re PR target/49865 (Unnecessary reload causes small bloat)
[gcc.git] / gcc / ira-costs.c
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
41
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
45
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
48
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
51
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
56 {
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
61 };
62
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
73
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
76
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
79
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
82
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
87
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
92
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
97
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
100
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
103
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
107
108 /* Execution frequency of the current insn. */
109 static int frequency;
110
111 \f
112
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
115 {
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
126 };
127
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
131
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
134
135 /* Returns hash value for cost classes info V. */
136 static hashval_t
137 cost_classes_hash (const void *v)
138 {
139 const_cost_classes_t hv = (const_cost_classes_t) v;
140
141 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
142 }
143
144 /* Compares cost classes info V1 and V2. */
145 static int
146 cost_classes_eq (const void *v1, const void *v2)
147 {
148 const_cost_classes_t hv1 = (const_cost_classes_t) v1;
149 const_cost_classes_t hv2 = (const_cost_classes_t) v2;
150
151 return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
152 sizeof (enum reg_class) * hv1->num);
153 }
154
155 /* Delete cost classes info V from the hash table. */
156 static void
157 cost_classes_del (void *v)
158 {
159 ira_free (v);
160 }
161
162 /* Hash table of unique cost classes. */
163 static htab_t cost_classes_htab;
164
165 /* Map allocno class -> cost classes for pseudo of given allocno
166 class. */
167 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
168
169 /* Map mode -> cost classes for pseudo of give mode. */
170 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
171
172 /* Initialize info about the cost classes for each pseudo. */
173 static void
174 initiate_regno_cost_classes (void)
175 {
176 int size = sizeof (cost_classes_t) * max_reg_num ();
177
178 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
179 memset (regno_cost_classes, 0, size);
180 memset (cost_classes_aclass_cache, 0,
181 sizeof (cost_classes_t) * N_REG_CLASSES);
182 memset (cost_classes_mode_cache, 0,
183 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
184 cost_classes_htab
185 = htab_create (200, cost_classes_hash, cost_classes_eq, cost_classes_del);
186 }
187
188 /* Create new cost classes from cost classes FROM and set up members
189 index and hard_regno_index. Return the new classes. The function
190 implements some common code of two functions
191 setup_regno_cost_classes_by_aclass and
192 setup_regno_cost_classes_by_mode. */
193 static cost_classes_t
194 setup_cost_classes (cost_classes_t from)
195 {
196 cost_classes_t classes_ptr;
197 enum reg_class cl;
198 int i, j, hard_regno;
199
200 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
201 classes_ptr->num = from->num;
202 for (i = 0; i < N_REG_CLASSES; i++)
203 classes_ptr->index[i] = -1;
204 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
205 classes_ptr->hard_regno_index[i] = -1;
206 for (i = 0; i < from->num; i++)
207 {
208 cl = classes_ptr->classes[i] = from->classes[i];
209 classes_ptr->index[cl] = i;
210 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
211 {
212 hard_regno = ira_class_hard_regs[cl][j];
213 if (classes_ptr->hard_regno_index[hard_regno] < 0)
214 classes_ptr->hard_regno_index[hard_regno] = i;
215 }
216 }
217 return classes_ptr;
218 }
219
220 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
221 This function is used when we know an initial approximation of
222 allocno class of the pseudo already, e.g. on the second iteration
223 of class cost calculation or after class cost calculation in
224 register-pressure sensitive insn scheduling or register-pressure
225 sensitive loop-invariant motion. */
226 static void
227 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
228 {
229 static struct cost_classes classes;
230 cost_classes_t classes_ptr;
231 enum reg_class cl;
232 int i;
233 PTR *slot;
234 HARD_REG_SET temp, temp2;
235 bool exclude_p;
236
237 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
238 {
239 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
240 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
241 /* We exclude classes from consideration which are subsets of
242 ACLASS only if ACLASS is a pressure class or subset of a
243 pressure class. It means by the definition of pressure classes
244 that cost of moving between susbets of ACLASS is cheaper than
245 load or store. */
246 for (i = 0; i < ira_pressure_classes_num; i++)
247 {
248 cl = ira_pressure_classes[i];
249 if (cl == aclass)
250 break;
251 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
252 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
253 if (hard_reg_set_subset_p (temp, temp2))
254 break;
255 }
256 exclude_p = i < ira_pressure_classes_num;
257 classes.num = 0;
258 for (i = 0; i < ira_important_classes_num; i++)
259 {
260 cl = ira_important_classes[i];
261 if (exclude_p)
262 {
263 /* Exclude no-pressure classes which are subsets of
264 ACLASS. */
265 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
266 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
267 if (! ira_reg_pressure_class_p[cl]
268 && hard_reg_set_subset_p (temp2, temp) && cl != aclass)
269 continue;
270 }
271 classes.classes[classes.num++] = cl;
272 }
273 slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
274 if (*slot == NULL)
275 {
276 classes_ptr = setup_cost_classes (&classes);
277 *slot = classes_ptr;
278 }
279 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
280 }
281 regno_cost_classes[regno] = classes_ptr;
282 }
283
284 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
285 decrease number of cost classes for the pseudo, if hard registers
286 of some important classes can not hold a value of MODE. So the
287 pseudo can not get hard register of some important classes and cost
288 calculation for such important classes is only waisting CPU
289 time. */
290 static void
291 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
292 {
293 static struct cost_classes classes;
294 cost_classes_t classes_ptr;
295 enum reg_class cl;
296 int i;
297 PTR *slot;
298 HARD_REG_SET temp;
299
300 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
301 {
302 classes.num = 0;
303 for (i = 0; i < ira_important_classes_num; i++)
304 {
305 cl = ira_important_classes[i];
306 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
307 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
308 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
309 continue;
310 classes.classes[classes.num++] = cl;
311 }
312 slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
313 if (*slot == NULL)
314 {
315 classes_ptr = setup_cost_classes (&classes);
316 *slot = classes_ptr;
317 }
318 else
319 classes_ptr = (cost_classes_t) *slot;
320 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
321 }
322 regno_cost_classes[regno] = classes_ptr;
323 }
324
325 /* Finilize info about the cost classes for each pseudo. */
326 static void
327 finish_regno_cost_classes (void)
328 {
329 ira_free (regno_cost_classes);
330 htab_delete (cost_classes_htab);
331 }
332
333 \f
334
335 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
336 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
337 be a pseudo register. */
338 static int
339 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
340 secondary_reload_info *prev_sri)
341 {
342 secondary_reload_info sri;
343 reg_class_t secondary_class = NO_REGS;
344
345 /* If X is a SCRATCH, there is actually nothing to move since we are
346 assuming optimal allocation. */
347 if (GET_CODE (x) == SCRATCH)
348 return 0;
349
350 /* Get the class we will actually use for a reload. */
351 rclass = targetm.preferred_reload_class (x, rclass);
352
353 /* If we need a secondary reload for an intermediate, the cost is
354 that to load the input into the intermediate register, then to
355 copy it. */
356 sri.prev_sri = prev_sri;
357 sri.extra_cost = 0;
358 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
359
360 if (secondary_class != NO_REGS)
361 {
362 if (!move_cost[mode])
363 init_move_cost (mode);
364 return (move_cost[mode][(int) secondary_class][(int) rclass]
365 + sri.extra_cost
366 + copy_cost (x, mode, secondary_class, to_p, &sri));
367 }
368
369 /* For memory, use the memory move cost, for (hard) registers, use
370 the cost to move between the register classes, and use 2 for
371 everything else (constants). */
372 if (MEM_P (x) || rclass == NO_REGS)
373 return sri.extra_cost
374 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
375 else if (REG_P (x))
376 {
377 if (!move_cost[mode])
378 init_move_cost (mode);
379 return (sri.extra_cost
380 + move_cost[mode][REGNO_REG_CLASS (REGNO (x))][(int) rclass]);
381 }
382 else
383 /* If this is a constant, we may eventually want to call rtx_cost
384 here. */
385 return sri.extra_cost + COSTS_N_INSNS (1);
386 }
387
388 \f
389
390 /* Record the cost of using memory or hard registers of various
391 classes for the operands in INSN.
392
393 N_ALTS is the number of alternatives.
394 N_OPS is the number of operands.
395 OPS is an array of the operands.
396 MODES are the modes of the operands, in case any are VOIDmode.
397 CONSTRAINTS are the constraints to use for the operands. This array
398 is modified by this procedure.
399
400 This procedure works alternative by alternative. For each
401 alternative we assume that we will be able to allocate all allocnos
402 to their ideal register class and calculate the cost of using that
403 alternative. Then we compute, for each operand that is a
404 pseudo-register, the cost of having the allocno allocated to each
405 register class and using it in that alternative. To this cost is
406 added the cost of the alternative.
407
408 The cost of each class for this insn is its lowest cost among all
409 the alternatives. */
410 static void
411 record_reg_classes (int n_alts, int n_ops, rtx *ops,
412 enum machine_mode *modes, const char **constraints,
413 rtx insn, enum reg_class *pref)
414 {
415 int alt;
416 int i, j, k;
417 rtx set;
418 int insn_allows_mem[MAX_RECOG_OPERANDS];
419
420 for (i = 0; i < n_ops; i++)
421 insn_allows_mem[i] = 0;
422
423 /* Process each alternative, each time minimizing an operand's cost
424 with the cost for each operand in that alternative. */
425 for (alt = 0; alt < n_alts; alt++)
426 {
427 enum reg_class classes[MAX_RECOG_OPERANDS];
428 int allows_mem[MAX_RECOG_OPERANDS];
429 enum reg_class rclass;
430 int alt_fail = 0;
431 int alt_cost = 0, op_cost_add;
432
433 if (!recog_data.alternative_enabled_p[alt])
434 {
435 for (i = 0; i < recog_data.n_operands; i++)
436 constraints[i] = skip_alternative (constraints[i]);
437
438 continue;
439 }
440
441 for (i = 0; i < n_ops; i++)
442 {
443 unsigned char c;
444 const char *p = constraints[i];
445 rtx op = ops[i];
446 enum machine_mode mode = modes[i];
447 int allows_addr = 0;
448 int win = 0;
449
450 /* Initially show we know nothing about the register class. */
451 classes[i] = NO_REGS;
452 allows_mem[i] = 0;
453
454 /* If this operand has no constraints at all, we can
455 conclude nothing about it since anything is valid. */
456 if (*p == 0)
457 {
458 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
459 memset (this_op_costs[i], 0, struct_costs_size);
460 continue;
461 }
462
463 /* If this alternative is only relevant when this operand
464 matches a previous operand, we do different things
465 depending on whether this operand is a allocno-reg or not.
466 We must process any modifiers for the operand before we
467 can make this test. */
468 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
469 p++;
470
471 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
472 {
473 /* Copy class and whether memory is allowed from the
474 matching alternative. Then perform any needed cost
475 computations and/or adjustments. */
476 j = p[0] - '0';
477 classes[i] = classes[j];
478 allows_mem[i] = allows_mem[j];
479 if (allows_mem[i])
480 insn_allows_mem[i] = 1;
481
482 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
483 {
484 /* If this matches the other operand, we have no
485 added cost and we win. */
486 if (rtx_equal_p (ops[j], op))
487 win = 1;
488 /* If we can put the other operand into a register,
489 add to the cost of this alternative the cost to
490 copy this operand to the register used for the
491 other operand. */
492 else if (classes[j] != NO_REGS)
493 {
494 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
495 win = 1;
496 }
497 }
498 else if (! REG_P (ops[j])
499 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
500 {
501 /* This op is an allocno but the one it matches is
502 not. */
503
504 /* If we can't put the other operand into a
505 register, this alternative can't be used. */
506
507 if (classes[j] == NO_REGS)
508 alt_fail = 1;
509 /* Otherwise, add to the cost of this alternative
510 the cost to copy the other operand to the hard
511 register used for this operand. */
512 else
513 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
514 }
515 else
516 {
517 /* The costs of this operand are not the same as the
518 other operand since move costs are not symmetric.
519 Moreover, if we cannot tie them, this alternative
520 needs to do a copy, which is one insn. */
521 struct costs *pp = this_op_costs[i];
522 int *pp_costs = pp->cost;
523 cost_classes_t cost_classes_ptr
524 = regno_cost_classes[REGNO (op)];
525 enum reg_class *cost_classes = cost_classes_ptr->classes;
526 bool in_p = recog_data.operand_type[i] != OP_OUT;
527 bool out_p = recog_data.operand_type[i] != OP_IN;
528 enum reg_class op_class = classes[i];
529 move_table *move_in_cost, *move_out_cost;
530
531 ira_init_register_move_cost_if_necessary (mode);
532 if (! in_p)
533 {
534 ira_assert (out_p);
535 move_out_cost = ira_may_move_out_cost[mode];
536 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
537 {
538 rclass = cost_classes[k];
539 pp_costs[k]
540 = move_out_cost[op_class][rclass] * frequency;
541 }
542 }
543 else if (! out_p)
544 {
545 ira_assert (in_p);
546 move_in_cost = ira_may_move_in_cost[mode];
547 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
548 {
549 rclass = cost_classes[k];
550 pp_costs[k]
551 = move_in_cost[rclass][op_class] * frequency;
552 }
553 }
554 else
555 {
556 move_in_cost = ira_may_move_in_cost[mode];
557 move_out_cost = ira_may_move_out_cost[mode];
558 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
559 {
560 rclass = cost_classes[k];
561 pp_costs[k] = ((move_in_cost[rclass][op_class]
562 + move_out_cost[op_class][rclass])
563 * frequency);
564 }
565 }
566
567 /* If the alternative actually allows memory, make
568 things a bit cheaper since we won't need an extra
569 insn to load it. */
570 pp->mem_cost
571 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
572 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
573 - allows_mem[i]) * frequency;
574
575 /* If we have assigned a class to this allocno in
576 our first pass, add a cost to this alternative
577 corresponding to what we would add if this
578 allocno were not in the appropriate class. */
579 if (pref)
580 {
581 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
582
583 if (pref_class == NO_REGS)
584 alt_cost
585 += ((out_p
586 ? ira_memory_move_cost[mode][op_class][0] : 0)
587 + (in_p
588 ? ira_memory_move_cost[mode][op_class][1]
589 : 0));
590 else if (ira_reg_class_intersect
591 [pref_class][op_class] == NO_REGS)
592 alt_cost
593 += ira_register_move_cost[mode][pref_class][op_class];
594 }
595 if (REGNO (ops[i]) != REGNO (ops[j])
596 && ! find_reg_note (insn, REG_DEAD, op))
597 alt_cost += 2;
598
599 /* This is in place of ordinary cost computation for
600 this operand, so skip to the end of the
601 alternative (should be just one character). */
602 while (*p && *p++ != ',')
603 ;
604
605 constraints[i] = p;
606 continue;
607 }
608 }
609
610 /* Scan all the constraint letters. See if the operand
611 matches any of the constraints. Collect the valid
612 register classes and see if this operand accepts
613 memory. */
614 while ((c = *p))
615 {
616 switch (c)
617 {
618 case ',':
619 break;
620 case '*':
621 /* Ignore the next letter for this pass. */
622 c = *++p;
623 break;
624
625 case '?':
626 alt_cost += 2;
627 case '!': case '#': case '&':
628 case '0': case '1': case '2': case '3': case '4':
629 case '5': case '6': case '7': case '8': case '9':
630 break;
631
632 case 'p':
633 allows_addr = 1;
634 win = address_operand (op, GET_MODE (op));
635 /* We know this operand is an address, so we want it
636 to be allocated to a register that can be the
637 base of an address, i.e. BASE_REG_CLASS. */
638 classes[i]
639 = ira_reg_class_subunion[classes[i]]
640 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
641 ADDRESS, SCRATCH)];
642 break;
643
644 case 'm': case 'o': case 'V':
645 /* It doesn't seem worth distinguishing between
646 offsettable and non-offsettable addresses
647 here. */
648 insn_allows_mem[i] = allows_mem[i] = 1;
649 if (MEM_P (op))
650 win = 1;
651 break;
652
653 case '<':
654 if (MEM_P (op)
655 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
656 || GET_CODE (XEXP (op, 0)) == POST_DEC))
657 win = 1;
658 break;
659
660 case '>':
661 if (MEM_P (op)
662 && (GET_CODE (XEXP (op, 0)) == PRE_INC
663 || GET_CODE (XEXP (op, 0)) == POST_INC))
664 win = 1;
665 break;
666
667 case 'E':
668 case 'F':
669 if (GET_CODE (op) == CONST_DOUBLE
670 || (GET_CODE (op) == CONST_VECTOR
671 && (GET_MODE_CLASS (GET_MODE (op))
672 == MODE_VECTOR_FLOAT)))
673 win = 1;
674 break;
675
676 case 'G':
677 case 'H':
678 if (GET_CODE (op) == CONST_DOUBLE
679 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
680 win = 1;
681 break;
682
683 case 's':
684 if (CONST_INT_P (op)
685 || (GET_CODE (op) == CONST_DOUBLE
686 && GET_MODE (op) == VOIDmode))
687 break;
688
689 case 'i':
690 if (CONSTANT_P (op)
691 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
692 win = 1;
693 break;
694
695 case 'n':
696 if (CONST_INT_P (op)
697 || (GET_CODE (op) == CONST_DOUBLE
698 && GET_MODE (op) == VOIDmode))
699 win = 1;
700 break;
701
702 case 'I':
703 case 'J':
704 case 'K':
705 case 'L':
706 case 'M':
707 case 'N':
708 case 'O':
709 case 'P':
710 if (CONST_INT_P (op)
711 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
712 win = 1;
713 break;
714
715 case 'X':
716 win = 1;
717 break;
718
719 case 'g':
720 if (MEM_P (op)
721 || (CONSTANT_P (op)
722 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
723 win = 1;
724 insn_allows_mem[i] = allows_mem[i] = 1;
725 case 'r':
726 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
727 break;
728
729 default:
730 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
731 classes[i] = ira_reg_class_subunion[classes[i]]
732 [REG_CLASS_FROM_CONSTRAINT (c, p)];
733 #ifdef EXTRA_CONSTRAINT_STR
734 else if (EXTRA_CONSTRAINT_STR (op, c, p))
735 win = 1;
736
737 if (EXTRA_MEMORY_CONSTRAINT (c, p))
738 {
739 /* Every MEM can be reloaded to fit. */
740 insn_allows_mem[i] = allows_mem[i] = 1;
741 if (MEM_P (op))
742 win = 1;
743 }
744 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
745 {
746 /* Every address can be reloaded to fit. */
747 allows_addr = 1;
748 if (address_operand (op, GET_MODE (op)))
749 win = 1;
750 /* We know this operand is an address, so we
751 want it to be allocated to a hard register
752 that can be the base of an address,
753 i.e. BASE_REG_CLASS. */
754 classes[i]
755 = ira_reg_class_subunion[classes[i]]
756 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
757 ADDRESS, SCRATCH)];
758 }
759 #endif
760 break;
761 }
762 p += CONSTRAINT_LEN (c, p);
763 if (c == ',')
764 break;
765 }
766
767 constraints[i] = p;
768
769 /* How we account for this operand now depends on whether it
770 is a pseudo register or not. If it is, we first check if
771 any register classes are valid. If not, we ignore this
772 alternative, since we want to assume that all allocnos get
773 allocated for register preferencing. If some register
774 class is valid, compute the costs of moving the allocno
775 into that class. */
776 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
777 {
778 if (classes[i] == NO_REGS)
779 {
780 /* We must always fail if the operand is a REG, but
781 we did not find a suitable class.
782
783 Otherwise we may perform an uninitialized read
784 from this_op_costs after the `continue' statement
785 below. */
786 alt_fail = 1;
787 }
788 else
789 {
790 unsigned int regno = REGNO (op);
791 struct costs *pp = this_op_costs[i];
792 int *pp_costs = pp->cost;
793 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
794 enum reg_class *cost_classes = cost_classes_ptr->classes;
795 bool in_p = recog_data.operand_type[i] != OP_OUT;
796 bool out_p = recog_data.operand_type[i] != OP_IN;
797 enum reg_class op_class = classes[i];
798 move_table *move_in_cost, *move_out_cost;
799
800 ira_init_register_move_cost_if_necessary (mode);
801 if (! in_p)
802 {
803 ira_assert (out_p);
804 move_out_cost = ira_may_move_out_cost[mode];
805 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
806 {
807 rclass = cost_classes[k];
808 pp_costs[k]
809 = move_out_cost[op_class][rclass] * frequency;
810 }
811 }
812 else if (! out_p)
813 {
814 ira_assert (in_p);
815 move_in_cost = ira_may_move_in_cost[mode];
816 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
817 {
818 rclass = cost_classes[k];
819 pp_costs[k]
820 = move_in_cost[rclass][op_class] * frequency;
821 }
822 }
823 else
824 {
825 move_in_cost = ira_may_move_in_cost[mode];
826 move_out_cost = ira_may_move_out_cost[mode];
827 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
828 {
829 rclass = cost_classes[k];
830 pp_costs[k] = ((move_in_cost[rclass][op_class]
831 + move_out_cost[op_class][rclass])
832 * frequency);
833 }
834 }
835
836 /* If the alternative actually allows memory, make
837 things a bit cheaper since we won't need an extra
838 insn to load it. */
839 pp->mem_cost
840 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
841 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
842 - allows_mem[i]) * frequency;
843 /* If we have assigned a class to this allocno in
844 our first pass, add a cost to this alternative
845 corresponding to what we would add if this
846 allocno were not in the appropriate class. */
847 if (pref)
848 {
849 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
850
851 if (pref_class == NO_REGS)
852 alt_cost
853 += ((out_p
854 ? ira_memory_move_cost[mode][op_class][0] : 0)
855 + (in_p
856 ? ira_memory_move_cost[mode][op_class][1]
857 : 0));
858 else if (ira_reg_class_intersect[pref_class][op_class]
859 == NO_REGS)
860 alt_cost += ira_register_move_cost[mode][pref_class][op_class];
861 }
862 }
863 }
864
865 /* Otherwise, if this alternative wins, either because we
866 have already determined that or if we have a hard
867 register of the proper class, there is no cost for this
868 alternative. */
869 else if (win || (REG_P (op)
870 && reg_fits_class_p (op, classes[i],
871 0, GET_MODE (op))))
872 ;
873
874 /* If registers are valid, the cost of this alternative
875 includes copying the object to and/or from a
876 register. */
877 else if (classes[i] != NO_REGS)
878 {
879 if (recog_data.operand_type[i] != OP_OUT)
880 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
881
882 if (recog_data.operand_type[i] != OP_IN)
883 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
884 }
885 /* The only other way this alternative can be used is if
886 this is a constant that could be placed into memory. */
887 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
888 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
889 else
890 alt_fail = 1;
891 }
892
893 if (alt_fail)
894 continue;
895
896 op_cost_add = alt_cost * frequency;
897 /* Finally, update the costs with the information we've
898 calculated about this alternative. */
899 for (i = 0; i < n_ops; i++)
900 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
901 {
902 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
903 int *pp_costs = pp->cost, *qq_costs = qq->cost;
904 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
905 cost_classes_t cost_classes_ptr
906 = regno_cost_classes[REGNO (ops[i])];
907
908 pp->mem_cost = MIN (pp->mem_cost,
909 (qq->mem_cost + op_cost_add) * scale);
910
911 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
912 pp_costs[k]
913 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
914 }
915 }
916
917 if (allocno_p)
918 for (i = 0; i < n_ops; i++)
919 {
920 ira_allocno_t a;
921 rtx op = ops[i];
922
923 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
924 continue;
925 a = ira_curr_regno_allocno_map [REGNO (op)];
926 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
927 ALLOCNO_BAD_SPILL_P (a) = true;
928 }
929
930 /* If this insn is a single set copying operand 1 to operand 0 and
931 one operand is an allocno with the other a hard reg or an allocno
932 that prefers a hard register that is in its own register class
933 then we may want to adjust the cost of that register class to -1.
934
935 Avoid the adjustment if the source does not die to avoid
936 stressing of register allocator by preferrencing two colliding
937 registers into single class.
938
939 Also avoid the adjustment if a copy between hard registers of the
940 class is expensive (ten times the cost of a default copy is
941 considered arbitrarily expensive). This avoids losing when the
942 preferred class is very expensive as the source of a copy
943 instruction. */
944 if ((set = single_set (insn)) != 0
945 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
946 && REG_P (ops[0]) && REG_P (ops[1])
947 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
948 for (i = 0; i <= 1; i++)
949 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER
950 && REGNO (ops[!i]) < FIRST_PSEUDO_REGISTER)
951 {
952 unsigned int regno = REGNO (ops[i]);
953 unsigned int other_regno = REGNO (ops[!i]);
954 enum machine_mode mode = GET_MODE (ops[!i]);
955 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
956 enum reg_class *cost_classes = cost_classes_ptr->classes;
957 reg_class_t rclass;
958 int nr;
959
960 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
961 {
962 rclass = cost_classes[k];
963 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
964 && (reg_class_size[(int) rclass]
965 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
966 {
967 if (reg_class_size[rclass] == 1)
968 op_costs[i]->cost[k] = -frequency;
969 else
970 {
971 for (nr = 0;
972 nr < hard_regno_nregs[other_regno][mode];
973 nr++)
974 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
975 other_regno + nr))
976 break;
977
978 if (nr == hard_regno_nregs[other_regno][mode])
979 op_costs[i]->cost[k] = -frequency;
980 }
981 }
982 }
983 }
984 }
985
986 \f
987
988 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
989 static inline bool
990 ok_for_index_p_nonstrict (rtx reg)
991 {
992 unsigned regno = REGNO (reg);
993
994 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
995 }
996
997 /* A version of regno_ok_for_base_p for use here, when all
998 pseudo-registers should count as OK. Arguments as for
999 regno_ok_for_base_p. */
1000 static inline bool
1001 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
1002 enum rtx_code outer_code, enum rtx_code index_code)
1003 {
1004 unsigned regno = REGNO (reg);
1005
1006 if (regno >= FIRST_PSEUDO_REGISTER)
1007 return true;
1008 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1009 }
1010
1011 /* Record the pseudo registers we must reload into hard registers in a
1012 subexpression of a memory address, X.
1013
1014 If CONTEXT is 0, we are looking at the base part of an address,
1015 otherwise we are looking at the index part.
1016
1017 MODE and AS are the mode and address space of the memory reference;
1018 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1019 These four arguments are passed down to base_reg_class.
1020
1021 SCALE is twice the amount to multiply the cost by (it is twice so
1022 we can represent half-cost adjustments). */
1023 static void
1024 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
1025 int context, enum rtx_code outer_code,
1026 enum rtx_code index_code, int scale)
1027 {
1028 enum rtx_code code = GET_CODE (x);
1029 enum reg_class rclass;
1030
1031 if (context == 1)
1032 rclass = INDEX_REG_CLASS;
1033 else
1034 rclass = base_reg_class (mode, as, outer_code, index_code);
1035
1036 switch (code)
1037 {
1038 case CONST_INT:
1039 case CONST:
1040 case CC0:
1041 case PC:
1042 case SYMBOL_REF:
1043 case LABEL_REF:
1044 return;
1045
1046 case PLUS:
1047 /* When we have an address that is a sum, we must determine
1048 whether registers are "base" or "index" regs. If there is a
1049 sum of two registers, we must choose one to be the "base".
1050 Luckily, we can use the REG_POINTER to make a good choice
1051 most of the time. We only need to do this on machines that
1052 can have two registers in an address and where the base and
1053 index register classes are different.
1054
1055 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1056 but that seems bogus since it should only be set when we are
1057 sure the register is being used as a pointer. */
1058 {
1059 rtx arg0 = XEXP (x, 0);
1060 rtx arg1 = XEXP (x, 1);
1061 enum rtx_code code0 = GET_CODE (arg0);
1062 enum rtx_code code1 = GET_CODE (arg1);
1063
1064 /* Look inside subregs. */
1065 if (code0 == SUBREG)
1066 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1067 if (code1 == SUBREG)
1068 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1069
1070 /* If this machine only allows one register per address, it
1071 must be in the first operand. */
1072 if (MAX_REGS_PER_ADDRESS == 1)
1073 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1074
1075 /* If index and base registers are the same on this machine,
1076 just record registers in any non-constant operands. We
1077 assume here, as well as in the tests below, that all
1078 addresses are in canonical form. */
1079 else if (INDEX_REG_CLASS
1080 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1081 {
1082 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1083 if (! CONSTANT_P (arg1))
1084 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1085 }
1086
1087 /* If the second operand is a constant integer, it doesn't
1088 change what class the first operand must be. */
1089 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1090 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1091 /* If the second operand is a symbolic constant, the first
1092 operand must be an index register. */
1093 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1094 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1095 /* If both operands are registers but one is already a hard
1096 register of index or reg-base class, give the other the
1097 class that the hard register is not. */
1098 else if (code0 == REG && code1 == REG
1099 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1100 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1101 || ok_for_index_p_nonstrict (arg0)))
1102 record_address_regs (mode, as, arg1,
1103 ok_for_base_p_nonstrict (arg0, mode, as,
1104 PLUS, REG) ? 1 : 0,
1105 PLUS, REG, scale);
1106 else if (code0 == REG && code1 == REG
1107 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1108 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1109 || ok_for_index_p_nonstrict (arg1)))
1110 record_address_regs (mode, as, arg0,
1111 ok_for_base_p_nonstrict (arg1, mode, as,
1112 PLUS, REG) ? 1 : 0,
1113 PLUS, REG, scale);
1114 /* If one operand is known to be a pointer, it must be the
1115 base with the other operand the index. Likewise if the
1116 other operand is a MULT. */
1117 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1118 {
1119 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1120 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1121 }
1122 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1123 {
1124 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1125 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1126 }
1127 /* Otherwise, count equal chances that each might be a base or
1128 index register. This case should be rare. */
1129 else
1130 {
1131 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1132 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1133 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1134 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1135 }
1136 }
1137 break;
1138
1139 /* Double the importance of an allocno that is incremented or
1140 decremented, since it would take two extra insns if it ends
1141 up in the wrong place. */
1142 case POST_MODIFY:
1143 case PRE_MODIFY:
1144 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1145 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1146 if (REG_P (XEXP (XEXP (x, 1), 1)))
1147 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1148 2 * scale);
1149 break;
1150
1151 case POST_INC:
1152 case PRE_INC:
1153 case POST_DEC:
1154 case PRE_DEC:
1155 /* Double the importance of an allocno that is incremented or
1156 decremented, since it would take two extra insns if it ends
1157 up in the wrong place. */
1158 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1159 break;
1160
1161 case REG:
1162 {
1163 struct costs *pp;
1164 int *pp_costs;
1165 enum reg_class i;
1166 int k, regno, add_cost;
1167 cost_classes_t cost_classes_ptr;
1168 enum reg_class *cost_classes;
1169 move_table *move_in_cost;
1170
1171 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1172 break;
1173
1174 regno = REGNO (x);
1175 if (allocno_p)
1176 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1177 pp = COSTS (costs, COST_INDEX (regno));
1178 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1179 if (INT_MAX - add_cost < pp->mem_cost)
1180 pp->mem_cost = INT_MAX;
1181 else
1182 pp->mem_cost += add_cost;
1183 cost_classes_ptr = regno_cost_classes[regno];
1184 cost_classes = cost_classes_ptr->classes;
1185 pp_costs = pp->cost;
1186 ira_init_register_move_cost_if_necessary (Pmode);
1187 move_in_cost = ira_may_move_in_cost[Pmode];
1188 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1189 {
1190 i = cost_classes[k];
1191 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1192 if (INT_MAX - add_cost < pp_costs[k])
1193 pp_costs[k] = INT_MAX;
1194 else
1195 pp_costs[k] += add_cost;
1196 }
1197 }
1198 break;
1199
1200 default:
1201 {
1202 const char *fmt = GET_RTX_FORMAT (code);
1203 int i;
1204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1205 if (fmt[i] == 'e')
1206 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1207 scale);
1208 }
1209 }
1210 }
1211
1212 \f
1213
1214 /* Calculate the costs of insn operands. */
1215 static void
1216 record_operand_costs (rtx insn, enum reg_class *pref)
1217 {
1218 const char *constraints[MAX_RECOG_OPERANDS];
1219 enum machine_mode modes[MAX_RECOG_OPERANDS];
1220 int i;
1221
1222 for (i = 0; i < recog_data.n_operands; i++)
1223 {
1224 constraints[i] = recog_data.constraints[i];
1225 modes[i] = recog_data.operand_mode[i];
1226 }
1227
1228 /* If we get here, we are set up to record the costs of all the
1229 operands for this insn. Start by initializing the costs. Then
1230 handle any address registers. Finally record the desired classes
1231 for any allocnos, doing it twice if some pair of operands are
1232 commutative. */
1233 for (i = 0; i < recog_data.n_operands; i++)
1234 {
1235 memcpy (op_costs[i], init_cost, struct_costs_size);
1236
1237 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1238 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1239
1240 if (MEM_P (recog_data.operand[i]))
1241 record_address_regs (GET_MODE (recog_data.operand[i]),
1242 MEM_ADDR_SPACE (recog_data.operand[i]),
1243 XEXP (recog_data.operand[i], 0),
1244 0, MEM, SCRATCH, frequency * 2);
1245 else if (constraints[i][0] == 'p'
1246 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1247 constraints[i]))
1248 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1249 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1250 frequency * 2);
1251 }
1252
1253 /* Check for commutative in a separate loop so everything will have
1254 been initialized. We must do this even if one operand is a
1255 constant--see addsi3 in m68k.md. */
1256 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1257 if (constraints[i][0] == '%')
1258 {
1259 const char *xconstraints[MAX_RECOG_OPERANDS];
1260 int j;
1261
1262 /* Handle commutative operands by swapping the constraints.
1263 We assume the modes are the same. */
1264 for (j = 0; j < recog_data.n_operands; j++)
1265 xconstraints[j] = constraints[j];
1266
1267 xconstraints[i] = constraints[i+1];
1268 xconstraints[i+1] = constraints[i];
1269 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1270 recog_data.operand, modes,
1271 xconstraints, insn, pref);
1272 }
1273 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1274 recog_data.operand, modes,
1275 constraints, insn, pref);
1276 }
1277
1278 \f
1279
1280 /* Process one insn INSN. Scan it and record each time it would save
1281 code to put a certain allocnos in a certain class. Return the last
1282 insn processed, so that the scan can be continued from there. */
1283 static rtx
1284 scan_one_insn (rtx insn)
1285 {
1286 enum rtx_code pat_code;
1287 rtx set, note;
1288 int i, k;
1289 bool counted_mem;
1290
1291 if (!NONDEBUG_INSN_P (insn))
1292 return insn;
1293
1294 pat_code = GET_CODE (PATTERN (insn));
1295 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
1296 || pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
1297 return insn;
1298
1299 counted_mem = false;
1300 set = single_set (insn);
1301 extract_insn (insn);
1302
1303 /* If this insn loads a parameter from its stack slot, then it
1304 represents a savings, rather than a cost, if the parameter is
1305 stored in memory. Record this fact.
1306
1307 Similarly if we're loading other constants from memory (constant
1308 pool, TOC references, small data areas, etc) and this is the only
1309 assignment to the destination pseudo. */
1310 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1311 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1312 && ((MEM_P (XEXP (note, 0)))
1313 || (CONSTANT_P (XEXP (note, 0))
1314 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1315 XEXP (note, 0))
1316 && REG_N_SETS (REGNO (SET_DEST (set))) == 1)))
1317 {
1318 enum reg_class cl = GENERAL_REGS;
1319 rtx reg = SET_DEST (set);
1320 int num = COST_INDEX (REGNO (reg));
1321
1322 COSTS (costs, num)->mem_cost
1323 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1324 record_address_regs (GET_MODE (SET_SRC (set)),
1325 MEM_ADDR_SPACE (SET_SRC (set)),
1326 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1327 frequency * 2);
1328 counted_mem = true;
1329 }
1330
1331 record_operand_costs (insn, pref);
1332
1333 /* Now add the cost for each operand to the total costs for its
1334 allocno. */
1335 for (i = 0; i < recog_data.n_operands; i++)
1336 if (REG_P (recog_data.operand[i])
1337 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1338 {
1339 int regno = REGNO (recog_data.operand[i]);
1340 struct costs *p = COSTS (costs, COST_INDEX (regno));
1341 struct costs *q = op_costs[i];
1342 int *p_costs = p->cost, *q_costs = q->cost;
1343 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1344 int add_cost;
1345
1346 /* If the already accounted for the memory "cost" above, don't
1347 do so again. */
1348 if (!counted_mem)
1349 {
1350 add_cost = q->mem_cost;
1351 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1352 p->mem_cost = INT_MAX;
1353 else
1354 p->mem_cost += add_cost;
1355 }
1356 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1357 {
1358 add_cost = q_costs[k];
1359 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1360 p_costs[k] = INT_MAX;
1361 else
1362 p_costs[k] += add_cost;
1363 }
1364 }
1365
1366 return insn;
1367 }
1368
1369 \f
1370
1371 /* Print allocnos costs to file F. */
1372 static void
1373 print_allocno_costs (FILE *f)
1374 {
1375 int k;
1376 ira_allocno_t a;
1377 ira_allocno_iterator ai;
1378
1379 ira_assert (allocno_p);
1380 fprintf (f, "\n");
1381 FOR_EACH_ALLOCNO (a, ai)
1382 {
1383 int i, rclass;
1384 basic_block bb;
1385 int regno = ALLOCNO_REGNO (a);
1386 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1387 enum reg_class *cost_classes = cost_classes_ptr->classes;
1388
1389 i = ALLOCNO_NUM (a);
1390 fprintf (f, " a%d(r%d,", i, regno);
1391 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1392 fprintf (f, "b%d", bb->index);
1393 else
1394 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1395 fprintf (f, ") costs:");
1396 for (k = 0; k < cost_classes_ptr->num; k++)
1397 {
1398 rclass = cost_classes[k];
1399 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1400 #ifdef CANNOT_CHANGE_MODE_CLASS
1401 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1402 #endif
1403 )
1404 {
1405 fprintf (f, " %s:%d", reg_class_names[rclass],
1406 COSTS (costs, i)->cost[k]);
1407 if (flag_ira_region == IRA_REGION_ALL
1408 || flag_ira_region == IRA_REGION_MIXED)
1409 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1410 }
1411 }
1412 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1413 if (flag_ira_region == IRA_REGION_ALL
1414 || flag_ira_region == IRA_REGION_MIXED)
1415 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1416 fprintf (f, "\n");
1417 }
1418 }
1419
1420 /* Print pseudo costs to file F. */
1421 static void
1422 print_pseudo_costs (FILE *f)
1423 {
1424 int regno, k;
1425 int rclass;
1426 cost_classes_t cost_classes_ptr;
1427 enum reg_class *cost_classes;
1428
1429 ira_assert (! allocno_p);
1430 fprintf (f, "\n");
1431 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1432 {
1433 if (REG_N_REFS (regno) <= 0)
1434 continue;
1435 cost_classes_ptr = regno_cost_classes[regno];
1436 cost_classes = cost_classes_ptr->classes;
1437 fprintf (f, " r%d costs:", regno);
1438 for (k = 0; k < cost_classes_ptr->num; k++)
1439 {
1440 rclass = cost_classes[k];
1441 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1442 #ifdef CANNOT_CHANGE_MODE_CLASS
1443 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1444 #endif
1445 )
1446 fprintf (f, " %s:%d", reg_class_names[rclass],
1447 COSTS (costs, regno)->cost[k]);
1448 }
1449 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1450 }
1451 }
1452
1453 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1454 costs. */
1455 static void
1456 process_bb_for_costs (basic_block bb)
1457 {
1458 rtx insn;
1459
1460 frequency = REG_FREQ_FROM_BB (bb);
1461 if (frequency == 0)
1462 frequency = 1;
1463 FOR_BB_INSNS (bb, insn)
1464 insn = scan_one_insn (insn);
1465 }
1466
1467 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1468 costs. */
1469 static void
1470 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1471 {
1472 basic_block bb;
1473
1474 bb = loop_tree_node->bb;
1475 if (bb != NULL)
1476 process_bb_for_costs (bb);
1477 }
1478
1479 /* Find costs of register classes and memory for allocnos or pseudos
1480 and their best costs. Set up preferred, alternative and allocno
1481 classes for pseudos. */
1482 static void
1483 find_costs_and_classes (FILE *dump_file)
1484 {
1485 int i, k, start, max_cost_classes_num;
1486 int pass;
1487 basic_block bb;
1488 enum reg_class *regno_best_class;
1489
1490 init_recog ();
1491 regno_best_class
1492 = (enum reg_class *) ira_allocate (max_reg_num ()
1493 * sizeof (enum reg_class));
1494 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1495 regno_best_class[i] = NO_REGS;
1496 if (!resize_reg_info () && allocno_p
1497 && pseudo_classes_defined_p && flag_expensive_optimizations)
1498 {
1499 ira_allocno_t a;
1500 ira_allocno_iterator ai;
1501
1502 pref = pref_buffer;
1503 max_cost_classes_num = 1;
1504 FOR_EACH_ALLOCNO (a, ai)
1505 {
1506 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1507 setup_regno_cost_classes_by_aclass
1508 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1509 max_cost_classes_num
1510 = MAX (max_cost_classes_num,
1511 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1512 }
1513 start = 1;
1514 }
1515 else
1516 {
1517 pref = NULL;
1518 max_cost_classes_num = ira_important_classes_num;
1519 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1520 if (regno_reg_rtx[i] != NULL_RTX)
1521 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1522 else
1523 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1524 start = 0;
1525 }
1526 if (allocno_p)
1527 /* Clear the flag for the next compiled function. */
1528 pseudo_classes_defined_p = false;
1529 /* Normally we scan the insns once and determine the best class to
1530 use for each allocno. However, if -fexpensive-optimizations are
1531 on, we do so twice, the second time using the tentative best
1532 classes to guide the selection. */
1533 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1534 {
1535 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1536 fprintf (dump_file,
1537 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1538
1539 if (pass != start)
1540 {
1541 max_cost_classes_num = 1;
1542 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1543 {
1544 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1545 max_cost_classes_num
1546 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1547 }
1548 }
1549
1550 struct_costs_size
1551 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1552 /* Zero out our accumulation of the cost of each class for each
1553 allocno. */
1554 memset (costs, 0, cost_elements_num * struct_costs_size);
1555
1556 if (allocno_p)
1557 {
1558 /* Scan the instructions and record each time it would save code
1559 to put a certain allocno in a certain class. */
1560 ira_traverse_loop_tree (true, ira_loop_tree_root,
1561 process_bb_node_for_costs, NULL);
1562
1563 memcpy (total_allocno_costs, costs,
1564 max_struct_costs_size * ira_allocnos_num);
1565 }
1566 else
1567 {
1568 basic_block bb;
1569
1570 FOR_EACH_BB (bb)
1571 process_bb_for_costs (bb);
1572 }
1573
1574 if (pass == 0)
1575 pref = pref_buffer;
1576
1577 /* Now for each allocno look at how desirable each class is and
1578 find which class is preferred. */
1579 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1580 {
1581 ira_allocno_t a, parent_a;
1582 int rclass, a_num, parent_a_num, add_cost;
1583 ira_loop_tree_node_t parent;
1584 int best_cost, allocno_cost;
1585 enum reg_class best, alt_class;
1586 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1587 enum reg_class *cost_classes = cost_classes_ptr->classes;
1588 int *i_costs = temp_costs->cost;
1589 int i_mem_cost;
1590 int equiv_savings = regno_equiv_gains[i];
1591
1592 if (! allocno_p)
1593 {
1594 if (regno_reg_rtx[i] == NULL_RTX)
1595 continue;
1596 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1597 i_mem_cost = temp_costs->mem_cost;
1598 }
1599 else
1600 {
1601 if (ira_regno_allocno_map[i] == NULL)
1602 continue;
1603 memset (temp_costs, 0, struct_costs_size);
1604 i_mem_cost = 0;
1605 /* Find cost of all allocnos with the same regno. */
1606 for (a = ira_regno_allocno_map[i];
1607 a != NULL;
1608 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1609 {
1610 int *a_costs, *p_costs;
1611
1612 a_num = ALLOCNO_NUM (a);
1613 if ((flag_ira_region == IRA_REGION_ALL
1614 || flag_ira_region == IRA_REGION_MIXED)
1615 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1616 && (parent_a = parent->regno_allocno_map[i]) != NULL
1617 /* There are no caps yet. */
1618 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1619 (a)->border_allocnos,
1620 ALLOCNO_NUM (a)))
1621 {
1622 /* Propagate costs to upper levels in the region
1623 tree. */
1624 parent_a_num = ALLOCNO_NUM (parent_a);
1625 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1626 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1627 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1628 {
1629 add_cost = a_costs[k];
1630 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1631 p_costs[k] = INT_MAX;
1632 else
1633 p_costs[k] += add_cost;
1634 }
1635 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1636 if (add_cost > 0
1637 && (INT_MAX - add_cost
1638 < COSTS (total_allocno_costs,
1639 parent_a_num)->mem_cost))
1640 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1641 = INT_MAX;
1642 else
1643 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1644 += add_cost;
1645
1646 }
1647 a_costs = COSTS (costs, a_num)->cost;
1648 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1649 {
1650 add_cost = a_costs[k];
1651 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1652 i_costs[k] = INT_MAX;
1653 else
1654 i_costs[k] += add_cost;
1655 }
1656 add_cost = COSTS (costs, a_num)->mem_cost;
1657 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1658 i_mem_cost = INT_MAX;
1659 else
1660 i_mem_cost += add_cost;
1661 }
1662 }
1663 if (equiv_savings < 0)
1664 i_mem_cost = -equiv_savings;
1665 else if (equiv_savings > 0)
1666 {
1667 i_mem_cost = 0;
1668 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1669 i_costs[k] += equiv_savings;
1670 }
1671
1672 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1673 best = ALL_REGS;
1674 alt_class = NO_REGS;
1675 /* Find best common class for all allocnos with the same
1676 regno. */
1677 for (k = 0; k < cost_classes_ptr->num; k++)
1678 {
1679 rclass = cost_classes[k];
1680 /* Ignore classes that are too small or invalid for this
1681 operand. */
1682 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1683 #ifdef CANNOT_CHANGE_MODE_CLASS
1684 || invalid_mode_change_p (i, (enum reg_class) rclass)
1685 #endif
1686 )
1687 continue;
1688 if (i_costs[k] < best_cost)
1689 {
1690 best_cost = i_costs[k];
1691 best = (enum reg_class) rclass;
1692 }
1693 else if (i_costs[k] == best_cost)
1694 best = ira_reg_class_subunion[best][rclass];
1695 if (pass == flag_expensive_optimizations
1696 /* We still prefer registers to memory even at this
1697 stage if their costs are the same. We will make
1698 a final decision during assigning hard registers
1699 when we have all info including more accurate
1700 costs which might be affected by assigning hard
1701 registers to other pseudos because the pseudos
1702 involved in moves can be coalesced. */
1703 && i_costs[k] <= i_mem_cost
1704 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1705 > reg_class_size[alt_class]))
1706 alt_class = reg_class_subunion[alt_class][rclass];
1707 }
1708 alt_class = ira_allocno_class_translate[alt_class];
1709 if (best_cost > i_mem_cost)
1710 regno_aclass[i] = NO_REGS;
1711 else
1712 {
1713 /* Make the common class the biggest class of best and
1714 alt_class. */
1715 regno_aclass[i]
1716 = ira_reg_class_superunion[best][alt_class];
1717 ira_assert (regno_aclass[i] != NO_REGS
1718 && ira_reg_allocno_class_p[regno_aclass[i]]);
1719 }
1720 if (pass == flag_expensive_optimizations)
1721 {
1722 if (best_cost > i_mem_cost)
1723 best = alt_class = NO_REGS;
1724 else if (best == alt_class)
1725 alt_class = NO_REGS;
1726 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1727 if ((!allocno_p || internal_flag_ira_verbose > 2)
1728 && dump_file != NULL)
1729 fprintf (dump_file,
1730 " r%d: preferred %s, alternative %s, allocno %s\n",
1731 i, reg_class_names[best], reg_class_names[alt_class],
1732 reg_class_names[regno_aclass[i]]);
1733 }
1734 regno_best_class[i] = best;
1735 if (! allocno_p)
1736 {
1737 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1738 continue;
1739 }
1740 for (a = ira_regno_allocno_map[i];
1741 a != NULL;
1742 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1743 {
1744 a_num = ALLOCNO_NUM (a);
1745 if (regno_aclass[i] == NO_REGS)
1746 best = NO_REGS;
1747 else
1748 {
1749 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1750 int *a_costs = COSTS (costs, a_num)->cost;
1751
1752 /* Finding best class which is subset of the common
1753 class. */
1754 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1755 allocno_cost = best_cost;
1756 best = ALL_REGS;
1757 for (k = 0; k < cost_classes_ptr->num; k++)
1758 {
1759 rclass = cost_classes[k];
1760 if (! ira_class_subset_p[rclass][regno_aclass[i]])
1761 continue;
1762 /* Ignore classes that are too small or invalid
1763 for this operand. */
1764 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1765 #ifdef CANNOT_CHANGE_MODE_CLASS
1766 || invalid_mode_change_p (i, (enum reg_class) rclass)
1767 #endif
1768 )
1769 ;
1770 else if (total_a_costs[k] < best_cost)
1771 {
1772 best_cost = total_a_costs[k];
1773 allocno_cost = a_costs[k];
1774 best = (enum reg_class) rclass;
1775 }
1776 else if (total_a_costs[k] == best_cost)
1777 {
1778 best = ira_reg_class_subunion[best][rclass];
1779 allocno_cost = MAX (allocno_cost, a_costs[k]);
1780 }
1781 }
1782 ALLOCNO_CLASS_COST (a) = allocno_cost;
1783 }
1784 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1785 && (pass == 0 || pref[a_num] != best))
1786 {
1787 fprintf (dump_file, " a%d (r%d,", a_num, i);
1788 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1789 fprintf (dump_file, "b%d", bb->index);
1790 else
1791 fprintf (dump_file, "l%d",
1792 ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1793 fprintf (dump_file, ") best %s, allocno %s\n",
1794 reg_class_names[best],
1795 reg_class_names[regno_aclass[i]]);
1796 }
1797 pref[a_num] = best;
1798 }
1799 }
1800
1801 if (internal_flag_ira_verbose > 4 && dump_file)
1802 {
1803 if (allocno_p)
1804 print_allocno_costs (dump_file);
1805 else
1806 print_pseudo_costs (dump_file);
1807 fprintf (dump_file,"\n");
1808 }
1809 }
1810 ira_free (regno_best_class);
1811 }
1812
1813 \f
1814
1815 /* Process moves involving hard regs to modify allocno hard register
1816 costs. We can do this only after determining allocno class. If a
1817 hard register forms a register class, than moves with the hard
1818 register are already taken into account in class costs for the
1819 allocno. */
1820 static void
1821 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1822 {
1823 int i, freq, cost, src_regno, dst_regno, hard_regno;
1824 bool to_p;
1825 ira_allocno_t a;
1826 enum reg_class rclass, hard_reg_class;
1827 enum machine_mode mode;
1828 basic_block bb;
1829 rtx insn, set, src, dst;
1830
1831 bb = loop_tree_node->bb;
1832 if (bb == NULL)
1833 return;
1834 freq = REG_FREQ_FROM_BB (bb);
1835 if (freq == 0)
1836 freq = 1;
1837 FOR_BB_INSNS (bb, insn)
1838 {
1839 if (!NONDEBUG_INSN_P (insn))
1840 continue;
1841 set = single_set (insn);
1842 if (set == NULL_RTX)
1843 continue;
1844 dst = SET_DEST (set);
1845 src = SET_SRC (set);
1846 if (! REG_P (dst) || ! REG_P (src))
1847 continue;
1848 dst_regno = REGNO (dst);
1849 src_regno = REGNO (src);
1850 if (dst_regno >= FIRST_PSEUDO_REGISTER
1851 && src_regno < FIRST_PSEUDO_REGISTER)
1852 {
1853 hard_regno = src_regno;
1854 to_p = true;
1855 a = ira_curr_regno_allocno_map[dst_regno];
1856 }
1857 else if (src_regno >= FIRST_PSEUDO_REGISTER
1858 && dst_regno < FIRST_PSEUDO_REGISTER)
1859 {
1860 hard_regno = dst_regno;
1861 to_p = false;
1862 a = ira_curr_regno_allocno_map[src_regno];
1863 }
1864 else
1865 continue;
1866 rclass = ALLOCNO_CLASS (a);
1867 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1868 continue;
1869 i = ira_class_hard_reg_index[rclass][hard_regno];
1870 if (i < 0)
1871 continue;
1872 mode = ALLOCNO_MODE (a);
1873 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1874 ira_init_register_move_cost_if_necessary (mode);
1875 cost
1876 = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1877 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1878 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1879 ALLOCNO_CLASS_COST (a));
1880 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1881 rclass, 0);
1882 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1883 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1884 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1885 ALLOCNO_HARD_REG_COSTS (a)[i]);
1886 }
1887 }
1888
1889 /* After we find hard register and memory costs for allocnos, define
1890 its class and modify hard register cost because insns moving
1891 allocno to/from hard registers. */
1892 static void
1893 setup_allocno_class_and_costs (void)
1894 {
1895 int i, j, n, regno, hard_regno, num;
1896 int *reg_costs;
1897 enum reg_class aclass, rclass;
1898 ira_allocno_t a;
1899 ira_allocno_iterator ai;
1900 cost_classes_t cost_classes_ptr;
1901
1902 ira_assert (allocno_p);
1903 FOR_EACH_ALLOCNO (a, ai)
1904 {
1905 i = ALLOCNO_NUM (a);
1906 regno = ALLOCNO_REGNO (a);
1907 aclass = regno_aclass[regno];
1908 cost_classes_ptr = regno_cost_classes[regno];
1909 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1910 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1911 ira_set_allocno_class (a, aclass);
1912 if (aclass == NO_REGS)
1913 continue;
1914 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1915 {
1916 n = ira_class_hard_regs_num[aclass];
1917 ALLOCNO_HARD_REG_COSTS (a)
1918 = reg_costs = ira_allocate_cost_vector (aclass);
1919 for (j = n - 1; j >= 0; j--)
1920 {
1921 hard_regno = ira_class_hard_regs[aclass][j];
1922 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1923 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1924 else
1925 {
1926 rclass = REGNO_REG_CLASS (hard_regno);
1927 num = cost_classes_ptr->index[rclass];
1928 if (num < 0)
1929 {
1930 num = cost_classes_ptr->hard_regno_index[hard_regno];
1931 ira_assert (num >= 0);
1932 }
1933 reg_costs[j] = COSTS (costs, i)->cost[num];
1934 }
1935 }
1936 }
1937 }
1938 if (optimize)
1939 ira_traverse_loop_tree (true, ira_loop_tree_root,
1940 process_bb_node_for_hard_reg_moves, NULL);
1941 }
1942
1943 \f
1944
1945 /* Function called once during compiler work. */
1946 void
1947 ira_init_costs_once (void)
1948 {
1949 int i;
1950
1951 init_cost = NULL;
1952 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1953 {
1954 op_costs[i] = NULL;
1955 this_op_costs[i] = NULL;
1956 }
1957 temp_costs = NULL;
1958 }
1959
1960 /* Free allocated temporary cost vectors. */
1961 static void
1962 free_ira_costs (void)
1963 {
1964 int i;
1965
1966 free (init_cost);
1967 init_cost = NULL;
1968 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1969 {
1970 free (op_costs[i]);
1971 free (this_op_costs[i]);
1972 op_costs[i] = this_op_costs[i] = NULL;
1973 }
1974 free (temp_costs);
1975 temp_costs = NULL;
1976 }
1977
1978 /* This is called each time register related information is
1979 changed. */
1980 void
1981 ira_init_costs (void)
1982 {
1983 int i;
1984
1985 free_ira_costs ();
1986 max_struct_costs_size
1987 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1988 /* Don't use ira_allocate because vectors live through several IRA
1989 calls. */
1990 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1991 init_cost->mem_cost = 1000000;
1992 for (i = 0; i < ira_important_classes_num; i++)
1993 init_cost->cost[i] = 1000000;
1994 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1995 {
1996 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1997 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1998 }
1999 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2000 }
2001
2002 /* Function called once at the end of compiler work. */
2003 void
2004 ira_finish_costs_once (void)
2005 {
2006 free_ira_costs ();
2007 }
2008
2009 \f
2010
2011 /* Common initialization function for ira_costs and
2012 ira_set_pseudo_classes. */
2013 static void
2014 init_costs (void)
2015 {
2016 init_subregs_of_mode ();
2017 costs = (struct costs *) ira_allocate (max_struct_costs_size
2018 * cost_elements_num);
2019 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2020 * cost_elements_num);
2021 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2022 * max_reg_num ());
2023 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2024 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2025 }
2026
2027 /* Common finalization function for ira_costs and
2028 ira_set_pseudo_classes. */
2029 static void
2030 finish_costs (void)
2031 {
2032 finish_subregs_of_mode ();
2033 ira_free (regno_equiv_gains);
2034 ira_free (regno_aclass);
2035 ira_free (pref_buffer);
2036 ira_free (costs);
2037 }
2038
2039 /* Entry function which defines register class, memory and hard
2040 register costs for each allocno. */
2041 void
2042 ira_costs (void)
2043 {
2044 allocno_p = true;
2045 cost_elements_num = ira_allocnos_num;
2046 init_costs ();
2047 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2048 * ira_allocnos_num);
2049 initiate_regno_cost_classes ();
2050 calculate_elim_costs_all_insns ();
2051 find_costs_and_classes (ira_dump_file);
2052 setup_allocno_class_and_costs ();
2053 finish_regno_cost_classes ();
2054 finish_costs ();
2055 ira_free (total_allocno_costs);
2056 }
2057
2058 /* Entry function which defines classes for pseudos. */
2059 void
2060 ira_set_pseudo_classes (FILE *dump_file)
2061 {
2062 allocno_p = false;
2063 internal_flag_ira_verbose = flag_ira_verbose;
2064 cost_elements_num = max_reg_num ();
2065 init_costs ();
2066 initiate_regno_cost_classes ();
2067 find_costs_and_classes (dump_file);
2068 finish_regno_cost_classes ();
2069 pseudo_classes_defined_p = true;
2070 finish_costs ();
2071 }
2072
2073 \f
2074
2075 /* Change hard register costs for allocnos which lives through
2076 function calls. This is called only when we found all intersected
2077 calls during building allocno live ranges. */
2078 void
2079 ira_tune_allocno_costs (void)
2080 {
2081 int j, n, regno;
2082 int cost, min_cost, *reg_costs;
2083 enum reg_class aclass, rclass;
2084 enum machine_mode mode;
2085 ira_allocno_t a;
2086 ira_allocno_iterator ai;
2087 ira_allocno_object_iterator oi;
2088 ira_object_t obj;
2089 bool skip_p;
2090
2091 FOR_EACH_ALLOCNO (a, ai)
2092 {
2093 aclass = ALLOCNO_CLASS (a);
2094 if (aclass == NO_REGS)
2095 continue;
2096 mode = ALLOCNO_MODE (a);
2097 n = ira_class_hard_regs_num[aclass];
2098 min_cost = INT_MAX;
2099 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
2100 {
2101 ira_allocate_and_set_costs
2102 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2103 ALLOCNO_CLASS_COST (a));
2104 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2105 for (j = n - 1; j >= 0; j--)
2106 {
2107 regno = ira_class_hard_regs[aclass][j];
2108 skip_p = false;
2109 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2110 {
2111 if (ira_hard_reg_set_intersection_p (regno, mode,
2112 OBJECT_CONFLICT_HARD_REGS
2113 (obj)))
2114 {
2115 skip_p = true;
2116 break;
2117 }
2118 }
2119 if (skip_p)
2120 continue;
2121 rclass = REGNO_REG_CLASS (regno);
2122 cost = 0;
2123 if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2124 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2125 cost += (ALLOCNO_CALL_FREQ (a)
2126 * (ira_memory_move_cost[mode][rclass][0]
2127 + ira_memory_move_cost[mode][rclass][1]));
2128 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2129 cost += ((ira_memory_move_cost[mode][rclass][0]
2130 + ira_memory_move_cost[mode][rclass][1])
2131 * ALLOCNO_FREQ (a)
2132 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2133 #endif
2134 if (INT_MAX - cost < reg_costs[j])
2135 reg_costs[j] = INT_MAX;
2136 else
2137 reg_costs[j] += cost;
2138 if (min_cost > reg_costs[j])
2139 min_cost = reg_costs[j];
2140 }
2141 }
2142 if (min_cost != INT_MAX)
2143 ALLOCNO_CLASS_COST (a) = min_cost;
2144
2145 /* Some targets allow pseudos to be allocated to unaligned sequences
2146 of hard registers. However, selecting an unaligned sequence can
2147 unnecessarily restrict later allocations. So increase the cost of
2148 unaligned hard regs to encourage the use of aligned hard regs. */
2149 {
2150 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2151
2152 if (nregs > 1)
2153 {
2154 ira_allocate_and_set_costs
2155 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2156 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2157 for (j = n - 1; j >= 0; j--)
2158 {
2159 regno = ira_non_ordered_class_hard_regs[aclass][j];
2160 if ((regno % nregs) != 0)
2161 {
2162 int index = ira_class_hard_reg_index[aclass][regno];
2163 ira_assert (index != -1);
2164 reg_costs[index] += ALLOCNO_FREQ (a);
2165 }
2166 }
2167 }
2168 }
2169 }
2170 }
2171
2172 /* Add COST to the estimated gain for eliminating REGNO with its
2173 equivalence. If COST is zero, record that no such elimination is
2174 possible. */
2175
2176 void
2177 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2178 {
2179 if (cost == 0)
2180 regno_equiv_gains[regno] = 0;
2181 else
2182 regno_equiv_gains[regno] += cost;
2183 }