re PR rtl-optimization/37397 (IRA performance impact on SPEC CPU 2K/2006)
[gcc.git] / gcc / ira-costs.c
1 /* IRA hard register and memory cost calculation for allocnos.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "toplev.h"
37 #include "target.h"
38 #include "params.h"
39 #include "ira-int.h"
40
41 /* The file contains code is similar to one in regclass but the code
42 works on the allocno basis. */
43
44 #ifdef FORBIDDEN_INC_DEC_CLASSES
45 /* Indexed by n, is TRUE if allocno with number N is used in an
46 auto-inc or auto-dec context. */
47 static bool *in_inc_dec;
48 #endif
49
50 /* The `costs' struct records the cost of using hard registers of each
51 class considered for the calculation and of using memory for each
52 allocno. */
53 struct costs
54 {
55 int mem_cost;
56 /* Costs for register classes start here. We process only some
57 register classes (cover classes on the 1st cost calculation
58 iteration and important classes on the 2nd iteration). */
59 int cost[1];
60 };
61
62 /* Initialized once. It is a maximal possible size of the allocated
63 struct costs. */
64 static int max_struct_costs_size;
65
66 /* Allocated and initialized once, and used to initialize cost values
67 for each insn. */
68 static struct costs *init_cost;
69
70 /* Allocated once, and used for temporary purposes. */
71 static struct costs *temp_costs;
72
73 /* Allocated once, and used for the cost calculation. */
74 static struct costs *op_costs[MAX_RECOG_OPERANDS];
75 static struct costs *this_op_costs[MAX_RECOG_OPERANDS];
76
77 /* Original and accumulated costs of each class for each allocno. */
78 static struct costs *allocno_costs, *total_costs;
79
80 /* Classes used for cost calculation. They may be different on
81 different iterations of the cost calculations or in different
82 optimization modes. */
83 static enum reg_class *cost_classes;
84
85 /* The size of the previous array. */
86 static int cost_classes_num;
87
88 /* Map: cost class -> order number (they start with 0) of the cost
89 class. The order number is negative for non-cost classes. */
90 static int cost_class_nums[N_REG_CLASSES];
91
92 /* It is the current size of struct costs. */
93 static int struct_costs_size;
94
95 /* Return pointer to structure containing costs of allocno with given
96 NUM in array ARR. */
97 #define COSTS_OF_ALLOCNO(arr, num) \
98 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
99
100 /* Record register class preferences of each allocno. Null value
101 means no preferences. It happens on the 1st iteration of the cost
102 calculation. */
103 static enum reg_class *allocno_pref;
104
105 /* Allocated buffers for allocno_pref. */
106 static enum reg_class *allocno_pref_buffer;
107
108 /* Execution frequency of the current insn. */
109 static int frequency;
110
111 \f
112
113 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
114 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
115 be a pseudo register. */
116 static int
117 copy_cost (rtx x, enum machine_mode mode, enum reg_class rclass, bool to_p,
118 secondary_reload_info *prev_sri)
119 {
120 secondary_reload_info sri;
121 enum reg_class secondary_class = NO_REGS;
122
123 /* If X is a SCRATCH, there is actually nothing to move since we are
124 assuming optimal allocation. */
125 if (GET_CODE (x) == SCRATCH)
126 return 0;
127
128 /* Get the class we will actually use for a reload. */
129 rclass = PREFERRED_RELOAD_CLASS (x, rclass);
130
131 /* If we need a secondary reload for an intermediate, the cost is
132 that to load the input into the intermediate register, then to
133 copy it. */
134 sri.prev_sri = prev_sri;
135 sri.extra_cost = 0;
136 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
137
138 if (ira_register_move_cost[mode] == NULL)
139 ira_init_register_move_cost (mode);
140
141 if (secondary_class != NO_REGS)
142 return (move_cost[mode][secondary_class][rclass] + sri.extra_cost
143 + copy_cost (x, mode, secondary_class, to_p, &sri));
144
145 /* For memory, use the memory move cost, for (hard) registers, use
146 the cost to move between the register classes, and use 2 for
147 everything else (constants). */
148 if (MEM_P (x) || rclass == NO_REGS)
149 return sri.extra_cost + ira_memory_move_cost[mode][rclass][to_p != 0];
150 else if (REG_P (x))
151 return
152 (sri.extra_cost + move_cost[mode][REGNO_REG_CLASS (REGNO (x))][rclass]);
153 else
154 /* If this is a constant, we may eventually want to call rtx_cost
155 here. */
156 return sri.extra_cost + COSTS_N_INSNS (1);
157 }
158
159 \f
160
161 /* Record the cost of using memory or hard registers of various
162 classes for the operands in INSN.
163
164 N_ALTS is the number of alternatives.
165 N_OPS is the number of operands.
166 OPS is an array of the operands.
167 MODES are the modes of the operands, in case any are VOIDmode.
168 CONSTRAINTS are the constraints to use for the operands. This array
169 is modified by this procedure.
170
171 This procedure works alternative by alternative. For each
172 alternative we assume that we will be able to allocate all allocnos
173 to their ideal register class and calculate the cost of using that
174 alternative. Then we compute, for each operand that is a
175 pseudo-register, the cost of having the allocno allocated to each
176 register class and using it in that alternative. To this cost is
177 added the cost of the alternative.
178
179 The cost of each class for this insn is its lowest cost among all
180 the alternatives. */
181 static void
182 record_reg_classes (int n_alts, int n_ops, rtx *ops,
183 enum machine_mode *modes, const char **constraints,
184 rtx insn, struct costs **op_costs,
185 enum reg_class *allocno_pref)
186 {
187 int alt;
188 int i, j, k;
189 rtx set;
190 int insn_allows_mem[MAX_RECOG_OPERANDS];
191
192 for (i = 0; i < n_ops; i++)
193 insn_allows_mem[i] = 0;
194
195 /* Process each alternative, each time minimizing an operand's cost
196 with the cost for each operand in that alternative. */
197 for (alt = 0; alt < n_alts; alt++)
198 {
199 enum reg_class classes[MAX_RECOG_OPERANDS];
200 int allows_mem[MAX_RECOG_OPERANDS];
201 int rclass;
202 int alt_fail = 0;
203 int alt_cost = 0, op_cost_add;
204
205 for (i = 0; i < n_ops; i++)
206 {
207 unsigned char c;
208 const char *p = constraints[i];
209 rtx op = ops[i];
210 enum machine_mode mode = modes[i];
211 int allows_addr = 0;
212 int win = 0;
213
214 /* Initially show we know nothing about the register class. */
215 classes[i] = NO_REGS;
216 allows_mem[i] = 0;
217
218 /* If this operand has no constraints at all, we can
219 conclude nothing about it since anything is valid. */
220 if (*p == 0)
221 {
222 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
223 memset (this_op_costs[i], 0, struct_costs_size);
224 continue;
225 }
226
227 /* If this alternative is only relevant when this operand
228 matches a previous operand, we do different things
229 depending on whether this operand is a allocno-reg or not.
230 We must process any modifiers for the operand before we
231 can make this test. */
232 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
233 p++;
234
235 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
236 {
237 /* Copy class and whether memory is allowed from the
238 matching alternative. Then perform any needed cost
239 computations and/or adjustments. */
240 j = p[0] - '0';
241 classes[i] = classes[j];
242 allows_mem[i] = allows_mem[j];
243 if (allows_mem[i])
244 insn_allows_mem[i] = 1;
245
246 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
247 {
248 /* If this matches the other operand, we have no
249 added cost and we win. */
250 if (rtx_equal_p (ops[j], op))
251 win = 1;
252 /* If we can put the other operand into a register,
253 add to the cost of this alternative the cost to
254 copy this operand to the register used for the
255 other operand. */
256 else if (classes[j] != NO_REGS)
257 {
258 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
259 win = 1;
260 }
261 }
262 else if (! REG_P (ops[j])
263 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
264 {
265 /* This op is an allocno but the one it matches is
266 not. */
267
268 /* If we can't put the other operand into a
269 register, this alternative can't be used. */
270
271 if (classes[j] == NO_REGS)
272 alt_fail = 1;
273 /* Otherwise, add to the cost of this alternative
274 the cost to copy the other operand to the hard
275 register used for this operand. */
276 else
277 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
278 }
279 else
280 {
281 /* The costs of this operand are not the same as the
282 other operand since move costs are not symmetric.
283 Moreover, if we cannot tie them, this alternative
284 needs to do a copy, which is one insn. */
285 struct costs *pp = this_op_costs[i];
286
287 if (ira_register_move_cost[mode] == NULL)
288 ira_init_register_move_cost (mode);
289
290 for (k = 0; k < cost_classes_num; k++)
291 {
292 rclass = cost_classes[k];
293 pp->cost[k]
294 = ((recog_data.operand_type[i] != OP_OUT
295 ? ira_may_move_in_cost[mode][rclass]
296 [classes[i]] * frequency : 0)
297 + (recog_data.operand_type[i] != OP_IN
298 ? ira_may_move_out_cost[mode][classes[i]]
299 [rclass] * frequency : 0));
300 }
301
302 /* If the alternative actually allows memory, make
303 things a bit cheaper since we won't need an extra
304 insn to load it. */
305 pp->mem_cost
306 = ((recog_data.operand_type[i] != OP_IN
307 ? ira_memory_move_cost[mode][classes[i]][0] : 0)
308 + (recog_data.operand_type[i] != OP_OUT
309 ? ira_memory_move_cost[mode][classes[i]][1] : 0)
310 - allows_mem[i]) * frequency;
311
312 /* If we have assigned a class to this allocno in our
313 first pass, add a cost to this alternative
314 corresponding to what we would add if this allocno
315 were not in the appropriate class. We could use
316 cover class here but it is less accurate
317 approximation. */
318 if (allocno_pref)
319 {
320 enum reg_class pref_class
321 = allocno_pref[ALLOCNO_NUM
322 (ira_curr_regno_allocno_map
323 [REGNO (op)])];
324
325 if (pref_class == NO_REGS)
326 alt_cost
327 += ((recog_data.operand_type[i] != OP_IN
328 ? ira_memory_move_cost[mode][classes[i]][0]
329 : 0)
330 + (recog_data.operand_type[i] != OP_OUT
331 ? ira_memory_move_cost[mode][classes[i]][1]
332 : 0));
333 else if (ira_reg_class_intersect
334 [pref_class][classes[i]] == NO_REGS)
335 alt_cost += (ira_register_move_cost
336 [mode][pref_class][classes[i]]);
337 }
338 if (REGNO (ops[i]) != REGNO (ops[j])
339 && ! find_reg_note (insn, REG_DEAD, op))
340 alt_cost += 2;
341
342 /* This is in place of ordinary cost computation for
343 this operand, so skip to the end of the
344 alternative (should be just one character). */
345 while (*p && *p++ != ',')
346 ;
347
348 constraints[i] = p;
349 continue;
350 }
351 }
352
353 /* Scan all the constraint letters. See if the operand
354 matches any of the constraints. Collect the valid
355 register classes and see if this operand accepts
356 memory. */
357 while ((c = *p))
358 {
359 switch (c)
360 {
361 case ',':
362 break;
363 case '*':
364 /* Ignore the next letter for this pass. */
365 c = *++p;
366 break;
367
368 case '?':
369 alt_cost += 2;
370 case '!': case '#': case '&':
371 case '0': case '1': case '2': case '3': case '4':
372 case '5': case '6': case '7': case '8': case '9':
373 break;
374
375 case 'p':
376 allows_addr = 1;
377 win = address_operand (op, GET_MODE (op));
378 /* We know this operand is an address, so we want it
379 to be allocated to a register that can be the
380 base of an address, i.e. BASE_REG_CLASS. */
381 classes[i]
382 = ira_reg_class_union[classes[i]]
383 [base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
384 break;
385
386 case 'm': case 'o': case 'V':
387 /* It doesn't seem worth distinguishing between
388 offsettable and non-offsettable addresses
389 here. */
390 insn_allows_mem[i] = allows_mem[i] = 1;
391 if (MEM_P (op))
392 win = 1;
393 break;
394
395 case '<':
396 if (MEM_P (op)
397 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
398 || GET_CODE (XEXP (op, 0)) == POST_DEC))
399 win = 1;
400 break;
401
402 case '>':
403 if (MEM_P (op)
404 && (GET_CODE (XEXP (op, 0)) == PRE_INC
405 || GET_CODE (XEXP (op, 0)) == POST_INC))
406 win = 1;
407 break;
408
409 case 'E':
410 case 'F':
411 if (GET_CODE (op) == CONST_DOUBLE
412 || (GET_CODE (op) == CONST_VECTOR
413 && (GET_MODE_CLASS (GET_MODE (op))
414 == MODE_VECTOR_FLOAT)))
415 win = 1;
416 break;
417
418 case 'G':
419 case 'H':
420 if (GET_CODE (op) == CONST_DOUBLE
421 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
422 win = 1;
423 break;
424
425 case 's':
426 if (GET_CODE (op) == CONST_INT
427 || (GET_CODE (op) == CONST_DOUBLE
428 && GET_MODE (op) == VOIDmode))
429 break;
430
431 case 'i':
432 if (CONSTANT_P (op)
433 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
434 win = 1;
435 break;
436
437 case 'n':
438 if (GET_CODE (op) == CONST_INT
439 || (GET_CODE (op) == CONST_DOUBLE
440 && GET_MODE (op) == VOIDmode))
441 win = 1;
442 break;
443
444 case 'I':
445 case 'J':
446 case 'K':
447 case 'L':
448 case 'M':
449 case 'N':
450 case 'O':
451 case 'P':
452 if (GET_CODE (op) == CONST_INT
453 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
454 win = 1;
455 break;
456
457 case 'X':
458 win = 1;
459 break;
460
461 case 'g':
462 if (MEM_P (op)
463 || (CONSTANT_P (op)
464 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
465 win = 1;
466 insn_allows_mem[i] = allows_mem[i] = 1;
467 case 'r':
468 classes[i] = ira_reg_class_union[classes[i]][GENERAL_REGS];
469 break;
470
471 default:
472 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
473 classes[i] = ira_reg_class_union[classes[i]]
474 [REG_CLASS_FROM_CONSTRAINT (c, p)];
475 #ifdef EXTRA_CONSTRAINT_STR
476 else if (EXTRA_CONSTRAINT_STR (op, c, p))
477 win = 1;
478
479 if (EXTRA_MEMORY_CONSTRAINT (c, p))
480 {
481 /* Every MEM can be reloaded to fit. */
482 insn_allows_mem[i] = allows_mem[i] = 1;
483 if (MEM_P (op))
484 win = 1;
485 }
486 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
487 {
488 /* Every address can be reloaded to fit. */
489 allows_addr = 1;
490 if (address_operand (op, GET_MODE (op)))
491 win = 1;
492 /* We know this operand is an address, so we
493 want it to be allocated to a hard register
494 that can be the base of an address,
495 i.e. BASE_REG_CLASS. */
496 classes[i]
497 = ira_reg_class_union[classes[i]]
498 [base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
499 }
500 #endif
501 break;
502 }
503 p += CONSTRAINT_LEN (c, p);
504 if (c == ',')
505 break;
506 }
507
508 constraints[i] = p;
509
510 /* How we account for this operand now depends on whether it
511 is a pseudo register or not. If it is, we first check if
512 any register classes are valid. If not, we ignore this
513 alternative, since we want to assume that all allocnos get
514 allocated for register preferencing. If some register
515 class is valid, compute the costs of moving the allocno
516 into that class. */
517 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
518 {
519 if (classes[i] == NO_REGS)
520 {
521 /* We must always fail if the operand is a REG, but
522 we did not find a suitable class.
523
524 Otherwise we may perform an uninitialized read
525 from this_op_costs after the `continue' statement
526 below. */
527 alt_fail = 1;
528 }
529 else
530 {
531 struct costs *pp = this_op_costs[i];
532
533 if (ira_register_move_cost[mode] == NULL)
534 ira_init_register_move_cost (mode);
535
536 for (k = 0; k < cost_classes_num; k++)
537 {
538 rclass = cost_classes[k];
539 pp->cost[k]
540 = ((recog_data.operand_type[i] != OP_OUT
541 ? ira_may_move_in_cost[mode][rclass]
542 [classes[i]] * frequency : 0)
543 + (recog_data.operand_type[i] != OP_IN
544 ? ira_may_move_out_cost[mode][classes[i]]
545 [rclass] * frequency : 0));
546 }
547
548 /* If the alternative actually allows memory, make
549 things a bit cheaper since we won't need an extra
550 insn to load it. */
551 pp->mem_cost
552 = ((recog_data.operand_type[i] != OP_IN
553 ? ira_memory_move_cost[mode][classes[i]][0] : 0)
554 + (recog_data.operand_type[i] != OP_OUT
555 ? ira_memory_move_cost[mode][classes[i]][1] : 0)
556 - allows_mem[i]) * frequency;
557 /* If we have assigned a class to this allocno in our
558 first pass, add a cost to this alternative
559 corresponding to what we would add if this allocno
560 were not in the appropriate class. We could use
561 cover class here but it is less accurate
562 approximation. */
563 if (allocno_pref)
564 {
565 enum reg_class pref_class
566 = allocno_pref[ALLOCNO_NUM
567 (ira_curr_regno_allocno_map
568 [REGNO (op)])];
569
570 if (pref_class == NO_REGS)
571 alt_cost
572 += ((recog_data.operand_type[i] != OP_IN
573 ? ira_memory_move_cost[mode][classes[i]][0]
574 : 0)
575 + (recog_data.operand_type[i] != OP_OUT
576 ? ira_memory_move_cost[mode][classes[i]][1]
577 : 0));
578 else if (ira_reg_class_intersect[pref_class][classes[i]]
579 == NO_REGS)
580 alt_cost += (ira_register_move_cost
581 [mode][pref_class][classes[i]]);
582 }
583 }
584 }
585
586 /* Otherwise, if this alternative wins, either because we
587 have already determined that or if we have a hard
588 register of the proper class, there is no cost for this
589 alternative. */
590 else if (win || (REG_P (op)
591 && reg_fits_class_p (op, classes[i],
592 0, GET_MODE (op))))
593 ;
594
595 /* If registers are valid, the cost of this alternative
596 includes copying the object to and/or from a
597 register. */
598 else if (classes[i] != NO_REGS)
599 {
600 if (recog_data.operand_type[i] != OP_OUT)
601 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
602
603 if (recog_data.operand_type[i] != OP_IN)
604 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
605 }
606 /* The only other way this alternative can be used is if
607 this is a constant that could be placed into memory. */
608 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
609 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
610 else
611 alt_fail = 1;
612 }
613
614 if (alt_fail)
615 continue;
616
617 op_cost_add = alt_cost * frequency;
618 /* Finally, update the costs with the information we've
619 calculated about this alternative. */
620 for (i = 0; i < n_ops; i++)
621 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
622 {
623 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
624 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
625
626 pp->mem_cost = MIN (pp->mem_cost,
627 (qq->mem_cost + op_cost_add) * scale);
628
629 for (k = 0; k < cost_classes_num; k++)
630 pp->cost[k]
631 = MIN (pp->cost[k], (qq->cost[k] + op_cost_add) * scale);
632 }
633 }
634
635 for (i = 0; i < n_ops; i++)
636 {
637 ira_allocno_t a;
638 rtx op = ops[i];
639
640 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
641 continue;
642 a = ira_curr_regno_allocno_map [REGNO (op)];
643 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
644 ALLOCNO_BAD_SPILL_P (a) = true;
645 }
646
647 /* If this insn is a single set copying operand 1 to operand 0 and
648 one operand is an allocno with the other a hard reg or an allocno
649 that prefers a hard register that is in its own register class
650 then we may want to adjust the cost of that register class to -1.
651
652 Avoid the adjustment if the source does not die to avoid
653 stressing of register allocator by preferrencing two colliding
654 registers into single class.
655
656 Also avoid the adjustment if a copy between hard registers of the
657 class is expensive (ten times the cost of a default copy is
658 considered arbitrarily expensive). This avoids losing when the
659 preferred class is very expensive as the source of a copy
660 instruction. */
661 if ((set = single_set (insn)) != 0
662 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
663 && REG_P (ops[0]) && REG_P (ops[1])
664 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
665 for (i = 0; i <= 1; i++)
666 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
667 {
668 unsigned int regno = REGNO (ops[!i]);
669 enum machine_mode mode = GET_MODE (ops[!i]);
670 int rclass;
671 unsigned int nr;
672
673 if (regno < FIRST_PSEUDO_REGISTER)
674 for (k = 0; k < cost_classes_num; k++)
675 {
676 rclass = cost_classes[k];
677 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
678 && (reg_class_size[rclass]
679 == (unsigned) CLASS_MAX_NREGS (rclass, mode)))
680 {
681 if (reg_class_size[rclass] == 1)
682 op_costs[i]->cost[k] = -frequency;
683 else
684 {
685 for (nr = 0;
686 nr < (unsigned) hard_regno_nregs[regno][mode];
687 nr++)
688 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
689 regno + nr))
690 break;
691
692 if (nr == (unsigned) hard_regno_nregs[regno][mode])
693 op_costs[i]->cost[k] = -frequency;
694 }
695 }
696 }
697 }
698 }
699
700 \f
701
702 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
703 static inline bool
704 ok_for_index_p_nonstrict (rtx reg)
705 {
706 unsigned regno = REGNO (reg);
707
708 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
709 }
710
711 /* A version of regno_ok_for_base_p for use here, when all
712 pseudo-registers should count as OK. Arguments as for
713 regno_ok_for_base_p. */
714 static inline bool
715 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
716 enum rtx_code outer_code, enum rtx_code index_code)
717 {
718 unsigned regno = REGNO (reg);
719
720 if (regno >= FIRST_PSEUDO_REGISTER)
721 return true;
722 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
723 }
724
725 /* Record the pseudo registers we must reload into hard registers in a
726 subexpression of a memory address, X.
727
728 If CONTEXT is 0, we are looking at the base part of an address,
729 otherwise we are looking at the index part.
730
731 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
732 give the context that the rtx appears in. These three arguments
733 are passed down to base_reg_class.
734
735 SCALE is twice the amount to multiply the cost by (it is twice so
736 we can represent half-cost adjustments). */
737 static void
738 record_address_regs (enum machine_mode mode, rtx x, int context,
739 enum rtx_code outer_code, enum rtx_code index_code,
740 int scale)
741 {
742 enum rtx_code code = GET_CODE (x);
743 enum reg_class rclass;
744
745 if (context == 1)
746 rclass = INDEX_REG_CLASS;
747 else
748 rclass = base_reg_class (mode, outer_code, index_code);
749
750 switch (code)
751 {
752 case CONST_INT:
753 case CONST:
754 case CC0:
755 case PC:
756 case SYMBOL_REF:
757 case LABEL_REF:
758 return;
759
760 case PLUS:
761 /* When we have an address that is a sum, we must determine
762 whether registers are "base" or "index" regs. If there is a
763 sum of two registers, we must choose one to be the "base".
764 Luckily, we can use the REG_POINTER to make a good choice
765 most of the time. We only need to do this on machines that
766 can have two registers in an address and where the base and
767 index register classes are different.
768
769 ??? This code used to set REGNO_POINTER_FLAG in some cases,
770 but that seems bogus since it should only be set when we are
771 sure the register is being used as a pointer. */
772 {
773 rtx arg0 = XEXP (x, 0);
774 rtx arg1 = XEXP (x, 1);
775 enum rtx_code code0 = GET_CODE (arg0);
776 enum rtx_code code1 = GET_CODE (arg1);
777
778 /* Look inside subregs. */
779 if (code0 == SUBREG)
780 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
781 if (code1 == SUBREG)
782 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
783
784 /* If this machine only allows one register per address, it
785 must be in the first operand. */
786 if (MAX_REGS_PER_ADDRESS == 1)
787 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
788
789 /* If index and base registers are the same on this machine,
790 just record registers in any non-constant operands. We
791 assume here, as well as in the tests below, that all
792 addresses are in canonical form. */
793 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
794 {
795 record_address_regs (mode, arg0, context, PLUS, code1, scale);
796 if (! CONSTANT_P (arg1))
797 record_address_regs (mode, arg1, context, PLUS, code0, scale);
798 }
799
800 /* If the second operand is a constant integer, it doesn't
801 change what class the first operand must be. */
802 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
803 record_address_regs (mode, arg0, context, PLUS, code1, scale);
804 /* If the second operand is a symbolic constant, the first
805 operand must be an index register. */
806 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
807 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
808 /* If both operands are registers but one is already a hard
809 register of index or reg-base class, give the other the
810 class that the hard register is not. */
811 else if (code0 == REG && code1 == REG
812 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
813 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
814 || ok_for_index_p_nonstrict (arg0)))
815 record_address_regs (mode, arg1,
816 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
817 ? 1 : 0,
818 PLUS, REG, scale);
819 else if (code0 == REG && code1 == REG
820 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
821 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
822 || ok_for_index_p_nonstrict (arg1)))
823 record_address_regs (mode, arg0,
824 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
825 ? 1 : 0,
826 PLUS, REG, scale);
827 /* If one operand is known to be a pointer, it must be the
828 base with the other operand the index. Likewise if the
829 other operand is a MULT. */
830 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
831 {
832 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
833 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
834 }
835 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
836 {
837 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
838 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
839 }
840 /* Otherwise, count equal chances that each might be a base or
841 index register. This case should be rare. */
842 else
843 {
844 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
845 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
846 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
847 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
848 }
849 }
850 break;
851
852 /* Double the importance of an allocno that is incremented or
853 decremented, since it would take two extra insns if it ends
854 up in the wrong place. */
855 case POST_MODIFY:
856 case PRE_MODIFY:
857 record_address_regs (mode, XEXP (x, 0), 0, code,
858 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
859 if (REG_P (XEXP (XEXP (x, 1), 1)))
860 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
861 2 * scale);
862 break;
863
864 case POST_INC:
865 case PRE_INC:
866 case POST_DEC:
867 case PRE_DEC:
868 /* Double the importance of an allocno that is incremented or
869 decremented, since it would take two extra insns if it ends
870 up in the wrong place. If the operand is a pseudo-register,
871 show it is being used in an INC_DEC context. */
872 #ifdef FORBIDDEN_INC_DEC_CLASSES
873 if (REG_P (XEXP (x, 0))
874 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
875 in_inc_dec[ALLOCNO_NUM (ira_curr_regno_allocno_map
876 [REGNO (XEXP (x, 0))])] = true;
877 #endif
878 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
879 break;
880
881 case REG:
882 {
883 struct costs *pp;
884 int i, k;
885
886 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
887 break;
888
889 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[REGNO (x)]) = true;
890 pp = COSTS_OF_ALLOCNO (allocno_costs,
891 ALLOCNO_NUM (ira_curr_regno_allocno_map
892 [REGNO (x)]));
893 pp->mem_cost += (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
894 if (ira_register_move_cost[Pmode] == NULL)
895 ira_init_register_move_cost (Pmode);
896 for (k = 0; k < cost_classes_num; k++)
897 {
898 i = cost_classes[k];
899 pp->cost[k]
900 += (ira_may_move_in_cost[Pmode][i][rclass] * scale) / 2;
901 }
902 }
903 break;
904
905 default:
906 {
907 const char *fmt = GET_RTX_FORMAT (code);
908 int i;
909 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
910 if (fmt[i] == 'e')
911 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
912 scale);
913 }
914 }
915 }
916
917 \f
918
919 /* Calculate the costs of insn operands. */
920 static void
921 record_operand_costs (rtx insn, struct costs **op_costs,
922 enum reg_class *allocno_pref)
923 {
924 const char *constraints[MAX_RECOG_OPERANDS];
925 enum machine_mode modes[MAX_RECOG_OPERANDS];
926 int i;
927
928 for (i = 0; i < recog_data.n_operands; i++)
929 {
930 constraints[i] = recog_data.constraints[i];
931 modes[i] = recog_data.operand_mode[i];
932 }
933
934 /* If we get here, we are set up to record the costs of all the
935 operands for this insn. Start by initializing the costs. Then
936 handle any address registers. Finally record the desired classes
937 for any allocnos, doing it twice if some pair of operands are
938 commutative. */
939 for (i = 0; i < recog_data.n_operands; i++)
940 {
941 memcpy (op_costs[i], init_cost, struct_costs_size);
942
943 if (GET_CODE (recog_data.operand[i]) == SUBREG)
944 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
945
946 if (MEM_P (recog_data.operand[i]))
947 record_address_regs (GET_MODE (recog_data.operand[i]),
948 XEXP (recog_data.operand[i], 0),
949 0, MEM, SCRATCH, frequency * 2);
950 else if (constraints[i][0] == 'p'
951 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
952 constraints[i]))
953 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
954 SCRATCH, frequency * 2);
955 }
956
957 /* Check for commutative in a separate loop so everything will have
958 been initialized. We must do this even if one operand is a
959 constant--see addsi3 in m68k.md. */
960 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
961 if (constraints[i][0] == '%')
962 {
963 const char *xconstraints[MAX_RECOG_OPERANDS];
964 int j;
965
966 /* Handle commutative operands by swapping the constraints.
967 We assume the modes are the same. */
968 for (j = 0; j < recog_data.n_operands; j++)
969 xconstraints[j] = constraints[j];
970
971 xconstraints[i] = constraints[i+1];
972 xconstraints[i+1] = constraints[i];
973 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
974 recog_data.operand, modes,
975 xconstraints, insn, op_costs, allocno_pref);
976 }
977 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
978 recog_data.operand, modes,
979 constraints, insn, op_costs, allocno_pref);
980 }
981
982 \f
983
984 /* Process one insn INSN. Scan it and record each time it would save
985 code to put a certain allocnos in a certain class. Return the last
986 insn processed, so that the scan can be continued from there. */
987 static rtx
988 scan_one_insn (rtx insn)
989 {
990 enum rtx_code pat_code;
991 rtx set, note;
992 int i, k;
993
994 if (!INSN_P (insn))
995 return insn;
996
997 pat_code = GET_CODE (PATTERN (insn));
998 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
999 || pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
1000 return insn;
1001
1002 set = single_set (insn);
1003 extract_insn (insn);
1004
1005 /* If this insn loads a parameter from its stack slot, then it
1006 represents a savings, rather than a cost, if the parameter is
1007 stored in memory. Record this fact. */
1008 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1009 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1010 && MEM_P (XEXP (note, 0)))
1011 {
1012 enum reg_class cl = GENERAL_REGS;
1013 rtx reg = SET_DEST (set);
1014 int num = ALLOCNO_NUM (ira_curr_regno_allocno_map[REGNO (reg)]);
1015
1016 if (allocno_pref)
1017 cl = allocno_pref[num];
1018 COSTS_OF_ALLOCNO (allocno_costs, num)->mem_cost
1019 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1020 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1021 0, MEM, SCRATCH, frequency * 2);
1022 }
1023
1024 record_operand_costs (insn, op_costs, allocno_pref);
1025
1026 /* Now add the cost for each operand to the total costs for its
1027 allocno. */
1028 for (i = 0; i < recog_data.n_operands; i++)
1029 if (REG_P (recog_data.operand[i])
1030 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1031 {
1032 int regno = REGNO (recog_data.operand[i]);
1033 struct costs *p
1034 = COSTS_OF_ALLOCNO (allocno_costs,
1035 ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]));
1036 struct costs *q = op_costs[i];
1037
1038 p->mem_cost += q->mem_cost;
1039 for (k = 0; k < cost_classes_num; k++)
1040 p->cost[k] += q->cost[k];
1041 }
1042
1043 return insn;
1044 }
1045
1046 \f
1047
1048 /* Print allocnos costs to file F. */
1049 static void
1050 print_costs (FILE *f)
1051 {
1052 int k;
1053 ira_allocno_t a;
1054 ira_allocno_iterator ai;
1055
1056 fprintf (f, "\n");
1057 FOR_EACH_ALLOCNO (a, ai)
1058 {
1059 int i, rclass;
1060 basic_block bb;
1061 int regno = ALLOCNO_REGNO (a);
1062
1063 i = ALLOCNO_NUM (a);
1064 fprintf (f, " a%d(r%d,", i, regno);
1065 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1066 fprintf (f, "b%d", bb->index);
1067 else
1068 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1069 fprintf (f, ") costs:");
1070 for (k = 0; k < cost_classes_num; k++)
1071 {
1072 rclass = cost_classes[k];
1073 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1074 #ifdef FORBIDDEN_INC_DEC_CLASSES
1075 && (! in_inc_dec[i] || ! forbidden_inc_dec_class[rclass])
1076 #endif
1077 #ifdef CANNOT_CHANGE_MODE_CLASS
1078 && ! invalid_mode_change_p (regno, (enum reg_class) rclass,
1079 PSEUDO_REGNO_MODE (regno))
1080 #endif
1081 )
1082 {
1083 fprintf (f, " %s:%d", reg_class_names[rclass],
1084 COSTS_OF_ALLOCNO (allocno_costs, i)->cost[k]);
1085 if (flag_ira_algorithm == IRA_ALGORITHM_REGIONAL
1086 || flag_ira_algorithm == IRA_ALGORITHM_MIXED)
1087 fprintf (f, ",%d", COSTS_OF_ALLOCNO (total_costs, i)->cost[k]);
1088 }
1089 }
1090 fprintf (f, " MEM:%i\n", COSTS_OF_ALLOCNO (allocno_costs, i)->mem_cost);
1091 }
1092 }
1093
1094 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1095 costs. */
1096 static void
1097 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1098 {
1099 basic_block bb;
1100 rtx insn;
1101
1102 bb = loop_tree_node->bb;
1103 if (bb == NULL)
1104 return;
1105 frequency = REG_FREQ_FROM_BB (bb);
1106 if (frequency == 0)
1107 frequency = 1;
1108 FOR_BB_INSNS (bb, insn)
1109 insn = scan_one_insn (insn);
1110 }
1111
1112 /* Find costs of register classes and memory for allocnos and their
1113 best costs. */
1114 static void
1115 find_allocno_class_costs (void)
1116 {
1117 int i, k;
1118 int pass;
1119 basic_block bb;
1120
1121 init_recog ();
1122 #ifdef FORBIDDEN_INC_DEC_CLASSES
1123 in_inc_dec = ira_allocate (sizeof (bool) * ira_allocnos_num);
1124 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1125 allocno_pref = NULL;
1126 /* Normally we scan the insns once and determine the best class to
1127 use for each allocno. However, if -fexpensive-optimizations are
1128 on, we do so twice, the second time using the tentative best
1129 classes to guide the selection. */
1130 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1131 {
1132 if (internal_flag_ira_verbose > 0 && ira_dump_file)
1133 fprintf (ira_dump_file, "\nPass %i for finding allocno costs\n\n",
1134 pass);
1135 /* We could use only cover classes. Unfortunately it does not
1136 work well for some targets where some subclass of cover class
1137 is costly and wrong cover class is chosen. */
1138 for (i = 0; i < N_REG_CLASSES; i++)
1139 cost_class_nums[i] = -1;
1140 for (cost_classes_num = 0;
1141 cost_classes_num < ira_important_classes_num;
1142 cost_classes_num++)
1143 {
1144 cost_classes[cost_classes_num]
1145 = ira_important_classes[cost_classes_num];
1146 cost_class_nums[cost_classes[cost_classes_num]]
1147 = cost_classes_num;
1148 }
1149 struct_costs_size
1150 = sizeof (struct costs) + sizeof (int) * (cost_classes_num - 1);
1151 /* Zero out our accumulation of the cost of each class for each
1152 allocno. */
1153 memset (allocno_costs, 0, ira_allocnos_num * struct_costs_size);
1154 #ifdef FORBIDDEN_INC_DEC_CLASSES
1155 memset (in_inc_dec, 0, ira_allocnos_num * sizeof (bool));
1156 #endif
1157
1158 /* Scan the instructions and record each time it would save code
1159 to put a certain allocno in a certain class. */
1160 ira_traverse_loop_tree (true, ira_loop_tree_root,
1161 process_bb_node_for_costs, NULL);
1162
1163 memcpy (total_costs, allocno_costs,
1164 max_struct_costs_size * ira_allocnos_num);
1165 if (pass == 0)
1166 allocno_pref = allocno_pref_buffer;
1167
1168 /* Now for each allocno look at how desirable each class is and
1169 find which class is preferred. */
1170 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1171 {
1172 ira_allocno_t a, parent_a;
1173 int rclass, a_num, parent_a_num;
1174 ira_loop_tree_node_t parent;
1175 int best_cost;
1176 enum reg_class best, alt_class, common_class;
1177 #ifdef FORBIDDEN_INC_DEC_CLASSES
1178 int inc_dec_p = false;
1179 #endif
1180
1181 if (ira_regno_allocno_map[i] == NULL)
1182 continue;
1183 memset (temp_costs, 0, struct_costs_size);
1184 /* Find cost of all allocnos with the same regno. */
1185 for (a = ira_regno_allocno_map[i];
1186 a != NULL;
1187 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1188 {
1189 a_num = ALLOCNO_NUM (a);
1190 if ((flag_ira_algorithm == IRA_ALGORITHM_REGIONAL
1191 || flag_ira_algorithm == IRA_ALGORITHM_MIXED)
1192 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1193 && (parent_a = parent->regno_allocno_map[i]) != NULL
1194 /* There are no caps yet. */
1195 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
1196 ALLOCNO_NUM (a)))
1197 {
1198 /* Propagate costs to upper levels in the region
1199 tree. */
1200 parent_a_num = ALLOCNO_NUM (parent_a);
1201 for (k = 0; k < cost_classes_num; k++)
1202 COSTS_OF_ALLOCNO (total_costs, parent_a_num)->cost[k]
1203 += COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k];
1204 COSTS_OF_ALLOCNO (total_costs, parent_a_num)->mem_cost
1205 += COSTS_OF_ALLOCNO (total_costs, a_num)->mem_cost;
1206 }
1207 for (k = 0; k < cost_classes_num; k++)
1208 temp_costs->cost[k]
1209 += COSTS_OF_ALLOCNO (allocno_costs, a_num)->cost[k];
1210 temp_costs->mem_cost
1211 += COSTS_OF_ALLOCNO (allocno_costs, a_num)->mem_cost;
1212 #ifdef FORBIDDEN_INC_DEC_CLASSES
1213 if (in_inc_dec[a_num])
1214 inc_dec_p = true;
1215 #endif
1216 }
1217 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1218 best = ALL_REGS;
1219 alt_class = NO_REGS;
1220 /* Find best common class for all allocnos with the same
1221 regno. */
1222 for (k = 0; k < cost_classes_num; k++)
1223 {
1224 rclass = cost_classes[k];
1225 /* Ignore classes that are too small for this operand or
1226 invalid for an operand that was auto-incremented. */
1227 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1228 #ifdef FORBIDDEN_INC_DEC_CLASSES
1229 || (inc_dec_p && forbidden_inc_dec_class[rclass])
1230 #endif
1231 #ifdef CANNOT_CHANGE_MODE_CLASS
1232 || invalid_mode_change_p (i, (enum reg_class) rclass,
1233 PSEUDO_REGNO_MODE (i))
1234 #endif
1235 )
1236 continue;
1237 if (temp_costs->cost[k] < best_cost)
1238 {
1239 best_cost = temp_costs->cost[k];
1240 best = (enum reg_class) rclass;
1241 }
1242 else if (temp_costs->cost[k] == best_cost)
1243 best = ira_reg_class_union[best][rclass];
1244 if (pass == flag_expensive_optimizations
1245 && temp_costs->cost[k] < temp_costs->mem_cost
1246 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1247 > reg_class_size[alt_class]))
1248 alt_class = reg_class_subunion[alt_class][rclass];
1249 }
1250 if (pass == flag_expensive_optimizations)
1251 {
1252 if (best_cost > temp_costs->mem_cost)
1253 best = alt_class = NO_REGS;
1254 else if (best == alt_class)
1255 alt_class = NO_REGS;
1256 setup_reg_classes (i, best, alt_class);
1257 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1258 fprintf (ira_dump_file,
1259 " r%d: preferred %s, alternative %s\n",
1260 i, reg_class_names[best], reg_class_names[alt_class]);
1261 }
1262 if (best_cost > temp_costs->mem_cost)
1263 common_class = NO_REGS;
1264 else
1265 /* Make the common class a cover class. Remember all
1266 allocnos with the same regno should have the same cover
1267 class. */
1268 common_class = ira_class_translate[best];
1269 for (a = ira_regno_allocno_map[i];
1270 a != NULL;
1271 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1272 {
1273 a_num = ALLOCNO_NUM (a);
1274 if (common_class == NO_REGS)
1275 best = NO_REGS;
1276 else
1277 {
1278 /* Finding best class which is subset of the common
1279 class. */
1280 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1281 best = ALL_REGS;
1282 for (k = 0; k < cost_classes_num; k++)
1283 {
1284 rclass = cost_classes[k];
1285 if (! ira_class_subset_p[rclass][common_class])
1286 continue;
1287 /* Ignore classes that are too small for this
1288 operand or invalid for an operand that was
1289 auto-incremented. */
1290 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1291 #ifdef FORBIDDEN_INC_DEC_CLASSES
1292 || (inc_dec_p && forbidden_inc_dec_class[rclass])
1293 #endif
1294 #ifdef CANNOT_CHANGE_MODE_CLASS
1295 || invalid_mode_change_p (i, (enum reg_class) rclass,
1296 PSEUDO_REGNO_MODE (i))
1297 #endif
1298 )
1299 ;
1300 else if (COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k]
1301 < best_cost)
1302 {
1303 best_cost
1304 = COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k];
1305 best = (enum reg_class) rclass;
1306 }
1307 else if (COSTS_OF_ALLOCNO (total_costs, a_num)->cost[k]
1308 == best_cost)
1309 best = ira_reg_class_union[best][rclass];
1310 }
1311 }
1312 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL
1313 && (pass == 0 || allocno_pref[a_num] != best))
1314 {
1315 fprintf (ira_dump_file, " a%d (r%d,", a_num, i);
1316 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1317 fprintf (ira_dump_file, "b%d", bb->index);
1318 else
1319 fprintf (ira_dump_file, "l%d",
1320 ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1321 fprintf (ira_dump_file, ") best %s, cover %s\n",
1322 reg_class_names[best],
1323 reg_class_names[ira_class_translate[best]]);
1324 }
1325 allocno_pref[a_num] = best;
1326 }
1327 }
1328
1329 if (internal_flag_ira_verbose > 4 && ira_dump_file)
1330 {
1331 print_costs (ira_dump_file);
1332 fprintf (ira_dump_file,"\n");
1333 }
1334 }
1335 #ifdef FORBIDDEN_INC_DEC_CLASSES
1336 ira_free (in_inc_dec);
1337 #endif
1338 }
1339
1340 \f
1341
1342 /* Process moves involving hard regs to modify allocno hard register
1343 costs. We can do this only after determining allocno cover class.
1344 If a hard register forms a register class, than moves with the hard
1345 register are already taken into account in class costs for the
1346 allocno. */
1347 static void
1348 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1349 {
1350 int i, freq, cost, src_regno, dst_regno, hard_regno;
1351 bool to_p;
1352 ira_allocno_t a;
1353 enum reg_class rclass, hard_reg_class;
1354 enum machine_mode mode;
1355 basic_block bb;
1356 rtx insn, set, src, dst;
1357
1358 bb = loop_tree_node->bb;
1359 if (bb == NULL)
1360 return;
1361 freq = REG_FREQ_FROM_BB (bb);
1362 if (freq == 0)
1363 freq = 1;
1364 FOR_BB_INSNS (bb, insn)
1365 {
1366 if (! INSN_P (insn))
1367 continue;
1368 set = single_set (insn);
1369 if (set == NULL_RTX)
1370 continue;
1371 dst = SET_DEST (set);
1372 src = SET_SRC (set);
1373 if (! REG_P (dst) || ! REG_P (src))
1374 continue;
1375 dst_regno = REGNO (dst);
1376 src_regno = REGNO (src);
1377 if (dst_regno >= FIRST_PSEUDO_REGISTER
1378 && src_regno < FIRST_PSEUDO_REGISTER)
1379 {
1380 hard_regno = src_regno;
1381 to_p = true;
1382 a = ira_curr_regno_allocno_map[dst_regno];
1383 }
1384 else if (src_regno >= FIRST_PSEUDO_REGISTER
1385 && dst_regno < FIRST_PSEUDO_REGISTER)
1386 {
1387 hard_regno = dst_regno;
1388 to_p = false;
1389 a = ira_curr_regno_allocno_map[src_regno];
1390 }
1391 else
1392 continue;
1393 rclass = ALLOCNO_COVER_CLASS (a);
1394 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1395 continue;
1396 i = ira_class_hard_reg_index[rclass][hard_regno];
1397 if (i < 0)
1398 continue;
1399 mode = ALLOCNO_MODE (a);
1400 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1401 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1402 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1403 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1404 ALLOCNO_COVER_CLASS_COST (a));
1405 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1406 rclass, 0);
1407 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1408 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1409 ALLOCNO_COVER_CLASS_COST (a) = MIN (ALLOCNO_COVER_CLASS_COST (a),
1410 ALLOCNO_HARD_REG_COSTS (a)[i]);
1411 }
1412 }
1413
1414 /* After we find hard register and memory costs for allocnos, define
1415 its cover class and modify hard register cost because insns moving
1416 allocno to/from hard registers. */
1417 static void
1418 setup_allocno_cover_class_and_costs (void)
1419 {
1420 int i, j, n, regno, num;
1421 int *reg_costs;
1422 enum reg_class cover_class, rclass;
1423 enum machine_mode mode;
1424 ira_allocno_t a;
1425 ira_allocno_iterator ai;
1426
1427 FOR_EACH_ALLOCNO (a, ai)
1428 {
1429 i = ALLOCNO_NUM (a);
1430 mode = ALLOCNO_MODE (a);
1431 cover_class = ira_class_translate[allocno_pref[i]];
1432 ira_assert (allocno_pref[i] == NO_REGS || cover_class != NO_REGS);
1433 ALLOCNO_MEMORY_COST (a) = COSTS_OF_ALLOCNO (allocno_costs, i)->mem_cost;
1434 ira_set_allocno_cover_class (a, cover_class);
1435 if (cover_class == NO_REGS)
1436 continue;
1437 ALLOCNO_AVAILABLE_REGS_NUM (a) = ira_available_class_regs[cover_class];
1438 num = cost_class_nums[allocno_pref[i]];
1439 ira_assert (num >= 0);
1440 ALLOCNO_COVER_CLASS_COST (a)
1441 = COSTS_OF_ALLOCNO (allocno_costs, i)->cost[num];
1442 if (optimize && ALLOCNO_COVER_CLASS (a) != allocno_pref[i])
1443 {
1444 n = ira_class_hard_regs_num[cover_class];
1445 ALLOCNO_HARD_REG_COSTS (a)
1446 = reg_costs = ira_allocate_cost_vector (cover_class);
1447 for (j = n - 1; j >= 0; j--)
1448 {
1449 regno = ira_class_hard_regs[cover_class][j];
1450 rclass = REGNO_REG_CLASS (regno);
1451 num = cost_class_nums[rclass];
1452 if (num < 0)
1453 {
1454 /* The hard register class is not a cover class or a
1455 class not fully inside in a cover class -- use
1456 the allocno cover class. */
1457 ira_assert (ira_hard_regno_cover_class[regno] == cover_class);
1458 num = cost_class_nums[cover_class];
1459 }
1460 reg_costs[j] = COSTS_OF_ALLOCNO (allocno_costs, i)->cost[num];
1461 }
1462 }
1463 }
1464 if (optimize)
1465 ira_traverse_loop_tree (true, ira_loop_tree_root,
1466 process_bb_node_for_hard_reg_moves, NULL);
1467 }
1468
1469 \f
1470
1471 /* Function called once during compiler work. */
1472 void
1473 ira_init_costs_once (void)
1474 {
1475 int i;
1476
1477 init_cost = NULL;
1478 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1479 {
1480 op_costs[i] = NULL;
1481 this_op_costs[i] = NULL;
1482 }
1483 temp_costs = NULL;
1484 cost_classes = NULL;
1485 }
1486
1487 /* Free allocated temporary cost vectors. */
1488 static void
1489 free_ira_costs (void)
1490 {
1491 int i;
1492
1493 if (init_cost != NULL)
1494 free (init_cost);
1495 init_cost = NULL;
1496 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1497 {
1498 if (op_costs[i] != NULL)
1499 free (op_costs[i]);
1500 if (this_op_costs[i] != NULL)
1501 free (this_op_costs[i]);
1502 op_costs[i] = this_op_costs[i] = NULL;
1503 }
1504 if (temp_costs != NULL)
1505 free (temp_costs);
1506 temp_costs = NULL;
1507 if (cost_classes != NULL)
1508 free (cost_classes);
1509 cost_classes = NULL;
1510 }
1511
1512 /* This is called each time register related information is
1513 changed. */
1514 void
1515 ira_init_costs (void)
1516 {
1517 int i;
1518
1519 free_ira_costs ();
1520 max_struct_costs_size
1521 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1522 /* Don't use ira_allocate because vectors live through several IRA calls. */
1523 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1524 init_cost->mem_cost = 1000000;
1525 for (i = 0; i < ira_important_classes_num; i++)
1526 init_cost->cost[i] = 1000000;
1527 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1528 {
1529 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1530 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1531 }
1532 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
1533 cost_classes = (enum reg_class *) xmalloc (sizeof (enum reg_class)
1534 * ira_important_classes_num);
1535 }
1536
1537 /* Function called once at the end of compiler work. */
1538 void
1539 ira_finish_costs_once (void)
1540 {
1541 free_ira_costs ();
1542 }
1543
1544 \f
1545
1546 /* Entry function which defines cover class, memory and hard register
1547 costs for each allocno. */
1548 void
1549 ira_costs (void)
1550 {
1551 ira_allocno_t a;
1552 ira_allocno_iterator ai;
1553
1554 allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
1555 * ira_allocnos_num);
1556 total_costs = (struct costs *) ira_allocate (max_struct_costs_size
1557 * ira_allocnos_num);
1558 allocno_pref_buffer
1559 = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
1560 * ira_allocnos_num);
1561 find_allocno_class_costs ();
1562 setup_allocno_cover_class_and_costs ();
1563 /* Because we could process operands only as subregs, check mode of
1564 the registers themselves too. */
1565 FOR_EACH_ALLOCNO (a, ai)
1566 if (ira_register_move_cost[ALLOCNO_MODE (a)] == NULL
1567 && have_regs_of_mode[ALLOCNO_MODE (a)])
1568 ira_init_register_move_cost (ALLOCNO_MODE (a));
1569 ira_free (allocno_pref_buffer);
1570 ira_free (total_costs);
1571 ira_free (allocno_costs);
1572 }
1573
1574 \f
1575
1576 /* Change hard register costs for allocnos which lives through
1577 function calls. This is called only when we found all intersected
1578 calls during building allocno live ranges. */
1579 void
1580 ira_tune_allocno_costs_and_cover_classes (void)
1581 {
1582 int j, n, regno;
1583 int cost, min_cost, *reg_costs;
1584 enum reg_class cover_class, rclass;
1585 enum machine_mode mode;
1586 ira_allocno_t a;
1587 ira_allocno_iterator ai;
1588
1589 FOR_EACH_ALLOCNO (a, ai)
1590 {
1591 cover_class = ALLOCNO_COVER_CLASS (a);
1592 if (cover_class == NO_REGS)
1593 continue;
1594 mode = ALLOCNO_MODE (a);
1595 n = ira_class_hard_regs_num[cover_class];
1596 min_cost = INT_MAX;
1597 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
1598 {
1599 ira_allocate_and_set_costs
1600 (&ALLOCNO_HARD_REG_COSTS (a), cover_class,
1601 ALLOCNO_COVER_CLASS_COST (a));
1602 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
1603 for (j = n - 1; j >= 0; j--)
1604 {
1605 regno = ira_class_hard_regs[cover_class][j];
1606 rclass = REGNO_REG_CLASS (regno);
1607 cost = 0;
1608 if (! ira_hard_reg_not_in_set_p (regno, mode, call_used_reg_set)
1609 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1610 cost += (ALLOCNO_CALL_FREQ (a)
1611 * (ira_memory_move_cost[mode][rclass][0]
1612 + ira_memory_move_cost[mode][rclass][1]));
1613 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
1614 cost += ((ira_memory_move_cost[mode][rclass][0]
1615 + ira_memory_move_cost[mode][rclass][1])
1616 * ALLOCNO_FREQ (a)
1617 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
1618 #endif
1619 reg_costs[j] += cost;
1620 if (min_cost > reg_costs[j])
1621 min_cost = reg_costs[j];
1622 }
1623 }
1624 if (min_cost != INT_MAX)
1625 ALLOCNO_COVER_CLASS_COST (a) = min_cost;
1626 }
1627 }