inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / ipa-struct-reorg.c
1 /* Struct-reorg optimization.
2 Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Olga Golovanevsky <olga@il.ibm.com>
4 (Initial version of this code was developed
5 by Caroline Tice and Mostafa Hagog.)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "gimple.h"
31 #include "tree-inline.h"
32 #include "tree-flow.h"
33 #include "tree-flow-inline.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "hashtab.h"
37 #include "toplev.h"
38 #include "flags.h"
39 #include "debug.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "diagnostic.h"
43 #include "timevar.h"
44 #include "params.h"
45 #include "fibheap.h"
46 #include "intl.h"
47 #include "function.h"
48 #include "basic-block.h"
49 #include "tree-iterator.h"
50 #include "tree-pass.h"
51 #include "ipa-struct-reorg.h"
52 #include "opts.h"
53 #include "ipa-type-escape.h"
54 #include "tree-dump.h"
55 #include "gimple.h"
56
57 /* This optimization implements structure peeling.
58
59 For example, given a structure type:
60 typedef struct
61 {
62 int a;
63 float b;
64 int c;
65 }str_t;
66
67 it can be peeled into two structure types as follows:
68
69 typedef struct and typedef struct
70 { {
71 int a; float b;
72 int c; } str_t_1;
73 }str_t_0;
74
75 or can be fully peeled:
76
77 typedef struct
78 {
79 int a;
80 }str_t_0;
81
82 typedef struct
83 {
84 float b;
85 }str_t_1;
86
87 typedef struct
88 {
89 int c;
90 }str_t_2;
91
92 When structure type is peeled all instances and their accesses
93 in the program are updated accordingly. For example, if there is
94 array of structures:
95
96 str_t A[N];
97
98 and structure type str_t was peeled into two structures str_t_0
99 and str_t_1 as it was shown above, then array A will be replaced
100 by two arrays as follows:
101
102 str_t_0 A_0[N];
103 str_t_1 A_1[N];
104
105 The field access of field a of element i of array A: A[i].a will be
106 replaced by an access to field a of element i of array A_0: A_0[i].a.
107
108 This optimization also supports dynamically allocated arrays.
109 If array of structures was allocated by malloc function:
110
111 str_t * p = (str_t *) malloc (sizeof (str_t) * N)
112
113 the allocation site will be replaced to reflect new structure types:
114
115 str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
116 str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
117
118 The field access through the pointer p[i].a will be changed by p_0[i].a.
119
120 The goal of structure peeling is to improve spatial locality.
121 For example, if one of the fields of a structure is accessed frequently
122 in the loop:
123
124 for (i = 0; i < N; i++)
125 {
126 ... = A[i].a;
127 }
128
129 the allocation of field a of str_t contiguously in memory will
130 increase the chances of fetching the field from cache.
131
132 The analysis part of this optimization is based on the frequency of
133 field accesses, which are collected all over the program.
134 Then the fields with the frequencies that satisfy the following condition
135 get peeled out of the structure:
136
137 freq(f) > C * max_field_freq_in_struct
138
139 where max_field_freq_in_struct is the maximum field frequency
140 in the structure. C is a constant defining which portion of
141 max_field_freq_in_struct the fields should have in order to be peeled.
142
143 If profiling information is provided, it is used to calculate the
144 frequency of field accesses. Otherwise, the structure is fully peeled.
145
146 IPA type-escape analysis is used to determine when it is safe
147 to peel a structure.
148
149 The optimization is activated by flag -fipa-struct-reorg. */
150
151 /* New variables created by this optimization.
152 When doing struct peeling, each variable of
153 the original struct type will be replaced by
154 the set of new variables corresponding to
155 the new structure types. */
156 struct new_var_data {
157 /* VAR_DECL for original struct type. */
158 tree orig_var;
159 /* Vector of new variables. */
160 VEC(tree, heap) *new_vars;
161 };
162
163 typedef struct new_var_data *new_var;
164 typedef const struct new_var_data *const_new_var;
165
166 /* This structure represents allocation site of the structure. */
167 typedef struct alloc_site
168 {
169 gimple stmt;
170 d_str str;
171 } alloc_site_t;
172
173 DEF_VEC_O (alloc_site_t);
174 DEF_VEC_ALLOC_O (alloc_site_t, heap);
175
176 /* Allocation sites that belong to the same function. */
177 struct func_alloc_sites
178 {
179 tree func;
180 /* Vector of allocation sites for function. */
181 VEC (alloc_site_t, heap) *allocs;
182 };
183
184 typedef struct func_alloc_sites *fallocs_t;
185 typedef const struct func_alloc_sites *const_fallocs_t;
186
187 /* All allocation sites in the program. */
188 htab_t alloc_sites = NULL;
189
190 /* New global variables. Generated once for whole program. */
191 htab_t new_global_vars;
192
193 /* New local variables. Generated per-function. */
194 htab_t new_local_vars;
195
196 /* Vector of structures to be transformed. */
197 typedef struct data_structure structure;
198 DEF_VEC_O (structure);
199 DEF_VEC_ALLOC_O (structure, heap);
200 VEC (structure, heap) *structures;
201
202 /* Forward declarations. */
203 static bool is_equal_types (tree, tree);
204
205 /* Strip structure TYPE from pointers and arrays. */
206
207 static inline tree
208 strip_type (tree type)
209 {
210 gcc_assert (TYPE_P (type));
211
212 while (POINTER_TYPE_P (type)
213 || TREE_CODE (type) == ARRAY_TYPE)
214 type = TREE_TYPE (type);
215
216 return type;
217 }
218
219 /* This function returns type of VAR. */
220
221 static inline tree
222 get_type_of_var (tree var)
223 {
224 if (!var)
225 return NULL;
226
227 if (TREE_CODE (var) == PARM_DECL)
228 return DECL_ARG_TYPE (var);
229 else
230 return TREE_TYPE (var);
231 }
232
233 /* Set of actions we do for each newly generated STMT. */
234
235 static inline void
236 finalize_stmt (gimple stmt)
237 {
238 update_stmt (stmt);
239 mark_symbols_for_renaming (stmt);
240 }
241
242 /* This function finalizes STMT and appends it to the list STMTS. */
243
244 static inline void
245 finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
246 {
247 gimple_seq_add_stmt (stmts, stmt);
248 finalize_stmt (stmt);
249 }
250
251 /* Given structure type SRT_TYPE and field FIELD,
252 this function is looking for a field with the same name
253 and type as FIELD in STR_TYPE. It returns it if found,
254 or NULL_TREE otherwise. */
255
256 static tree
257 find_field_in_struct_1 (tree str_type, tree field)
258 {
259 tree str_field;
260
261 for (str_field = TYPE_FIELDS (str_type); str_field;
262 str_field = TREE_CHAIN (str_field))
263 {
264 const char * str_field_name;
265 const char * field_name;
266
267 str_field_name = IDENTIFIER_POINTER (DECL_NAME (str_field));
268 field_name = IDENTIFIER_POINTER (DECL_NAME (field));
269
270 gcc_assert (str_field_name);
271 gcc_assert (field_name);
272
273 if (!strcmp (str_field_name, field_name))
274 {
275 /* Check field types. */
276 if (is_equal_types (TREE_TYPE (str_field), TREE_TYPE (field)))
277 return str_field;
278 }
279 }
280
281 return NULL_TREE;
282 }
283
284 /* Given a field declaration FIELD_DECL, this function
285 returns corresponding field entry in structure STR. */
286
287 static struct field_entry *
288 find_field_in_struct (d_str str, tree field_decl)
289 {
290 int i;
291
292 tree field = find_field_in_struct_1 (str->decl, field_decl);
293
294 for (i = 0; i < str->num_fields; i++)
295 if (str->fields[i].decl == field)
296 return &(str->fields[i]);
297
298 return NULL;
299 }
300
301 /* This function checks whether ARG is a result of multiplication
302 of some number by STRUCT_SIZE. If yes, the function returns true
303 and this number is filled into NUM. */
304
305 static bool
306 is_result_of_mult (tree arg, tree *num, tree struct_size)
307 {
308 gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
309
310 /* If the allocation statement was of the form
311 D.2229_10 = <alloc_func> (D.2228_9);
312 then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
313
314 if (size_def_stmt && is_gimple_assign (size_def_stmt))
315 {
316 tree lhs = gimple_assign_lhs (size_def_stmt);
317
318 /* We expect temporary here. */
319 if (!is_gimple_reg (lhs))
320 return false;
321
322 if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
323 {
324 tree arg0 = gimple_assign_rhs1 (size_def_stmt);
325 tree arg1 = gimple_assign_rhs2 (size_def_stmt);
326
327 if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
328 {
329 *num = arg1;
330 return true;
331 }
332
333 if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
334 {
335 *num = arg0;
336 return true;
337 }
338 }
339 }
340
341 *num = NULL_TREE;
342 return false;
343 }
344
345
346 /* This function returns true if access ACC corresponds to the pattern
347 generated by compiler when an address of element i of an array
348 of structures STR_DECL (pointed by p) is calculated (p[i]). If this
349 pattern is recognized correctly, this function returns true
350 and fills missing fields in ACC. Otherwise it returns false. */
351
352 static bool
353 decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
354 {
355 tree ref_var;
356 tree struct_size, op0, op1;
357 tree before_cast;
358 enum tree_code rhs_code;
359
360 ref_var = TREE_OPERAND (acc->ref, 0);
361
362 if (TREE_CODE (ref_var) != SSA_NAME)
363 return false;
364
365 acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
366 if (!(acc->ref_def_stmt)
367 || (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
368 return false;
369
370 rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
371
372 if (rhs_code != PLUS_EXPR
373 && rhs_code != MINUS_EXPR
374 && rhs_code != POINTER_PLUS_EXPR)
375 return false;
376
377 op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
378 op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
379
380 if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
381 &acc->base, &acc->offset,
382 &acc->cast_stmt))
383 return false;
384
385 if (acc->cast_stmt)
386 before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
387 else
388 before_cast = acc->offset;
389
390 if (!before_cast)
391 return false;
392
393
394 if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
395 return false;
396
397 struct_size = TYPE_SIZE_UNIT (str_decl);
398
399 if (!is_result_of_mult (before_cast, &acc->num, struct_size))
400 return false;
401
402 return true;
403 }
404
405
406 /* This function checks whether the access ACC of structure type STR
407 is of the form suitable for transformation. If yes, it returns true.
408 False otherwise. */
409
410 static bool
411 decompose_access (tree str_decl, struct field_access_site *acc)
412 {
413 gcc_assert (acc->ref);
414
415 if (TREE_CODE (acc->ref) == INDIRECT_REF)
416 return decompose_indirect_ref_acc (str_decl, acc);
417 else if (TREE_CODE (acc->ref) == ARRAY_REF)
418 return true;
419 else if (TREE_CODE (acc->ref) == VAR_DECL)
420 return true;
421
422 return false;
423 }
424
425 /* This function creates empty field_access_site node. */
426
427 static inline struct field_access_site *
428 make_field_acc_node (void)
429 {
430 int size = sizeof (struct field_access_site);
431
432 return (struct field_access_site *) xcalloc (1, size);
433 }
434
435 /* This function returns the structure field access, defined by STMT,
436 if it is already in hashtable of function accesses F_ACCS. */
437
438 static struct field_access_site *
439 is_in_field_accs (gimple stmt, htab_t f_accs)
440 {
441 return (struct field_access_site *)
442 htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
443 }
444
445 /* This function adds an access ACC to the hashtable
446 F_ACCS of field accesses. */
447
448 static void
449 add_field_acc_to_acc_sites (struct field_access_site *acc,
450 htab_t f_accs)
451 {
452 void **slot;
453
454 gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
455 slot = htab_find_slot_with_hash (f_accs, acc->stmt,
456 htab_hash_pointer (acc->stmt),
457 INSERT);
458 *slot = acc;
459 }
460
461 /* This function adds the VAR to vector of variables of
462 an access site defined by statement STMT. If access entry
463 with statement STMT does not exist in hashtable of
464 accesses ACCS, this function creates it. */
465
466 static void
467 add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
468 {
469 struct access_site *acc;
470
471 acc = (struct access_site *)
472 htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
473
474 if (!acc)
475 {
476 void **slot;
477
478 acc = (struct access_site *) xmalloc (sizeof (struct access_site));
479 acc->stmt = stmt;
480 acc->vars = VEC_alloc (tree, heap, 10);
481 slot = htab_find_slot_with_hash (accs, stmt,
482 htab_hash_pointer (stmt), INSERT);
483 *slot = acc;
484
485 }
486 VEC_safe_push (tree, heap, acc->vars, var);
487 }
488
489 /* This function adds NEW_DECL to function
490 referenced vars, and marks it for renaming. */
491
492 static void
493 finalize_var_creation (tree new_decl)
494 {
495 add_referenced_var (new_decl);
496 mark_sym_for_renaming (new_decl);
497 }
498
499 /* This function finalizes VAR creation if it is a global VAR_DECL. */
500
501 static void
502 finalize_global_creation (tree var)
503 {
504 if (TREE_CODE (var) == VAR_DECL
505 && is_global_var (var))
506 finalize_var_creation (var);
507 }
508
509 /* This function inserts NEW_DECL to varpool. */
510
511 static inline void
512 insert_global_to_varpool (tree new_decl)
513 {
514 struct varpool_node *new_node;
515
516 new_node = varpool_node (new_decl);
517 notice_global_symbol (new_decl);
518 varpool_mark_needed_node (new_node);
519 varpool_finalize_decl (new_decl);
520 }
521
522 /* This function finalizes the creation of new variables,
523 defined by *SLOT->new_vars. */
524
525 static int
526 finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
527 {
528 new_var n_var = *(new_var *) slot;
529 unsigned i;
530 tree var;
531
532 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
533 finalize_var_creation (var);
534 return 1;
535 }
536
537 /* This function looks for the variable of NEW_TYPE type, stored in VAR.
538 It returns it, if found, and NULL_TREE otherwise. */
539
540 static tree
541 find_var_in_new_vars_vec (new_var var, tree new_type)
542 {
543 tree n_var;
544 unsigned i;
545
546 for (i = 0; VEC_iterate (tree, var->new_vars, i, n_var); i++)
547 {
548 tree type = strip_type(get_type_of_var (n_var));
549 gcc_assert (type);
550
551 if (type == new_type)
552 return n_var;
553 }
554
555 return NULL_TREE;
556 }
557
558 /* This function returns new_var node, the orig_var of which is DECL.
559 It looks for new_var's in NEW_VARS_HTAB. If not found,
560 the function returns NULL. */
561
562 static new_var
563 is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
564 {
565 return (new_var) htab_find_with_hash (new_vars_htab, decl,
566 htab_hash_pointer (decl));
567 }
568
569 /* Given original variable ORIG_VAR, this function returns
570 new variable corresponding to it of NEW_TYPE type. */
571
572 static tree
573 find_new_var_of_type (tree orig_var, tree new_type)
574 {
575 new_var var;
576 gcc_assert (orig_var && new_type);
577
578 if (TREE_CODE (orig_var) == SSA_NAME)
579 orig_var = SSA_NAME_VAR (orig_var);
580
581 var = is_in_new_vars_htab (orig_var, new_global_vars);
582 if (!var)
583 var = is_in_new_vars_htab (orig_var, new_local_vars);
584 gcc_assert (var);
585 return find_var_in_new_vars_vec (var, new_type);
586 }
587
588 /* This function generates stmt:
589 res = NUM * sizeof(TYPE) and returns it.
590 res is filled into RES. */
591
592 static gimple
593 gen_size (tree num, tree type, tree *res)
594 {
595 tree struct_size = TYPE_SIZE_UNIT (type);
596 HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
597 gimple new_stmt;
598
599 *res = create_tmp_var (TREE_TYPE (num), NULL);
600
601 if (*res)
602 add_referenced_var (*res);
603
604 if (exact_log2 (struct_size_int) == -1)
605 {
606 tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
607 new_stmt = gimple_build_assign (*res, fold_build2 (MULT_EXPR,
608 TREE_TYPE (num),
609 num, size));
610 }
611 else
612 {
613 tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
614
615 new_stmt = gimple_build_assign (*res, fold_build2 (LSHIFT_EXPR,
616 TREE_TYPE (num),
617 num, C));
618 }
619
620 finalize_stmt (new_stmt);
621 return new_stmt;
622 }
623
624 /* This function generates and returns a statement, that cast variable
625 BEFORE_CAST to NEW_TYPE. The cast result variable is stored
626 into RES_P. ORIG_CAST_STMT is the original cast statement. */
627
628 static gimple
629 gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
630 tree *res_p)
631 {
632 tree lhs, new_lhs;
633 gimple new_stmt;
634
635 lhs = gimple_assign_lhs (orig_cast_stmt);
636 new_lhs = find_new_var_of_type (lhs, new_type);
637 gcc_assert (new_lhs);
638
639 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
640 finalize_stmt (new_stmt);
641 *res_p = new_lhs;
642 return new_stmt;
643 }
644
645 /* This function builds an edge between BB and E->dest and updates
646 phi nodes of E->dest. It returns newly created edge. */
647
648 static edge
649 make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
650 {
651 edge new_e;
652 tree arg;
653 gimple_stmt_iterator si;
654
655 new_e = make_edge (bb, e->dest, e->flags);
656
657 for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
658 {
659 gimple phi = gsi_stmt (si);
660 arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
661 add_phi_arg (phi, arg, new_e, gimple_phi_arg_location_from_edge (phi, e));
662 }
663
664 return new_e;
665 }
666
667 /* This function inserts NEW_STMT before STMT. */
668
669 static void
670 insert_before_stmt (gimple stmt, gimple new_stmt)
671 {
672 gimple_stmt_iterator bsi;
673
674 if (!stmt || !new_stmt)
675 return;
676
677 bsi = gsi_for_stmt (stmt);
678 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
679 }
680
681 /* Insert NEW_STMTS after STMT. */
682
683 static void
684 insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
685 {
686 gimple_stmt_iterator bsi;
687
688 if (!stmt || !new_stmts)
689 return;
690
691 bsi = gsi_for_stmt (stmt);
692 gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
693 }
694
695 /* Insert NEW_STMT after STMT. */
696
697 static void
698 insert_after_stmt (gimple stmt, gimple new_stmt)
699 {
700 gimple_stmt_iterator bsi;
701
702 if (!stmt || !new_stmt)
703 return;
704
705 bsi = gsi_for_stmt (stmt);
706 gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
707 }
708
709 /* This function returns vector of allocation sites
710 that appear in function FN_DECL. */
711
712 static fallocs_t
713 get_fallocs (tree fn_decl)
714 {
715 return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
716 htab_hash_pointer (fn_decl));
717 }
718
719 /* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
720 and it is a part of allocation of a structure,
721 then it is usually followed by a cast stmt
722 p_8 = (struct str_t *) D.2225_7;
723 which is returned by this function. */
724
725 static gimple
726 get_final_alloc_stmt (gimple alloc_stmt)
727 {
728 gimple final_stmt;
729 use_operand_p use_p;
730 tree alloc_res;
731
732 if (!alloc_stmt)
733 return NULL;
734
735 if (!is_gimple_call (alloc_stmt))
736 return NULL;
737
738 alloc_res = gimple_get_lhs (alloc_stmt);
739
740 if (TREE_CODE (alloc_res) != SSA_NAME)
741 return NULL;
742
743 if (!single_imm_use (alloc_res, &use_p, &final_stmt))
744 return NULL;
745 else
746 return final_stmt;
747 }
748
749 /* This function returns true if STMT is one of allocation
750 sites of function FN_DECL. It returns false otherwise. */
751
752 static bool
753 is_part_of_malloc (gimple stmt, tree fn_decl)
754 {
755 fallocs_t fallocs = get_fallocs (fn_decl);
756
757 if (fallocs)
758 {
759 alloc_site_t *call;
760 unsigned i;
761
762 for (i = 0; VEC_iterate (alloc_site_t, fallocs->allocs, i, call); i++)
763 if (call->stmt == stmt
764 || get_final_alloc_stmt (call->stmt) == stmt)
765 return true;
766 }
767 return false;
768 }
769
770 /* Auxiliary structure for a lookup over field accesses. */
771 struct find_stmt_data
772 {
773 bool found;
774 gimple stmt;
775 };
776
777 /* This function looks for DATA->stmt among
778 the statements involved in the field access,
779 defined by SLOT. It stops when it's found. */
780
781 static int
782 find_in_field_accs (void **slot, void *data)
783 {
784 struct field_access_site *f_acc = *(struct field_access_site **) slot;
785 gimple stmt = ((struct find_stmt_data *)data)->stmt;
786
787 if (f_acc->stmt == stmt
788 || f_acc->ref_def_stmt == stmt
789 || f_acc->cast_stmt == stmt)
790 {
791 ((struct find_stmt_data *)data)->found = true;
792 return 0;
793 }
794 else
795 return 1;
796 }
797
798 /* This function checks whether STMT is part of field
799 accesses of structure STR. It returns true, if found,
800 and false otherwise. */
801
802 static bool
803 is_part_of_field_access (gimple stmt, d_str str)
804 {
805 int i;
806
807 for (i = 0; i < str->num_fields; i++)
808 {
809 struct find_stmt_data data;
810 data.found = false;
811 data.stmt = stmt;
812
813 if (str->fields[i].acc_sites)
814 htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
815
816 if (data.found)
817 return true;
818 }
819
820 return false;
821 }
822
823 /* Auxiliary data for exclude_from_accs function. */
824
825 struct exclude_data
826 {
827 tree fn_decl;
828 d_str str;
829 };
830
831 /* This function returns component_ref with the BASE and
832 field named FIELD_ID from structure TYPE. */
833
834 static inline tree
835 build_comp_ref (tree base, tree field_id, tree type)
836 {
837 tree field;
838 bool found = false;
839
840
841 /* Find field of structure type with the same name as field_id. */
842 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
843 {
844 if (DECL_NAME (field) == field_id)
845 {
846 found = true;
847 break;
848 }
849 }
850
851 gcc_assert (found);
852
853 return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
854 }
855
856
857 /* This struct represent data used for walk_tree
858 called from function find_pos_in_stmt.
859 - ref is a tree to be found,
860 - and pos is a pointer that points to ref in stmt. */
861 struct ref_pos
862 {
863 tree *pos;
864 tree ref;
865 };
866
867
868 /* This is a callback function for walk_tree, called from
869 collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
870 When *TP is equal to DATA->ref, the walk_tree stops,
871 and found position, equal to TP, is assigned to DATA->pos. */
872
873 static tree
874 find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
875 {
876 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
877 struct ref_pos *r_pos = (struct ref_pos *) wi->info;
878 tree ref = r_pos->ref;
879 tree t = *tp;
880
881 if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
882 {
883 r_pos->pos = tp;
884 return t;
885 }
886
887 *walk_subtrees = 1;
888 return NULL_TREE;
889 }
890
891
892 /* This function looks for the pointer of REF in STMT,
893 It returns it, if found, and NULL otherwise. */
894
895 static tree *
896 find_pos_in_stmt (gimple stmt, tree ref)
897 {
898 struct ref_pos r_pos;
899 struct walk_stmt_info wi;
900
901 r_pos.ref = ref;
902 r_pos.pos = NULL;
903 memset (&wi, 0, sizeof (wi));
904 wi.info = &r_pos;
905 walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
906
907 return r_pos.pos;
908 }
909
910 /* This structure is used to represent array
911 or pointer-to wrappers of structure type.
912 For example, if type1 is structure type,
913 then for type1 ** we generate two type_wrapper
914 structures with wrap = 0 each one.
915 It's used to unwind the original type up to
916 structure type, replace it with the new structure type
917 and wrap it back in the opposite order. */
918
919 typedef struct type_wrapper
920 {
921 /* 0 stand for pointer wrapper, and 1 for array wrapper. */
922 bool wrap;
923
924 /* Relevant for arrays as domain or index. */
925 tree domain;
926 }type_wrapper_t;
927
928 DEF_VEC_O (type_wrapper_t);
929 DEF_VEC_ALLOC_O (type_wrapper_t, heap);
930
931 /* This function replace field access ACC by the new
932 field access of structure type NEW_TYPE. */
933
934 static void
935 replace_field_acc (struct field_access_site *acc, tree new_type)
936 {
937 tree ref_var = acc->ref;
938 tree new_ref;
939 tree lhs, rhs;
940 tree *pos;
941 tree new_acc;
942 tree field_id = DECL_NAME (acc->field_decl);
943 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
944 type_wrapper_t *wr_p = NULL;
945
946 while (TREE_CODE (ref_var) == INDIRECT_REF
947 || TREE_CODE (ref_var) == ARRAY_REF)
948 {
949 type_wrapper_t wr;
950
951 if ( TREE_CODE (ref_var) == INDIRECT_REF)
952 {
953 wr.wrap = 0;
954 wr.domain = 0;
955 }
956 else
957 {
958 wr.wrap = 1;
959 wr.domain = TREE_OPERAND (ref_var, 1);
960 }
961
962 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
963 ref_var = TREE_OPERAND (ref_var, 0);
964 }
965
966 new_ref = find_new_var_of_type (ref_var, new_type);
967 finalize_global_creation (new_ref);
968
969 while (VEC_length (type_wrapper_t, wrapper) != 0)
970 {
971 tree type = TREE_TYPE (TREE_TYPE (new_ref));
972
973 wr_p = VEC_last (type_wrapper_t, wrapper);
974 if (wr_p->wrap) /* Array. */
975 new_ref = build4 (ARRAY_REF, type, new_ref,
976 wr_p->domain, NULL_TREE, NULL_TREE);
977 else /* Pointer. */
978 new_ref = build1 (INDIRECT_REF, type, new_ref);
979 VEC_pop (type_wrapper_t, wrapper);
980 }
981
982 new_acc = build_comp_ref (new_ref, field_id, new_type);
983 VEC_free (type_wrapper_t, heap, wrapper);
984
985 if (is_gimple_assign (acc->stmt))
986 {
987 lhs = gimple_assign_lhs (acc->stmt);
988 rhs = gimple_assign_rhs1 (acc->stmt);
989
990 if (lhs == acc->comp_ref)
991 gimple_assign_set_lhs (acc->stmt, new_acc);
992 else if (rhs == acc->comp_ref)
993 gimple_assign_set_rhs1 (acc->stmt, new_acc);
994 else
995 {
996 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
997 gcc_assert (pos);
998 *pos = new_acc;
999 }
1000 }
1001 else
1002 {
1003 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
1004 gcc_assert (pos);
1005 *pos = new_acc;
1006 }
1007
1008 finalize_stmt (acc->stmt);
1009 }
1010
1011 /* This function replace field access ACC by a new field access
1012 of structure type NEW_TYPE. */
1013
1014 static void
1015 replace_field_access_stmt (struct field_access_site *acc, tree new_type)
1016 {
1017
1018 if (TREE_CODE (acc->ref) == INDIRECT_REF
1019 ||TREE_CODE (acc->ref) == ARRAY_REF
1020 ||TREE_CODE (acc->ref) == VAR_DECL)
1021 replace_field_acc (acc, new_type);
1022 else
1023 gcc_unreachable ();
1024 }
1025
1026 /* This function looks for d_str, represented by TYPE, in the structures
1027 vector. If found, it returns an index of found structure. Otherwise
1028 it returns a length of the structures vector. */
1029
1030 static unsigned
1031 find_structure (tree type)
1032 {
1033 d_str str;
1034 unsigned i;
1035
1036 type = TYPE_MAIN_VARIANT (type);
1037
1038 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
1039 if (is_equal_types (str->decl, type))
1040 return i;
1041
1042 return VEC_length (structure, structures);
1043 }
1044
1045 /* In this function we create new statements that have the same
1046 form as ORIG_STMT, but of type NEW_TYPE. The statements
1047 treated by this function are simple assignments,
1048 like assignments: p.8_7 = p; or statements with rhs of
1049 tree codes PLUS_EXPR and MINUS_EXPR. */
1050
1051 static gimple
1052 create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
1053 {
1054 tree lhs;
1055 tree new_lhs;
1056 gimple new_stmt;
1057 tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
1058
1059 lhs = gimple_assign_lhs (orig_stmt);
1060
1061 gcc_assert (TREE_CODE (lhs) == VAR_DECL
1062 || TREE_CODE (lhs) == SSA_NAME);
1063
1064 new_lhs = find_new_var_of_type (lhs, new_type);
1065 gcc_assert (new_lhs);
1066 finalize_var_creation (new_lhs);
1067
1068 switch (gimple_assign_rhs_code (orig_stmt))
1069 {
1070 case PLUS_EXPR:
1071 case MINUS_EXPR:
1072 case POINTER_PLUS_EXPR:
1073 {
1074 tree op0 = gimple_assign_rhs1 (orig_stmt);
1075 tree op1 = gimple_assign_rhs2 (orig_stmt);
1076 unsigned str0, str1;
1077 unsigned length = VEC_length (structure, structures);
1078
1079
1080 str0 = find_structure (strip_type (get_type_of_var (op0)));
1081 str1 = find_structure (strip_type (get_type_of_var (op1)));
1082 gcc_assert ((str0 != length) || (str1 != length));
1083
1084 if (str0 != length)
1085 new_op0 = find_new_var_of_type (op0, new_type);
1086 if (str1 != length)
1087 new_op1 = find_new_var_of_type (op1, new_type);
1088
1089 if (!new_op0)
1090 new_op0 = offset;
1091 if (!new_op1)
1092 new_op1 = offset;
1093 }
1094 break;
1095
1096 default:
1097 gcc_unreachable();
1098 }
1099
1100 new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
1101 new_lhs, new_op0, new_op1);
1102 finalize_stmt (new_stmt);
1103
1104 return new_stmt;
1105 }
1106
1107 /* Given a field access F_ACC of the FIELD, this function
1108 replaces it by the new field access. */
1109
1110 static void
1111 create_new_field_access (struct field_access_site *f_acc,
1112 struct field_entry field)
1113 {
1114 tree new_type = field.field_mapping;
1115 gimple new_stmt;
1116 tree size_res;
1117 gimple mult_stmt;
1118 gimple cast_stmt;
1119 tree cast_res = NULL;
1120
1121 if (f_acc->num)
1122 {
1123 mult_stmt = gen_size (f_acc->num, new_type, &size_res);
1124 insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
1125 }
1126
1127 if (f_acc->cast_stmt)
1128 {
1129 cast_stmt = gen_cast_stmt (size_res, new_type,
1130 f_acc->cast_stmt, &cast_res);
1131 insert_after_stmt (f_acc->cast_stmt, cast_stmt);
1132 }
1133
1134 if (f_acc->ref_def_stmt)
1135 {
1136 tree offset;
1137 if (cast_res)
1138 offset = cast_res;
1139 else
1140 offset = size_res;
1141
1142 new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
1143 new_type, offset);
1144 insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
1145 }
1146
1147 /* In stmt D.2163_19 = D.2162_18->b; we replace variable
1148 D.2162_18 by an appropriate variable of new_type type. */
1149 replace_field_access_stmt (f_acc, new_type);
1150 }
1151
1152 /* This function creates a new condition statement
1153 corresponding to the original COND_STMT, adds new basic block
1154 and redirects condition edges. NEW_VAR is a new condition
1155 variable located in the condition statement at the position POS. */
1156
1157 static void
1158 create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
1159 {
1160 gimple new_stmt;
1161 edge true_e = NULL, false_e = NULL;
1162 basic_block new_bb;
1163 gimple_stmt_iterator si;
1164
1165 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
1166 &true_e, &false_e);
1167
1168 new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
1169 pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
1170 pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
1171 NULL_TREE,
1172 NULL_TREE);
1173
1174 finalize_stmt (new_stmt);
1175
1176 /* Create new basic block after bb. */
1177 new_bb = create_empty_bb (gimple_bb (cond_stmt));
1178
1179 /* Add new condition stmt to the new_bb. */
1180 si = gsi_start_bb (new_bb);
1181 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
1182
1183 /* Create false and true edges from new_bb. */
1184 make_edge_and_fix_phis_of_dest (new_bb, true_e);
1185 make_edge_and_fix_phis_of_dest (new_bb, false_e);
1186
1187 /* Redirect one of original edges to point to new_bb. */
1188 if (gimple_cond_code (cond_stmt) == NE_EXPR)
1189 redirect_edge_succ (true_e, new_bb);
1190 else
1191 redirect_edge_succ (false_e, new_bb);
1192 }
1193
1194 /* This function creates new condition statements corresponding
1195 to original condition STMT, one for each new type, and
1196 recursively redirect edges to newly generated basic blocks. */
1197
1198 static void
1199 create_new_stmts_for_cond_expr (gimple stmt)
1200 {
1201 tree arg0, arg1, arg;
1202 unsigned str0, str1;
1203 bool s0, s1;
1204 d_str str;
1205 tree type;
1206 unsigned pos;
1207 int i;
1208 unsigned length = VEC_length (structure, structures);
1209
1210 gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
1211 || gimple_cond_code (stmt) == NE_EXPR);
1212
1213 arg0 = gimple_cond_lhs (stmt);
1214 arg1 = gimple_cond_rhs (stmt);
1215
1216 str0 = find_structure (strip_type (get_type_of_var (arg0)));
1217 str1 = find_structure (strip_type (get_type_of_var (arg1)));
1218
1219 s0 = (str0 != length) ? true : false;
1220 s1 = (str1 != length) ? true : false;
1221
1222 gcc_assert (s0 || s1);
1223 /* For now we allow only comparison with 0 or NULL. */
1224 gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
1225
1226 str = integer_zerop (arg0) ?
1227 VEC_index (structure, structures, str1):
1228 VEC_index (structure, structures, str0);
1229 arg = integer_zerop (arg0) ? arg1 : arg0;
1230 pos = integer_zerop (arg0) ? 1 : 0;
1231
1232 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1233 {
1234 tree new_arg;
1235
1236 new_arg = find_new_var_of_type (arg, type);
1237 create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
1238 }
1239 }
1240
1241 /* Create a new general access to replace original access ACC
1242 for structure type NEW_TYPE. */
1243
1244 static gimple
1245 create_general_new_stmt (struct access_site *acc, tree new_type)
1246 {
1247 gimple old_stmt = acc->stmt;
1248 tree var;
1249 gimple new_stmt = gimple_copy (old_stmt);
1250 unsigned i;
1251
1252 /* We are really building a new stmt, clear the virtual operands. */
1253 if (gimple_has_mem_ops (new_stmt))
1254 {
1255 gimple_set_vuse (new_stmt, NULL_TREE);
1256 gimple_set_vdef (new_stmt, NULL_TREE);
1257 }
1258
1259 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
1260 {
1261 tree *pos;
1262 tree new_var = find_new_var_of_type (var, new_type);
1263 tree lhs, rhs = NULL_TREE;
1264
1265 gcc_assert (new_var);
1266 finalize_var_creation (new_var);
1267
1268 if (is_gimple_assign (new_stmt))
1269 {
1270 lhs = gimple_assign_lhs (new_stmt);
1271
1272 if (TREE_CODE (lhs) == SSA_NAME)
1273 lhs = SSA_NAME_VAR (lhs);
1274 if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
1275 rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
1276
1277 /* It can happen that rhs is a constructor.
1278 Then we have to replace it to be of new_type. */
1279 if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
1280 {
1281 /* Dealing only with empty constructors right now. */
1282 gcc_assert (VEC_empty (constructor_elt,
1283 CONSTRUCTOR_ELTS (rhs)));
1284 rhs = build_constructor (new_type, 0);
1285 gimple_assign_set_rhs1 (new_stmt, rhs);
1286 }
1287
1288 if (lhs == var)
1289 gimple_assign_set_lhs (new_stmt, new_var);
1290 else if (rhs == var)
1291 gimple_assign_set_rhs1 (new_stmt, new_var);
1292 else
1293 {
1294 pos = find_pos_in_stmt (new_stmt, var);
1295 gcc_assert (pos);
1296 /* ??? This misses adjustments to the type of the
1297 INDIRECT_REF we possibly replace the operand of. */
1298 *pos = new_var;
1299 }
1300 }
1301 else
1302 {
1303 pos = find_pos_in_stmt (new_stmt, var);
1304 gcc_assert (pos);
1305 *pos = new_var;
1306 }
1307 }
1308
1309 finalize_stmt (new_stmt);
1310 return new_stmt;
1311 }
1312
1313 /* For each new type in STR this function creates new general accesses
1314 corresponding to the original access ACC. */
1315
1316 static void
1317 create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
1318 {
1319 tree type;
1320 gimple stmt = acc->stmt;
1321 unsigned i;
1322
1323 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1324 {
1325 gimple new_stmt;
1326
1327 new_stmt = create_general_new_stmt (acc, type);
1328 insert_after_stmt (stmt, new_stmt);
1329 }
1330 }
1331
1332 /* This function creates a new general access of structure STR
1333 to replace the access ACC. */
1334
1335 static void
1336 create_new_general_access (struct access_site *acc, d_str str)
1337 {
1338 gimple stmt = acc->stmt;
1339 switch (gimple_code (stmt))
1340 {
1341 case GIMPLE_COND:
1342 create_new_stmts_for_cond_expr (stmt);
1343 break;
1344
1345 default:
1346 create_new_stmts_for_general_acc (acc, str);
1347 }
1348 }
1349
1350 /* Auxiliary data for creation of accesses. */
1351 struct create_acc_data
1352 {
1353 basic_block bb;
1354 d_str str;
1355 int field_index;
1356 };
1357
1358 /* This function creates a new general access, defined by SLOT.
1359 DATA is a pointer to create_acc_data structure. */
1360
1361 static int
1362 create_new_acc (void **slot, void *data)
1363 {
1364 struct access_site *acc = *(struct access_site **) slot;
1365 basic_block bb = ((struct create_acc_data *)data)->bb;
1366 d_str str = ((struct create_acc_data *)data)->str;
1367
1368 if (gimple_bb (acc->stmt) == bb)
1369 create_new_general_access (acc, str);
1370 return 1;
1371 }
1372
1373 /* This function creates a new field access, defined by SLOT.
1374 DATA is a pointer to create_acc_data structure. */
1375
1376 static int
1377 create_new_field_acc (void **slot, void *data)
1378 {
1379 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1380 basic_block bb = ((struct create_acc_data *)data)->bb;
1381 d_str str = ((struct create_acc_data *)data)->str;
1382 int i = ((struct create_acc_data *)data)->field_index;
1383
1384 if (gimple_bb (f_acc->stmt) == bb)
1385 create_new_field_access (f_acc, str->fields[i]);
1386 return 1;
1387 }
1388
1389 /* This function creates new accesses for the structure
1390 type STR in basic block BB. */
1391
1392 static void
1393 create_new_accs_for_struct (d_str str, basic_block bb)
1394 {
1395 int i;
1396 struct create_acc_data dt;
1397
1398 dt.str = str;
1399 dt.bb = bb;
1400 dt.field_index = -1;
1401
1402 for (i = 0; i < str->num_fields; i++)
1403 {
1404 dt.field_index = i;
1405
1406 if (str->fields[i].acc_sites)
1407 htab_traverse (str->fields[i].acc_sites,
1408 create_new_field_acc, &dt);
1409 }
1410 if (str->accs)
1411 htab_traverse (str->accs, create_new_acc, &dt);
1412 }
1413
1414 /* This function inserts new variables from new_var,
1415 defined by SLOT, into varpool. */
1416
1417 static int
1418 update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1419 {
1420 new_var n_var = *(new_var *) slot;
1421 tree var;
1422 unsigned i;
1423
1424 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
1425 insert_global_to_varpool (var);
1426 return 1;
1427 }
1428
1429 /* This function prints a field access site, defined by SLOT. */
1430
1431 static int
1432 dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
1433 {
1434 struct field_access_site *f_acc =
1435 *(struct field_access_site **) slot;
1436
1437 fprintf(dump_file, "\n");
1438 if (f_acc->stmt)
1439 print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
1440 if (f_acc->ref_def_stmt)
1441 print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
1442 if (f_acc->cast_stmt)
1443 print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
1444 return 1;
1445 }
1446
1447 /* Print field accesses from hashtable F_ACCS. */
1448
1449 static void
1450 dump_field_acc_sites (htab_t f_accs)
1451 {
1452 if (!dump_file)
1453 return;
1454
1455 if (f_accs)
1456 htab_traverse (f_accs, dump_field_acc, NULL);
1457 }
1458
1459 /* Hash value for fallocs_t. */
1460
1461 static hashval_t
1462 malloc_hash (const void *x)
1463 {
1464 return htab_hash_pointer (((const_fallocs_t)x)->func);
1465 }
1466
1467 /* This function returns nonzero if function of func_alloc_sites' X
1468 is equal to Y. */
1469
1470 static int
1471 malloc_eq (const void *x, const void *y)
1472 {
1473 return ((const_fallocs_t)x)->func == (const_tree)y;
1474 }
1475
1476 /* This function is a callback for traversal over a structure accesses.
1477 It frees an access represented by SLOT. */
1478
1479 static int
1480 free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1481 {
1482 struct access_site * acc = *(struct access_site **) slot;
1483
1484 VEC_free (tree, heap, acc->vars);
1485 free (acc);
1486 return 1;
1487 }
1488
1489 /* This is a callback function for traversal over field accesses.
1490 It frees a field access represented by SLOT. */
1491
1492 static int
1493 free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1494 {
1495 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1496
1497 free (f_acc);
1498 return 1;
1499 }
1500
1501 /* This function inserts TYPE into vector of UNSUITABLE_TYPES,
1502 if it is not there yet. */
1503
1504 static void
1505 add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
1506 {
1507 unsigned i;
1508 tree t;
1509
1510 if (!type)
1511 return;
1512
1513 type = TYPE_MAIN_VARIANT (type);
1514
1515 for (i = 0; VEC_iterate (tree, *unsuitable_types, i, t); i++)
1516 if (is_equal_types (t, type))
1517 break;
1518
1519 if (i == VEC_length (tree, *unsuitable_types))
1520 VEC_safe_push (tree, heap, *unsuitable_types, type);
1521 }
1522
1523 /* Given a type TYPE, this function returns the name of the type. */
1524
1525 static const char *
1526 get_type_name (tree type)
1527 {
1528 if (! TYPE_NAME (type))
1529 return NULL;
1530
1531 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
1532 return IDENTIFIER_POINTER (TYPE_NAME (type));
1533 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1534 && DECL_NAME (TYPE_NAME (type)))
1535 return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1536 else
1537 return NULL;
1538 }
1539
1540 /* This function is a temporary hack to overcome the types problem.
1541 When several compilation units are compiled together
1542 with -combine, the TYPE_MAIN_VARIANT of the same type
1543 can appear differently in different compilation units.
1544 Therefore this function first compares type names.
1545 If there are no names, structure bodies are recursively
1546 compared. */
1547
1548 static bool
1549 is_equal_types (tree type1, tree type2)
1550 {
1551 const char * name1,* name2;
1552
1553 if ((!type1 && type2)
1554 ||(!type2 && type1))
1555 return false;
1556
1557 if (!type1 && !type2)
1558 return true;
1559
1560 if (TREE_CODE (type1) != TREE_CODE (type2))
1561 return false;
1562
1563 if (type1 == type2)
1564 return true;
1565
1566 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
1567 return true;
1568
1569 name1 = get_type_name (type1);
1570 name2 = get_type_name (type2);
1571
1572 if (name1 && name2 && !strcmp (name1, name2))
1573 return true;
1574
1575 if (name1 && name2 && strcmp (name1, name2))
1576 return false;
1577
1578 switch (TREE_CODE (type1))
1579 {
1580 case POINTER_TYPE:
1581 case REFERENCE_TYPE:
1582 {
1583 return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
1584 }
1585 break;
1586
1587 case RECORD_TYPE:
1588 case UNION_TYPE:
1589 case QUAL_UNION_TYPE:
1590 case ENUMERAL_TYPE:
1591 {
1592 tree field1;
1593 /* Compare fields of structure. */
1594 for (field1 = TYPE_FIELDS (type1); field1;
1595 field1 = TREE_CHAIN (field1))
1596 {
1597 tree field2 = find_field_in_struct_1 (type2, field1);
1598 if (!field2)
1599 return false;
1600 }
1601 return true;
1602 }
1603 break;
1604
1605 case INTEGER_TYPE:
1606 {
1607 if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1608 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
1609 return true;
1610 }
1611 break;
1612
1613 case ARRAY_TYPE:
1614 {
1615 tree d1, d2;
1616 tree max1, min1, max2, min2;
1617
1618 if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
1619 return false;
1620
1621 d1 = TYPE_DOMAIN (type1);
1622 d2 = TYPE_DOMAIN (type2);
1623
1624 if (!d1 || !d2)
1625 return false;
1626
1627 max1 = TYPE_MAX_VALUE (d1);
1628 max2 = TYPE_MAX_VALUE (d2);
1629 min1 = TYPE_MIN_VALUE (d1);
1630 min2 = TYPE_MIN_VALUE (d2);
1631
1632 if (max1 && max2 && min1 && min2
1633 && TREE_CODE (max1) == TREE_CODE (max2)
1634 && TREE_CODE (max1) == INTEGER_CST
1635 && TREE_CODE (min1) == TREE_CODE (min2)
1636 && TREE_CODE (min1) == INTEGER_CST
1637 && tree_int_cst_equal (max1, max2)
1638 && tree_int_cst_equal (min1, min2))
1639 return true;
1640 }
1641 break;
1642
1643 default:
1644 gcc_unreachable();
1645 }
1646
1647 return false;
1648 }
1649
1650 /* This function free non-field accesses from hashtable ACCS. */
1651
1652 static void
1653 free_accesses (htab_t accs)
1654 {
1655 if (accs)
1656 htab_traverse (accs, free_accs, NULL);
1657 htab_delete (accs);
1658 }
1659
1660 /* This function free field accesses hashtable F_ACCS. */
1661
1662 static void
1663 free_field_accesses (htab_t f_accs)
1664 {
1665 if (f_accs)
1666 htab_traverse (f_accs, free_field_accs, NULL);
1667 htab_delete (f_accs);
1668 }
1669
1670 /* Update call graph with new edge generated by new MALLOC_STMT.
1671 The edge origin is CONTEXT function. */
1672
1673 static void
1674 update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
1675 {
1676 struct cgraph_node *src, *dest;
1677 tree malloc_fn_decl;
1678
1679 if (!malloc_stmt)
1680 return;
1681
1682 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1683
1684 src = cgraph_node (context);
1685 dest = cgraph_node (malloc_fn_decl);
1686 cgraph_create_edge (src, dest, malloc_stmt,
1687 0, 0, gimple_bb (malloc_stmt)->loop_depth);
1688 }
1689
1690 /* This function generates set of statements required
1691 to allocate number NUM of structures of type NEW_TYPE.
1692 The statements are stored in NEW_STMTS. The statement that contain
1693 call to malloc is returned. MALLOC_STMT is an original call to malloc. */
1694
1695 static gimple
1696 create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
1697 tree num)
1698 {
1699 tree new_malloc_size;
1700 tree malloc_fn_decl;
1701 gimple new_stmt;
1702 tree malloc_res;
1703 gimple call_stmt, final_stmt;
1704 tree cast_res;
1705
1706 gcc_assert (num && malloc_stmt && new_type);
1707 *new_stmts = gimple_seq_alloc ();
1708
1709 /* Generate argument to malloc as multiplication of num
1710 and size of new_type. */
1711 new_stmt = gen_size (num, new_type, &new_malloc_size);
1712 gimple_seq_add_stmt (new_stmts, new_stmt);
1713
1714 /* Generate new call for malloc. */
1715 malloc_res = create_tmp_var (ptr_type_node, NULL);
1716 add_referenced_var (malloc_res);
1717
1718 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1719 call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
1720 gimple_call_set_lhs (call_stmt, malloc_res);
1721 finalize_stmt_and_append (new_stmts, call_stmt);
1722
1723 /* Create new cast statement. */
1724 final_stmt = get_final_alloc_stmt (malloc_stmt);
1725 gcc_assert (final_stmt);
1726 new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
1727 gimple_seq_add_stmt (new_stmts, new_stmt);
1728
1729 return call_stmt;
1730 }
1731
1732 /* This function returns a tree representing
1733 the number of instances of structure STR_DECL allocated
1734 by allocation STMT. If new statements are generated,
1735 they are filled into NEW_STMTS_P. */
1736
1737 static tree
1738 gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
1739 gimple_seq *new_stmts_p)
1740 {
1741 tree arg;
1742 tree struct_size;
1743 HOST_WIDE_INT struct_size_int;
1744
1745 if (!stmt)
1746 return NULL_TREE;
1747
1748 /* Get malloc argument. */
1749 if (!is_gimple_call (stmt))
1750 return NULL_TREE;
1751
1752 arg = gimple_call_arg (stmt, 0);
1753
1754 if (TREE_CODE (arg) != SSA_NAME
1755 && !TREE_CONSTANT (arg))
1756 return NULL_TREE;
1757
1758 struct_size = TYPE_SIZE_UNIT (str_decl);
1759 struct_size_int = TREE_INT_CST_LOW (struct_size);
1760
1761 gcc_assert (struct_size);
1762
1763 if (TREE_CODE (arg) == SSA_NAME)
1764 {
1765 tree num;
1766 gimple div_stmt;
1767
1768 if (is_result_of_mult (arg, &num, struct_size))
1769 return num;
1770
1771 num = create_tmp_var (integer_type_node, NULL);
1772
1773 if (num)
1774 add_referenced_var (num);
1775
1776 if (exact_log2 (struct_size_int) == -1)
1777 div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
1778 struct_size);
1779 else
1780 {
1781 tree C = build_int_cst (integer_type_node,
1782 exact_log2 (struct_size_int));
1783
1784 div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
1785 }
1786 gimple_seq_add_stmt (new_stmts_p, div_stmt);
1787 finalize_stmt (div_stmt);
1788 return num;
1789 }
1790
1791 if (CONSTANT_CLASS_P (arg)
1792 && multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
1793 return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
1794
1795 return NULL_TREE;
1796 }
1797
1798 /* This function is a callback for traversal on new_var's hashtable.
1799 SLOT is a pointer to new_var. This function prints to dump_file
1800 an original variable and all new variables from the new_var
1801 pointed by *SLOT. */
1802
1803 static int
1804 dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1805 {
1806 new_var n_var = *(new_var *) slot;
1807 tree var_type;
1808 tree var;
1809 unsigned i;
1810
1811 var_type = get_type_of_var (n_var->orig_var);
1812
1813 fprintf (dump_file, "\nOrig var: ");
1814 print_generic_expr (dump_file, n_var->orig_var, 0);
1815 fprintf (dump_file, " of type ");
1816 print_generic_expr (dump_file, var_type, 0);
1817 fprintf (dump_file, "\n");
1818
1819 for (i = 0;
1820 VEC_iterate (tree, n_var->new_vars, i, var); i++)
1821 {
1822 var_type = get_type_of_var (var);
1823
1824 fprintf (dump_file, " ");
1825 print_generic_expr (dump_file, var, 0);
1826 fprintf (dump_file, " of type ");
1827 print_generic_expr (dump_file, var_type, 0);
1828 fprintf (dump_file, "\n");
1829 }
1830 return 1;
1831 }
1832
1833 /* This function copies attributes form ORIG_DECL to NEW_DECL. */
1834
1835 static inline void
1836 copy_decl_attributes (tree new_decl, tree orig_decl)
1837 {
1838
1839 DECL_ARTIFICIAL (new_decl) = 1;
1840 DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
1841 TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
1842 TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
1843 TREE_USED (new_decl) = TREE_USED (orig_decl);
1844 DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
1845 TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
1846 TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
1847
1848 if (TREE_CODE (orig_decl) == VAR_DECL)
1849 {
1850 TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
1851 DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
1852 }
1853 }
1854
1855 /* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
1856 the same way as a structure type is wrapped in DECL.
1857 It returns the generated type. */
1858
1859 static inline tree
1860 gen_struct_type (tree decl, tree new_str_type)
1861 {
1862 tree type_orig = get_type_of_var (decl);
1863 tree new_type = new_str_type;
1864 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
1865 type_wrapper_t wr;
1866 type_wrapper_t *wr_p;
1867
1868 while (POINTER_TYPE_P (type_orig)
1869 || TREE_CODE (type_orig) == ARRAY_TYPE)
1870 {
1871 if (POINTER_TYPE_P (type_orig))
1872 {
1873 wr.wrap = 0;
1874 wr.domain = NULL_TREE;
1875 }
1876 else
1877 {
1878 gcc_assert (TREE_CODE (type_orig) == ARRAY_TYPE);
1879 wr.wrap = 1;
1880 wr.domain = TYPE_DOMAIN (type_orig);
1881 }
1882 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
1883 type_orig = TREE_TYPE (type_orig);
1884 }
1885
1886 while (VEC_length (type_wrapper_t, wrapper) != 0)
1887 {
1888 wr_p = VEC_last (type_wrapper_t, wrapper);
1889
1890 if (wr_p->wrap) /* Array. */
1891 new_type = build_array_type (new_type, wr_p->domain);
1892 else /* Pointer. */
1893 new_type = build_pointer_type (new_type);
1894
1895 VEC_pop (type_wrapper_t, wrapper);
1896 }
1897
1898 VEC_free (type_wrapper_t, heap, wrapper);
1899 return new_type;
1900 }
1901
1902 /* This function generates and returns new variable name based on
1903 ORIG_DECL name, combined with index I.
1904 The form of the new name is <orig_name>.<I> . */
1905
1906 static tree
1907 gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
1908 {
1909 const char *old_name;
1910 char *prefix;
1911 char *new_name;
1912
1913 if (!DECL_NAME (orig_decl)
1914 || !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
1915 return NULL;
1916
1917 /* If the original variable has a name, create an
1918 appropriate new name for the new variable. */
1919
1920 old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
1921 prefix = XALLOCAVEC (char, strlen (old_name) + 1);
1922 strcpy (prefix, old_name);
1923 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
1924 return get_identifier (new_name);
1925 }
1926
1927 /* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
1928
1929 static void
1930 add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
1931 {
1932 void **slot;
1933
1934 slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
1935 htab_hash_pointer (new_node->orig_var),
1936 INSERT);
1937 *slot = new_node;
1938 }
1939
1940 /* This function creates and returns new_var_data node
1941 with empty new_vars and orig_var equal to VAR. */
1942
1943 static new_var
1944 create_new_var_node (tree var, d_str str)
1945 {
1946 new_var node;
1947
1948 node = (new_var) xmalloc (sizeof (struct new_var_data));
1949 node->orig_var = var;
1950 node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
1951 return node;
1952 }
1953
1954 /* Check whether the type of VAR is potential candidate for peeling.
1955 Returns true if yes, false otherwise. If yes, TYPE_P will contain
1956 candidate type. If VAR is initialized, the type of VAR will be added
1957 to UNSUITABLE_TYPES. */
1958
1959 static bool
1960 is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
1961 {
1962 tree type;
1963 bool initialized = false;
1964
1965 *type_p = NULL;
1966
1967 if (!var)
1968 return false;
1969
1970 /* There is no support of initialized vars. */
1971 if (TREE_CODE (var) == VAR_DECL
1972 && DECL_INITIAL (var) != NULL_TREE)
1973 initialized = true;
1974
1975 type = get_type_of_var (var);
1976
1977 if (type)
1978 {
1979 type = TYPE_MAIN_VARIANT (strip_type (type));
1980 if (TREE_CODE (type) != RECORD_TYPE)
1981 return false;
1982 else
1983 {
1984 if (initialized && unsuitable_types && *unsuitable_types)
1985 {
1986 if (dump_file)
1987 {
1988 fprintf (dump_file, "The type ");
1989 print_generic_expr (dump_file, type, 0);
1990 fprintf (dump_file, " is initialized...Excluded.");
1991 }
1992 add_unsuitable_type (unsuitable_types, type);
1993 }
1994 *type_p = type;
1995 return true;
1996 }
1997 }
1998 else
1999 return false;
2000 }
2001
2002 /* Hash value for field_access_site. */
2003
2004 static hashval_t
2005 field_acc_hash (const void *x)
2006 {
2007 return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
2008 }
2009
2010 /* This function returns nonzero if stmt of field_access_site X
2011 is equal to Y. */
2012
2013 static int
2014 field_acc_eq (const void *x, const void *y)
2015 {
2016 return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
2017 }
2018
2019 /* This function prints an access site, defined by SLOT. */
2020
2021 static int
2022 dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
2023 {
2024 struct access_site *acc = *(struct access_site **) slot;
2025 tree var;
2026 unsigned i;
2027
2028 fprintf(dump_file, "\n");
2029 if (acc->stmt)
2030 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
2031 fprintf(dump_file, " : ");
2032
2033 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
2034 {
2035 print_generic_expr (dump_file, var, 0);
2036 fprintf(dump_file, ", ");
2037 }
2038 return 1;
2039 }
2040
2041 /* This function frees memory allocated for structure clusters,
2042 starting from CLUSTER. */
2043
2044 static void
2045 free_struct_cluster (struct field_cluster* cluster)
2046 {
2047 if (cluster)
2048 {
2049 if (cluster->fields_in_cluster)
2050 sbitmap_free (cluster->fields_in_cluster);
2051 if (cluster->sibling)
2052 free_struct_cluster (cluster->sibling);
2053 free (cluster);
2054 }
2055 }
2056
2057 /* Free all allocated memory under the structure node pointed by D_NODE. */
2058
2059 static void
2060 free_data_struct (d_str d_node)
2061 {
2062 int i;
2063
2064 if (!d_node)
2065 return;
2066
2067 if (dump_file)
2068 {
2069 fprintf (dump_file, "\nRemoving data structure \"");
2070 print_generic_expr (dump_file, d_node->decl, 0);
2071 fprintf (dump_file, "\" from data_struct_list.");
2072 }
2073
2074 /* Free all space under d_node. */
2075 if (d_node->fields)
2076 {
2077 for (i = 0; i < d_node->num_fields; i++)
2078 free_field_accesses (d_node->fields[i].acc_sites);
2079 free (d_node->fields);
2080 }
2081
2082 if (d_node->accs)
2083 free_accesses (d_node->accs);
2084
2085 if (d_node->struct_clustering)
2086 free_struct_cluster (d_node->struct_clustering);
2087
2088 if (d_node->new_types)
2089 VEC_free (tree, heap, d_node->new_types);
2090 }
2091
2092 /* This function creates new general and field accesses in BB. */
2093
2094 static void
2095 create_new_accesses_in_bb (basic_block bb)
2096 {
2097 d_str str;
2098 unsigned i;
2099
2100 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2101 create_new_accs_for_struct (str, bb);
2102 }
2103
2104 /* This function adds allocation sites for peeled structures.
2105 M_DATA is vector of allocation sites of function CONTEXT. */
2106
2107 static void
2108 create_new_alloc_sites (fallocs_t m_data, tree context)
2109 {
2110 alloc_site_t *call;
2111 unsigned j;
2112
2113 for (j = 0; VEC_iterate (alloc_site_t, m_data->allocs, j, call); j++)
2114 {
2115 gimple stmt = call->stmt;
2116 d_str str = call->str;
2117 tree num;
2118 gimple_seq new_stmts = NULL;
2119 gimple last_stmt = get_final_alloc_stmt (stmt);
2120 unsigned i;
2121 tree type;
2122
2123 num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
2124 if (new_stmts)
2125 {
2126 gimple last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2127 insert_seq_after_stmt (last_stmt, new_stmts);
2128 last_stmt = last_stmt_tmp;
2129 }
2130
2131 /* Generate an allocation sites for each new structure type. */
2132 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
2133 {
2134 gimple new_malloc_stmt = NULL;
2135 gimple last_stmt_tmp = NULL;
2136
2137 new_stmts = NULL;
2138 new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
2139 last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2140 insert_seq_after_stmt (last_stmt, new_stmts);
2141 update_cgraph_with_malloc_call (new_malloc_stmt, context);
2142 last_stmt = last_stmt_tmp;
2143 }
2144 }
2145 }
2146
2147 /* This function prints new variables from hashtable
2148 NEW_VARS_HTAB to dump_file. */
2149
2150 static void
2151 dump_new_vars (htab_t new_vars_htab)
2152 {
2153 if (!dump_file)
2154 return;
2155
2156 if (new_vars_htab)
2157 htab_traverse (new_vars_htab, dump_new_var, NULL);
2158 }
2159
2160 /* Given an original variable ORIG_DECL of structure type STR,
2161 this function generates new variables of the types defined
2162 by STR->new_type. Generated types are saved in new_var node NODE.
2163 ORIG_DECL should has VAR_DECL tree_code. */
2164
2165 static void
2166 create_new_var_1 (tree orig_decl, d_str str, new_var node)
2167 {
2168 unsigned i;
2169 tree type;
2170
2171 for (i = 0;
2172 VEC_iterate (tree, str->new_types, i, type); i++)
2173 {
2174 tree new_decl = NULL;
2175 tree new_name;
2176
2177 new_name = gen_var_name (orig_decl, i);
2178 type = gen_struct_type (orig_decl, type);
2179
2180 if (is_global_var (orig_decl))
2181 new_decl = build_decl (DECL_SOURCE_LOCATION (orig_decl),
2182 VAR_DECL, new_name, type);
2183 else
2184 {
2185 const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
2186 new_decl = create_tmp_var (type, name);
2187 }
2188
2189 copy_decl_attributes (new_decl, orig_decl);
2190 VEC_safe_push (tree, heap, node->new_vars, new_decl);
2191 }
2192 }
2193
2194 /* This function creates new variables to
2195 substitute the original variable VAR_DECL and adds
2196 them to the new_var's hashtable NEW_VARS_HTAB. */
2197
2198 static void
2199 create_new_var (tree var_decl, htab_t new_vars_htab)
2200 {
2201 new_var node;
2202 d_str str;
2203 tree type;
2204 unsigned i;
2205
2206 if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
2207 return;
2208
2209 if (!is_candidate (var_decl, &type, NULL))
2210 return;
2211
2212 i = find_structure (type);
2213 if (i == VEC_length (structure, structures))
2214 return;
2215
2216 str = VEC_index (structure, structures, i);
2217 node = create_new_var_node (var_decl, str);
2218 create_new_var_1 (var_decl, str, node);
2219 add_to_new_vars_htab (node, new_vars_htab);
2220 }
2221
2222 /* Hash value for new_var. */
2223
2224 static hashval_t
2225 new_var_hash (const void *x)
2226 {
2227 return htab_hash_pointer (((const_new_var)x)->orig_var);
2228 }
2229
2230 /* This function returns nonzero if orig_var of new_var X is equal to Y. */
2231
2232 static int
2233 new_var_eq (const void *x, const void *y)
2234 {
2235 return ((const_new_var)x)->orig_var == (const_tree)y;
2236 }
2237
2238 /* This function check whether a structure type represented by STR
2239 escapes due to ipa-type-escape analysis. If yes, this type is added
2240 to UNSUITABLE_TYPES vector. */
2241
2242 static void
2243 check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
2244 {
2245 tree type = str->decl;
2246
2247 if (!ipa_type_escape_type_contained_p (type))
2248 {
2249 if (dump_file)
2250 {
2251 fprintf (dump_file, "\nEscaping type is ");
2252 print_generic_expr (dump_file, type, 0);
2253 }
2254 add_unsuitable_type (unsuitable_types, type);
2255 }
2256 }
2257
2258 /* Hash value for access_site. */
2259
2260 static hashval_t
2261 acc_hash (const void *x)
2262 {
2263 return htab_hash_pointer (((const struct access_site *)x)->stmt);
2264 }
2265
2266 /* Return nonzero if stmt of access_site X is equal to Y. */
2267
2268 static int
2269 acc_eq (const void *x, const void *y)
2270 {
2271 return ((const struct access_site *)x)->stmt == (const_gimple)y;
2272 }
2273
2274 /* Given a structure declaration STRUCT_DECL, and number of fields
2275 in the structure NUM_FIELDS, this function creates and returns
2276 corresponding field_entry's. */
2277
2278 static struct field_entry *
2279 get_fields (tree struct_decl, int num_fields)
2280 {
2281 struct field_entry *list;
2282 tree t = TYPE_FIELDS (struct_decl);
2283 int idx = 0;
2284
2285 list =
2286 (struct field_entry *) xmalloc (num_fields * sizeof (struct field_entry));
2287
2288 for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
2289 if (TREE_CODE (t) == FIELD_DECL)
2290 {
2291 list[idx].index = idx;
2292 list[idx].decl = t;
2293 list[idx].acc_sites =
2294 htab_create (32, field_acc_hash, field_acc_eq, NULL);
2295 list[idx].count = 0;
2296 list[idx].field_mapping = NULL_TREE;
2297 }
2298
2299 return list;
2300 }
2301
2302 /* Print non-field accesses from hashtable ACCS of structure. */
2303
2304 static void
2305 dump_access_sites (htab_t accs)
2306 {
2307 if (!dump_file)
2308 return;
2309
2310 if (accs)
2311 htab_traverse (accs, dump_acc, NULL);
2312 }
2313
2314 /* This function is a callback for alloc_sites hashtable
2315 traversal. SLOT is a pointer to fallocs_t. This function
2316 removes all allocations of the structure defined by DATA. */
2317
2318 static int
2319 remove_str_allocs_in_func (void **slot, void *data)
2320 {
2321 fallocs_t fallocs = *(fallocs_t *) slot;
2322 unsigned i = 0;
2323 alloc_site_t *call;
2324
2325 while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
2326 {
2327 if (call->str == (d_str) data)
2328 VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
2329 else
2330 i++;
2331 }
2332
2333 return 1;
2334 }
2335
2336 /* This function remove all entries corresponding to the STR structure
2337 from alloc_sites hashtable. */
2338
2339 static void
2340 remove_str_allocs (d_str str)
2341 {
2342 if (!str)
2343 return;
2344
2345 if (alloc_sites)
2346 htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
2347 }
2348
2349 /* This function removes the structure with index I from structures vector. */
2350
2351 static void
2352 remove_structure (unsigned i)
2353 {
2354 d_str str;
2355
2356 if (i >= VEC_length (structure, structures))
2357 return;
2358
2359 str = VEC_index (structure, structures, i);
2360
2361 /* Before removing the structure str, we have to remove its
2362 allocations from alloc_sites hashtable. */
2363 remove_str_allocs (str);
2364 free_data_struct (str);
2365 VEC_ordered_remove (structure, structures, i);
2366 }
2367
2368 /* Currently we support only EQ_EXPR or NE_EXPR conditions.
2369 COND_STMT is a condition statement to check. */
2370
2371 static bool
2372 is_safe_cond_expr (gimple cond_stmt)
2373 {
2374 tree arg0, arg1;
2375 unsigned str0, str1;
2376 bool s0, s1;
2377 unsigned length = VEC_length (structure, structures);
2378
2379 if (gimple_cond_code (cond_stmt) != EQ_EXPR
2380 && gimple_cond_code (cond_stmt) != NE_EXPR)
2381 return false;
2382
2383 arg0 = gimple_cond_lhs (cond_stmt);
2384 arg1 = gimple_cond_rhs (cond_stmt);
2385
2386 str0 = find_structure (strip_type (get_type_of_var (arg0)));
2387 str1 = find_structure (strip_type (get_type_of_var (arg1)));
2388
2389 s0 = (str0 != length) ? true : false;
2390 s1 = (str1 != length) ? true : false;
2391
2392 if (!s0 && !s1)
2393 return false;
2394
2395 /* For now we allow only comparison with 0 or NULL. */
2396 if (!integer_zerop (arg0) && !integer_zerop (arg1))
2397 return false;
2398
2399 return true;
2400 }
2401
2402 /* This function excludes statements, that are
2403 part of allocation sites or field accesses, from the
2404 hashtable of general accesses. SLOT represents general
2405 access that will be checked. DATA is a pointer to
2406 exclude_data structure. */
2407
2408 static int
2409 exclude_from_accs (void **slot, void *data)
2410 {
2411 struct access_site *acc = *(struct access_site **) slot;
2412 tree fn_decl = ((struct exclude_data *)data)->fn_decl;
2413 d_str str = ((struct exclude_data *)data)->str;
2414
2415 if (is_part_of_malloc (acc->stmt, fn_decl)
2416 || is_part_of_field_access (acc->stmt, str))
2417 {
2418 VEC_free (tree, heap, acc->vars);
2419 free (acc);
2420 htab_clear_slot (str->accs, slot);
2421 }
2422 return 1;
2423 }
2424
2425 /* Callback function for walk_tree called from collect_accesses_in_bb
2426 function. DATA is the statement which is analyzed. */
2427
2428 static tree
2429 get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
2430 {
2431 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
2432 gimple stmt = (gimple) wi->info;
2433 tree t = *tp;
2434
2435 if (!t)
2436 return NULL;
2437
2438 switch (TREE_CODE (t))
2439 {
2440 case BIT_FIELD_REF:
2441 {
2442 tree var = TREE_OPERAND(t, 0);
2443 tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
2444 unsigned i = find_structure (type);
2445
2446 if (i != VEC_length (structure, structures))
2447 {
2448 if (dump_file)
2449 {
2450 fprintf (dump_file, "\nThe type ");
2451 print_generic_expr (dump_file, type, 0);
2452 fprintf (dump_file, " has bitfield.");
2453 }
2454 remove_structure (i);
2455 }
2456 }
2457 break;
2458
2459 case COMPONENT_REF:
2460 {
2461 tree ref = TREE_OPERAND (t, 0);
2462 tree field_decl = TREE_OPERAND (t, 1);
2463
2464
2465 if ((TREE_CODE (ref) == INDIRECT_REF
2466 || TREE_CODE (ref) == ARRAY_REF
2467 || TREE_CODE (ref) == VAR_DECL)
2468 && TREE_CODE (field_decl) == FIELD_DECL)
2469 {
2470 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
2471 unsigned i = find_structure (type);
2472
2473 if (i != VEC_length (structure, structures))
2474 {
2475 d_str str = VEC_index (structure, structures, i);
2476 struct field_entry * field =
2477 find_field_in_struct (str, field_decl);
2478
2479 if (field)
2480 {
2481 struct field_access_site *acc = make_field_acc_node ();
2482
2483 gcc_assert (acc);
2484
2485 acc->stmt = stmt;
2486 acc->comp_ref = t;
2487 acc->ref = ref;
2488 acc->field_decl = field_decl;
2489
2490 /* Check whether the access is of the form
2491 we can deal with. */
2492 if (!decompose_access (str->decl, acc))
2493 {
2494 if (dump_file)
2495 {
2496 fprintf (dump_file, "\nThe type ");
2497 print_generic_expr (dump_file, type, 0);
2498 fprintf (dump_file,
2499 " has complicate access in statement ");
2500 print_gimple_stmt (dump_file, stmt, 0, 0);
2501 }
2502
2503 remove_structure (i);
2504 free (acc);
2505 }
2506 else
2507 {
2508 /* Increase count of field. */
2509 basic_block bb = gimple_bb (stmt);
2510 field->count += bb->count;
2511
2512 /* Add stmt to the acc_sites of field. */
2513 add_field_acc_to_acc_sites (acc, field->acc_sites);
2514 }
2515 *walk_subtrees = 0;
2516 }
2517 }
2518 }
2519 }
2520 break;
2521
2522 case COND_EXPR:
2523 {
2524 tree cond = COND_EXPR_COND (t);
2525 int i;
2526 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
2527 {
2528 tree t = TREE_OPERAND (cond, i);
2529
2530 *walk_subtrees = 1;
2531 walk_tree (&t, get_stmt_accesses, data, NULL);
2532 }
2533 *walk_subtrees = 0;
2534 }
2535 break;
2536
2537 case VAR_DECL:
2538 case SSA_NAME:
2539 {
2540 unsigned i;
2541
2542 if (TREE_CODE (t) == SSA_NAME)
2543 t = SSA_NAME_VAR (t);
2544
2545 i = find_structure (strip_type (get_type_of_var (t)));
2546 if (i != VEC_length (structure, structures))
2547 {
2548 d_str str;
2549
2550 str = VEC_index (structure, structures, i);
2551 add_access_to_acc_sites (stmt, t, str->accs);
2552 }
2553 *walk_subtrees = 0;
2554 }
2555 break;
2556
2557 default:
2558 return NULL;
2559 }
2560
2561 return NULL;
2562 }
2563
2564 /* Free structures hashtable. */
2565
2566 static void
2567 free_structures (void)
2568 {
2569 d_str str;
2570 unsigned i;
2571
2572 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2573 free_data_struct (str);
2574
2575 VEC_free (structure, heap, structures);
2576 structures = NULL;
2577 }
2578
2579 /* This function is a callback for traversal over new_var's hashtable.
2580 SLOT is a pointer to new_var. This function frees memory allocated
2581 for new_var and pointed by *SLOT. */
2582
2583 static int
2584 free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
2585 {
2586 new_var n_var = *(new_var *) slot;
2587
2588 /* Free vector of new_vars. */
2589 VEC_free (tree, heap, n_var->new_vars);
2590 free (n_var);
2591 return 1;
2592 }
2593
2594 /* Free new_vars hashtable NEW_VARS_HTAB. */
2595
2596 static void
2597 free_new_vars_htab (htab_t new_vars_htab)
2598 {
2599 if (new_vars_htab)
2600 htab_traverse (new_vars_htab, free_new_var, NULL);
2601 htab_delete (new_vars_htab);
2602 new_vars_htab = NULL;
2603 }
2604
2605 /* This function creates new general and field accesses that appear in cfun. */
2606
2607 static void
2608 create_new_accesses_for_func (void)
2609 {
2610 basic_block bb;
2611
2612 FOR_EACH_BB_FN (bb, cfun)
2613 create_new_accesses_in_bb (bb);
2614 }
2615
2616 /* Create new allocation sites for the function represented by NODE. */
2617
2618 static void
2619 create_new_alloc_sites_for_func (struct cgraph_node *node)
2620 {
2621 fallocs_t fallocs = get_fallocs (node->decl);
2622
2623 if (fallocs)
2624 create_new_alloc_sites (fallocs, node->decl);
2625 }
2626
2627 /* For each local variable of structure type from the vector of structures
2628 this function generates new variable(s) to replace it. */
2629
2630 static void
2631 create_new_local_vars (void)
2632 {
2633 tree var;
2634 referenced_var_iterator rvi;
2635
2636 new_local_vars = htab_create (num_referenced_vars,
2637 new_var_hash, new_var_eq, NULL);
2638
2639 FOR_EACH_REFERENCED_VAR (var, rvi)
2640 {
2641 if (!is_global_var (var))
2642 create_new_var (var, new_local_vars);
2643 }
2644
2645 if (new_local_vars)
2646 htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
2647 dump_new_vars (new_local_vars);
2648 }
2649
2650 /* This function prints the SHIFT number of spaces to the DUMP_FILE. */
2651
2652 static inline void
2653 print_shift (unsigned HOST_WIDE_INT shift)
2654 {
2655 unsigned HOST_WIDE_INT sh = shift;
2656
2657 while (sh--)
2658 fprintf (dump_file, " ");
2659 }
2660
2661 /* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
2662
2663 static inline void
2664 update_fields_mapping (struct field_cluster *cluster, tree new_type,
2665 struct field_entry * fields, int num_fields)
2666 {
2667 int i;
2668
2669 for (i = 0; i < num_fields; i++)
2670 if (TEST_BIT (cluster->fields_in_cluster, i))
2671 fields[i].field_mapping = new_type;
2672 }
2673
2674 /* This functions builds structure with FIELDS,
2675 NAME and attributes similar to ORIG_STRUCT.
2676 It returns the newly created structure. */
2677
2678 static tree
2679 build_basic_struct (tree fields, tree name, tree orig_struct)
2680 {
2681 tree attributes = NULL_TREE;
2682 tree ref = 0;
2683 tree x;
2684
2685 if (TYPE_ATTRIBUTES (orig_struct))
2686 attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
2687 ref = make_node (RECORD_TYPE);
2688 TYPE_SIZE (ref) = 0;
2689 decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
2690 TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
2691 for (x = fields; x; x = TREE_CHAIN (x))
2692 {
2693 DECL_CONTEXT (x) = ref;
2694 DECL_PACKED (x) |= TYPE_PACKED (ref);
2695 }
2696 TYPE_FIELDS (ref) = fields;
2697 layout_type (ref);
2698 TYPE_NAME (ref) = name;
2699
2700 return ref;
2701 }
2702
2703 /* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
2704 of preparation for new structure building. NUM_FIELDS is a total
2705 number of fields in the structure. The function returns newly
2706 generated fields. */
2707
2708 static tree
2709 create_fields (struct field_cluster * cluster,
2710 struct field_entry * fields, int num_fields)
2711 {
2712 int i;
2713 tree new_types = NULL_TREE;
2714 tree last = NULL_TREE;
2715
2716 for (i = 0; i < num_fields; i++)
2717 if (TEST_BIT (cluster->fields_in_cluster, i))
2718 {
2719 tree new_decl = unshare_expr (fields[i].decl);
2720
2721 if (!new_types)
2722 new_types = new_decl;
2723 else
2724 TREE_CHAIN (last) = new_decl;
2725 last = new_decl;
2726 }
2727
2728 TREE_CHAIN (last) = NULL_TREE;
2729 return new_types;
2730
2731 }
2732
2733 /* This function creates a cluster name. The name is based on
2734 the original structure name, if it is present. It has a form:
2735
2736 <original_struct_name>_sub.<CLUST_NUM>
2737
2738 The original structure name is taken from the type of DECL.
2739 If an original structure name is not present, it's generated to be:
2740
2741 struct.<STR_NUM>
2742
2743 The function returns identifier of the new cluster name. */
2744
2745 static inline tree
2746 gen_cluster_name (tree decl, int clust_num, int str_num)
2747 {
2748 const char * orig_name = get_type_name (decl);
2749 char * tmp_name = NULL;
2750 char * prefix;
2751 char * new_name;
2752 size_t len;
2753
2754 if (!orig_name)
2755 ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
2756
2757 len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
2758 prefix = XALLOCAVEC (char, len + 1);
2759 memcpy (prefix, tmp_name ? tmp_name : orig_name,
2760 strlen (tmp_name ? tmp_name : orig_name));
2761 strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
2762
2763 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
2764 return get_identifier (new_name);
2765 }
2766
2767 /* This function checks whether the structure STR has bitfields.
2768 If yes, this structure type is added to UNSUITABLE_TYPES vector. */
2769
2770 static void
2771 check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
2772 {
2773 tree type = str->decl;
2774 int i;
2775
2776 for (i = 0; i < str->num_fields; i++)
2777 if (DECL_BIT_FIELD (str->fields[i].decl))
2778 {
2779 add_unsuitable_type (unsuitable_types, type);
2780 if (dump_file)
2781 {
2782 fprintf (dump_file, "\nType ");
2783 print_generic_expr (dump_file, type, 0);
2784 fprintf (dump_file, "\nescapes due to bitfield ");
2785 print_generic_expr (dump_file, str->fields[i].decl, 0);
2786 }
2787 break;
2788 }
2789 }
2790
2791 /* This function adds to UNSUITABLE_TYPES those types that escape
2792 due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
2793
2794 static void
2795 exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
2796 {
2797 d_str str;
2798 unsigned i;
2799
2800 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2801 check_type_escape (str, unsuitable_types);
2802 }
2803
2804 /* If a structure type is a return type of any function,
2805 we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
2806
2807 static void
2808 exclude_returned_types (VEC (tree, heap) **unsuitable_types)
2809 {
2810 struct cgraph_node *c_node;
2811
2812 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2813 {
2814 tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
2815
2816 if (ret_t)
2817 {
2818 ret_t = strip_type (ret_t);
2819 if (TREE_CODE (ret_t) == RECORD_TYPE)
2820 {
2821 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
2822 if (dump_file)
2823 {
2824 fprintf (dump_file, "\nThe type \"");
2825 print_generic_expr (dump_file, ret_t, 0);
2826 fprintf (dump_file,
2827 "\" is return type of function...Excluded.");
2828 }
2829 }
2830 }
2831 }
2832 }
2833
2834 /* This function looks for parameters of local functions
2835 which are of structure types, or derived from them (arrays
2836 of structures, pointers to structures, or their combinations).
2837 We are not handling peeling of such structures right now.
2838 The found structures types are added to UNSUITABLE_TYPES vector. */
2839
2840 static void
2841 exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
2842 {
2843 struct cgraph_node *c_node;
2844
2845 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2846 if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
2847 {
2848 tree fn = c_node->decl;
2849 tree arg;
2850
2851 for (arg = DECL_ARGUMENTS (fn); arg; arg = TREE_CHAIN (arg))
2852 {
2853 tree type = TREE_TYPE (arg);
2854
2855 type = strip_type (type);
2856 if (TREE_CODE (type) == RECORD_TYPE)
2857 {
2858 add_unsuitable_type (unsuitable_types,
2859 TYPE_MAIN_VARIANT (type));
2860 if (dump_file)
2861 {
2862 fprintf (dump_file, "\nPointer to type \"");
2863 print_generic_expr (dump_file, type, 0);
2864 fprintf (dump_file,
2865 "\" is passed to local function...Excluded.");
2866 }
2867 }
2868 }
2869 }
2870 }
2871
2872 /* This function analyzes structure form of structures
2873 potential for transformation. If we are not capable to transform
2874 structure of some form, we remove it from the structures hashtable.
2875 Right now we cannot handle nested structs, when nesting is
2876 through any level of pointers or arrays.
2877
2878 TBD: release these constrains in future.
2879
2880 Note, that in this function we suppose that all structures
2881 in the program are members of the structures hashtable right now,
2882 without excluding escaping types. */
2883
2884 static void
2885 check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
2886 {
2887 int i;
2888
2889 for (i = 0; i < str->num_fields; i++)
2890 {
2891 tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
2892
2893 if (TREE_CODE (f_type) == RECORD_TYPE)
2894 {
2895 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
2896 add_unsuitable_type (unsuitable_types, str->decl);
2897 if (dump_file)
2898 {
2899 fprintf (dump_file, "\nType ");
2900 print_generic_expr (dump_file, f_type, 0);
2901 fprintf (dump_file, " is a field in the structure ");
2902 print_generic_expr (dump_file, str->decl, 0);
2903 fprintf (dump_file, ". Escaping...");
2904 }
2905 }
2906 }
2907 }
2908
2909 /* This function adds a structure TYPE to the vector of structures,
2910 if it's not already there. */
2911
2912 static void
2913 add_structure (tree type)
2914 {
2915 struct data_structure node;
2916 unsigned i;
2917 int num_fields;
2918
2919 type = TYPE_MAIN_VARIANT (type);
2920
2921 i = find_structure (type);
2922
2923 if (i != VEC_length (structure, structures))
2924 return;
2925
2926 num_fields = fields_length (type);
2927 node.decl = type;
2928 node.num_fields = num_fields;
2929 node.fields = get_fields (type, num_fields);
2930 node.struct_clustering = NULL;
2931 node.accs = htab_create (32, acc_hash, acc_eq, NULL);
2932 node.new_types = VEC_alloc (tree, heap, num_fields);
2933 node.count = 0;
2934
2935 VEC_safe_push (structure, heap, structures, &node);
2936
2937 if (dump_file)
2938 {
2939 fprintf (dump_file, "\nAdding data structure \"");
2940 print_generic_expr (dump_file, type, 0);
2941 fprintf (dump_file, "\" to data_struct_list.");
2942 }
2943 }
2944
2945 /* This function adds an allocation site to alloc_sites hashtable.
2946 The allocation site appears in STMT of function FN_DECL and
2947 allocates the structure represented by STR. */
2948
2949 static void
2950 add_alloc_site (tree fn_decl, gimple stmt, d_str str)
2951 {
2952 fallocs_t fallocs = NULL;
2953 alloc_site_t m_call;
2954
2955 m_call.stmt = stmt;
2956 m_call.str = str;
2957
2958 fallocs =
2959 (fallocs_t) htab_find_with_hash (alloc_sites,
2960 fn_decl, htab_hash_pointer (fn_decl));
2961
2962 if (!fallocs)
2963 {
2964 void **slot;
2965
2966 fallocs = (fallocs_t)
2967 xmalloc (sizeof (struct func_alloc_sites));
2968 fallocs->func = fn_decl;
2969 fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
2970 slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
2971 htab_hash_pointer (fn_decl), INSERT);
2972 *slot = fallocs;
2973 }
2974 VEC_safe_push (alloc_site_t, heap,
2975 fallocs->allocs, &m_call);
2976
2977 if (dump_file)
2978 {
2979 fprintf (dump_file, "\nAdding stmt ");
2980 print_gimple_stmt (dump_file, stmt, 0, 0);
2981 fprintf (dump_file, " to list of mallocs.");
2982 }
2983 }
2984
2985 /* This function returns true if the result of STMT, that contains a call
2986 to an allocation function, is cast to one of the structure types.
2987 STMT should be of the form: T.2 = <alloc_func> (T.1);
2988 If true, I_P contains an index of an allocated structure.
2989 Otherwise I_P contains the length of the vector of structures. */
2990
2991 static bool
2992 is_alloc_of_struct (gimple stmt, unsigned *i_p)
2993 {
2994 tree lhs;
2995 tree type;
2996 gimple final_stmt;
2997
2998 final_stmt = get_final_alloc_stmt (stmt);
2999
3000 if (!final_stmt)
3001 return false;
3002
3003 /* final_stmt should be of the form:
3004 T.3 = (struct_type *) T.2; */
3005
3006 if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
3007 return false;
3008
3009 lhs = gimple_assign_lhs (final_stmt);
3010
3011 type = get_type_of_var (lhs);
3012
3013 if (!type)
3014 return false;
3015
3016 if (!POINTER_TYPE_P (type)
3017 || TREE_CODE (strip_type (type)) != RECORD_TYPE)
3018 return false;
3019
3020 *i_p = find_structure (strip_type (type));
3021
3022 if (*i_p == VEC_length (structure, structures))
3023 return false;
3024
3025 return true;
3026 }
3027
3028 /* This function prints non-field and field accesses
3029 of the structure STR. */
3030
3031 static void
3032 dump_accs (d_str str)
3033 {
3034 int i;
3035
3036 fprintf (dump_file, "\nAccess sites of struct ");
3037 print_generic_expr (dump_file, str->decl, 0);
3038
3039 for (i = 0; i < str->num_fields; i++)
3040 {
3041 fprintf (dump_file, "\nAccess site of field ");
3042 print_generic_expr (dump_file, str->fields[i].decl, 0);
3043 dump_field_acc_sites (str->fields[i].acc_sites);
3044 fprintf (dump_file, ":\n");
3045 }
3046 fprintf (dump_file, "\nGeneral access sites\n");
3047 dump_access_sites (str->accs);
3048 }
3049
3050 /* This function checks whether an access statement, pointed by SLOT,
3051 is a condition we are capable to transform. It returns false if not,
3052 setting bool *DATA to false. */
3053
3054 static int
3055 safe_cond_expr_check (void **slot, void *data)
3056 {
3057 struct access_site *acc = *(struct access_site **) slot;
3058
3059 if (gimple_code (acc->stmt) == GIMPLE_COND
3060 && !is_safe_cond_expr (acc->stmt))
3061 {
3062 if (dump_file)
3063 {
3064 fprintf (dump_file, "\nUnsafe conditional statement ");
3065 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
3066 }
3067 *(bool *) data = false;
3068 return 0;
3069 }
3070 return 1;
3071 }
3072
3073 /* This function excludes statements that are part of allocation sites and
3074 field accesses from the hashtable of general accesses of the structure
3075 type STR. Only accesses that belong to the function represented by
3076 NODE are treated. */
3077
3078 static void
3079 exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
3080 {
3081 struct exclude_data dt;
3082 dt.str = str;
3083 dt.fn_decl = node->decl;
3084
3085 if (dt.str->accs)
3086 htab_traverse (dt.str->accs, exclude_from_accs, &dt);
3087 }
3088
3089 /* Collect accesses to the structure types that appear in basic block BB. */
3090
3091 static void
3092 collect_accesses_in_bb (basic_block bb)
3093 {
3094 gimple_stmt_iterator bsi;
3095 struct walk_stmt_info wi;
3096
3097 memset (&wi, 0, sizeof (wi));
3098
3099 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3100 {
3101 gimple stmt = gsi_stmt (bsi);
3102
3103 /* In asm stmt we cannot always track the arguments,
3104 so we just give up. */
3105 if (gimple_code (stmt) == GIMPLE_ASM)
3106 {
3107 free_structures ();
3108 break;
3109 }
3110
3111 wi.info = (void *) stmt;
3112 walk_gimple_op (stmt, get_stmt_accesses, &wi);
3113 }
3114 }
3115
3116 /* This function generates cluster substructure that contains FIELDS.
3117 The cluster added to the set of clusters of the structure STR. */
3118
3119 static void
3120 gen_cluster (sbitmap fields, d_str str)
3121 {
3122 struct field_cluster *crr_cluster = NULL;
3123
3124 crr_cluster =
3125 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3126 crr_cluster->sibling = str->struct_clustering;
3127 str->struct_clustering = crr_cluster;
3128 crr_cluster->fields_in_cluster = fields;
3129 }
3130
3131 /* This function peels a field with the index I from the structure DS. */
3132
3133 static void
3134 peel_field (int i, d_str ds)
3135 {
3136 struct field_cluster *crr_cluster = NULL;
3137
3138 crr_cluster =
3139 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3140 crr_cluster->sibling = ds->struct_clustering;
3141 ds->struct_clustering = crr_cluster;
3142 crr_cluster->fields_in_cluster =
3143 sbitmap_alloc ((unsigned int) ds->num_fields);
3144 sbitmap_zero (crr_cluster->fields_in_cluster);
3145 SET_BIT (crr_cluster->fields_in_cluster, i);
3146 }
3147
3148 /* This function calculates maximum field count in
3149 the structure STR. */
3150
3151 static gcov_type
3152 get_max_field_count (d_str str)
3153 {
3154 gcov_type max = 0;
3155 int i;
3156
3157 for (i = 0; i < str->num_fields; i++)
3158 if (str->fields[i].count > max)
3159 max = str->fields[i].count;
3160
3161 return max;
3162 }
3163
3164 /* Do struct-reorg transformation for individual function
3165 represented by NODE. All structure types relevant
3166 for this function are transformed. */
3167
3168 static void
3169 do_reorg_for_func (struct cgraph_node *node)
3170 {
3171 create_new_local_vars ();
3172 create_new_alloc_sites_for_func (node);
3173 create_new_accesses_for_func ();
3174 update_ssa (TODO_update_ssa);
3175 cleanup_tree_cfg ();
3176
3177 /* Free auxiliary data representing local variables. */
3178 free_new_vars_htab (new_local_vars);
3179 }
3180
3181 /* Print structure TYPE, its name, if it exists, and body.
3182 INDENT defines the level of indentation (similar
3183 to the option -i of indent command). SHIFT parameter
3184 defines a number of spaces by which a structure will
3185 be shifted right. */
3186
3187 static void
3188 dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
3189 unsigned HOST_WIDE_INT shift)
3190 {
3191 const char *struct_name;
3192 tree field;
3193
3194 if (!type || !dump_file)
3195 return;
3196
3197 if (TREE_CODE (type) != RECORD_TYPE)
3198 {
3199 print_generic_expr (dump_file, type, 0);
3200 return;
3201 }
3202
3203 print_shift (shift);
3204 struct_name = get_type_name (type);
3205 fprintf (dump_file, "struct ");
3206 if (struct_name)
3207 fprintf (dump_file, "%s\n",struct_name);
3208 print_shift (shift);
3209 fprintf (dump_file, "{\n");
3210
3211 for (field = TYPE_FIELDS (type); field;
3212 field = TREE_CHAIN (field))
3213 {
3214 unsigned HOST_WIDE_INT s = indent;
3215 tree f_type = TREE_TYPE (field);
3216
3217 print_shift (shift);
3218 while (s--)
3219 fprintf (dump_file, " ");
3220 dump_struct_type (f_type, indent, shift + indent);
3221 fprintf(dump_file, " ");
3222 print_generic_expr (dump_file, field, 0);
3223 fprintf(dump_file, ";\n");
3224 }
3225 print_shift (shift);
3226 fprintf (dump_file, "}\n");
3227 }
3228
3229 /* This function creates new structure types to replace original type,
3230 indicated by STR->decl. The names of the new structure types are
3231 derived from the original structure type. If the original structure
3232 type has no name, we assume that its name is 'struct.<STR_NUM>'. */
3233
3234 static void
3235 create_new_type (d_str str, int *str_num)
3236 {
3237 int cluster_num = 0;
3238
3239 struct field_cluster *cluster = str->struct_clustering;
3240 while (cluster)
3241 {
3242 tree name = gen_cluster_name (str->decl, cluster_num,
3243 *str_num);
3244 tree fields;
3245 tree new_type;
3246 cluster_num++;
3247
3248 fields = create_fields (cluster, str->fields,
3249 str->num_fields);
3250 new_type = build_basic_struct (fields, name, str->decl);
3251
3252 update_fields_mapping (cluster, new_type,
3253 str->fields, str->num_fields);
3254
3255 VEC_safe_push (tree, heap, str->new_types, new_type);
3256 cluster = cluster->sibling;
3257 }
3258 (*str_num)++;
3259 }
3260
3261 /* This function is a callback for alloc_sites hashtable
3262 traversal. SLOT is a pointer to fallocs_t.
3263 This function frees memory pointed by *SLOT. */
3264
3265 static int
3266 free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
3267 {
3268 fallocs_t fallocs = *(fallocs_t *) slot;
3269
3270 VEC_free (alloc_site_t, heap, fallocs->allocs);
3271 free (fallocs);
3272 return 1;
3273 }
3274
3275 /* Remove structures collected in UNSUITABLE_TYPES
3276 from structures vector. */
3277
3278 static void
3279 remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
3280 {
3281 d_str str;
3282 tree type;
3283 unsigned i, j;
3284
3285 for (j = 0; VEC_iterate (tree, unsuitable_types, j, type); j++)
3286 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3287 if (is_equal_types (str->decl, type))
3288 {
3289 remove_structure (i);
3290 break;
3291 }
3292 }
3293
3294 /* Exclude structure types with bitfields.
3295 We would not want to interfere with other optimizations
3296 that can be done in this case. The structure types with
3297 bitfields are added to UNSUITABLE_TYPES vector. */
3298
3299 static void
3300 exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
3301 {
3302 d_str str;
3303 unsigned i;
3304
3305 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3306 check_bitfields (str, unsuitable_types);
3307 }
3308
3309 /* This function checks three types of escape. A structure type escapes:
3310
3311 1. if it's a type of parameter of a local function.
3312 2. if it's a type of function return value.
3313 3. if it escapes as a result of ipa-type-escape analysis.
3314
3315 The escaping structure types are added to UNSUITABLE_TYPES vector. */
3316
3317 static void
3318 exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
3319 {
3320 exclude_types_passed_to_local_func (unsuitable_types);
3321 exclude_returned_types (unsuitable_types);
3322 exclude_escaping_types_1 (unsuitable_types);
3323 }
3324
3325 /* This function analyzes whether the form of
3326 structure is such that we are capable to transform it.
3327 Nested structures are checked here. Unsuitable structure
3328 types are added to UNSUITABLE_TYPE vector. */
3329
3330 static void
3331 analyze_struct_form (VEC (tree, heap) **unsuitable_types)
3332 {
3333 d_str str;
3334 unsigned i;
3335
3336 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3337 check_struct_form (str, unsuitable_types);
3338 }
3339
3340 /* This function looks for structure types instantiated in the program.
3341 The candidate types are added to the structures vector.
3342 Unsuitable types are collected into UNSUITABLE_TYPES vector. */
3343
3344 static void
3345 build_data_structure (VEC (tree, heap) **unsuitable_types)
3346 {
3347 tree var, type;
3348 tree var_list;
3349 struct varpool_node *current_varpool;
3350 struct cgraph_node *c_node;
3351
3352 /* Check global variables. */
3353 FOR_EACH_STATIC_VARIABLE (current_varpool)
3354 {
3355 var = current_varpool->decl;
3356 if (is_candidate (var, &type, unsuitable_types))
3357 add_structure (type);
3358 }
3359
3360 /* Now add structures that are types of function parameters and
3361 local variables. */
3362 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3363 {
3364 enum availability avail =
3365 cgraph_function_body_availability (c_node);
3366
3367 /* We need AVAIL_AVAILABLE for main function. */
3368 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3369 {
3370 struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
3371
3372 for (var = DECL_ARGUMENTS (c_node->decl); var;
3373 var = TREE_CHAIN (var))
3374 if (is_candidate (var, &type, unsuitable_types))
3375 add_structure (type);
3376
3377 /* Check function local variables. */
3378 for (var_list = fn->local_decls; var_list;
3379 var_list = TREE_CHAIN (var_list))
3380 {
3381 var = TREE_VALUE (var_list);
3382
3383 if (is_candidate (var, &type, unsuitable_types))
3384 add_structure (type);
3385 }
3386 }
3387 }
3388 }
3389
3390 /* This function returns true if the program contains
3391 a call to user defined allocation function, or other
3392 functions that can interfere with struct-reorg optimizations. */
3393
3394 static bool
3395 program_redefines_malloc_p (void)
3396 {
3397 struct cgraph_node *c_node;
3398 struct cgraph_node *c_node2;
3399 struct cgraph_edge *c_edge;
3400 tree fndecl;
3401 tree fndecl2;
3402
3403 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3404 {
3405 fndecl = c_node->decl;
3406
3407 for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
3408 {
3409 c_node2 = c_edge->callee;
3410 fndecl2 = c_node2->decl;
3411 if (is_gimple_call (c_edge->call_stmt))
3412 {
3413 const char * fname = get_name (fndecl2);
3414
3415 if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
3416 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
3417 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
3418 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
3419 return true;
3420
3421 /* Check that there is no __builtin_object_size,
3422 __builtin_offsetof, or realloc's in the program. */
3423 if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
3424 || !strcmp (fname, "__builtin_offsetof")
3425 || !strcmp (fname, "realloc"))
3426 return true;
3427 }
3428 }
3429 }
3430
3431 return false;
3432 }
3433
3434 /* In this function we assume that an allocation statement
3435
3436 var = (type_cast) malloc (size);
3437
3438 is converted into the following set of statements:
3439
3440 T.1 = size;
3441 T.2 = malloc (T.1);
3442 T.3 = (type_cast) T.2;
3443 var = T.3;
3444
3445 In this function we collect into alloc_sites the allocation
3446 sites of variables of structure types that are present
3447 in structures vector. */
3448
3449 static void
3450 collect_alloc_sites (void)
3451 {
3452 struct cgraph_node *node;
3453 struct cgraph_edge *cs;
3454
3455 for (node = cgraph_nodes; node; node = node->next)
3456 if (node->analyzed && node->decl)
3457 {
3458 for (cs = node->callees; cs; cs = cs->next_callee)
3459 {
3460 gimple stmt = cs->call_stmt;
3461
3462 if (stmt)
3463 {
3464 tree decl;
3465
3466 if (is_gimple_call (stmt)
3467 && (decl = gimple_call_fndecl (stmt))
3468 && gimple_call_lhs (stmt))
3469 {
3470 unsigned i;
3471
3472 if (is_alloc_of_struct (stmt, &i))
3473 {
3474 /* We support only malloc now. */
3475 if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
3476 {
3477 d_str str;
3478
3479 str = VEC_index (structure, structures, i);
3480 add_alloc_site (node->decl, stmt, str);
3481 }
3482 else
3483 {
3484 if (dump_file)
3485 {
3486 fprintf (dump_file,
3487 "\nUnsupported allocation function ");
3488 print_gimple_stmt (dump_file, stmt, 0, 0);
3489 }
3490 remove_structure (i);
3491 }
3492 }
3493 }
3494 }
3495 }
3496 }
3497 }
3498
3499 /* Print collected accesses. */
3500
3501 static void
3502 dump_accesses (void)
3503 {
3504 d_str str;
3505 unsigned i;
3506
3507 if (!dump_file)
3508 return;
3509
3510 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3511 dump_accs (str);
3512 }
3513
3514 /* This function checks whether the accesses of structures in condition
3515 expressions are of the kind we are capable to transform.
3516 If not, such structures are removed from the vector of structures. */
3517
3518 static void
3519 check_cond_exprs (void)
3520 {
3521 d_str str;
3522 unsigned i;
3523
3524 i = 0;
3525 while (VEC_iterate (structure, structures, i, str))
3526 {
3527 bool safe_p = true;
3528
3529 if (str->accs)
3530 htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
3531 if (!safe_p)
3532 remove_structure (i);
3533 else
3534 i++;
3535 }
3536 }
3537
3538 /* We exclude from non-field accesses of the structure
3539 all statements that will be treated as part of the structure
3540 allocation sites or field accesses. */
3541
3542 static void
3543 exclude_alloc_and_field_accs (struct cgraph_node *node)
3544 {
3545 d_str str;
3546 unsigned i;
3547
3548 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3549 exclude_alloc_and_field_accs_1 (str, node);
3550 }
3551
3552 /* This function collects accesses of the fields of the structures
3553 that appear at function FN. */
3554
3555 static void
3556 collect_accesses_in_func (struct function *fn)
3557 {
3558 basic_block bb;
3559
3560 if (! fn)
3561 return;
3562
3563 /* Collect accesses for each basic blocks separately. */
3564 FOR_EACH_BB_FN (bb, fn)
3565 collect_accesses_in_bb (bb);
3566 }
3567
3568 /* This function summarizes counts of the fields into the structure count. */
3569
3570 static void
3571 sum_counts (d_str str, gcov_type *hottest)
3572 {
3573 int i;
3574
3575 str->count = 0;
3576 for (i = 0; i < str->num_fields; i++)
3577 {
3578 if (dump_file)
3579 {
3580 fprintf (dump_file, "\nCounter of field \"");
3581 print_generic_expr (dump_file, str->fields[i].decl, 0);
3582 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
3583 str->fields[i].count);
3584 }
3585 str->count += str->fields[i].count;
3586 }
3587
3588 if (dump_file)
3589 {
3590 fprintf (dump_file, "\nCounter of struct \"");
3591 print_generic_expr (dump_file, str->decl, 0);
3592 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
3593 }
3594
3595 if (str->count > *hottest)
3596 *hottest = str->count;
3597 }
3598
3599 /* This function peels the field into separate structure if it's
3600 sufficiently hot, i.e. if its count provides at least 90% of
3601 the maximum field count in the structure. */
3602
3603 static void
3604 peel_hot_fields (d_str str)
3605 {
3606 gcov_type max_field_count;
3607 sbitmap fields_left = sbitmap_alloc (str->num_fields);
3608 int i;
3609
3610 sbitmap_ones (fields_left);
3611 max_field_count =
3612 (gcov_type) (get_max_field_count (str)/100)*90;
3613
3614 str->struct_clustering = NULL;
3615
3616 for (i = 0; i < str->num_fields; i++)
3617 {
3618 if (str->count >= max_field_count)
3619 {
3620 RESET_BIT (fields_left, i);
3621 peel_field (i, str);
3622 }
3623 }
3624
3625 i = sbitmap_first_set_bit (fields_left);
3626 if (i != -1)
3627 gen_cluster (fields_left, str);
3628 else
3629 sbitmap_free (fields_left);
3630 }
3631
3632 /* This function is a helper for do_reorg. It goes over
3633 functions in call graph and performs actual transformation
3634 on them. */
3635
3636 static void
3637 do_reorg_1 (void)
3638 {
3639 struct cgraph_node *node;
3640
3641 /* Initialize the default bitmap obstack. */
3642 bitmap_obstack_initialize (NULL);
3643
3644 for (node = cgraph_nodes; node; node = node->next)
3645 if (node->analyzed && node->decl)
3646 {
3647 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3648 current_function_decl = node->decl;
3649 if (dump_file)
3650 fprintf (dump_file, "\nFunction to do reorg is %s: \n",
3651 (const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
3652 do_reorg_for_func (node);
3653 free_dominance_info (CDI_DOMINATORS);
3654 free_dominance_info (CDI_POST_DOMINATORS);
3655 current_function_decl = NULL;
3656 pop_cfun ();
3657 }
3658
3659 set_cfun (NULL);
3660 bitmap_obstack_release (NULL);
3661 }
3662
3663 /* This function creates new global struct variables.
3664 For each original variable, the set of new variables
3665 is created with the new structure types corresponding
3666 to the structure type of original variable.
3667 Only VAR_DECL variables are treated by this function. */
3668
3669 static void
3670 create_new_global_vars (void)
3671 {
3672 struct varpool_node *current_varpool;
3673 unsigned HOST_WIDE_INT i;
3674 unsigned HOST_WIDE_INT varpool_size = 0;
3675
3676 for (i = 0; i < 2; i++)
3677 {
3678 if (i)
3679 new_global_vars = htab_create (varpool_size,
3680 new_var_hash, new_var_eq, NULL);
3681 FOR_EACH_STATIC_VARIABLE(current_varpool)
3682 {
3683 tree var_decl = current_varpool->decl;
3684
3685 if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
3686 continue;
3687 if (!i)
3688 varpool_size++;
3689 else
3690 create_new_var (var_decl, new_global_vars);
3691 }
3692 }
3693
3694 if (new_global_vars)
3695 htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
3696 }
3697
3698 /* Dump all new types generated by this optimization. */
3699
3700 static void
3701 dump_new_types (void)
3702 {
3703 d_str str;
3704 tree type;
3705 unsigned i, j;
3706
3707 if (!dump_file)
3708 return;
3709
3710 fprintf (dump_file, "\nThe following are the new types generated by"
3711 " this optimization:\n");
3712
3713 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3714 {
3715 if (dump_file)
3716 {
3717 fprintf (dump_file, "\nFor type ");
3718 dump_struct_type (str->decl, 2, 0);
3719 fprintf (dump_file, "\nthe number of new types is %d\n",
3720 VEC_length (tree, str->new_types));
3721 }
3722 for (j = 0; VEC_iterate (tree, str->new_types, j, type); j++)
3723 dump_struct_type (type, 2, 0);
3724 }
3725 }
3726
3727 /* This function creates new types to replace old structure types. */
3728
3729 static void
3730 create_new_types (void)
3731 {
3732 d_str str;
3733 unsigned i;
3734 int str_num = 0;
3735
3736 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3737 create_new_type (str, &str_num);
3738 }
3739
3740 /* Free allocation sites hashtable. */
3741
3742 static void
3743 free_alloc_sites (void)
3744 {
3745 if (alloc_sites)
3746 htab_traverse (alloc_sites, free_falloc_sites, NULL);
3747 htab_delete (alloc_sites);
3748 alloc_sites = NULL;
3749 }
3750
3751 /* This function collects structures potential
3752 for peeling transformation, and inserts
3753 them into structures hashtable. */
3754
3755 static void
3756 collect_structures (void)
3757 {
3758 VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
3759
3760 structures = VEC_alloc (structure, heap, 32);
3761
3762 /* If program contains user defined mallocs, we give up. */
3763 if (program_redefines_malloc_p ())
3764 return;
3765
3766 /* Build data structures hashtable of all data structures
3767 in the program. */
3768 build_data_structure (&unsuitable_types);
3769
3770 /* This function analyzes whether the form of
3771 structure is such that we are capable to transform it.
3772 Nested structures are checked here. */
3773 analyze_struct_form (&unsuitable_types);
3774
3775 /* This function excludes those structure types
3776 that escape compilation unit. */
3777 exclude_escaping_types (&unsuitable_types);
3778
3779 /* We do not want to change data layout of the structures with bitfields. */
3780 exclude_types_with_bit_fields (&unsuitable_types);
3781
3782 remove_unsuitable_types (unsuitable_types);
3783 VEC_free (tree, heap, unsuitable_types);
3784 }
3785
3786 /* Collect structure allocation sites. In case of arrays
3787 we have nothing to do. */
3788
3789 static void
3790 collect_allocation_sites (void)
3791 {
3792 alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
3793 collect_alloc_sites ();
3794 }
3795
3796 /* This function collects data accesses for the
3797 structures to be transformed. For each structure
3798 field it updates the count field in field_entry. */
3799
3800 static void
3801 collect_data_accesses (void)
3802 {
3803 struct cgraph_node *c_node;
3804
3805 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3806 {
3807 enum availability avail = cgraph_function_body_availability (c_node);
3808
3809 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3810 {
3811 struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
3812
3813 collect_accesses_in_func (func);
3814 exclude_alloc_and_field_accs (c_node);
3815 }
3816 }
3817
3818 check_cond_exprs ();
3819 /* Print collected accesses. */
3820 dump_accesses ();
3821 }
3822
3823 /* We do not bother to transform cold structures.
3824 Coldness of the structure is defined relatively
3825 to the highest structure count among the structures
3826 to be transformed. It's triggered by the compiler parameter
3827
3828 --param struct-reorg-cold-struct-ratio=<value>
3829
3830 where <value> ranges from 0 to 100. Structures with count ratios
3831 that are less than this parameter are considered to be cold. */
3832
3833 static void
3834 exclude_cold_structs (void)
3835 {
3836 gcov_type hottest = 0;
3837 unsigned i;
3838 d_str str;
3839
3840 /* We summarize counts of fields of a structure into the structure count. */
3841 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3842 sum_counts (str, &hottest);
3843
3844 /* Remove cold structures from structures vector. */
3845 i = 0;
3846 while (VEC_iterate (structure, structures, i, str))
3847 if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
3848 {
3849 if (dump_file)
3850 {
3851 fprintf (dump_file, "\nThe structure ");
3852 print_generic_expr (dump_file, str->decl, 0);
3853 fprintf (dump_file, " is cold.");
3854 }
3855 remove_structure (i);
3856 }
3857 else
3858 i++;
3859 }
3860
3861 /* This function decomposes original structure into substructures,
3862 i.e.clusters. */
3863
3864 static void
3865 peel_structs (void)
3866 {
3867 d_str str;
3868 unsigned i;
3869
3870 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3871 peel_hot_fields (str);
3872 }
3873
3874 /* Stage 3. */
3875 /* Do the actual transformation for each structure
3876 from the structures hashtable. */
3877
3878 static void
3879 do_reorg (void)
3880 {
3881 /* Check that there is a work to do. */
3882 if (!VEC_length (structure, structures))
3883 {
3884 if (dump_file)
3885 fprintf (dump_file, "\nNo structures to transform. Exiting...");
3886 return;
3887 }
3888 else
3889 {
3890 if (dump_file)
3891 {
3892 fprintf (dump_file, "\nNumber of structures to transform is %d",
3893 VEC_length (structure, structures));
3894 }
3895 }
3896
3897 /* Generate new types. */
3898 create_new_types ();
3899 dump_new_types ();
3900
3901 /* Create new global variables. */
3902 create_new_global_vars ();
3903 dump_new_vars (new_global_vars);
3904
3905 /* Decompose structures for each function separately. */
3906 do_reorg_1 ();
3907
3908 /* Free auxiliary data collected for global variables. */
3909 free_new_vars_htab (new_global_vars);
3910 }
3911
3912 /* Free all auxiliary data used by this optimization. */
3913
3914 static void
3915 free_data_structs (void)
3916 {
3917 free_structures ();
3918 free_alloc_sites ();
3919 }
3920
3921 /* Perform structure decomposition (peeling). */
3922
3923 static void
3924 reorg_structs (void)
3925 {
3926
3927 /* Stage1. */
3928 /* Collect structure types. */
3929 collect_structures ();
3930
3931 /* Collect structure allocation sites. */
3932 collect_allocation_sites ();
3933
3934 /* Collect structure accesses. */
3935 collect_data_accesses ();
3936
3937 /* We transform only hot structures. */
3938 exclude_cold_structs ();
3939
3940 /* Stage2. */
3941 /* Decompose structures into substructures, i.e. clusters. */
3942 peel_structs ();
3943
3944 /* Stage3. */
3945 /* Do the actual transformation for each structure
3946 from the structures hashtable. */
3947 do_reorg ();
3948
3949 /* Free all auxiliary data used by this optimization. */
3950 free_data_structs ();
3951 }
3952
3953 /* Struct-reorg optimization entry point function. */
3954
3955 static unsigned int
3956 reorg_structs_drive (void)
3957 {
3958 reorg_structs ();
3959 return 0;
3960 }
3961
3962 /* Struct-reorg optimization gate function. */
3963
3964 static bool
3965 struct_reorg_gate (void)
3966 {
3967 return flag_ipa_struct_reorg
3968 && flag_whole_program
3969 && (optimize > 0);
3970 }
3971
3972 struct simple_ipa_opt_pass pass_ipa_struct_reorg =
3973 {
3974 {
3975 SIMPLE_IPA_PASS,
3976 "ipa_struct_reorg", /* name */
3977 struct_reorg_gate, /* gate */
3978 reorg_structs_drive, /* execute */
3979 NULL, /* sub */
3980 NULL, /* next */
3981 0, /* static_pass_number */
3982 TV_INTEGRATION, /* tv_id */
3983 0, /* properties_required */
3984 0, /* properties_provided */
3985 0, /* properties_destroyed */
3986 TODO_verify_ssa, /* todo_flags_start */
3987 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
3988 }
3989 };