re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / ipa-struct-reorg.c
1 /* Struct-reorg optimization.
2 Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Olga Golovanevsky <olga@il.ibm.com>
4 (Initial version of this code was developed
5 by Caroline Tice and Mostafa Hagog.)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "gimple.h"
31 #include "tree-inline.h"
32 #include "tree-flow.h"
33 #include "tree-flow-inline.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "hashtab.h"
37 #include "toplev.h"
38 #include "flags.h"
39 #include "debug.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "diagnostic.h"
43 #include "timevar.h"
44 #include "params.h"
45 #include "fibheap.h"
46 #include "intl.h"
47 #include "function.h"
48 #include "basic-block.h"
49 #include "tree-iterator.h"
50 #include "tree-pass.h"
51 #include "ipa-struct-reorg.h"
52 #include "opts.h"
53 #include "ipa-type-escape.h"
54 #include "tree-dump.h"
55 #include "gimple.h"
56
57 /* This optimization implements structure peeling.
58
59 For example, given a structure type:
60 typedef struct
61 {
62 int a;
63 float b;
64 int c;
65 }str_t;
66
67 it can be peeled into two structure types as follows:
68
69 typedef struct and typedef struct
70 { {
71 int a; float b;
72 int c; } str_t_1;
73 }str_t_0;
74
75 or can be fully peeled:
76
77 typedef struct
78 {
79 int a;
80 }str_t_0;
81
82 typedef struct
83 {
84 float b;
85 }str_t_1;
86
87 typedef struct
88 {
89 int c;
90 }str_t_2;
91
92 When structure type is peeled all instances and their accesses
93 in the program are updated accordingly. For example, if there is
94 array of structures:
95
96 str_t A[N];
97
98 and structure type str_t was peeled into two structures str_t_0
99 and str_t_1 as it was shown above, then array A will be replaced
100 by two arrays as follows:
101
102 str_t_0 A_0[N];
103 str_t_1 A_1[N];
104
105 The field access of field a of element i of array A: A[i].a will be
106 replaced by an access to field a of element i of array A_0: A_0[i].a.
107
108 This optimization also supports dynamically allocated arrays.
109 If array of structures was allocated by malloc function:
110
111 str_t * p = (str_t *) malloc (sizeof (str_t) * N)
112
113 the allocation site will be replaced to reflect new structure types:
114
115 str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
116 str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
117
118 The field access through the pointer p[i].a will be changed by p_0[i].a.
119
120 The goal of structure peeling is to improve spatial locality.
121 For example, if one of the fields of a structure is accessed frequently
122 in the loop:
123
124 for (i = 0; i < N; i++)
125 {
126 ... = A[i].a;
127 }
128
129 the allocation of field a of str_t contiguously in memory will
130 increase the chances of fetching the field from cache.
131
132 The analysis part of this optimization is based on the frequency of
133 field accesses, which are collected all over the program.
134 Then the fields with the frequencies that satisfy the following condition
135 get peeled out of the structure:
136
137 freq(f) > C * max_field_freq_in_struct
138
139 where max_field_freq_in_struct is the maximum field frequency
140 in the structure. C is a constant defining which portion of
141 max_field_freq_in_struct the fields should have in order to be peeled.
142
143 If profiling information is provided, it is used to calculate the
144 frequency of field accesses. Otherwise, the structure is fully peeled.
145
146 IPA type-escape analysis is used to determine when it is safe
147 to peel a structure.
148
149 The optimization is activated by flag -fipa-struct-reorg. */
150
151 /* New variables created by this optimization.
152 When doing struct peeling, each variable of
153 the original struct type will be replaced by
154 the set of new variables corresponding to
155 the new structure types. */
156 struct new_var_data {
157 /* VAR_DECL for original struct type. */
158 tree orig_var;
159 /* Vector of new variables. */
160 VEC(tree, heap) *new_vars;
161 };
162
163 typedef struct new_var_data *new_var;
164 typedef const struct new_var_data *const_new_var;
165
166 /* This structure represents allocation site of the structure. */
167 typedef struct alloc_site
168 {
169 gimple stmt;
170 d_str str;
171 } alloc_site_t;
172
173 DEF_VEC_O (alloc_site_t);
174 DEF_VEC_ALLOC_O (alloc_site_t, heap);
175
176 /* Allocation sites that belong to the same function. */
177 struct func_alloc_sites
178 {
179 tree func;
180 /* Vector of allocation sites for function. */
181 VEC (alloc_site_t, heap) *allocs;
182 };
183
184 typedef struct func_alloc_sites *fallocs_t;
185 typedef const struct func_alloc_sites *const_fallocs_t;
186
187 /* All allocation sites in the program. */
188 htab_t alloc_sites = NULL;
189
190 /* New global variables. Generated once for whole program. */
191 htab_t new_global_vars;
192
193 /* New local variables. Generated per-function. */
194 htab_t new_local_vars;
195
196 /* Vector of structures to be transformed. */
197 typedef struct data_structure structure;
198 DEF_VEC_O (structure);
199 DEF_VEC_ALLOC_O (structure, heap);
200 VEC (structure, heap) *structures;
201
202 /* Forward declarations. */
203 static bool is_equal_types (tree, tree);
204
205 /* Strip structure TYPE from pointers and arrays. */
206
207 static inline tree
208 strip_type (tree type)
209 {
210 gcc_assert (TYPE_P (type));
211
212 while (POINTER_TYPE_P (type)
213 || TREE_CODE (type) == ARRAY_TYPE)
214 type = TREE_TYPE (type);
215
216 return type;
217 }
218
219 /* This function returns type of VAR. */
220
221 static inline tree
222 get_type_of_var (tree var)
223 {
224 if (!var)
225 return NULL;
226
227 if (TREE_CODE (var) == PARM_DECL)
228 return DECL_ARG_TYPE (var);
229 else
230 return TREE_TYPE (var);
231 }
232
233 /* Set of actions we do for each newly generated STMT. */
234
235 static inline void
236 finalize_stmt (gimple stmt)
237 {
238 update_stmt (stmt);
239 mark_symbols_for_renaming (stmt);
240 }
241
242 /* This function finalizes STMT and appends it to the list STMTS. */
243
244 static inline void
245 finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
246 {
247 gimple_seq_add_stmt (stmts, stmt);
248 finalize_stmt (stmt);
249 }
250
251 /* Given structure type SRT_TYPE and field FIELD,
252 this function is looking for a field with the same name
253 and type as FIELD in STR_TYPE. It returns it if found,
254 or NULL_TREE otherwise. */
255
256 static tree
257 find_field_in_struct_1 (tree str_type, tree field)
258 {
259 tree str_field;
260
261 for (str_field = TYPE_FIELDS (str_type); str_field;
262 str_field = TREE_CHAIN (str_field))
263 {
264 const char * str_field_name;
265 const char * field_name;
266
267 str_field_name = IDENTIFIER_POINTER (DECL_NAME (str_field));
268 field_name = IDENTIFIER_POINTER (DECL_NAME (field));
269
270 gcc_assert (str_field_name);
271 gcc_assert (field_name);
272
273 if (!strcmp (str_field_name, field_name))
274 {
275 /* Check field types. */
276 if (is_equal_types (TREE_TYPE (str_field), TREE_TYPE (field)))
277 return str_field;
278 }
279 }
280
281 return NULL_TREE;
282 }
283
284 /* Given a field declaration FIELD_DECL, this function
285 returns corresponding field entry in structure STR. */
286
287 static struct field_entry *
288 find_field_in_struct (d_str str, tree field_decl)
289 {
290 int i;
291
292 tree field = find_field_in_struct_1 (str->decl, field_decl);
293
294 for (i = 0; i < str->num_fields; i++)
295 if (str->fields[i].decl == field)
296 return &(str->fields[i]);
297
298 return NULL;
299 }
300
301 /* This function checks whether ARG is a result of multiplication
302 of some number by STRUCT_SIZE. If yes, the function returns true
303 and this number is filled into NUM. */
304
305 static bool
306 is_result_of_mult (tree arg, tree *num, tree struct_size)
307 {
308 gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
309
310 /* If the allocation statement was of the form
311 D.2229_10 = <alloc_func> (D.2228_9);
312 then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
313
314 if (size_def_stmt && is_gimple_assign (size_def_stmt))
315 {
316 tree lhs = gimple_assign_lhs (size_def_stmt);
317
318 /* We expect temporary here. */
319 if (!is_gimple_reg (lhs))
320 return false;
321
322 if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
323 {
324 tree arg0 = gimple_assign_rhs1 (size_def_stmt);
325 tree arg1 = gimple_assign_rhs2 (size_def_stmt);
326
327 if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
328 {
329 *num = arg1;
330 return true;
331 }
332
333 if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
334 {
335 *num = arg0;
336 return true;
337 }
338 }
339 }
340
341 *num = NULL_TREE;
342 return false;
343 }
344
345
346 /* This function returns true if access ACC corresponds to the pattern
347 generated by compiler when an address of element i of an array
348 of structures STR_DECL (pointed by p) is calculated (p[i]). If this
349 pattern is recognized correctly, this function returns true
350 and fills missing fields in ACC. Otherwise it returns false. */
351
352 static bool
353 decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
354 {
355 tree ref_var;
356 tree struct_size, op0, op1;
357 tree before_cast;
358 enum tree_code rhs_code;
359
360 ref_var = TREE_OPERAND (acc->ref, 0);
361
362 if (TREE_CODE (ref_var) != SSA_NAME)
363 return false;
364
365 acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
366 if (!(acc->ref_def_stmt)
367 || (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
368 return false;
369
370 rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
371
372 if (rhs_code != PLUS_EXPR
373 && rhs_code != MINUS_EXPR
374 && rhs_code != POINTER_PLUS_EXPR)
375 return false;
376
377 op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
378 op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
379
380 if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
381 &acc->base, &acc->offset,
382 &acc->cast_stmt))
383 return false;
384
385 if (acc->cast_stmt)
386 before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
387 else
388 before_cast = acc->offset;
389
390 if (!before_cast)
391 return false;
392
393
394 if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
395 return false;
396
397 struct_size = TYPE_SIZE_UNIT (str_decl);
398
399 if (!is_result_of_mult (before_cast, &acc->num, struct_size))
400 return false;
401
402 return true;
403 }
404
405
406 /* This function checks whether the access ACC of structure type STR
407 is of the form suitable for transformation. If yes, it returns true.
408 False otherwise. */
409
410 static bool
411 decompose_access (tree str_decl, struct field_access_site *acc)
412 {
413 gcc_assert (acc->ref);
414
415 if (TREE_CODE (acc->ref) == INDIRECT_REF)
416 return decompose_indirect_ref_acc (str_decl, acc);
417 else if (TREE_CODE (acc->ref) == ARRAY_REF)
418 return true;
419 else if (TREE_CODE (acc->ref) == VAR_DECL)
420 return true;
421
422 return false;
423 }
424
425 /* This function creates empty field_access_site node. */
426
427 static inline struct field_access_site *
428 make_field_acc_node (void)
429 {
430 int size = sizeof (struct field_access_site);
431
432 return (struct field_access_site *) xcalloc (1, size);
433 }
434
435 /* This function returns the structure field access, defined by STMT,
436 if it is already in hashtable of function accesses F_ACCS. */
437
438 static struct field_access_site *
439 is_in_field_accs (gimple stmt, htab_t f_accs)
440 {
441 return (struct field_access_site *)
442 htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
443 }
444
445 /* This function adds an access ACC to the hashtable
446 F_ACCS of field accesses. */
447
448 static void
449 add_field_acc_to_acc_sites (struct field_access_site *acc,
450 htab_t f_accs)
451 {
452 void **slot;
453
454 gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
455 slot = htab_find_slot_with_hash (f_accs, acc->stmt,
456 htab_hash_pointer (acc->stmt),
457 INSERT);
458 *slot = acc;
459 }
460
461 /* This function adds the VAR to vector of variables of
462 an access site defined by statement STMT. If access entry
463 with statement STMT does not exist in hashtable of
464 accesses ACCS, this function creates it. */
465
466 static void
467 add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
468 {
469 struct access_site *acc;
470
471 acc = (struct access_site *)
472 htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
473
474 if (!acc)
475 {
476 void **slot;
477
478 acc = (struct access_site *) xmalloc (sizeof (struct access_site));
479 acc->stmt = stmt;
480 acc->vars = VEC_alloc (tree, heap, 10);
481 slot = htab_find_slot_with_hash (accs, stmt,
482 htab_hash_pointer (stmt), INSERT);
483 *slot = acc;
484
485 }
486 VEC_safe_push (tree, heap, acc->vars, var);
487 }
488
489 /* This function adds NEW_DECL to function
490 referenced vars, and marks it for renaming. */
491
492 static void
493 finalize_var_creation (tree new_decl)
494 {
495 add_referenced_var (new_decl);
496 mark_sym_for_renaming (new_decl);
497 }
498
499 /* This function finalizes VAR creation if it is a global VAR_DECL. */
500
501 static void
502 finalize_global_creation (tree var)
503 {
504 if (TREE_CODE (var) == VAR_DECL
505 && is_global_var (var))
506 finalize_var_creation (var);
507 }
508
509 /* This function inserts NEW_DECL to varpool. */
510
511 static inline void
512 insert_global_to_varpool (tree new_decl)
513 {
514 struct varpool_node *new_node;
515
516 new_node = varpool_node (new_decl);
517 notice_global_symbol (new_decl);
518 varpool_mark_needed_node (new_node);
519 varpool_finalize_decl (new_decl);
520 }
521
522 /* This function finalizes the creation of new variables,
523 defined by *SLOT->new_vars. */
524
525 static int
526 finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
527 {
528 new_var n_var = *(new_var *) slot;
529 unsigned i;
530 tree var;
531
532 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
533 finalize_var_creation (var);
534 return 1;
535 }
536
537 /* This function looks for the variable of NEW_TYPE type, stored in VAR.
538 It returns it, if found, and NULL_TREE otherwise. */
539
540 static tree
541 find_var_in_new_vars_vec (new_var var, tree new_type)
542 {
543 tree n_var;
544 unsigned i;
545
546 for (i = 0; VEC_iterate (tree, var->new_vars, i, n_var); i++)
547 {
548 tree type = strip_type(get_type_of_var (n_var));
549 gcc_assert (type);
550
551 if (type == new_type)
552 return n_var;
553 }
554
555 return NULL_TREE;
556 }
557
558 /* This function returns new_var node, the orig_var of which is DECL.
559 It looks for new_var's in NEW_VARS_HTAB. If not found,
560 the function returns NULL. */
561
562 static new_var
563 is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
564 {
565 return (new_var) htab_find_with_hash (new_vars_htab, decl,
566 htab_hash_pointer (decl));
567 }
568
569 /* Given original variable ORIG_VAR, this function returns
570 new variable corresponding to it of NEW_TYPE type. */
571
572 static tree
573 find_new_var_of_type (tree orig_var, tree new_type)
574 {
575 new_var var;
576 gcc_assert (orig_var && new_type);
577
578 if (TREE_CODE (orig_var) == SSA_NAME)
579 orig_var = SSA_NAME_VAR (orig_var);
580
581 var = is_in_new_vars_htab (orig_var, new_global_vars);
582 if (!var)
583 var = is_in_new_vars_htab (orig_var, new_local_vars);
584 gcc_assert (var);
585 return find_var_in_new_vars_vec (var, new_type);
586 }
587
588 /* This function generates stmt:
589 res = NUM * sizeof(TYPE) and returns it.
590 res is filled into RES. */
591
592 static gimple
593 gen_size (tree num, tree type, tree *res)
594 {
595 tree struct_size = TYPE_SIZE_UNIT (type);
596 HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
597 gimple new_stmt;
598
599 *res = create_tmp_var (TREE_TYPE (num), NULL);
600
601 if (*res)
602 add_referenced_var (*res);
603
604 if (exact_log2 (struct_size_int) == -1)
605 {
606 tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
607 new_stmt = gimple_build_assign (*res, fold_build2 (MULT_EXPR,
608 TREE_TYPE (num),
609 num, size));
610 }
611 else
612 {
613 tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
614
615 new_stmt = gimple_build_assign (*res, fold_build2 (LSHIFT_EXPR,
616 TREE_TYPE (num),
617 num, C));
618 }
619
620 finalize_stmt (new_stmt);
621 return new_stmt;
622 }
623
624 /* This function generates and returns a statement, that cast variable
625 BEFORE_CAST to NEW_TYPE. The cast result variable is stored
626 into RES_P. ORIG_CAST_STMT is the original cast statement. */
627
628 static gimple
629 gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
630 tree *res_p)
631 {
632 tree lhs, new_lhs;
633 gimple new_stmt;
634
635 lhs = gimple_assign_lhs (orig_cast_stmt);
636 new_lhs = find_new_var_of_type (lhs, new_type);
637 gcc_assert (new_lhs);
638
639 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
640 finalize_stmt (new_stmt);
641 *res_p = new_lhs;
642 return new_stmt;
643 }
644
645 /* This function builds an edge between BB and E->dest and updates
646 phi nodes of E->dest. It returns newly created edge. */
647
648 static edge
649 make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
650 {
651 edge new_e;
652 tree arg;
653 gimple_stmt_iterator si;
654
655 new_e = make_edge (bb, e->dest, e->flags);
656
657 for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
658 {
659 gimple phi = gsi_stmt (si);
660 arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
661 add_phi_arg (phi, arg, new_e);
662 }
663
664 return new_e;
665 }
666
667 /* This function inserts NEW_STMT before STMT. */
668
669 static void
670 insert_before_stmt (gimple stmt, gimple new_stmt)
671 {
672 gimple_stmt_iterator bsi;
673
674 if (!stmt || !new_stmt)
675 return;
676
677 bsi = gsi_for_stmt (stmt);
678 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
679 }
680
681 /* Insert NEW_STMTS after STMT. */
682
683 static void
684 insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
685 {
686 gimple_stmt_iterator bsi;
687
688 if (!stmt || !new_stmts)
689 return;
690
691 bsi = gsi_for_stmt (stmt);
692 gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
693 }
694
695 /* Insert NEW_STMT after STMT. */
696
697 static void
698 insert_after_stmt (gimple stmt, gimple new_stmt)
699 {
700 gimple_stmt_iterator bsi;
701
702 if (!stmt || !new_stmt)
703 return;
704
705 bsi = gsi_for_stmt (stmt);
706 gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
707 }
708
709 /* This function returns vector of allocation sites
710 that appear in function FN_DECL. */
711
712 static fallocs_t
713 get_fallocs (tree fn_decl)
714 {
715 return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
716 htab_hash_pointer (fn_decl));
717 }
718
719 /* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
720 and it is a part of allocation of a structure,
721 then it is usually followed by a cast stmt
722 p_8 = (struct str_t *) D.2225_7;
723 which is returned by this function. */
724
725 static gimple
726 get_final_alloc_stmt (gimple alloc_stmt)
727 {
728 gimple final_stmt;
729 use_operand_p use_p;
730 tree alloc_res;
731
732 if (!alloc_stmt)
733 return NULL;
734
735 if (!is_gimple_call (alloc_stmt))
736 return NULL;
737
738 alloc_res = gimple_get_lhs (alloc_stmt);
739
740 if (TREE_CODE (alloc_res) != SSA_NAME)
741 return NULL;
742
743 if (!single_imm_use (alloc_res, &use_p, &final_stmt))
744 return NULL;
745 else
746 return final_stmt;
747 }
748
749 /* This function returns true if STMT is one of allocation
750 sites of function FN_DECL. It returns false otherwise. */
751
752 static bool
753 is_part_of_malloc (gimple stmt, tree fn_decl)
754 {
755 fallocs_t fallocs = get_fallocs (fn_decl);
756
757 if (fallocs)
758 {
759 alloc_site_t *call;
760 unsigned i;
761
762 for (i = 0; VEC_iterate (alloc_site_t, fallocs->allocs, i, call); i++)
763 if (call->stmt == stmt
764 || get_final_alloc_stmt (call->stmt) == stmt)
765 return true;
766 }
767 return false;
768 }
769
770 /* Auxiliary structure for a lookup over field accesses. */
771 struct find_stmt_data
772 {
773 bool found;
774 gimple stmt;
775 };
776
777 /* This function looks for DATA->stmt among
778 the statements involved in the field access,
779 defined by SLOT. It stops when it's found. */
780
781 static int
782 find_in_field_accs (void **slot, void *data)
783 {
784 struct field_access_site *f_acc = *(struct field_access_site **) slot;
785 gimple stmt = ((struct find_stmt_data *)data)->stmt;
786
787 if (f_acc->stmt == stmt
788 || f_acc->ref_def_stmt == stmt
789 || f_acc->cast_stmt == stmt)
790 {
791 ((struct find_stmt_data *)data)->found = true;
792 return 0;
793 }
794 else
795 return 1;
796 }
797
798 /* This function checks whether STMT is part of field
799 accesses of structure STR. It returns true, if found,
800 and false otherwise. */
801
802 static bool
803 is_part_of_field_access (gimple stmt, d_str str)
804 {
805 int i;
806
807 for (i = 0; i < str->num_fields; i++)
808 {
809 struct find_stmt_data data;
810 data.found = false;
811 data.stmt = stmt;
812
813 if (str->fields[i].acc_sites)
814 htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
815
816 if (data.found)
817 return true;
818 }
819
820 return false;
821 }
822
823 /* Auxiliary data for exclude_from_accs function. */
824
825 struct exclude_data
826 {
827 tree fn_decl;
828 d_str str;
829 };
830
831 /* This function returns component_ref with the BASE and
832 field named FIELD_ID from structure TYPE. */
833
834 static inline tree
835 build_comp_ref (tree base, tree field_id, tree type)
836 {
837 tree field;
838 bool found = false;
839
840
841 /* Find field of structure type with the same name as field_id. */
842 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
843 {
844 if (DECL_NAME (field) == field_id)
845 {
846 found = true;
847 break;
848 }
849 }
850
851 gcc_assert (found);
852
853 return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
854 }
855
856
857 /* This struct represent data used for walk_tree
858 called from function find_pos_in_stmt.
859 - ref is a tree to be found,
860 - and pos is a pointer that points to ref in stmt. */
861 struct ref_pos
862 {
863 tree *pos;
864 tree ref;
865 };
866
867
868 /* This is a callback function for walk_tree, called from
869 collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
870 When *TP is equal to DATA->ref, the walk_tree stops,
871 and found position, equal to TP, is assigned to DATA->pos. */
872
873 static tree
874 find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
875 {
876 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
877 struct ref_pos *r_pos = (struct ref_pos *) wi->info;
878 tree ref = r_pos->ref;
879 tree t = *tp;
880
881 if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
882 {
883 r_pos->pos = tp;
884 return t;
885 }
886
887 *walk_subtrees = 1;
888 return NULL_TREE;
889 }
890
891
892 /* This function looks for the pointer of REF in STMT,
893 It returns it, if found, and NULL otherwise. */
894
895 static tree *
896 find_pos_in_stmt (gimple stmt, tree ref)
897 {
898 struct ref_pos r_pos;
899 struct walk_stmt_info wi;
900
901 r_pos.ref = ref;
902 r_pos.pos = NULL;
903 memset (&wi, 0, sizeof (wi));
904 wi.info = &r_pos;
905 walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
906
907 return r_pos.pos;
908 }
909
910 /* This structure is used to represent array
911 or pointer-to wrappers of structure type.
912 For example, if type1 is structure type,
913 then for type1 ** we generate two type_wrapper
914 structures with wrap = 0 each one.
915 It's used to unwind the original type up to
916 structure type, replace it with the new structure type
917 and wrap it back in the opposite order. */
918
919 typedef struct type_wrapper
920 {
921 /* 0 stand for pointer wrapper, and 1 for array wrapper. */
922 bool wrap;
923
924 /* Relevant for arrays as domain or index. */
925 tree domain;
926 }type_wrapper_t;
927
928 DEF_VEC_O (type_wrapper_t);
929 DEF_VEC_ALLOC_O (type_wrapper_t, heap);
930
931 /* This function replace field access ACC by the new
932 field access of structure type NEW_TYPE. */
933
934 static void
935 replace_field_acc (struct field_access_site *acc, tree new_type)
936 {
937 tree ref_var = acc->ref;
938 tree new_ref;
939 tree lhs, rhs;
940 tree *pos;
941 tree new_acc;
942 tree field_id = DECL_NAME (acc->field_decl);
943 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
944 type_wrapper_t *wr_p = NULL;
945
946 while (TREE_CODE (ref_var) == INDIRECT_REF
947 || TREE_CODE (ref_var) == ARRAY_REF)
948 {
949 type_wrapper_t wr;
950
951 if ( TREE_CODE (ref_var) == INDIRECT_REF)
952 {
953 wr.wrap = 0;
954 wr.domain = 0;
955 }
956 else
957 {
958 wr.wrap = 1;
959 wr.domain = TREE_OPERAND (ref_var, 1);
960 }
961
962 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
963 ref_var = TREE_OPERAND (ref_var, 0);
964 }
965
966 new_ref = find_new_var_of_type (ref_var, new_type);
967 finalize_global_creation (new_ref);
968
969 while (VEC_length (type_wrapper_t, wrapper) != 0)
970 {
971 tree type = TREE_TYPE (TREE_TYPE (new_ref));
972
973 wr_p = VEC_last (type_wrapper_t, wrapper);
974 if (wr_p->wrap) /* Array. */
975 new_ref = build4 (ARRAY_REF, type, new_ref,
976 wr_p->domain, NULL_TREE, NULL_TREE);
977 else /* Pointer. */
978 new_ref = build1 (INDIRECT_REF, type, new_ref);
979 VEC_pop (type_wrapper_t, wrapper);
980 }
981
982 new_acc = build_comp_ref (new_ref, field_id, new_type);
983 VEC_free (type_wrapper_t, heap, wrapper);
984
985 if (is_gimple_assign (acc->stmt))
986 {
987 lhs = gimple_assign_lhs (acc->stmt);
988 rhs = gimple_assign_rhs1 (acc->stmt);
989
990 if (lhs == acc->comp_ref)
991 gimple_assign_set_lhs (acc->stmt, new_acc);
992 else if (rhs == acc->comp_ref)
993 gimple_assign_set_rhs1 (acc->stmt, new_acc);
994 else
995 {
996 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
997 gcc_assert (pos);
998 *pos = new_acc;
999 }
1000 }
1001 else
1002 {
1003 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
1004 gcc_assert (pos);
1005 *pos = new_acc;
1006 }
1007
1008 finalize_stmt (acc->stmt);
1009 }
1010
1011 /* This function replace field access ACC by a new field access
1012 of structure type NEW_TYPE. */
1013
1014 static void
1015 replace_field_access_stmt (struct field_access_site *acc, tree new_type)
1016 {
1017
1018 if (TREE_CODE (acc->ref) == INDIRECT_REF
1019 ||TREE_CODE (acc->ref) == ARRAY_REF
1020 ||TREE_CODE (acc->ref) == VAR_DECL)
1021 replace_field_acc (acc, new_type);
1022 else
1023 gcc_unreachable ();
1024 }
1025
1026 /* This function looks for d_str, represented by TYPE, in the structures
1027 vector. If found, it returns an index of found structure. Otherwise
1028 it returns a length of the structures vector. */
1029
1030 static unsigned
1031 find_structure (tree type)
1032 {
1033 d_str str;
1034 unsigned i;
1035
1036 type = TYPE_MAIN_VARIANT (type);
1037
1038 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
1039 if (is_equal_types (str->decl, type))
1040 return i;
1041
1042 return VEC_length (structure, structures);
1043 }
1044
1045 /* In this function we create new statements that have the same
1046 form as ORIG_STMT, but of type NEW_TYPE. The statements
1047 treated by this function are simple assignments,
1048 like assignments: p.8_7 = p; or statements with rhs of
1049 tree codes PLUS_EXPR and MINUS_EXPR. */
1050
1051 static gimple
1052 create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
1053 {
1054 tree lhs;
1055 tree new_lhs;
1056 gimple new_stmt;
1057 tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
1058
1059 lhs = gimple_assign_lhs (orig_stmt);
1060
1061 gcc_assert (TREE_CODE (lhs) == VAR_DECL
1062 || TREE_CODE (lhs) == SSA_NAME);
1063
1064 new_lhs = find_new_var_of_type (lhs, new_type);
1065 gcc_assert (new_lhs);
1066 finalize_var_creation (new_lhs);
1067
1068 switch (gimple_assign_rhs_code (orig_stmt))
1069 {
1070 case PLUS_EXPR:
1071 case MINUS_EXPR:
1072 case POINTER_PLUS_EXPR:
1073 {
1074 tree op0 = gimple_assign_rhs1 (orig_stmt);
1075 tree op1 = gimple_assign_rhs2 (orig_stmt);
1076 unsigned str0, str1;
1077 unsigned length = VEC_length (structure, structures);
1078
1079
1080 str0 = find_structure (strip_type (get_type_of_var (op0)));
1081 str1 = find_structure (strip_type (get_type_of_var (op1)));
1082 gcc_assert ((str0 != length) || (str1 != length));
1083
1084 if (str0 != length)
1085 new_op0 = find_new_var_of_type (op0, new_type);
1086 if (str1 != length)
1087 new_op1 = find_new_var_of_type (op1, new_type);
1088
1089 if (!new_op0)
1090 new_op0 = offset;
1091 if (!new_op1)
1092 new_op1 = offset;
1093 }
1094 break;
1095
1096 default:
1097 gcc_unreachable();
1098 }
1099
1100 new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
1101 new_lhs, new_op0, new_op1);
1102 finalize_stmt (new_stmt);
1103
1104 return new_stmt;
1105 }
1106
1107 /* Given a field access F_ACC of the FIELD, this function
1108 replaces it by the new field access. */
1109
1110 static void
1111 create_new_field_access (struct field_access_site *f_acc,
1112 struct field_entry field)
1113 {
1114 tree new_type = field.field_mapping;
1115 gimple new_stmt;
1116 tree size_res;
1117 gimple mult_stmt;
1118 gimple cast_stmt;
1119 tree cast_res = NULL;
1120
1121 if (f_acc->num)
1122 {
1123 mult_stmt = gen_size (f_acc->num, new_type, &size_res);
1124 insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
1125 }
1126
1127 if (f_acc->cast_stmt)
1128 {
1129 cast_stmt = gen_cast_stmt (size_res, new_type,
1130 f_acc->cast_stmt, &cast_res);
1131 insert_after_stmt (f_acc->cast_stmt, cast_stmt);
1132 }
1133
1134 if (f_acc->ref_def_stmt)
1135 {
1136 tree offset;
1137 if (cast_res)
1138 offset = cast_res;
1139 else
1140 offset = size_res;
1141
1142 new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
1143 new_type, offset);
1144 insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
1145 }
1146
1147 /* In stmt D.2163_19 = D.2162_18->b; we replace variable
1148 D.2162_18 by an appropriate variable of new_type type. */
1149 replace_field_access_stmt (f_acc, new_type);
1150 }
1151
1152 /* This function creates a new condition statement
1153 corresponding to the original COND_STMT, adds new basic block
1154 and redirects condition edges. NEW_VAR is a new condition
1155 variable located in the condition statement at the position POS. */
1156
1157 static void
1158 create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
1159 {
1160 gimple new_stmt;
1161 edge true_e = NULL, false_e = NULL;
1162 basic_block new_bb;
1163 gimple_stmt_iterator si;
1164
1165 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
1166 &true_e, &false_e);
1167
1168 new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
1169 pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
1170 pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
1171 NULL_TREE,
1172 NULL_TREE);
1173
1174 finalize_stmt (new_stmt);
1175
1176 /* Create new basic block after bb. */
1177 new_bb = create_empty_bb (gimple_bb (cond_stmt));
1178
1179 /* Add new condition stmt to the new_bb. */
1180 si = gsi_start_bb (new_bb);
1181 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
1182
1183 /* Create false and true edges from new_bb. */
1184 make_edge_and_fix_phis_of_dest (new_bb, true_e);
1185 make_edge_and_fix_phis_of_dest (new_bb, false_e);
1186
1187 /* Redirect one of original edges to point to new_bb. */
1188 if (gimple_cond_code (cond_stmt) == NE_EXPR)
1189 redirect_edge_succ (true_e, new_bb);
1190 else
1191 redirect_edge_succ (false_e, new_bb);
1192 }
1193
1194 /* This function creates new condition statements corresponding
1195 to original condition STMT, one for each new type, and
1196 recursively redirect edges to newly generated basic blocks. */
1197
1198 static void
1199 create_new_stmts_for_cond_expr (gimple stmt)
1200 {
1201 tree arg0, arg1, arg;
1202 unsigned str0, str1;
1203 bool s0, s1;
1204 d_str str;
1205 tree type;
1206 unsigned pos;
1207 int i;
1208 unsigned length = VEC_length (structure, structures);
1209
1210 gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
1211 || gimple_cond_code (stmt) == NE_EXPR);
1212
1213 arg0 = gimple_cond_lhs (stmt);
1214 arg1 = gimple_cond_rhs (stmt);
1215
1216 str0 = find_structure (strip_type (get_type_of_var (arg0)));
1217 str1 = find_structure (strip_type (get_type_of_var (arg1)));
1218
1219 s0 = (str0 != length) ? true : false;
1220 s1 = (str1 != length) ? true : false;
1221
1222 gcc_assert (s0 || s1);
1223 /* For now we allow only comparison with 0 or NULL. */
1224 gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
1225
1226 str = integer_zerop (arg0) ?
1227 VEC_index (structure, structures, str1):
1228 VEC_index (structure, structures, str0);
1229 arg = integer_zerop (arg0) ? arg1 : arg0;
1230 pos = integer_zerop (arg0) ? 1 : 0;
1231
1232 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1233 {
1234 tree new_arg;
1235
1236 new_arg = find_new_var_of_type (arg, type);
1237 create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
1238 }
1239 }
1240
1241 /* Create a new general access to replace original access ACC
1242 for structure type NEW_TYPE. */
1243
1244 static gimple
1245 create_general_new_stmt (struct access_site *acc, tree new_type)
1246 {
1247 gimple old_stmt = acc->stmt;
1248 tree var;
1249 gimple new_stmt = gimple_copy (old_stmt);
1250 unsigned i;
1251
1252 /* We are really building a new stmt, clear the virtual operands. */
1253 if (gimple_has_mem_ops (new_stmt))
1254 {
1255 gimple_set_vuse (new_stmt, NULL_TREE);
1256 gimple_set_vdef (new_stmt, NULL_TREE);
1257 }
1258
1259 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
1260 {
1261 tree *pos;
1262 tree new_var = find_new_var_of_type (var, new_type);
1263 tree lhs, rhs = NULL_TREE;
1264
1265 gcc_assert (new_var);
1266 finalize_var_creation (new_var);
1267
1268 if (is_gimple_assign (new_stmt))
1269 {
1270 lhs = gimple_assign_lhs (new_stmt);
1271
1272 if (TREE_CODE (lhs) == SSA_NAME)
1273 lhs = SSA_NAME_VAR (lhs);
1274 if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
1275 rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
1276
1277 /* It can happen that rhs is a constructor.
1278 Then we have to replace it to be of new_type. */
1279 if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
1280 {
1281 /* Dealing only with empty constructors right now. */
1282 gcc_assert (VEC_empty (constructor_elt,
1283 CONSTRUCTOR_ELTS (rhs)));
1284 rhs = build_constructor (new_type, 0);
1285 gimple_assign_set_rhs1 (new_stmt, rhs);
1286 }
1287
1288 if (lhs == var)
1289 gimple_assign_set_lhs (new_stmt, new_var);
1290 else if (rhs == var)
1291 gimple_assign_set_rhs1 (new_stmt, new_var);
1292 else
1293 {
1294 pos = find_pos_in_stmt (new_stmt, var);
1295 gcc_assert (pos);
1296 /* ??? This misses adjustments to the type of the
1297 INDIRECT_REF we possibly replace the operand of. */
1298 *pos = new_var;
1299 }
1300 }
1301 else
1302 {
1303 pos = find_pos_in_stmt (new_stmt, var);
1304 gcc_assert (pos);
1305 *pos = new_var;
1306 }
1307 }
1308
1309 finalize_stmt (new_stmt);
1310 return new_stmt;
1311 }
1312
1313 /* For each new type in STR this function creates new general accesses
1314 corresponding to the original access ACC. */
1315
1316 static void
1317 create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
1318 {
1319 tree type;
1320 gimple stmt = acc->stmt;
1321 unsigned i;
1322
1323 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1324 {
1325 gimple new_stmt;
1326
1327 new_stmt = create_general_new_stmt (acc, type);
1328 insert_after_stmt (stmt, new_stmt);
1329 }
1330 }
1331
1332 /* This function creates a new general access of structure STR
1333 to replace the access ACC. */
1334
1335 static void
1336 create_new_general_access (struct access_site *acc, d_str str)
1337 {
1338 gimple stmt = acc->stmt;
1339 switch (gimple_code (stmt))
1340 {
1341 case GIMPLE_COND:
1342 create_new_stmts_for_cond_expr (stmt);
1343 break;
1344
1345 default:
1346 create_new_stmts_for_general_acc (acc, str);
1347 }
1348 }
1349
1350 /* Auxiliary data for creation of accesses. */
1351 struct create_acc_data
1352 {
1353 basic_block bb;
1354 d_str str;
1355 int field_index;
1356 };
1357
1358 /* This function creates a new general access, defined by SLOT.
1359 DATA is a pointer to create_acc_data structure. */
1360
1361 static int
1362 create_new_acc (void **slot, void *data)
1363 {
1364 struct access_site *acc = *(struct access_site **) slot;
1365 basic_block bb = ((struct create_acc_data *)data)->bb;
1366 d_str str = ((struct create_acc_data *)data)->str;
1367
1368 if (gimple_bb (acc->stmt) == bb)
1369 create_new_general_access (acc, str);
1370 return 1;
1371 }
1372
1373 /* This function creates a new field access, defined by SLOT.
1374 DATA is a pointer to create_acc_data structure. */
1375
1376 static int
1377 create_new_field_acc (void **slot, void *data)
1378 {
1379 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1380 basic_block bb = ((struct create_acc_data *)data)->bb;
1381 d_str str = ((struct create_acc_data *)data)->str;
1382 int i = ((struct create_acc_data *)data)->field_index;
1383
1384 if (gimple_bb (f_acc->stmt) == bb)
1385 create_new_field_access (f_acc, str->fields[i]);
1386 return 1;
1387 }
1388
1389 /* This function creates new accesses for the structure
1390 type STR in basic block BB. */
1391
1392 static void
1393 create_new_accs_for_struct (d_str str, basic_block bb)
1394 {
1395 int i;
1396 struct create_acc_data dt;
1397
1398 dt.str = str;
1399 dt.bb = bb;
1400 dt.field_index = -1;
1401
1402 for (i = 0; i < str->num_fields; i++)
1403 {
1404 dt.field_index = i;
1405
1406 if (str->fields[i].acc_sites)
1407 htab_traverse (str->fields[i].acc_sites,
1408 create_new_field_acc, &dt);
1409 }
1410 if (str->accs)
1411 htab_traverse (str->accs, create_new_acc, &dt);
1412 }
1413
1414 /* This function inserts new variables from new_var,
1415 defined by SLOT, into varpool. */
1416
1417 static int
1418 update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1419 {
1420 new_var n_var = *(new_var *) slot;
1421 tree var;
1422 unsigned i;
1423
1424 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
1425 insert_global_to_varpool (var);
1426 return 1;
1427 }
1428
1429 /* This function prints a field access site, defined by SLOT. */
1430
1431 static int
1432 dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
1433 {
1434 struct field_access_site *f_acc =
1435 *(struct field_access_site **) slot;
1436
1437 fprintf(dump_file, "\n");
1438 if (f_acc->stmt)
1439 print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
1440 if (f_acc->ref_def_stmt)
1441 print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
1442 if (f_acc->cast_stmt)
1443 print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
1444 return 1;
1445 }
1446
1447 /* Print field accesses from hashtable F_ACCS. */
1448
1449 static void
1450 dump_field_acc_sites (htab_t f_accs)
1451 {
1452 if (!dump_file)
1453 return;
1454
1455 if (f_accs)
1456 htab_traverse (f_accs, dump_field_acc, NULL);
1457 }
1458
1459 /* Hash value for fallocs_t. */
1460
1461 static hashval_t
1462 malloc_hash (const void *x)
1463 {
1464 return htab_hash_pointer (((const_fallocs_t)x)->func);
1465 }
1466
1467 /* This function returns nonzero if function of func_alloc_sites' X
1468 is equal to Y. */
1469
1470 static int
1471 malloc_eq (const void *x, const void *y)
1472 {
1473 return ((const_fallocs_t)x)->func == (const_tree)y;
1474 }
1475
1476 /* This function is a callback for traversal over a structure accesses.
1477 It frees an access represented by SLOT. */
1478
1479 static int
1480 free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1481 {
1482 struct access_site * acc = *(struct access_site **) slot;
1483
1484 VEC_free (tree, heap, acc->vars);
1485 free (acc);
1486 return 1;
1487 }
1488
1489 /* This is a callback function for traversal over field accesses.
1490 It frees a field access represented by SLOT. */
1491
1492 static int
1493 free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1494 {
1495 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1496
1497 free (f_acc);
1498 return 1;
1499 }
1500
1501 /* This function inserts TYPE into vector of UNSUITABLE_TYPES,
1502 if it is not there yet. */
1503
1504 static void
1505 add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
1506 {
1507 unsigned i;
1508 tree t;
1509
1510 if (!type)
1511 return;
1512
1513 type = TYPE_MAIN_VARIANT (type);
1514
1515 for (i = 0; VEC_iterate (tree, *unsuitable_types, i, t); i++)
1516 if (is_equal_types (t, type))
1517 break;
1518
1519 if (i == VEC_length (tree, *unsuitable_types))
1520 VEC_safe_push (tree, heap, *unsuitable_types, type);
1521 }
1522
1523 /* Given a type TYPE, this function returns the name of the type. */
1524
1525 static const char *
1526 get_type_name (tree type)
1527 {
1528 if (! TYPE_NAME (type))
1529 return NULL;
1530
1531 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
1532 return IDENTIFIER_POINTER (TYPE_NAME (type));
1533 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1534 && DECL_NAME (TYPE_NAME (type)))
1535 return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1536 else
1537 return NULL;
1538 }
1539
1540 /* This function is a temporary hack to overcome the types problem.
1541 When several compilation units are compiled together
1542 with -combine, the TYPE_MAIN_VARIANT of the same type
1543 can appear differently in different compilation units.
1544 Therefore this function first compares type names.
1545 If there are no names, structure bodies are recursively
1546 compared. */
1547
1548 static bool
1549 is_equal_types (tree type1, tree type2)
1550 {
1551 const char * name1,* name2;
1552
1553 if ((!type1 && type2)
1554 ||(!type2 && type1))
1555 return false;
1556
1557 if (!type1 && !type2)
1558 return true;
1559
1560 if (TREE_CODE (type1) != TREE_CODE (type2))
1561 return false;
1562
1563 if (type1 == type2)
1564 return true;
1565
1566 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
1567 return true;
1568
1569 name1 = get_type_name (type1);
1570 name2 = get_type_name (type2);
1571
1572 if (name1 && name2 && !strcmp (name1, name2))
1573 return true;
1574
1575 if (name1 && name2 && strcmp (name1, name2))
1576 return false;
1577
1578 switch (TREE_CODE (type1))
1579 {
1580 case POINTER_TYPE:
1581 case REFERENCE_TYPE:
1582 {
1583 return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
1584 }
1585 break;
1586
1587 case RECORD_TYPE:
1588 case UNION_TYPE:
1589 case QUAL_UNION_TYPE:
1590 case ENUMERAL_TYPE:
1591 {
1592 tree field1;
1593 /* Compare fields of structure. */
1594 for (field1 = TYPE_FIELDS (type1); field1;
1595 field1 = TREE_CHAIN (field1))
1596 {
1597 tree field2 = find_field_in_struct_1 (type2, field1);
1598 if (!field2)
1599 return false;
1600 }
1601 return true;
1602 }
1603 break;
1604
1605 case INTEGER_TYPE:
1606 {
1607 if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1608 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
1609 return true;
1610 }
1611 break;
1612
1613 case ARRAY_TYPE:
1614 {
1615 tree d1, d2;
1616 tree max1, min1, max2, min2;
1617
1618 if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
1619 return false;
1620
1621 d1 = TYPE_DOMAIN (type1);
1622 d2 = TYPE_DOMAIN (type2);
1623
1624 if (!d1 || !d2)
1625 return false;
1626
1627 max1 = TYPE_MAX_VALUE (d1);
1628 max2 = TYPE_MAX_VALUE (d2);
1629 min1 = TYPE_MIN_VALUE (d1);
1630 min2 = TYPE_MIN_VALUE (d2);
1631
1632 if (max1 && max2 && min1 && min2
1633 && TREE_CODE (max1) == TREE_CODE (max2)
1634 && TREE_CODE (max1) == INTEGER_CST
1635 && TREE_CODE (min1) == TREE_CODE (min2)
1636 && TREE_CODE (min1) == INTEGER_CST
1637 && tree_int_cst_equal (max1, max2)
1638 && tree_int_cst_equal (min1, min2))
1639 return true;
1640 }
1641 break;
1642
1643 default:
1644 gcc_unreachable();
1645 }
1646
1647 return false;
1648 }
1649
1650 /* This function free non-field accesses from hashtable ACCS. */
1651
1652 static void
1653 free_accesses (htab_t accs)
1654 {
1655 if (accs)
1656 htab_traverse (accs, free_accs, NULL);
1657 htab_delete (accs);
1658 }
1659
1660 /* This function free field accesses hashtable F_ACCS. */
1661
1662 static void
1663 free_field_accesses (htab_t f_accs)
1664 {
1665 if (f_accs)
1666 htab_traverse (f_accs, free_field_accs, NULL);
1667 htab_delete (f_accs);
1668 }
1669
1670 /* Update call graph with new edge generated by new MALLOC_STMT.
1671 The edge origin is CONTEXT function. */
1672
1673 static void
1674 update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
1675 {
1676 struct cgraph_node *src, *dest;
1677 tree malloc_fn_decl;
1678
1679 if (!malloc_stmt)
1680 return;
1681
1682 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1683
1684 src = cgraph_node (context);
1685 dest = cgraph_node (malloc_fn_decl);
1686 cgraph_create_edge (src, dest, malloc_stmt,
1687 0, 0, gimple_bb (malloc_stmt)->loop_depth);
1688 }
1689
1690 /* This function generates set of statements required
1691 to allocate number NUM of structures of type NEW_TYPE.
1692 The statements are stored in NEW_STMTS. The statement that contain
1693 call to malloc is returned. MALLOC_STMT is an original call to malloc. */
1694
1695 static gimple
1696 create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
1697 tree num)
1698 {
1699 tree new_malloc_size;
1700 tree malloc_fn_decl;
1701 gimple new_stmt;
1702 tree malloc_res;
1703 gimple call_stmt, final_stmt;
1704 tree cast_res;
1705
1706 gcc_assert (num && malloc_stmt && new_type);
1707 *new_stmts = gimple_seq_alloc ();
1708
1709 /* Generate argument to malloc as multiplication of num
1710 and size of new_type. */
1711 new_stmt = gen_size (num, new_type, &new_malloc_size);
1712 gimple_seq_add_stmt (new_stmts, new_stmt);
1713
1714 /* Generate new call for malloc. */
1715 malloc_res = create_tmp_var (ptr_type_node, NULL);
1716 add_referenced_var (malloc_res);
1717
1718 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1719 call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
1720 gimple_call_set_lhs (call_stmt, malloc_res);
1721 finalize_stmt_and_append (new_stmts, call_stmt);
1722
1723 /* Create new cast statement. */
1724 final_stmt = get_final_alloc_stmt (malloc_stmt);
1725 gcc_assert (final_stmt);
1726 new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
1727 gimple_seq_add_stmt (new_stmts, new_stmt);
1728
1729 return call_stmt;
1730 }
1731
1732 /* This function returns a tree representing
1733 the number of instances of structure STR_DECL allocated
1734 by allocation STMT. If new statements are generated,
1735 they are filled into NEW_STMTS_P. */
1736
1737 static tree
1738 gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
1739 gimple_seq *new_stmts_p)
1740 {
1741 tree arg;
1742 tree struct_size;
1743 HOST_WIDE_INT struct_size_int;
1744
1745 if (!stmt)
1746 return NULL_TREE;
1747
1748 /* Get malloc argument. */
1749 if (!is_gimple_call (stmt))
1750 return NULL_TREE;
1751
1752 arg = gimple_call_arg (stmt, 0);
1753
1754 if (TREE_CODE (arg) != SSA_NAME
1755 && !TREE_CONSTANT (arg))
1756 return NULL_TREE;
1757
1758 struct_size = TYPE_SIZE_UNIT (str_decl);
1759 struct_size_int = TREE_INT_CST_LOW (struct_size);
1760
1761 gcc_assert (struct_size);
1762
1763 if (TREE_CODE (arg) == SSA_NAME)
1764 {
1765 tree num;
1766 gimple div_stmt;
1767
1768 if (is_result_of_mult (arg, &num, struct_size))
1769 return num;
1770
1771 num = create_tmp_var (integer_type_node, NULL);
1772
1773 if (num)
1774 add_referenced_var (num);
1775
1776 if (exact_log2 (struct_size_int) == -1)
1777 div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
1778 struct_size);
1779 else
1780 {
1781 tree C = build_int_cst (integer_type_node,
1782 exact_log2 (struct_size_int));
1783
1784 div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
1785 }
1786 gimple_seq_add_stmt (new_stmts_p, div_stmt);
1787 finalize_stmt (div_stmt);
1788 return num;
1789 }
1790
1791 if (CONSTANT_CLASS_P (arg)
1792 && multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
1793 return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
1794
1795 return NULL_TREE;
1796 }
1797
1798 /* This function is a callback for traversal on new_var's hashtable.
1799 SLOT is a pointer to new_var. This function prints to dump_file
1800 an original variable and all new variables from the new_var
1801 pointed by *SLOT. */
1802
1803 static int
1804 dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1805 {
1806 new_var n_var = *(new_var *) slot;
1807 tree var_type;
1808 tree var;
1809 unsigned i;
1810
1811 var_type = get_type_of_var (n_var->orig_var);
1812
1813 fprintf (dump_file, "\nOrig var: ");
1814 print_generic_expr (dump_file, n_var->orig_var, 0);
1815 fprintf (dump_file, " of type ");
1816 print_generic_expr (dump_file, var_type, 0);
1817 fprintf (dump_file, "\n");
1818
1819 for (i = 0;
1820 VEC_iterate (tree, n_var->new_vars, i, var); i++)
1821 {
1822 var_type = get_type_of_var (var);
1823
1824 fprintf (dump_file, " ");
1825 print_generic_expr (dump_file, var, 0);
1826 fprintf (dump_file, " of type ");
1827 print_generic_expr (dump_file, var_type, 0);
1828 fprintf (dump_file, "\n");
1829 }
1830 return 1;
1831 }
1832
1833 /* This function copies attributes form ORIG_DECL to NEW_DECL. */
1834
1835 static inline void
1836 copy_decl_attributes (tree new_decl, tree orig_decl)
1837 {
1838
1839 DECL_ARTIFICIAL (new_decl) = 1;
1840 DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
1841 TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
1842 TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
1843 TREE_USED (new_decl) = TREE_USED (orig_decl);
1844 DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
1845 TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
1846 TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
1847
1848 if (TREE_CODE (orig_decl) == VAR_DECL)
1849 {
1850 TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
1851 DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
1852 }
1853 }
1854
1855 /* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
1856 the same way as a structure type is wrapped in DECL.
1857 It returns the generated type. */
1858
1859 static inline tree
1860 gen_struct_type (tree decl, tree new_str_type)
1861 {
1862 tree type_orig = get_type_of_var (decl);
1863 tree new_type = new_str_type;
1864 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
1865 type_wrapper_t wr;
1866 type_wrapper_t *wr_p;
1867
1868 while (POINTER_TYPE_P (type_orig)
1869 || TREE_CODE (type_orig) == ARRAY_TYPE)
1870 {
1871 if (POINTER_TYPE_P (type_orig))
1872 {
1873 wr.wrap = 0;
1874 wr.domain = NULL_TREE;
1875 }
1876 else
1877 {
1878 gcc_assert (TREE_CODE (type_orig) == ARRAY_TYPE);
1879 wr.wrap = 1;
1880 wr.domain = TYPE_DOMAIN (type_orig);
1881 }
1882 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
1883 type_orig = TREE_TYPE (type_orig);
1884 }
1885
1886 while (VEC_length (type_wrapper_t, wrapper) != 0)
1887 {
1888 wr_p = VEC_last (type_wrapper_t, wrapper);
1889
1890 if (wr_p->wrap) /* Array. */
1891 new_type = build_array_type (new_type, wr_p->domain);
1892 else /* Pointer. */
1893 new_type = build_pointer_type (new_type);
1894
1895 VEC_pop (type_wrapper_t, wrapper);
1896 }
1897
1898 VEC_free (type_wrapper_t, heap, wrapper);
1899 return new_type;
1900 }
1901
1902 /* This function generates and returns new variable name based on
1903 ORIG_DECL name, combined with index I.
1904 The form of the new name is <orig_name>.<I> . */
1905
1906 static tree
1907 gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
1908 {
1909 const char *old_name;
1910 char *prefix;
1911 char *new_name;
1912
1913 if (!DECL_NAME (orig_decl)
1914 || !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
1915 return NULL;
1916
1917 /* If the original variable has a name, create an
1918 appropriate new name for the new variable. */
1919
1920 old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
1921 prefix = XALLOCAVEC (char, strlen (old_name) + 1);
1922 strcpy (prefix, old_name);
1923 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
1924 return get_identifier (new_name);
1925 }
1926
1927 /* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
1928
1929 static void
1930 add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
1931 {
1932 void **slot;
1933
1934 slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
1935 htab_hash_pointer (new_node->orig_var),
1936 INSERT);
1937 *slot = new_node;
1938 }
1939
1940 /* This function creates and returns new_var_data node
1941 with empty new_vars and orig_var equal to VAR. */
1942
1943 static new_var
1944 create_new_var_node (tree var, d_str str)
1945 {
1946 new_var node;
1947
1948 node = (new_var) xmalloc (sizeof (struct new_var_data));
1949 node->orig_var = var;
1950 node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
1951 return node;
1952 }
1953
1954 /* Check whether the type of VAR is potential candidate for peeling.
1955 Returns true if yes, false otherwise. If yes, TYPE_P will contain
1956 candidate type. If VAR is initialized, the type of VAR will be added
1957 to UNSUITABLE_TYPES. */
1958
1959 static bool
1960 is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
1961 {
1962 tree type;
1963 bool initialized = false;
1964
1965 *type_p = NULL;
1966
1967 if (!var)
1968 return false;
1969
1970 /* There is no support of initialized vars. */
1971 if (TREE_CODE (var) == VAR_DECL
1972 && DECL_INITIAL (var) != NULL_TREE)
1973 initialized = true;
1974
1975 type = get_type_of_var (var);
1976
1977 if (type)
1978 {
1979 type = TYPE_MAIN_VARIANT (strip_type (type));
1980 if (TREE_CODE (type) != RECORD_TYPE)
1981 return false;
1982 else
1983 {
1984 if (initialized && unsuitable_types && *unsuitable_types)
1985 {
1986 if (dump_file)
1987 {
1988 fprintf (dump_file, "The type ");
1989 print_generic_expr (dump_file, type, 0);
1990 fprintf (dump_file, " is initialized...Excluded.");
1991 }
1992 add_unsuitable_type (unsuitable_types, type);
1993 }
1994 *type_p = type;
1995 return true;
1996 }
1997 }
1998 else
1999 return false;
2000 }
2001
2002 /* Hash value for field_access_site. */
2003
2004 static hashval_t
2005 field_acc_hash (const void *x)
2006 {
2007 return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
2008 }
2009
2010 /* This function returns nonzero if stmt of field_access_site X
2011 is equal to Y. */
2012
2013 static int
2014 field_acc_eq (const void *x, const void *y)
2015 {
2016 return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
2017 }
2018
2019 /* This function prints an access site, defined by SLOT. */
2020
2021 static int
2022 dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
2023 {
2024 struct access_site *acc = *(struct access_site **) slot;
2025 tree var;
2026 unsigned i;
2027
2028 fprintf(dump_file, "\n");
2029 if (acc->stmt)
2030 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
2031 fprintf(dump_file, " : ");
2032
2033 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
2034 {
2035 print_generic_expr (dump_file, var, 0);
2036 fprintf(dump_file, ", ");
2037 }
2038 return 1;
2039 }
2040
2041 /* This function frees memory allocated for structure clusters,
2042 starting from CLUSTER. */
2043
2044 static void
2045 free_struct_cluster (struct field_cluster* cluster)
2046 {
2047 if (cluster)
2048 {
2049 if (cluster->fields_in_cluster)
2050 sbitmap_free (cluster->fields_in_cluster);
2051 if (cluster->sibling)
2052 free_struct_cluster (cluster->sibling);
2053 free (cluster);
2054 }
2055 }
2056
2057 /* Free all allocated memory under the structure node pointed by D_NODE. */
2058
2059 static void
2060 free_data_struct (d_str d_node)
2061 {
2062 int i;
2063
2064 if (!d_node)
2065 return;
2066
2067 if (dump_file)
2068 {
2069 fprintf (dump_file, "\nRemoving data structure \"");
2070 print_generic_expr (dump_file, d_node->decl, 0);
2071 fprintf (dump_file, "\" from data_struct_list.");
2072 }
2073
2074 /* Free all space under d_node. */
2075 if (d_node->fields)
2076 {
2077 for (i = 0; i < d_node->num_fields; i++)
2078 free_field_accesses (d_node->fields[i].acc_sites);
2079 free (d_node->fields);
2080 }
2081
2082 if (d_node->accs)
2083 free_accesses (d_node->accs);
2084
2085 if (d_node->struct_clustering)
2086 free_struct_cluster (d_node->struct_clustering);
2087
2088 if (d_node->new_types)
2089 VEC_free (tree, heap, d_node->new_types);
2090 }
2091
2092 /* This function creates new general and field accesses in BB. */
2093
2094 static void
2095 create_new_accesses_in_bb (basic_block bb)
2096 {
2097 d_str str;
2098 unsigned i;
2099
2100 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2101 create_new_accs_for_struct (str, bb);
2102 }
2103
2104 /* This function adds allocation sites for peeled structures.
2105 M_DATA is vector of allocation sites of function CONTEXT. */
2106
2107 static void
2108 create_new_alloc_sites (fallocs_t m_data, tree context)
2109 {
2110 alloc_site_t *call;
2111 unsigned j;
2112
2113 for (j = 0; VEC_iterate (alloc_site_t, m_data->allocs, j, call); j++)
2114 {
2115 gimple stmt = call->stmt;
2116 d_str str = call->str;
2117 tree num;
2118 gimple_seq new_stmts = NULL;
2119 gimple last_stmt = get_final_alloc_stmt (stmt);
2120 unsigned i;
2121 tree type;
2122
2123 num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
2124 if (new_stmts)
2125 {
2126 gimple last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2127 insert_seq_after_stmt (last_stmt, new_stmts);
2128 last_stmt = last_stmt_tmp;
2129 }
2130
2131 /* Generate an allocation sites for each new structure type. */
2132 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
2133 {
2134 gimple new_malloc_stmt = NULL;
2135 gimple last_stmt_tmp = NULL;
2136
2137 new_stmts = NULL;
2138 new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
2139 last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2140 insert_seq_after_stmt (last_stmt, new_stmts);
2141 update_cgraph_with_malloc_call (new_malloc_stmt, context);
2142 last_stmt = last_stmt_tmp;
2143 }
2144 }
2145 }
2146
2147 /* This function prints new variables from hashtable
2148 NEW_VARS_HTAB to dump_file. */
2149
2150 static void
2151 dump_new_vars (htab_t new_vars_htab)
2152 {
2153 if (!dump_file)
2154 return;
2155
2156 if (new_vars_htab)
2157 htab_traverse (new_vars_htab, dump_new_var, NULL);
2158 }
2159
2160 /* Given an original variable ORIG_DECL of structure type STR,
2161 this function generates new variables of the types defined
2162 by STR->new_type. Generated types are saved in new_var node NODE.
2163 ORIG_DECL should has VAR_DECL tree_code. */
2164
2165 static void
2166 create_new_var_1 (tree orig_decl, d_str str, new_var node)
2167 {
2168 unsigned i;
2169 tree type;
2170
2171 for (i = 0;
2172 VEC_iterate (tree, str->new_types, i, type); i++)
2173 {
2174 tree new_decl = NULL;
2175 tree new_name;
2176
2177 new_name = gen_var_name (orig_decl, i);
2178 type = gen_struct_type (orig_decl, type);
2179
2180 if (is_global_var (orig_decl))
2181 new_decl = build_decl (VAR_DECL, new_name, type);
2182 else
2183 {
2184 const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
2185 new_decl = create_tmp_var (type, name);
2186 }
2187
2188 copy_decl_attributes (new_decl, orig_decl);
2189 VEC_safe_push (tree, heap, node->new_vars, new_decl);
2190 }
2191 }
2192
2193 /* This function creates new variables to
2194 substitute the original variable VAR_DECL and adds
2195 them to the new_var's hashtable NEW_VARS_HTAB. */
2196
2197 static void
2198 create_new_var (tree var_decl, htab_t new_vars_htab)
2199 {
2200 new_var node;
2201 d_str str;
2202 tree type;
2203 unsigned i;
2204
2205 if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
2206 return;
2207
2208 if (!is_candidate (var_decl, &type, NULL))
2209 return;
2210
2211 i = find_structure (type);
2212 if (i == VEC_length (structure, structures))
2213 return;
2214
2215 str = VEC_index (structure, structures, i);
2216 node = create_new_var_node (var_decl, str);
2217 create_new_var_1 (var_decl, str, node);
2218 add_to_new_vars_htab (node, new_vars_htab);
2219 }
2220
2221 /* Hash value for new_var. */
2222
2223 static hashval_t
2224 new_var_hash (const void *x)
2225 {
2226 return htab_hash_pointer (((const_new_var)x)->orig_var);
2227 }
2228
2229 /* This function returns nonzero if orig_var of new_var X is equal to Y. */
2230
2231 static int
2232 new_var_eq (const void *x, const void *y)
2233 {
2234 return ((const_new_var)x)->orig_var == (const_tree)y;
2235 }
2236
2237 /* This function check whether a structure type represented by STR
2238 escapes due to ipa-type-escape analysis. If yes, this type is added
2239 to UNSUITABLE_TYPES vector. */
2240
2241 static void
2242 check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
2243 {
2244 tree type = str->decl;
2245
2246 if (!ipa_type_escape_type_contained_p (type))
2247 {
2248 if (dump_file)
2249 {
2250 fprintf (dump_file, "\nEscaping type is ");
2251 print_generic_expr (dump_file, type, 0);
2252 }
2253 add_unsuitable_type (unsuitable_types, type);
2254 }
2255 }
2256
2257 /* Hash value for access_site. */
2258
2259 static hashval_t
2260 acc_hash (const void *x)
2261 {
2262 return htab_hash_pointer (((const struct access_site *)x)->stmt);
2263 }
2264
2265 /* Return nonzero if stmt of access_site X is equal to Y. */
2266
2267 static int
2268 acc_eq (const void *x, const void *y)
2269 {
2270 return ((const struct access_site *)x)->stmt == (const_gimple)y;
2271 }
2272
2273 /* Given a structure declaration STRUCT_DECL, and number of fields
2274 in the structure NUM_FIELDS, this function creates and returns
2275 corresponding field_entry's. */
2276
2277 static struct field_entry *
2278 get_fields (tree struct_decl, int num_fields)
2279 {
2280 struct field_entry *list;
2281 tree t = TYPE_FIELDS (struct_decl);
2282 int idx = 0;
2283
2284 list =
2285 (struct field_entry *) xmalloc (num_fields * sizeof (struct field_entry));
2286
2287 for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
2288 if (TREE_CODE (t) == FIELD_DECL)
2289 {
2290 list[idx].index = idx;
2291 list[idx].decl = t;
2292 list[idx].acc_sites =
2293 htab_create (32, field_acc_hash, field_acc_eq, NULL);
2294 list[idx].count = 0;
2295 list[idx].field_mapping = NULL_TREE;
2296 }
2297
2298 return list;
2299 }
2300
2301 /* Print non-field accesses from hashtable ACCS of structure. */
2302
2303 static void
2304 dump_access_sites (htab_t accs)
2305 {
2306 if (!dump_file)
2307 return;
2308
2309 if (accs)
2310 htab_traverse (accs, dump_acc, NULL);
2311 }
2312
2313 /* This function is a callback for alloc_sites hashtable
2314 traversal. SLOT is a pointer to fallocs_t. This function
2315 removes all allocations of the structure defined by DATA. */
2316
2317 static int
2318 remove_str_allocs_in_func (void **slot, void *data)
2319 {
2320 fallocs_t fallocs = *(fallocs_t *) slot;
2321 unsigned i = 0;
2322 alloc_site_t *call;
2323
2324 while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
2325 {
2326 if (call->str == (d_str) data)
2327 VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
2328 else
2329 i++;
2330 }
2331
2332 return 1;
2333 }
2334
2335 /* This function remove all entries corresponding to the STR structure
2336 from alloc_sites hashtable. */
2337
2338 static void
2339 remove_str_allocs (d_str str)
2340 {
2341 if (!str)
2342 return;
2343
2344 if (alloc_sites)
2345 htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
2346 }
2347
2348 /* This function removes the structure with index I from structures vector. */
2349
2350 static void
2351 remove_structure (unsigned i)
2352 {
2353 d_str str;
2354
2355 if (i >= VEC_length (structure, structures))
2356 return;
2357
2358 str = VEC_index (structure, structures, i);
2359
2360 /* Before removing the structure str, we have to remove its
2361 allocations from alloc_sites hashtable. */
2362 remove_str_allocs (str);
2363 free_data_struct (str);
2364 VEC_ordered_remove (structure, structures, i);
2365 }
2366
2367 /* Currently we support only EQ_EXPR or NE_EXPR conditions.
2368 COND_STMT is a condition statement to check. */
2369
2370 static bool
2371 is_safe_cond_expr (gimple cond_stmt)
2372 {
2373 tree arg0, arg1;
2374 unsigned str0, str1;
2375 bool s0, s1;
2376 unsigned length = VEC_length (structure, structures);
2377
2378 if (gimple_cond_code (cond_stmt) != EQ_EXPR
2379 && gimple_cond_code (cond_stmt) != NE_EXPR)
2380 return false;
2381
2382 arg0 = gimple_cond_lhs (cond_stmt);
2383 arg1 = gimple_cond_rhs (cond_stmt);
2384
2385 str0 = find_structure (strip_type (get_type_of_var (arg0)));
2386 str1 = find_structure (strip_type (get_type_of_var (arg1)));
2387
2388 s0 = (str0 != length) ? true : false;
2389 s1 = (str1 != length) ? true : false;
2390
2391 if (!s0 && !s1)
2392 return false;
2393
2394 /* For now we allow only comparison with 0 or NULL. */
2395 if (!integer_zerop (arg0) && !integer_zerop (arg1))
2396 return false;
2397
2398 return true;
2399 }
2400
2401 /* This function excludes statements, that are
2402 part of allocation sites or field accesses, from the
2403 hashtable of general accesses. SLOT represents general
2404 access that will be checked. DATA is a pointer to
2405 exclude_data structure. */
2406
2407 static int
2408 exclude_from_accs (void **slot, void *data)
2409 {
2410 struct access_site *acc = *(struct access_site **) slot;
2411 tree fn_decl = ((struct exclude_data *)data)->fn_decl;
2412 d_str str = ((struct exclude_data *)data)->str;
2413
2414 if (is_part_of_malloc (acc->stmt, fn_decl)
2415 || is_part_of_field_access (acc->stmt, str))
2416 {
2417 VEC_free (tree, heap, acc->vars);
2418 free (acc);
2419 htab_clear_slot (str->accs, slot);
2420 }
2421 return 1;
2422 }
2423
2424 /* Callback function for walk_tree called from collect_accesses_in_bb
2425 function. DATA is the statement which is analyzed. */
2426
2427 static tree
2428 get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
2429 {
2430 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
2431 gimple stmt = (gimple) wi->info;
2432 tree t = *tp;
2433
2434 if (!t)
2435 return NULL;
2436
2437 switch (TREE_CODE (t))
2438 {
2439 case BIT_FIELD_REF:
2440 {
2441 tree var = TREE_OPERAND(t, 0);
2442 tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
2443 unsigned i = find_structure (type);
2444
2445 if (i != VEC_length (structure, structures))
2446 {
2447 if (dump_file)
2448 {
2449 fprintf (dump_file, "\nThe type ");
2450 print_generic_expr (dump_file, type, 0);
2451 fprintf (dump_file, " has bitfield.");
2452 }
2453 remove_structure (i);
2454 }
2455 }
2456 break;
2457
2458 case COMPONENT_REF:
2459 {
2460 tree ref = TREE_OPERAND (t, 0);
2461 tree field_decl = TREE_OPERAND (t, 1);
2462
2463
2464 if ((TREE_CODE (ref) == INDIRECT_REF
2465 || TREE_CODE (ref) == ARRAY_REF
2466 || TREE_CODE (ref) == VAR_DECL)
2467 && TREE_CODE (field_decl) == FIELD_DECL)
2468 {
2469 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
2470 unsigned i = find_structure (type);
2471
2472 if (i != VEC_length (structure, structures))
2473 {
2474 d_str str = VEC_index (structure, structures, i);
2475 struct field_entry * field =
2476 find_field_in_struct (str, field_decl);
2477
2478 if (field)
2479 {
2480 struct field_access_site *acc = make_field_acc_node ();
2481
2482 gcc_assert (acc);
2483
2484 acc->stmt = stmt;
2485 acc->comp_ref = t;
2486 acc->ref = ref;
2487 acc->field_decl = field_decl;
2488
2489 /* Check whether the access is of the form
2490 we can deal with. */
2491 if (!decompose_access (str->decl, acc))
2492 {
2493 if (dump_file)
2494 {
2495 fprintf (dump_file, "\nThe type ");
2496 print_generic_expr (dump_file, type, 0);
2497 fprintf (dump_file,
2498 " has complicate access in statement ");
2499 print_gimple_stmt (dump_file, stmt, 0, 0);
2500 }
2501
2502 remove_structure (i);
2503 free (acc);
2504 }
2505 else
2506 {
2507 /* Increase count of field. */
2508 basic_block bb = gimple_bb (stmt);
2509 field->count += bb->count;
2510
2511 /* Add stmt to the acc_sites of field. */
2512 add_field_acc_to_acc_sites (acc, field->acc_sites);
2513 }
2514 *walk_subtrees = 0;
2515 }
2516 }
2517 }
2518 }
2519 break;
2520
2521 case COND_EXPR:
2522 {
2523 tree cond = COND_EXPR_COND (t);
2524 int i;
2525 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
2526 {
2527 tree t = TREE_OPERAND (cond, i);
2528
2529 *walk_subtrees = 1;
2530 walk_tree (&t, get_stmt_accesses, data, NULL);
2531 }
2532 *walk_subtrees = 0;
2533 }
2534 break;
2535
2536 case VAR_DECL:
2537 case SSA_NAME:
2538 {
2539 unsigned i;
2540
2541 if (TREE_CODE (t) == SSA_NAME)
2542 t = SSA_NAME_VAR (t);
2543
2544 i = find_structure (strip_type (get_type_of_var (t)));
2545 if (i != VEC_length (structure, structures))
2546 {
2547 d_str str;
2548
2549 str = VEC_index (structure, structures, i);
2550 add_access_to_acc_sites (stmt, t, str->accs);
2551 }
2552 *walk_subtrees = 0;
2553 }
2554 break;
2555
2556 default:
2557 return NULL;
2558 }
2559
2560 return NULL;
2561 }
2562
2563 /* Free structures hashtable. */
2564
2565 static void
2566 free_structures (void)
2567 {
2568 d_str str;
2569 unsigned i;
2570
2571 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2572 free_data_struct (str);
2573
2574 VEC_free (structure, heap, structures);
2575 structures = NULL;
2576 }
2577
2578 /* This function is a callback for traversal over new_var's hashtable.
2579 SLOT is a pointer to new_var. This function frees memory allocated
2580 for new_var and pointed by *SLOT. */
2581
2582 static int
2583 free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
2584 {
2585 new_var n_var = *(new_var *) slot;
2586
2587 /* Free vector of new_vars. */
2588 VEC_free (tree, heap, n_var->new_vars);
2589 free (n_var);
2590 return 1;
2591 }
2592
2593 /* Free new_vars hashtable NEW_VARS_HTAB. */
2594
2595 static void
2596 free_new_vars_htab (htab_t new_vars_htab)
2597 {
2598 if (new_vars_htab)
2599 htab_traverse (new_vars_htab, free_new_var, NULL);
2600 htab_delete (new_vars_htab);
2601 new_vars_htab = NULL;
2602 }
2603
2604 /* This function creates new general and field accesses that appear in cfun. */
2605
2606 static void
2607 create_new_accesses_for_func (void)
2608 {
2609 basic_block bb;
2610
2611 FOR_EACH_BB_FN (bb, cfun)
2612 create_new_accesses_in_bb (bb);
2613 }
2614
2615 /* Create new allocation sites for the function represented by NODE. */
2616
2617 static void
2618 create_new_alloc_sites_for_func (struct cgraph_node *node)
2619 {
2620 fallocs_t fallocs = get_fallocs (node->decl);
2621
2622 if (fallocs)
2623 create_new_alloc_sites (fallocs, node->decl);
2624 }
2625
2626 /* For each local variable of structure type from the vector of structures
2627 this function generates new variable(s) to replace it. */
2628
2629 static void
2630 create_new_local_vars (void)
2631 {
2632 tree var;
2633 referenced_var_iterator rvi;
2634
2635 new_local_vars = htab_create (num_referenced_vars,
2636 new_var_hash, new_var_eq, NULL);
2637
2638 FOR_EACH_REFERENCED_VAR (var, rvi)
2639 {
2640 if (!is_global_var (var))
2641 create_new_var (var, new_local_vars);
2642 }
2643
2644 if (new_local_vars)
2645 htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
2646 dump_new_vars (new_local_vars);
2647 }
2648
2649 /* This function prints the SHIFT number of spaces to the DUMP_FILE. */
2650
2651 static inline void
2652 print_shift (unsigned HOST_WIDE_INT shift)
2653 {
2654 unsigned HOST_WIDE_INT sh = shift;
2655
2656 while (sh--)
2657 fprintf (dump_file, " ");
2658 }
2659
2660 /* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
2661
2662 static inline void
2663 update_fields_mapping (struct field_cluster *cluster, tree new_type,
2664 struct field_entry * fields, int num_fields)
2665 {
2666 int i;
2667
2668 for (i = 0; i < num_fields; i++)
2669 if (TEST_BIT (cluster->fields_in_cluster, i))
2670 fields[i].field_mapping = new_type;
2671 }
2672
2673 /* This functions builds structure with FIELDS,
2674 NAME and attributes similar to ORIG_STRUCT.
2675 It returns the newly created structure. */
2676
2677 static tree
2678 build_basic_struct (tree fields, tree name, tree orig_struct)
2679 {
2680 tree attributes = NULL_TREE;
2681 tree ref = 0;
2682 tree x;
2683
2684 if (TYPE_ATTRIBUTES (orig_struct))
2685 attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
2686 ref = make_node (RECORD_TYPE);
2687 TYPE_SIZE (ref) = 0;
2688 decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
2689 TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
2690 for (x = fields; x; x = TREE_CHAIN (x))
2691 {
2692 DECL_CONTEXT (x) = ref;
2693 DECL_PACKED (x) |= TYPE_PACKED (ref);
2694 }
2695 TYPE_FIELDS (ref) = fields;
2696 layout_type (ref);
2697 TYPE_NAME (ref) = name;
2698
2699 return ref;
2700 }
2701
2702 /* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
2703 of preparation for new structure building. NUM_FIELDS is a total
2704 number of fields in the structure. The function returns newly
2705 generated fields. */
2706
2707 static tree
2708 create_fields (struct field_cluster * cluster,
2709 struct field_entry * fields, int num_fields)
2710 {
2711 int i;
2712 tree new_types = NULL_TREE;
2713 tree last = NULL_TREE;
2714
2715 for (i = 0; i < num_fields; i++)
2716 if (TEST_BIT (cluster->fields_in_cluster, i))
2717 {
2718 tree new_decl = unshare_expr (fields[i].decl);
2719
2720 if (!new_types)
2721 new_types = new_decl;
2722 else
2723 TREE_CHAIN (last) = new_decl;
2724 last = new_decl;
2725 }
2726
2727 TREE_CHAIN (last) = NULL_TREE;
2728 return new_types;
2729
2730 }
2731
2732 /* This function creates a cluster name. The name is based on
2733 the original structure name, if it is present. It has a form:
2734
2735 <original_struct_name>_sub.<CLUST_NUM>
2736
2737 The original structure name is taken from the type of DECL.
2738 If an original structure name is not present, it's generated to be:
2739
2740 struct.<STR_NUM>
2741
2742 The function returns identifier of the new cluster name. */
2743
2744 static inline tree
2745 gen_cluster_name (tree decl, int clust_num, int str_num)
2746 {
2747 const char * orig_name = get_type_name (decl);
2748 char * tmp_name = NULL;
2749 char * prefix;
2750 char * new_name;
2751 size_t len;
2752
2753 if (!orig_name)
2754 ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
2755
2756 len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
2757 prefix = XALLOCAVEC (char, len + 1);
2758 memcpy (prefix, tmp_name ? tmp_name : orig_name,
2759 strlen (tmp_name ? tmp_name : orig_name));
2760 strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
2761
2762 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
2763 return get_identifier (new_name);
2764 }
2765
2766 /* This function checks whether the structure STR has bitfields.
2767 If yes, this structure type is added to UNSUITABLE_TYPES vector. */
2768
2769 static void
2770 check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
2771 {
2772 tree type = str->decl;
2773 int i;
2774
2775 for (i = 0; i < str->num_fields; i++)
2776 if (DECL_BIT_FIELD (str->fields[i].decl))
2777 {
2778 add_unsuitable_type (unsuitable_types, type);
2779 if (dump_file)
2780 {
2781 fprintf (dump_file, "\nType ");
2782 print_generic_expr (dump_file, type, 0);
2783 fprintf (dump_file, "\nescapes due to bitfield ");
2784 print_generic_expr (dump_file, str->fields[i].decl, 0);
2785 }
2786 break;
2787 }
2788 }
2789
2790 /* This function adds to UNSUITABLE_TYPES those types that escape
2791 due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
2792
2793 static void
2794 exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
2795 {
2796 d_str str;
2797 unsigned i;
2798
2799 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2800 check_type_escape (str, unsuitable_types);
2801 }
2802
2803 /* If a structure type is a return type of any function,
2804 we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
2805
2806 static void
2807 exclude_returned_types (VEC (tree, heap) **unsuitable_types)
2808 {
2809 struct cgraph_node *c_node;
2810
2811 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2812 {
2813 tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
2814
2815 if (ret_t)
2816 {
2817 ret_t = strip_type (ret_t);
2818 if (TREE_CODE (ret_t) == RECORD_TYPE)
2819 {
2820 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
2821 if (dump_file)
2822 {
2823 fprintf (dump_file, "\nThe type \"");
2824 print_generic_expr (dump_file, ret_t, 0);
2825 fprintf (dump_file,
2826 "\" is return type of function...Excluded.");
2827 }
2828 }
2829 }
2830 }
2831 }
2832
2833 /* This function looks for parameters of local functions
2834 which are of structure types, or derived from them (arrays
2835 of structures, pointers to structures, or their combinations).
2836 We are not handling peeling of such structures right now.
2837 The found structures types are added to UNSUITABLE_TYPES vector. */
2838
2839 static void
2840 exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
2841 {
2842 struct cgraph_node *c_node;
2843
2844 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2845 if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
2846 {
2847 tree fn = c_node->decl;
2848 tree arg;
2849
2850 for (arg = DECL_ARGUMENTS (fn); arg; arg = TREE_CHAIN (arg))
2851 {
2852 tree type = TREE_TYPE (arg);
2853
2854 type = strip_type (type);
2855 if (TREE_CODE (type) == RECORD_TYPE)
2856 {
2857 add_unsuitable_type (unsuitable_types,
2858 TYPE_MAIN_VARIANT (type));
2859 if (dump_file)
2860 {
2861 fprintf (dump_file, "\nPointer to type \"");
2862 print_generic_expr (dump_file, type, 0);
2863 fprintf (dump_file,
2864 "\" is passed to local function...Excluded.");
2865 }
2866 }
2867 }
2868 }
2869 }
2870
2871 /* This function analyzes structure form of structures
2872 potential for transformation. If we are not capable to transform
2873 structure of some form, we remove it from the structures hashtable.
2874 Right now we cannot handle nested structs, when nesting is
2875 through any level of pointers or arrays.
2876
2877 TBD: release these constrains in future.
2878
2879 Note, that in this function we suppose that all structures
2880 in the program are members of the structures hashtable right now,
2881 without excluding escaping types. */
2882
2883 static void
2884 check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
2885 {
2886 int i;
2887
2888 for (i = 0; i < str->num_fields; i++)
2889 {
2890 tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
2891
2892 if (TREE_CODE (f_type) == RECORD_TYPE)
2893 {
2894 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
2895 add_unsuitable_type (unsuitable_types, str->decl);
2896 if (dump_file)
2897 {
2898 fprintf (dump_file, "\nType ");
2899 print_generic_expr (dump_file, f_type, 0);
2900 fprintf (dump_file, " is a field in the structure ");
2901 print_generic_expr (dump_file, str->decl, 0);
2902 fprintf (dump_file, ". Escaping...");
2903 }
2904 }
2905 }
2906 }
2907
2908 /* This function adds a structure TYPE to the vector of structures,
2909 if it's not already there. */
2910
2911 static void
2912 add_structure (tree type)
2913 {
2914 struct data_structure node;
2915 unsigned i;
2916 int num_fields;
2917
2918 type = TYPE_MAIN_VARIANT (type);
2919
2920 i = find_structure (type);
2921
2922 if (i != VEC_length (structure, structures))
2923 return;
2924
2925 num_fields = fields_length (type);
2926 node.decl = type;
2927 node.num_fields = num_fields;
2928 node.fields = get_fields (type, num_fields);
2929 node.struct_clustering = NULL;
2930 node.accs = htab_create (32, acc_hash, acc_eq, NULL);
2931 node.new_types = VEC_alloc (tree, heap, num_fields);
2932 node.count = 0;
2933
2934 VEC_safe_push (structure, heap, structures, &node);
2935
2936 if (dump_file)
2937 {
2938 fprintf (dump_file, "\nAdding data structure \"");
2939 print_generic_expr (dump_file, type, 0);
2940 fprintf (dump_file, "\" to data_struct_list.");
2941 }
2942 }
2943
2944 /* This function adds an allocation site to alloc_sites hashtable.
2945 The allocation site appears in STMT of function FN_DECL and
2946 allocates the structure represented by STR. */
2947
2948 static void
2949 add_alloc_site (tree fn_decl, gimple stmt, d_str str)
2950 {
2951 fallocs_t fallocs = NULL;
2952 alloc_site_t m_call;
2953
2954 m_call.stmt = stmt;
2955 m_call.str = str;
2956
2957 fallocs =
2958 (fallocs_t) htab_find_with_hash (alloc_sites,
2959 fn_decl, htab_hash_pointer (fn_decl));
2960
2961 if (!fallocs)
2962 {
2963 void **slot;
2964
2965 fallocs = (fallocs_t)
2966 xmalloc (sizeof (struct func_alloc_sites));
2967 fallocs->func = fn_decl;
2968 fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
2969 slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
2970 htab_hash_pointer (fn_decl), INSERT);
2971 *slot = fallocs;
2972 }
2973 VEC_safe_push (alloc_site_t, heap,
2974 fallocs->allocs, &m_call);
2975
2976 if (dump_file)
2977 {
2978 fprintf (dump_file, "\nAdding stmt ");
2979 print_gimple_stmt (dump_file, stmt, 0, 0);
2980 fprintf (dump_file, " to list of mallocs.");
2981 }
2982 }
2983
2984 /* This function returns true if the result of STMT, that contains a call
2985 to an allocation function, is cast to one of the structure types.
2986 STMT should be of the form: T.2 = <alloc_func> (T.1);
2987 If true, I_P contains an index of an allocated structure.
2988 Otherwise I_P contains the length of the vector of structures. */
2989
2990 static bool
2991 is_alloc_of_struct (gimple stmt, unsigned *i_p)
2992 {
2993 tree lhs;
2994 tree type;
2995 gimple final_stmt;
2996
2997 final_stmt = get_final_alloc_stmt (stmt);
2998
2999 if (!final_stmt)
3000 return false;
3001
3002 /* final_stmt should be of the form:
3003 T.3 = (struct_type *) T.2; */
3004
3005 if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
3006 return false;
3007
3008 lhs = gimple_assign_lhs (final_stmt);
3009
3010 type = get_type_of_var (lhs);
3011
3012 if (!type)
3013 return false;
3014
3015 if (!POINTER_TYPE_P (type)
3016 || TREE_CODE (strip_type (type)) != RECORD_TYPE)
3017 return false;
3018
3019 *i_p = find_structure (strip_type (type));
3020
3021 if (*i_p == VEC_length (structure, structures))
3022 return false;
3023
3024 return true;
3025 }
3026
3027 /* This function prints non-field and field accesses
3028 of the structure STR. */
3029
3030 static void
3031 dump_accs (d_str str)
3032 {
3033 int i;
3034
3035 fprintf (dump_file, "\nAccess sites of struct ");
3036 print_generic_expr (dump_file, str->decl, 0);
3037
3038 for (i = 0; i < str->num_fields; i++)
3039 {
3040 fprintf (dump_file, "\nAccess site of field ");
3041 print_generic_expr (dump_file, str->fields[i].decl, 0);
3042 dump_field_acc_sites (str->fields[i].acc_sites);
3043 fprintf (dump_file, ":\n");
3044 }
3045 fprintf (dump_file, "\nGeneral access sites\n");
3046 dump_access_sites (str->accs);
3047 }
3048
3049 /* This function checks whether an access statement, pointed by SLOT,
3050 is a condition we are capable to transform. It returns false if not,
3051 setting bool *DATA to false. */
3052
3053 static int
3054 safe_cond_expr_check (void **slot, void *data)
3055 {
3056 struct access_site *acc = *(struct access_site **) slot;
3057
3058 if (gimple_code (acc->stmt) == GIMPLE_COND
3059 && !is_safe_cond_expr (acc->stmt))
3060 {
3061 if (dump_file)
3062 {
3063 fprintf (dump_file, "\nUnsafe conditional statement ");
3064 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
3065 }
3066 *(bool *) data = false;
3067 return 0;
3068 }
3069 return 1;
3070 }
3071
3072 /* This function excludes statements that are part of allocation sites and
3073 field accesses from the hashtable of general accesses of the structure
3074 type STR. Only accesses that belong to the function represented by
3075 NODE are treated. */
3076
3077 static void
3078 exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
3079 {
3080 struct exclude_data dt;
3081 dt.str = str;
3082 dt.fn_decl = node->decl;
3083
3084 if (dt.str->accs)
3085 htab_traverse (dt.str->accs, exclude_from_accs, &dt);
3086 }
3087
3088 /* Collect accesses to the structure types that appear in basic block BB. */
3089
3090 static void
3091 collect_accesses_in_bb (basic_block bb)
3092 {
3093 gimple_stmt_iterator bsi;
3094 struct walk_stmt_info wi;
3095
3096 memset (&wi, 0, sizeof (wi));
3097
3098 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3099 {
3100 gimple stmt = gsi_stmt (bsi);
3101
3102 /* In asm stmt we cannot always track the arguments,
3103 so we just give up. */
3104 if (gimple_code (stmt) == GIMPLE_ASM)
3105 {
3106 free_structures ();
3107 break;
3108 }
3109
3110 wi.info = (void *) stmt;
3111 walk_gimple_op (stmt, get_stmt_accesses, &wi);
3112 }
3113 }
3114
3115 /* This function generates cluster substructure that contains FIELDS.
3116 The cluster added to the set of clusters of the structure STR. */
3117
3118 static void
3119 gen_cluster (sbitmap fields, d_str str)
3120 {
3121 struct field_cluster *crr_cluster = NULL;
3122
3123 crr_cluster =
3124 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3125 crr_cluster->sibling = str->struct_clustering;
3126 str->struct_clustering = crr_cluster;
3127 crr_cluster->fields_in_cluster = fields;
3128 }
3129
3130 /* This function peels a field with the index I from the structure DS. */
3131
3132 static void
3133 peel_field (int i, d_str ds)
3134 {
3135 struct field_cluster *crr_cluster = NULL;
3136
3137 crr_cluster =
3138 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3139 crr_cluster->sibling = ds->struct_clustering;
3140 ds->struct_clustering = crr_cluster;
3141 crr_cluster->fields_in_cluster =
3142 sbitmap_alloc ((unsigned int) ds->num_fields);
3143 sbitmap_zero (crr_cluster->fields_in_cluster);
3144 SET_BIT (crr_cluster->fields_in_cluster, i);
3145 }
3146
3147 /* This function calculates maximum field count in
3148 the structure STR. */
3149
3150 static gcov_type
3151 get_max_field_count (d_str str)
3152 {
3153 gcov_type max = 0;
3154 int i;
3155
3156 for (i = 0; i < str->num_fields; i++)
3157 if (str->fields[i].count > max)
3158 max = str->fields[i].count;
3159
3160 return max;
3161 }
3162
3163 /* Do struct-reorg transformation for individual function
3164 represented by NODE. All structure types relevant
3165 for this function are transformed. */
3166
3167 static void
3168 do_reorg_for_func (struct cgraph_node *node)
3169 {
3170 create_new_local_vars ();
3171 create_new_alloc_sites_for_func (node);
3172 create_new_accesses_for_func ();
3173 update_ssa (TODO_update_ssa);
3174 cleanup_tree_cfg ();
3175
3176 /* Free auxiliary data representing local variables. */
3177 free_new_vars_htab (new_local_vars);
3178 }
3179
3180 /* Print structure TYPE, its name, if it exists, and body.
3181 INDENT defines the level of indentation (similar
3182 to the option -i of indent command). SHIFT parameter
3183 defines a number of spaces by which a structure will
3184 be shifted right. */
3185
3186 static void
3187 dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
3188 unsigned HOST_WIDE_INT shift)
3189 {
3190 const char *struct_name;
3191 tree field;
3192
3193 if (!type || !dump_file)
3194 return;
3195
3196 if (TREE_CODE (type) != RECORD_TYPE)
3197 {
3198 print_generic_expr (dump_file, type, 0);
3199 return;
3200 }
3201
3202 print_shift (shift);
3203 struct_name = get_type_name (type);
3204 fprintf (dump_file, "struct ");
3205 if (struct_name)
3206 fprintf (dump_file, "%s\n",struct_name);
3207 print_shift (shift);
3208 fprintf (dump_file, "{\n");
3209
3210 for (field = TYPE_FIELDS (type); field;
3211 field = TREE_CHAIN (field))
3212 {
3213 unsigned HOST_WIDE_INT s = indent;
3214 tree f_type = TREE_TYPE (field);
3215
3216 print_shift (shift);
3217 while (s--)
3218 fprintf (dump_file, " ");
3219 dump_struct_type (f_type, indent, shift + indent);
3220 fprintf(dump_file, " ");
3221 print_generic_expr (dump_file, field, 0);
3222 fprintf(dump_file, ";\n");
3223 }
3224 print_shift (shift);
3225 fprintf (dump_file, "}\n");
3226 }
3227
3228 /* This function creates new structure types to replace original type,
3229 indicated by STR->decl. The names of the new structure types are
3230 derived from the original structure type. If the original structure
3231 type has no name, we assume that its name is 'struct.<STR_NUM>'. */
3232
3233 static void
3234 create_new_type (d_str str, int *str_num)
3235 {
3236 int cluster_num = 0;
3237
3238 struct field_cluster *cluster = str->struct_clustering;
3239 while (cluster)
3240 {
3241 tree name = gen_cluster_name (str->decl, cluster_num,
3242 *str_num);
3243 tree fields;
3244 tree new_type;
3245 cluster_num++;
3246
3247 fields = create_fields (cluster, str->fields,
3248 str->num_fields);
3249 new_type = build_basic_struct (fields, name, str->decl);
3250
3251 update_fields_mapping (cluster, new_type,
3252 str->fields, str->num_fields);
3253
3254 VEC_safe_push (tree, heap, str->new_types, new_type);
3255 cluster = cluster->sibling;
3256 }
3257 (*str_num)++;
3258 }
3259
3260 /* This function is a callback for alloc_sites hashtable
3261 traversal. SLOT is a pointer to fallocs_t.
3262 This function frees memory pointed by *SLOT. */
3263
3264 static int
3265 free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
3266 {
3267 fallocs_t fallocs = *(fallocs_t *) slot;
3268
3269 VEC_free (alloc_site_t, heap, fallocs->allocs);
3270 free (fallocs);
3271 return 1;
3272 }
3273
3274 /* Remove structures collected in UNSUITABLE_TYPES
3275 from structures vector. */
3276
3277 static void
3278 remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
3279 {
3280 d_str str;
3281 tree type;
3282 unsigned i, j;
3283
3284 for (j = 0; VEC_iterate (tree, unsuitable_types, j, type); j++)
3285 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3286 if (is_equal_types (str->decl, type))
3287 {
3288 remove_structure (i);
3289 break;
3290 }
3291 }
3292
3293 /* Exclude structure types with bitfields.
3294 We would not want to interfere with other optimizations
3295 that can be done in this case. The structure types with
3296 bitfields are added to UNSUITABLE_TYPES vector. */
3297
3298 static void
3299 exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
3300 {
3301 d_str str;
3302 unsigned i;
3303
3304 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3305 check_bitfields (str, unsuitable_types);
3306 }
3307
3308 /* This function checks three types of escape. A structure type escapes:
3309
3310 1. if it's a type of parameter of a local function.
3311 2. if it's a type of function return value.
3312 3. if it escapes as a result of ipa-type-escape analysis.
3313
3314 The escaping structure types are added to UNSUITABLE_TYPES vector. */
3315
3316 static void
3317 exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
3318 {
3319 exclude_types_passed_to_local_func (unsuitable_types);
3320 exclude_returned_types (unsuitable_types);
3321 exclude_escaping_types_1 (unsuitable_types);
3322 }
3323
3324 /* This function analyzes whether the form of
3325 structure is such that we are capable to transform it.
3326 Nested structures are checked here. Unsuitable structure
3327 types are added to UNSUITABLE_TYPE vector. */
3328
3329 static void
3330 analyze_struct_form (VEC (tree, heap) **unsuitable_types)
3331 {
3332 d_str str;
3333 unsigned i;
3334
3335 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3336 check_struct_form (str, unsuitable_types);
3337 }
3338
3339 /* This function looks for structure types instantiated in the program.
3340 The candidate types are added to the structures vector.
3341 Unsuitable types are collected into UNSUITABLE_TYPES vector. */
3342
3343 static void
3344 build_data_structure (VEC (tree, heap) **unsuitable_types)
3345 {
3346 tree var, type;
3347 tree var_list;
3348 struct varpool_node *current_varpool;
3349 struct cgraph_node *c_node;
3350
3351 /* Check global variables. */
3352 FOR_EACH_STATIC_VARIABLE (current_varpool)
3353 {
3354 var = current_varpool->decl;
3355 if (is_candidate (var, &type, unsuitable_types))
3356 add_structure (type);
3357 }
3358
3359 /* Now add structures that are types of function parameters and
3360 local variables. */
3361 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3362 {
3363 enum availability avail =
3364 cgraph_function_body_availability (c_node);
3365
3366 /* We need AVAIL_AVAILABLE for main function. */
3367 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3368 {
3369 struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
3370
3371 for (var = DECL_ARGUMENTS (c_node->decl); var;
3372 var = TREE_CHAIN (var))
3373 if (is_candidate (var, &type, unsuitable_types))
3374 add_structure (type);
3375
3376 /* Check function local variables. */
3377 for (var_list = fn->local_decls; var_list;
3378 var_list = TREE_CHAIN (var_list))
3379 {
3380 var = TREE_VALUE (var_list);
3381
3382 if (is_candidate (var, &type, unsuitable_types))
3383 add_structure (type);
3384 }
3385 }
3386 }
3387 }
3388
3389 /* This function returns true if the program contains
3390 a call to user defined allocation function, or other
3391 functions that can interfere with struct-reorg optimizations. */
3392
3393 static bool
3394 program_redefines_malloc_p (void)
3395 {
3396 struct cgraph_node *c_node;
3397 struct cgraph_node *c_node2;
3398 struct cgraph_edge *c_edge;
3399 tree fndecl;
3400 tree fndecl2;
3401
3402 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3403 {
3404 fndecl = c_node->decl;
3405
3406 for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
3407 {
3408 c_node2 = c_edge->callee;
3409 fndecl2 = c_node2->decl;
3410 if (is_gimple_call (c_edge->call_stmt))
3411 {
3412 const char * fname = get_name (fndecl2);
3413
3414 if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
3415 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
3416 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
3417 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
3418 return true;
3419
3420 /* Check that there is no __builtin_object_size,
3421 __builtin_offsetof, or realloc's in the program. */
3422 if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
3423 || !strcmp (fname, "__builtin_offsetof")
3424 || !strcmp (fname, "realloc"))
3425 return true;
3426 }
3427 }
3428 }
3429
3430 return false;
3431 }
3432
3433 /* In this function we assume that an allocation statement
3434
3435 var = (type_cast) malloc (size);
3436
3437 is converted into the following set of statements:
3438
3439 T.1 = size;
3440 T.2 = malloc (T.1);
3441 T.3 = (type_cast) T.2;
3442 var = T.3;
3443
3444 In this function we collect into alloc_sites the allocation
3445 sites of variables of structure types that are present
3446 in structures vector. */
3447
3448 static void
3449 collect_alloc_sites (void)
3450 {
3451 struct cgraph_node *node;
3452 struct cgraph_edge *cs;
3453
3454 for (node = cgraph_nodes; node; node = node->next)
3455 if (node->analyzed && node->decl)
3456 {
3457 for (cs = node->callees; cs; cs = cs->next_callee)
3458 {
3459 gimple stmt = cs->call_stmt;
3460
3461 if (stmt)
3462 {
3463 tree decl;
3464
3465 if (is_gimple_call (stmt)
3466 && (decl = gimple_call_fndecl (stmt))
3467 && gimple_call_lhs (stmt))
3468 {
3469 unsigned i;
3470
3471 if (is_alloc_of_struct (stmt, &i))
3472 {
3473 /* We support only malloc now. */
3474 if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
3475 {
3476 d_str str;
3477
3478 str = VEC_index (structure, structures, i);
3479 add_alloc_site (node->decl, stmt, str);
3480 }
3481 else
3482 {
3483 if (dump_file)
3484 {
3485 fprintf (dump_file,
3486 "\nUnsupported allocation function ");
3487 print_gimple_stmt (dump_file, stmt, 0, 0);
3488 }
3489 remove_structure (i);
3490 }
3491 }
3492 }
3493 }
3494 }
3495 }
3496 }
3497
3498 /* Print collected accesses. */
3499
3500 static void
3501 dump_accesses (void)
3502 {
3503 d_str str;
3504 unsigned i;
3505
3506 if (!dump_file)
3507 return;
3508
3509 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3510 dump_accs (str);
3511 }
3512
3513 /* This function checks whether the accesses of structures in condition
3514 expressions are of the kind we are capable to transform.
3515 If not, such structures are removed from the vector of structures. */
3516
3517 static void
3518 check_cond_exprs (void)
3519 {
3520 d_str str;
3521 unsigned i;
3522
3523 i = 0;
3524 while (VEC_iterate (structure, structures, i, str))
3525 {
3526 bool safe_p = true;
3527
3528 if (str->accs)
3529 htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
3530 if (!safe_p)
3531 remove_structure (i);
3532 else
3533 i++;
3534 }
3535 }
3536
3537 /* We exclude from non-field accesses of the structure
3538 all statements that will be treated as part of the structure
3539 allocation sites or field accesses. */
3540
3541 static void
3542 exclude_alloc_and_field_accs (struct cgraph_node *node)
3543 {
3544 d_str str;
3545 unsigned i;
3546
3547 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3548 exclude_alloc_and_field_accs_1 (str, node);
3549 }
3550
3551 /* This function collects accesses of the fields of the structures
3552 that appear at function FN. */
3553
3554 static void
3555 collect_accesses_in_func (struct function *fn)
3556 {
3557 basic_block bb;
3558
3559 if (! fn)
3560 return;
3561
3562 /* Collect accesses for each basic blocks separately. */
3563 FOR_EACH_BB_FN (bb, fn)
3564 collect_accesses_in_bb (bb);
3565 }
3566
3567 /* This function summarizes counts of the fields into the structure count. */
3568
3569 static void
3570 sum_counts (d_str str, gcov_type *hottest)
3571 {
3572 int i;
3573
3574 str->count = 0;
3575 for (i = 0; i < str->num_fields; i++)
3576 {
3577 if (dump_file)
3578 {
3579 fprintf (dump_file, "\nCounter of field \"");
3580 print_generic_expr (dump_file, str->fields[i].decl, 0);
3581 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
3582 str->fields[i].count);
3583 }
3584 str->count += str->fields[i].count;
3585 }
3586
3587 if (dump_file)
3588 {
3589 fprintf (dump_file, "\nCounter of struct \"");
3590 print_generic_expr (dump_file, str->decl, 0);
3591 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
3592 }
3593
3594 if (str->count > *hottest)
3595 *hottest = str->count;
3596 }
3597
3598 /* This function peels the field into separate structure if it's
3599 sufficiently hot, i.e. if its count provides at least 90% of
3600 the maximum field count in the structure. */
3601
3602 static void
3603 peel_hot_fields (d_str str)
3604 {
3605 gcov_type max_field_count;
3606 sbitmap fields_left = sbitmap_alloc (str->num_fields);
3607 int i;
3608
3609 sbitmap_ones (fields_left);
3610 max_field_count =
3611 (gcov_type) (get_max_field_count (str)/100)*90;
3612
3613 str->struct_clustering = NULL;
3614
3615 for (i = 0; i < str->num_fields; i++)
3616 {
3617 if (str->count >= max_field_count)
3618 {
3619 RESET_BIT (fields_left, i);
3620 peel_field (i, str);
3621 }
3622 }
3623
3624 i = sbitmap_first_set_bit (fields_left);
3625 if (i != -1)
3626 gen_cluster (fields_left, str);
3627 else
3628 sbitmap_free (fields_left);
3629 }
3630
3631 /* This function is a helper for do_reorg. It goes over
3632 functions in call graph and performs actual transformation
3633 on them. */
3634
3635 static void
3636 do_reorg_1 (void)
3637 {
3638 struct cgraph_node *node;
3639
3640 /* Initialize the default bitmap obstack. */
3641 bitmap_obstack_initialize (NULL);
3642
3643 for (node = cgraph_nodes; node; node = node->next)
3644 if (node->analyzed && node->decl)
3645 {
3646 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3647 current_function_decl = node->decl;
3648 if (dump_file)
3649 fprintf (dump_file, "\nFunction to do reorg is %s: \n",
3650 (const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
3651 do_reorg_for_func (node);
3652 free_dominance_info (CDI_DOMINATORS);
3653 free_dominance_info (CDI_POST_DOMINATORS);
3654 current_function_decl = NULL;
3655 pop_cfun ();
3656 }
3657
3658 set_cfun (NULL);
3659 bitmap_obstack_release (NULL);
3660 }
3661
3662 /* This function creates new global struct variables.
3663 For each original variable, the set of new variables
3664 is created with the new structure types corresponding
3665 to the structure type of original variable.
3666 Only VAR_DECL variables are treated by this function. */
3667
3668 static void
3669 create_new_global_vars (void)
3670 {
3671 struct varpool_node *current_varpool;
3672 unsigned HOST_WIDE_INT i;
3673 unsigned HOST_WIDE_INT varpool_size = 0;
3674
3675 for (i = 0; i < 2; i++)
3676 {
3677 if (i)
3678 new_global_vars = htab_create (varpool_size,
3679 new_var_hash, new_var_eq, NULL);
3680 FOR_EACH_STATIC_VARIABLE(current_varpool)
3681 {
3682 tree var_decl = current_varpool->decl;
3683
3684 if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
3685 continue;
3686 if (!i)
3687 varpool_size++;
3688 else
3689 create_new_var (var_decl, new_global_vars);
3690 }
3691 }
3692
3693 if (new_global_vars)
3694 htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
3695 }
3696
3697 /* Dump all new types generated by this optimization. */
3698
3699 static void
3700 dump_new_types (void)
3701 {
3702 d_str str;
3703 tree type;
3704 unsigned i, j;
3705
3706 if (!dump_file)
3707 return;
3708
3709 fprintf (dump_file, "\nThe following are the new types generated by"
3710 " this optimization:\n");
3711
3712 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3713 {
3714 if (dump_file)
3715 {
3716 fprintf (dump_file, "\nFor type ");
3717 dump_struct_type (str->decl, 2, 0);
3718 fprintf (dump_file, "\nthe number of new types is %d\n",
3719 VEC_length (tree, str->new_types));
3720 }
3721 for (j = 0; VEC_iterate (tree, str->new_types, j, type); j++)
3722 dump_struct_type (type, 2, 0);
3723 }
3724 }
3725
3726 /* This function creates new types to replace old structure types. */
3727
3728 static void
3729 create_new_types (void)
3730 {
3731 d_str str;
3732 unsigned i;
3733 int str_num = 0;
3734
3735 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3736 create_new_type (str, &str_num);
3737 }
3738
3739 /* Free allocation sites hashtable. */
3740
3741 static void
3742 free_alloc_sites (void)
3743 {
3744 if (alloc_sites)
3745 htab_traverse (alloc_sites, free_falloc_sites, NULL);
3746 htab_delete (alloc_sites);
3747 alloc_sites = NULL;
3748 }
3749
3750 /* This function collects structures potential
3751 for peeling transformation, and inserts
3752 them into structures hashtable. */
3753
3754 static void
3755 collect_structures (void)
3756 {
3757 VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
3758
3759 structures = VEC_alloc (structure, heap, 32);
3760
3761 /* If program contains user defined mallocs, we give up. */
3762 if (program_redefines_malloc_p ())
3763 return;
3764
3765 /* Build data structures hashtable of all data structures
3766 in the program. */
3767 build_data_structure (&unsuitable_types);
3768
3769 /* This function analyzes whether the form of
3770 structure is such that we are capable to transform it.
3771 Nested structures are checked here. */
3772 analyze_struct_form (&unsuitable_types);
3773
3774 /* This function excludes those structure types
3775 that escape compilation unit. */
3776 exclude_escaping_types (&unsuitable_types);
3777
3778 /* We do not want to change data layout of the structures with bitfields. */
3779 exclude_types_with_bit_fields (&unsuitable_types);
3780
3781 remove_unsuitable_types (unsuitable_types);
3782 VEC_free (tree, heap, unsuitable_types);
3783 }
3784
3785 /* Collect structure allocation sites. In case of arrays
3786 we have nothing to do. */
3787
3788 static void
3789 collect_allocation_sites (void)
3790 {
3791 alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
3792 collect_alloc_sites ();
3793 }
3794
3795 /* This function collects data accesses for the
3796 structures to be transformed. For each structure
3797 field it updates the count field in field_entry. */
3798
3799 static void
3800 collect_data_accesses (void)
3801 {
3802 struct cgraph_node *c_node;
3803
3804 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3805 {
3806 enum availability avail = cgraph_function_body_availability (c_node);
3807
3808 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3809 {
3810 struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
3811
3812 collect_accesses_in_func (func);
3813 exclude_alloc_and_field_accs (c_node);
3814 }
3815 }
3816
3817 check_cond_exprs ();
3818 /* Print collected accesses. */
3819 dump_accesses ();
3820 }
3821
3822 /* We do not bother to transform cold structures.
3823 Coldness of the structure is defined relatively
3824 to the highest structure count among the structures
3825 to be transformed. It's triggered by the compiler parameter
3826
3827 --param struct-reorg-cold-struct-ratio=<value>
3828
3829 where <value> ranges from 0 to 100. Structures with count ratios
3830 that are less than this parameter are considered to be cold. */
3831
3832 static void
3833 exclude_cold_structs (void)
3834 {
3835 gcov_type hottest = 0;
3836 unsigned i;
3837 d_str str;
3838
3839 /* We summarize counts of fields of a structure into the structure count. */
3840 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3841 sum_counts (str, &hottest);
3842
3843 /* Remove cold structures from structures vector. */
3844 i = 0;
3845 while (VEC_iterate (structure, structures, i, str))
3846 if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
3847 {
3848 if (dump_file)
3849 {
3850 fprintf (dump_file, "\nThe structure ");
3851 print_generic_expr (dump_file, str->decl, 0);
3852 fprintf (dump_file, " is cold.");
3853 }
3854 remove_structure (i);
3855 }
3856 else
3857 i++;
3858 }
3859
3860 /* This function decomposes original structure into substructures,
3861 i.e.clusters. */
3862
3863 static void
3864 peel_structs (void)
3865 {
3866 d_str str;
3867 unsigned i;
3868
3869 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3870 peel_hot_fields (str);
3871 }
3872
3873 /* Stage 3. */
3874 /* Do the actual transformation for each structure
3875 from the structures hashtable. */
3876
3877 static void
3878 do_reorg (void)
3879 {
3880 /* Check that there is a work to do. */
3881 if (!VEC_length (structure, structures))
3882 {
3883 if (dump_file)
3884 fprintf (dump_file, "\nNo structures to transform. Exiting...");
3885 return;
3886 }
3887 else
3888 {
3889 if (dump_file)
3890 {
3891 fprintf (dump_file, "\nNumber of structures to transform is %d",
3892 VEC_length (structure, structures));
3893 }
3894 }
3895
3896 /* Generate new types. */
3897 create_new_types ();
3898 dump_new_types ();
3899
3900 /* Create new global variables. */
3901 create_new_global_vars ();
3902 dump_new_vars (new_global_vars);
3903
3904 /* Decompose structures for each function separately. */
3905 do_reorg_1 ();
3906
3907 /* Free auxiliary data collected for global variables. */
3908 free_new_vars_htab (new_global_vars);
3909 }
3910
3911 /* Free all auxiliary data used by this optimization. */
3912
3913 static void
3914 free_data_structs (void)
3915 {
3916 free_structures ();
3917 free_alloc_sites ();
3918 }
3919
3920 /* Perform structure decomposition (peeling). */
3921
3922 static void
3923 reorg_structs (void)
3924 {
3925
3926 /* Stage1. */
3927 /* Collect structure types. */
3928 collect_structures ();
3929
3930 /* Collect structure allocation sites. */
3931 collect_allocation_sites ();
3932
3933 /* Collect structure accesses. */
3934 collect_data_accesses ();
3935
3936 /* We transform only hot structures. */
3937 exclude_cold_structs ();
3938
3939 /* Stage2. */
3940 /* Decompose structures into substructures, i.e. clusters. */
3941 peel_structs ();
3942
3943 /* Stage3. */
3944 /* Do the actual transformation for each structure
3945 from the structures hashtable. */
3946 do_reorg ();
3947
3948 /* Free all auxiliary data used by this optimization. */
3949 free_data_structs ();
3950 }
3951
3952 /* Struct-reorg optimization entry point function. */
3953
3954 static unsigned int
3955 reorg_structs_drive (void)
3956 {
3957 reorg_structs ();
3958 return 0;
3959 }
3960
3961 /* Struct-reorg optimization gate function. */
3962
3963 static bool
3964 struct_reorg_gate (void)
3965 {
3966 return flag_ipa_struct_reorg
3967 && flag_whole_program
3968 && (optimize > 0);
3969 }
3970
3971 struct simple_ipa_opt_pass pass_ipa_struct_reorg =
3972 {
3973 {
3974 SIMPLE_IPA_PASS,
3975 "ipa_struct_reorg", /* name */
3976 struct_reorg_gate, /* gate */
3977 reorg_structs_drive, /* execute */
3978 NULL, /* sub */
3979 NULL, /* next */
3980 0, /* static_pass_number */
3981 TV_INTEGRATION, /* tv_id */
3982 0, /* properties_required */
3983 0, /* properties_provided */
3984 0, /* properties_destroyed */
3985 TODO_verify_ssa, /* todo_flags_start */
3986 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
3987 }
3988 };