* ChangeLog: Fix whitespace.
[gcc.git] / gcc / ira-costs.c
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
41
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
45
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
48
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
51
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
56 {
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
61 };
62
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
73
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
76
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
79
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
82
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
87
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
92
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
97
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
100
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
103
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
107
108 /* Execution frequency of the current insn. */
109 static int frequency;
110
111 \f
112
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
115 {
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
126 };
127
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
131
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
134
135 /* Helper for cost_classes hashing. */
136
137 struct cost_classes_hasher
138 {
139 typedef cost_classes value_type;
140 typedef cost_classes compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
143 static inline void remove (value_type *);
144 };
145
146 /* Returns hash value for cost classes info HV. */
147 inline hashval_t
148 cost_classes_hasher::hash (const value_type *hv)
149 {
150 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
151 }
152
153 /* Compares cost classes info HV1 and HV2. */
154 inline bool
155 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
156 {
157 return (hv1->num == hv2->num
158 && memcmp (hv1->classes, hv2->classes,
159 sizeof (enum reg_class) * hv1->num) == 0);
160 }
161
162 /* Delete cost classes info V from the hash table. */
163 inline void
164 cost_classes_hasher::remove (value_type *v)
165 {
166 ira_free (v);
167 }
168
169 /* Hash table of unique cost classes. */
170 static hash_table<cost_classes_hasher> *cost_classes_htab;
171
172 /* Map allocno class -> cost classes for pseudo of given allocno
173 class. */
174 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
175
176 /* Map mode -> cost classes for pseudo of give mode. */
177 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
178
179 /* Initialize info about the cost classes for each pseudo. */
180 static void
181 initiate_regno_cost_classes (void)
182 {
183 int size = sizeof (cost_classes_t) * max_reg_num ();
184
185 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
186 memset (regno_cost_classes, 0, size);
187 memset (cost_classes_aclass_cache, 0,
188 sizeof (cost_classes_t) * N_REG_CLASSES);
189 memset (cost_classes_mode_cache, 0,
190 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
191 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
192 }
193
194 /* Create new cost classes from cost classes FROM and set up members
195 index and hard_regno_index. Return the new classes. The function
196 implements some common code of two functions
197 setup_regno_cost_classes_by_aclass and
198 setup_regno_cost_classes_by_mode. */
199 static cost_classes_t
200 setup_cost_classes (cost_classes_t from)
201 {
202 cost_classes_t classes_ptr;
203 enum reg_class cl;
204 int i, j, hard_regno;
205
206 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
207 classes_ptr->num = from->num;
208 for (i = 0; i < N_REG_CLASSES; i++)
209 classes_ptr->index[i] = -1;
210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
211 classes_ptr->hard_regno_index[i] = -1;
212 for (i = 0; i < from->num; i++)
213 {
214 cl = classes_ptr->classes[i] = from->classes[i];
215 classes_ptr->index[cl] = i;
216 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
217 {
218 hard_regno = ira_class_hard_regs[cl][j];
219 if (classes_ptr->hard_regno_index[hard_regno] < 0)
220 classes_ptr->hard_regno_index[hard_regno] = i;
221 }
222 }
223 return classes_ptr;
224 }
225
226 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
227 This function is used when we know an initial approximation of
228 allocno class of the pseudo already, e.g. on the second iteration
229 of class cost calculation or after class cost calculation in
230 register-pressure sensitive insn scheduling or register-pressure
231 sensitive loop-invariant motion. */
232 static void
233 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
234 {
235 static struct cost_classes classes;
236 cost_classes_t classes_ptr;
237 enum reg_class cl;
238 int i;
239 cost_classes **slot;
240 HARD_REG_SET temp, temp2;
241 bool exclude_p;
242
243 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
244 {
245 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
246 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
247 /* We exclude classes from consideration which are subsets of
248 ACLASS only if ACLASS is an uniform class. */
249 exclude_p = ira_uniform_class_p[aclass];
250 classes.num = 0;
251 for (i = 0; i < ira_important_classes_num; i++)
252 {
253 cl = ira_important_classes[i];
254 if (exclude_p)
255 {
256 /* Exclude non-uniform classes which are subsets of
257 ACLASS. */
258 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
259 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
260 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
261 continue;
262 }
263 classes.classes[classes.num++] = cl;
264 }
265 slot = cost_classes_htab->find_slot (&classes, INSERT);
266 if (*slot == NULL)
267 {
268 classes_ptr = setup_cost_classes (&classes);
269 *slot = classes_ptr;
270 }
271 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
272 }
273 regno_cost_classes[regno] = classes_ptr;
274 }
275
276 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
277 decrease number of cost classes for the pseudo, if hard registers
278 of some important classes can not hold a value of MODE. So the
279 pseudo can not get hard register of some important classes and cost
280 calculation for such important classes is only waisting CPU
281 time. */
282 static void
283 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
284 {
285 static struct cost_classes classes;
286 cost_classes_t classes_ptr;
287 enum reg_class cl;
288 int i;
289 cost_classes **slot;
290 HARD_REG_SET temp;
291
292 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
293 {
294 classes.num = 0;
295 for (i = 0; i < ira_important_classes_num; i++)
296 {
297 cl = ira_important_classes[i];
298 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
299 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
300 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
301 continue;
302 classes.classes[classes.num++] = cl;
303 }
304 slot = cost_classes_htab->find_slot (&classes, INSERT);
305 if (*slot == NULL)
306 {
307 classes_ptr = setup_cost_classes (&classes);
308 *slot = classes_ptr;
309 }
310 else
311 classes_ptr = (cost_classes_t) *slot;
312 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
313 }
314 regno_cost_classes[regno] = classes_ptr;
315 }
316
317 /* Finilize info about the cost classes for each pseudo. */
318 static void
319 finish_regno_cost_classes (void)
320 {
321 ira_free (regno_cost_classes);
322 delete cost_classes_htab;
323 cost_classes_htab = NULL;
324 }
325
326 \f
327
328 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
329 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
330 be a pseudo register. */
331 static int
332 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
333 secondary_reload_info *prev_sri)
334 {
335 secondary_reload_info sri;
336 reg_class_t secondary_class = NO_REGS;
337
338 /* If X is a SCRATCH, there is actually nothing to move since we are
339 assuming optimal allocation. */
340 if (GET_CODE (x) == SCRATCH)
341 return 0;
342
343 /* Get the class we will actually use for a reload. */
344 rclass = targetm.preferred_reload_class (x, rclass);
345
346 /* If we need a secondary reload for an intermediate, the cost is
347 that to load the input into the intermediate register, then to
348 copy it. */
349 sri.prev_sri = prev_sri;
350 sri.extra_cost = 0;
351 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
352
353 if (secondary_class != NO_REGS)
354 {
355 ira_init_register_move_cost_if_necessary (mode);
356 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
357 + sri.extra_cost
358 + copy_cost (x, mode, secondary_class, to_p, &sri));
359 }
360
361 /* For memory, use the memory move cost, for (hard) registers, use
362 the cost to move between the register classes, and use 2 for
363 everything else (constants). */
364 if (MEM_P (x) || rclass == NO_REGS)
365 return sri.extra_cost
366 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
367 else if (REG_P (x))
368 {
369 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
370
371 ira_init_register_move_cost_if_necessary (mode);
372 return (sri.extra_cost
373 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
374 }
375 else
376 /* If this is a constant, we may eventually want to call rtx_cost
377 here. */
378 return sri.extra_cost + COSTS_N_INSNS (1);
379 }
380
381 \f
382
383 /* Record the cost of using memory or hard registers of various
384 classes for the operands in INSN.
385
386 N_ALTS is the number of alternatives.
387 N_OPS is the number of operands.
388 OPS is an array of the operands.
389 MODES are the modes of the operands, in case any are VOIDmode.
390 CONSTRAINTS are the constraints to use for the operands. This array
391 is modified by this procedure.
392
393 This procedure works alternative by alternative. For each
394 alternative we assume that we will be able to allocate all allocnos
395 to their ideal register class and calculate the cost of using that
396 alternative. Then we compute, for each operand that is a
397 pseudo-register, the cost of having the allocno allocated to each
398 register class and using it in that alternative. To this cost is
399 added the cost of the alternative.
400
401 The cost of each class for this insn is its lowest cost among all
402 the alternatives. */
403 static void
404 record_reg_classes (int n_alts, int n_ops, rtx *ops,
405 enum machine_mode *modes, const char **constraints,
406 rtx insn, enum reg_class *pref)
407 {
408 int alt;
409 int i, j, k;
410 int insn_allows_mem[MAX_RECOG_OPERANDS];
411 move_table *move_in_cost, *move_out_cost;
412 short (*mem_cost)[2];
413
414 for (i = 0; i < n_ops; i++)
415 insn_allows_mem[i] = 0;
416
417 /* Process each alternative, each time minimizing an operand's cost
418 with the cost for each operand in that alternative. */
419 for (alt = 0; alt < n_alts; alt++)
420 {
421 enum reg_class classes[MAX_RECOG_OPERANDS];
422 int allows_mem[MAX_RECOG_OPERANDS];
423 enum reg_class rclass;
424 int alt_fail = 0;
425 int alt_cost = 0, op_cost_add;
426
427 if (!TEST_BIT (recog_data.enabled_alternatives, alt))
428 {
429 for (i = 0; i < recog_data.n_operands; i++)
430 constraints[i] = skip_alternative (constraints[i]);
431
432 continue;
433 }
434
435 for (i = 0; i < n_ops; i++)
436 {
437 unsigned char c;
438 const char *p = constraints[i];
439 rtx op = ops[i];
440 enum machine_mode mode = modes[i];
441 int allows_addr = 0;
442 int win = 0;
443
444 /* Initially show we know nothing about the register class. */
445 classes[i] = NO_REGS;
446 allows_mem[i] = 0;
447
448 /* If this operand has no constraints at all, we can
449 conclude nothing about it since anything is valid. */
450 if (*p == 0)
451 {
452 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
453 memset (this_op_costs[i], 0, struct_costs_size);
454 continue;
455 }
456
457 /* If this alternative is only relevant when this operand
458 matches a previous operand, we do different things
459 depending on whether this operand is a allocno-reg or not.
460 We must process any modifiers for the operand before we
461 can make this test. */
462 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
463 p++;
464
465 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
466 {
467 /* Copy class and whether memory is allowed from the
468 matching alternative. Then perform any needed cost
469 computations and/or adjustments. */
470 j = p[0] - '0';
471 classes[i] = classes[j];
472 allows_mem[i] = allows_mem[j];
473 if (allows_mem[i])
474 insn_allows_mem[i] = 1;
475
476 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
477 {
478 /* If this matches the other operand, we have no
479 added cost and we win. */
480 if (rtx_equal_p (ops[j], op))
481 win = 1;
482 /* If we can put the other operand into a register,
483 add to the cost of this alternative the cost to
484 copy this operand to the register used for the
485 other operand. */
486 else if (classes[j] != NO_REGS)
487 {
488 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
489 win = 1;
490 }
491 }
492 else if (! REG_P (ops[j])
493 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
494 {
495 /* This op is an allocno but the one it matches is
496 not. */
497
498 /* If we can't put the other operand into a
499 register, this alternative can't be used. */
500
501 if (classes[j] == NO_REGS)
502 alt_fail = 1;
503 /* Otherwise, add to the cost of this alternative
504 the cost to copy the other operand to the hard
505 register used for this operand. */
506 else
507 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
508 }
509 else
510 {
511 /* The costs of this operand are not the same as the
512 other operand since move costs are not symmetric.
513 Moreover, if we cannot tie them, this alternative
514 needs to do a copy, which is one insn. */
515 struct costs *pp = this_op_costs[i];
516 int *pp_costs = pp->cost;
517 cost_classes_t cost_classes_ptr
518 = regno_cost_classes[REGNO (op)];
519 enum reg_class *cost_classes = cost_classes_ptr->classes;
520 bool in_p = recog_data.operand_type[i] != OP_OUT;
521 bool out_p = recog_data.operand_type[i] != OP_IN;
522 enum reg_class op_class = classes[i];
523
524 ira_init_register_move_cost_if_necessary (mode);
525 if (! in_p)
526 {
527 ira_assert (out_p);
528 if (op_class == NO_REGS)
529 {
530 mem_cost = ira_memory_move_cost[mode];
531 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
532 {
533 rclass = cost_classes[k];
534 pp_costs[k] = mem_cost[rclass][0] * frequency;
535 }
536 }
537 else
538 {
539 move_out_cost = ira_may_move_out_cost[mode];
540 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
541 {
542 rclass = cost_classes[k];
543 pp_costs[k]
544 = move_out_cost[op_class][rclass] * frequency;
545 }
546 }
547 }
548 else if (! out_p)
549 {
550 ira_assert (in_p);
551 if (op_class == NO_REGS)
552 {
553 mem_cost = ira_memory_move_cost[mode];
554 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
555 {
556 rclass = cost_classes[k];
557 pp_costs[k] = mem_cost[rclass][1] * frequency;
558 }
559 }
560 else
561 {
562 move_in_cost = ira_may_move_in_cost[mode];
563 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
564 {
565 rclass = cost_classes[k];
566 pp_costs[k]
567 = move_in_cost[rclass][op_class] * frequency;
568 }
569 }
570 }
571 else
572 {
573 if (op_class == NO_REGS)
574 {
575 mem_cost = ira_memory_move_cost[mode];
576 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
577 {
578 rclass = cost_classes[k];
579 pp_costs[k] = ((mem_cost[rclass][0]
580 + mem_cost[rclass][1])
581 * frequency);
582 }
583 }
584 else
585 {
586 move_in_cost = ira_may_move_in_cost[mode];
587 move_out_cost = ira_may_move_out_cost[mode];
588 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
589 {
590 rclass = cost_classes[k];
591 pp_costs[k] = ((move_in_cost[rclass][op_class]
592 + move_out_cost[op_class][rclass])
593 * frequency);
594 }
595 }
596 }
597
598 /* If the alternative actually allows memory, make
599 things a bit cheaper since we won't need an extra
600 insn to load it. */
601 pp->mem_cost
602 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
603 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
604 - allows_mem[i]) * frequency;
605
606 /* If we have assigned a class to this allocno in
607 our first pass, add a cost to this alternative
608 corresponding to what we would add if this
609 allocno were not in the appropriate class. */
610 if (pref)
611 {
612 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
613
614 if (pref_class == NO_REGS)
615 alt_cost
616 += ((out_p
617 ? ira_memory_move_cost[mode][op_class][0] : 0)
618 + (in_p
619 ? ira_memory_move_cost[mode][op_class][1]
620 : 0));
621 else if (ira_reg_class_intersect
622 [pref_class][op_class] == NO_REGS)
623 alt_cost
624 += ira_register_move_cost[mode][pref_class][op_class];
625 }
626 if (REGNO (ops[i]) != REGNO (ops[j])
627 && ! find_reg_note (insn, REG_DEAD, op))
628 alt_cost += 2;
629
630 /* This is in place of ordinary cost computation for
631 this operand, so skip to the end of the
632 alternative (should be just one character). */
633 while (*p && *p++ != ',')
634 ;
635
636 constraints[i] = p;
637 continue;
638 }
639 }
640
641 /* Scan all the constraint letters. See if the operand
642 matches any of the constraints. Collect the valid
643 register classes and see if this operand accepts
644 memory. */
645 while ((c = *p))
646 {
647 switch (c)
648 {
649 case '*':
650 /* Ignore the next letter for this pass. */
651 c = *++p;
652 break;
653
654 case '?':
655 alt_cost += 2;
656 break;
657
658 case 'g':
659 if (MEM_P (op)
660 || (CONSTANT_P (op)
661 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
662 win = 1;
663 insn_allows_mem[i] = allows_mem[i] = 1;
664 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
665 break;
666
667 default:
668 enum constraint_num cn = lookup_constraint (p);
669 enum reg_class cl;
670 switch (get_constraint_type (cn))
671 {
672 case CT_REGISTER:
673 cl = reg_class_for_constraint (cn);
674 if (cl != NO_REGS)
675 classes[i] = ira_reg_class_subunion[classes[i]][cl];
676 break;
677
678 case CT_CONST_INT:
679 if (CONST_INT_P (op)
680 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
681 win = 1;
682 break;
683
684 case CT_MEMORY:
685 /* Every MEM can be reloaded to fit. */
686 insn_allows_mem[i] = allows_mem[i] = 1;
687 if (MEM_P (op))
688 win = 1;
689 break;
690
691 case CT_ADDRESS:
692 /* Every address can be reloaded to fit. */
693 allows_addr = 1;
694 if (address_operand (op, GET_MODE (op))
695 || constraint_satisfied_p (op, cn))
696 win = 1;
697 /* We know this operand is an address, so we
698 want it to be allocated to a hard register
699 that can be the base of an address,
700 i.e. BASE_REG_CLASS. */
701 classes[i]
702 = ira_reg_class_subunion[classes[i]]
703 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
704 ADDRESS, SCRATCH)];
705 break;
706
707 case CT_FIXED_FORM:
708 if (constraint_satisfied_p (op, cn))
709 win = 1;
710 break;
711 }
712 break;
713 }
714 p += CONSTRAINT_LEN (c, p);
715 if (c == ',')
716 break;
717 }
718
719 constraints[i] = p;
720
721 /* How we account for this operand now depends on whether it
722 is a pseudo register or not. If it is, we first check if
723 any register classes are valid. If not, we ignore this
724 alternative, since we want to assume that all allocnos get
725 allocated for register preferencing. If some register
726 class is valid, compute the costs of moving the allocno
727 into that class. */
728 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
729 {
730 if (classes[i] == NO_REGS && ! allows_mem[i])
731 {
732 /* We must always fail if the operand is a REG, but
733 we did not find a suitable class and memory is
734 not allowed.
735
736 Otherwise we may perform an uninitialized read
737 from this_op_costs after the `continue' statement
738 below. */
739 alt_fail = 1;
740 }
741 else
742 {
743 unsigned int regno = REGNO (op);
744 struct costs *pp = this_op_costs[i];
745 int *pp_costs = pp->cost;
746 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
747 enum reg_class *cost_classes = cost_classes_ptr->classes;
748 bool in_p = recog_data.operand_type[i] != OP_OUT;
749 bool out_p = recog_data.operand_type[i] != OP_IN;
750 enum reg_class op_class = classes[i];
751
752 ira_init_register_move_cost_if_necessary (mode);
753 if (! in_p)
754 {
755 ira_assert (out_p);
756 if (op_class == NO_REGS)
757 {
758 mem_cost = ira_memory_move_cost[mode];
759 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
760 {
761 rclass = cost_classes[k];
762 pp_costs[k] = mem_cost[rclass][0] * frequency;
763 }
764 }
765 else
766 {
767 move_out_cost = ira_may_move_out_cost[mode];
768 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
769 {
770 rclass = cost_classes[k];
771 pp_costs[k]
772 = move_out_cost[op_class][rclass] * frequency;
773 }
774 }
775 }
776 else if (! out_p)
777 {
778 ira_assert (in_p);
779 if (op_class == NO_REGS)
780 {
781 mem_cost = ira_memory_move_cost[mode];
782 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
783 {
784 rclass = cost_classes[k];
785 pp_costs[k] = mem_cost[rclass][1] * frequency;
786 }
787 }
788 else
789 {
790 move_in_cost = ira_may_move_in_cost[mode];
791 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
792 {
793 rclass = cost_classes[k];
794 pp_costs[k]
795 = move_in_cost[rclass][op_class] * frequency;
796 }
797 }
798 }
799 else
800 {
801 if (op_class == NO_REGS)
802 {
803 mem_cost = ira_memory_move_cost[mode];
804 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
805 {
806 rclass = cost_classes[k];
807 pp_costs[k] = ((mem_cost[rclass][0]
808 + mem_cost[rclass][1])
809 * frequency);
810 }
811 }
812 else
813 {
814 move_in_cost = ira_may_move_in_cost[mode];
815 move_out_cost = ira_may_move_out_cost[mode];
816 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
817 {
818 rclass = cost_classes[k];
819 pp_costs[k] = ((move_in_cost[rclass][op_class]
820 + move_out_cost[op_class][rclass])
821 * frequency);
822 }
823 }
824 }
825
826 if (op_class == NO_REGS)
827 /* Although we don't need insn to reload from
828 memory, still accessing memory is usually more
829 expensive than a register. */
830 pp->mem_cost = frequency;
831 else
832 /* If the alternative actually allows memory, make
833 things a bit cheaper since we won't need an
834 extra insn to load it. */
835 pp->mem_cost
836 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
837 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
838 - allows_mem[i]) * frequency;
839 /* If we have assigned a class to this allocno in
840 our first pass, add a cost to this alternative
841 corresponding to what we would add if this
842 allocno were not in the appropriate class. */
843 if (pref)
844 {
845 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
846
847 if (pref_class == NO_REGS)
848 {
849 if (op_class != NO_REGS)
850 alt_cost
851 += ((out_p
852 ? ira_memory_move_cost[mode][op_class][0]
853 : 0)
854 + (in_p
855 ? ira_memory_move_cost[mode][op_class][1]
856 : 0));
857 }
858 else if (op_class == NO_REGS)
859 alt_cost
860 += ((out_p
861 ? ira_memory_move_cost[mode][pref_class][1]
862 : 0)
863 + (in_p
864 ? ira_memory_move_cost[mode][pref_class][0]
865 : 0));
866 else if (ira_reg_class_intersect[pref_class][op_class]
867 == NO_REGS)
868 alt_cost += (ira_register_move_cost
869 [mode][pref_class][op_class]);
870 }
871 }
872 }
873
874 /* Otherwise, if this alternative wins, either because we
875 have already determined that or if we have a hard
876 register of the proper class, there is no cost for this
877 alternative. */
878 else if (win || (REG_P (op)
879 && reg_fits_class_p (op, classes[i],
880 0, GET_MODE (op))))
881 ;
882
883 /* If registers are valid, the cost of this alternative
884 includes copying the object to and/or from a
885 register. */
886 else if (classes[i] != NO_REGS)
887 {
888 if (recog_data.operand_type[i] != OP_OUT)
889 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
890
891 if (recog_data.operand_type[i] != OP_IN)
892 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
893 }
894 /* The only other way this alternative can be used is if
895 this is a constant that could be placed into memory. */
896 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
897 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
898 else
899 alt_fail = 1;
900 }
901
902 if (alt_fail)
903 continue;
904
905 op_cost_add = alt_cost * frequency;
906 /* Finally, update the costs with the information we've
907 calculated about this alternative. */
908 for (i = 0; i < n_ops; i++)
909 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
910 {
911 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
912 int *pp_costs = pp->cost, *qq_costs = qq->cost;
913 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
914 cost_classes_t cost_classes_ptr
915 = regno_cost_classes[REGNO (ops[i])];
916
917 pp->mem_cost = MIN (pp->mem_cost,
918 (qq->mem_cost + op_cost_add) * scale);
919
920 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
921 pp_costs[k]
922 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
923 }
924 }
925
926 if (allocno_p)
927 for (i = 0; i < n_ops; i++)
928 {
929 ira_allocno_t a;
930 rtx op = ops[i];
931
932 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
933 continue;
934 a = ira_curr_regno_allocno_map [REGNO (op)];
935 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
936 ALLOCNO_BAD_SPILL_P (a) = true;
937 }
938
939 }
940
941 \f
942
943 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
944 static inline bool
945 ok_for_index_p_nonstrict (rtx reg)
946 {
947 unsigned regno = REGNO (reg);
948
949 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
950 }
951
952 /* A version of regno_ok_for_base_p for use here, when all
953 pseudo-registers should count as OK. Arguments as for
954 regno_ok_for_base_p. */
955 static inline bool
956 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
957 enum rtx_code outer_code, enum rtx_code index_code)
958 {
959 unsigned regno = REGNO (reg);
960
961 if (regno >= FIRST_PSEUDO_REGISTER)
962 return true;
963 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
964 }
965
966 /* Record the pseudo registers we must reload into hard registers in a
967 subexpression of a memory address, X.
968
969 If CONTEXT is 0, we are looking at the base part of an address,
970 otherwise we are looking at the index part.
971
972 MODE and AS are the mode and address space of the memory reference;
973 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
974 These four arguments are passed down to base_reg_class.
975
976 SCALE is twice the amount to multiply the cost by (it is twice so
977 we can represent half-cost adjustments). */
978 static void
979 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
980 int context, enum rtx_code outer_code,
981 enum rtx_code index_code, int scale)
982 {
983 enum rtx_code code = GET_CODE (x);
984 enum reg_class rclass;
985
986 if (context == 1)
987 rclass = INDEX_REG_CLASS;
988 else
989 rclass = base_reg_class (mode, as, outer_code, index_code);
990
991 switch (code)
992 {
993 case CONST_INT:
994 case CONST:
995 case CC0:
996 case PC:
997 case SYMBOL_REF:
998 case LABEL_REF:
999 return;
1000
1001 case PLUS:
1002 /* When we have an address that is a sum, we must determine
1003 whether registers are "base" or "index" regs. If there is a
1004 sum of two registers, we must choose one to be the "base".
1005 Luckily, we can use the REG_POINTER to make a good choice
1006 most of the time. We only need to do this on machines that
1007 can have two registers in an address and where the base and
1008 index register classes are different.
1009
1010 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1011 but that seems bogus since it should only be set when we are
1012 sure the register is being used as a pointer. */
1013 {
1014 rtx arg0 = XEXP (x, 0);
1015 rtx arg1 = XEXP (x, 1);
1016 enum rtx_code code0 = GET_CODE (arg0);
1017 enum rtx_code code1 = GET_CODE (arg1);
1018
1019 /* Look inside subregs. */
1020 if (code0 == SUBREG)
1021 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1022 if (code1 == SUBREG)
1023 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1024
1025 /* If this machine only allows one register per address, it
1026 must be in the first operand. */
1027 if (MAX_REGS_PER_ADDRESS == 1)
1028 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1029
1030 /* If index and base registers are the same on this machine,
1031 just record registers in any non-constant operands. We
1032 assume here, as well as in the tests below, that all
1033 addresses are in canonical form. */
1034 else if (INDEX_REG_CLASS
1035 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1036 {
1037 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1038 if (! CONSTANT_P (arg1))
1039 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1040 }
1041
1042 /* If the second operand is a constant integer, it doesn't
1043 change what class the first operand must be. */
1044 else if (CONST_SCALAR_INT_P (arg1))
1045 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1046 /* If the second operand is a symbolic constant, the first
1047 operand must be an index register. */
1048 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1049 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1050 /* If both operands are registers but one is already a hard
1051 register of index or reg-base class, give the other the
1052 class that the hard register is not. */
1053 else if (code0 == REG && code1 == REG
1054 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1055 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1056 || ok_for_index_p_nonstrict (arg0)))
1057 record_address_regs (mode, as, arg1,
1058 ok_for_base_p_nonstrict (arg0, mode, as,
1059 PLUS, REG) ? 1 : 0,
1060 PLUS, REG, scale);
1061 else if (code0 == REG && code1 == REG
1062 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1063 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1064 || ok_for_index_p_nonstrict (arg1)))
1065 record_address_regs (mode, as, arg0,
1066 ok_for_base_p_nonstrict (arg1, mode, as,
1067 PLUS, REG) ? 1 : 0,
1068 PLUS, REG, scale);
1069 /* If one operand is known to be a pointer, it must be the
1070 base with the other operand the index. Likewise if the
1071 other operand is a MULT. */
1072 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1073 {
1074 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1075 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1076 }
1077 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1078 {
1079 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1080 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1081 }
1082 /* Otherwise, count equal chances that each might be a base or
1083 index register. This case should be rare. */
1084 else
1085 {
1086 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1087 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1088 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1089 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1090 }
1091 }
1092 break;
1093
1094 /* Double the importance of an allocno that is incremented or
1095 decremented, since it would take two extra insns if it ends
1096 up in the wrong place. */
1097 case POST_MODIFY:
1098 case PRE_MODIFY:
1099 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1100 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1101 if (REG_P (XEXP (XEXP (x, 1), 1)))
1102 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1103 2 * scale);
1104 break;
1105
1106 case POST_INC:
1107 case PRE_INC:
1108 case POST_DEC:
1109 case PRE_DEC:
1110 /* Double the importance of an allocno that is incremented or
1111 decremented, since it would take two extra insns if it ends
1112 up in the wrong place. */
1113 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1114 break;
1115
1116 case REG:
1117 {
1118 struct costs *pp;
1119 int *pp_costs;
1120 enum reg_class i;
1121 int k, regno, add_cost;
1122 cost_classes_t cost_classes_ptr;
1123 enum reg_class *cost_classes;
1124 move_table *move_in_cost;
1125
1126 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1127 break;
1128
1129 regno = REGNO (x);
1130 if (allocno_p)
1131 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1132 pp = COSTS (costs, COST_INDEX (regno));
1133 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1134 if (INT_MAX - add_cost < pp->mem_cost)
1135 pp->mem_cost = INT_MAX;
1136 else
1137 pp->mem_cost += add_cost;
1138 cost_classes_ptr = regno_cost_classes[regno];
1139 cost_classes = cost_classes_ptr->classes;
1140 pp_costs = pp->cost;
1141 ira_init_register_move_cost_if_necessary (Pmode);
1142 move_in_cost = ira_may_move_in_cost[Pmode];
1143 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1144 {
1145 i = cost_classes[k];
1146 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1147 if (INT_MAX - add_cost < pp_costs[k])
1148 pp_costs[k] = INT_MAX;
1149 else
1150 pp_costs[k] += add_cost;
1151 }
1152 }
1153 break;
1154
1155 default:
1156 {
1157 const char *fmt = GET_RTX_FORMAT (code);
1158 int i;
1159 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1160 if (fmt[i] == 'e')
1161 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1162 scale);
1163 }
1164 }
1165 }
1166
1167 \f
1168
1169 /* Calculate the costs of insn operands. */
1170 static void
1171 record_operand_costs (rtx insn, enum reg_class *pref)
1172 {
1173 const char *constraints[MAX_RECOG_OPERANDS];
1174 enum machine_mode modes[MAX_RECOG_OPERANDS];
1175 rtx ops[MAX_RECOG_OPERANDS];
1176 rtx set;
1177 int i;
1178
1179 for (i = 0; i < recog_data.n_operands; i++)
1180 {
1181 constraints[i] = recog_data.constraints[i];
1182 modes[i] = recog_data.operand_mode[i];
1183 }
1184
1185 /* If we get here, we are set up to record the costs of all the
1186 operands for this insn. Start by initializing the costs. Then
1187 handle any address registers. Finally record the desired classes
1188 for any allocnos, doing it twice if some pair of operands are
1189 commutative. */
1190 for (i = 0; i < recog_data.n_operands; i++)
1191 {
1192 memcpy (op_costs[i], init_cost, struct_costs_size);
1193
1194 ops[i] = recog_data.operand[i];
1195 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1196 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1197
1198 if (MEM_P (recog_data.operand[i]))
1199 record_address_regs (GET_MODE (recog_data.operand[i]),
1200 MEM_ADDR_SPACE (recog_data.operand[i]),
1201 XEXP (recog_data.operand[i], 0),
1202 0, MEM, SCRATCH, frequency * 2);
1203 else if (constraints[i][0] == 'p'
1204 || (insn_extra_address_constraint
1205 (lookup_constraint (constraints[i]))))
1206 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1207 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1208 frequency * 2);
1209 }
1210
1211 /* Check for commutative in a separate loop so everything will have
1212 been initialized. We must do this even if one operand is a
1213 constant--see addsi3 in m68k.md. */
1214 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1215 if (constraints[i][0] == '%')
1216 {
1217 const char *xconstraints[MAX_RECOG_OPERANDS];
1218 int j;
1219
1220 /* Handle commutative operands by swapping the constraints.
1221 We assume the modes are the same. */
1222 for (j = 0; j < recog_data.n_operands; j++)
1223 xconstraints[j] = constraints[j];
1224
1225 xconstraints[i] = constraints[i+1];
1226 xconstraints[i+1] = constraints[i];
1227 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1228 recog_data.operand, modes,
1229 xconstraints, insn, pref);
1230 }
1231 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1232 recog_data.operand, modes,
1233 constraints, insn, pref);
1234
1235 /* If this insn is a single set copying operand 1 to operand 0 and
1236 one operand is an allocno with the other a hard reg or an allocno
1237 that prefers a hard register that is in its own register class
1238 then we may want to adjust the cost of that register class to -1.
1239
1240 Avoid the adjustment if the source does not die to avoid
1241 stressing of register allocator by preferrencing two colliding
1242 registers into single class.
1243
1244 Also avoid the adjustment if a copy between hard registers of the
1245 class is expensive (ten times the cost of a default copy is
1246 considered arbitrarily expensive). This avoids losing when the
1247 preferred class is very expensive as the source of a copy
1248 instruction. */
1249 if ((set = single_set (insn)) != NULL_RTX
1250 /* In rare cases the single set insn might have less 2 operands
1251 as the source can be a fixed special reg. */
1252 && recog_data.n_operands > 1
1253 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1254 {
1255 int regno, other_regno;
1256 rtx dest = SET_DEST (set);
1257 rtx src = SET_SRC (set);
1258
1259 dest = SET_DEST (set);
1260 src = SET_SRC (set);
1261 if (GET_CODE (dest) == SUBREG
1262 && (GET_MODE_SIZE (GET_MODE (dest))
1263 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1264 dest = SUBREG_REG (dest);
1265 if (GET_CODE (src) == SUBREG
1266 && (GET_MODE_SIZE (GET_MODE (src))
1267 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1268 src = SUBREG_REG (src);
1269 if (REG_P (src) && REG_P (dest)
1270 && find_regno_note (insn, REG_DEAD, REGNO (src))
1271 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1272 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1273 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1274 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1275 {
1276 enum machine_mode mode = GET_MODE (src);
1277 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1278 enum reg_class *cost_classes = cost_classes_ptr->classes;
1279 reg_class_t rclass;
1280 int k, nr;
1281
1282 i = regno == (int) REGNO (src) ? 1 : 0;
1283 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1284 {
1285 rclass = cost_classes[k];
1286 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1287 && (reg_class_size[(int) rclass]
1288 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1289 {
1290 if (reg_class_size[rclass] == 1)
1291 op_costs[i]->cost[k] = -frequency;
1292 else
1293 {
1294 for (nr = 0;
1295 nr < hard_regno_nregs[other_regno][mode];
1296 nr++)
1297 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1298 other_regno + nr))
1299 break;
1300
1301 if (nr == hard_regno_nregs[other_regno][mode])
1302 op_costs[i]->cost[k] = -frequency;
1303 }
1304 }
1305 }
1306 }
1307 }
1308 }
1309
1310 \f
1311
1312 /* Process one insn INSN. Scan it and record each time it would save
1313 code to put a certain allocnos in a certain class. Return the last
1314 insn processed, so that the scan can be continued from there. */
1315 static rtx
1316 scan_one_insn (rtx insn)
1317 {
1318 enum rtx_code pat_code;
1319 rtx set, note;
1320 int i, k;
1321 bool counted_mem;
1322
1323 if (!NONDEBUG_INSN_P (insn))
1324 return insn;
1325
1326 pat_code = GET_CODE (PATTERN (insn));
1327 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1328 return insn;
1329
1330 counted_mem = false;
1331 set = single_set (insn);
1332 extract_insn (insn);
1333
1334 /* If this insn loads a parameter from its stack slot, then it
1335 represents a savings, rather than a cost, if the parameter is
1336 stored in memory. Record this fact.
1337
1338 Similarly if we're loading other constants from memory (constant
1339 pool, TOC references, small data areas, etc) and this is the only
1340 assignment to the destination pseudo.
1341
1342 Don't do this if SET_SRC (set) isn't a general operand, if it is
1343 a memory requiring special instructions to load it, decreasing
1344 mem_cost might result in it being loaded using the specialized
1345 instruction into a register, then stored into stack and loaded
1346 again from the stack. See PR52208.
1347
1348 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1349 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1350 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1351 && ((MEM_P (XEXP (note, 0))
1352 && !side_effects_p (SET_SRC (set)))
1353 || (CONSTANT_P (XEXP (note, 0))
1354 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1355 XEXP (note, 0))
1356 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1357 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1358 {
1359 enum reg_class cl = GENERAL_REGS;
1360 rtx reg = SET_DEST (set);
1361 int num = COST_INDEX (REGNO (reg));
1362
1363 COSTS (costs, num)->mem_cost
1364 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1365 record_address_regs (GET_MODE (SET_SRC (set)),
1366 MEM_ADDR_SPACE (SET_SRC (set)),
1367 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1368 frequency * 2);
1369 counted_mem = true;
1370 }
1371
1372 record_operand_costs (insn, pref);
1373
1374 /* Now add the cost for each operand to the total costs for its
1375 allocno. */
1376 for (i = 0; i < recog_data.n_operands; i++)
1377 if (REG_P (recog_data.operand[i])
1378 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1379 {
1380 int regno = REGNO (recog_data.operand[i]);
1381 struct costs *p = COSTS (costs, COST_INDEX (regno));
1382 struct costs *q = op_costs[i];
1383 int *p_costs = p->cost, *q_costs = q->cost;
1384 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1385 int add_cost;
1386
1387 /* If the already accounted for the memory "cost" above, don't
1388 do so again. */
1389 if (!counted_mem)
1390 {
1391 add_cost = q->mem_cost;
1392 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1393 p->mem_cost = INT_MAX;
1394 else
1395 p->mem_cost += add_cost;
1396 }
1397 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1398 {
1399 add_cost = q_costs[k];
1400 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1401 p_costs[k] = INT_MAX;
1402 else
1403 p_costs[k] += add_cost;
1404 }
1405 }
1406
1407 return insn;
1408 }
1409
1410 \f
1411
1412 /* Print allocnos costs to file F. */
1413 static void
1414 print_allocno_costs (FILE *f)
1415 {
1416 int k;
1417 ira_allocno_t a;
1418 ira_allocno_iterator ai;
1419
1420 ira_assert (allocno_p);
1421 fprintf (f, "\n");
1422 FOR_EACH_ALLOCNO (a, ai)
1423 {
1424 int i, rclass;
1425 basic_block bb;
1426 int regno = ALLOCNO_REGNO (a);
1427 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1428 enum reg_class *cost_classes = cost_classes_ptr->classes;
1429
1430 i = ALLOCNO_NUM (a);
1431 fprintf (f, " a%d(r%d,", i, regno);
1432 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1433 fprintf (f, "b%d", bb->index);
1434 else
1435 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1436 fprintf (f, ") costs:");
1437 for (k = 0; k < cost_classes_ptr->num; k++)
1438 {
1439 rclass = cost_classes[k];
1440 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1441 #ifdef CANNOT_CHANGE_MODE_CLASS
1442 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1443 #endif
1444 )
1445 {
1446 fprintf (f, " %s:%d", reg_class_names[rclass],
1447 COSTS (costs, i)->cost[k]);
1448 if (flag_ira_region == IRA_REGION_ALL
1449 || flag_ira_region == IRA_REGION_MIXED)
1450 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1451 }
1452 }
1453 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1454 if (flag_ira_region == IRA_REGION_ALL
1455 || flag_ira_region == IRA_REGION_MIXED)
1456 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1457 fprintf (f, "\n");
1458 }
1459 }
1460
1461 /* Print pseudo costs to file F. */
1462 static void
1463 print_pseudo_costs (FILE *f)
1464 {
1465 int regno, k;
1466 int rclass;
1467 cost_classes_t cost_classes_ptr;
1468 enum reg_class *cost_classes;
1469
1470 ira_assert (! allocno_p);
1471 fprintf (f, "\n");
1472 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1473 {
1474 if (REG_N_REFS (regno) <= 0)
1475 continue;
1476 cost_classes_ptr = regno_cost_classes[regno];
1477 cost_classes = cost_classes_ptr->classes;
1478 fprintf (f, " r%d costs:", regno);
1479 for (k = 0; k < cost_classes_ptr->num; k++)
1480 {
1481 rclass = cost_classes[k];
1482 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1483 #ifdef CANNOT_CHANGE_MODE_CLASS
1484 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1485 #endif
1486 )
1487 fprintf (f, " %s:%d", reg_class_names[rclass],
1488 COSTS (costs, regno)->cost[k]);
1489 }
1490 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1491 }
1492 }
1493
1494 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1495 costs. */
1496 static void
1497 process_bb_for_costs (basic_block bb)
1498 {
1499 rtx insn;
1500
1501 frequency = REG_FREQ_FROM_BB (bb);
1502 if (frequency == 0)
1503 frequency = 1;
1504 FOR_BB_INSNS (bb, insn)
1505 insn = scan_one_insn (insn);
1506 }
1507
1508 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1509 costs. */
1510 static void
1511 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1512 {
1513 basic_block bb;
1514
1515 bb = loop_tree_node->bb;
1516 if (bb != NULL)
1517 process_bb_for_costs (bb);
1518 }
1519
1520 /* Find costs of register classes and memory for allocnos or pseudos
1521 and their best costs. Set up preferred, alternative and allocno
1522 classes for pseudos. */
1523 static void
1524 find_costs_and_classes (FILE *dump_file)
1525 {
1526 int i, k, start, max_cost_classes_num;
1527 int pass;
1528 basic_block bb;
1529 enum reg_class *regno_best_class;
1530
1531 init_recog ();
1532 regno_best_class
1533 = (enum reg_class *) ira_allocate (max_reg_num ()
1534 * sizeof (enum reg_class));
1535 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1536 regno_best_class[i] = NO_REGS;
1537 if (!resize_reg_info () && allocno_p
1538 && pseudo_classes_defined_p && flag_expensive_optimizations)
1539 {
1540 ira_allocno_t a;
1541 ira_allocno_iterator ai;
1542
1543 pref = pref_buffer;
1544 max_cost_classes_num = 1;
1545 FOR_EACH_ALLOCNO (a, ai)
1546 {
1547 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1548 setup_regno_cost_classes_by_aclass
1549 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1550 max_cost_classes_num
1551 = MAX (max_cost_classes_num,
1552 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1553 }
1554 start = 1;
1555 }
1556 else
1557 {
1558 pref = NULL;
1559 max_cost_classes_num = ira_important_classes_num;
1560 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1561 if (regno_reg_rtx[i] != NULL_RTX)
1562 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1563 else
1564 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1565 start = 0;
1566 }
1567 if (allocno_p)
1568 /* Clear the flag for the next compiled function. */
1569 pseudo_classes_defined_p = false;
1570 /* Normally we scan the insns once and determine the best class to
1571 use for each allocno. However, if -fexpensive-optimizations are
1572 on, we do so twice, the second time using the tentative best
1573 classes to guide the selection. */
1574 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1575 {
1576 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1577 fprintf (dump_file,
1578 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1579
1580 if (pass != start)
1581 {
1582 max_cost_classes_num = 1;
1583 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1584 {
1585 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1586 max_cost_classes_num
1587 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1588 }
1589 }
1590
1591 struct_costs_size
1592 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1593 /* Zero out our accumulation of the cost of each class for each
1594 allocno. */
1595 memset (costs, 0, cost_elements_num * struct_costs_size);
1596
1597 if (allocno_p)
1598 {
1599 /* Scan the instructions and record each time it would save code
1600 to put a certain allocno in a certain class. */
1601 ira_traverse_loop_tree (true, ira_loop_tree_root,
1602 process_bb_node_for_costs, NULL);
1603
1604 memcpy (total_allocno_costs, costs,
1605 max_struct_costs_size * ira_allocnos_num);
1606 }
1607 else
1608 {
1609 basic_block bb;
1610
1611 FOR_EACH_BB_FN (bb, cfun)
1612 process_bb_for_costs (bb);
1613 }
1614
1615 if (pass == 0)
1616 pref = pref_buffer;
1617
1618 /* Now for each allocno look at how desirable each class is and
1619 find which class is preferred. */
1620 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1621 {
1622 ira_allocno_t a, parent_a;
1623 int rclass, a_num, parent_a_num, add_cost;
1624 ira_loop_tree_node_t parent;
1625 int best_cost, allocno_cost;
1626 enum reg_class best, alt_class;
1627 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1628 enum reg_class *cost_classes = cost_classes_ptr->classes;
1629 int *i_costs = temp_costs->cost;
1630 int i_mem_cost;
1631 int equiv_savings = regno_equiv_gains[i];
1632
1633 if (! allocno_p)
1634 {
1635 if (regno_reg_rtx[i] == NULL_RTX)
1636 continue;
1637 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1638 i_mem_cost = temp_costs->mem_cost;
1639 }
1640 else
1641 {
1642 if (ira_regno_allocno_map[i] == NULL)
1643 continue;
1644 memset (temp_costs, 0, struct_costs_size);
1645 i_mem_cost = 0;
1646 /* Find cost of all allocnos with the same regno. */
1647 for (a = ira_regno_allocno_map[i];
1648 a != NULL;
1649 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1650 {
1651 int *a_costs, *p_costs;
1652
1653 a_num = ALLOCNO_NUM (a);
1654 if ((flag_ira_region == IRA_REGION_ALL
1655 || flag_ira_region == IRA_REGION_MIXED)
1656 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1657 && (parent_a = parent->regno_allocno_map[i]) != NULL
1658 /* There are no caps yet. */
1659 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1660 (a)->border_allocnos,
1661 ALLOCNO_NUM (a)))
1662 {
1663 /* Propagate costs to upper levels in the region
1664 tree. */
1665 parent_a_num = ALLOCNO_NUM (parent_a);
1666 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1667 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1668 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1669 {
1670 add_cost = a_costs[k];
1671 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1672 p_costs[k] = INT_MAX;
1673 else
1674 p_costs[k] += add_cost;
1675 }
1676 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1677 if (add_cost > 0
1678 && (INT_MAX - add_cost
1679 < COSTS (total_allocno_costs,
1680 parent_a_num)->mem_cost))
1681 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1682 = INT_MAX;
1683 else
1684 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1685 += add_cost;
1686
1687 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1688 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1689 }
1690 a_costs = COSTS (costs, a_num)->cost;
1691 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1692 {
1693 add_cost = a_costs[k];
1694 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1695 i_costs[k] = INT_MAX;
1696 else
1697 i_costs[k] += add_cost;
1698 }
1699 add_cost = COSTS (costs, a_num)->mem_cost;
1700 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1701 i_mem_cost = INT_MAX;
1702 else
1703 i_mem_cost += add_cost;
1704 }
1705 }
1706 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1707 i_mem_cost = 0;
1708 else if (equiv_savings < 0)
1709 i_mem_cost = -equiv_savings;
1710 else if (equiv_savings > 0)
1711 {
1712 i_mem_cost = 0;
1713 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1714 i_costs[k] += equiv_savings;
1715 }
1716
1717 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1718 best = ALL_REGS;
1719 alt_class = NO_REGS;
1720 /* Find best common class for all allocnos with the same
1721 regno. */
1722 for (k = 0; k < cost_classes_ptr->num; k++)
1723 {
1724 rclass = cost_classes[k];
1725 /* Ignore classes that are too small or invalid for this
1726 operand. */
1727 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1728 #ifdef CANNOT_CHANGE_MODE_CLASS
1729 || invalid_mode_change_p (i, (enum reg_class) rclass)
1730 #endif
1731 )
1732 continue;
1733 if (i_costs[k] < best_cost)
1734 {
1735 best_cost = i_costs[k];
1736 best = (enum reg_class) rclass;
1737 }
1738 else if (i_costs[k] == best_cost)
1739 best = ira_reg_class_subunion[best][rclass];
1740 if (pass == flag_expensive_optimizations
1741 /* We still prefer registers to memory even at this
1742 stage if their costs are the same. We will make
1743 a final decision during assigning hard registers
1744 when we have all info including more accurate
1745 costs which might be affected by assigning hard
1746 registers to other pseudos because the pseudos
1747 involved in moves can be coalesced. */
1748 && i_costs[k] <= i_mem_cost
1749 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1750 > reg_class_size[alt_class]))
1751 alt_class = reg_class_subunion[alt_class][rclass];
1752 }
1753 alt_class = ira_allocno_class_translate[alt_class];
1754 if (best_cost > i_mem_cost)
1755 regno_aclass[i] = NO_REGS;
1756 else
1757 {
1758 /* Make the common class the biggest class of best and
1759 alt_class. */
1760 regno_aclass[i]
1761 = ira_reg_class_superunion[best][alt_class];
1762 ira_assert (regno_aclass[i] != NO_REGS
1763 && ira_reg_allocno_class_p[regno_aclass[i]]);
1764 }
1765 if (pass == flag_expensive_optimizations)
1766 {
1767 if (best_cost > i_mem_cost)
1768 best = alt_class = NO_REGS;
1769 else if (best == alt_class)
1770 alt_class = NO_REGS;
1771 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1772 if ((!allocno_p || internal_flag_ira_verbose > 2)
1773 && dump_file != NULL)
1774 fprintf (dump_file,
1775 " r%d: preferred %s, alternative %s, allocno %s\n",
1776 i, reg_class_names[best], reg_class_names[alt_class],
1777 reg_class_names[regno_aclass[i]]);
1778 }
1779 regno_best_class[i] = best;
1780 if (! allocno_p)
1781 {
1782 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1783 continue;
1784 }
1785 for (a = ira_regno_allocno_map[i];
1786 a != NULL;
1787 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1788 {
1789 enum reg_class aclass = regno_aclass[i];
1790 int a_num = ALLOCNO_NUM (a);
1791 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1792 int *a_costs = COSTS (costs, a_num)->cost;
1793
1794 if (aclass == NO_REGS)
1795 best = NO_REGS;
1796 else
1797 {
1798 /* Finding best class which is subset of the common
1799 class. */
1800 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1801 allocno_cost = best_cost;
1802 best = ALL_REGS;
1803 for (k = 0; k < cost_classes_ptr->num; k++)
1804 {
1805 rclass = cost_classes[k];
1806 if (! ira_class_subset_p[rclass][aclass])
1807 continue;
1808 /* Ignore classes that are too small or invalid
1809 for this operand. */
1810 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1811 #ifdef CANNOT_CHANGE_MODE_CLASS
1812 || invalid_mode_change_p (i, (enum reg_class) rclass)
1813 #endif
1814 )
1815 ;
1816 else if (total_a_costs[k] < best_cost)
1817 {
1818 best_cost = total_a_costs[k];
1819 allocno_cost = a_costs[k];
1820 best = (enum reg_class) rclass;
1821 }
1822 else if (total_a_costs[k] == best_cost)
1823 {
1824 best = ira_reg_class_subunion[best][rclass];
1825 allocno_cost = MAX (allocno_cost, a_costs[k]);
1826 }
1827 }
1828 ALLOCNO_CLASS_COST (a) = allocno_cost;
1829 }
1830 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1831 && (pass == 0 || pref[a_num] != best))
1832 {
1833 fprintf (dump_file, " a%d (r%d,", a_num, i);
1834 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1835 fprintf (dump_file, "b%d", bb->index);
1836 else
1837 fprintf (dump_file, "l%d",
1838 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1839 fprintf (dump_file, ") best %s, allocno %s\n",
1840 reg_class_names[best],
1841 reg_class_names[aclass]);
1842 }
1843 pref[a_num] = best;
1844 if (pass == flag_expensive_optimizations && best != aclass
1845 && ira_class_hard_regs_num[best] > 0
1846 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1847 >= ira_class_hard_regs_num[best]))
1848 {
1849 int ind = cost_classes_ptr->index[aclass];
1850
1851 ira_assert (ind >= 0);
1852 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1853 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1854 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1855 / (ira_register_move_cost
1856 [ALLOCNO_MODE (a)][best][aclass]));
1857 for (k = 0; k < cost_classes_ptr->num; k++)
1858 if (ira_class_subset_p[cost_classes[k]][best])
1859 a_costs[k] = a_costs[ind];
1860 }
1861 }
1862 }
1863
1864 if (internal_flag_ira_verbose > 4 && dump_file)
1865 {
1866 if (allocno_p)
1867 print_allocno_costs (dump_file);
1868 else
1869 print_pseudo_costs (dump_file);
1870 fprintf (dump_file,"\n");
1871 }
1872 }
1873 ira_free (regno_best_class);
1874 }
1875
1876 \f
1877
1878 /* Process moves involving hard regs to modify allocno hard register
1879 costs. We can do this only after determining allocno class. If a
1880 hard register forms a register class, then moves with the hard
1881 register are already taken into account in class costs for the
1882 allocno. */
1883 static void
1884 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1885 {
1886 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1887 bool to_p;
1888 ira_allocno_t a, curr_a;
1889 ira_loop_tree_node_t curr_loop_tree_node;
1890 enum reg_class rclass;
1891 basic_block bb;
1892 rtx insn, set, src, dst;
1893
1894 bb = loop_tree_node->bb;
1895 if (bb == NULL)
1896 return;
1897 freq = REG_FREQ_FROM_BB (bb);
1898 if (freq == 0)
1899 freq = 1;
1900 FOR_BB_INSNS (bb, insn)
1901 {
1902 if (!NONDEBUG_INSN_P (insn))
1903 continue;
1904 set = single_set (insn);
1905 if (set == NULL_RTX)
1906 continue;
1907 dst = SET_DEST (set);
1908 src = SET_SRC (set);
1909 if (! REG_P (dst) || ! REG_P (src))
1910 continue;
1911 dst_regno = REGNO (dst);
1912 src_regno = REGNO (src);
1913 if (dst_regno >= FIRST_PSEUDO_REGISTER
1914 && src_regno < FIRST_PSEUDO_REGISTER)
1915 {
1916 hard_regno = src_regno;
1917 a = ira_curr_regno_allocno_map[dst_regno];
1918 to_p = true;
1919 }
1920 else if (src_regno >= FIRST_PSEUDO_REGISTER
1921 && dst_regno < FIRST_PSEUDO_REGISTER)
1922 {
1923 hard_regno = dst_regno;
1924 a = ira_curr_regno_allocno_map[src_regno];
1925 to_p = false;
1926 }
1927 else
1928 continue;
1929 rclass = ALLOCNO_CLASS (a);
1930 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1931 continue;
1932 i = ira_class_hard_reg_index[rclass][hard_regno];
1933 if (i < 0)
1934 continue;
1935 a_regno = ALLOCNO_REGNO (a);
1936 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
1937 curr_loop_tree_node != NULL;
1938 curr_loop_tree_node = curr_loop_tree_node->parent)
1939 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
1940 ira_add_allocno_pref (curr_a, hard_regno, freq);
1941 {
1942 int cost;
1943 enum reg_class hard_reg_class;
1944 enum machine_mode mode;
1945
1946 mode = ALLOCNO_MODE (a);
1947 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1948 ira_init_register_move_cost_if_necessary (mode);
1949 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1950 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1951 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1952 ALLOCNO_CLASS_COST (a));
1953 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1954 rclass, 0);
1955 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1956 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1957 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1958 ALLOCNO_HARD_REG_COSTS (a)[i]);
1959 }
1960 }
1961 }
1962
1963 /* After we find hard register and memory costs for allocnos, define
1964 its class and modify hard register cost because insns moving
1965 allocno to/from hard registers. */
1966 static void
1967 setup_allocno_class_and_costs (void)
1968 {
1969 int i, j, n, regno, hard_regno, num;
1970 int *reg_costs;
1971 enum reg_class aclass, rclass;
1972 ira_allocno_t a;
1973 ira_allocno_iterator ai;
1974 cost_classes_t cost_classes_ptr;
1975
1976 ira_assert (allocno_p);
1977 FOR_EACH_ALLOCNO (a, ai)
1978 {
1979 i = ALLOCNO_NUM (a);
1980 regno = ALLOCNO_REGNO (a);
1981 aclass = regno_aclass[regno];
1982 cost_classes_ptr = regno_cost_classes[regno];
1983 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1984 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1985 ira_set_allocno_class (a, aclass);
1986 if (aclass == NO_REGS)
1987 continue;
1988 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1989 {
1990 n = ira_class_hard_regs_num[aclass];
1991 ALLOCNO_HARD_REG_COSTS (a)
1992 = reg_costs = ira_allocate_cost_vector (aclass);
1993 for (j = n - 1; j >= 0; j--)
1994 {
1995 hard_regno = ira_class_hard_regs[aclass][j];
1996 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1997 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1998 else
1999 {
2000 rclass = REGNO_REG_CLASS (hard_regno);
2001 num = cost_classes_ptr->index[rclass];
2002 if (num < 0)
2003 {
2004 num = cost_classes_ptr->hard_regno_index[hard_regno];
2005 ira_assert (num >= 0);
2006 }
2007 reg_costs[j] = COSTS (costs, i)->cost[num];
2008 }
2009 }
2010 }
2011 }
2012 if (optimize)
2013 ira_traverse_loop_tree (true, ira_loop_tree_root,
2014 process_bb_node_for_hard_reg_moves, NULL);
2015 }
2016
2017 \f
2018
2019 /* Function called once during compiler work. */
2020 void
2021 ira_init_costs_once (void)
2022 {
2023 int i;
2024
2025 init_cost = NULL;
2026 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2027 {
2028 op_costs[i] = NULL;
2029 this_op_costs[i] = NULL;
2030 }
2031 temp_costs = NULL;
2032 }
2033
2034 /* Free allocated temporary cost vectors. */
2035 static void
2036 free_ira_costs (void)
2037 {
2038 int i;
2039
2040 free (init_cost);
2041 init_cost = NULL;
2042 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2043 {
2044 free (op_costs[i]);
2045 free (this_op_costs[i]);
2046 op_costs[i] = this_op_costs[i] = NULL;
2047 }
2048 free (temp_costs);
2049 temp_costs = NULL;
2050 }
2051
2052 /* This is called each time register related information is
2053 changed. */
2054 void
2055 ira_init_costs (void)
2056 {
2057 int i;
2058
2059 free_ira_costs ();
2060 max_struct_costs_size
2061 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2062 /* Don't use ira_allocate because vectors live through several IRA
2063 calls. */
2064 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2065 init_cost->mem_cost = 1000000;
2066 for (i = 0; i < ira_important_classes_num; i++)
2067 init_cost->cost[i] = 1000000;
2068 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2069 {
2070 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2071 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2072 }
2073 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2074 }
2075
2076 /* Function called once at the end of compiler work. */
2077 void
2078 ira_finish_costs_once (void)
2079 {
2080 free_ira_costs ();
2081 }
2082
2083 \f
2084
2085 /* Common initialization function for ira_costs and
2086 ira_set_pseudo_classes. */
2087 static void
2088 init_costs (void)
2089 {
2090 init_subregs_of_mode ();
2091 costs = (struct costs *) ira_allocate (max_struct_costs_size
2092 * cost_elements_num);
2093 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2094 * cost_elements_num);
2095 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2096 * max_reg_num ());
2097 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2098 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2099 }
2100
2101 /* Common finalization function for ira_costs and
2102 ira_set_pseudo_classes. */
2103 static void
2104 finish_costs (void)
2105 {
2106 finish_subregs_of_mode ();
2107 ira_free (regno_equiv_gains);
2108 ira_free (regno_aclass);
2109 ira_free (pref_buffer);
2110 ira_free (costs);
2111 }
2112
2113 /* Entry function which defines register class, memory and hard
2114 register costs for each allocno. */
2115 void
2116 ira_costs (void)
2117 {
2118 allocno_p = true;
2119 cost_elements_num = ira_allocnos_num;
2120 init_costs ();
2121 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2122 * ira_allocnos_num);
2123 initiate_regno_cost_classes ();
2124 calculate_elim_costs_all_insns ();
2125 find_costs_and_classes (ira_dump_file);
2126 setup_allocno_class_and_costs ();
2127 finish_regno_cost_classes ();
2128 finish_costs ();
2129 ira_free (total_allocno_costs);
2130 }
2131
2132 /* Entry function which defines classes for pseudos.
2133 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2134 void
2135 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2136 {
2137 allocno_p = false;
2138 internal_flag_ira_verbose = flag_ira_verbose;
2139 cost_elements_num = max_reg_num ();
2140 init_costs ();
2141 initiate_regno_cost_classes ();
2142 find_costs_and_classes (dump_file);
2143 finish_regno_cost_classes ();
2144 if (define_pseudo_classes)
2145 pseudo_classes_defined_p = true;
2146
2147 finish_costs ();
2148 }
2149
2150 \f
2151
2152 /* Change hard register costs for allocnos which lives through
2153 function calls. This is called only when we found all intersected
2154 calls during building allocno live ranges. */
2155 void
2156 ira_tune_allocno_costs (void)
2157 {
2158 int j, n, regno;
2159 int cost, min_cost, *reg_costs;
2160 enum reg_class aclass, rclass;
2161 enum machine_mode mode;
2162 ira_allocno_t a;
2163 ira_allocno_iterator ai;
2164 ira_allocno_object_iterator oi;
2165 ira_object_t obj;
2166 bool skip_p;
2167 HARD_REG_SET *crossed_calls_clobber_regs;
2168
2169 FOR_EACH_ALLOCNO (a, ai)
2170 {
2171 aclass = ALLOCNO_CLASS (a);
2172 if (aclass == NO_REGS)
2173 continue;
2174 mode = ALLOCNO_MODE (a);
2175 n = ira_class_hard_regs_num[aclass];
2176 min_cost = INT_MAX;
2177 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2178 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2179 {
2180 ira_allocate_and_set_costs
2181 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2182 ALLOCNO_CLASS_COST (a));
2183 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2184 for (j = n - 1; j >= 0; j--)
2185 {
2186 regno = ira_class_hard_regs[aclass][j];
2187 skip_p = false;
2188 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2189 {
2190 if (ira_hard_reg_set_intersection_p (regno, mode,
2191 OBJECT_CONFLICT_HARD_REGS
2192 (obj)))
2193 {
2194 skip_p = true;
2195 break;
2196 }
2197 }
2198 if (skip_p)
2199 continue;
2200 rclass = REGNO_REG_CLASS (regno);
2201 cost = 0;
2202 crossed_calls_clobber_regs
2203 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2204 if (ira_hard_reg_set_intersection_p (regno, mode,
2205 *crossed_calls_clobber_regs))
2206 {
2207 if (ira_hard_reg_set_intersection_p (regno, mode,
2208 call_used_reg_set)
2209 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2210 cost += (ALLOCNO_CALL_FREQ (a)
2211 * (ira_memory_move_cost[mode][rclass][0]
2212 + ira_memory_move_cost[mode][rclass][1]));
2213 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2214 cost += ((ira_memory_move_cost[mode][rclass][0]
2215 + ira_memory_move_cost[mode][rclass][1])
2216 * ALLOCNO_FREQ (a)
2217 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2218 #endif
2219 }
2220 if (INT_MAX - cost < reg_costs[j])
2221 reg_costs[j] = INT_MAX;
2222 else
2223 reg_costs[j] += cost;
2224 if (min_cost > reg_costs[j])
2225 min_cost = reg_costs[j];
2226 }
2227 }
2228 if (min_cost != INT_MAX)
2229 ALLOCNO_CLASS_COST (a) = min_cost;
2230
2231 /* Some targets allow pseudos to be allocated to unaligned sequences
2232 of hard registers. However, selecting an unaligned sequence can
2233 unnecessarily restrict later allocations. So increase the cost of
2234 unaligned hard regs to encourage the use of aligned hard regs. */
2235 {
2236 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2237
2238 if (nregs > 1)
2239 {
2240 ira_allocate_and_set_costs
2241 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2242 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2243 for (j = n - 1; j >= 0; j--)
2244 {
2245 regno = ira_non_ordered_class_hard_regs[aclass][j];
2246 if ((regno % nregs) != 0)
2247 {
2248 int index = ira_class_hard_reg_index[aclass][regno];
2249 ira_assert (index != -1);
2250 reg_costs[index] += ALLOCNO_FREQ (a);
2251 }
2252 }
2253 }
2254 }
2255 }
2256 }
2257
2258 /* Add COST to the estimated gain for eliminating REGNO with its
2259 equivalence. If COST is zero, record that no such elimination is
2260 possible. */
2261
2262 void
2263 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2264 {
2265 if (cost == 0)
2266 regno_equiv_gains[regno] = 0;
2267 else
2268 regno_equiv_gains[regno] += cost;
2269 }