
2691 unreachable = true;
2692 }
2693 else
2694 callee = cgraph_get_node (target);
2695 }
2696 else
2697 callee = cgraph_get_node (target);
2698
2699 /* Because may-edges are not explicitely represented and vtable may be external,
2700 we may create the first reference to the object in the unit. */
2701 if (!callee || callee->global.inlined_to)
2702 {
2703
2704 /* We are better to ensure we can refer to it.
2705 In the case of static functions we are out of luck, since we already
2706 removed its body. In the case of public functions we may or may
2707 not introduce the reference. */
2708 if (!canonicalize_constructor_val (target, NULL)
2709 || !TREE_PUBLIC (target))
2710 {
2711 if (dump_file)
2712 fprintf (dump_file, "ipa-prop: Discovered call to a known target "
2713 "(%s/%i -> %s/%i) but can not refer to it. Giving up.\n",
2714 xstrdup (ie->caller->name ()),
2715 ie->caller->order,
2716 xstrdup (ie->callee->name ()),
2717 ie->callee->order);
2718 return NULL;
2719 }
2720 callee = cgraph_get_create_node (target);
2721 }
2722
2723 if (!dbg_cnt (devirt))
2724 return NULL;
2725
2726 ipa_check_create_node_params ();
2727
2728 /* We can not make edges to inline clones. It is bug that someone removed
2729 the cgraph node too early. */
2730 gcc_assert (!callee->global.inlined_to);
2731
2732 if (dump_file && !unreachable)
2733 {
2734 fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
2735 "(%s/%i -> %s/%i), for stmt ",
2736 ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
2737 xstrdup (ie->caller->name ()),
2738 ie->caller->order,
2739 xstrdup (callee->name ()),
2740 callee->order);
2741 if (ie->call_stmt)
2742 print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
2743 else
2744 fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
2745 }
2746 if (dump_enabled_p ())
2747 {
2748 const char *fmt = "converting indirect call in %s to direct call to %s\n";
2749
2750 if (ie->call_stmt)
2751 {
2752 location_t loc = gimple_location (ie->call_stmt);
2753
2754 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc, fmt,
2755 ie->caller->name (), callee->name ());
2756
2757 }
2758 else if (dump_file)
2759 fprintf (dump_file, fmt, ie->caller->name (), callee->name ());
2760 }
2761 ie = cgraph_make_edge_direct (ie, callee);
2762 es = inline_edge_summary (ie);
2763 es->call_stmt_size -= (eni_size_weights.indirect_call_cost
2764 - eni_size_weights.call_cost);
2765 es->call_stmt_time -= (eni_time_weights.indirect_call_cost
2766 - eni_time_weights.call_cost);
2767
2768 return ie;
2769 }
2770
2771 /* Retrieve value from aggregate jump function AGG for the given OFFSET or
2772 return NULL if there is not any. BY_REF specifies whether the value has to
2773 be passed by reference or by value. */
2774
2775 tree
2776 ipa_find_agg_cst_for_param (struct ipa_agg_jump_function *agg,
2777 HOST_WIDE_INT offset, bool by_ref)
2778 {
2779 struct ipa_agg_jf_item *item;
2780 int i;
2781
2782 if (by_ref != agg->by_ref)
2783 return NULL;
2784
2785 FOR_EACH_VEC_SAFE_ELT (agg->items, i, item)
2786 if (item->offset == offset)
2787 {
2788 /* Currently we do not have clobber values, return NULL for them once
2789 we do. */
2790 gcc_checking_assert (is_gimple_ip_invariant (item->value));
2791 return item->value;
2792 }
2793 return NULL;
2794 }
2795
2796 /* Remove a reference to SYMBOL from the list of references of a node given by
2797 reference description RDESC. Return true if the reference has been
2798 successfully found and removed. */
2799
2800 static bool
2801 remove_described_reference (symtab_node *symbol, struct ipa_cst_ref_desc *rdesc)
2802 {
2803 struct ipa_ref *to_del;
2804 struct cgraph_edge *origin;
2805
2806 origin = rdesc->cs;
2807 if (!origin)
2808 return false;
2809 to_del = origin->caller->find_reference (symbol, origin->call_stmt,
2810 origin->lto_stmt_uid);
2811 if (!to_del)
2812 return false;
2813
2814 to_del->remove_reference ();
2815 if (dump_file)
2816 fprintf (dump_file, "ipa-prop: Removed a reference from %s/%i to %s.\n",
2817 xstrdup (origin->caller->name ()),
2818 origin->caller->order, xstrdup (symbol->name ()));
2819 return true;
2820 }
2821
2822 /* If JFUNC has a reference description with refcount different from
2823 IPA_UNDESCRIBED_USE, return the reference description, otherwise return
2824 NULL. JFUNC must be a constant jump function. */
2825
2826 static struct ipa_cst_ref_desc *
2827 jfunc_rdesc_usable (struct ipa_jump_func *jfunc)
2828 {
2829 struct ipa_cst_ref_desc *rdesc = ipa_get_jf_constant_rdesc (jfunc);
2830 if (rdesc && rdesc->refcount != IPA_UNDESCRIBED_USE)
2831 return rdesc;
2832 else
2833 return NULL;
2834 }
2835
2836 /* If the value of constant jump function JFUNC is an address of a function
2837 declaration, return the associated call graph node. Otherwise return
2838 NULL. */
2839
2840 static cgraph_node *
2841 cgraph_node_for_jfunc (struct ipa_jump_func *jfunc)
2842 {
2843 gcc_checking_assert (jfunc->type == IPA_JF_CONST);
2844 tree cst = ipa_get_jf_constant (jfunc);
2845 if (TREE_CODE (cst) != ADDR_EXPR
2846 || TREE_CODE (TREE_OPERAND (cst, 0)) != FUNCTION_DECL)
2847 return NULL;
2848
2849 return cgraph_get_node (TREE_OPERAND (cst, 0));
2850 }
2851
2852
2853 /* If JFUNC is a constant jump function with a usable rdesc, decrement its
2854 refcount and if it hits zero, remove reference to SYMBOL from the caller of
2855 the edge specified in the rdesc. Return false if either the symbol or the
2856 reference could not be found, otherwise return true. */
2857
2858 static bool
2859 try_decrement_rdesc_refcount (struct ipa_jump_func *jfunc)
2860 {
2861 struct ipa_cst_ref_desc *rdesc;
2862 if (jfunc->type == IPA_JF_CONST
2863 && (rdesc = jfunc_rdesc_usable (jfunc))
2864 && --rdesc->refcount == 0)
2865 {
2866 symtab_node *symbol = cgraph_node_for_jfunc (jfunc);
2867 if (!symbol)
2868 return false;
2869
2870 return remove_described_reference (symbol, rdesc);
2871 }
2872 return true;
2873 }
2874
2875 /* Try to find a destination for indirect edge IE that corresponds to a simple
2876 call or a call of a member function pointer and where the destination is a
2877 pointer formal parameter described by jump function JFUNC. If it can be
2878 determined, return the newly direct edge, otherwise return NULL.
2879 NEW_ROOT_INFO is the node info that JFUNC lattices are relative to. */
2880
2881 static struct cgraph_edge *
2882 try_make_edge_direct_simple_call (struct cgraph_edge *ie,
2883 struct ipa_jump_func *jfunc,
2884 struct ipa_node_params *new_root_info)
2885 {
2886 struct cgraph_edge *cs;
2887 tree target;
2888 bool agg_contents = ie->indirect_info->agg_contents;
2889
2890 if (ie->indirect_info->agg_contents)
2891 target = ipa_find_agg_cst_for_param (&jfunc->agg,
2892 ie->indirect_info->offset,
2893 ie->indirect_info->by_ref);
2894 else
2895 target = ipa_value_from_jfunc (new_root_info, jfunc);
2896 if (!target)
2897 return NULL;
2898 cs = ipa_make_edge_direct_to_target (ie, target);
2899
2900 if (cs && !agg_contents)
2901 {
2902 bool ok;
2903 gcc_checking_assert (cs->callee
2904 && (cs != ie
2905 || jfunc->type != IPA_JF_CONST
2906 || !cgraph_node_for_jfunc (jfunc)
2907 || cs->callee == cgraph_node_for_jfunc (jfunc)));
2908 ok = try_decrement_rdesc_refcount (jfunc);
2909 gcc_checking_assert (ok);
2910 }
2911
2912 return cs;
2913 }
2914
2915 /* Return the target to be used in cases of impossible devirtualization. IE
2916 and target (the latter can be NULL) are dumped when dumping is enabled. */
2917
2918 static tree
2919 impossible_devirt_target (struct cgraph_edge *ie, tree target)
2920 {
2921 if (dump_file)
2922 {
2923 if (target)
2924 fprintf (dump_file,
2925 "Type inconsident devirtualization: %s/%i->%s\n",
2926 ie->caller->name (), ie->caller->order,
2927 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
2928 else
2929 fprintf (dump_file,
2930 "No devirtualization target in %s/%i\n",
2931 ie->caller->name (), ie->caller->order);
2932 }
2933 tree new_target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
2934 cgraph_get_create_node (new_target);
2935 return new_target;
2936 }
2937
2938 /* Try to find a destination for indirect edge IE that corresponds to a virtual
2939 call based on a formal parameter which is described by jump function JFUNC
2940 and if it can be determined, make it direct and return the direct edge.
2941 Otherwise, return NULL. NEW_ROOT_INFO is the node info that JFUNC lattices
2942 are relative to. */
2943
2944 static struct cgraph_edge *
2945 try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
2946 struct ipa_jump_func *jfunc,
2947 struct ipa_node_params *new_root_info)
2948 {
2949 tree binfo, target;
2950
2951 if (!flag_devirtualize)
2952 return NULL;
2953
2954 /* First try to do lookup via known virtual table pointer value. */
2955 if (!ie->indirect_info->by_ref)
2956 {
2957 tree vtable;
2958 unsigned HOST_WIDE_INT offset;
2959 tree t = ipa_find_agg_cst_for_param (&jfunc->agg,
2960 ie->indirect_info->offset,
2961 true);
2962 if (t && vtable_pointer_value_to_vtable (t, &vtable, &offset))
2963 {
2964 target = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
2965 vtable, offset);
2966 if (target)
2967 {
2968 if ((TREE_CODE (TREE_TYPE (target)) == FUNCTION_TYPE
2969 && DECL_FUNCTION_CODE (target) == BUILT_IN_UNREACHABLE)
2970 || !possible_polymorphic_call_target_p
2971 (ie, cgraph_get_node (target)))
2972 target = impossible_devirt_target (ie, target);
2973 return ipa_make_edge_direct_to_target (ie, target);
2974 }
2975 }
2976 }
2977
2978 binfo = ipa_value_from_jfunc (new_root_info, jfunc);
2979
2980 if (!binfo)
2981 return NULL;
2982
2983 if (TREE_CODE (binfo) != TREE_BINFO)
2984 {
2985 ipa_polymorphic_call_context context;
2986 vec <cgraph_node *>targets;
2987 bool final;
2988
2989 if (!get_polymorphic_call_info_from_invariant
2990 (&context, binfo, ie->indirect_info->otr_type,
2991 ie->indirect_info->offset))
2992 return NULL;
2993 targets = possible_polymorphic_call_targets
2994 (ie->indirect_info->otr_type,
2995 ie->indirect_info->otr_token,
2996 context, &final);
2997 if (!final || targets.length () > 1)
2998 return NULL;
2999 if (targets.length () == 1)
3000 target = targets[0]->decl;
3001 else
3002 target = impossible_devirt_target (ie, NULL_TREE);
3003 }
3004 else
3005 {
3006 binfo = get_binfo_at_offset (binfo, ie->indirect_info->offset,
3007 ie->indirect_info->otr_type);
3008 if (binfo)
3009 target = gimple_get_virt_method_for_binfo (ie->indirect_info->otr_token,
3010 binfo);
3011 else
3012 return NULL;
3013 }
3014
3015 if (target)
3016 {
3017 if (!possible_polymorphic_call_target_p (ie, cgraph_get_node (target)))
3018 target = impossible_devirt_target (ie, target);
3019 return ipa_make_edge_direct_to_target (ie, target);
3020 }
3021 else
3022 return NULL;
3023 }
3024
3025 /* Update the param called notes associated with NODE when CS is being inlined,
3026 assuming NODE is (potentially indirectly) inlined into CS->callee.
3027 Moreover, if the callee is discovered to be constant, create a new cgraph
3028 edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
3029 unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
3030
3031 static bool
3032 update_indirect_edges_after_inlining (struct cgraph_edge *cs,
3033 struct cgraph_node *node,
3034 vec<cgraph_edge_p> *new_edges)
3035 {
3036 struct ipa_edge_args *top;
3037 struct cgraph_edge *ie, *next_ie, *new_direct_edge;
3038 struct ipa_node_params *new_root_info;
3039 bool res = false;
3040
3041 ipa_check_create_edge_args ();
3042 top = IPA_EDGE_REF (cs);
3043 new_root_info = IPA_NODE_REF (cs->caller->global.inlined_to
3044 ? cs->caller->global.inlined_to
3045 : cs->caller);
3046
3047 for (ie = node->indirect_calls; ie; ie = next_ie)
3048 {
3049 struct cgraph_indirect_call_info *ici = ie->indirect_info;
3050 struct ipa_jump_func *jfunc;
3051 int param_index;
3052
3053 next_ie = ie->next_callee;
3054
3055 if (ici->param_index == -1)
3056 continue;
3057
3058 /* We must check range due to calls with variable number of arguments: */
3059 if (ici->param_index >= ipa_get_cs_argument_count (top))
3060 {
3061 ici->param_index = -1;
3062 continue;
3063 }
3064
3065 param_index = ici->param_index;
3066 jfunc = ipa_get_ith_jump_func (top, param_index);
3067
3068 if (!flag_indirect_inlining)
3069 new_direct_edge = NULL;
3070 else if (ici->polymorphic)
3071 new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc,
3072 new_root_info);
3073 else
3074 new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc,
3075 new_root_info);
3076 /* If speculation was removed, then we need to do nothing. */
3077 if (new_direct_edge && new_direct_edge != ie)
3078 {
3079 new_direct_edge->indirect_inlining_edge = 1;
3080 top = IPA_EDGE_REF (cs);
3081 res = true;
3082 }
3083 else if (new_direct_edge)
3084 {
3085 new_direct_edge->indirect_inlining_edge = 1;
3086 if (new_direct_edge->call_stmt)
3087 new_direct_edge->call_stmt_cannot_inline_p
3088 = !gimple_check_call_matching_types (
3089 new_direct_edge->call_stmt,
3090 new_direct_edge->callee->decl, false);
3091 if (new_edges)
3092 {
3093 new_edges->safe_push (new_direct_edge);
3094 res = true;
3095 }
3096 top = IPA_EDGE_REF (cs);
3097 }
3098 else if (jfunc->type == IPA_JF_PASS_THROUGH
3099 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3100 {
3101 if ((ici->agg_contents
3102 && !ipa_get_jf_pass_through_agg_preserved (jfunc))
3103 || (ici->polymorphic
3104 && !ipa_get_jf_pass_through_type_preserved (jfunc)))
3105 ici->param_index = -1;
3106 else
3107 ici->param_index = ipa_get_jf_pass_through_formal_id (jfunc);
3108 }
3109 else if (jfunc->type == IPA_JF_ANCESTOR)
3110 {
3111 if ((ici->agg_contents
3112 && !ipa_get_jf_ancestor_agg_preserved (jfunc))
3113 || (ici->polymorphic
3114 && !ipa_get_jf_ancestor_type_preserved (jfunc)))
3115 ici->param_index = -1;
3116 else
3117 {
3118 ici->param_index = ipa_get_jf_ancestor_formal_id (jfunc);
3119 if (ipa_get_jf_ancestor_offset (jfunc))
3120 ici->outer_type = NULL;
3121 ici->offset += ipa_get_jf_ancestor_offset (jfunc);
3122 }
3123 }
3124 else
3125 /* Either we can find a destination for this edge now or never. */
3126 ici->param_index = -1;
3127 }
3128
3129 return res;
3130 }
3131
3132 /* Recursively traverse subtree of NODE (including node) made of inlined
3133 cgraph_edges when CS has been inlined and invoke
3134 update_indirect_edges_after_inlining on all nodes and
3135 update_jump_functions_after_inlining on all non-inlined edges that lead out
3136 of this subtree. Newly discovered indirect edges will be added to
3137 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
3138 created. */
3139
3140 static bool
3141 propagate_info_to_inlined_callees (struct cgraph_edge *cs,
3142 struct cgraph_node *node,
3143 vec<cgraph_edge_p> *new_edges)
3144 {
3145 struct cgraph_edge *e;
3146 bool res;
3147
3148 res = update_indirect_edges_after_inlining (cs, node, new_edges);
3149
3150 for (e = node->callees; e; e = e->next_callee)
3151 if (!e->inline_failed)
3152 res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
3153 else
3154 update_jump_functions_after_inlining (cs, e);
3155 for (e = node->indirect_calls; e; e = e->next_callee)
3156 update_jump_functions_after_inlining (cs, e);
3157
3158 return res;
3159 }
3160
3161 /* Combine two controlled uses counts as done during inlining. */
3162
3163 static int
3164 combine_controlled_uses_counters (int c, int d)
3165 {
3166 if (c == IPA_UNDESCRIBED_USE || d == IPA_UNDESCRIBED_USE)
3167 return IPA_UNDESCRIBED_USE;
3168 else
3169 return c + d - 1;
3170 }
3171
3172 /* Propagate number of controlled users from CS->caleee to the new root of the
3173 tree of inlined nodes. */
3174
3175 static void
3176 propagate_controlled_uses (struct cgraph_edge *cs)
3177 {
3178 struct ipa_edge_args *args = IPA_EDGE_REF (cs);
3179 struct cgraph_node *new_root = cs->caller->global.inlined_to
3180 ? cs->caller->global.inlined_to : cs->caller;
3181 struct ipa_node_params *new_root_info = IPA_NODE_REF (new_root);
3182 struct ipa_node_params *old_root_info = IPA_NODE_REF (cs->callee);
3183 int count, i;
3184
3185 count = MIN (ipa_get_cs_argument_count (args),
3186 ipa_get_param_count (old_root_info));
3187 for (i = 0; i < count; i++)
3188 {
3189 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
3190 struct ipa_cst_ref_desc *rdesc;
3191
3192 if (jf->type == IPA_JF_PASS_THROUGH)
3193 {
3194 int src_idx, c, d;
3195 src_idx = ipa_get_jf_pass_through_formal_id (jf);
3196 c = ipa_get_controlled_uses (new_root_info, src_idx);
3197 d = ipa_get_controlled_uses (old_root_info, i);
3198
3199 gcc_checking_assert (ipa_get_jf_pass_through_operation (jf)
3200 == NOP_EXPR || c == IPA_UNDESCRIBED_USE);
3201 c = combine_controlled_uses_counters (c, d);
3202 ipa_set_controlled_uses (new_root_info, src_idx, c);
3203 if (c == 0 && new_root_info->ipcp_orig_node)
3204 {
3205 struct cgraph_node *n;
3206 struct ipa_ref *ref;
3207 tree t = new_root_info->known_vals[src_idx];
3208
3209 if (t && TREE_CODE (t) == ADDR_EXPR
3210 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL
3211 && (n = cgraph_get_node (TREE_OPERAND (t, 0)))
3212 && (ref = new_root->find_reference (n, NULL, 0)))
3213 {
3214 if (dump_file)
3215 fprintf (dump_file, "ipa-prop: Removing cloning-created "
3216 "reference from %s/%i to %s/%i.\n",
3217 xstrdup (new_root->name ()),
3218 new_root->order,
3219 xstrdup (n->name ()), n->order);
3220 ref->remove_reference ();
3221 }
3222 }
3223 }
3224 else if (jf->type == IPA_JF_CONST
3225 && (rdesc = jfunc_rdesc_usable (jf)))
3226 {
3227 int d = ipa_get_controlled_uses (old_root_info, i);
3228 int c = rdesc->refcount;
3229 rdesc->refcount = combine_controlled_uses_counters (c, d);
3230 if (rdesc->refcount == 0)
3231 {
3232 tree cst = ipa_get_jf_constant (jf);
3233 struct cgraph_node *n;
3234 gcc_checking_assert (TREE_CODE (cst) == ADDR_EXPR
3235 && TREE_CODE (TREE_OPERAND (cst, 0))
3236 == FUNCTION_DECL);
3237 n = cgraph_get_node (TREE_OPERAND (cst, 0));
3238 if (n)
3239 {
3240 struct cgraph_node *clone;
3241 bool ok;
3242 ok = remove_described_reference (n, rdesc);
3243 gcc_checking_assert (ok);
3244
3245 clone = cs->caller;
3246 while (clone->global.inlined_to
3247 && clone != rdesc->cs->caller
3248 && IPA_NODE_REF (clone)->ipcp_orig_node)
3249 {
3250 struct ipa_ref *ref;
3251 ref = clone->find_reference (n, NULL, 0);
3252 if (ref)
3253 {
3254 if (dump_file)
3255 fprintf (dump_file, "ipa-prop: Removing "
3256 "cloning-created reference "
3257 "from %s/%i to %s/%i.\n",
3258 xstrdup (clone->name ()),
3259 clone->order,
3260 xstrdup (n->name ()),
3261 n->order);
3262 ref->remove_reference ();
3263 }
3264 clone = clone->callers->caller;
3265 }
3266 }
3267 }
3268 }
3269 }
3270
3271 for (i = ipa_get_param_count (old_root_info);
3272 i < ipa_get_cs_argument_count (args);
3273 i++)
3274 {
3275 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
3276
3277 if (jf->type == IPA_JF_CONST)
3278 {
3279 struct ipa_cst_ref_desc *rdesc = jfunc_rdesc_usable (jf);
3280 if (rdesc)
3281 rdesc->refcount = IPA_UNDESCRIBED_USE;
3282 }
3283 else if (jf->type == IPA_JF_PASS_THROUGH)
3284 ipa_set_controlled_uses (new_root_info,
3285 jf->value.pass_through.formal_id,
3286 IPA_UNDESCRIBED_USE);
3287 }
3288 }
3289
3290 /* Update jump functions and call note functions on inlining the call site CS.
3291 CS is expected to lead to a node already cloned by
3292 cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
3293 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
3294 created. */
3295
3296 bool
3297 ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
3298 vec<cgraph_edge_p> *new_edges)
3299 {
3300 bool changed;
3301 /* Do nothing if the preparation phase has not been carried out yet
3302 (i.e. during early inlining). */
3303 if (!ipa_node_params_vector.exists ())
3304 return false;
3305 gcc_assert (ipa_edge_args_vector);
3306
3307 propagate_controlled_uses (cs);
3308 changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
3309
3310 return changed;
3311 }
3312
3313 /* Frees all dynamically allocated structures that the argument info points
3314 to. */
3315
3316 void
3317 ipa_free_edge_args_substructures (struct ipa_edge_args *args)
3318 {
3319 vec_free (args->jump_functions);
3320 memset (args, 0, sizeof (*args));
3321 }
3322
3323 /* Free all ipa_edge structures. */
3324
3325 void
3326 ipa_free_all_edge_args (void)
3327 {
3328 int i;
3329 struct ipa_edge_args *args;
3330
3331 if (!ipa_edge_args_vector)
3332 return;
3333
3334 FOR_EACH_VEC_ELT (*ipa_edge_args_vector, i, args)
3335 ipa_free_edge_args_substructures (args);
3336
3337 vec_free (ipa_edge_args_vector);
3338 }
3339
3340 /* Frees all dynamically allocated structures that the param info points
3341 to. */
3342
3343 void
3344 ipa_free_node_params_substructures (struct ipa_node_params *info)
3345 {
3346 info->descriptors.release ();
3347 free (info->lattices);
3348 /* Lattice values and their sources are deallocated with their alocation
3349 pool. */
3350 info->known_vals.release ();
3351 memset (info, 0, sizeof (*info));
3352 }
3353
3354 /* Free all ipa_node_params structures. */
3355
3356 void
3357 ipa_free_all_node_params (void)
3358 {
3359 int i;
3360 struct ipa_node_params *info;
3361
3362 FOR_EACH_VEC_ELT (ipa_node_params_vector, i, info)
3363 ipa_free_node_params_substructures (info);
3364
3365 ipa_node_params_vector.release ();
3366 }
3367
3368 /* Set the aggregate replacements of NODE to be AGGVALS. */
3369
3370 void
3371 ipa_set_node_agg_value_chain (struct cgraph_node *node,
3372 struct ipa_agg_replacement_value *aggvals)
3373 {
3374 if (vec_safe_length (ipa_node_agg_replacements) <= (unsigned) cgraph_max_uid)
3375 vec_safe_grow_cleared (ipa_node_agg_replacements, cgraph_max_uid + 1);
3376
3377 (*ipa_node_agg_replacements)[node->uid] = aggvals;
3378 }
3379
3380 /* Hook that is called by cgraph.c when an edge is removed. */
3381
3382 static void
3383 ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
3384 {
3385 struct ipa_edge_args *args;
3386
3387 /* During IPA-CP updating we can be called on not-yet analyzed clones. */
3388 if (vec_safe_length (ipa_edge_args_vector) <= (unsigned)cs->uid)
3389 return;
3390
3391 args = IPA_EDGE_REF (cs);
3392 if (args->jump_functions)
3393 {
3394 struct ipa_jump_func *jf;
3395 int i;
3396 FOR_EACH_VEC_ELT (*args->jump_functions, i, jf)
3397 {
3398 struct ipa_cst_ref_desc *rdesc;
3399 try_decrement_rdesc_refcount (jf);
3400 if (jf->type == IPA_JF_CONST
3401 && (rdesc = ipa_get_jf_constant_rdesc (jf))
3402 && rdesc->cs == cs)
3403 rdesc->cs = NULL;
3404 }
3405 }
3406
3407 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
3408 }
3409
3410 /* Hook that is called by cgraph.c when a node is removed. */
3411
3412 static void
3413 ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3414 {
3415 /* During IPA-CP updating we can be called on not-yet analyze clones. */
3416 if (ipa_node_params_vector.length () > (unsigned)node->uid)
3417 ipa_free_node_params_substructures (IPA_NODE_REF (node));
3418 if (vec_safe_length (ipa_node_agg_replacements) > (unsigned)node->uid)
3419 (*ipa_node_agg_replacements)[(unsigned)node->uid] = NULL;
3420 }
3421
3422 /* Hook that is called by cgraph.c when an edge is duplicated. */
3423
3424 static void
3425 ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
3426 __attribute__((unused)) void *data)
3427 {
3428 struct ipa_edge_args *old_args, *new_args;
3429 unsigned int i;
3430
3431 ipa_check_create_edge_args ();
3432
3433 old_args = IPA_EDGE_REF (src);
3434 new_args = IPA_EDGE_REF (dst);
3435
3436 new_args->jump_functions = vec_safe_copy (old_args->jump_functions);
3437
3438 for (i = 0; i < vec_safe_length (old_args->jump_functions); i++)
3439 {
3440 struct ipa_jump_func *src_jf = ipa_get_ith_jump_func (old_args, i);
3441 struct ipa_jump_func *dst_jf = ipa_get_ith_jump_func (new_args, i);
3442
3443 dst_jf->agg.items = vec_safe_copy (dst_jf->agg.items);
3444
3445 if (src_jf->type == IPA_JF_CONST)
3446 {
3447 struct ipa_cst_ref_desc *src_rdesc = jfunc_rdesc_usable (src_jf);
3448
3449 if (!src_rdesc)
3450 dst_jf->value.constant.rdesc = NULL;
3451 else if (src->caller == dst->caller)
3452 {
3453 struct ipa_ref *ref;
3454 symtab_node *n = cgraph_node_for_jfunc (src_jf);
3455 gcc_checking_assert (n);
3456 ref = src->caller->find_reference (n, src->call_stmt,
3457 src->lto_stmt_uid);
3458 gcc_checking_assert (ref);
3459 dst->caller->clone_reference (ref, ref->stmt);
3460
3461 gcc_checking_assert (ipa_refdesc_pool);
3462 struct ipa_cst_ref_desc *dst_rdesc
3463 = (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
3464 dst_rdesc->cs = dst;
3465 dst_rdesc->refcount = src_rdesc->refcount;
3466 dst_rdesc->next_duplicate = NULL;
3467 dst_jf->value.constant.rdesc = dst_rdesc;
3468 }
3469 else if (src_rdesc->cs == src)
3470 {
3471 struct ipa_cst_ref_desc *dst_rdesc;
3472 gcc_checking_assert (ipa_refdesc_pool);
3473 dst_rdesc
3474 = (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
3475 dst_rdesc->cs = dst;
3476 dst_rdesc->refcount = src_rdesc->refcount;
3477 dst_rdesc->next_duplicate = src_rdesc->next_duplicate;
3478 src_rdesc->next_duplicate = dst_rdesc;
3479 dst_jf->value.constant.rdesc = dst_rdesc;
3480 }
3481 else
3482 {
3483 struct ipa_cst_ref_desc *dst_rdesc;
3484 /* This can happen during inlining, when a JFUNC can refer to a
3485 reference taken in a function up in the tree of inline clones.
3486 We need to find the duplicate that refers to our tree of
3487 inline clones. */
3488
3489 gcc_assert (dst->caller->global.inlined_to);
3490 for (dst_rdesc = src_rdesc->next_duplicate;
3491 dst_rdesc;
3492 dst_rdesc = dst_rdesc->next_duplicate)
3493 {
3494 struct cgraph_node *top;
3495 top = dst_rdesc->cs->caller->global.inlined_to
3496 ? dst_rdesc->cs->caller->global.inlined_to
3497 : dst_rdesc->cs->caller;
3498 if (dst->caller->global.inlined_to == top)
3499 break;
3500 }
3501 gcc_assert (dst_rdesc);
3502 dst_jf->value.constant.rdesc = dst_rdesc;
3503 }
3504 }
3505 }
3506 }
3507
3508 /* Hook that is called by cgraph.c when a node is duplicated. */
3509
3510 static void
3511 ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
3512 ATTRIBUTE_UNUSED void *data)
3513 {
3514 struct ipa_node_params *old_info, *new_info;
3515 struct ipa_agg_replacement_value *old_av, *new_av;
3516
3517 ipa_check_create_node_params ();
3518 old_info = IPA_NODE_REF (src);
3519 new_info = IPA_NODE_REF (dst);
3520
3521 new_info->descriptors = old_info->descriptors.copy ();
3522 new_info->lattices = NULL;
3523 new_info->ipcp_orig_node = old_info->ipcp_orig_node;
3524
3525 new_info->analysis_done = old_info->analysis_done;
3526 new_info->node_enqueued = old_info->node_enqueued;
3527
3528 old_av = ipa_get_agg_replacements_for_node (src);
3529 if (!old_av)
3530 return;
3531
3532 new_av = NULL;
3533 while (old_av)
3534 {
3535 struct ipa_agg_replacement_value *v;
3536
3537 v = ggc_alloc<ipa_agg_replacement_value> ();
3538 memcpy (v, old_av, sizeof (*v));
3539 v->next = new_av;
3540 new_av = v;
3541 old_av = old_av->next;
3542 }
3543 ipa_set_node_agg_value_chain (dst, new_av);
3544 }
3545
3546
3547 /* Analyze newly added function into callgraph. */
3548
3549 static void
3550 ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3551 {
3552 if (cgraph_function_with_gimple_body_p (node))
3553 ipa_analyze_node (node);
3554 }
3555
3556 /* Register our cgraph hooks if they are not already there. */
3557
3558 void
3559 ipa_register_cgraph_hooks (void)
3560 {
3561 if (!edge_removal_hook_holder)
3562 edge_removal_hook_holder =
3563 cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
3564 if (!node_removal_hook_holder)
3565 node_removal_hook_holder =
3566 cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
3567 if (!edge_duplication_hook_holder)
3568 edge_duplication_hook_holder =
3569 cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
3570 if (!node_duplication_hook_holder)
3571 node_duplication_hook_holder =
3572 cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
3573 function_insertion_hook_holder =
3574 cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
3575 }
3576
3577 /* Unregister our cgraph hooks if they are not already there. */
3578
3579 static void
3580 ipa_unregister_cgraph_hooks (void)
3581 {
3582 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
3583 edge_removal_hook_holder = NULL;
3584 cgraph_remove_node_removal_hook (node_removal_hook_holder);
3585 node_removal_hook_holder = NULL;
3586 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
3587 edge_duplication_hook_holder = NULL;
3588 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
3589 node_duplication_hook_holder = NULL;
3590 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
3591 function_insertion_hook_holder = NULL;
3592 }
3593
3594 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
3595 longer needed after ipa-cp. */
3596
3597 void
3598 ipa_free_all_structures_after_ipa_cp (void)
3599 {
3600 if (!optimize)
3601 {
3602 ipa_free_all_edge_args ();
3603 ipa_free_all_node_params ();
3604 free_alloc_pool (ipcp_sources_pool);
3605 free_alloc_pool (ipcp_values_pool);
3606 free_alloc_pool (ipcp_agg_lattice_pool);
3607 ipa_unregister_cgraph_hooks ();
3608 if (ipa_refdesc_pool)
3609 free_alloc_pool (ipa_refdesc_pool);
3610 }
3611 }
3612
3613 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
3614 longer needed after indirect inlining. */
3615
3616 void
3617 ipa_free_all_structures_after_iinln (void)
3618 {
3619 ipa_free_all_edge_args ();
3620 ipa_free_all_node_params ();
3621 ipa_unregister_cgraph_hooks ();
3622 if (ipcp_sources_pool)
3623 free_alloc_pool (ipcp_sources_pool);
3624 if (ipcp_values_pool)
3625 free_alloc_pool (ipcp_values_pool);
3626 if (ipcp_agg_lattice_pool)
3627 free_alloc_pool (ipcp_agg_lattice_pool);
3628 if (ipa_refdesc_pool)
3629 free_alloc_pool (ipa_refdesc_pool);
3630 }
3631
3632 /* Print ipa_tree_map data structures of all functions in the
3633 callgraph to F. */
3634
3635 void
3636 ipa_print_node_params (FILE *f, struct cgraph_node *node)
3637 {
3638 int i, count;
3639 struct ipa_node_params *info;
3640
3641 if (!node->definition)
3642 return;
3643 info = IPA_NODE_REF (node);
3644 fprintf (f, " function %s/%i parameter descriptors:\n",
3645 node->name (), node->order);
3646 count = ipa_get_param_count (info);
3647 for (i = 0; i < count; i++)
3648 {
3649 int c;
3650
3651 fprintf (f, " ");
3652 ipa_dump_param (f, info, i);
3653 if (ipa_is_param_used (info, i))
3654 fprintf (f, " used");
3655 c = ipa_get_controlled_uses (info, i);
3656 if (c == IPA_UNDESCRIBED_USE)
3657 fprintf (f, " undescribed_use");
3658 else
3659 fprintf (f, " controlled_uses=%i", c);
3660 fprintf (f, "\n");
3661 }
3662 }
3663
3664 /* Print ipa_tree_map data structures of all functions in the
3665 callgraph to F. */
3666
3667 void
3668 ipa_print_all_params (FILE * f)
3669 {
3670 struct cgraph_node *node;
3671
3672 fprintf (f, "\nFunction parameters:\n");
3673 FOR_EACH_FUNCTION (node)
3674 ipa_print_node_params (f, node);
3675 }
3676
3677 /* Return a heap allocated vector containing formal parameters of FNDECL. */
3678
3679 vec<tree>
3680 ipa_get_vector_of_formal_parms (tree fndecl)
3681 {
3682 vec<tree> args;
3683 int count;
3684 tree parm;
3685
3686 gcc_assert (!flag_wpa);
3687 count = count_formal_params (fndecl);
3688 args.create (count);
3689 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
3690 args.quick_push (parm);
3691
3692 return args;
3693 }
3694
3695 /* Return a heap allocated vector containing types of formal parameters of
3696 function type FNTYPE. */
3697
3698 vec<tree>
3699 ipa_get_vector_of_formal_parm_types (tree fntype)
3700 {
3701 vec<tree> types;
3702 int count = 0;
3703 tree t;
3704
3705 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
3706 count++;
3707
3708 types.create (count);
3709 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
3710 types.quick_push (TREE_VALUE (t));
3711
3712 return types;
3713 }
3714
3715 /* Modify the function declaration FNDECL and its type according to the plan in
3716 ADJUSTMENTS. It also sets base fields of individual adjustments structures
3717 to reflect the actual parameters being modified which are determined by the
3718 base_index field. */
3719
3720 void
3721 ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments)
3722 {
3723 vec<tree> oparms = ipa_get_vector_of_formal_parms (fndecl);
3724 tree orig_type = TREE_TYPE (fndecl);
3725 tree old_arg_types = TYPE_ARG_TYPES (orig_type);
3726
3727 /* The following test is an ugly hack, some functions simply don't have any
3728 arguments in their type. This is probably a bug but well... */
3729 bool care_for_types = (old_arg_types != NULL_TREE);
3730 bool last_parm_void;
3731 vec<tree> otypes;
3732 if (care_for_types)
3733 {
3734 last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
3735 == void_type_node);
3736 otypes = ipa_get_vector_of_formal_parm_types (orig_type);
3737 if (last_parm_void)
3738 gcc_assert (oparms.length () + 1 == otypes.length ());
3739 else
3740 gcc_assert (oparms.length () == otypes.length ());
3741 }
3742 else
3743 {
3744 last_parm_void = false;
3745 otypes.create (0);
3746 }
3747
3748 int len = adjustments.length ();
3749 tree *link = &DECL_ARGUMENTS (fndecl);
3750 tree new_arg_types = NULL;
3751 for (int i = 0; i < len; i++)
3752 {
3753 struct ipa_parm_adjustment *adj;
3754 gcc_assert (link);
3755
3756 adj = &adjustments[i];
3757 tree parm;
3758 if (adj->op == IPA_PARM_OP_NEW)
3759 parm = NULL;
3760 else
3761 parm = oparms[adj->base_index];
3762 adj->base = parm;
3763
3764 if (adj->op == IPA_PARM_OP_COPY)
3765 {
3766 if (care_for_types)
3767 new_arg_types = tree_cons (NULL_TREE, otypes[adj->base_index],
3768 new_arg_types);
3769 *link = parm;
3770 link = &DECL_CHAIN (parm);
3771 }
3772 else if (adj->op != IPA_PARM_OP_REMOVE)
3773 {
3774 tree new_parm;
3775 tree ptype;
3776
3777 if (adj->by_ref)
3778 ptype = build_pointer_type (adj->type);
3779 else
3780 {
3781 ptype = adj->type;
3782 if (is_gimple_reg_type (ptype))
3783 {
3784 unsigned malign = GET_MODE_ALIGNMENT (TYPE_MODE (ptype));
3785 if (TYPE_ALIGN (ptype) < malign)
3786 ptype = build_aligned_type (ptype, malign);
3787 }
3788 }
3789
3790 if (care_for_types)
3791 new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
3792
3793 new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
3794 ptype);
3795 const char *prefix = adj->arg_prefix ? adj->arg_prefix : "SYNTH";
3796 DECL_NAME (new_parm) = create_tmp_var_name (prefix);
3797 DECL_ARTIFICIAL (new_parm) = 1;
3798 DECL_ARG_TYPE (new_parm) = ptype;
3799 DECL_CONTEXT (new_parm) = fndecl;
3800 TREE_USED (new_parm) = 1;
3801 DECL_IGNORED_P (new_parm) = 1;
3802 layout_decl (new_parm, 0);
3803
3804 if (adj->op == IPA_PARM_OP_NEW)
3805 adj->base = NULL;
3806 else
3807 adj->base = parm;
3808 adj->new_decl = new_parm;
3809
3810 *link = new_parm;
3811 link = &DECL_CHAIN (new_parm);
3812 }
3813 }
3814
3815 *link = NULL_TREE;
3816
3817 tree new_reversed = NULL;
3818 if (care_for_types)
3819 {
3820 new_reversed = nreverse (new_arg_types);
3821 if (last_parm_void)
3822 {
3823 if (new_reversed)
3824 TREE_CHAIN (new_arg_types) = void_list_node;
3825 else
3826 new_reversed = void_list_node;
3827 }
3828 }
3829
3830 /* Use copy_node to preserve as much as possible from original type
3831 (debug info, attribute lists etc.)
3832 Exception is METHOD_TYPEs must have THIS argument.
3833 When we are asked to remove it, we need to build new FUNCTION_TYPE
3834 instead. */
3835 tree new_type = NULL;
3836 if (TREE_CODE (orig_type) != METHOD_TYPE
3837 || (adjustments[0].op == IPA_PARM_OP_COPY
3838 && adjustments[0].base_index == 0))
3839 {
3840 new_type = build_distinct_type_copy (orig_type);
3841 TYPE_ARG_TYPES (new_type) = new_reversed;
3842 }
3843 else
3844 {
3845 new_type
3846 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
3847 new_reversed));
3848 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
3849 DECL_VINDEX (fndecl) = NULL_TREE;
3850 }
3851
3852 /* When signature changes, we need to clear builtin info. */
3853 if (DECL_BUILT_IN (fndecl))
3854 {
3855 DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
3856 DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
3857 }
3858
3859 /* This is a new type, not a copy of an old type. Need to reassociate
3860 variants. We can handle everything except the main variant lazily. */
3861 tree t = TYPE_MAIN_VARIANT (orig_type);
3862 if (orig_type != t)
3863 {
3864 TYPE_MAIN_VARIANT (new_type) = t;
3865 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
3866 TYPE_NEXT_VARIANT (t) = new_type;
3867 }
3868 else
3869 {
3870 TYPE_MAIN_VARIANT (new_type) = new_type;
3871 TYPE_NEXT_VARIANT (new_type) = NULL;
3872 }
3873
3874 TREE_TYPE (fndecl) = new_type;
3875 DECL_VIRTUAL_P (fndecl) = 0;
3876 DECL_LANG_SPECIFIC (fndecl) = NULL;
3877 otypes.release ();
3878 oparms.release ();
3879 }
3880
3881 /* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
3882 If this is a directly recursive call, CS must be NULL. Otherwise it must
3883 contain the corresponding call graph edge. */
3884
3885 void
3886 ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
3887 ipa_parm_adjustment_vec adjustments)
3888 {
3889 struct cgraph_node *current_node = cgraph_get_node (current_function_decl);
3890 vec<tree> vargs;
3891 vec<tree, va_gc> **debug_args = NULL;
3892 gimple new_stmt;
3893 gimple_stmt_iterator gsi, prev_gsi;
3894 tree callee_decl;
3895 int i, len;
3896
3897 len = adjustments.length ();
3898 vargs.create (len);
3899 callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
3900 current_node->remove_stmt_references (stmt);
3901
3902 gsi = gsi_for_stmt (stmt);
3903 prev_gsi = gsi;
3904 gsi_prev (&prev_gsi);
3905 for (i = 0; i < len; i++)
3906 {
3907 struct ipa_parm_adjustment *adj;
3908
3909 adj = &adjustments[i];
3910
3911 if (adj->op == IPA_PARM_OP_COPY)
3912 {
3913 tree arg = gimple_call_arg (stmt, adj->base_index);
3914
3915 vargs.quick_push (arg);
3916 }
3917 else if (adj->op != IPA_PARM_OP_REMOVE)
3918 {
3919 tree expr, base, off;
3920 location_t loc;
3921 unsigned int deref_align = 0;
3922 bool deref_base = false;
3923
3924 /* We create a new parameter out of the value of the old one, we can
3925 do the following kind of transformations:
3926
3927 - A scalar passed by reference is converted to a scalar passed by
3928 value. (adj->by_ref is false and the type of the original
3929 actual argument is a pointer to a scalar).
3930
3931 - A part of an aggregate is passed instead of the whole aggregate.
3932 The part can be passed either by value or by reference, this is
3933 determined by value of adj->by_ref. Moreover, the code below
3934 handles both situations when the original aggregate is passed by
3935 value (its type is not a pointer) and when it is passed by
3936 reference (it is a pointer to an aggregate).
3937
3938 When the new argument is passed by reference (adj->by_ref is true)
3939 it must be a part of an aggregate and therefore we form it by
3940 simply taking the address of a reference inside the original
3941 aggregate. */
3942
3943 gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
3944 base = gimple_call_arg (stmt, adj->base_index);
3945 loc = DECL_P (base) ? DECL_SOURCE_LOCATION (base)
3946 : EXPR_LOCATION (base);
3947
3948 if (TREE_CODE (base) != ADDR_EXPR
3949 && POINTER_TYPE_P (TREE_TYPE (base)))
3950 off = build_int_cst (adj->alias_ptr_type,
3951 adj->offset / BITS_PER_UNIT);
3952 else
3953 {
3954 HOST_WIDE_INT base_offset;
3955 tree prev_base;
3956 bool addrof;
3957
3958 if (TREE_CODE (base) == ADDR_EXPR)
3959 {
3960 base = TREE_OPERAND (base, 0);
3961 addrof = true;
3962 }
3963 else
3964 addrof = false;
3965 prev_base = base;
3966 base = get_addr_base_and_unit_offset (base, &base_offset);
3967 /* Aggregate arguments can have non-invariant addresses. */
3968 if (!base)
3969 {
3970 base = build_fold_addr_expr (prev_base);
3971 off = build_int_cst (adj->alias_ptr_type,
3972 adj->offset / BITS_PER_UNIT);
3973 }
3974 else if (TREE_CODE (base) == MEM_REF)
3975 {
3976 if (!addrof)
3977 {
3978 deref_base = true;
3979 deref_align = TYPE_ALIGN (TREE_TYPE (base));
3980 }
3981 off = build_int_cst (adj->alias_ptr_type,
3982 base_offset
3983 + adj->offset / BITS_PER_UNIT);
3984 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
3985 off);
3986 base = TREE_OPERAND (base, 0);
3987 }
3988 else
3989 {
3990 off = build_int_cst (adj->alias_ptr_type,
3991 base_offset
3992 + adj->offset / BITS_PER_UNIT);
3993 base = build_fold_addr_expr (base);
3994 }
3995 }
3996
3997 if (!adj->by_ref)
3998 {
3999 tree type = adj->type;
4000 unsigned int align;
4001 unsigned HOST_WIDE_INT misalign;
4002
4003 if (deref_base)
4004 {
4005 align = deref_align;
4006 misalign = 0;
4007 }
4008 else
4009 {
4010 get_pointer_alignment_1 (base, &align, &misalign);
4011 if (TYPE_ALIGN (type) > align)
4012 align = TYPE_ALIGN (type);
4013 }
4014 misalign += (offset_int::from (off, SIGNED).to_short_addr ()
4015 * BITS_PER_UNIT);
4016 misalign = misalign & (align - 1);
4017 if (misalign != 0)
4018 align = (misalign & -misalign);
4019 if (align < TYPE_ALIGN (type))
4020 type = build_aligned_type (type, align);
4021 base = force_gimple_operand_gsi (&gsi, base,
4022 true, NULL, true, GSI_SAME_STMT);
4023 expr = fold_build2_loc (loc, MEM_REF, type, base, off);
4024 /* If expr is not a valid gimple call argument emit
4025 a load into a temporary. */
4026 if (is_gimple_reg_type (TREE_TYPE (expr)))
4027 {
4028 gimple tem = gimple_build_assign (NULL_TREE, expr);
4029 if (gimple_in_ssa_p (cfun))
4030 {
4031 gimple_set_vuse (tem, gimple_vuse (stmt));
4032 expr = make_ssa_name (TREE_TYPE (expr), tem);
4033 }
4034 else
4035 expr = create_tmp_reg (TREE_TYPE (expr), NULL);
4036 gimple_assign_set_lhs (tem, expr);
4037 gsi_insert_before (&gsi, tem, GSI_SAME_STMT);
4038 }
4039 }
4040 else
4041 {
4042 expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
4043 expr = build_fold_addr_expr (expr);
4044 expr = force_gimple_operand_gsi (&gsi, expr,
4045 true, NULL, true, GSI_SAME_STMT);
4046 }
4047 vargs.quick_push (expr);
4048 }
4049 if (adj->op != IPA_PARM_OP_COPY && MAY_HAVE_DEBUG_STMTS)
4050 {
4051 unsigned int ix;
4052 tree ddecl = NULL_TREE, origin = DECL_ORIGIN (adj->base), arg;
4053 gimple def_temp;
4054
4055 arg = gimple_call_arg (stmt, adj->base_index);
4056 if (!useless_type_conversion_p (TREE_TYPE (origin), TREE_TYPE (arg)))
4057 {
4058 if (!fold_convertible_p (TREE_TYPE (origin), arg))
4059 continue;
4060 arg = fold_convert_loc (gimple_location (stmt),
4061 TREE_TYPE (origin), arg);
4062 }
4063 if (debug_args == NULL)
4064 debug_args = decl_debug_args_insert (callee_decl);
4065 for (ix = 0; vec_safe_iterate (*debug_args, ix, &ddecl); ix += 2)
4066 if (ddecl == origin)
4067 {
4068 ddecl = (**debug_args)[ix + 1];
4069 break;
4070 }
4071 if (ddecl == NULL)
4072 {
4073 ddecl = make_node (DEBUG_EXPR_DECL);
4074 DECL_ARTIFICIAL (ddecl) = 1;
4075 TREE_TYPE (ddecl) = TREE_TYPE (origin);
4076 DECL_MODE (ddecl) = DECL_MODE (origin);
4077
4078 vec_safe_push (*debug_args, origin);
4079 vec_safe_push (*debug_args, ddecl);
4080 }
4081 def_temp = gimple_build_debug_bind (ddecl, unshare_expr (arg), stmt);
4082 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
4083 }
4084 }
4085
4086 if (dump_file && (dump_flags & TDF_DETAILS))
4087 {
4088 fprintf (dump_file, "replacing stmt:");
4089 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
4090 }
4091
4092 new_stmt = gimple_build_call_vec (callee_decl, vargs);
4093 vargs.release ();
4094 if (gimple_call_lhs (stmt))
4095 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
4096
4097 gimple_set_block (new_stmt, gimple_block (stmt));
4098 if (gimple_has_location (stmt))
4099 gimple_set_location (new_stmt, gimple_location (stmt));
4100 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
4101 gimple_call_copy_flags (new_stmt, stmt);
4102 if (gimple_in_ssa_p (cfun))
4103 {
4104 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
4105 if (gimple_vdef (stmt))
4106 {
4107 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
4108 SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
4109 }
4110 }
4111
4112 if (dump_file && (dump_flags & TDF_DETAILS))
4113 {
4114 fprintf (dump_file, "with stmt:");
4115 print_gimple_stmt (dump_file, new_stmt, 0, 0);
4116 fprintf (dump_file, "\n");
4117 }
4118 gsi_replace (&gsi, new_stmt, true);
4119 if (cs)
4120 cgraph_set_call_stmt (cs, new_stmt);
4121 do
4122 {
4123 ipa_record_stmt_references (current_node, gsi_stmt (gsi));
4124 gsi_prev (&gsi);
4125 }
4126 while (gsi_stmt (gsi) != gsi_stmt (prev_gsi));
4127 }
4128
4129 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4130 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4131 specifies whether the function should care about type incompatibility the
4132 current and new expressions. If it is false, the function will leave
4133 incompatibility issues to the caller. Return true iff the expression
4134 was modified. */
4135
4136 bool
4137 ipa_modify_expr (tree *expr, bool convert,
4138 ipa_parm_adjustment_vec adjustments)
4139 {
4140 struct ipa_parm_adjustment *cand
4141 = ipa_get_adjustment_candidate (&expr, &convert, adjustments, false);
4142 if (!cand)
4143 return false;
4144
4145 tree src;
4146 if (cand->by_ref)
4147 src = build_simple_mem_ref (cand->new_decl);
4148 else
4149 src = cand->new_decl;
4150
4151 if (dump_file && (dump_flags & TDF_DETAILS))
4152 {
4153 fprintf (dump_file, "About to replace expr ");
4154 print_generic_expr (dump_file, *expr, 0);
4155 fprintf (dump_file, " with ");
4156 print_generic_expr (dump_file, src, 0);
4157 fprintf (dump_file, "\n");
4158 }
4159
4160 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4161 {
4162 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4163 *expr = vce;
4164 }
4165 else
4166 *expr = src;
4167 return true;
4168 }
4169
4170 /* If T is an SSA_NAME, return NULL if it is not a default def or
4171 return its base variable if it is. If IGNORE_DEFAULT_DEF is true,
4172 the base variable is always returned, regardless if it is a default
4173 def. Return T if it is not an SSA_NAME. */
4174
4175 static tree
4176 get_ssa_base_param (tree t, bool ignore_default_def)
4177 {
4178 if (TREE_CODE (t) == SSA_NAME)
4179 {
4180 if (ignore_default_def || SSA_NAME_IS_DEFAULT_DEF (t))
4181 return SSA_NAME_VAR (t);
4182 else
4183 return NULL_TREE;
4184 }
4185 return t;
4186 }
4187
4188 /* Given an expression, return an adjustment entry specifying the
4189 transformation to be done on EXPR. If no suitable adjustment entry
4190 was found, returns NULL.
4191
4192 If IGNORE_DEFAULT_DEF is set, consider SSA_NAMEs which are not a
4193 default def, otherwise bail on them.
4194
4195 If CONVERT is non-NULL, this function will set *CONVERT if the
4196 expression provided is a component reference. ADJUSTMENTS is the
4197 adjustments vector. */
4198
4199 ipa_parm_adjustment *
4200 ipa_get_adjustment_candidate (tree **expr, bool *convert,
4201 ipa_parm_adjustment_vec adjustments,
4202 bool ignore_default_def)
4203 {
4204 if (TREE_CODE (**expr) == BIT_FIELD_REF
4205 || TREE_CODE (**expr) == IMAGPART_EXPR
4206 || TREE_CODE (**expr) == REALPART_EXPR)
4207 {
4208 *expr = &TREE_OPERAND (**expr, 0);
4209 if (convert)
4210 *convert = true;
4211 }
4212
4213 HOST_WIDE_INT offset, size, max_size;
4214 tree base = get_ref_base_and_extent (**expr, &offset, &size, &max_size);
4215 if (!base || size == -1 || max_size == -1)
4216 return NULL;
4217
4218 if (TREE_CODE (base) == MEM_REF)
4219 {
4220 offset += mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT;
4221 base = TREE_OPERAND (base, 0);
4222 }
4223
4224 base = get_ssa_base_param (base, ignore_default_def);
4225 if (!base || TREE_CODE (base) != PARM_DECL)
4226 return NULL;
4227
4228 struct ipa_parm_adjustment *cand = NULL;
4229 unsigned int len = adjustments.length ();
4230 for (unsigned i = 0; i < len; i++)
4231 {
4232 struct ipa_parm_adjustment *adj = &adjustments[i];
4233
4234 if (adj->base == base
4235 && (adj->offset == offset || adj->op == IPA_PARM_OP_REMOVE))
4236 {
4237 cand = adj;
4238 break;
4239 }
4240 }
4241
4242 if (!cand || cand->op == IPA_PARM_OP_COPY || cand->op == IPA_PARM_OP_REMOVE)
4243 return NULL;
4244 return cand;
4245 }
4246
4247 /* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
4248
4249 static bool
4250 index_in_adjustments_multiple_times_p (int base_index,
4251 ipa_parm_adjustment_vec adjustments)
4252 {
4253 int i, len = adjustments.length ();
4254 bool one = false;
4255
4256 for (i = 0; i < len; i++)
4257 {
4258 struct ipa_parm_adjustment *adj;
4259 adj = &adjustments[i];
4260
4261 if (adj->base_index == base_index)
4262 {
4263 if (one)
4264 return true;
4265 else
4266 one = true;
4267 }
4268 }
4269 return false;
4270 }
4271
4272
4273 /* Return adjustments that should have the same effect on function parameters
4274 and call arguments as if they were first changed according to adjustments in
4275 INNER and then by adjustments in OUTER. */
4276
4277 ipa_parm_adjustment_vec
4278 ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
4279 ipa_parm_adjustment_vec outer)
4280 {
4281 int i, outlen = outer.length ();
4282 int inlen = inner.length ();
4283 int removals = 0;
4284 ipa_parm_adjustment_vec adjustments, tmp;
4285
4286 tmp.create (inlen);
4287 for (i = 0; i < inlen; i++)
4288 {
4289 struct ipa_parm_adjustment *n;
4290 n = &inner[i];
4291
4292 if (n->op == IPA_PARM_OP_REMOVE)
4293 removals++;
4294 else
4295 {
4296 /* FIXME: Handling of new arguments are not implemented yet. */
4297 gcc_assert (n->op != IPA_PARM_OP_NEW);
4298 tmp.quick_push (*n);
4299 }
4300 }
4301
4302 adjustments.create (outlen + removals);
4303 for (i = 0; i < outlen; i++)
4304 {
4305 struct ipa_parm_adjustment r;
4306 struct ipa_parm_adjustment *out = &outer[i];
4307 struct ipa_parm_adjustment *in = &tmp[out->base_index];
4308
4309 memset (&r, 0, sizeof (r));
4310 gcc_assert (in->op != IPA_PARM_OP_REMOVE);
4311 if (out->op == IPA_PARM_OP_REMOVE)
4312 {
4313 if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
4314 {
4315 r.op = IPA_PARM_OP_REMOVE;
4316 adjustments.quick_push (r);
4317 }
4318 continue;
4319 }
4320 else
4321 {
4322 /* FIXME: Handling of new arguments are not implemented yet. */
4323 gcc_assert (out->op != IPA_PARM_OP_NEW);
4324 }
4325
4326 r.base_index = in->base_index;
4327 r.type = out->type;
4328
4329 /* FIXME: Create nonlocal value too. */
4330
4331 if (in->op == IPA_PARM_OP_COPY && out->op == IPA_PARM_OP_COPY)
4332 r.op = IPA_PARM_OP_COPY;
4333 else if (in->op == IPA_PARM_OP_COPY)
4334 r.offset = out->offset;
4335 else if (out->op == IPA_PARM_OP_COPY)
4336 r.offset = in->offset;
4337 else
4338 r.offset = in->offset + out->offset;
4339 adjustments.quick_push (r);
4340 }
4341
4342 for (i = 0; i < inlen; i++)
4343 {
4344 struct ipa_parm_adjustment *n = &inner[i];
4345
4346 if (n->op == IPA_PARM_OP_REMOVE)
4347 adjustments.quick_push (*n);
4348 }
4349
4350 tmp.release ();
4351 return adjustments;
4352 }
4353
4354 /* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
4355 friendly way, assuming they are meant to be applied to FNDECL. */
4356
4357 void
4358 ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
4359 tree fndecl)
4360 {
4361 int i, len = adjustments.length ();
4362 bool first = true;
4363 vec<tree> parms = ipa_get_vector_of_formal_parms (fndecl);
4364
4365 fprintf (file, "IPA param adjustments: ");
4366 for (i = 0; i < len; i++)
4367 {
4368 struct ipa_parm_adjustment *adj;
4369 adj = &adjustments[i];
4370
4371 if (!first)
4372 fprintf (file, " ");
4373 else
4374 first = false;
4375
4376 fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
4377 print_generic_expr (file, parms[adj->base_index], 0);
4378 if (adj->base)
4379 {
4380 fprintf (file, ", base: ");
4381 print_generic_expr (file, adj->base, 0);
4382 }
4383 if (adj->new_decl)
4384 {
4385 fprintf (file, ", new_decl: ");
4386 print_generic_expr (file, adj->new_decl, 0);
4387 }
4388 if (adj->new_ssa_base)
4389 {
4390 fprintf (file, ", new_ssa_base: ");
4391 print_generic_expr (file, adj->new_ssa_base, 0);
4392 }
4393
4394 if (adj->op == IPA_PARM_OP_COPY)
4395 fprintf (file, ", copy_param");
4396 else if (adj->op == IPA_PARM_OP_REMOVE)
4397 fprintf (file, ", remove_param");
4398 else
4399 fprintf (file, ", offset %li", (long) adj->offset);
4400 if (adj->by_ref)
4401 fprintf (file, ", by_ref");
4402 print_node_brief (file, ", type: ", adj->type, 0);
4403 fprintf (file, "\n");
4404 }
4405 parms.release ();
4406 }
4407
4408 /* Dump the AV linked list. */
4409
4410 void
4411 ipa_dump_agg_replacement_values (FILE *f, struct ipa_agg_replacement_value *av)
4412 {
4413 bool comma = false;
4414 fprintf (f, " Aggregate replacements:");
4415 for (; av; av = av->next)
4416 {
4417 fprintf (f, "%s %i[" HOST_WIDE_INT_PRINT_DEC "]=", comma ? "," : "",
4418 av->index, av->offset);
4419 print_generic_expr (f, av->value, 0);
4420 comma = true;
4421 }
4422 fprintf (f, "\n");
4423 }
4424
4425 /* Stream out jump function JUMP_FUNC to OB. */
4426
4427 static void
4428 ipa_write_jump_function (struct output_block *ob,
4429 struct ipa_jump_func *jump_func)
4430 {
4431 struct ipa_agg_jf_item *item;
4432 struct bitpack_d bp;
4433 int i, count;
4434
4435 streamer_write_uhwi (ob, jump_func->type);
4436 switch (jump_func->type)
4437 {
4438 case IPA_JF_UNKNOWN:
4439 break;
4440 case IPA_JF_KNOWN_TYPE:
4441 streamer_write_uhwi (ob, jump_func->value.known_type.offset);
4442 stream_write_tree (ob, jump_func->value.known_type.base_type, true);
4443 stream_write_tree (ob, jump_func->value.known_type.component_type, true);
4444 break;
4445 case IPA_JF_CONST:
4446 gcc_assert (
4447 EXPR_LOCATION (jump_func->value.constant.value) == UNKNOWN_LOCATION);
4448 stream_write_tree (ob, jump_func->value.constant.value, true);
4449 break;
4450 case IPA_JF_PASS_THROUGH:
4451 streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
4452 if (jump_func->value.pass_through.operation == NOP_EXPR)
4453 {
4454 streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
4455 bp = bitpack_create (ob->main_stream);
4456 bp_pack_value (&bp, jump_func->value.pass_through.agg_preserved, 1);
4457 bp_pack_value (&bp, jump_func->value.pass_through.type_preserved, 1);
4458 streamer_write_bitpack (&bp);
4459 }
4460 else
4461 {
4462 stream_write_tree (ob, jump_func->value.pass_through.operand, true);
4463 streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
4464 }
4465 break;
4466 case IPA_JF_ANCESTOR:
4467 streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
4468 stream_write_tree (ob, jump_func->value.ancestor.type, true);
4469 streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
4470 bp = bitpack_create (ob->main_stream);
4471 bp_pack_value (&bp, jump_func->value.ancestor.agg_preserved, 1);
4472 bp_pack_value (&bp, jump_func->value.ancestor.type_preserved, 1);
4473 streamer_write_bitpack (&bp);
4474 break;
4475 }
4476
4477 count = vec_safe_length (jump_func->agg.items);
4478 streamer_write_uhwi (ob, count);
4479 if (count)
4480 {
4481 bp = bitpack_create (ob->main_stream);
4482 bp_pack_value (&bp, jump_func->agg.by_ref, 1);
4483 streamer_write_bitpack (&bp);
4484 }
4485
4486 FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, i, item)
4487 {
4488 streamer_write_uhwi (ob, item->offset);
4489 stream_write_tree (ob, item->value, true);
4490 }
4491 }
4492
4493 /* Read in jump function JUMP_FUNC from IB. */
4494
4495 static void
4496 ipa_read_jump_function (struct lto_input_block *ib,
4497 struct ipa_jump_func *jump_func,
4498 struct cgraph_edge *cs,
4499 struct data_in *data_in)
4500 {
4501 enum jump_func_type jftype;
4502 enum tree_code operation;
4503 int i, count;
4504
4505 jftype = (enum jump_func_type) streamer_read_uhwi (ib);
4506 switch (jftype)
4507 {
4508 case IPA_JF_UNKNOWN:
4509 jump_func->type = IPA_JF_UNKNOWN;
4510 break;
4511 case IPA_JF_KNOWN_TYPE:
4512 {
4513 HOST_WIDE_INT offset = streamer_read_uhwi (ib);
4514 tree base_type = stream_read_tree (ib, data_in);
4515 tree component_type = stream_read_tree (ib, data_in);
4516
4517 ipa_set_jf_known_type (jump_func, offset, base_type, component_type);
4518 break;
4519 }
4520 case IPA_JF_CONST:
4521 ipa_set_jf_constant (jump_func, stream_read_tree (ib, data_in), cs);
4522 break;
4523 case IPA_JF_PASS_THROUGH:
4524 operation = (enum tree_code) streamer_read_uhwi (ib);
4525 if (operation == NOP_EXPR)
4526 {
4527 int formal_id = streamer_read_uhwi (ib);
4528 struct bitpack_d bp = streamer_read_bitpack (ib);
4529 bool agg_preserved = bp_unpack_value (&bp, 1);
4530 bool type_preserved = bp_unpack_value (&bp, 1);
4531 ipa_set_jf_simple_pass_through (jump_func, formal_id, agg_preserved,
4532 type_preserved);
4533 }
4534 else
4535 {
4536 tree operand = stream_read_tree (ib, data_in);
4537 int formal_id = streamer_read_uhwi (ib);
4538 ipa_set_jf_arith_pass_through (jump_func, formal_id, operand,
4539 operation);
4540 }
4541 break;
4542 case IPA_JF_ANCESTOR:
4543 {
4544 HOST_WIDE_INT offset = streamer_read_uhwi (ib);
4545 tree type = stream_read_tree (ib, data_in);
4546 int formal_id = streamer_read_uhwi (ib);
4547 struct bitpack_d bp = streamer_read_bitpack (ib);
4548 bool agg_preserved = bp_unpack_value (&bp, 1);
4549 bool type_preserved = bp_unpack_value (&bp, 1);
4550
4551 ipa_set_ancestor_jf (jump_func, offset, type, formal_id, agg_preserved,
4552 type_preserved);
4553 break;
4554 }
4555 }
4556
4557 count = streamer_read_uhwi (ib);
4558 vec_alloc (jump_func->agg.items, count);
4559 if (count)
4560 {
4561 struct bitpack_d bp = streamer_read_bitpack (ib);
4562 jump_func->agg.by_ref = bp_unpack_value (&bp, 1);
4563 }
4564 for (i = 0; i < count; i++)
4565 {
4566 struct ipa_agg_jf_item item;
4567 item.offset = streamer_read_uhwi (ib);
4568 item.value = stream_read_tree (ib, data_in);
4569 jump_func->agg.items->quick_push (item);
4570 }
4571 }
4572
4573 /* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
4574 relevant to indirect inlining to OB. */
4575
4576 static void
4577 ipa_write_indirect_edge_info (struct output_block *ob,
4578 struct cgraph_edge *cs)
4579 {
4580 struct cgraph_indirect_call_info *ii = cs->indirect_info;
4581 struct bitpack_d bp;
4582
4583 streamer_write_hwi (ob, ii->param_index);
4584 streamer_write_hwi (ob, ii->offset);
4585 bp = bitpack_create (ob->main_stream);
4586 bp_pack_value (&bp, ii->polymorphic, 1);
4587 bp_pack_value (&bp, ii->agg_contents, 1);
4588 bp_pack_value (&bp, ii->member_ptr, 1);
4589 bp_pack_value (&bp, ii->by_ref, 1);
4590 bp_pack_value (&bp, ii->maybe_in_construction, 1);
4591 bp_pack_value (&bp, ii->maybe_derived_type, 1);
4592 streamer_write_bitpack (&bp);
4593
4594 if (ii->polymorphic)
4595 {
4596 streamer_write_hwi (ob, ii->otr_token);
4597 stream_write_tree (ob, ii->otr_type, true);
4598 stream_write_tree (ob, ii->outer_type, true);
4599 }
4600 }
4601
4602 /* Read in parts of cgraph_indirect_call_info corresponding to CS that are
4603 relevant to indirect inlining from IB. */
4604
4605 static void
4606 ipa_read_indirect_edge_info (struct lto_input_block *ib,
4607 struct data_in *data_in ATTRIBUTE_UNUSED,
4608 struct cgraph_edge *cs)
4609 {
4610 struct cgraph_indirect_call_info *ii = cs->indirect_info;
4611 struct bitpack_d bp;
4612
4613 ii->param_index = (int) streamer_read_hwi (ib);
4614 ii->offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
4615 bp = streamer_read_bitpack (ib);
4616 ii->polymorphic = bp_unpack_value (&bp, 1);
4617 ii->agg_contents = bp_unpack_value (&bp, 1);
4618 ii->member_ptr = bp_unpack_value (&bp, 1);
4619 ii->by_ref = bp_unpack_value (&bp, 1);
4620 ii->maybe_in_construction = bp_unpack_value (&bp, 1);
4621 ii->maybe_derived_type = bp_unpack_value (&bp, 1);
4622 if (ii->polymorphic)
4623 {
4624 ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
4625 ii->otr_type = stream_read_tree (ib, data_in);
4626 ii->outer_type = stream_read_tree (ib, data_in);
4627 }
4628 }
4629
4630 /* Stream out NODE info to OB. */
4631
4632 static void
4633 ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
4634 {
4635 int node_ref;
4636 lto_symtab_encoder_t encoder;
4637 struct ipa_node_params *info = IPA_NODE_REF (node);
4638 int j;
4639 struct cgraph_edge *e;
4640 struct bitpack_d bp;
4641
4642 encoder = ob->decl_state->symtab_node_encoder;
4643 node_ref = lto_symtab_encoder_encode (encoder, node);
4644 streamer_write_uhwi (ob, node_ref);
4645
4646 streamer_write_uhwi (ob, ipa_get_param_count (info));
4647 for (j = 0; j < ipa_get_param_count (info); j++)
4648 streamer_write_uhwi (ob, ipa_get_param_move_cost (info, j));
4649 bp = bitpack_create (ob->main_stream);
4650 gcc_assert (info->analysis_done
4651 || ipa_get_param_count (info) == 0);
4652 gcc_assert (!info->node_enqueued);
4653 gcc_assert (!info->ipcp_orig_node);
4654 for (j = 0; j < ipa_get_param_count (info); j++)
4655 bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
4656 streamer_write_bitpack (&bp);
4657 for (j = 0; j < ipa_get_param_count (info); j++)
4658 streamer_write_hwi (ob, ipa_get_controlled_uses (info, j));
4659 for (e = node->callees; e; e = e->next_callee)
4660 {
4661 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4662
4663 streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
4664 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
4665 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
4666 }
4667 for (e = node->indirect_calls; e; e = e->next_callee)
4668 {
4669 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4670
4671 streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
4672 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
4673 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
4674 ipa_write_indirect_edge_info (ob, e);
4675 }
4676 }
4677
4678 /* Stream in NODE info from IB. */
4679
4680 static void
4681 ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
4682 struct data_in *data_in)
4683 {
4684 struct ipa_node_params *info = IPA_NODE_REF (node);
4685 int k;
4686 struct cgraph_edge *e;
4687 struct bitpack_d bp;
4688
4689 ipa_alloc_node_params (node, streamer_read_uhwi (ib));
4690
4691 for (k = 0; k < ipa_get_param_count (info); k++)
4692 info->descriptors[k].move_cost = streamer_read_uhwi (ib);
4693
4694 bp = streamer_read_bitpack (ib);
4695 if (ipa_get_param_count (info) != 0)
4696 info->analysis_done = true;
4697 info->node_enqueued = false;
4698 for (k = 0; k < ipa_get_param_count (info); k++)
4699 ipa_set_param_used (info, k, bp_unpack_value (&bp, 1));
4700 for (k = 0; k < ipa_get_param_count (info); k++)
4701 ipa_set_controlled_uses (info, k, streamer_read_hwi (ib));
4702 for (e = node->callees; e; e = e->next_callee)
4703 {
4704 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4705 int count = streamer_read_uhwi (ib);
4706
4707 if (!count)
4708 continue;
4709 vec_safe_grow_cleared (args->jump_functions, count);
4710
4711 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
4712 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
4713 data_in);
4714 }
4715 for (e = node->indirect_calls; e; e = e->next_callee)
4716 {
4717 struct ipa_edge_args *args = IPA_EDGE_REF (e);
4718 int count = streamer_read_uhwi (ib);
4719
4720 if (count)
4721 {
4722 vec_safe_grow_cleared (args->jump_functions, count);
4723 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
4724 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
4725 data_in);
4726 }
4727 ipa_read_indirect_edge_info (ib, data_in, e);
4728 }
4729 }
4730
4731 /* Write jump functions for nodes in SET. */
4732
4733 void
4734 ipa_prop_write_jump_functions (void)
4735 {
4736 struct cgraph_node *node;
4737 struct output_block *ob;
4738 unsigned int count = 0;
4739 lto_symtab_encoder_iterator lsei;
4740 lto_symtab_encoder_t encoder;
4741
4742
4743 if (!ipa_node_params_vector.exists ())
4744 return;
4745
4746 ob = create_output_block (LTO_section_jump_functions);
4747 encoder = ob->decl_state->symtab_node_encoder;
4748 ob->cgraph_node = NULL;
4749 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4750 lsei_next_function_in_partition (&lsei))
4751 {
4752 node = lsei_cgraph_node (lsei);
4753 if (cgraph_function_with_gimple_body_p (node)
4754 && IPA_NODE_REF (node) != NULL)
4755 count++;
4756 }
4757
4758 streamer_write_uhwi (ob, count);
4759
4760 /* Process all of the functions. */
4761 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4762 lsei_next_function_in_partition (&lsei))
4763 {
4764 node = lsei_cgraph_node (lsei);
4765 if (cgraph_function_with_gimple_body_p (node)
4766 && IPA_NODE_REF (node) != NULL)
4767 ipa_write_node_info (ob, node);
4768 }
4769 streamer_write_char_stream (ob->main_stream, 0);
4770 produce_asm (ob, NULL);
4771 destroy_output_block (ob);
4772 }
4773
4774 /* Read section in file FILE_DATA of length LEN with data DATA. */
4775
4776 static void
4777 ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
4778 size_t len)
4779 {
4780 const struct lto_function_header *header =
4781 (const struct lto_function_header *) data;
4782 const int cfg_offset = sizeof (struct lto_function_header);
4783 const int main_offset = cfg_offset + header->cfg_size;
4784 const int string_offset = main_offset + header->main_size;
4785 struct data_in *data_in;
4786 struct lto_input_block ib_main;
4787 unsigned int i;
4788 unsigned int count;
4789
4790 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
4791 header->main_size);
4792
4793 data_in =
4794 lto_data_in_create (file_data, (const char *) data + string_offset,
4795 header->string_size, vNULL);
4796 count = streamer_read_uhwi (&ib_main);
4797
4798 for (i = 0; i < count; i++)
4799 {
4800 unsigned int index;
4801 struct cgraph_node *node;
4802 lto_symtab_encoder_t encoder;
4803
4804 index = streamer_read_uhwi (&ib_main);
4805 encoder = file_data->symtab_node_encoder;
4806 node = cgraph (lto_symtab_encoder_deref (encoder, index));
4807 gcc_assert (node->definition);
4808 ipa_read_node_info (&ib_main, node, data_in);
4809 }
4810 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
4811 len);
4812 lto_data_in_delete (data_in);
4813 }
4814
4815 /* Read ipcp jump functions. */
4816
4817 void
4818 ipa_prop_read_jump_functions (void)
4819 {
4820 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4821 struct lto_file_decl_data *file_data;
4822 unsigned int j = 0;
4823
4824 ipa_check_create_node_params ();
4825 ipa_check_create_edge_args ();
4826 ipa_register_cgraph_hooks ();
4827
4828 while ((file_data = file_data_vec[j++]))
4829 {
4830 size_t len;
4831 const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
4832
4833 if (data)
4834 ipa_prop_read_section (file_data, data, len);
4835 }
4836 }
4837
4838 /* After merging units, we can get mismatch in argument counts.
4839 Also decl merging might've rendered parameter lists obsolete.
4840 Also compute called_with_variable_arg info. */
4841
4842 void
4843 ipa_update_after_lto_read (void)
4844 {
4845 ipa_check_create_node_params ();
4846 ipa_check_create_edge_args ();
4847 }
4848
4849 void
4850 write_agg_replacement_chain (struct output_block *ob, struct cgraph_node *node)
4851 {
4852 int node_ref;
4853 unsigned int count = 0;
4854 lto_symtab_encoder_t encoder;
4855 struct ipa_agg_replacement_value *aggvals, *av;
4856
4857 aggvals = ipa_get_agg_replacements_for_node (node);
4858 encoder = ob->decl_state->symtab_node_encoder;
4859 node_ref = lto_symtab_encoder_encode (encoder, node);
4860 streamer_write_uhwi (ob, node_ref);
4861
4862 for (av = aggvals; av; av = av->next)
4863 count++;
4864 streamer_write_uhwi (ob, count);
4865
4866 for (av = aggvals; av; av = av->next)
4867 {
4868 struct bitpack_d bp;
4869
4870 streamer_write_uhwi (ob, av->offset);
4871 streamer_write_uhwi (ob, av->index);
4872 stream_write_tree (ob, av->value, true);
4873
4874 bp = bitpack_create (ob->main_stream);
4875 bp_pack_value (&bp, av->by_ref, 1);
4876 streamer_write_bitpack (&bp);
4877 }
4878 }
4879
4880 /* Stream in the aggregate value replacement chain for NODE from IB. */
4881
4882 static void
4883 read_agg_replacement_chain (struct lto_input_block *ib,
4884 struct cgraph_node *node,
4885 struct data_in *data_in)
4886 {
4887 struct ipa_agg_replacement_value *aggvals = NULL;
4888 unsigned int count, i;
4889
4890 count = streamer_read_uhwi (ib);
4891 for (i = 0; i <count; i++)
4892 {
4893 struct ipa_agg_replacement_value *av;
4894 struct bitpack_d bp;
4895
4896 av = ggc_alloc<ipa_agg_replacement_value> ();
4897 av->offset = streamer_read_uhwi (ib);
4898 av->index = streamer_read_uhwi (ib);
4899 av->value = stream_read_tree (ib, data_in);
4900 bp = streamer_read_bitpack (ib);
4901 av->by_ref = bp_unpack_value (&bp, 1);
4902 av->next = aggvals;
4903 aggvals = av;
4904 }
4905 ipa_set_node_agg_value_chain (node, aggvals);
4906 }
4907
4908 /* Write all aggregate replacement for nodes in set. */
4909
4910 void
4911 ipa_prop_write_all_agg_replacement (void)
4912 {
4913 struct cgraph_node *node;
4914 struct output_block *ob;
4915 unsigned int count = 0;
4916 lto_symtab_encoder_iterator lsei;
4917 lto_symtab_encoder_t encoder;
4918
4919 if (!ipa_node_agg_replacements)
4920 return;
4921
4922 ob = create_output_block (LTO_section_ipcp_transform);
4923 encoder = ob->decl_state->symtab_node_encoder;
4924 ob->cgraph_node = NULL;
4925 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4926 lsei_next_function_in_partition (&lsei))
4927 {
4928 node = lsei_cgraph_node (lsei);
4929 if (cgraph_function_with_gimple_body_p (node)
4930 && ipa_get_agg_replacements_for_node (node) != NULL)
4931 count++;
4932 }
4933
4934 streamer_write_uhwi (ob, count);
4935
4936 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4937 lsei_next_function_in_partition (&lsei))
4938 {
4939 node = lsei_cgraph_node (lsei);
4940 if (cgraph_function_with_gimple_body_p (node)
4941 && ipa_get_agg_replacements_for_node (node) != NULL)
4942 write_agg_replacement_chain (ob, node);
4943 }
4944 streamer_write_char_stream (ob->main_stream, 0);
4945 produce_asm (ob, NULL);
4946 destroy_output_block (ob);
4947 }
4948
4949 /* Read replacements section in file FILE_DATA of length LEN with data
4950 DATA. */
4951
4952 static void
4953 read_replacements_section (struct lto_file_decl_data *file_data,
4954 const char *data,
4955 size_t len)
4956 {
4957 const struct lto_function_header *header =
4958 (const struct lto_function_header *) data;
4959 const int cfg_offset = sizeof (struct lto_function_header);
4960 const int main_offset = cfg_offset + header->cfg_size;
4961 const int string_offset = main_offset + header->main_size;
4962 struct data_in *data_in;
4963 struct lto_input_block ib_main;
4964 unsigned int i;
4965 unsigned int count;
4966
4967 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
4968 header->main_size);
4969
4970 data_in = lto_data_in_create (file_data, (const char *) data + string_offset,
4971 header->string_size, vNULL);
4972 count = streamer_read_uhwi (&ib_main);
4973
4974 for (i = 0; i < count; i++)
4975 {
4976 unsigned int index;
4977 struct cgraph_node *node;
4978 lto_symtab_encoder_t encoder;
4979
4980 index = streamer_read_uhwi (&ib_main);
4981 encoder = file_data->symtab_node_encoder;
4982 node = cgraph (lto_symtab_encoder_deref (encoder, index));
4983 gcc_assert (node->definition);
4984 read_agg_replacement_chain (&ib_main, node, data_in);
4985 }
4986 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
4987 len);
4988 lto_data_in_delete (data_in);
4989 }
4990
4991 /* Read IPA-CP aggregate replacements. */
4992
4993 void
4994 ipa_prop_read_all_agg_replacement (void)
4995 {
4996 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4997 struct lto_file_decl_data *file_data;
4998 unsigned int j = 0;
4999
5000 while ((file_data = file_data_vec[j++]))
5001 {
5002 size_t len;
5003 const char *data = lto_get_section_data (file_data,
5004 LTO_section_ipcp_transform,
5005 NULL, &len);
5006 if (data)
5007 read_replacements_section (file_data, data, len);
5008 }
5009 }
5010
5011 /* Adjust the aggregate replacements in AGGVAL to reflect parameters skipped in
5012 NODE. */
5013
5014 static void
5015 adjust_agg_replacement_values (struct cgraph_node *node,
5016 struct ipa_agg_replacement_value *aggval)
5017 {
5018 struct ipa_agg_replacement_value *v;
5019 int i, c = 0, d = 0, *adj;
5020
5021 if (!node->clone.combined_args_to_skip)
5022 return;
5023
5024 for (v = aggval; v; v = v->next)
5025 {
5026 gcc_assert (v->index >= 0);
5027 if (c < v->index)
5028 c = v->index;
5029 }
5030 c++;
5031
5032 adj = XALLOCAVEC (int, c);
5033 for (i = 0; i < c; i++)
5034 if (bitmap_bit_p (node->clone.combined_args_to_skip, i))
5035 {
5036 adj[i] = -1;
5037 d++;
5038 }
5039 else
5040 adj[i] = i - d;
5041
5042 for (v = aggval; v; v = v->next)
5043 v->index = adj[v->index];
5044 }
5045
5046 /* Dominator walker driving the ipcp modification phase. */
5047
5048 class ipcp_modif_dom_walker : public dom_walker
5049 {
5050 public:
5051 ipcp_modif_dom_walker (struct func_body_info *fbi,
5052 vec<ipa_param_descriptor> descs,
5053 struct ipa_agg_replacement_value *av,
5054 bool *sc, bool *cc)
5055 : dom_walker (CDI_DOMINATORS), m_fbi (fbi), m_descriptors (descs),
5056 m_aggval (av), m_something_changed (sc), m_cfg_changed (cc) {}
5057
5058 virtual void before_dom_children (basic_block);
5059
5060 private:
5061 struct func_body_info *m_fbi;
5062 vec<ipa_param_descriptor> m_descriptors;
5063 struct ipa_agg_replacement_value *m_aggval;
5064 bool *m_something_changed, *m_cfg_changed;
5065 };
5066
5067 void
5068 ipcp_modif_dom_walker::before_dom_children (basic_block bb)
5069 {
5070 gimple_stmt_iterator gsi;
5071 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5072 {
5073 struct ipa_agg_replacement_value *v;
5074 gimple stmt = gsi_stmt (gsi);
5075 tree rhs, val, t;
5076 HOST_WIDE_INT offset, size;
5077 int index;
5078 bool by_ref, vce;
5079
5080 if (!gimple_assign_load_p (stmt))
5081 continue;
5082 rhs = gimple_assign_rhs1 (stmt);
5083 if (!is_gimple_reg_type (TREE_TYPE (rhs)))
5084 continue;
5085
5086 vce = false;
5087 t = rhs;
5088 while (handled_component_p (t))
5089 {
5090 /* V_C_E can do things like convert an array of integers to one
5091 bigger integer and similar things we do not handle below. */
5092 if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
5093 {
5094 vce = true;
5095 break;
5096 }
5097 t = TREE_OPERAND (t, 0);
5098 }
5099 if (vce)
5100 continue;
5101
5102 if (!ipa_load_from_parm_agg_1 (m_fbi, m_descriptors, stmt, rhs, &index,
5103 &offset, &size, &by_ref))
5104 continue;
5105 for (v = m_aggval; v; v = v->next)
5106 if (v->index == index
5107 && v->offset == offset)
5108 break;
5109 if (!v
5110 || v->by_ref != by_ref
5111 || tree_to_shwi (TYPE_SIZE (TREE_TYPE (v->value))) != size)
5112 continue;
5113
5114 gcc_checking_assert (is_gimple_ip_invariant (v->value));
5115 if (!useless_type_conversion_p (TREE_TYPE (rhs), TREE_TYPE (v->value)))
5116 {
5117 if (fold_convertible_p (TREE_TYPE (rhs), v->value))
5118 val = fold_build1 (NOP_EXPR, TREE_TYPE (rhs), v->value);
5119 else if (TYPE_SIZE (TREE_TYPE (rhs))
5120 == TYPE_SIZE (TREE_TYPE (v->value)))
5121 val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), v->value);
5122 else
5123 {
5124 if (dump_file)
5125 {
5126 fprintf (dump_file, " const ");
5127 print_generic_expr (dump_file, v->value, 0);
5128 fprintf (dump_file, " can't be converted to type of ");
5129 print_generic_expr (dump_file, rhs, 0);
5130 fprintf (dump_file, "\n");
5131 }
5132 continue;
5133 }
5134 }
5135 else
5136 val = v->value;
5137
5138 if (dump_file && (dump_flags & TDF_DETAILS))
5139 {
5140 fprintf (dump_file, "Modifying stmt:\n ");
5141 print_gimple_stmt (dump_file, stmt, 0, 0);
5142 }
5143 gimple_assign_set_rhs_from_tree (&gsi, val);
5144 update_stmt (stmt);
5145
5146 if (dump_file && (dump_flags & TDF_DETAILS))
5147 {
5148 fprintf (dump_file, "into:\n ");
5149 print_gimple_stmt (dump_file, stmt, 0, 0);
5150 fprintf (dump_file, "\n");
5151 }
5152
5153 *m_something_changed = true;
5154 if (maybe_clean_eh_stmt (stmt)
5155 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
5156 *m_cfg_changed = true;
5157 }
5158
5159 }
5160
5161 /* IPCP transformation phase doing propagation of aggregate values. */
5162
5163 unsigned int
5164 ipcp_transform_function (struct cgraph_node *node)
5165 {
5166 vec<ipa_param_descriptor> descriptors = vNULL;
5167 struct func_body_info fbi;
5168 struct ipa_agg_replacement_value *aggval;
5169 int param_count;
5170 bool cfg_changed = false, something_changed = false;
5171
5172 gcc_checking_assert (cfun);
5173 gcc_checking_assert (current_function_decl);
5174
5175 if (dump_file)
5176 fprintf (dump_file, "Modification phase of node %s/%i\n",
5177 node->name (), node->order);
5178
5179 aggval = ipa_get_agg_replacements_for_node (node);
5180 if (!aggval)
5181 return 0;
5182 param_count = count_formal_params (node->decl);
5183 if (param_count == 0)
5184 return 0;
5185 adjust_agg_replacement_values (node, aggval);
5186 if (dump_file)
5187 ipa_dump_agg_replacement_values (dump_file, aggval);
5188
5189 fbi.node = node;
5190 fbi.info = NULL;
5191 fbi.bb_infos = vNULL;
5192 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
5193 fbi.param_count = param_count;
5194 fbi.aa_walked = 0;
5195
5196 descriptors.safe_grow_cleared (param_count);
5197 ipa_populate_param_decls (node, descriptors);
5198 calculate_dominance_info (CDI_DOMINATORS);
5199 ipcp_modif_dom_walker (&fbi, descriptors, aggval, &something_changed,
5200 &cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5201
5202 int i;
5203 struct ipa_bb_info *bi;
5204 FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
5205 free_ipa_bb_info (bi);
5206 fbi.bb_infos.release ();
5207 free_dominance_info (CDI_DOMINATORS);
5208 (*ipa_node_agg_replacements)[node->uid] = NULL;
5209 descriptors.release ();
5210
5211 if (!something_changed)
5212 return 0;
5213 else if (cfg_changed)
5214 return TODO_update_ssa_only_virtuals | TODO_cleanup_cfg;
5215 else
5216 return TODO_update_ssa_only_virtuals;
5217 }