Revert
[gcc.git] / gcc / ira-costs.c
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
41
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
45
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
48
49 /* Number of elements in arrays `in_inc_dec' and `costs'. */
50 static int cost_elements_num;
51
52 #ifdef FORBIDDEN_INC_DEC_CLASSES
53 /* Indexed by n, is TRUE if allocno or pseudo with number N is used in
54 an auto-inc or auto-dec context. */
55 static bool *in_inc_dec;
56 #endif
57
58 /* The `costs' struct records the cost of using hard registers of each
59 class considered for the calculation and of using memory for each
60 allocno or pseudo. */
61 struct costs
62 {
63 int mem_cost;
64 /* Costs for register classes start here. We process only some
65 register classes (cover classes on the 1st cost calculation
66 iteration and important classes on the 2nd iteration). */
67 int cost[1];
68 };
69
70 #define max_struct_costs_size \
71 (this_target_ira_int->x_max_struct_costs_size)
72 #define init_cost \
73 (this_target_ira_int->x_init_cost)
74 #define temp_costs \
75 (this_target_ira_int->x_temp_costs)
76 #define op_costs \
77 (this_target_ira_int->x_op_costs)
78 #define this_op_costs \
79 (this_target_ira_int->x_this_op_costs)
80 #define cost_classes \
81 (this_target_ira_int->x_cost_classes)
82
83 /* Costs of each class for each allocno or pseudo. */
84 static struct costs *costs;
85
86 /* Accumulated costs of each class for each allocno. */
87 static struct costs *total_allocno_costs;
88
89 /* The size of the previous array. */
90 static int cost_classes_num;
91
92 /* Map: cost class -> order number (they start with 0) of the cost
93 class. The order number is negative for non-cost classes. */
94 static int cost_class_nums[N_REG_CLASSES];
95
96 /* It is the current size of struct costs. */
97 static int struct_costs_size;
98
99 /* Return pointer to structure containing costs of allocno or pseudo
100 with given NUM in array ARR. */
101 #define COSTS(arr, num) \
102 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
103
104 /* Return index in COSTS when processing reg with REGNO. */
105 #define COST_INDEX(regno) (allocno_p \
106 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
107 : (int) regno)
108
109 /* Record register class preferences of each allocno or pseudo. Null
110 value means no preferences. It happens on the 1st iteration of the
111 cost calculation. */
112 static enum reg_class *pref;
113
114 /* Allocated buffers for pref. */
115 static enum reg_class *pref_buffer;
116
117 /* Record cover register class of each allocno with the same regno. */
118 static enum reg_class *regno_cover_class;
119
120 /* Record cost gains for not allocating a register with an invariant
121 equivalence. */
122 static int *regno_equiv_gains;
123
124 /* Execution frequency of the current insn. */
125 static int frequency;
126
127 \f
128
129 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
130 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
131 be a pseudo register. */
132 static int
133 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
134 secondary_reload_info *prev_sri)
135 {
136 secondary_reload_info sri;
137 reg_class_t secondary_class = NO_REGS;
138
139 /* If X is a SCRATCH, there is actually nothing to move since we are
140 assuming optimal allocation. */
141 if (GET_CODE (x) == SCRATCH)
142 return 0;
143
144 /* Get the class we will actually use for a reload. */
145 rclass = targetm.preferred_reload_class (x, rclass);
146
147 /* If we need a secondary reload for an intermediate, the cost is
148 that to load the input into the intermediate register, then to
149 copy it. */
150 sri.prev_sri = prev_sri;
151 sri.extra_cost = 0;
152 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
153
154 if (secondary_class != NO_REGS)
155 {
156 if (!move_cost[mode])
157 init_move_cost (mode);
158 return (move_cost[mode][(int) secondary_class][(int) rclass]
159 + sri.extra_cost
160 + copy_cost (x, mode, secondary_class, to_p, &sri));
161 }
162
163 /* For memory, use the memory move cost, for (hard) registers, use
164 the cost to move between the register classes, and use 2 for
165 everything else (constants). */
166 if (MEM_P (x) || rclass == NO_REGS)
167 return sri.extra_cost
168 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
169 else if (REG_P (x))
170 {
171 if (!move_cost[mode])
172 init_move_cost (mode);
173 return (sri.extra_cost
174 + move_cost[mode][REGNO_REG_CLASS (REGNO (x))][(int) rclass]);
175 }
176 else
177 /* If this is a constant, we may eventually want to call rtx_cost
178 here. */
179 return sri.extra_cost + COSTS_N_INSNS (1);
180 }
181
182 \f
183
184 /* Record the cost of using memory or hard registers of various
185 classes for the operands in INSN.
186
187 N_ALTS is the number of alternatives.
188 N_OPS is the number of operands.
189 OPS is an array of the operands.
190 MODES are the modes of the operands, in case any are VOIDmode.
191 CONSTRAINTS are the constraints to use for the operands. This array
192 is modified by this procedure.
193
194 This procedure works alternative by alternative. For each
195 alternative we assume that we will be able to allocate all allocnos
196 to their ideal register class and calculate the cost of using that
197 alternative. Then we compute, for each operand that is a
198 pseudo-register, the cost of having the allocno allocated to each
199 register class and using it in that alternative. To this cost is
200 added the cost of the alternative.
201
202 The cost of each class for this insn is its lowest cost among all
203 the alternatives. */
204 static void
205 record_reg_classes (int n_alts, int n_ops, rtx *ops,
206 enum machine_mode *modes, const char **constraints,
207 rtx insn, enum reg_class *pref)
208 {
209 int alt;
210 int i, j, k;
211 rtx set;
212 int insn_allows_mem[MAX_RECOG_OPERANDS];
213
214 for (i = 0; i < n_ops; i++)
215 insn_allows_mem[i] = 0;
216
217 /* Process each alternative, each time minimizing an operand's cost
218 with the cost for each operand in that alternative. */
219 for (alt = 0; alt < n_alts; alt++)
220 {
221 enum reg_class classes[MAX_RECOG_OPERANDS];
222 int allows_mem[MAX_RECOG_OPERANDS];
223 enum reg_class rclass;
224 int alt_fail = 0;
225 int alt_cost = 0, op_cost_add;
226
227 if (!recog_data.alternative_enabled_p[alt])
228 {
229 for (i = 0; i < recog_data.n_operands; i++)
230 constraints[i] = skip_alternative (constraints[i]);
231
232 continue;
233 }
234
235 for (i = 0; i < n_ops; i++)
236 {
237 unsigned char c;
238 const char *p = constraints[i];
239 rtx op = ops[i];
240 enum machine_mode mode = modes[i];
241 int allows_addr = 0;
242 int win = 0;
243
244 /* Initially show we know nothing about the register class. */
245 classes[i] = NO_REGS;
246 allows_mem[i] = 0;
247
248 /* If this operand has no constraints at all, we can
249 conclude nothing about it since anything is valid. */
250 if (*p == 0)
251 {
252 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
253 memset (this_op_costs[i], 0, struct_costs_size);
254 continue;
255 }
256
257 /* If this alternative is only relevant when this operand
258 matches a previous operand, we do different things
259 depending on whether this operand is a allocno-reg or not.
260 We must process any modifiers for the operand before we
261 can make this test. */
262 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
263 p++;
264
265 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
266 {
267 /* Copy class and whether memory is allowed from the
268 matching alternative. Then perform any needed cost
269 computations and/or adjustments. */
270 j = p[0] - '0';
271 classes[i] = classes[j];
272 allows_mem[i] = allows_mem[j];
273 if (allows_mem[i])
274 insn_allows_mem[i] = 1;
275
276 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
277 {
278 /* If this matches the other operand, we have no
279 added cost and we win. */
280 if (rtx_equal_p (ops[j], op))
281 win = 1;
282 /* If we can put the other operand into a register,
283 add to the cost of this alternative the cost to
284 copy this operand to the register used for the
285 other operand. */
286 else if (classes[j] != NO_REGS)
287 {
288 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
289 win = 1;
290 }
291 }
292 else if (! REG_P (ops[j])
293 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
294 {
295 /* This op is an allocno but the one it matches is
296 not. */
297
298 /* If we can't put the other operand into a
299 register, this alternative can't be used. */
300
301 if (classes[j] == NO_REGS)
302 alt_fail = 1;
303 /* Otherwise, add to the cost of this alternative
304 the cost to copy the other operand to the hard
305 register used for this operand. */
306 else
307 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
308 }
309 else
310 {
311 /* The costs of this operand are not the same as the
312 other operand since move costs are not symmetric.
313 Moreover, if we cannot tie them, this alternative
314 needs to do a copy, which is one insn. */
315 struct costs *pp = this_op_costs[i];
316
317 for (k = 0; k < cost_classes_num; k++)
318 {
319 rclass = cost_classes[k];
320 pp->cost[k]
321 = (((recog_data.operand_type[i] != OP_OUT
322 ? ira_get_may_move_cost (mode, rclass,
323 classes[i], true) : 0)
324 + (recog_data.operand_type[i] != OP_IN
325 ? ira_get_may_move_cost (mode, classes[i],
326 rclass, false) : 0))
327 * frequency);
328 }
329
330 /* If the alternative actually allows memory, make
331 things a bit cheaper since we won't need an extra
332 insn to load it. */
333 pp->mem_cost
334 = ((recog_data.operand_type[i] != OP_IN
335 ? ira_memory_move_cost[mode][classes[i]][0] : 0)
336 + (recog_data.operand_type[i] != OP_OUT
337 ? ira_memory_move_cost[mode][classes[i]][1] : 0)
338 - allows_mem[i]) * frequency;
339
340 /* If we have assigned a class to this allocno in our
341 first pass, add a cost to this alternative
342 corresponding to what we would add if this allocno
343 were not in the appropriate class. We could use
344 cover class here but it is less accurate
345 approximation. */
346 if (pref)
347 {
348 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
349
350 if (pref_class == NO_REGS)
351 alt_cost
352 += ((recog_data.operand_type[i] != OP_IN
353 ? ira_memory_move_cost[mode][classes[i]][0]
354 : 0)
355 + (recog_data.operand_type[i] != OP_OUT
356 ? ira_memory_move_cost[mode][classes[i]][1]
357 : 0));
358 else if (ira_reg_class_intersect
359 [pref_class][classes[i]] == NO_REGS)
360 alt_cost += ira_get_register_move_cost (mode,
361 pref_class,
362 classes[i]);
363 }
364 if (REGNO (ops[i]) != REGNO (ops[j])
365 && ! find_reg_note (insn, REG_DEAD, op))
366 alt_cost += 2;
367
368 /* This is in place of ordinary cost computation for
369 this operand, so skip to the end of the
370 alternative (should be just one character). */
371 while (*p && *p++ != ',')
372 ;
373
374 constraints[i] = p;
375 continue;
376 }
377 }
378
379 /* Scan all the constraint letters. See if the operand
380 matches any of the constraints. Collect the valid
381 register classes and see if this operand accepts
382 memory. */
383 while ((c = *p))
384 {
385 switch (c)
386 {
387 case ',':
388 break;
389 case '*':
390 /* Ignore the next letter for this pass. */
391 c = *++p;
392 break;
393
394 case '?':
395 alt_cost += 2;
396 case '!': case '#': case '&':
397 case '0': case '1': case '2': case '3': case '4':
398 case '5': case '6': case '7': case '8': case '9':
399 break;
400
401 case 'p':
402 allows_addr = 1;
403 win = address_operand (op, GET_MODE (op));
404 /* We know this operand is an address, so we want it
405 to be allocated to a register that can be the
406 base of an address, i.e. BASE_REG_CLASS. */
407 classes[i]
408 = ira_reg_class_union[classes[i]]
409 [base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
410 break;
411
412 case 'm': case 'o': case 'V':
413 /* It doesn't seem worth distinguishing between
414 offsettable and non-offsettable addresses
415 here. */
416 insn_allows_mem[i] = allows_mem[i] = 1;
417 if (MEM_P (op))
418 win = 1;
419 break;
420
421 case '<':
422 if (MEM_P (op)
423 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
424 || GET_CODE (XEXP (op, 0)) == POST_DEC))
425 win = 1;
426 break;
427
428 case '>':
429 if (MEM_P (op)
430 && (GET_CODE (XEXP (op, 0)) == PRE_INC
431 || GET_CODE (XEXP (op, 0)) == POST_INC))
432 win = 1;
433 break;
434
435 case 'E':
436 case 'F':
437 if (GET_CODE (op) == CONST_DOUBLE
438 || (GET_CODE (op) == CONST_VECTOR
439 && (GET_MODE_CLASS (GET_MODE (op))
440 == MODE_VECTOR_FLOAT)))
441 win = 1;
442 break;
443
444 case 'G':
445 case 'H':
446 if (GET_CODE (op) == CONST_DOUBLE
447 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
448 win = 1;
449 break;
450
451 case 's':
452 if (CONST_INT_P (op)
453 || (GET_CODE (op) == CONST_DOUBLE
454 && GET_MODE (op) == VOIDmode))
455 break;
456
457 case 'i':
458 if (CONSTANT_P (op)
459 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
460 win = 1;
461 break;
462
463 case 'n':
464 if (CONST_INT_P (op)
465 || (GET_CODE (op) == CONST_DOUBLE
466 && GET_MODE (op) == VOIDmode))
467 win = 1;
468 break;
469
470 case 'I':
471 case 'J':
472 case 'K':
473 case 'L':
474 case 'M':
475 case 'N':
476 case 'O':
477 case 'P':
478 if (CONST_INT_P (op)
479 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
480 win = 1;
481 break;
482
483 case 'X':
484 win = 1;
485 break;
486
487 case 'g':
488 if (MEM_P (op)
489 || (CONSTANT_P (op)
490 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
491 win = 1;
492 insn_allows_mem[i] = allows_mem[i] = 1;
493 case 'r':
494 classes[i] = ira_reg_class_union[classes[i]][GENERAL_REGS];
495 break;
496
497 default:
498 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
499 classes[i] = ira_reg_class_union[classes[i]]
500 [REG_CLASS_FROM_CONSTRAINT (c, p)];
501 #ifdef EXTRA_CONSTRAINT_STR
502 else if (EXTRA_CONSTRAINT_STR (op, c, p))
503 win = 1;
504
505 if (EXTRA_MEMORY_CONSTRAINT (c, p))
506 {
507 /* Every MEM can be reloaded to fit. */
508 insn_allows_mem[i] = allows_mem[i] = 1;
509 if (MEM_P (op))
510 win = 1;
511 }
512 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
513 {
514 /* Every address can be reloaded to fit. */
515 allows_addr = 1;
516 if (address_operand (op, GET_MODE (op)))
517 win = 1;
518 /* We know this operand is an address, so we
519 want it to be allocated to a hard register
520 that can be the base of an address,
521 i.e. BASE_REG_CLASS. */
522 classes[i]
523 = ira_reg_class_union[classes[i]]
524 [base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
525 }
526 #endif
527 break;
528 }
529 p += CONSTRAINT_LEN (c, p);
530 if (c == ',')
531 break;
532 }
533
534 constraints[i] = p;
535
536 /* How we account for this operand now depends on whether it
537 is a pseudo register or not. If it is, we first check if
538 any register classes are valid. If not, we ignore this
539 alternative, since we want to assume that all allocnos get
540 allocated for register preferencing. If some register
541 class is valid, compute the costs of moving the allocno
542 into that class. */
543 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
544 {
545 if (classes[i] == NO_REGS)
546 {
547 /* We must always fail if the operand is a REG, but
548 we did not find a suitable class.
549
550 Otherwise we may perform an uninitialized read
551 from this_op_costs after the `continue' statement
552 below. */
553 alt_fail = 1;
554 }
555 else
556 {
557 struct costs *pp = this_op_costs[i];
558
559 for (k = 0; k < cost_classes_num; k++)
560 {
561 rclass = cost_classes[k];
562 pp->cost[k]
563 = (((recog_data.operand_type[i] != OP_OUT
564 ? ira_get_may_move_cost (mode, rclass,
565 classes[i], true) : 0)
566 + (recog_data.operand_type[i] != OP_IN
567 ? ira_get_may_move_cost (mode, classes[i],
568 rclass, false) : 0))
569 * frequency);
570 }
571
572 /* If the alternative actually allows memory, make
573 things a bit cheaper since we won't need an extra
574 insn to load it. */
575 pp->mem_cost
576 = ((recog_data.operand_type[i] != OP_IN
577 ? ira_memory_move_cost[mode][classes[i]][0] : 0)
578 + (recog_data.operand_type[i] != OP_OUT
579 ? ira_memory_move_cost[mode][classes[i]][1] : 0)
580 - allows_mem[i]) * frequency;
581 /* If we have assigned a class to this allocno in our
582 first pass, add a cost to this alternative
583 corresponding to what we would add if this allocno
584 were not in the appropriate class. We could use
585 cover class here but it is less accurate
586 approximation. */
587 if (pref)
588 {
589 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
590
591 if (pref_class == NO_REGS)
592 alt_cost
593 += ((recog_data.operand_type[i] != OP_IN
594 ? ira_memory_move_cost[mode][classes[i]][0]
595 : 0)
596 + (recog_data.operand_type[i] != OP_OUT
597 ? ira_memory_move_cost[mode][classes[i]][1]
598 : 0));
599 else if (ira_reg_class_intersect[pref_class][classes[i]]
600 == NO_REGS)
601 alt_cost += ira_get_register_move_cost (mode,
602 pref_class,
603 classes[i]);
604 }
605 }
606 }
607
608 /* Otherwise, if this alternative wins, either because we
609 have already determined that or if we have a hard
610 register of the proper class, there is no cost for this
611 alternative. */
612 else if (win || (REG_P (op)
613 && reg_fits_class_p (op, classes[i],
614 0, GET_MODE (op))))
615 ;
616
617 /* If registers are valid, the cost of this alternative
618 includes copying the object to and/or from a
619 register. */
620 else if (classes[i] != NO_REGS)
621 {
622 if (recog_data.operand_type[i] != OP_OUT)
623 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
624
625 if (recog_data.operand_type[i] != OP_IN)
626 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
627 }
628 /* The only other way this alternative can be used is if
629 this is a constant that could be placed into memory. */
630 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
631 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
632 else
633 alt_fail = 1;
634 }
635
636 if (alt_fail)
637 continue;
638
639 op_cost_add = alt_cost * frequency;
640 /* Finally, update the costs with the information we've
641 calculated about this alternative. */
642 for (i = 0; i < n_ops; i++)
643 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
644 {
645 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
646 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
647
648 pp->mem_cost = MIN (pp->mem_cost,
649 (qq->mem_cost + op_cost_add) * scale);
650
651 for (k = 0; k < cost_classes_num; k++)
652 pp->cost[k]
653 = MIN (pp->cost[k], (qq->cost[k] + op_cost_add) * scale);
654 }
655 }
656
657 if (allocno_p)
658 for (i = 0; i < n_ops; i++)
659 {
660 ira_allocno_t a;
661 rtx op = ops[i];
662
663 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
664 continue;
665 a = ira_curr_regno_allocno_map [REGNO (op)];
666 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
667 ALLOCNO_BAD_SPILL_P (a) = true;
668 }
669
670 /* If this insn is a single set copying operand 1 to operand 0 and
671 one operand is an allocno with the other a hard reg or an allocno
672 that prefers a hard register that is in its own register class
673 then we may want to adjust the cost of that register class to -1.
674
675 Avoid the adjustment if the source does not die to avoid
676 stressing of register allocator by preferrencing two colliding
677 registers into single class.
678
679 Also avoid the adjustment if a copy between hard registers of the
680 class is expensive (ten times the cost of a default copy is
681 considered arbitrarily expensive). This avoids losing when the
682 preferred class is very expensive as the source of a copy
683 instruction. */
684 if ((set = single_set (insn)) != 0
685 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
686 && REG_P (ops[0]) && REG_P (ops[1])
687 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
688 for (i = 0; i <= 1; i++)
689 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
690 {
691 unsigned int regno = REGNO (ops[!i]);
692 enum machine_mode mode = GET_MODE (ops[!i]);
693 enum reg_class rclass;
694 unsigned int nr;
695
696 if (regno < FIRST_PSEUDO_REGISTER)
697 for (k = 0; k < cost_classes_num; k++)
698 {
699 rclass = cost_classes[k];
700 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
701 && (reg_class_size[rclass]
702 == (unsigned) CLASS_MAX_NREGS (rclass, mode)))
703 {
704 if (reg_class_size[rclass] == 1)
705 op_costs[i]->cost[k] = -frequency;
706 else
707 {
708 for (nr = 0;
709 nr < (unsigned) hard_regno_nregs[regno][mode];
710 nr++)
711 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
712 regno + nr))
713 break;
714
715 if (nr == (unsigned) hard_regno_nregs[regno][mode])
716 op_costs[i]->cost[k] = -frequency;
717 }
718 }
719 }
720 }
721 }
722
723 \f
724
725 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
726 static inline bool
727 ok_for_index_p_nonstrict (rtx reg)
728 {
729 unsigned regno = REGNO (reg);
730
731 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
732 }
733
734 /* A version of regno_ok_for_base_p for use here, when all
735 pseudo-registers should count as OK. Arguments as for
736 regno_ok_for_base_p. */
737 static inline bool
738 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
739 enum rtx_code outer_code, enum rtx_code index_code)
740 {
741 unsigned regno = REGNO (reg);
742
743 if (regno >= FIRST_PSEUDO_REGISTER)
744 return true;
745 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
746 }
747
748 /* Record the pseudo registers we must reload into hard registers in a
749 subexpression of a memory address, X.
750
751 If CONTEXT is 0, we are looking at the base part of an address,
752 otherwise we are looking at the index part.
753
754 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
755 give the context that the rtx appears in. These three arguments
756 are passed down to base_reg_class.
757
758 SCALE is twice the amount to multiply the cost by (it is twice so
759 we can represent half-cost adjustments). */
760 static void
761 record_address_regs (enum machine_mode mode, rtx x, int context,
762 enum rtx_code outer_code, enum rtx_code index_code,
763 int scale)
764 {
765 enum rtx_code code = GET_CODE (x);
766 enum reg_class rclass;
767
768 if (context == 1)
769 rclass = INDEX_REG_CLASS;
770 else
771 rclass = base_reg_class (mode, outer_code, index_code);
772
773 switch (code)
774 {
775 case CONST_INT:
776 case CONST:
777 case CC0:
778 case PC:
779 case SYMBOL_REF:
780 case LABEL_REF:
781 return;
782
783 case PLUS:
784 /* When we have an address that is a sum, we must determine
785 whether registers are "base" or "index" regs. If there is a
786 sum of two registers, we must choose one to be the "base".
787 Luckily, we can use the REG_POINTER to make a good choice
788 most of the time. We only need to do this on machines that
789 can have two registers in an address and where the base and
790 index register classes are different.
791
792 ??? This code used to set REGNO_POINTER_FLAG in some cases,
793 but that seems bogus since it should only be set when we are
794 sure the register is being used as a pointer. */
795 {
796 rtx arg0 = XEXP (x, 0);
797 rtx arg1 = XEXP (x, 1);
798 enum rtx_code code0 = GET_CODE (arg0);
799 enum rtx_code code1 = GET_CODE (arg1);
800
801 /* Look inside subregs. */
802 if (code0 == SUBREG)
803 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
804 if (code1 == SUBREG)
805 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
806
807 /* If this machine only allows one register per address, it
808 must be in the first operand. */
809 if (MAX_REGS_PER_ADDRESS == 1)
810 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
811
812 /* If index and base registers are the same on this machine,
813 just record registers in any non-constant operands. We
814 assume here, as well as in the tests below, that all
815 addresses are in canonical form. */
816 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
817 {
818 record_address_regs (mode, arg0, context, PLUS, code1, scale);
819 if (! CONSTANT_P (arg1))
820 record_address_regs (mode, arg1, context, PLUS, code0, scale);
821 }
822
823 /* If the second operand is a constant integer, it doesn't
824 change what class the first operand must be. */
825 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
826 record_address_regs (mode, arg0, context, PLUS, code1, scale);
827 /* If the second operand is a symbolic constant, the first
828 operand must be an index register. */
829 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
830 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
831 /* If both operands are registers but one is already a hard
832 register of index or reg-base class, give the other the
833 class that the hard register is not. */
834 else if (code0 == REG && code1 == REG
835 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
836 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
837 || ok_for_index_p_nonstrict (arg0)))
838 record_address_regs (mode, arg1,
839 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
840 ? 1 : 0,
841 PLUS, REG, scale);
842 else if (code0 == REG && code1 == REG
843 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
844 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
845 || ok_for_index_p_nonstrict (arg1)))
846 record_address_regs (mode, arg0,
847 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
848 ? 1 : 0,
849 PLUS, REG, scale);
850 /* If one operand is known to be a pointer, it must be the
851 base with the other operand the index. Likewise if the
852 other operand is a MULT. */
853 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
854 {
855 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
856 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
857 }
858 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
859 {
860 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
861 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
862 }
863 /* Otherwise, count equal chances that each might be a base or
864 index register. This case should be rare. */
865 else
866 {
867 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
868 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
869 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
870 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
871 }
872 }
873 break;
874
875 /* Double the importance of an allocno that is incremented or
876 decremented, since it would take two extra insns if it ends
877 up in the wrong place. */
878 case POST_MODIFY:
879 case PRE_MODIFY:
880 record_address_regs (mode, XEXP (x, 0), 0, code,
881 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
882 if (REG_P (XEXP (XEXP (x, 1), 1)))
883 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
884 2 * scale);
885 break;
886
887 case POST_INC:
888 case PRE_INC:
889 case POST_DEC:
890 case PRE_DEC:
891 /* Double the importance of an allocno that is incremented or
892 decremented, since it would take two extra insns if it ends
893 up in the wrong place. If the operand is a pseudo-register,
894 show it is being used in an INC_DEC context. */
895 #ifdef FORBIDDEN_INC_DEC_CLASSES
896 if (REG_P (XEXP (x, 0))
897 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
898 in_inc_dec[COST_INDEX (REGNO (XEXP (x, 0)))] = true;
899 #endif
900 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
901 break;
902
903 case REG:
904 {
905 struct costs *pp;
906 enum reg_class i;
907 int k;
908
909 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
910 break;
911
912 if (allocno_p)
913 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[REGNO (x)]) = true;
914 pp = COSTS (costs, COST_INDEX (REGNO (x)));
915 pp->mem_cost += (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
916 for (k = 0; k < cost_classes_num; k++)
917 {
918 i = cost_classes[k];
919 pp->cost[k]
920 += (ira_get_may_move_cost (Pmode, i, rclass, true) * scale) / 2;
921 }
922 }
923 break;
924
925 default:
926 {
927 const char *fmt = GET_RTX_FORMAT (code);
928 int i;
929 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
930 if (fmt[i] == 'e')
931 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
932 scale);
933 }
934 }
935 }
936
937 \f
938
939 /* Calculate the costs of insn operands. */
940 static void
941 record_operand_costs (rtx insn, enum reg_class *pref)
942 {
943 const char *constraints[MAX_RECOG_OPERANDS];
944 enum machine_mode modes[MAX_RECOG_OPERANDS];
945 int i;
946
947 for (i = 0; i < recog_data.n_operands; i++)
948 {
949 constraints[i] = recog_data.constraints[i];
950 modes[i] = recog_data.operand_mode[i];
951 }
952
953 /* If we get here, we are set up to record the costs of all the
954 operands for this insn. Start by initializing the costs. Then
955 handle any address registers. Finally record the desired classes
956 for any allocnos, doing it twice if some pair of operands are
957 commutative. */
958 for (i = 0; i < recog_data.n_operands; i++)
959 {
960 memcpy (op_costs[i], init_cost, struct_costs_size);
961
962 if (GET_CODE (recog_data.operand[i]) == SUBREG)
963 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
964
965 if (MEM_P (recog_data.operand[i]))
966 record_address_regs (GET_MODE (recog_data.operand[i]),
967 XEXP (recog_data.operand[i], 0),
968 0, MEM, SCRATCH, frequency * 2);
969 else if (constraints[i][0] == 'p'
970 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
971 constraints[i]))
972 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
973 SCRATCH, frequency * 2);
974 }
975
976 /* Check for commutative in a separate loop so everything will have
977 been initialized. We must do this even if one operand is a
978 constant--see addsi3 in m68k.md. */
979 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
980 if (constraints[i][0] == '%')
981 {
982 const char *xconstraints[MAX_RECOG_OPERANDS];
983 int j;
984
985 /* Handle commutative operands by swapping the constraints.
986 We assume the modes are the same. */
987 for (j = 0; j < recog_data.n_operands; j++)
988 xconstraints[j] = constraints[j];
989
990 xconstraints[i] = constraints[i+1];
991 xconstraints[i+1] = constraints[i];
992 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
993 recog_data.operand, modes,
994 xconstraints, insn, pref);
995 }
996 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
997 recog_data.operand, modes,
998 constraints, insn, pref);
999 }
1000
1001 \f
1002
1003 /* Process one insn INSN. Scan it and record each time it would save
1004 code to put a certain allocnos in a certain class. Return the last
1005 insn processed, so that the scan can be continued from there. */
1006 static rtx
1007 scan_one_insn (rtx insn)
1008 {
1009 enum rtx_code pat_code;
1010 rtx set, note;
1011 int i, k;
1012
1013 if (!NONDEBUG_INSN_P (insn))
1014 return insn;
1015
1016 pat_code = GET_CODE (PATTERN (insn));
1017 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
1018 || pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
1019 return insn;
1020
1021 set = single_set (insn);
1022 extract_insn (insn);
1023
1024 /* If this insn loads a parameter from its stack slot, then it
1025 represents a savings, rather than a cost, if the parameter is
1026 stored in memory. Record this fact. */
1027 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1028 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1029 && MEM_P (XEXP (note, 0)))
1030 {
1031 enum reg_class cl = GENERAL_REGS;
1032 rtx reg = SET_DEST (set);
1033 int num = COST_INDEX (REGNO (reg));
1034
1035 if (pref)
1036 cl = pref[num];
1037 COSTS (costs, num)->mem_cost
1038 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1039 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1040 0, MEM, SCRATCH, frequency * 2);
1041 }
1042
1043 record_operand_costs (insn, pref);
1044
1045 /* Now add the cost for each operand to the total costs for its
1046 allocno. */
1047 for (i = 0; i < recog_data.n_operands; i++)
1048 if (REG_P (recog_data.operand[i])
1049 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1050 {
1051 int regno = REGNO (recog_data.operand[i]);
1052 struct costs *p = COSTS (costs, COST_INDEX (regno));
1053 struct costs *q = op_costs[i];
1054
1055 p->mem_cost += q->mem_cost;
1056 for (k = 0; k < cost_classes_num; k++)
1057 p->cost[k] += q->cost[k];
1058 }
1059
1060 return insn;
1061 }
1062
1063 \f
1064
1065 /* Print allocnos costs to file F. */
1066 static void
1067 print_allocno_costs (FILE *f)
1068 {
1069 int k;
1070 ira_allocno_t a;
1071 ira_allocno_iterator ai;
1072
1073 ira_assert (allocno_p);
1074 fprintf (f, "\n");
1075 FOR_EACH_ALLOCNO (a, ai)
1076 {
1077 int i, rclass;
1078 basic_block bb;
1079 int regno = ALLOCNO_REGNO (a);
1080
1081 i = ALLOCNO_NUM (a);
1082 fprintf (f, " a%d(r%d,", i, regno);
1083 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1084 fprintf (f, "b%d", bb->index);
1085 else
1086 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1087 fprintf (f, ") costs:");
1088 for (k = 0; k < cost_classes_num; k++)
1089 {
1090 rclass = cost_classes[k];
1091 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1092 #ifdef FORBIDDEN_INC_DEC_CLASSES
1093 && (! in_inc_dec[i] || ! forbidden_inc_dec_class[rclass])
1094 #endif
1095 #ifdef CANNOT_CHANGE_MODE_CLASS
1096 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1097 #endif
1098 )
1099 {
1100 fprintf (f, " %s:%d", reg_class_names[rclass],
1101 COSTS (costs, i)->cost[k]);
1102 if (flag_ira_region == IRA_REGION_ALL
1103 || flag_ira_region == IRA_REGION_MIXED)
1104 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1105 }
1106 }
1107 fprintf (f, " MEM:%i\n", COSTS (costs, i)->mem_cost);
1108 }
1109 }
1110
1111 /* Print pseudo costs to file F. */
1112 static void
1113 print_pseudo_costs (FILE *f)
1114 {
1115 int regno, k;
1116 int rclass;
1117
1118 ira_assert (! allocno_p);
1119 fprintf (f, "\n");
1120 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1121 {
1122 if (regno_reg_rtx[regno] == NULL_RTX)
1123 continue;
1124 fprintf (f, " r%d costs:", regno);
1125 for (k = 0; k < cost_classes_num; k++)
1126 {
1127 rclass = cost_classes[k];
1128 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1129 #ifdef FORBIDDEN_INC_DEC_CLASSES
1130 && (! in_inc_dec[regno] || ! forbidden_inc_dec_class[rclass])
1131 #endif
1132 #ifdef CANNOT_CHANGE_MODE_CLASS
1133 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1134 #endif
1135 )
1136 fprintf (f, " %s:%d", reg_class_names[rclass],
1137 COSTS (costs, regno)->cost[k]);
1138 }
1139 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1140 }
1141 }
1142
1143 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1144 costs. */
1145 static void
1146 process_bb_for_costs (basic_block bb)
1147 {
1148 rtx insn;
1149
1150 frequency = REG_FREQ_FROM_BB (bb);
1151 if (frequency == 0)
1152 frequency = 1;
1153 FOR_BB_INSNS (bb, insn)
1154 insn = scan_one_insn (insn);
1155 }
1156
1157 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1158 costs. */
1159 static void
1160 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1161 {
1162 basic_block bb;
1163
1164 bb = loop_tree_node->bb;
1165 if (bb != NULL)
1166 process_bb_for_costs (bb);
1167 }
1168
1169 /* Find costs of register classes and memory for allocnos or pseudos
1170 and their best costs. Set up preferred, alternative and cover
1171 classes for pseudos. */
1172 static void
1173 find_costs_and_classes (FILE *dump_file)
1174 {
1175 int i, k, start;
1176 int pass;
1177 basic_block bb;
1178
1179 init_recog ();
1180 #ifdef FORBIDDEN_INC_DEC_CLASSES
1181 in_inc_dec = ira_allocate (sizeof (bool) * cost_elements_num);
1182 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1183 pref = NULL;
1184 start = 0;
1185 if (!resize_reg_info () && allocno_p && pseudo_classes_defined_p)
1186 {
1187 ira_allocno_t a;
1188 ira_allocno_iterator ai;
1189
1190 pref = pref_buffer;
1191 FOR_EACH_ALLOCNO (a, ai)
1192 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1193 if (flag_expensive_optimizations)
1194 start = 1;
1195 }
1196 if (allocno_p)
1197 /* Clear the flag for the next compiled function. */
1198 pseudo_classes_defined_p = false;
1199 /* Normally we scan the insns once and determine the best class to
1200 use for each allocno. However, if -fexpensive-optimizations are
1201 on, we do so twice, the second time using the tentative best
1202 classes to guide the selection. */
1203 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1204 {
1205 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1206 fprintf (dump_file,
1207 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1208 /* We could use only cover classes. Unfortunately it does not
1209 work well for some targets where some subclass of cover class
1210 is costly and wrong cover class is chosen. */
1211 for (i = 0; i < N_REG_CLASSES; i++)
1212 cost_class_nums[i] = -1;
1213 for (cost_classes_num = 0;
1214 cost_classes_num < ira_important_classes_num;
1215 cost_classes_num++)
1216 {
1217 cost_classes[cost_classes_num]
1218 = ira_important_classes[cost_classes_num];
1219 cost_class_nums[cost_classes[cost_classes_num]]
1220 = cost_classes_num;
1221 }
1222 struct_costs_size
1223 = sizeof (struct costs) + sizeof (int) * (cost_classes_num - 1);
1224 /* Zero out our accumulation of the cost of each class for each
1225 allocno. */
1226 memset (costs, 0, cost_elements_num * struct_costs_size);
1227 #ifdef FORBIDDEN_INC_DEC_CLASSES
1228 memset (in_inc_dec, 0, cost_elements_num * sizeof (bool));
1229 #endif
1230
1231 if (allocno_p)
1232 {
1233 /* Scan the instructions and record each time it would save code
1234 to put a certain allocno in a certain class. */
1235 ira_traverse_loop_tree (true, ira_loop_tree_root,
1236 process_bb_node_for_costs, NULL);
1237
1238 memcpy (total_allocno_costs, costs,
1239 max_struct_costs_size * ira_allocnos_num);
1240 }
1241 else
1242 {
1243 basic_block bb;
1244
1245 FOR_EACH_BB (bb)
1246 process_bb_for_costs (bb);
1247 }
1248
1249 if (pass == 0)
1250 pref = pref_buffer;
1251
1252 /* Now for each allocno look at how desirable each class is and
1253 find which class is preferred. */
1254 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1255 {
1256 ira_allocno_t a, parent_a;
1257 int rclass, a_num, parent_a_num;
1258 ira_loop_tree_node_t parent;
1259 int best_cost, allocno_cost;
1260 enum reg_class best, alt_class;
1261 #ifdef FORBIDDEN_INC_DEC_CLASSES
1262 int inc_dec_p = false;
1263 #endif
1264 int equiv_savings = regno_equiv_gains[i];
1265
1266 if (! allocno_p)
1267 {
1268 if (regno_reg_rtx[i] == NULL_RTX)
1269 continue;
1270 #ifdef FORBIDDEN_INC_DEC_CLASSES
1271 inc_dec_p = in_inc_dec[i];
1272 #endif
1273 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1274 }
1275 else
1276 {
1277 if (ira_regno_allocno_map[i] == NULL)
1278 continue;
1279 memset (temp_costs, 0, struct_costs_size);
1280 /* Find cost of all allocnos with the same regno. */
1281 for (a = ira_regno_allocno_map[i];
1282 a != NULL;
1283 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1284 {
1285 a_num = ALLOCNO_NUM (a);
1286 if ((flag_ira_region == IRA_REGION_ALL
1287 || flag_ira_region == IRA_REGION_MIXED)
1288 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1289 && (parent_a = parent->regno_allocno_map[i]) != NULL
1290 /* There are no caps yet. */
1291 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1292 (a)->border_allocnos,
1293 ALLOCNO_NUM (a)))
1294 {
1295 /* Propagate costs to upper levels in the region
1296 tree. */
1297 parent_a_num = ALLOCNO_NUM (parent_a);
1298 for (k = 0; k < cost_classes_num; k++)
1299 COSTS (total_allocno_costs, parent_a_num)->cost[k]
1300 += COSTS (total_allocno_costs, a_num)->cost[k];
1301 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1302 += COSTS (total_allocno_costs, a_num)->mem_cost;
1303 }
1304 for (k = 0; k < cost_classes_num; k++)
1305 temp_costs->cost[k] += COSTS (costs, a_num)->cost[k];
1306 temp_costs->mem_cost += COSTS (costs, a_num)->mem_cost;
1307 #ifdef FORBIDDEN_INC_DEC_CLASSES
1308 if (in_inc_dec[a_num])
1309 inc_dec_p = true;
1310 #endif
1311 }
1312 }
1313 if (equiv_savings < 0)
1314 temp_costs->mem_cost = -equiv_savings;
1315 else if (equiv_savings > 0)
1316 {
1317 temp_costs->mem_cost = 0;
1318 for (k = 0; k < cost_classes_num; k++)
1319 temp_costs->cost[k] += equiv_savings;
1320 }
1321
1322 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1323 best = ALL_REGS;
1324 alt_class = NO_REGS;
1325 /* Find best common class for all allocnos with the same
1326 regno. */
1327 for (k = 0; k < cost_classes_num; k++)
1328 {
1329 rclass = cost_classes[k];
1330 /* Ignore classes that are too small for this operand or
1331 invalid for an operand that was auto-incremented. */
1332 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1333 #ifdef FORBIDDEN_INC_DEC_CLASSES
1334 || (inc_dec_p && forbidden_inc_dec_class[rclass])
1335 #endif
1336 #ifdef CANNOT_CHANGE_MODE_CLASS
1337 || invalid_mode_change_p (i, (enum reg_class) rclass)
1338 #endif
1339 )
1340 continue;
1341 if (temp_costs->cost[k] < best_cost)
1342 {
1343 best_cost = temp_costs->cost[k];
1344 best = (enum reg_class) rclass;
1345 }
1346 else if (temp_costs->cost[k] == best_cost)
1347 best = ira_reg_class_union[best][rclass];
1348 if (pass == flag_expensive_optimizations
1349 && temp_costs->cost[k] < temp_costs->mem_cost
1350 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1351 > reg_class_size[alt_class]))
1352 alt_class = reg_class_subunion[alt_class][rclass];
1353 }
1354 alt_class = ira_class_translate[alt_class];
1355 if (best_cost > temp_costs->mem_cost)
1356 regno_cover_class[i] = NO_REGS;
1357 else if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
1358 /* Make the common class the biggest class of best and
1359 alt_class. */
1360 regno_cover_class[i] = alt_class == NO_REGS ? best : alt_class;
1361 else
1362 /* Make the common class a cover class. Remember all
1363 allocnos with the same regno should have the same cover
1364 class. */
1365 regno_cover_class[i] = ira_class_translate[best];
1366 if (pass == flag_expensive_optimizations)
1367 {
1368 if (best_cost > temp_costs->mem_cost)
1369 best = alt_class = NO_REGS;
1370 else if (best == alt_class)
1371 alt_class = NO_REGS;
1372 setup_reg_classes (i, best, alt_class, regno_cover_class[i]);
1373 if ((!allocno_p || internal_flag_ira_verbose > 2)
1374 && dump_file != NULL)
1375 fprintf (dump_file,
1376 " r%d: preferred %s, alternative %s, cover %s\n",
1377 i, reg_class_names[best], reg_class_names[alt_class],
1378 reg_class_names[regno_cover_class[i]]);
1379 }
1380 if (! allocno_p)
1381 {
1382 pref[i] = best_cost > temp_costs->mem_cost ? NO_REGS : best;
1383 continue;
1384 }
1385 for (a = ira_regno_allocno_map[i];
1386 a != NULL;
1387 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1388 {
1389 a_num = ALLOCNO_NUM (a);
1390 if (regno_cover_class[i] == NO_REGS)
1391 best = NO_REGS;
1392 else
1393 {
1394 /* Finding best class which is subset of the common
1395 class. */
1396 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1397 allocno_cost = best_cost;
1398 best = ALL_REGS;
1399 for (k = 0; k < cost_classes_num; k++)
1400 {
1401 rclass = cost_classes[k];
1402 if (! ira_class_subset_p[rclass][regno_cover_class[i]])
1403 continue;
1404 /* Ignore classes that are too small for this
1405 operand or invalid for an operand that was
1406 auto-incremented. */
1407 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1408 #ifdef FORBIDDEN_INC_DEC_CLASSES
1409 || (inc_dec_p && forbidden_inc_dec_class[rclass])
1410 #endif
1411 #ifdef CANNOT_CHANGE_MODE_CLASS
1412 || invalid_mode_change_p (i, (enum reg_class) rclass)
1413 #endif
1414 )
1415 ;
1416 else if (COSTS (total_allocno_costs, a_num)->cost[k]
1417 < best_cost)
1418 {
1419 best_cost
1420 = COSTS (total_allocno_costs, a_num)->cost[k];
1421 allocno_cost = COSTS (costs, a_num)->cost[k];
1422 best = (enum reg_class) rclass;
1423 }
1424 else if (COSTS (total_allocno_costs, a_num)->cost[k]
1425 == best_cost)
1426 {
1427 best = ira_reg_class_union[best][rclass];
1428 allocno_cost
1429 = MAX (allocno_cost, COSTS (costs, a_num)->cost[k]);
1430 }
1431 }
1432 ALLOCNO_COVER_CLASS_COST (a) = allocno_cost;
1433 }
1434 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY
1435 || ira_class_translate[best] == regno_cover_class[i]);
1436 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1437 && (pass == 0 || pref[a_num] != best))
1438 {
1439 fprintf (dump_file, " a%d (r%d,", a_num, i);
1440 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1441 fprintf (dump_file, "b%d", bb->index);
1442 else
1443 fprintf (dump_file, "l%d",
1444 ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
1445 fprintf (dump_file, ") best %s, cover %s\n",
1446 reg_class_names[best],
1447 reg_class_names[regno_cover_class[i]]);
1448 }
1449 pref[a_num] = best;
1450 }
1451 }
1452
1453 if (internal_flag_ira_verbose > 4 && dump_file)
1454 {
1455 if (allocno_p)
1456 print_allocno_costs (dump_file);
1457 else
1458 print_pseudo_costs (dump_file);
1459 fprintf (dump_file,"\n");
1460 }
1461 }
1462 #ifdef FORBIDDEN_INC_DEC_CLASSES
1463 ira_free (in_inc_dec);
1464 #endif
1465 }
1466
1467 \f
1468
1469 /* Process moves involving hard regs to modify allocno hard register
1470 costs. We can do this only after determining allocno cover class.
1471 If a hard register forms a register class, than moves with the hard
1472 register are already taken into account in class costs for the
1473 allocno. */
1474 static void
1475 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1476 {
1477 int i, freq, cost, src_regno, dst_regno, hard_regno;
1478 bool to_p;
1479 ira_allocno_t a;
1480 enum reg_class rclass, hard_reg_class;
1481 enum machine_mode mode;
1482 basic_block bb;
1483 rtx insn, set, src, dst;
1484
1485 bb = loop_tree_node->bb;
1486 if (bb == NULL)
1487 return;
1488 freq = REG_FREQ_FROM_BB (bb);
1489 if (freq == 0)
1490 freq = 1;
1491 FOR_BB_INSNS (bb, insn)
1492 {
1493 if (!NONDEBUG_INSN_P (insn))
1494 continue;
1495 set = single_set (insn);
1496 if (set == NULL_RTX)
1497 continue;
1498 dst = SET_DEST (set);
1499 src = SET_SRC (set);
1500 if (! REG_P (dst) || ! REG_P (src))
1501 continue;
1502 dst_regno = REGNO (dst);
1503 src_regno = REGNO (src);
1504 if (dst_regno >= FIRST_PSEUDO_REGISTER
1505 && src_regno < FIRST_PSEUDO_REGISTER)
1506 {
1507 hard_regno = src_regno;
1508 to_p = true;
1509 a = ira_curr_regno_allocno_map[dst_regno];
1510 }
1511 else if (src_regno >= FIRST_PSEUDO_REGISTER
1512 && dst_regno < FIRST_PSEUDO_REGISTER)
1513 {
1514 hard_regno = dst_regno;
1515 to_p = false;
1516 a = ira_curr_regno_allocno_map[src_regno];
1517 }
1518 else
1519 continue;
1520 rclass = ALLOCNO_COVER_CLASS (a);
1521 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1522 continue;
1523 i = ira_class_hard_reg_index[rclass][hard_regno];
1524 if (i < 0)
1525 continue;
1526 mode = ALLOCNO_MODE (a);
1527 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1528 cost
1529 = (to_p ? ira_get_register_move_cost (mode, hard_reg_class, rclass)
1530 : ira_get_register_move_cost (mode, rclass, hard_reg_class)) * freq;
1531 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1532 ALLOCNO_COVER_CLASS_COST (a));
1533 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1534 rclass, 0);
1535 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1536 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1537 ALLOCNO_COVER_CLASS_COST (a) = MIN (ALLOCNO_COVER_CLASS_COST (a),
1538 ALLOCNO_HARD_REG_COSTS (a)[i]);
1539 }
1540 }
1541
1542 /* After we find hard register and memory costs for allocnos, define
1543 its cover class and modify hard register cost because insns moving
1544 allocno to/from hard registers. */
1545 static void
1546 setup_allocno_cover_class_and_costs (void)
1547 {
1548 int i, j, n, regno, num;
1549 int *reg_costs;
1550 enum reg_class cover_class, rclass;
1551 ira_allocno_t a;
1552 ira_allocno_iterator ai;
1553
1554 ira_assert (allocno_p);
1555 FOR_EACH_ALLOCNO (a, ai)
1556 {
1557 i = ALLOCNO_NUM (a);
1558 cover_class = regno_cover_class[ALLOCNO_REGNO (a)];
1559 ira_assert (pref[i] == NO_REGS || cover_class != NO_REGS);
1560 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1561 ira_set_allocno_cover_class (a, cover_class);
1562 if (cover_class == NO_REGS)
1563 continue;
1564 ALLOCNO_AVAILABLE_REGS_NUM (a) = ira_available_class_regs[cover_class];
1565 if (optimize && ALLOCNO_COVER_CLASS (a) != pref[i])
1566 {
1567 n = ira_class_hard_regs_num[cover_class];
1568 ALLOCNO_HARD_REG_COSTS (a)
1569 = reg_costs = ira_allocate_cost_vector (cover_class);
1570 for (j = n - 1; j >= 0; j--)
1571 {
1572 regno = ira_class_hard_regs[cover_class][j];
1573 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], regno))
1574 reg_costs[j] = ALLOCNO_COVER_CLASS_COST (a);
1575 else
1576 {
1577 rclass = REGNO_REG_CLASS (regno);
1578 num = cost_class_nums[rclass];
1579 if (num < 0)
1580 {
1581 /* The hard register class is not a cover class or a
1582 class not fully inside in a cover class -- use
1583 the allocno cover class. */
1584 ira_assert (ira_hard_regno_cover_class[regno]
1585 == cover_class);
1586 num = cost_class_nums[cover_class];
1587 }
1588 reg_costs[j] = COSTS (costs, i)->cost[num];
1589 }
1590 }
1591 }
1592 }
1593 if (optimize)
1594 ira_traverse_loop_tree (true, ira_loop_tree_root,
1595 process_bb_node_for_hard_reg_moves, NULL);
1596 }
1597
1598 \f
1599
1600 /* Function called once during compiler work. */
1601 void
1602 ira_init_costs_once (void)
1603 {
1604 int i;
1605
1606 init_cost = NULL;
1607 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1608 {
1609 op_costs[i] = NULL;
1610 this_op_costs[i] = NULL;
1611 }
1612 temp_costs = NULL;
1613 cost_classes = NULL;
1614 }
1615
1616 /* Free allocated temporary cost vectors. */
1617 static void
1618 free_ira_costs (void)
1619 {
1620 int i;
1621
1622 if (init_cost != NULL)
1623 free (init_cost);
1624 init_cost = NULL;
1625 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1626 {
1627 if (op_costs[i] != NULL)
1628 free (op_costs[i]);
1629 if (this_op_costs[i] != NULL)
1630 free (this_op_costs[i]);
1631 op_costs[i] = this_op_costs[i] = NULL;
1632 }
1633 if (temp_costs != NULL)
1634 free (temp_costs);
1635 temp_costs = NULL;
1636 if (cost_classes != NULL)
1637 free (cost_classes);
1638 cost_classes = NULL;
1639 }
1640
1641 /* This is called each time register related information is
1642 changed. */
1643 void
1644 ira_init_costs (void)
1645 {
1646 int i;
1647
1648 free_ira_costs ();
1649 max_struct_costs_size
1650 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1651 /* Don't use ira_allocate because vectors live through several IRA calls. */
1652 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1653 init_cost->mem_cost = 1000000;
1654 for (i = 0; i < ira_important_classes_num; i++)
1655 init_cost->cost[i] = 1000000;
1656 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1657 {
1658 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1659 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1660 }
1661 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
1662 cost_classes = (enum reg_class *) xmalloc (sizeof (enum reg_class)
1663 * ira_important_classes_num);
1664 }
1665
1666 /* Function called once at the end of compiler work. */
1667 void
1668 ira_finish_costs_once (void)
1669 {
1670 free_ira_costs ();
1671 }
1672
1673 \f
1674
1675 /* Common initialization function for ira_costs and
1676 ira_set_pseudo_classes. */
1677 static void
1678 init_costs (void)
1679 {
1680 init_subregs_of_mode ();
1681 costs = (struct costs *) ira_allocate (max_struct_costs_size
1682 * cost_elements_num);
1683 pref_buffer
1684 = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
1685 * cost_elements_num);
1686 regno_cover_class
1687 = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
1688 * max_reg_num ());
1689 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
1690 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
1691 }
1692
1693 /* Common finalization function for ira_costs and
1694 ira_set_pseudo_classes. */
1695 static void
1696 finish_costs (void)
1697 {
1698 finish_subregs_of_mode ();
1699 ira_free (regno_equiv_gains);
1700 ira_free (regno_cover_class);
1701 ira_free (pref_buffer);
1702 ira_free (costs);
1703 }
1704
1705 /* Entry function which defines cover class, memory and hard register
1706 costs for each allocno. */
1707 void
1708 ira_costs (void)
1709 {
1710 allocno_p = true;
1711 cost_elements_num = ira_allocnos_num;
1712 init_costs ();
1713 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
1714 * ira_allocnos_num);
1715 calculate_elim_costs_all_insns ();
1716 find_costs_and_classes (ira_dump_file);
1717 setup_allocno_cover_class_and_costs ();
1718 finish_costs ();
1719 ira_free (total_allocno_costs);
1720 }
1721
1722 /* Entry function which defines classes for pseudos. */
1723 void
1724 ira_set_pseudo_classes (FILE *dump_file)
1725 {
1726 allocno_p = false;
1727 internal_flag_ira_verbose = flag_ira_verbose;
1728 cost_elements_num = max_reg_num ();
1729 init_costs ();
1730 find_costs_and_classes (dump_file);
1731 pseudo_classes_defined_p = true;
1732 finish_costs ();
1733 }
1734
1735 \f
1736
1737 /* Change hard register costs for allocnos which lives through
1738 function calls. This is called only when we found all intersected
1739 calls during building allocno live ranges. */
1740 void
1741 ira_tune_allocno_costs_and_cover_classes (void)
1742 {
1743 int j, n, regno;
1744 int cost, min_cost, *reg_costs;
1745 enum reg_class cover_class, rclass;
1746 enum machine_mode mode;
1747 ira_allocno_t a;
1748 ira_allocno_iterator ai;
1749
1750 FOR_EACH_ALLOCNO (a, ai)
1751 {
1752 cover_class = ALLOCNO_COVER_CLASS (a);
1753 if (cover_class == NO_REGS)
1754 continue;
1755 mode = ALLOCNO_MODE (a);
1756 n = ira_class_hard_regs_num[cover_class];
1757 min_cost = INT_MAX;
1758 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
1759 {
1760 ira_allocate_and_set_costs
1761 (&ALLOCNO_HARD_REG_COSTS (a), cover_class,
1762 ALLOCNO_COVER_CLASS_COST (a));
1763 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
1764 for (j = n - 1; j >= 0; j--)
1765 {
1766 regno = ira_class_hard_regs[cover_class][j];
1767 rclass = REGNO_REG_CLASS (regno);
1768 cost = 0;
1769 if (! ira_hard_reg_not_in_set_p (regno, mode, call_used_reg_set)
1770 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1771 cost += (ALLOCNO_CALL_FREQ (a)
1772 * (ira_memory_move_cost[mode][rclass][0]
1773 + ira_memory_move_cost[mode][rclass][1]));
1774 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
1775 cost += ((ira_memory_move_cost[mode][rclass][0]
1776 + ira_memory_move_cost[mode][rclass][1])
1777 * ALLOCNO_FREQ (a)
1778 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
1779 #endif
1780 reg_costs[j] += cost;
1781 if (min_cost > reg_costs[j])
1782 min_cost = reg_costs[j];
1783 }
1784 }
1785 if (min_cost != INT_MAX)
1786 ALLOCNO_COVER_CLASS_COST (a) = min_cost;
1787
1788 /* Some targets allow pseudos to be allocated to unaligned sequences
1789 of hard registers. However, selecting an unaligned sequence can
1790 unnecessarily restrict later allocations. So increase the cost of
1791 unaligned hard regs to encourage the use of aligned hard regs. */
1792 {
1793 const int nregs = ira_reg_class_nregs[cover_class][ALLOCNO_MODE (a)];
1794
1795 if (nregs > 1)
1796 {
1797 ira_allocate_and_set_costs
1798 (&ALLOCNO_HARD_REG_COSTS (a), cover_class,
1799 ALLOCNO_COVER_CLASS_COST (a));
1800 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
1801 for (j = n - 1; j >= 0; j--)
1802 {
1803 regno = ira_non_ordered_class_hard_regs[cover_class][j];
1804 if ((regno % nregs) != 0)
1805 {
1806 int index = ira_class_hard_reg_index[cover_class][regno];
1807 ira_assert (index != -1);
1808 reg_costs[index] += ALLOCNO_FREQ (a);
1809 }
1810 }
1811 }
1812 }
1813 }
1814 }
1815
1816 /* Add COST to the estimated gain for eliminating REGNO with its
1817 equivalence. If COST is zero, record that no such elimination is
1818 possible. */
1819
1820 void
1821 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
1822 {
1823 if (cost == 0)
1824 regno_equiv_gains[regno] = 0;
1825 else
1826 regno_equiv_gains[regno] += cost;
1827 }