Daily bump.
[gcc.git] / gcc / ira-int.h
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "cfgloop.h"
23 #include "ira.h"
24 #include "alloc-pool.h"
25
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
31 #endif
32
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 /* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38 #define ira_assert(c) ((void)(0 && (c)))
39 #endif
40
41 /* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50
51 /* All natural loops. */
52 extern struct loops ira_loops;
53
54 /* A modified value of flag `-fira-verbose' used internally. */
55 extern int internal_flag_ira_verbose;
56
57 /* Dump file of the allocator if it is not NULL. */
58 extern FILE *ira_dump_file;
59
60 /* Typedefs for pointers to allocno live range, allocno, and copy of
61 allocnos. */
62 typedef struct live_range *live_range_t;
63 typedef struct ira_allocno *ira_allocno_t;
64 typedef struct ira_allocno_copy *ira_copy_t;
65 typedef struct ira_object *ira_object_t;
66
67 /* Definition of vector of allocnos and copies. */
68 DEF_VEC_P(ira_allocno_t);
69 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
70 DEF_VEC_P(ira_object_t);
71 DEF_VEC_ALLOC_P(ira_object_t, heap);
72 DEF_VEC_P(ira_copy_t);
73 DEF_VEC_ALLOC_P(ira_copy_t, heap);
74
75 /* Typedef for pointer to the subsequent structure. */
76 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
77
78 /* In general case, IRA is a regional allocator. The regions are
79 nested and form a tree. Currently regions are natural loops. The
80 following structure describes loop tree node (representing basic
81 block or loop). We need such tree because the loop tree from
82 cfgloop.h is not convenient for the optimization: basic blocks are
83 not a part of the tree from cfgloop.h. We also use the nodes for
84 storing additional information about basic blocks/loops for the
85 register allocation purposes. */
86 struct ira_loop_tree_node
87 {
88 /* The node represents basic block if children == NULL. */
89 basic_block bb; /* NULL for loop. */
90 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
91 struct loop *loop;
92 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
93 SUBLOOP_NEXT is always NULL for BBs. */
94 ira_loop_tree_node_t subloop_next, next;
95 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
96 the node. They are NULL for BBs. */
97 ira_loop_tree_node_t subloops, children;
98 /* The node immediately containing given node. */
99 ira_loop_tree_node_t parent;
100
101 /* Loop level in range [0, ira_loop_tree_height). */
102 int level;
103
104 /* All the following members are defined only for nodes representing
105 loops. */
106
107 /* The loop number from CFG loop tree. The root number is 0. */
108 int loop_num;
109
110 /* True if the loop was marked for removal from the register
111 allocation. */
112 bool to_remove_p;
113
114 /* Allocnos in the loop corresponding to their regnos. If it is
115 NULL the loop does not form a separate register allocation region
116 (e.g. because it has abnormal enter/exit edges and we can not put
117 code for register shuffling on the edges if a different
118 allocation is used for a pseudo-register on different sides of
119 the edges). Caps are not in the map (remember we can have more
120 one cap with the same regno in a region). */
121 ira_allocno_t *regno_allocno_map;
122
123 /* True if there is an entry to given loop not from its parent (or
124 grandparent) basic block. For example, it is possible for two
125 adjacent loops inside another loop. */
126 bool entered_from_non_parent_p;
127
128 /* Maximal register pressure inside loop for given register class
129 (defined only for the pressure classes). */
130 int reg_pressure[N_REG_CLASSES];
131
132 /* Numbers of allocnos referred or living in the loop node (except
133 for its subloops). */
134 bitmap all_allocnos;
135
136 /* Numbers of allocnos living at the loop borders. */
137 bitmap border_allocnos;
138
139 /* Regnos of pseudos modified in the loop node (including its
140 subloops). */
141 bitmap modified_regnos;
142
143 /* Numbers of copies referred in the corresponding loop. */
144 bitmap local_copies;
145 };
146
147 /* The root of the loop tree corresponding to the all function. */
148 extern ira_loop_tree_node_t ira_loop_tree_root;
149
150 /* Height of the loop tree. */
151 extern int ira_loop_tree_height;
152
153 /* All nodes representing basic blocks are referred through the
154 following array. We can not use basic block member `aux' for this
155 because it is used for insertion of insns on edges. */
156 extern ira_loop_tree_node_t ira_bb_nodes;
157
158 /* Two access macros to the nodes representing basic blocks. */
159 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
160 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
161 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
162 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
163 { \
164 fprintf (stderr, \
165 "\n%s: %d: error in %s: it is not a block node\n", \
166 __FILE__, __LINE__, __FUNCTION__); \
167 gcc_unreachable (); \
168 } \
169 _node; }))
170 #else
171 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
172 #endif
173
174 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
175
176 /* All nodes representing loops are referred through the following
177 array. */
178 extern ira_loop_tree_node_t ira_loop_nodes;
179
180 /* Two access macros to the nodes representing loops. */
181 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
182 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
183 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
184 if (_node->children == NULL || _node->bb != NULL \
185 || (_node->loop == NULL && current_loops != NULL)) \
186 { \
187 fprintf (stderr, \
188 "\n%s: %d: error in %s: it is not a loop node\n", \
189 __FILE__, __LINE__, __FUNCTION__); \
190 gcc_unreachable (); \
191 } \
192 _node; }))
193 #else
194 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
195 #endif
196
197 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
198
199 \f
200 /* The structure describes program points where a given allocno lives.
201 If the live ranges of two allocnos are intersected, the allocnos
202 are in conflict. */
203 struct live_range
204 {
205 /* Object whose live range is described by given structure. */
206 ira_object_t object;
207 /* Program point range. */
208 int start, finish;
209 /* Next structure describing program points where the allocno
210 lives. */
211 live_range_t next;
212 /* Pointer to structures with the same start/finish. */
213 live_range_t start_next, finish_next;
214 };
215
216 /* Program points are enumerated by numbers from range
217 0..IRA_MAX_POINT-1. There are approximately two times more program
218 points than insns. Program points are places in the program where
219 liveness info can be changed. In most general case (there are more
220 complicated cases too) some program points correspond to places
221 where input operand dies and other ones correspond to places where
222 output operands are born. */
223 extern int ira_max_point;
224
225 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
226 live ranges with given start/finish point. */
227 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
228
229 /* A structure representing conflict information for an allocno
230 (or one of its subwords). */
231 struct ira_object
232 {
233 /* The allocno associated with this record. */
234 ira_allocno_t allocno;
235 /* Vector of accumulated conflicting conflict_redords with NULL end
236 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
237 otherwise. */
238 void *conflicts_array;
239 /* Pointer to structures describing at what program point the
240 object lives. We always maintain the list in such way that *the
241 ranges in the list are not intersected and ordered by decreasing
242 their program points*. */
243 live_range_t live_ranges;
244 /* The subword within ALLOCNO which is represented by this object.
245 Zero means the lowest-order subword (or the entire allocno in case
246 it is not being tracked in subwords). */
247 int subword;
248 /* Allocated size of the conflicts array. */
249 unsigned int conflicts_array_size;
250 /* A unique number for every instance of this structure, which is used
251 to represent it in conflict bit vectors. */
252 int id;
253 /* Before building conflicts, MIN and MAX are initialized to
254 correspondingly minimal and maximal points of the accumulated
255 live ranges. Afterwards, they hold the minimal and maximal ids
256 of other ira_objects that this one can conflict with. */
257 int min, max;
258 /* Initial and accumulated hard registers conflicting with this
259 object and as a consequences can not be assigned to the allocno.
260 All non-allocatable hard regs and hard regs of register classes
261 different from given allocno one are included in the sets. */
262 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
263 /* Number of accumulated conflicts in the vector of conflicting
264 objects. */
265 int num_accumulated_conflicts;
266 /* TRUE if conflicts are represented by a vector of pointers to
267 ira_object structures. Otherwise, we use a bit vector indexed
268 by conflict ID numbers. */
269 unsigned int conflict_vec_p : 1;
270 };
271
272 /* A structure representing an allocno (allocation entity). Allocno
273 represents a pseudo-register in an allocation region. If
274 pseudo-register does not live in a region but it lives in the
275 nested regions, it is represented in the region by special allocno
276 called *cap*. There may be more one cap representing the same
277 pseudo-register in region. It means that the corresponding
278 pseudo-register lives in more one non-intersected subregion. */
279 struct ira_allocno
280 {
281 /* The allocno order number starting with 0. Each allocno has an
282 unique number and the number is never changed for the
283 allocno. */
284 int num;
285 /* Regno for allocno or cap. */
286 int regno;
287 /* Mode of the allocno which is the mode of the corresponding
288 pseudo-register. */
289 ENUM_BITFIELD (machine_mode) mode : 8;
290 /* Register class which should be used for allocation for given
291 allocno. NO_REGS means that we should use memory. */
292 ENUM_BITFIELD (reg_class) aclass : 16;
293 /* During the reload, value TRUE means that we should not reassign a
294 hard register to the allocno got memory earlier. It is set up
295 when we removed memory-memory move insn before each iteration of
296 the reload. */
297 unsigned int dont_reassign_p : 1;
298 #ifdef STACK_REGS
299 /* Set to TRUE if allocno can't be assigned to the stack hard
300 register correspondingly in this region and area including the
301 region and all its subregions recursively. */
302 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
303 #endif
304 /* TRUE value means that there is no sense to spill the allocno
305 during coloring because the spill will result in additional
306 reloads in reload pass. */
307 unsigned int bad_spill_p : 1;
308 /* TRUE if a hard register or memory has been assigned to the
309 allocno. */
310 unsigned int assigned_p : 1;
311 /* TRUE if conflicts for given allocno are represented by vector of
312 pointers to the conflicting allocnos. Otherwise, we use a bit
313 vector where a bit with given index represents allocno with the
314 same number. */
315 unsigned int conflict_vec_p : 1;
316 /* Hard register assigned to given allocno. Negative value means
317 that memory was allocated to the allocno. During the reload,
318 spilled allocno has value equal to the corresponding stack slot
319 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
320 reload (at this point pseudo-register has only one allocno) which
321 did not get stack slot yet. */
322 short int hard_regno;
323 /* Allocnos with the same regno are linked by the following member.
324 Allocnos corresponding to inner loops are first in the list (it
325 corresponds to depth-first traverse of the loops). */
326 ira_allocno_t next_regno_allocno;
327 /* There may be different allocnos with the same regno in different
328 regions. Allocnos are bound to the corresponding loop tree node.
329 Pseudo-register may have only one regular allocno with given loop
330 tree node but more than one cap (see comments above). */
331 ira_loop_tree_node_t loop_tree_node;
332 /* Accumulated usage references of the allocno. Here and below,
333 word 'accumulated' means info for given region and all nested
334 subregions. In this case, 'accumulated' means sum of references
335 of the corresponding pseudo-register in this region and in all
336 nested subregions recursively. */
337 int nrefs;
338 /* Accumulated frequency of usage of the allocno. */
339 int freq;
340 /* Minimal accumulated and updated costs of usage register of the
341 allocno class. */
342 int class_cost, updated_class_cost;
343 /* Minimal accumulated, and updated costs of memory for the allocno.
344 At the allocation start, the original and updated costs are
345 equal. The updated cost may be changed after finishing
346 allocation in a region and starting allocation in a subregion.
347 The change reflects the cost of spill/restore code on the
348 subregion border if we assign memory to the pseudo in the
349 subregion. */
350 int memory_cost, updated_memory_cost;
351 /* Accumulated number of points where the allocno lives and there is
352 excess pressure for its class. Excess pressure for a register
353 class at some point means that there are more allocnos of given
354 register class living at the point than number of hard-registers
355 of the class available for the allocation. */
356 int excess_pressure_points_num;
357 /* Copies to other non-conflicting allocnos. The copies can
358 represent move insn or potential move insn usually because of two
359 operand insn constraints. */
360 ira_copy_t allocno_copies;
361 /* It is a allocno (cap) representing given allocno on upper loop tree
362 level. */
363 ira_allocno_t cap;
364 /* It is a link to allocno (cap) on lower loop level represented by
365 given cap. Null if given allocno is not a cap. */
366 ira_allocno_t cap_member;
367 /* The number of objects tracked in the following array. */
368 int num_objects;
369 /* An array of structures describing conflict information and live
370 ranges for each object associated with the allocno. There may be
371 more than one such object in cases where the allocno represents a
372 multi-word register. */
373 ira_object_t objects[2];
374 /* Accumulated frequency of calls which given allocno
375 intersects. */
376 int call_freq;
377 /* Accumulated number of the intersected calls. */
378 int calls_crossed_num;
379 /* Array of usage costs (accumulated and the one updated during
380 coloring) for each hard register of the allocno class. The
381 member value can be NULL if all costs are the same and equal to
382 CLASS_COST. For example, the costs of two different hard
383 registers can be different if one hard register is callee-saved
384 and another one is callee-used and the allocno lives through
385 calls. Another example can be case when for some insn the
386 corresponding pseudo-register value should be put in specific
387 register class (e.g. AREG for x86) which is a strict subset of
388 the allocno class (GENERAL_REGS for x86). We have updated costs
389 to reflect the situation when the usage cost of a hard register
390 is decreased because the allocno is connected to another allocno
391 by a copy and the another allocno has been assigned to the hard
392 register. */
393 int *hard_reg_costs, *updated_hard_reg_costs;
394 /* Array of decreasing costs (accumulated and the one updated during
395 coloring) for allocnos conflicting with given allocno for hard
396 regno of the allocno class. The member value can be NULL if all
397 costs are the same. These costs are used to reflect preferences
398 of other allocnos not assigned yet during assigning to given
399 allocno. */
400 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
401 /* Different additional data. It is used to decrease size of
402 allocno data footprint. */
403 void *add_data;
404 };
405
406
407 /* All members of the allocno structures should be accessed only
408 through the following macros. */
409 #define ALLOCNO_NUM(A) ((A)->num)
410 #define ALLOCNO_REGNO(A) ((A)->regno)
411 #define ALLOCNO_REG(A) ((A)->reg)
412 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
413 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
414 #define ALLOCNO_CAP(A) ((A)->cap)
415 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
416 #define ALLOCNO_NREFS(A) ((A)->nrefs)
417 #define ALLOCNO_FREQ(A) ((A)->freq)
418 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
419 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
420 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
421 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
422 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
423 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
424 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
425 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
426 #ifdef STACK_REGS
427 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
428 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
429 #endif
430 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
431 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
432 #define ALLOCNO_MODE(A) ((A)->mode)
433 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
434 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
435 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
436 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
437 ((A)->conflict_hard_reg_costs)
438 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
439 ((A)->updated_conflict_hard_reg_costs)
440 #define ALLOCNO_CLASS(A) ((A)->aclass)
441 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
442 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
443 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
444 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
445 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
446 ((A)->excess_pressure_points_num)
447 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
448 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
449 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
450
451 /* Typedef for pointer to the subsequent structure. */
452 typedef struct ira_emit_data *ira_emit_data_t;
453
454 /* Allocno bound data used for emit pseudo live range split insns and
455 to flattening IR. */
456 struct ira_emit_data
457 {
458 /* TRUE if the allocno assigned to memory was a destination of
459 removed move (see ira-emit.c) at loop exit because the value of
460 the corresponding pseudo-register is not changed inside the
461 loop. */
462 unsigned int mem_optimized_dest_p : 1;
463 /* TRUE if the corresponding pseudo-register has disjoint live
464 ranges and the other allocnos of the pseudo-register except this
465 one changed REG. */
466 unsigned int somewhere_renamed_p : 1;
467 /* TRUE if allocno with the same REGNO in a subregion has been
468 renamed, in other words, got a new pseudo-register. */
469 unsigned int child_renamed_p : 1;
470 /* Final rtx representation of the allocno. */
471 rtx reg;
472 /* Non NULL if we remove restoring value from given allocno to
473 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
474 allocno value is not changed inside the loop. */
475 ira_allocno_t mem_optimized_dest;
476 };
477
478 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
479
480 /* Data used to emit live range split insns and to flattening IR. */
481 extern ira_emit_data_t ira_allocno_emit_data;
482
483 /* Abbreviation for frequent emit data access. */
484 static inline rtx
485 allocno_emit_reg (ira_allocno_t a)
486 {
487 return ALLOCNO_EMIT_DATA (a)->reg;
488 }
489
490 #define OBJECT_ALLOCNO(O) ((O)->allocno)
491 #define OBJECT_SUBWORD(O) ((O)->subword)
492 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
493 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
494 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
495 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
496 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
497 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
498 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
499 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
500 #define OBJECT_MIN(O) ((O)->min)
501 #define OBJECT_MAX(O) ((O)->max)
502 #define OBJECT_CONFLICT_ID(O) ((O)->id)
503 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
504
505 /* Map regno -> allocnos with given regno (see comments for
506 allocno member `next_regno_allocno'). */
507 extern ira_allocno_t *ira_regno_allocno_map;
508
509 /* Array of references to all allocnos. The order number of the
510 allocno corresponds to the index in the array. Removed allocnos
511 have NULL element value. */
512 extern ira_allocno_t *ira_allocnos;
513
514 /* The size of the previous array. */
515 extern int ira_allocnos_num;
516
517 /* Map a conflict id to its corresponding ira_object structure. */
518 extern ira_object_t *ira_object_id_map;
519
520 /* The size of the previous array. */
521 extern int ira_objects_num;
522
523 /* The following structure represents a copy of two allocnos. The
524 copies represent move insns or potential move insns usually because
525 of two operand insn constraints. To remove register shuffle, we
526 also create copies between allocno which is output of an insn and
527 allocno becoming dead in the insn. */
528 struct ira_allocno_copy
529 {
530 /* The unique order number of the copy node starting with 0. */
531 int num;
532 /* Allocnos connected by the copy. The first allocno should have
533 smaller order number than the second one. */
534 ira_allocno_t first, second;
535 /* Execution frequency of the copy. */
536 int freq;
537 bool constraint_p;
538 /* It is a move insn which is an origin of the copy. The member
539 value for the copy representing two operand insn constraints or
540 for the copy created to remove register shuffle is NULL. In last
541 case the copy frequency is smaller than the corresponding insn
542 execution frequency. */
543 rtx insn;
544 /* All copies with the same allocno as FIRST are linked by the two
545 following members. */
546 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
547 /* All copies with the same allocno as SECOND are linked by the two
548 following members. */
549 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
550 /* Region from which given copy is originated. */
551 ira_loop_tree_node_t loop_tree_node;
552 };
553
554 /* Array of references to all copies. The order number of the copy
555 corresponds to the index in the array. Removed copies have NULL
556 element value. */
557 extern ira_copy_t *ira_copies;
558
559 /* Size of the previous array. */
560 extern int ira_copies_num;
561
562 /* The following structure describes a stack slot used for spilled
563 pseudo-registers. */
564 struct ira_spilled_reg_stack_slot
565 {
566 /* pseudo-registers assigned to the stack slot. */
567 bitmap_head spilled_regs;
568 /* RTL representation of the stack slot. */
569 rtx mem;
570 /* Size of the stack slot. */
571 unsigned int width;
572 };
573
574 /* The number of elements in the following array. */
575 extern int ira_spilled_reg_stack_slots_num;
576
577 /* The following array contains info about spilled pseudo-registers
578 stack slots used in current function so far. */
579 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
580
581 /* Correspondingly overall cost of the allocation, cost of the
582 allocnos assigned to hard-registers, cost of the allocnos assigned
583 to memory, cost of loads, stores and register move insns generated
584 for pseudo-register live range splitting (see ira-emit.c). */
585 extern int ira_overall_cost;
586 extern int ira_reg_cost, ira_mem_cost;
587 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
588 extern int ira_move_loops_num, ira_additional_jumps_num;
589
590 \f
591 /* This page contains a bitset implementation called 'min/max sets' used to
592 record conflicts in IRA.
593 They are named min/maxs set since we keep track of a minimum and a maximum
594 bit number for each set representing the bounds of valid elements. Otherwise,
595 the implementation resembles sbitmaps in that we store an array of integers
596 whose bits directly represent the members of the set. */
597
598 /* The type used as elements in the array, and the number of bits in
599 this type. */
600
601 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
602 #define IRA_INT_TYPE HOST_WIDE_INT
603
604 /* Set, clear or test bit number I in R, a bit vector of elements with
605 minimal index and maximal index equal correspondingly to MIN and
606 MAX. */
607 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
608
609 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
610 (({ int _min = (MIN), _max = (MAX), _i = (I); \
611 if (_i < _min || _i > _max) \
612 { \
613 fprintf (stderr, \
614 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
615 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
616 gcc_unreachable (); \
617 } \
618 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
619 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
620
621
622 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
623 (({ int _min = (MIN), _max = (MAX), _i = (I); \
624 if (_i < _min || _i > _max) \
625 { \
626 fprintf (stderr, \
627 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
628 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
629 gcc_unreachable (); \
630 } \
631 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
632 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
633
634 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
635 (({ int _min = (MIN), _max = (MAX), _i = (I); \
636 if (_i < _min || _i > _max) \
637 { \
638 fprintf (stderr, \
639 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
640 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
641 gcc_unreachable (); \
642 } \
643 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
644 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
645
646 #else
647
648 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
649 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
650 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
651
652 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
653 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
654 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
655
656 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
657 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
658 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
659
660 #endif
661
662 /* The iterator for min/max sets. */
663 typedef struct {
664
665 /* Array containing the bit vector. */
666 IRA_INT_TYPE *vec;
667
668 /* The number of the current element in the vector. */
669 unsigned int word_num;
670
671 /* The number of bits in the bit vector. */
672 unsigned int nel;
673
674 /* The current bit index of the bit vector. */
675 unsigned int bit_num;
676
677 /* Index corresponding to the 1st bit of the bit vector. */
678 int start_val;
679
680 /* The word of the bit vector currently visited. */
681 unsigned IRA_INT_TYPE word;
682 } minmax_set_iterator;
683
684 /* Initialize the iterator I for bit vector VEC containing minimal and
685 maximal values MIN and MAX. */
686 static inline void
687 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
688 int max)
689 {
690 i->vec = vec;
691 i->word_num = 0;
692 i->nel = max < min ? 0 : max - min + 1;
693 i->start_val = min;
694 i->bit_num = 0;
695 i->word = i->nel == 0 ? 0 : vec[0];
696 }
697
698 /* Return TRUE if we have more allocnos to visit, in which case *N is
699 set to the number of the element to be visited. Otherwise, return
700 FALSE. */
701 static inline bool
702 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
703 {
704 /* Skip words that are zeros. */
705 for (; i->word == 0; i->word = i->vec[i->word_num])
706 {
707 i->word_num++;
708 i->bit_num = i->word_num * IRA_INT_BITS;
709
710 /* If we have reached the end, break. */
711 if (i->bit_num >= i->nel)
712 return false;
713 }
714
715 /* Skip bits that are zero. */
716 for (; (i->word & 1) == 0; i->word >>= 1)
717 i->bit_num++;
718
719 *n = (int) i->bit_num + i->start_val;
720
721 return true;
722 }
723
724 /* Advance to the next element in the set. */
725 static inline void
726 minmax_set_iter_next (minmax_set_iterator *i)
727 {
728 i->word >>= 1;
729 i->bit_num++;
730 }
731
732 /* Loop over all elements of a min/max set given by bit vector VEC and
733 their minimal and maximal values MIN and MAX. In each iteration, N
734 is set to the number of next allocno. ITER is an instance of
735 minmax_set_iterator used to iterate over the set. */
736 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
737 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
738 minmax_set_iter_cond (&(ITER), &(N)); \
739 minmax_set_iter_next (&(ITER)))
740 \f
741 struct target_ira_int {
742 /* Initialized once. It is a maximal possible size of the allocated
743 struct costs. */
744 int x_max_struct_costs_size;
745
746 /* Allocated and initialized once, and used to initialize cost values
747 for each insn. */
748 struct costs *x_init_cost;
749
750 /* Allocated once, and used for temporary purposes. */
751 struct costs *x_temp_costs;
752
753 /* Allocated once, and used for the cost calculation. */
754 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
755 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
756
757 /* Hard registers that can not be used for the register allocator for
758 all functions of the current compilation unit. */
759 HARD_REG_SET x_no_unit_alloc_regs;
760
761 /* Map: hard regs X modes -> set of hard registers for storing value
762 of given mode starting with given hard register. */
763 HARD_REG_SET (x_ira_reg_mode_hard_regset
764 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
765
766 /* Array based on TARGET_REGISTER_MOVE_COST. Don't use
767 ira_register_move_cost directly. Use function of
768 ira_get_may_move_cost instead. */
769 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
770
771 /* Array analogs of the macros MEMORY_MOVE_COST and
772 REGISTER_MOVE_COST but they contain maximal cost not minimal as
773 the previous two ones do. */
774 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
775 move_table *x_ira_max_register_move_cost[MAX_MACHINE_MODE];
776
777 /* Similar to may_move_in_cost but it is calculated in IRA instead of
778 regclass. Another difference we take only available hard registers
779 into account to figure out that one register class is a subset of
780 the another one. Don't use it directly. Use function of
781 ira_get_may_move_cost instead. */
782 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
783
784 /* Similar to may_move_out_cost but it is calculated in IRA instead of
785 regclass. Another difference we take only available hard registers
786 into account to figure out that one register class is a subset of
787 the another one. Don't use it directly. Use function of
788 ira_get_may_move_cost instead. */
789 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
790
791 /* Similar to ira_may_move_in_cost and ira_may_move_out_cost but they
792 return maximal cost. */
793 move_table *x_ira_max_may_move_in_cost[MAX_MACHINE_MODE];
794 move_table *x_ira_max_may_move_out_cost[MAX_MACHINE_MODE];
795
796 /* Map class->true if class is a possible allocno class, false
797 otherwise. */
798 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
799
800 /* Map class->true if class is a pressure class, false otherwise. */
801 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
802
803 /* Register class subset relation: TRUE if the first class is a subset
804 of the second one considering only hard registers available for the
805 allocation. */
806 int x_ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
807
808 /* Array of the number of hard registers of given class which are
809 available for allocation. The order is defined by the hard
810 register numbers. */
811 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
812
813 /* Index (in ira_class_hard_regs; for given register class and hard
814 register (in general case a hard register can belong to several
815 register classes;. The index is negative for hard registers
816 unavailable for the allocation. */
817 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
818
819 /* Array whose values are hard regset of hard registers available for
820 the allocation of given register class whose HARD_REGNO_MODE_OK
821 values for given mode are zero. */
822 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
823
824 /* The value is number of elements in the subsequent array. */
825 int x_ira_important_classes_num;
826
827 /* The array containing all non-empty classes. Such classes is
828 important for calculation of the hard register usage costs. */
829 enum reg_class x_ira_important_classes[N_REG_CLASSES];
830
831 /* The array containing indexes of important classes in the previous
832 array. The array elements are defined only for important
833 classes. */
834 int x_ira_important_class_nums[N_REG_CLASSES];
835
836 /* The biggest important class inside of intersection of the two
837 classes (that is calculated taking only hard registers available
838 for allocation into account;. If the both classes contain no hard
839 registers available for allocation, the value is calculated with
840 taking all hard-registers including fixed ones into account. */
841 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
842
843 /* True if the two classes (that is calculated taking only hard
844 registers available for allocation into account; are
845 intersected. */
846 bool x_ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
847
848 /* Classes with end marker LIM_REG_CLASSES which are intersected with
849 given class (the first index;. That includes given class itself.
850 This is calculated taking only hard registers available for
851 allocation into account. */
852 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
853
854 /* The biggest (smallest) important class inside of (covering) union
855 of the two classes (that is calculated taking only hard registers
856 available for allocation into account). If the both classes
857 contain no hard registers available for allocation, the value is
858 calculated with taking all hard-registers including fixed ones
859 into account. In other words, the value is the corresponding
860 reg_class_subunion (reg_class_superunion) value. */
861 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
862 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
863
864 /* For each reg class, table listing all the classes contained in it
865 (excluding the class itself. Non-allocatable registers are
866 excluded from the consideration;. */
867 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
868
869 /* Array whose values are hard regset of hard registers for which
870 move of the hard register in given mode into itself is
871 prohibited. */
872 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
873
874 /* Flag of that the above array has been initialized. */
875 bool x_ira_prohibited_mode_move_regs_initialized_p;
876 };
877
878 extern struct target_ira_int default_target_ira_int;
879 #if SWITCHABLE_TARGET
880 extern struct target_ira_int *this_target_ira_int;
881 #else
882 #define this_target_ira_int (&default_target_ira_int)
883 #endif
884
885 #define ira_reg_mode_hard_regset \
886 (this_target_ira_int->x_ira_reg_mode_hard_regset)
887 #define ira_register_move_cost \
888 (this_target_ira_int->x_ira_register_move_cost)
889 #define ira_max_memory_move_cost \
890 (this_target_ira_int->x_ira_max_memory_move_cost)
891 #define ira_max_register_move_cost \
892 (this_target_ira_int->x_ira_max_register_move_cost)
893 #define ira_may_move_in_cost \
894 (this_target_ira_int->x_ira_may_move_in_cost)
895 #define ira_may_move_out_cost \
896 (this_target_ira_int->x_ira_may_move_out_cost)
897 #define ira_max_may_move_in_cost \
898 (this_target_ira_int->x_ira_max_may_move_in_cost)
899 #define ira_max_may_move_out_cost \
900 (this_target_ira_int->x_ira_max_may_move_out_cost)
901 #define ira_reg_allocno_class_p \
902 (this_target_ira_int->x_ira_reg_allocno_class_p)
903 #define ira_reg_pressure_class_p \
904 (this_target_ira_int->x_ira_reg_pressure_class_p)
905 #define ira_class_subset_p \
906 (this_target_ira_int->x_ira_class_subset_p)
907 #define ira_non_ordered_class_hard_regs \
908 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
909 #define ira_class_hard_reg_index \
910 (this_target_ira_int->x_ira_class_hard_reg_index)
911 #define ira_prohibited_class_mode_regs \
912 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
913 #define ira_important_classes_num \
914 (this_target_ira_int->x_ira_important_classes_num)
915 #define ira_important_classes \
916 (this_target_ira_int->x_ira_important_classes)
917 #define ira_important_class_nums \
918 (this_target_ira_int->x_ira_important_class_nums)
919 #define ira_reg_class_intersect \
920 (this_target_ira_int->x_ira_reg_class_intersect)
921 #define ira_reg_classes_intersect_p \
922 (this_target_ira_int->x_ira_reg_classes_intersect_p)
923 #define ira_reg_class_super_classes \
924 (this_target_ira_int->x_ira_reg_class_super_classes)
925 #define ira_reg_class_subunion \
926 (this_target_ira_int->x_ira_reg_class_subunion)
927 #define ira_reg_class_superunion \
928 (this_target_ira_int->x_ira_reg_class_superunion)
929 #define ira_prohibited_mode_move_regs \
930 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
931 \f
932 /* ira.c: */
933
934 extern void *ira_allocate (size_t);
935 extern void ira_free (void *addr);
936 extern bitmap ira_allocate_bitmap (void);
937 extern void ira_free_bitmap (bitmap);
938 extern void ira_print_disposition (FILE *);
939 extern void ira_debug_disposition (void);
940 extern void ira_debug_allocno_classes (void);
941 extern void ira_init_register_move_cost (enum machine_mode);
942
943 /* The length of the two following arrays. */
944 extern int ira_reg_equiv_len;
945
946 /* The element value is TRUE if the corresponding regno value is
947 invariant. */
948 extern bool *ira_reg_equiv_invariant_p;
949
950 /* The element value is equiv constant of given pseudo-register or
951 NULL_RTX. */
952 extern rtx *ira_reg_equiv_const;
953
954 /* ira-build.c */
955
956 /* The current loop tree node and its regno allocno map. */
957 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
958 extern ira_allocno_t *ira_curr_regno_allocno_map;
959
960 extern void ira_debug_copy (ira_copy_t);
961 extern void ira_debug_copies (void);
962 extern void ira_debug_allocno_copies (ira_allocno_t);
963
964 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
965 void (*) (ira_loop_tree_node_t),
966 void (*) (ira_loop_tree_node_t));
967 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
968 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
969 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
970 extern void ira_create_allocno_objects (ira_allocno_t);
971 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
972 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
973 extern void ira_allocate_conflict_vec (ira_object_t, int);
974 extern void ira_allocate_object_conflicts (ira_object_t, int);
975 extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
976 extern void ira_print_expanded_allocno (ira_allocno_t);
977 extern void ira_add_live_range_to_object (ira_object_t, int, int);
978 extern live_range_t ira_create_live_range (ira_object_t, int, int,
979 live_range_t);
980 extern live_range_t ira_copy_live_range_list (live_range_t);
981 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
982 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
983 extern void ira_finish_live_range (live_range_t);
984 extern void ira_finish_live_range_list (live_range_t);
985 extern void ira_free_allocno_updated_costs (ira_allocno_t);
986 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
987 int, bool, rtx, ira_loop_tree_node_t);
988 extern void ira_add_allocno_copy_to_list (ira_copy_t);
989 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
990 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
991 bool, rtx, ira_loop_tree_node_t);
992
993 extern int *ira_allocate_cost_vector (reg_class_t);
994 extern void ira_free_cost_vector (int *, reg_class_t);
995
996 extern void ira_flattening (int, int);
997 extern bool ira_build (void);
998 extern void ira_destroy (void);
999
1000 /* ira-costs.c */
1001 extern void ira_init_costs_once (void);
1002 extern void ira_init_costs (void);
1003 extern void ira_finish_costs_once (void);
1004 extern void ira_costs (void);
1005 extern void ira_tune_allocno_costs (void);
1006
1007 /* ira-lives.c */
1008
1009 extern void ira_rebuild_start_finish_chains (void);
1010 extern void ira_print_live_range_list (FILE *, live_range_t);
1011 extern void ira_debug_live_range_list (live_range_t);
1012 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1013 extern void ira_debug_live_ranges (void);
1014 extern void ira_create_allocno_live_ranges (void);
1015 extern void ira_compress_allocno_live_ranges (void);
1016 extern void ira_finish_allocno_live_ranges (void);
1017
1018 /* ira-conflicts.c */
1019 extern void ira_debug_conflicts (bool);
1020 extern void ira_build_conflicts (void);
1021
1022 /* ira-color.c */
1023 extern void ira_debug_hard_regs_forest (void);
1024 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1025 extern void ira_reassign_conflict_allocnos (int);
1026 extern void ira_initiate_assign (void);
1027 extern void ira_finish_assign (void);
1028 extern void ira_color (void);
1029
1030 /* ira-emit.c */
1031 extern void ira_initiate_emit_data (void);
1032 extern void ira_finish_emit_data (void);
1033 extern void ira_emit (bool);
1034
1035 \f
1036
1037 /* Initialize register costs for MODE if necessary. */
1038 static inline void
1039 ira_init_register_move_cost_if_necessary (enum machine_mode mode)
1040 {
1041 if (ira_register_move_cost[mode] == NULL)
1042 ira_init_register_move_cost (mode);
1043 }
1044
1045 \f
1046
1047 /* The iterator for all allocnos. */
1048 typedef struct {
1049 /* The number of the current element in IRA_ALLOCNOS. */
1050 int n;
1051 } ira_allocno_iterator;
1052
1053 /* Initialize the iterator I. */
1054 static inline void
1055 ira_allocno_iter_init (ira_allocno_iterator *i)
1056 {
1057 i->n = 0;
1058 }
1059
1060 /* Return TRUE if we have more allocnos to visit, in which case *A is
1061 set to the allocno to be visited. Otherwise, return FALSE. */
1062 static inline bool
1063 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1064 {
1065 int n;
1066
1067 for (n = i->n; n < ira_allocnos_num; n++)
1068 if (ira_allocnos[n] != NULL)
1069 {
1070 *a = ira_allocnos[n];
1071 i->n = n + 1;
1072 return true;
1073 }
1074 return false;
1075 }
1076
1077 /* Loop over all allocnos. In each iteration, A is set to the next
1078 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1079 the allocnos. */
1080 #define FOR_EACH_ALLOCNO(A, ITER) \
1081 for (ira_allocno_iter_init (&(ITER)); \
1082 ira_allocno_iter_cond (&(ITER), &(A));)
1083 \f
1084 /* The iterator for all objects. */
1085 typedef struct {
1086 /* The number of the current element in ira_object_id_map. */
1087 int n;
1088 } ira_object_iterator;
1089
1090 /* Initialize the iterator I. */
1091 static inline void
1092 ira_object_iter_init (ira_object_iterator *i)
1093 {
1094 i->n = 0;
1095 }
1096
1097 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1098 set to the object to be visited. Otherwise, return FALSE. */
1099 static inline bool
1100 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1101 {
1102 int n;
1103
1104 for (n = i->n; n < ira_objects_num; n++)
1105 if (ira_object_id_map[n] != NULL)
1106 {
1107 *obj = ira_object_id_map[n];
1108 i->n = n + 1;
1109 return true;
1110 }
1111 return false;
1112 }
1113
1114 /* Loop over all objects. In each iteration, OBJ is set to the next
1115 object. ITER is an instance of ira_object_iterator used to iterate
1116 the objects. */
1117 #define FOR_EACH_OBJECT(OBJ, ITER) \
1118 for (ira_object_iter_init (&(ITER)); \
1119 ira_object_iter_cond (&(ITER), &(OBJ));)
1120 \f
1121 /* The iterator for objects associated with an allocno. */
1122 typedef struct {
1123 /* The number of the element the allocno's object array. */
1124 int n;
1125 } ira_allocno_object_iterator;
1126
1127 /* Initialize the iterator I. */
1128 static inline void
1129 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1130 {
1131 i->n = 0;
1132 }
1133
1134 /* Return TRUE if we have more objects to visit in allocno A, in which
1135 case *O is set to the object to be visited. Otherwise, return
1136 FALSE. */
1137 static inline bool
1138 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1139 ira_object_t *o)
1140 {
1141 *o = ALLOCNO_OBJECT (a, i->n);
1142 return i->n++ < ALLOCNO_NUM_OBJECTS (a);
1143 }
1144
1145 /* Loop over all objects associated with allocno A. In each
1146 iteration, O is set to the next object. ITER is an instance of
1147 ira_allocno_object_iterator used to iterate the conflicts. */
1148 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1149 for (ira_allocno_object_iter_init (&(ITER)); \
1150 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1151 \f
1152
1153 /* The iterator for copies. */
1154 typedef struct {
1155 /* The number of the current element in IRA_COPIES. */
1156 int n;
1157 } ira_copy_iterator;
1158
1159 /* Initialize the iterator I. */
1160 static inline void
1161 ira_copy_iter_init (ira_copy_iterator *i)
1162 {
1163 i->n = 0;
1164 }
1165
1166 /* Return TRUE if we have more copies to visit, in which case *CP is
1167 set to the copy to be visited. Otherwise, return FALSE. */
1168 static inline bool
1169 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1170 {
1171 int n;
1172
1173 for (n = i->n; n < ira_copies_num; n++)
1174 if (ira_copies[n] != NULL)
1175 {
1176 *cp = ira_copies[n];
1177 i->n = n + 1;
1178 return true;
1179 }
1180 return false;
1181 }
1182
1183 /* Loop over all copies. In each iteration, C is set to the next
1184 copy. ITER is an instance of ira_copy_iterator used to iterate
1185 the copies. */
1186 #define FOR_EACH_COPY(C, ITER) \
1187 for (ira_copy_iter_init (&(ITER)); \
1188 ira_copy_iter_cond (&(ITER), &(C));)
1189 \f
1190 /* The iterator for object conflicts. */
1191 typedef struct {
1192
1193 /* TRUE if the conflicts are represented by vector of allocnos. */
1194 bool conflict_vec_p;
1195
1196 /* The conflict vector or conflict bit vector. */
1197 void *vec;
1198
1199 /* The number of the current element in the vector (of type
1200 ira_object_t or IRA_INT_TYPE). */
1201 unsigned int word_num;
1202
1203 /* The bit vector size. It is defined only if
1204 OBJECT_CONFLICT_VEC_P is FALSE. */
1205 unsigned int size;
1206
1207 /* The current bit index of bit vector. It is defined only if
1208 OBJECT_CONFLICT_VEC_P is FALSE. */
1209 unsigned int bit_num;
1210
1211 /* The object id corresponding to the 1st bit of the bit vector. It
1212 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1213 int base_conflict_id;
1214
1215 /* The word of bit vector currently visited. It is defined only if
1216 OBJECT_CONFLICT_VEC_P is FALSE. */
1217 unsigned IRA_INT_TYPE word;
1218 } ira_object_conflict_iterator;
1219
1220 /* Initialize the iterator I with ALLOCNO conflicts. */
1221 static inline void
1222 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1223 ira_object_t obj)
1224 {
1225 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1226 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1227 i->word_num = 0;
1228 if (i->conflict_vec_p)
1229 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1230 else
1231 {
1232 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1233 i->size = 0;
1234 else
1235 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1236 + IRA_INT_BITS)
1237 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1238 i->bit_num = 0;
1239 i->base_conflict_id = OBJECT_MIN (obj);
1240 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1241 }
1242 }
1243
1244 /* Return TRUE if we have more conflicting allocnos to visit, in which
1245 case *A is set to the allocno to be visited. Otherwise, return
1246 FALSE. */
1247 static inline bool
1248 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1249 ira_object_t *pobj)
1250 {
1251 ira_object_t obj;
1252
1253 if (i->conflict_vec_p)
1254 {
1255 obj = ((ira_object_t *) i->vec)[i->word_num++];
1256 if (obj == NULL)
1257 return false;
1258 }
1259 else
1260 {
1261 unsigned IRA_INT_TYPE word = i->word;
1262 unsigned int bit_num = i->bit_num;
1263
1264 /* Skip words that are zeros. */
1265 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1266 {
1267 i->word_num++;
1268
1269 /* If we have reached the end, break. */
1270 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1271 return false;
1272
1273 bit_num = i->word_num * IRA_INT_BITS;
1274 }
1275
1276 /* Skip bits that are zero. */
1277 for (; (word & 1) == 0; word >>= 1)
1278 bit_num++;
1279
1280 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1281 i->bit_num = bit_num + 1;
1282 i->word = word >> 1;
1283 }
1284
1285 *pobj = obj;
1286 return true;
1287 }
1288
1289 /* Loop over all objects conflicting with OBJ. In each iteration,
1290 CONF is set to the next conflicting object. ITER is an instance
1291 of ira_object_conflict_iterator used to iterate the conflicts. */
1292 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1293 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1294 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1295
1296 \f
1297
1298 /* The function returns TRUE if at least one hard register from ones
1299 starting with HARD_REGNO and containing value of MODE are in set
1300 HARD_REGSET. */
1301 static inline bool
1302 ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1303 HARD_REG_SET hard_regset)
1304 {
1305 int i;
1306
1307 gcc_assert (hard_regno >= 0);
1308 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1309 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1310 return true;
1311 return false;
1312 }
1313
1314 /* Return number of hard registers in hard register SET. */
1315 static inline int
1316 hard_reg_set_size (HARD_REG_SET set)
1317 {
1318 int i, size;
1319
1320 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1321 if (TEST_HARD_REG_BIT (set, i))
1322 size++;
1323 return size;
1324 }
1325
1326 /* The function returns TRUE if hard registers starting with
1327 HARD_REGNO and containing value of MODE are fully in set
1328 HARD_REGSET. */
1329 static inline bool
1330 ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1331 HARD_REG_SET hard_regset)
1332 {
1333 int i;
1334
1335 ira_assert (hard_regno >= 0);
1336 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1337 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1338 return false;
1339 return true;
1340 }
1341
1342 \f
1343
1344 /* To save memory we use a lazy approach for allocation and
1345 initialization of the cost vectors. We do this only when it is
1346 really necessary. */
1347
1348 /* Allocate cost vector *VEC for hard registers of ACLASS and
1349 initialize the elements by VAL if it is necessary */
1350 static inline void
1351 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1352 {
1353 int i, *reg_costs;
1354 int len;
1355
1356 if (*vec != NULL)
1357 return;
1358 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1359 len = ira_class_hard_regs_num[(int) aclass];
1360 for (i = 0; i < len; i++)
1361 reg_costs[i] = val;
1362 }
1363
1364 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1365 values of vector SRC into the vector if it is necessary */
1366 static inline void
1367 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1368 {
1369 int len;
1370
1371 if (*vec != NULL || src == NULL)
1372 return;
1373 *vec = ira_allocate_cost_vector (aclass);
1374 len = ira_class_hard_regs_num[aclass];
1375 memcpy (*vec, src, sizeof (int) * len);
1376 }
1377
1378 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1379 values of vector SRC into the vector if it is necessary */
1380 static inline void
1381 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1382 {
1383 int i, len;
1384
1385 if (src == NULL)
1386 return;
1387 len = ira_class_hard_regs_num[aclass];
1388 if (*vec == NULL)
1389 {
1390 *vec = ira_allocate_cost_vector (aclass);
1391 memset (*vec, 0, sizeof (int) * len);
1392 }
1393 for (i = 0; i < len; i++)
1394 (*vec)[i] += src[i];
1395 }
1396
1397 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1398 values of vector SRC into the vector or initialize it by VAL (if
1399 SRC is null). */
1400 static inline void
1401 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1402 int val, int *src)
1403 {
1404 int i, *reg_costs;
1405 int len;
1406
1407 if (*vec != NULL)
1408 return;
1409 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1410 len = ira_class_hard_regs_num[aclass];
1411 if (src != NULL)
1412 memcpy (reg_costs, src, sizeof (int) * len);
1413 else
1414 {
1415 for (i = 0; i < len; i++)
1416 reg_costs[i] = val;
1417 }
1418 }