re PR rtl-optimization/60969 (ICE in output_129 in MMXMOV of mode MODE_SF for march...
[gcc.git] / gcc / ira-costs.c
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
41
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
45
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
48
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
51
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
56 {
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
61 };
62
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
73
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
76
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
79
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
82
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
87
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
92
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
97
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
100
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
103
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
107
108 /* Execution frequency of the current insn. */
109 static int frequency;
110
111 \f
112
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
115 {
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
126 };
127
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
131
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
134
135 /* Helper for cost_classes hashing. */
136
137 struct cost_classes_hasher
138 {
139 typedef cost_classes value_type;
140 typedef cost_classes compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
143 static inline void remove (value_type *);
144 };
145
146 /* Returns hash value for cost classes info HV. */
147 inline hashval_t
148 cost_classes_hasher::hash (const value_type *hv)
149 {
150 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
151 }
152
153 /* Compares cost classes info HV1 and HV2. */
154 inline bool
155 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
156 {
157 return (hv1->num == hv2->num
158 && memcmp (hv1->classes, hv2->classes,
159 sizeof (enum reg_class) * hv1->num) == 0);
160 }
161
162 /* Delete cost classes info V from the hash table. */
163 inline void
164 cost_classes_hasher::remove (value_type *v)
165 {
166 ira_free (v);
167 }
168
169 /* Hash table of unique cost classes. */
170 static hash_table <cost_classes_hasher> cost_classes_htab;
171
172 /* Map allocno class -> cost classes for pseudo of given allocno
173 class. */
174 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
175
176 /* Map mode -> cost classes for pseudo of give mode. */
177 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
178
179 /* Initialize info about the cost classes for each pseudo. */
180 static void
181 initiate_regno_cost_classes (void)
182 {
183 int size = sizeof (cost_classes_t) * max_reg_num ();
184
185 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
186 memset (regno_cost_classes, 0, size);
187 memset (cost_classes_aclass_cache, 0,
188 sizeof (cost_classes_t) * N_REG_CLASSES);
189 memset (cost_classes_mode_cache, 0,
190 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
191 cost_classes_htab.create (200);
192 }
193
194 /* Create new cost classes from cost classes FROM and set up members
195 index and hard_regno_index. Return the new classes. The function
196 implements some common code of two functions
197 setup_regno_cost_classes_by_aclass and
198 setup_regno_cost_classes_by_mode. */
199 static cost_classes_t
200 setup_cost_classes (cost_classes_t from)
201 {
202 cost_classes_t classes_ptr;
203 enum reg_class cl;
204 int i, j, hard_regno;
205
206 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
207 classes_ptr->num = from->num;
208 for (i = 0; i < N_REG_CLASSES; i++)
209 classes_ptr->index[i] = -1;
210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
211 classes_ptr->hard_regno_index[i] = -1;
212 for (i = 0; i < from->num; i++)
213 {
214 cl = classes_ptr->classes[i] = from->classes[i];
215 classes_ptr->index[cl] = i;
216 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
217 {
218 hard_regno = ira_class_hard_regs[cl][j];
219 if (classes_ptr->hard_regno_index[hard_regno] < 0)
220 classes_ptr->hard_regno_index[hard_regno] = i;
221 }
222 }
223 return classes_ptr;
224 }
225
226 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
227 This function is used when we know an initial approximation of
228 allocno class of the pseudo already, e.g. on the second iteration
229 of class cost calculation or after class cost calculation in
230 register-pressure sensitive insn scheduling or register-pressure
231 sensitive loop-invariant motion. */
232 static void
233 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
234 {
235 static struct cost_classes classes;
236 cost_classes_t classes_ptr;
237 enum reg_class cl;
238 int i;
239 cost_classes **slot;
240 HARD_REG_SET temp, temp2;
241 bool exclude_p;
242
243 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
244 {
245 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
246 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
247 /* We exclude classes from consideration which are subsets of
248 ACLASS only if ACLASS is an uniform class. */
249 exclude_p = ira_uniform_class_p[aclass];
250 classes.num = 0;
251 for (i = 0; i < ira_important_classes_num; i++)
252 {
253 cl = ira_important_classes[i];
254 if (exclude_p)
255 {
256 /* Exclude non-uniform classes which are subsets of
257 ACLASS. */
258 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
259 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
260 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
261 continue;
262 }
263 classes.classes[classes.num++] = cl;
264 }
265 slot = cost_classes_htab.find_slot (&classes, INSERT);
266 if (*slot == NULL)
267 {
268 classes_ptr = setup_cost_classes (&classes);
269 *slot = classes_ptr;
270 }
271 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
272 }
273 regno_cost_classes[regno] = classes_ptr;
274 }
275
276 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
277 decrease number of cost classes for the pseudo, if hard registers
278 of some important classes can not hold a value of MODE. So the
279 pseudo can not get hard register of some important classes and cost
280 calculation for such important classes is only waisting CPU
281 time. */
282 static void
283 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
284 {
285 static struct cost_classes classes;
286 cost_classes_t classes_ptr;
287 enum reg_class cl;
288 int i;
289 cost_classes **slot;
290 HARD_REG_SET temp;
291
292 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
293 {
294 classes.num = 0;
295 for (i = 0; i < ira_important_classes_num; i++)
296 {
297 cl = ira_important_classes[i];
298 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
299 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
300 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
301 continue;
302 classes.classes[classes.num++] = cl;
303 }
304 slot = cost_classes_htab.find_slot (&classes, INSERT);
305 if (*slot == NULL)
306 {
307 classes_ptr = setup_cost_classes (&classes);
308 *slot = classes_ptr;
309 }
310 else
311 classes_ptr = (cost_classes_t) *slot;
312 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
313 }
314 regno_cost_classes[regno] = classes_ptr;
315 }
316
317 /* Finilize info about the cost classes for each pseudo. */
318 static void
319 finish_regno_cost_classes (void)
320 {
321 ira_free (regno_cost_classes);
322 cost_classes_htab.dispose ();
323 }
324
325 \f
326
327 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
328 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
329 be a pseudo register. */
330 static int
331 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
332 secondary_reload_info *prev_sri)
333 {
334 secondary_reload_info sri;
335 reg_class_t secondary_class = NO_REGS;
336
337 /* If X is a SCRATCH, there is actually nothing to move since we are
338 assuming optimal allocation. */
339 if (GET_CODE (x) == SCRATCH)
340 return 0;
341
342 /* Get the class we will actually use for a reload. */
343 rclass = targetm.preferred_reload_class (x, rclass);
344
345 /* If we need a secondary reload for an intermediate, the cost is
346 that to load the input into the intermediate register, then to
347 copy it. */
348 sri.prev_sri = prev_sri;
349 sri.extra_cost = 0;
350 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
351
352 if (secondary_class != NO_REGS)
353 {
354 ira_init_register_move_cost_if_necessary (mode);
355 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
356 + sri.extra_cost
357 + copy_cost (x, mode, secondary_class, to_p, &sri));
358 }
359
360 /* For memory, use the memory move cost, for (hard) registers, use
361 the cost to move between the register classes, and use 2 for
362 everything else (constants). */
363 if (MEM_P (x) || rclass == NO_REGS)
364 return sri.extra_cost
365 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
366 else if (REG_P (x))
367 {
368 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
369
370 ira_init_register_move_cost_if_necessary (mode);
371 return (sri.extra_cost
372 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
373 }
374 else
375 /* If this is a constant, we may eventually want to call rtx_cost
376 here. */
377 return sri.extra_cost + COSTS_N_INSNS (1);
378 }
379
380 \f
381
382 /* Record the cost of using memory or hard registers of various
383 classes for the operands in INSN.
384
385 N_ALTS is the number of alternatives.
386 N_OPS is the number of operands.
387 OPS is an array of the operands.
388 MODES are the modes of the operands, in case any are VOIDmode.
389 CONSTRAINTS are the constraints to use for the operands. This array
390 is modified by this procedure.
391
392 This procedure works alternative by alternative. For each
393 alternative we assume that we will be able to allocate all allocnos
394 to their ideal register class and calculate the cost of using that
395 alternative. Then we compute, for each operand that is a
396 pseudo-register, the cost of having the allocno allocated to each
397 register class and using it in that alternative. To this cost is
398 added the cost of the alternative.
399
400 The cost of each class for this insn is its lowest cost among all
401 the alternatives. */
402 static void
403 record_reg_classes (int n_alts, int n_ops, rtx *ops,
404 enum machine_mode *modes, const char **constraints,
405 rtx insn, enum reg_class *pref)
406 {
407 int alt;
408 int i, j, k;
409 int insn_allows_mem[MAX_RECOG_OPERANDS];
410
411 for (i = 0; i < n_ops; i++)
412 insn_allows_mem[i] = 0;
413
414 /* Process each alternative, each time minimizing an operand's cost
415 with the cost for each operand in that alternative. */
416 for (alt = 0; alt < n_alts; alt++)
417 {
418 enum reg_class classes[MAX_RECOG_OPERANDS];
419 int allows_mem[MAX_RECOG_OPERANDS];
420 enum reg_class rclass;
421 int alt_fail = 0;
422 int alt_cost = 0, op_cost_add;
423
424 if (!recog_data.alternative_enabled_p[alt])
425 {
426 for (i = 0; i < recog_data.n_operands; i++)
427 constraints[i] = skip_alternative (constraints[i]);
428
429 continue;
430 }
431
432 for (i = 0; i < n_ops; i++)
433 {
434 unsigned char c;
435 const char *p = constraints[i];
436 rtx op = ops[i];
437 enum machine_mode mode = modes[i];
438 int allows_addr = 0;
439 int win = 0;
440
441 /* Initially show we know nothing about the register class. */
442 classes[i] = NO_REGS;
443 allows_mem[i] = 0;
444
445 /* If this operand has no constraints at all, we can
446 conclude nothing about it since anything is valid. */
447 if (*p == 0)
448 {
449 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
450 memset (this_op_costs[i], 0, struct_costs_size);
451 continue;
452 }
453
454 /* If this alternative is only relevant when this operand
455 matches a previous operand, we do different things
456 depending on whether this operand is a allocno-reg or not.
457 We must process any modifiers for the operand before we
458 can make this test. */
459 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
460 p++;
461
462 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
463 {
464 /* Copy class and whether memory is allowed from the
465 matching alternative. Then perform any needed cost
466 computations and/or adjustments. */
467 j = p[0] - '0';
468 classes[i] = classes[j];
469 allows_mem[i] = allows_mem[j];
470 if (allows_mem[i])
471 insn_allows_mem[i] = 1;
472
473 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
474 {
475 /* If this matches the other operand, we have no
476 added cost and we win. */
477 if (rtx_equal_p (ops[j], op))
478 win = 1;
479 /* If we can put the other operand into a register,
480 add to the cost of this alternative the cost to
481 copy this operand to the register used for the
482 other operand. */
483 else if (classes[j] != NO_REGS)
484 {
485 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
486 win = 1;
487 }
488 }
489 else if (! REG_P (ops[j])
490 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
491 {
492 /* This op is an allocno but the one it matches is
493 not. */
494
495 /* If we can't put the other operand into a
496 register, this alternative can't be used. */
497
498 if (classes[j] == NO_REGS)
499 alt_fail = 1;
500 /* Otherwise, add to the cost of this alternative
501 the cost to copy the other operand to the hard
502 register used for this operand. */
503 else
504 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
505 }
506 else
507 {
508 /* The costs of this operand are not the same as the
509 other operand since move costs are not symmetric.
510 Moreover, if we cannot tie them, this alternative
511 needs to do a copy, which is one insn. */
512 struct costs *pp = this_op_costs[i];
513 int *pp_costs = pp->cost;
514 cost_classes_t cost_classes_ptr
515 = regno_cost_classes[REGNO (op)];
516 enum reg_class *cost_classes = cost_classes_ptr->classes;
517 bool in_p = recog_data.operand_type[i] != OP_OUT;
518 bool out_p = recog_data.operand_type[i] != OP_IN;
519 enum reg_class op_class = classes[i];
520 move_table *move_in_cost, *move_out_cost;
521
522 ira_init_register_move_cost_if_necessary (mode);
523 if (! in_p)
524 {
525 ira_assert (out_p);
526 move_out_cost = ira_may_move_out_cost[mode];
527 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
528 {
529 rclass = cost_classes[k];
530 pp_costs[k]
531 = move_out_cost[op_class][rclass] * frequency;
532 }
533 }
534 else if (! out_p)
535 {
536 ira_assert (in_p);
537 move_in_cost = ira_may_move_in_cost[mode];
538 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
539 {
540 rclass = cost_classes[k];
541 pp_costs[k]
542 = move_in_cost[rclass][op_class] * frequency;
543 }
544 }
545 else
546 {
547 move_in_cost = ira_may_move_in_cost[mode];
548 move_out_cost = ira_may_move_out_cost[mode];
549 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
550 {
551 rclass = cost_classes[k];
552 pp_costs[k] = ((move_in_cost[rclass][op_class]
553 + move_out_cost[op_class][rclass])
554 * frequency);
555 }
556 }
557
558 /* If the alternative actually allows memory, make
559 things a bit cheaper since we won't need an extra
560 insn to load it. */
561 pp->mem_cost
562 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
563 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
564 - allows_mem[i]) * frequency;
565
566 /* If we have assigned a class to this allocno in
567 our first pass, add a cost to this alternative
568 corresponding to what we would add if this
569 allocno were not in the appropriate class. */
570 if (pref)
571 {
572 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
573
574 if (pref_class == NO_REGS)
575 alt_cost
576 += ((out_p
577 ? ira_memory_move_cost[mode][op_class][0] : 0)
578 + (in_p
579 ? ira_memory_move_cost[mode][op_class][1]
580 : 0));
581 else if (ira_reg_class_intersect
582 [pref_class][op_class] == NO_REGS)
583 alt_cost
584 += ira_register_move_cost[mode][pref_class][op_class];
585 }
586 if (REGNO (ops[i]) != REGNO (ops[j])
587 && ! find_reg_note (insn, REG_DEAD, op))
588 alt_cost += 2;
589
590 /* This is in place of ordinary cost computation for
591 this operand, so skip to the end of the
592 alternative (should be just one character). */
593 while (*p && *p++ != ',')
594 ;
595
596 constraints[i] = p;
597 continue;
598 }
599 }
600
601 /* Scan all the constraint letters. See if the operand
602 matches any of the constraints. Collect the valid
603 register classes and see if this operand accepts
604 memory. */
605 while ((c = *p))
606 {
607 switch (c)
608 {
609 case ',':
610 break;
611 case '*':
612 /* Ignore the next letter for this pass. */
613 c = *++p;
614 break;
615
616 case '?':
617 alt_cost += 2;
618 case '!': case '#': case '&':
619 case '0': case '1': case '2': case '3': case '4':
620 case '5': case '6': case '7': case '8': case '9':
621 break;
622
623 case 'p':
624 allows_addr = 1;
625 win = address_operand (op, GET_MODE (op));
626 /* We know this operand is an address, so we want it
627 to be allocated to a register that can be the
628 base of an address, i.e. BASE_REG_CLASS. */
629 classes[i]
630 = ira_reg_class_subunion[classes[i]]
631 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
632 ADDRESS, SCRATCH)];
633 break;
634
635 case 'm': case 'o': case 'V':
636 /* It doesn't seem worth distinguishing between
637 offsettable and non-offsettable addresses
638 here. */
639 insn_allows_mem[i] = allows_mem[i] = 1;
640 if (MEM_P (op))
641 win = 1;
642 break;
643
644 case '<':
645 if (MEM_P (op)
646 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
647 || GET_CODE (XEXP (op, 0)) == POST_DEC))
648 win = 1;
649 break;
650
651 case '>':
652 if (MEM_P (op)
653 && (GET_CODE (XEXP (op, 0)) == PRE_INC
654 || GET_CODE (XEXP (op, 0)) == POST_INC))
655 win = 1;
656 break;
657
658 case 'E':
659 case 'F':
660 if (CONST_DOUBLE_AS_FLOAT_P (op)
661 || (GET_CODE (op) == CONST_VECTOR
662 && (GET_MODE_CLASS (GET_MODE (op))
663 == MODE_VECTOR_FLOAT)))
664 win = 1;
665 break;
666
667 case 'G':
668 case 'H':
669 if (CONST_DOUBLE_AS_FLOAT_P (op)
670 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
671 win = 1;
672 break;
673
674 case 's':
675 if (CONST_SCALAR_INT_P (op))
676 break;
677
678 case 'i':
679 if (CONSTANT_P (op)
680 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
681 win = 1;
682 break;
683
684 case 'n':
685 if (CONST_SCALAR_INT_P (op))
686 win = 1;
687 break;
688
689 case 'I':
690 case 'J':
691 case 'K':
692 case 'L':
693 case 'M':
694 case 'N':
695 case 'O':
696 case 'P':
697 if (CONST_INT_P (op)
698 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
699 win = 1;
700 break;
701
702 case 'X':
703 win = 1;
704 break;
705
706 case 'g':
707 if (MEM_P (op)
708 || (CONSTANT_P (op)
709 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
710 win = 1;
711 insn_allows_mem[i] = allows_mem[i] = 1;
712 case 'r':
713 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
714 break;
715
716 default:
717 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
718 classes[i] = ira_reg_class_subunion[classes[i]]
719 [REG_CLASS_FROM_CONSTRAINT (c, p)];
720 #ifdef EXTRA_CONSTRAINT_STR
721 else if (EXTRA_CONSTRAINT_STR (op, c, p))
722 win = 1;
723
724 if (EXTRA_MEMORY_CONSTRAINT (c, p))
725 {
726 /* Every MEM can be reloaded to fit. */
727 insn_allows_mem[i] = allows_mem[i] = 1;
728 if (MEM_P (op))
729 win = 1;
730 }
731 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
732 {
733 /* Every address can be reloaded to fit. */
734 allows_addr = 1;
735 if (address_operand (op, GET_MODE (op)))
736 win = 1;
737 /* We know this operand is an address, so we
738 want it to be allocated to a hard register
739 that can be the base of an address,
740 i.e. BASE_REG_CLASS. */
741 classes[i]
742 = ira_reg_class_subunion[classes[i]]
743 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
744 ADDRESS, SCRATCH)];
745 }
746 #endif
747 break;
748 }
749 p += CONSTRAINT_LEN (c, p);
750 if (c == ',')
751 break;
752 }
753
754 constraints[i] = p;
755
756 /* How we account for this operand now depends on whether it
757 is a pseudo register or not. If it is, we first check if
758 any register classes are valid. If not, we ignore this
759 alternative, since we want to assume that all allocnos get
760 allocated for register preferencing. If some register
761 class is valid, compute the costs of moving the allocno
762 into that class. */
763 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
764 {
765 if (classes[i] == NO_REGS && ! allows_mem[i])
766 {
767 /* We must always fail if the operand is a REG, but
768 we did not find a suitable class and memory is
769 not allowed.
770
771 Otherwise we may perform an uninitialized read
772 from this_op_costs after the `continue' statement
773 below. */
774 alt_fail = 1;
775 }
776 else
777 {
778 unsigned int regno = REGNO (op);
779 struct costs *pp = this_op_costs[i];
780 int *pp_costs = pp->cost;
781 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
782 enum reg_class *cost_classes = cost_classes_ptr->classes;
783 bool in_p = recog_data.operand_type[i] != OP_OUT;
784 bool out_p = recog_data.operand_type[i] != OP_IN;
785 enum reg_class op_class = classes[i];
786 move_table *move_in_cost, *move_out_cost;
787 short (*mem_cost)[2];
788
789 ira_init_register_move_cost_if_necessary (mode);
790 if (! in_p)
791 {
792 ira_assert (out_p);
793 if (op_class == NO_REGS)
794 {
795 mem_cost = ira_memory_move_cost[mode];
796 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
797 {
798 rclass = cost_classes[k];
799 pp_costs[k] = mem_cost[rclass][0] * frequency;
800 }
801 }
802 else
803 {
804 move_out_cost = ira_may_move_out_cost[mode];
805 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
806 {
807 rclass = cost_classes[k];
808 pp_costs[k]
809 = move_out_cost[op_class][rclass] * frequency;
810 }
811 }
812 }
813 else if (! out_p)
814 {
815 ira_assert (in_p);
816 if (op_class == NO_REGS)
817 {
818 mem_cost = ira_memory_move_cost[mode];
819 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
820 {
821 rclass = cost_classes[k];
822 pp_costs[k] = mem_cost[rclass][1] * frequency;
823 }
824 }
825 else
826 {
827 move_in_cost = ira_may_move_in_cost[mode];
828 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
829 {
830 rclass = cost_classes[k];
831 pp_costs[k]
832 = move_in_cost[rclass][op_class] * frequency;
833 }
834 }
835 }
836 else
837 {
838 if (op_class == NO_REGS)
839 {
840 mem_cost = ira_memory_move_cost[mode];
841 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
842 {
843 rclass = cost_classes[k];
844 pp_costs[k] = ((mem_cost[rclass][0]
845 + mem_cost[rclass][1])
846 * frequency);
847 }
848 }
849 else
850 {
851 move_in_cost = ira_may_move_in_cost[mode];
852 move_out_cost = ira_may_move_out_cost[mode];
853 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
854 {
855 rclass = cost_classes[k];
856 pp_costs[k] = ((move_in_cost[rclass][op_class]
857 + move_out_cost[op_class][rclass])
858 * frequency);
859 }
860 }
861 }
862
863 /* If the alternative actually allows memory, make
864 things a bit cheaper since we won't need an extra
865 insn to load it. */
866 if (op_class != NO_REGS)
867 pp->mem_cost
868 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
869 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
870 - allows_mem[i]) * frequency;
871 /* If we have assigned a class to this allocno in
872 our first pass, add a cost to this alternative
873 corresponding to what we would add if this
874 allocno were not in the appropriate class. */
875 if (pref)
876 {
877 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
878
879 if (pref_class == NO_REGS)
880 {
881 if (op_class != NO_REGS)
882 alt_cost
883 += ((out_p
884 ? ira_memory_move_cost[mode][op_class][0]
885 : 0)
886 + (in_p
887 ? ira_memory_move_cost[mode][op_class][1]
888 : 0));
889 }
890 else if (op_class == NO_REGS)
891 alt_cost
892 += ((out_p
893 ? ira_memory_move_cost[mode][pref_class][1]
894 : 0)
895 + (in_p
896 ? ira_memory_move_cost[mode][pref_class][0]
897 : 0));
898 else if (ira_reg_class_intersect[pref_class][op_class]
899 == NO_REGS)
900 alt_cost += (ira_register_move_cost
901 [mode][pref_class][op_class]);
902 }
903 }
904 }
905
906 /* Otherwise, if this alternative wins, either because we
907 have already determined that or if we have a hard
908 register of the proper class, there is no cost for this
909 alternative. */
910 else if (win || (REG_P (op)
911 && reg_fits_class_p (op, classes[i],
912 0, GET_MODE (op))))
913 ;
914
915 /* If registers are valid, the cost of this alternative
916 includes copying the object to and/or from a
917 register. */
918 else if (classes[i] != NO_REGS)
919 {
920 if (recog_data.operand_type[i] != OP_OUT)
921 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
922
923 if (recog_data.operand_type[i] != OP_IN)
924 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
925 }
926 /* The only other way this alternative can be used is if
927 this is a constant that could be placed into memory. */
928 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
929 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
930 else
931 alt_fail = 1;
932 }
933
934 if (alt_fail)
935 continue;
936
937 op_cost_add = alt_cost * frequency;
938 /* Finally, update the costs with the information we've
939 calculated about this alternative. */
940 for (i = 0; i < n_ops; i++)
941 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
942 {
943 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
944 int *pp_costs = pp->cost, *qq_costs = qq->cost;
945 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
946 cost_classes_t cost_classes_ptr
947 = regno_cost_classes[REGNO (ops[i])];
948
949 pp->mem_cost = MIN (pp->mem_cost,
950 (qq->mem_cost + op_cost_add) * scale);
951
952 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
953 pp_costs[k]
954 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
955 }
956 }
957
958 if (allocno_p)
959 for (i = 0; i < n_ops; i++)
960 {
961 ira_allocno_t a;
962 rtx op = ops[i];
963
964 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
965 continue;
966 a = ira_curr_regno_allocno_map [REGNO (op)];
967 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
968 ALLOCNO_BAD_SPILL_P (a) = true;
969 }
970
971 }
972
973 \f
974
975 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
976 static inline bool
977 ok_for_index_p_nonstrict (rtx reg)
978 {
979 unsigned regno = REGNO (reg);
980
981 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
982 }
983
984 /* A version of regno_ok_for_base_p for use here, when all
985 pseudo-registers should count as OK. Arguments as for
986 regno_ok_for_base_p. */
987 static inline bool
988 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
989 enum rtx_code outer_code, enum rtx_code index_code)
990 {
991 unsigned regno = REGNO (reg);
992
993 if (regno >= FIRST_PSEUDO_REGISTER)
994 return true;
995 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
996 }
997
998 /* Record the pseudo registers we must reload into hard registers in a
999 subexpression of a memory address, X.
1000
1001 If CONTEXT is 0, we are looking at the base part of an address,
1002 otherwise we are looking at the index part.
1003
1004 MODE and AS are the mode and address space of the memory reference;
1005 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1006 These four arguments are passed down to base_reg_class.
1007
1008 SCALE is twice the amount to multiply the cost by (it is twice so
1009 we can represent half-cost adjustments). */
1010 static void
1011 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
1012 int context, enum rtx_code outer_code,
1013 enum rtx_code index_code, int scale)
1014 {
1015 enum rtx_code code = GET_CODE (x);
1016 enum reg_class rclass;
1017
1018 if (context == 1)
1019 rclass = INDEX_REG_CLASS;
1020 else
1021 rclass = base_reg_class (mode, as, outer_code, index_code);
1022
1023 switch (code)
1024 {
1025 case CONST_INT:
1026 case CONST:
1027 case CC0:
1028 case PC:
1029 case SYMBOL_REF:
1030 case LABEL_REF:
1031 return;
1032
1033 case PLUS:
1034 /* When we have an address that is a sum, we must determine
1035 whether registers are "base" or "index" regs. If there is a
1036 sum of two registers, we must choose one to be the "base".
1037 Luckily, we can use the REG_POINTER to make a good choice
1038 most of the time. We only need to do this on machines that
1039 can have two registers in an address and where the base and
1040 index register classes are different.
1041
1042 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1043 but that seems bogus since it should only be set when we are
1044 sure the register is being used as a pointer. */
1045 {
1046 rtx arg0 = XEXP (x, 0);
1047 rtx arg1 = XEXP (x, 1);
1048 enum rtx_code code0 = GET_CODE (arg0);
1049 enum rtx_code code1 = GET_CODE (arg1);
1050
1051 /* Look inside subregs. */
1052 if (code0 == SUBREG)
1053 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1054 if (code1 == SUBREG)
1055 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1056
1057 /* If this machine only allows one register per address, it
1058 must be in the first operand. */
1059 if (MAX_REGS_PER_ADDRESS == 1)
1060 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1061
1062 /* If index and base registers are the same on this machine,
1063 just record registers in any non-constant operands. We
1064 assume here, as well as in the tests below, that all
1065 addresses are in canonical form. */
1066 else if (INDEX_REG_CLASS
1067 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1068 {
1069 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1070 if (! CONSTANT_P (arg1))
1071 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1072 }
1073
1074 /* If the second operand is a constant integer, it doesn't
1075 change what class the first operand must be. */
1076 else if (CONST_SCALAR_INT_P (arg1))
1077 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1078 /* If the second operand is a symbolic constant, the first
1079 operand must be an index register. */
1080 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1081 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1082 /* If both operands are registers but one is already a hard
1083 register of index or reg-base class, give the other the
1084 class that the hard register is not. */
1085 else if (code0 == REG && code1 == REG
1086 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1087 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1088 || ok_for_index_p_nonstrict (arg0)))
1089 record_address_regs (mode, as, arg1,
1090 ok_for_base_p_nonstrict (arg0, mode, as,
1091 PLUS, REG) ? 1 : 0,
1092 PLUS, REG, scale);
1093 else if (code0 == REG && code1 == REG
1094 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1095 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1096 || ok_for_index_p_nonstrict (arg1)))
1097 record_address_regs (mode, as, arg0,
1098 ok_for_base_p_nonstrict (arg1, mode, as,
1099 PLUS, REG) ? 1 : 0,
1100 PLUS, REG, scale);
1101 /* If one operand is known to be a pointer, it must be the
1102 base with the other operand the index. Likewise if the
1103 other operand is a MULT. */
1104 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1105 {
1106 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1107 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1108 }
1109 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1110 {
1111 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1112 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1113 }
1114 /* Otherwise, count equal chances that each might be a base or
1115 index register. This case should be rare. */
1116 else
1117 {
1118 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1119 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1120 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1121 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1122 }
1123 }
1124 break;
1125
1126 /* Double the importance of an allocno that is incremented or
1127 decremented, since it would take two extra insns if it ends
1128 up in the wrong place. */
1129 case POST_MODIFY:
1130 case PRE_MODIFY:
1131 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1132 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1133 if (REG_P (XEXP (XEXP (x, 1), 1)))
1134 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1135 2 * scale);
1136 break;
1137
1138 case POST_INC:
1139 case PRE_INC:
1140 case POST_DEC:
1141 case PRE_DEC:
1142 /* Double the importance of an allocno that is incremented or
1143 decremented, since it would take two extra insns if it ends
1144 up in the wrong place. */
1145 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1146 break;
1147
1148 case REG:
1149 {
1150 struct costs *pp;
1151 int *pp_costs;
1152 enum reg_class i;
1153 int k, regno, add_cost;
1154 cost_classes_t cost_classes_ptr;
1155 enum reg_class *cost_classes;
1156 move_table *move_in_cost;
1157
1158 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1159 break;
1160
1161 regno = REGNO (x);
1162 if (allocno_p)
1163 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1164 pp = COSTS (costs, COST_INDEX (regno));
1165 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1166 if (INT_MAX - add_cost < pp->mem_cost)
1167 pp->mem_cost = INT_MAX;
1168 else
1169 pp->mem_cost += add_cost;
1170 cost_classes_ptr = regno_cost_classes[regno];
1171 cost_classes = cost_classes_ptr->classes;
1172 pp_costs = pp->cost;
1173 ira_init_register_move_cost_if_necessary (Pmode);
1174 move_in_cost = ira_may_move_in_cost[Pmode];
1175 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1176 {
1177 i = cost_classes[k];
1178 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1179 if (INT_MAX - add_cost < pp_costs[k])
1180 pp_costs[k] = INT_MAX;
1181 else
1182 pp_costs[k] += add_cost;
1183 }
1184 }
1185 break;
1186
1187 default:
1188 {
1189 const char *fmt = GET_RTX_FORMAT (code);
1190 int i;
1191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1192 if (fmt[i] == 'e')
1193 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1194 scale);
1195 }
1196 }
1197 }
1198
1199 \f
1200
1201 /* Calculate the costs of insn operands. */
1202 static void
1203 record_operand_costs (rtx insn, enum reg_class *pref)
1204 {
1205 const char *constraints[MAX_RECOG_OPERANDS];
1206 enum machine_mode modes[MAX_RECOG_OPERANDS];
1207 rtx ops[MAX_RECOG_OPERANDS];
1208 rtx set;
1209 int i;
1210
1211 for (i = 0; i < recog_data.n_operands; i++)
1212 {
1213 constraints[i] = recog_data.constraints[i];
1214 modes[i] = recog_data.operand_mode[i];
1215 }
1216
1217 /* If we get here, we are set up to record the costs of all the
1218 operands for this insn. Start by initializing the costs. Then
1219 handle any address registers. Finally record the desired classes
1220 for any allocnos, doing it twice if some pair of operands are
1221 commutative. */
1222 for (i = 0; i < recog_data.n_operands; i++)
1223 {
1224 memcpy (op_costs[i], init_cost, struct_costs_size);
1225
1226 ops[i] = recog_data.operand[i];
1227 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1228 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1229
1230 if (MEM_P (recog_data.operand[i]))
1231 record_address_regs (GET_MODE (recog_data.operand[i]),
1232 MEM_ADDR_SPACE (recog_data.operand[i]),
1233 XEXP (recog_data.operand[i], 0),
1234 0, MEM, SCRATCH, frequency * 2);
1235 else if (constraints[i][0] == 'p'
1236 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1237 constraints[i]))
1238 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1239 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1240 frequency * 2);
1241 }
1242
1243 /* Check for commutative in a separate loop so everything will have
1244 been initialized. We must do this even if one operand is a
1245 constant--see addsi3 in m68k.md. */
1246 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1247 if (constraints[i][0] == '%')
1248 {
1249 const char *xconstraints[MAX_RECOG_OPERANDS];
1250 int j;
1251
1252 /* Handle commutative operands by swapping the constraints.
1253 We assume the modes are the same. */
1254 for (j = 0; j < recog_data.n_operands; j++)
1255 xconstraints[j] = constraints[j];
1256
1257 xconstraints[i] = constraints[i+1];
1258 xconstraints[i+1] = constraints[i];
1259 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1260 recog_data.operand, modes,
1261 xconstraints, insn, pref);
1262 }
1263 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1264 recog_data.operand, modes,
1265 constraints, insn, pref);
1266
1267 /* If this insn is a single set copying operand 1 to operand 0 and
1268 one operand is an allocno with the other a hard reg or an allocno
1269 that prefers a hard register that is in its own register class
1270 then we may want to adjust the cost of that register class to -1.
1271
1272 Avoid the adjustment if the source does not die to avoid
1273 stressing of register allocator by preferrencing two colliding
1274 registers into single class.
1275
1276 Also avoid the adjustment if a copy between hard registers of the
1277 class is expensive (ten times the cost of a default copy is
1278 considered arbitrarily expensive). This avoids losing when the
1279 preferred class is very expensive as the source of a copy
1280 instruction. */
1281 if ((set = single_set (insn)) != NULL_RTX
1282 /* In rare cases the single set insn might have less 2 operands
1283 as the source can be a fixed special reg. */
1284 && recog_data.n_operands > 1
1285 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1286 {
1287 int regno, other_regno;
1288 rtx dest = SET_DEST (set);
1289 rtx src = SET_SRC (set);
1290
1291 dest = SET_DEST (set);
1292 src = SET_SRC (set);
1293 if (GET_CODE (dest) == SUBREG
1294 && (GET_MODE_SIZE (GET_MODE (dest))
1295 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1296 dest = SUBREG_REG (dest);
1297 if (GET_CODE (src) == SUBREG
1298 && (GET_MODE_SIZE (GET_MODE (src))
1299 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1300 src = SUBREG_REG (src);
1301 if (REG_P (src) && REG_P (dest)
1302 && find_regno_note (insn, REG_DEAD, REGNO (src))
1303 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1304 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1305 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1306 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1307 {
1308 enum machine_mode mode = GET_MODE (src);
1309 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1310 enum reg_class *cost_classes = cost_classes_ptr->classes;
1311 reg_class_t rclass;
1312 int k, nr;
1313
1314 i = regno == (int) REGNO (src) ? 1 : 0;
1315 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1316 {
1317 rclass = cost_classes[k];
1318 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1319 && (reg_class_size[(int) rclass]
1320 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1321 {
1322 if (reg_class_size[rclass] == 1)
1323 op_costs[i]->cost[k] = -frequency;
1324 else
1325 {
1326 for (nr = 0;
1327 nr < hard_regno_nregs[other_regno][mode];
1328 nr++)
1329 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1330 other_regno + nr))
1331 break;
1332
1333 if (nr == hard_regno_nregs[other_regno][mode])
1334 op_costs[i]->cost[k] = -frequency;
1335 }
1336 }
1337 }
1338 }
1339 }
1340 }
1341
1342 \f
1343
1344 /* Process one insn INSN. Scan it and record each time it would save
1345 code to put a certain allocnos in a certain class. Return the last
1346 insn processed, so that the scan can be continued from there. */
1347 static rtx
1348 scan_one_insn (rtx insn)
1349 {
1350 enum rtx_code pat_code;
1351 rtx set, note;
1352 int i, k;
1353 bool counted_mem;
1354
1355 if (!NONDEBUG_INSN_P (insn))
1356 return insn;
1357
1358 pat_code = GET_CODE (PATTERN (insn));
1359 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1360 return insn;
1361
1362 counted_mem = false;
1363 set = single_set (insn);
1364 extract_insn (insn);
1365
1366 /* If this insn loads a parameter from its stack slot, then it
1367 represents a savings, rather than a cost, if the parameter is
1368 stored in memory. Record this fact.
1369
1370 Similarly if we're loading other constants from memory (constant
1371 pool, TOC references, small data areas, etc) and this is the only
1372 assignment to the destination pseudo.
1373
1374 Don't do this if SET_SRC (set) isn't a general operand, if it is
1375 a memory requiring special instructions to load it, decreasing
1376 mem_cost might result in it being loaded using the specialized
1377 instruction into a register, then stored into stack and loaded
1378 again from the stack. See PR52208.
1379
1380 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1381 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1382 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1383 && ((MEM_P (XEXP (note, 0))
1384 && !side_effects_p (SET_SRC (set)))
1385 || (CONSTANT_P (XEXP (note, 0))
1386 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1387 XEXP (note, 0))
1388 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1389 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1390 {
1391 enum reg_class cl = GENERAL_REGS;
1392 rtx reg = SET_DEST (set);
1393 int num = COST_INDEX (REGNO (reg));
1394
1395 COSTS (costs, num)->mem_cost
1396 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1397 record_address_regs (GET_MODE (SET_SRC (set)),
1398 MEM_ADDR_SPACE (SET_SRC (set)),
1399 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1400 frequency * 2);
1401 counted_mem = true;
1402 }
1403
1404 record_operand_costs (insn, pref);
1405
1406 /* Now add the cost for each operand to the total costs for its
1407 allocno. */
1408 for (i = 0; i < recog_data.n_operands; i++)
1409 if (REG_P (recog_data.operand[i])
1410 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1411 {
1412 int regno = REGNO (recog_data.operand[i]);
1413 struct costs *p = COSTS (costs, COST_INDEX (regno));
1414 struct costs *q = op_costs[i];
1415 int *p_costs = p->cost, *q_costs = q->cost;
1416 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1417 int add_cost;
1418
1419 /* If the already accounted for the memory "cost" above, don't
1420 do so again. */
1421 if (!counted_mem)
1422 {
1423 add_cost = q->mem_cost;
1424 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1425 p->mem_cost = INT_MAX;
1426 else
1427 p->mem_cost += add_cost;
1428 }
1429 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1430 {
1431 add_cost = q_costs[k];
1432 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1433 p_costs[k] = INT_MAX;
1434 else
1435 p_costs[k] += add_cost;
1436 }
1437 }
1438
1439 return insn;
1440 }
1441
1442 \f
1443
1444 /* Print allocnos costs to file F. */
1445 static void
1446 print_allocno_costs (FILE *f)
1447 {
1448 int k;
1449 ira_allocno_t a;
1450 ira_allocno_iterator ai;
1451
1452 ira_assert (allocno_p);
1453 fprintf (f, "\n");
1454 FOR_EACH_ALLOCNO (a, ai)
1455 {
1456 int i, rclass;
1457 basic_block bb;
1458 int regno = ALLOCNO_REGNO (a);
1459 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1460 enum reg_class *cost_classes = cost_classes_ptr->classes;
1461
1462 i = ALLOCNO_NUM (a);
1463 fprintf (f, " a%d(r%d,", i, regno);
1464 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1465 fprintf (f, "b%d", bb->index);
1466 else
1467 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1468 fprintf (f, ") costs:");
1469 for (k = 0; k < cost_classes_ptr->num; k++)
1470 {
1471 rclass = cost_classes[k];
1472 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1473 #ifdef CANNOT_CHANGE_MODE_CLASS
1474 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1475 #endif
1476 )
1477 {
1478 fprintf (f, " %s:%d", reg_class_names[rclass],
1479 COSTS (costs, i)->cost[k]);
1480 if (flag_ira_region == IRA_REGION_ALL
1481 || flag_ira_region == IRA_REGION_MIXED)
1482 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1483 }
1484 }
1485 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1486 if (flag_ira_region == IRA_REGION_ALL
1487 || flag_ira_region == IRA_REGION_MIXED)
1488 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1489 fprintf (f, "\n");
1490 }
1491 }
1492
1493 /* Print pseudo costs to file F. */
1494 static void
1495 print_pseudo_costs (FILE *f)
1496 {
1497 int regno, k;
1498 int rclass;
1499 cost_classes_t cost_classes_ptr;
1500 enum reg_class *cost_classes;
1501
1502 ira_assert (! allocno_p);
1503 fprintf (f, "\n");
1504 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1505 {
1506 if (REG_N_REFS (regno) <= 0)
1507 continue;
1508 cost_classes_ptr = regno_cost_classes[regno];
1509 cost_classes = cost_classes_ptr->classes;
1510 fprintf (f, " r%d costs:", regno);
1511 for (k = 0; k < cost_classes_ptr->num; k++)
1512 {
1513 rclass = cost_classes[k];
1514 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1515 #ifdef CANNOT_CHANGE_MODE_CLASS
1516 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1517 #endif
1518 )
1519 fprintf (f, " %s:%d", reg_class_names[rclass],
1520 COSTS (costs, regno)->cost[k]);
1521 }
1522 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1523 }
1524 }
1525
1526 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1527 costs. */
1528 static void
1529 process_bb_for_costs (basic_block bb)
1530 {
1531 rtx insn;
1532
1533 frequency = REG_FREQ_FROM_BB (bb);
1534 if (frequency == 0)
1535 frequency = 1;
1536 FOR_BB_INSNS (bb, insn)
1537 insn = scan_one_insn (insn);
1538 }
1539
1540 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1541 costs. */
1542 static void
1543 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1544 {
1545 basic_block bb;
1546
1547 bb = loop_tree_node->bb;
1548 if (bb != NULL)
1549 process_bb_for_costs (bb);
1550 }
1551
1552 /* Find costs of register classes and memory for allocnos or pseudos
1553 and their best costs. Set up preferred, alternative and allocno
1554 classes for pseudos. */
1555 static void
1556 find_costs_and_classes (FILE *dump_file)
1557 {
1558 int i, k, start, max_cost_classes_num;
1559 int pass;
1560 basic_block bb;
1561 enum reg_class *regno_best_class;
1562
1563 init_recog ();
1564 regno_best_class
1565 = (enum reg_class *) ira_allocate (max_reg_num ()
1566 * sizeof (enum reg_class));
1567 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1568 regno_best_class[i] = NO_REGS;
1569 if (!resize_reg_info () && allocno_p
1570 && pseudo_classes_defined_p && flag_expensive_optimizations)
1571 {
1572 ira_allocno_t a;
1573 ira_allocno_iterator ai;
1574
1575 pref = pref_buffer;
1576 max_cost_classes_num = 1;
1577 FOR_EACH_ALLOCNO (a, ai)
1578 {
1579 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1580 setup_regno_cost_classes_by_aclass
1581 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1582 max_cost_classes_num
1583 = MAX (max_cost_classes_num,
1584 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1585 }
1586 start = 1;
1587 }
1588 else
1589 {
1590 pref = NULL;
1591 max_cost_classes_num = ira_important_classes_num;
1592 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1593 if (regno_reg_rtx[i] != NULL_RTX)
1594 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1595 else
1596 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1597 start = 0;
1598 }
1599 if (allocno_p)
1600 /* Clear the flag for the next compiled function. */
1601 pseudo_classes_defined_p = false;
1602 /* Normally we scan the insns once and determine the best class to
1603 use for each allocno. However, if -fexpensive-optimizations are
1604 on, we do so twice, the second time using the tentative best
1605 classes to guide the selection. */
1606 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1607 {
1608 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1609 fprintf (dump_file,
1610 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1611
1612 if (pass != start)
1613 {
1614 max_cost_classes_num = 1;
1615 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1616 {
1617 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1618 max_cost_classes_num
1619 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1620 }
1621 }
1622
1623 struct_costs_size
1624 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1625 /* Zero out our accumulation of the cost of each class for each
1626 allocno. */
1627 memset (costs, 0, cost_elements_num * struct_costs_size);
1628
1629 if (allocno_p)
1630 {
1631 /* Scan the instructions and record each time it would save code
1632 to put a certain allocno in a certain class. */
1633 ira_traverse_loop_tree (true, ira_loop_tree_root,
1634 process_bb_node_for_costs, NULL);
1635
1636 memcpy (total_allocno_costs, costs,
1637 max_struct_costs_size * ira_allocnos_num);
1638 }
1639 else
1640 {
1641 basic_block bb;
1642
1643 FOR_EACH_BB_FN (bb, cfun)
1644 process_bb_for_costs (bb);
1645 }
1646
1647 if (pass == 0)
1648 pref = pref_buffer;
1649
1650 /* Now for each allocno look at how desirable each class is and
1651 find which class is preferred. */
1652 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1653 {
1654 ira_allocno_t a, parent_a;
1655 int rclass, a_num, parent_a_num, add_cost;
1656 ira_loop_tree_node_t parent;
1657 int best_cost, allocno_cost;
1658 enum reg_class best, alt_class;
1659 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1660 enum reg_class *cost_classes = cost_classes_ptr->classes;
1661 int *i_costs = temp_costs->cost;
1662 int i_mem_cost;
1663 int equiv_savings = regno_equiv_gains[i];
1664
1665 if (! allocno_p)
1666 {
1667 if (regno_reg_rtx[i] == NULL_RTX)
1668 continue;
1669 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1670 i_mem_cost = temp_costs->mem_cost;
1671 }
1672 else
1673 {
1674 if (ira_regno_allocno_map[i] == NULL)
1675 continue;
1676 memset (temp_costs, 0, struct_costs_size);
1677 i_mem_cost = 0;
1678 /* Find cost of all allocnos with the same regno. */
1679 for (a = ira_regno_allocno_map[i];
1680 a != NULL;
1681 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1682 {
1683 int *a_costs, *p_costs;
1684
1685 a_num = ALLOCNO_NUM (a);
1686 if ((flag_ira_region == IRA_REGION_ALL
1687 || flag_ira_region == IRA_REGION_MIXED)
1688 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1689 && (parent_a = parent->regno_allocno_map[i]) != NULL
1690 /* There are no caps yet. */
1691 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1692 (a)->border_allocnos,
1693 ALLOCNO_NUM (a)))
1694 {
1695 /* Propagate costs to upper levels in the region
1696 tree. */
1697 parent_a_num = ALLOCNO_NUM (parent_a);
1698 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1699 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1700 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1701 {
1702 add_cost = a_costs[k];
1703 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1704 p_costs[k] = INT_MAX;
1705 else
1706 p_costs[k] += add_cost;
1707 }
1708 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1709 if (add_cost > 0
1710 && (INT_MAX - add_cost
1711 < COSTS (total_allocno_costs,
1712 parent_a_num)->mem_cost))
1713 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1714 = INT_MAX;
1715 else
1716 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1717 += add_cost;
1718
1719 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1720 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1721 }
1722 a_costs = COSTS (costs, a_num)->cost;
1723 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1724 {
1725 add_cost = a_costs[k];
1726 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1727 i_costs[k] = INT_MAX;
1728 else
1729 i_costs[k] += add_cost;
1730 }
1731 add_cost = COSTS (costs, a_num)->mem_cost;
1732 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1733 i_mem_cost = INT_MAX;
1734 else
1735 i_mem_cost += add_cost;
1736 }
1737 }
1738 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1739 i_mem_cost = 0;
1740 else if (equiv_savings < 0)
1741 i_mem_cost = -equiv_savings;
1742 else if (equiv_savings > 0)
1743 {
1744 i_mem_cost = 0;
1745 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1746 i_costs[k] += equiv_savings;
1747 }
1748
1749 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1750 best = ALL_REGS;
1751 alt_class = NO_REGS;
1752 /* Find best common class for all allocnos with the same
1753 regno. */
1754 for (k = 0; k < cost_classes_ptr->num; k++)
1755 {
1756 rclass = cost_classes[k];
1757 /* Ignore classes that are too small or invalid for this
1758 operand. */
1759 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1760 #ifdef CANNOT_CHANGE_MODE_CLASS
1761 || invalid_mode_change_p (i, (enum reg_class) rclass)
1762 #endif
1763 )
1764 continue;
1765 if (i_costs[k] < best_cost)
1766 {
1767 best_cost = i_costs[k];
1768 best = (enum reg_class) rclass;
1769 }
1770 else if (i_costs[k] == best_cost)
1771 best = ira_reg_class_subunion[best][rclass];
1772 if (pass == flag_expensive_optimizations
1773 /* We still prefer registers to memory even at this
1774 stage if their costs are the same. We will make
1775 a final decision during assigning hard registers
1776 when we have all info including more accurate
1777 costs which might be affected by assigning hard
1778 registers to other pseudos because the pseudos
1779 involved in moves can be coalesced. */
1780 && i_costs[k] <= i_mem_cost
1781 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1782 > reg_class_size[alt_class]))
1783 alt_class = reg_class_subunion[alt_class][rclass];
1784 }
1785 alt_class = ira_allocno_class_translate[alt_class];
1786 if (best_cost > i_mem_cost)
1787 regno_aclass[i] = NO_REGS;
1788 else
1789 {
1790 /* Make the common class the biggest class of best and
1791 alt_class. */
1792 regno_aclass[i]
1793 = ira_reg_class_superunion[best][alt_class];
1794 ira_assert (regno_aclass[i] != NO_REGS
1795 && ira_reg_allocno_class_p[regno_aclass[i]]);
1796 }
1797 if (pass == flag_expensive_optimizations)
1798 {
1799 if (best_cost > i_mem_cost)
1800 best = alt_class = NO_REGS;
1801 else if (best == alt_class)
1802 alt_class = NO_REGS;
1803 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1804 if ((!allocno_p || internal_flag_ira_verbose > 2)
1805 && dump_file != NULL)
1806 fprintf (dump_file,
1807 " r%d: preferred %s, alternative %s, allocno %s\n",
1808 i, reg_class_names[best], reg_class_names[alt_class],
1809 reg_class_names[regno_aclass[i]]);
1810 }
1811 regno_best_class[i] = best;
1812 if (! allocno_p)
1813 {
1814 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1815 continue;
1816 }
1817 for (a = ira_regno_allocno_map[i];
1818 a != NULL;
1819 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1820 {
1821 enum reg_class aclass = regno_aclass[i];
1822 int a_num = ALLOCNO_NUM (a);
1823 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1824 int *a_costs = COSTS (costs, a_num)->cost;
1825
1826 if (aclass == NO_REGS)
1827 best = NO_REGS;
1828 else
1829 {
1830 /* Finding best class which is subset of the common
1831 class. */
1832 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1833 allocno_cost = best_cost;
1834 best = ALL_REGS;
1835 for (k = 0; k < cost_classes_ptr->num; k++)
1836 {
1837 rclass = cost_classes[k];
1838 if (! ira_class_subset_p[rclass][aclass])
1839 continue;
1840 /* Ignore classes that are too small or invalid
1841 for this operand. */
1842 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1843 #ifdef CANNOT_CHANGE_MODE_CLASS
1844 || invalid_mode_change_p (i, (enum reg_class) rclass)
1845 #endif
1846 )
1847 ;
1848 else if (total_a_costs[k] < best_cost)
1849 {
1850 best_cost = total_a_costs[k];
1851 allocno_cost = a_costs[k];
1852 best = (enum reg_class) rclass;
1853 }
1854 else if (total_a_costs[k] == best_cost)
1855 {
1856 best = ira_reg_class_subunion[best][rclass];
1857 allocno_cost = MAX (allocno_cost, a_costs[k]);
1858 }
1859 }
1860 ALLOCNO_CLASS_COST (a) = allocno_cost;
1861 }
1862 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1863 && (pass == 0 || pref[a_num] != best))
1864 {
1865 fprintf (dump_file, " a%d (r%d,", a_num, i);
1866 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1867 fprintf (dump_file, "b%d", bb->index);
1868 else
1869 fprintf (dump_file, "l%d",
1870 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1871 fprintf (dump_file, ") best %s, allocno %s\n",
1872 reg_class_names[best],
1873 reg_class_names[aclass]);
1874 }
1875 pref[a_num] = best;
1876 if (pass == flag_expensive_optimizations && best != aclass
1877 && ira_class_hard_regs_num[best] > 0
1878 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1879 >= ira_class_hard_regs_num[best]))
1880 {
1881 int ind = cost_classes_ptr->index[aclass];
1882
1883 ira_assert (ind >= 0);
1884 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1885 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1886 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1887 / (ira_register_move_cost
1888 [ALLOCNO_MODE (a)][best][aclass]));
1889 for (k = 0; k < cost_classes_ptr->num; k++)
1890 if (ira_class_subset_p[cost_classes[k]][best])
1891 a_costs[k] = a_costs[ind];
1892 }
1893 }
1894 }
1895
1896 if (internal_flag_ira_verbose > 4 && dump_file)
1897 {
1898 if (allocno_p)
1899 print_allocno_costs (dump_file);
1900 else
1901 print_pseudo_costs (dump_file);
1902 fprintf (dump_file,"\n");
1903 }
1904 }
1905 ira_free (regno_best_class);
1906 }
1907
1908 \f
1909
1910 /* Process moves involving hard regs to modify allocno hard register
1911 costs. We can do this only after determining allocno class. If a
1912 hard register forms a register class, than moves with the hard
1913 register are already taken into account in class costs for the
1914 allocno. */
1915 static void
1916 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1917 {
1918 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1919 bool to_p;
1920 ira_allocno_t a, curr_a;
1921 ira_loop_tree_node_t curr_loop_tree_node;
1922 enum reg_class rclass;
1923 basic_block bb;
1924 rtx insn, set, src, dst;
1925
1926 bb = loop_tree_node->bb;
1927 if (bb == NULL)
1928 return;
1929 freq = REG_FREQ_FROM_BB (bb);
1930 if (freq == 0)
1931 freq = 1;
1932 FOR_BB_INSNS (bb, insn)
1933 {
1934 if (!NONDEBUG_INSN_P (insn))
1935 continue;
1936 set = single_set (insn);
1937 if (set == NULL_RTX)
1938 continue;
1939 dst = SET_DEST (set);
1940 src = SET_SRC (set);
1941 if (! REG_P (dst) || ! REG_P (src))
1942 continue;
1943 dst_regno = REGNO (dst);
1944 src_regno = REGNO (src);
1945 if (dst_regno >= FIRST_PSEUDO_REGISTER
1946 && src_regno < FIRST_PSEUDO_REGISTER)
1947 {
1948 hard_regno = src_regno;
1949 a = ira_curr_regno_allocno_map[dst_regno];
1950 to_p = true;
1951 }
1952 else if (src_regno >= FIRST_PSEUDO_REGISTER
1953 && dst_regno < FIRST_PSEUDO_REGISTER)
1954 {
1955 hard_regno = dst_regno;
1956 a = ira_curr_regno_allocno_map[src_regno];
1957 to_p = false;
1958 }
1959 else
1960 continue;
1961 rclass = ALLOCNO_CLASS (a);
1962 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1963 continue;
1964 i = ira_class_hard_reg_index[rclass][hard_regno];
1965 if (i < 0)
1966 continue;
1967 a_regno = ALLOCNO_REGNO (a);
1968 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
1969 curr_loop_tree_node != NULL;
1970 curr_loop_tree_node = curr_loop_tree_node->parent)
1971 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
1972 ira_add_allocno_pref (curr_a, hard_regno, freq);
1973 {
1974 int cost;
1975 enum reg_class hard_reg_class;
1976 enum machine_mode mode;
1977
1978 mode = ALLOCNO_MODE (a);
1979 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1980 ira_init_register_move_cost_if_necessary (mode);
1981 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1982 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1983 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1984 ALLOCNO_CLASS_COST (a));
1985 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1986 rclass, 0);
1987 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1988 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1989 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1990 ALLOCNO_HARD_REG_COSTS (a)[i]);
1991 }
1992 }
1993 }
1994
1995 /* After we find hard register and memory costs for allocnos, define
1996 its class and modify hard register cost because insns moving
1997 allocno to/from hard registers. */
1998 static void
1999 setup_allocno_class_and_costs (void)
2000 {
2001 int i, j, n, regno, hard_regno, num;
2002 int *reg_costs;
2003 enum reg_class aclass, rclass;
2004 ira_allocno_t a;
2005 ira_allocno_iterator ai;
2006 cost_classes_t cost_classes_ptr;
2007
2008 ira_assert (allocno_p);
2009 FOR_EACH_ALLOCNO (a, ai)
2010 {
2011 i = ALLOCNO_NUM (a);
2012 regno = ALLOCNO_REGNO (a);
2013 aclass = regno_aclass[regno];
2014 cost_classes_ptr = regno_cost_classes[regno];
2015 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2016 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2017 ira_set_allocno_class (a, aclass);
2018 if (aclass == NO_REGS)
2019 continue;
2020 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2021 {
2022 n = ira_class_hard_regs_num[aclass];
2023 ALLOCNO_HARD_REG_COSTS (a)
2024 = reg_costs = ira_allocate_cost_vector (aclass);
2025 for (j = n - 1; j >= 0; j--)
2026 {
2027 hard_regno = ira_class_hard_regs[aclass][j];
2028 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2029 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2030 else
2031 {
2032 rclass = REGNO_REG_CLASS (hard_regno);
2033 num = cost_classes_ptr->index[rclass];
2034 if (num < 0)
2035 {
2036 num = cost_classes_ptr->hard_regno_index[hard_regno];
2037 ira_assert (num >= 0);
2038 }
2039 reg_costs[j] = COSTS (costs, i)->cost[num];
2040 }
2041 }
2042 }
2043 }
2044 if (optimize)
2045 ira_traverse_loop_tree (true, ira_loop_tree_root,
2046 process_bb_node_for_hard_reg_moves, NULL);
2047 }
2048
2049 \f
2050
2051 /* Function called once during compiler work. */
2052 void
2053 ira_init_costs_once (void)
2054 {
2055 int i;
2056
2057 init_cost = NULL;
2058 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2059 {
2060 op_costs[i] = NULL;
2061 this_op_costs[i] = NULL;
2062 }
2063 temp_costs = NULL;
2064 }
2065
2066 /* Free allocated temporary cost vectors. */
2067 static void
2068 free_ira_costs (void)
2069 {
2070 int i;
2071
2072 free (init_cost);
2073 init_cost = NULL;
2074 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2075 {
2076 free (op_costs[i]);
2077 free (this_op_costs[i]);
2078 op_costs[i] = this_op_costs[i] = NULL;
2079 }
2080 free (temp_costs);
2081 temp_costs = NULL;
2082 }
2083
2084 /* This is called each time register related information is
2085 changed. */
2086 void
2087 ira_init_costs (void)
2088 {
2089 int i;
2090
2091 free_ira_costs ();
2092 max_struct_costs_size
2093 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2094 /* Don't use ira_allocate because vectors live through several IRA
2095 calls. */
2096 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2097 init_cost->mem_cost = 1000000;
2098 for (i = 0; i < ira_important_classes_num; i++)
2099 init_cost->cost[i] = 1000000;
2100 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2101 {
2102 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2103 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2104 }
2105 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2106 }
2107
2108 /* Function called once at the end of compiler work. */
2109 void
2110 ira_finish_costs_once (void)
2111 {
2112 free_ira_costs ();
2113 }
2114
2115 \f
2116
2117 /* Common initialization function for ira_costs and
2118 ira_set_pseudo_classes. */
2119 static void
2120 init_costs (void)
2121 {
2122 init_subregs_of_mode ();
2123 costs = (struct costs *) ira_allocate (max_struct_costs_size
2124 * cost_elements_num);
2125 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2126 * cost_elements_num);
2127 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2128 * max_reg_num ());
2129 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2130 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2131 }
2132
2133 /* Common finalization function for ira_costs and
2134 ira_set_pseudo_classes. */
2135 static void
2136 finish_costs (void)
2137 {
2138 finish_subregs_of_mode ();
2139 ira_free (regno_equiv_gains);
2140 ira_free (regno_aclass);
2141 ira_free (pref_buffer);
2142 ira_free (costs);
2143 }
2144
2145 /* Entry function which defines register class, memory and hard
2146 register costs for each allocno. */
2147 void
2148 ira_costs (void)
2149 {
2150 allocno_p = true;
2151 cost_elements_num = ira_allocnos_num;
2152 init_costs ();
2153 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2154 * ira_allocnos_num);
2155 initiate_regno_cost_classes ();
2156 calculate_elim_costs_all_insns ();
2157 find_costs_and_classes (ira_dump_file);
2158 setup_allocno_class_and_costs ();
2159 finish_regno_cost_classes ();
2160 finish_costs ();
2161 ira_free (total_allocno_costs);
2162 }
2163
2164 /* Entry function which defines classes for pseudos.
2165 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2166 void
2167 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2168 {
2169 allocno_p = false;
2170 internal_flag_ira_verbose = flag_ira_verbose;
2171 cost_elements_num = max_reg_num ();
2172 init_costs ();
2173 initiate_regno_cost_classes ();
2174 find_costs_and_classes (dump_file);
2175 finish_regno_cost_classes ();
2176 if (define_pseudo_classes)
2177 pseudo_classes_defined_p = true;
2178
2179 finish_costs ();
2180 }
2181
2182 \f
2183
2184 /* Change hard register costs for allocnos which lives through
2185 function calls. This is called only when we found all intersected
2186 calls during building allocno live ranges. */
2187 void
2188 ira_tune_allocno_costs (void)
2189 {
2190 int j, n, regno;
2191 int cost, min_cost, *reg_costs;
2192 enum reg_class aclass, rclass;
2193 enum machine_mode mode;
2194 ira_allocno_t a;
2195 ira_allocno_iterator ai;
2196 ira_allocno_object_iterator oi;
2197 ira_object_t obj;
2198 bool skip_p;
2199
2200 FOR_EACH_ALLOCNO (a, ai)
2201 {
2202 aclass = ALLOCNO_CLASS (a);
2203 if (aclass == NO_REGS)
2204 continue;
2205 mode = ALLOCNO_MODE (a);
2206 n = ira_class_hard_regs_num[aclass];
2207 min_cost = INT_MAX;
2208 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2209 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2210 {
2211 ira_allocate_and_set_costs
2212 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2213 ALLOCNO_CLASS_COST (a));
2214 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2215 for (j = n - 1; j >= 0; j--)
2216 {
2217 regno = ira_class_hard_regs[aclass][j];
2218 skip_p = false;
2219 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2220 {
2221 if (ira_hard_reg_set_intersection_p (regno, mode,
2222 OBJECT_CONFLICT_HARD_REGS
2223 (obj)))
2224 {
2225 skip_p = true;
2226 break;
2227 }
2228 }
2229 if (skip_p)
2230 continue;
2231 rclass = REGNO_REG_CLASS (regno);
2232 cost = 0;
2233 if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2234 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2235 cost += (ALLOCNO_CALL_FREQ (a)
2236 * (ira_memory_move_cost[mode][rclass][0]
2237 + ira_memory_move_cost[mode][rclass][1]));
2238 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2239 cost += ((ira_memory_move_cost[mode][rclass][0]
2240 + ira_memory_move_cost[mode][rclass][1])
2241 * ALLOCNO_FREQ (a)
2242 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2243 #endif
2244 if (INT_MAX - cost < reg_costs[j])
2245 reg_costs[j] = INT_MAX;
2246 else
2247 reg_costs[j] += cost;
2248 if (min_cost > reg_costs[j])
2249 min_cost = reg_costs[j];
2250 }
2251 }
2252 if (min_cost != INT_MAX)
2253 ALLOCNO_CLASS_COST (a) = min_cost;
2254
2255 /* Some targets allow pseudos to be allocated to unaligned sequences
2256 of hard registers. However, selecting an unaligned sequence can
2257 unnecessarily restrict later allocations. So increase the cost of
2258 unaligned hard regs to encourage the use of aligned hard regs. */
2259 {
2260 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2261
2262 if (nregs > 1)
2263 {
2264 ira_allocate_and_set_costs
2265 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2266 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2267 for (j = n - 1; j >= 0; j--)
2268 {
2269 regno = ira_non_ordered_class_hard_regs[aclass][j];
2270 if ((regno % nregs) != 0)
2271 {
2272 int index = ira_class_hard_reg_index[aclass][regno];
2273 ira_assert (index != -1);
2274 reg_costs[index] += ALLOCNO_FREQ (a);
2275 }
2276 }
2277 }
2278 }
2279 }
2280 }
2281
2282 /* Add COST to the estimated gain for eliminating REGNO with its
2283 equivalence. If COST is zero, record that no such elimination is
2284 possible. */
2285
2286 void
2287 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2288 {
2289 if (cost == 0)
2290 regno_equiv_gains[regno] = 0;
2291 else
2292 regno_equiv_gains[regno] += cost;
2293 }