re PR other/50775 (Register allocator sets up frame and frame pointer with low regist...
[gcc.git] / gcc / ira-int.h
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "cfgloop.h"
23 #include "ira.h"
24 #include "alloc-pool.h"
25
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
31 #endif
32
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 /* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38 #define ira_assert(c) ((void)(0 && (c)))
39 #endif
40
41 /* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50
51 /* All natural loops. */
52 extern struct loops ira_loops;
53
54 /* A modified value of flag `-fira-verbose' used internally. */
55 extern int internal_flag_ira_verbose;
56
57 /* Dump file of the allocator if it is not NULL. */
58 extern FILE *ira_dump_file;
59
60 /* Typedefs for pointers to allocno live range, allocno, and copy of
61 allocnos. */
62 typedef struct live_range *live_range_t;
63 typedef struct ira_allocno *ira_allocno_t;
64 typedef struct ira_allocno_copy *ira_copy_t;
65 typedef struct ira_object *ira_object_t;
66
67 /* Definition of vector of allocnos and copies. */
68 DEF_VEC_P(ira_allocno_t);
69 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
70 DEF_VEC_P(ira_object_t);
71 DEF_VEC_ALLOC_P(ira_object_t, heap);
72 DEF_VEC_P(ira_copy_t);
73 DEF_VEC_ALLOC_P(ira_copy_t, heap);
74
75 /* Typedef for pointer to the subsequent structure. */
76 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
77
78 /* In general case, IRA is a regional allocator. The regions are
79 nested and form a tree. Currently regions are natural loops. The
80 following structure describes loop tree node (representing basic
81 block or loop). We need such tree because the loop tree from
82 cfgloop.h is not convenient for the optimization: basic blocks are
83 not a part of the tree from cfgloop.h. We also use the nodes for
84 storing additional information about basic blocks/loops for the
85 register allocation purposes. */
86 struct ira_loop_tree_node
87 {
88 /* The node represents basic block if children == NULL. */
89 basic_block bb; /* NULL for loop. */
90 struct loop *loop; /* NULL for BB. */
91 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
92 SUBLOOP_NEXT is always NULL for BBs. */
93 ira_loop_tree_node_t subloop_next, next;
94 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
95 the node. They are NULL for BBs. */
96 ira_loop_tree_node_t subloops, children;
97 /* The node immediately containing given node. */
98 ira_loop_tree_node_t parent;
99
100 /* Loop level in range [0, ira_loop_tree_height). */
101 int level;
102
103 /* All the following members are defined only for nodes representing
104 loops. */
105
106 /* True if the loop was marked for removal from the register
107 allocation. */
108 bool to_remove_p;
109
110 /* Allocnos in the loop corresponding to their regnos. If it is
111 NULL the loop does not form a separate register allocation region
112 (e.g. because it has abnormal enter/exit edges and we can not put
113 code for register shuffling on the edges if a different
114 allocation is used for a pseudo-register on different sides of
115 the edges). Caps are not in the map (remember we can have more
116 one cap with the same regno in a region). */
117 ira_allocno_t *regno_allocno_map;
118
119 /* True if there is an entry to given loop not from its parent (or
120 grandparent) basic block. For example, it is possible for two
121 adjacent loops inside another loop. */
122 bool entered_from_non_parent_p;
123
124 /* Maximal register pressure inside loop for given register class
125 (defined only for the pressure classes). */
126 int reg_pressure[N_REG_CLASSES];
127
128 /* Numbers of allocnos referred or living in the loop node (except
129 for its subloops). */
130 bitmap all_allocnos;
131
132 /* Numbers of allocnos living at the loop borders. */
133 bitmap border_allocnos;
134
135 /* Regnos of pseudos modified in the loop node (including its
136 subloops). */
137 bitmap modified_regnos;
138
139 /* Numbers of copies referred in the corresponding loop. */
140 bitmap local_copies;
141 };
142
143 /* The root of the loop tree corresponding to the all function. */
144 extern ira_loop_tree_node_t ira_loop_tree_root;
145
146 /* Height of the loop tree. */
147 extern int ira_loop_tree_height;
148
149 /* All nodes representing basic blocks are referred through the
150 following array. We can not use basic block member `aux' for this
151 because it is used for insertion of insns on edges. */
152 extern ira_loop_tree_node_t ira_bb_nodes;
153
154 /* Two access macros to the nodes representing basic blocks. */
155 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
156 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
157 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
158 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
159 { \
160 fprintf (stderr, \
161 "\n%s: %d: error in %s: it is not a block node\n", \
162 __FILE__, __LINE__, __FUNCTION__); \
163 gcc_unreachable (); \
164 } \
165 _node; }))
166 #else
167 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
168 #endif
169
170 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
171
172 /* All nodes representing loops are referred through the following
173 array. */
174 extern ira_loop_tree_node_t ira_loop_nodes;
175
176 /* Two access macros to the nodes representing loops. */
177 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
178 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
179 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
180 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
181 { \
182 fprintf (stderr, \
183 "\n%s: %d: error in %s: it is not a loop node\n", \
184 __FILE__, __LINE__, __FUNCTION__); \
185 gcc_unreachable (); \
186 } \
187 _node; }))
188 #else
189 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
190 #endif
191
192 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
193
194 \f
195 /* The structure describes program points where a given allocno lives.
196 If the live ranges of two allocnos are intersected, the allocnos
197 are in conflict. */
198 struct live_range
199 {
200 /* Object whose live range is described by given structure. */
201 ira_object_t object;
202 /* Program point range. */
203 int start, finish;
204 /* Next structure describing program points where the allocno
205 lives. */
206 live_range_t next;
207 /* Pointer to structures with the same start/finish. */
208 live_range_t start_next, finish_next;
209 };
210
211 /* Program points are enumerated by numbers from range
212 0..IRA_MAX_POINT-1. There are approximately two times more program
213 points than insns. Program points are places in the program where
214 liveness info can be changed. In most general case (there are more
215 complicated cases too) some program points correspond to places
216 where input operand dies and other ones correspond to places where
217 output operands are born. */
218 extern int ira_max_point;
219
220 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
221 live ranges with given start/finish point. */
222 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
223
224 /* A structure representing conflict information for an allocno
225 (or one of its subwords). */
226 struct ira_object
227 {
228 /* The allocno associated with this record. */
229 ira_allocno_t allocno;
230 /* Vector of accumulated conflicting conflict_redords with NULL end
231 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
232 otherwise. */
233 void *conflicts_array;
234 /* Pointer to structures describing at what program point the
235 object lives. We always maintain the list in such way that *the
236 ranges in the list are not intersected and ordered by decreasing
237 their program points*. */
238 live_range_t live_ranges;
239 /* The subword within ALLOCNO which is represented by this object.
240 Zero means the lowest-order subword (or the entire allocno in case
241 it is not being tracked in subwords). */
242 int subword;
243 /* Allocated size of the conflicts array. */
244 unsigned int conflicts_array_size;
245 /* A unique number for every instance of this structure, which is used
246 to represent it in conflict bit vectors. */
247 int id;
248 /* Before building conflicts, MIN and MAX are initialized to
249 correspondingly minimal and maximal points of the accumulated
250 live ranges. Afterwards, they hold the minimal and maximal ids
251 of other ira_objects that this one can conflict with. */
252 int min, max;
253 /* Initial and accumulated hard registers conflicting with this
254 object and as a consequences can not be assigned to the allocno.
255 All non-allocatable hard regs and hard regs of register classes
256 different from given allocno one are included in the sets. */
257 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
258 /* Number of accumulated conflicts in the vector of conflicting
259 objects. */
260 int num_accumulated_conflicts;
261 /* TRUE if conflicts are represented by a vector of pointers to
262 ira_object structures. Otherwise, we use a bit vector indexed
263 by conflict ID numbers. */
264 unsigned int conflict_vec_p : 1;
265 };
266
267 /* A structure representing an allocno (allocation entity). Allocno
268 represents a pseudo-register in an allocation region. If
269 pseudo-register does not live in a region but it lives in the
270 nested regions, it is represented in the region by special allocno
271 called *cap*. There may be more one cap representing the same
272 pseudo-register in region. It means that the corresponding
273 pseudo-register lives in more one non-intersected subregion. */
274 struct ira_allocno
275 {
276 /* The allocno order number starting with 0. Each allocno has an
277 unique number and the number is never changed for the
278 allocno. */
279 int num;
280 /* Regno for allocno or cap. */
281 int regno;
282 /* Mode of the allocno which is the mode of the corresponding
283 pseudo-register. */
284 ENUM_BITFIELD (machine_mode) mode : 8;
285 /* Register class which should be used for allocation for given
286 allocno. NO_REGS means that we should use memory. */
287 ENUM_BITFIELD (reg_class) aclass : 16;
288 /* During the reload, value TRUE means that we should not reassign a
289 hard register to the allocno got memory earlier. It is set up
290 when we removed memory-memory move insn before each iteration of
291 the reload. */
292 unsigned int dont_reassign_p : 1;
293 #ifdef STACK_REGS
294 /* Set to TRUE if allocno can't be assigned to the stack hard
295 register correspondingly in this region and area including the
296 region and all its subregions recursively. */
297 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
298 #endif
299 /* TRUE value means that there is no sense to spill the allocno
300 during coloring because the spill will result in additional
301 reloads in reload pass. */
302 unsigned int bad_spill_p : 1;
303 /* TRUE if a hard register or memory has been assigned to the
304 allocno. */
305 unsigned int assigned_p : 1;
306 /* TRUE if conflicts for given allocno are represented by vector of
307 pointers to the conflicting allocnos. Otherwise, we use a bit
308 vector where a bit with given index represents allocno with the
309 same number. */
310 unsigned int conflict_vec_p : 1;
311 /* Hard register assigned to given allocno. Negative value means
312 that memory was allocated to the allocno. During the reload,
313 spilled allocno has value equal to the corresponding stack slot
314 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
315 reload (at this point pseudo-register has only one allocno) which
316 did not get stack slot yet. */
317 short int hard_regno;
318 /* Allocnos with the same regno are linked by the following member.
319 Allocnos corresponding to inner loops are first in the list (it
320 corresponds to depth-first traverse of the loops). */
321 ira_allocno_t next_regno_allocno;
322 /* There may be different allocnos with the same regno in different
323 regions. Allocnos are bound to the corresponding loop tree node.
324 Pseudo-register may have only one regular allocno with given loop
325 tree node but more than one cap (see comments above). */
326 ira_loop_tree_node_t loop_tree_node;
327 /* Accumulated usage references of the allocno. Here and below,
328 word 'accumulated' means info for given region and all nested
329 subregions. In this case, 'accumulated' means sum of references
330 of the corresponding pseudo-register in this region and in all
331 nested subregions recursively. */
332 int nrefs;
333 /* Accumulated frequency of usage of the allocno. */
334 int freq;
335 /* Minimal accumulated and updated costs of usage register of the
336 allocno class. */
337 int class_cost, updated_class_cost;
338 /* Minimal accumulated, and updated costs of memory for the allocno.
339 At the allocation start, the original and updated costs are
340 equal. The updated cost may be changed after finishing
341 allocation in a region and starting allocation in a subregion.
342 The change reflects the cost of spill/restore code on the
343 subregion border if we assign memory to the pseudo in the
344 subregion. */
345 int memory_cost, updated_memory_cost;
346 /* Accumulated number of points where the allocno lives and there is
347 excess pressure for its class. Excess pressure for a register
348 class at some point means that there are more allocnos of given
349 register class living at the point than number of hard-registers
350 of the class available for the allocation. */
351 int excess_pressure_points_num;
352 /* Copies to other non-conflicting allocnos. The copies can
353 represent move insn or potential move insn usually because of two
354 operand insn constraints. */
355 ira_copy_t allocno_copies;
356 /* It is a allocno (cap) representing given allocno on upper loop tree
357 level. */
358 ira_allocno_t cap;
359 /* It is a link to allocno (cap) on lower loop level represented by
360 given cap. Null if given allocno is not a cap. */
361 ira_allocno_t cap_member;
362 /* The number of objects tracked in the following array. */
363 int num_objects;
364 /* An array of structures describing conflict information and live
365 ranges for each object associated with the allocno. There may be
366 more than one such object in cases where the allocno represents a
367 multi-word register. */
368 ira_object_t objects[2];
369 /* Accumulated frequency of calls which given allocno
370 intersects. */
371 int call_freq;
372 /* Accumulated number of the intersected calls. */
373 int calls_crossed_num;
374 /* Array of usage costs (accumulated and the one updated during
375 coloring) for each hard register of the allocno class. The
376 member value can be NULL if all costs are the same and equal to
377 CLASS_COST. For example, the costs of two different hard
378 registers can be different if one hard register is callee-saved
379 and another one is callee-used and the allocno lives through
380 calls. Another example can be case when for some insn the
381 corresponding pseudo-register value should be put in specific
382 register class (e.g. AREG for x86) which is a strict subset of
383 the allocno class (GENERAL_REGS for x86). We have updated costs
384 to reflect the situation when the usage cost of a hard register
385 is decreased because the allocno is connected to another allocno
386 by a copy and the another allocno has been assigned to the hard
387 register. */
388 int *hard_reg_costs, *updated_hard_reg_costs;
389 /* Array of decreasing costs (accumulated and the one updated during
390 coloring) for allocnos conflicting with given allocno for hard
391 regno of the allocno class. The member value can be NULL if all
392 costs are the same. These costs are used to reflect preferences
393 of other allocnos not assigned yet during assigning to given
394 allocno. */
395 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
396 /* Different additional data. It is used to decrease size of
397 allocno data footprint. */
398 void *add_data;
399 };
400
401
402 /* All members of the allocno structures should be accessed only
403 through the following macros. */
404 #define ALLOCNO_NUM(A) ((A)->num)
405 #define ALLOCNO_REGNO(A) ((A)->regno)
406 #define ALLOCNO_REG(A) ((A)->reg)
407 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
408 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
409 #define ALLOCNO_CAP(A) ((A)->cap)
410 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
411 #define ALLOCNO_NREFS(A) ((A)->nrefs)
412 #define ALLOCNO_FREQ(A) ((A)->freq)
413 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
414 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
415 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
416 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
417 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
418 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
419 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
420 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
421 #ifdef STACK_REGS
422 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
423 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
424 #endif
425 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
426 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
427 #define ALLOCNO_MODE(A) ((A)->mode)
428 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
429 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
430 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
431 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
432 ((A)->conflict_hard_reg_costs)
433 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
434 ((A)->updated_conflict_hard_reg_costs)
435 #define ALLOCNO_CLASS(A) ((A)->aclass)
436 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
437 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
438 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
439 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
440 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
441 ((A)->excess_pressure_points_num)
442 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
443 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
444 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
445
446 /* Typedef for pointer to the subsequent structure. */
447 typedef struct ira_emit_data *ira_emit_data_t;
448
449 /* Allocno bound data used for emit pseudo live range split insns and
450 to flattening IR. */
451 struct ira_emit_data
452 {
453 /* TRUE if the allocno assigned to memory was a destination of
454 removed move (see ira-emit.c) at loop exit because the value of
455 the corresponding pseudo-register is not changed inside the
456 loop. */
457 unsigned int mem_optimized_dest_p : 1;
458 /* TRUE if the corresponding pseudo-register has disjoint live
459 ranges and the other allocnos of the pseudo-register except this
460 one changed REG. */
461 unsigned int somewhere_renamed_p : 1;
462 /* TRUE if allocno with the same REGNO in a subregion has been
463 renamed, in other words, got a new pseudo-register. */
464 unsigned int child_renamed_p : 1;
465 /* Final rtx representation of the allocno. */
466 rtx reg;
467 /* Non NULL if we remove restoring value from given allocno to
468 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
469 allocno value is not changed inside the loop. */
470 ira_allocno_t mem_optimized_dest;
471 };
472
473 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
474
475 /* Data used to emit live range split insns and to flattening IR. */
476 extern ira_emit_data_t ira_allocno_emit_data;
477
478 /* Abbreviation for frequent emit data access. */
479 static inline rtx
480 allocno_emit_reg (ira_allocno_t a)
481 {
482 return ALLOCNO_EMIT_DATA (a)->reg;
483 }
484
485 #define OBJECT_ALLOCNO(O) ((O)->allocno)
486 #define OBJECT_SUBWORD(O) ((O)->subword)
487 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
488 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
489 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
490 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
491 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
492 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
493 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
494 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
495 #define OBJECT_MIN(O) ((O)->min)
496 #define OBJECT_MAX(O) ((O)->max)
497 #define OBJECT_CONFLICT_ID(O) ((O)->id)
498 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
499
500 /* Map regno -> allocnos with given regno (see comments for
501 allocno member `next_regno_allocno'). */
502 extern ira_allocno_t *ira_regno_allocno_map;
503
504 /* Array of references to all allocnos. The order number of the
505 allocno corresponds to the index in the array. Removed allocnos
506 have NULL element value. */
507 extern ira_allocno_t *ira_allocnos;
508
509 /* The size of the previous array. */
510 extern int ira_allocnos_num;
511
512 /* Map a conflict id to its corresponding ira_object structure. */
513 extern ira_object_t *ira_object_id_map;
514
515 /* The size of the previous array. */
516 extern int ira_objects_num;
517
518 /* The following structure represents a copy of two allocnos. The
519 copies represent move insns or potential move insns usually because
520 of two operand insn constraints. To remove register shuffle, we
521 also create copies between allocno which is output of an insn and
522 allocno becoming dead in the insn. */
523 struct ira_allocno_copy
524 {
525 /* The unique order number of the copy node starting with 0. */
526 int num;
527 /* Allocnos connected by the copy. The first allocno should have
528 smaller order number than the second one. */
529 ira_allocno_t first, second;
530 /* Execution frequency of the copy. */
531 int freq;
532 bool constraint_p;
533 /* It is a move insn which is an origin of the copy. The member
534 value for the copy representing two operand insn constraints or
535 for the copy created to remove register shuffle is NULL. In last
536 case the copy frequency is smaller than the corresponding insn
537 execution frequency. */
538 rtx insn;
539 /* All copies with the same allocno as FIRST are linked by the two
540 following members. */
541 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
542 /* All copies with the same allocno as SECOND are linked by the two
543 following members. */
544 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
545 /* Region from which given copy is originated. */
546 ira_loop_tree_node_t loop_tree_node;
547 };
548
549 /* Array of references to all copies. The order number of the copy
550 corresponds to the index in the array. Removed copies have NULL
551 element value. */
552 extern ira_copy_t *ira_copies;
553
554 /* Size of the previous array. */
555 extern int ira_copies_num;
556
557 /* The following structure describes a stack slot used for spilled
558 pseudo-registers. */
559 struct ira_spilled_reg_stack_slot
560 {
561 /* pseudo-registers assigned to the stack slot. */
562 bitmap_head spilled_regs;
563 /* RTL representation of the stack slot. */
564 rtx mem;
565 /* Size of the stack slot. */
566 unsigned int width;
567 };
568
569 /* The number of elements in the following array. */
570 extern int ira_spilled_reg_stack_slots_num;
571
572 /* The following array contains info about spilled pseudo-registers
573 stack slots used in current function so far. */
574 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
575
576 /* Correspondingly overall cost of the allocation, cost of the
577 allocnos assigned to hard-registers, cost of the allocnos assigned
578 to memory, cost of loads, stores and register move insns generated
579 for pseudo-register live range splitting (see ira-emit.c). */
580 extern int ira_overall_cost;
581 extern int ira_reg_cost, ira_mem_cost;
582 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
583 extern int ira_move_loops_num, ira_additional_jumps_num;
584
585 \f
586 /* This page contains a bitset implementation called 'min/max sets' used to
587 record conflicts in IRA.
588 They are named min/maxs set since we keep track of a minimum and a maximum
589 bit number for each set representing the bounds of valid elements. Otherwise,
590 the implementation resembles sbitmaps in that we store an array of integers
591 whose bits directly represent the members of the set. */
592
593 /* The type used as elements in the array, and the number of bits in
594 this type. */
595
596 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
597 #define IRA_INT_TYPE HOST_WIDE_INT
598
599 /* Set, clear or test bit number I in R, a bit vector of elements with
600 minimal index and maximal index equal correspondingly to MIN and
601 MAX. */
602 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
603
604 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
605 (({ int _min = (MIN), _max = (MAX), _i = (I); \
606 if (_i < _min || _i > _max) \
607 { \
608 fprintf (stderr, \
609 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
610 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
611 gcc_unreachable (); \
612 } \
613 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
614 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
615
616
617 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
618 (({ int _min = (MIN), _max = (MAX), _i = (I); \
619 if (_i < _min || _i > _max) \
620 { \
621 fprintf (stderr, \
622 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
623 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
624 gcc_unreachable (); \
625 } \
626 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
627 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
628
629 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
630 (({ int _min = (MIN), _max = (MAX), _i = (I); \
631 if (_i < _min || _i > _max) \
632 { \
633 fprintf (stderr, \
634 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
635 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
636 gcc_unreachable (); \
637 } \
638 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
639 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
640
641 #else
642
643 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
644 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
645 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
646
647 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
648 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
649 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
650
651 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
652 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
653 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
654
655 #endif
656
657 /* The iterator for min/max sets. */
658 typedef struct {
659
660 /* Array containing the bit vector. */
661 IRA_INT_TYPE *vec;
662
663 /* The number of the current element in the vector. */
664 unsigned int word_num;
665
666 /* The number of bits in the bit vector. */
667 unsigned int nel;
668
669 /* The current bit index of the bit vector. */
670 unsigned int bit_num;
671
672 /* Index corresponding to the 1st bit of the bit vector. */
673 int start_val;
674
675 /* The word of the bit vector currently visited. */
676 unsigned IRA_INT_TYPE word;
677 } minmax_set_iterator;
678
679 /* Initialize the iterator I for bit vector VEC containing minimal and
680 maximal values MIN and MAX. */
681 static inline void
682 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
683 int max)
684 {
685 i->vec = vec;
686 i->word_num = 0;
687 i->nel = max < min ? 0 : max - min + 1;
688 i->start_val = min;
689 i->bit_num = 0;
690 i->word = i->nel == 0 ? 0 : vec[0];
691 }
692
693 /* Return TRUE if we have more allocnos to visit, in which case *N is
694 set to the number of the element to be visited. Otherwise, return
695 FALSE. */
696 static inline bool
697 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
698 {
699 /* Skip words that are zeros. */
700 for (; i->word == 0; i->word = i->vec[i->word_num])
701 {
702 i->word_num++;
703 i->bit_num = i->word_num * IRA_INT_BITS;
704
705 /* If we have reached the end, break. */
706 if (i->bit_num >= i->nel)
707 return false;
708 }
709
710 /* Skip bits that are zero. */
711 for (; (i->word & 1) == 0; i->word >>= 1)
712 i->bit_num++;
713
714 *n = (int) i->bit_num + i->start_val;
715
716 return true;
717 }
718
719 /* Advance to the next element in the set. */
720 static inline void
721 minmax_set_iter_next (minmax_set_iterator *i)
722 {
723 i->word >>= 1;
724 i->bit_num++;
725 }
726
727 /* Loop over all elements of a min/max set given by bit vector VEC and
728 their minimal and maximal values MIN and MAX. In each iteration, N
729 is set to the number of next allocno. ITER is an instance of
730 minmax_set_iterator used to iterate over the set. */
731 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
732 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
733 minmax_set_iter_cond (&(ITER), &(N)); \
734 minmax_set_iter_next (&(ITER)))
735 \f
736 struct target_ira_int {
737 /* Initialized once. It is a maximal possible size of the allocated
738 struct costs. */
739 int x_max_struct_costs_size;
740
741 /* Allocated and initialized once, and used to initialize cost values
742 for each insn. */
743 struct costs *x_init_cost;
744
745 /* Allocated once, and used for temporary purposes. */
746 struct costs *x_temp_costs;
747
748 /* Allocated once, and used for the cost calculation. */
749 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
750 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
751
752 /* Hard registers that can not be used for the register allocator for
753 all functions of the current compilation unit. */
754 HARD_REG_SET x_no_unit_alloc_regs;
755
756 /* Map: hard regs X modes -> set of hard registers for storing value
757 of given mode starting with given hard register. */
758 HARD_REG_SET (x_ira_reg_mode_hard_regset
759 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
760
761 /* Array based on TARGET_REGISTER_MOVE_COST. Don't use
762 ira_register_move_cost directly. Use function of
763 ira_get_may_move_cost instead. */
764 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
765
766 /* Array analogs of the macros MEMORY_MOVE_COST and
767 REGISTER_MOVE_COST but they contain maximal cost not minimal as
768 the previous two ones do. */
769 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
770 move_table *x_ira_max_register_move_cost[MAX_MACHINE_MODE];
771
772 /* Similar to may_move_in_cost but it is calculated in IRA instead of
773 regclass. Another difference we take only available hard registers
774 into account to figure out that one register class is a subset of
775 the another one. Don't use it directly. Use function of
776 ira_get_may_move_cost instead. */
777 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
778
779 /* Similar to may_move_out_cost but it is calculated in IRA instead of
780 regclass. Another difference we take only available hard registers
781 into account to figure out that one register class is a subset of
782 the another one. Don't use it directly. Use function of
783 ira_get_may_move_cost instead. */
784 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
785
786 /* Similar to ira_may_move_in_cost and ira_may_move_out_cost but they
787 return maximal cost. */
788 move_table *x_ira_max_may_move_in_cost[MAX_MACHINE_MODE];
789 move_table *x_ira_max_may_move_out_cost[MAX_MACHINE_MODE];
790
791 /* Map class->true if class is a possible allocno class, false
792 otherwise. */
793 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
794
795 /* Map class->true if class is a pressure class, false otherwise. */
796 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
797
798 /* Register class subset relation: TRUE if the first class is a subset
799 of the second one considering only hard registers available for the
800 allocation. */
801 int x_ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
802
803 /* Array of the number of hard registers of given class which are
804 available for allocation. The order is defined by the hard
805 register numbers. */
806 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
807
808 /* Index (in ira_class_hard_regs; for given register class and hard
809 register (in general case a hard register can belong to several
810 register classes;. The index is negative for hard registers
811 unavailable for the allocation. */
812 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
813
814 /* Array whose values are hard regset of hard registers available for
815 the allocation of given register class whose HARD_REGNO_MODE_OK
816 values for given mode are zero. */
817 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
818
819 /* The value is number of elements in the subsequent array. */
820 int x_ira_important_classes_num;
821
822 /* The array containing all non-empty classes. Such classes is
823 important for calculation of the hard register usage costs. */
824 enum reg_class x_ira_important_classes[N_REG_CLASSES];
825
826 /* The array containing indexes of important classes in the previous
827 array. The array elements are defined only for important
828 classes. */
829 int x_ira_important_class_nums[N_REG_CLASSES];
830
831 /* The biggest important class inside of intersection of the two
832 classes (that is calculated taking only hard registers available
833 for allocation into account;. If the both classes contain no hard
834 registers available for allocation, the value is calculated with
835 taking all hard-registers including fixed ones into account. */
836 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
837
838 /* True if the two classes (that is calculated taking only hard
839 registers available for allocation into account; are
840 intersected. */
841 bool x_ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
842
843 /* Classes with end marker LIM_REG_CLASSES which are intersected with
844 given class (the first index;. That includes given class itself.
845 This is calculated taking only hard registers available for
846 allocation into account. */
847 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
848
849 /* The biggest (smallest) important class inside of (covering) union
850 of the two classes (that is calculated taking only hard registers
851 available for allocation into account). If the both classes
852 contain no hard registers available for allocation, the value is
853 calculated with taking all hard-registers including fixed ones
854 into account. In other words, the value is the corresponding
855 reg_class_subunion (reg_class_superunion) value. */
856 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
857 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
858
859 /* For each reg class, table listing all the classes contained in it
860 (excluding the class itself. Non-allocatable registers are
861 excluded from the consideration;. */
862 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
863
864 /* Array whose values are hard regset of hard registers for which
865 move of the hard register in given mode into itself is
866 prohibited. */
867 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
868
869 /* Flag of that the above array has been initialized. */
870 bool x_ira_prohibited_mode_move_regs_initialized_p;
871 };
872
873 extern struct target_ira_int default_target_ira_int;
874 #if SWITCHABLE_TARGET
875 extern struct target_ira_int *this_target_ira_int;
876 #else
877 #define this_target_ira_int (&default_target_ira_int)
878 #endif
879
880 #define ira_reg_mode_hard_regset \
881 (this_target_ira_int->x_ira_reg_mode_hard_regset)
882 #define ira_register_move_cost \
883 (this_target_ira_int->x_ira_register_move_cost)
884 #define ira_max_memory_move_cost \
885 (this_target_ira_int->x_ira_max_memory_move_cost)
886 #define ira_max_register_move_cost \
887 (this_target_ira_int->x_ira_max_register_move_cost)
888 #define ira_may_move_in_cost \
889 (this_target_ira_int->x_ira_may_move_in_cost)
890 #define ira_may_move_out_cost \
891 (this_target_ira_int->x_ira_may_move_out_cost)
892 #define ira_max_may_move_in_cost \
893 (this_target_ira_int->x_ira_max_may_move_in_cost)
894 #define ira_max_may_move_out_cost \
895 (this_target_ira_int->x_ira_max_may_move_out_cost)
896 #define ira_reg_allocno_class_p \
897 (this_target_ira_int->x_ira_reg_allocno_class_p)
898 #define ira_reg_pressure_class_p \
899 (this_target_ira_int->x_ira_reg_pressure_class_p)
900 #define ira_class_subset_p \
901 (this_target_ira_int->x_ira_class_subset_p)
902 #define ira_non_ordered_class_hard_regs \
903 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
904 #define ira_class_hard_reg_index \
905 (this_target_ira_int->x_ira_class_hard_reg_index)
906 #define ira_prohibited_class_mode_regs \
907 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
908 #define ira_important_classes_num \
909 (this_target_ira_int->x_ira_important_classes_num)
910 #define ira_important_classes \
911 (this_target_ira_int->x_ira_important_classes)
912 #define ira_important_class_nums \
913 (this_target_ira_int->x_ira_important_class_nums)
914 #define ira_reg_class_intersect \
915 (this_target_ira_int->x_ira_reg_class_intersect)
916 #define ira_reg_classes_intersect_p \
917 (this_target_ira_int->x_ira_reg_classes_intersect_p)
918 #define ira_reg_class_super_classes \
919 (this_target_ira_int->x_ira_reg_class_super_classes)
920 #define ira_reg_class_subunion \
921 (this_target_ira_int->x_ira_reg_class_subunion)
922 #define ira_reg_class_superunion \
923 (this_target_ira_int->x_ira_reg_class_superunion)
924 #define ira_prohibited_mode_move_regs \
925 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
926 \f
927 /* ira.c: */
928
929 extern void *ira_allocate (size_t);
930 extern void ira_free (void *addr);
931 extern bitmap ira_allocate_bitmap (void);
932 extern void ira_free_bitmap (bitmap);
933 extern void ira_print_disposition (FILE *);
934 extern void ira_debug_disposition (void);
935 extern void ira_debug_allocno_classes (void);
936 extern void ira_init_register_move_cost (enum machine_mode);
937
938 /* The length of the two following arrays. */
939 extern int ira_reg_equiv_len;
940
941 /* The element value is TRUE if the corresponding regno value is
942 invariant. */
943 extern bool *ira_reg_equiv_invariant_p;
944
945 /* The element value is equiv constant of given pseudo-register or
946 NULL_RTX. */
947 extern rtx *ira_reg_equiv_const;
948
949 /* ira-build.c */
950
951 /* The current loop tree node and its regno allocno map. */
952 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
953 extern ira_allocno_t *ira_curr_regno_allocno_map;
954
955 extern void ira_debug_copy (ira_copy_t);
956 extern void ira_debug_copies (void);
957 extern void ira_debug_allocno_copies (ira_allocno_t);
958
959 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
960 void (*) (ira_loop_tree_node_t),
961 void (*) (ira_loop_tree_node_t));
962 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
963 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
964 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
965 extern void ira_create_allocno_objects (ira_allocno_t);
966 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
967 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
968 extern void ira_allocate_conflict_vec (ira_object_t, int);
969 extern void ira_allocate_object_conflicts (ira_object_t, int);
970 extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
971 extern void ira_print_expanded_allocno (ira_allocno_t);
972 extern void ira_add_live_range_to_object (ira_object_t, int, int);
973 extern live_range_t ira_create_live_range (ira_object_t, int, int,
974 live_range_t);
975 extern live_range_t ira_copy_live_range_list (live_range_t);
976 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
977 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
978 extern void ira_finish_live_range (live_range_t);
979 extern void ira_finish_live_range_list (live_range_t);
980 extern void ira_free_allocno_updated_costs (ira_allocno_t);
981 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
982 int, bool, rtx, ira_loop_tree_node_t);
983 extern void ira_add_allocno_copy_to_list (ira_copy_t);
984 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
985 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
986 bool, rtx, ira_loop_tree_node_t);
987
988 extern int *ira_allocate_cost_vector (reg_class_t);
989 extern void ira_free_cost_vector (int *, reg_class_t);
990
991 extern void ira_flattening (int, int);
992 extern bool ira_build (bool);
993 extern void ira_destroy (void);
994
995 /* ira-costs.c */
996 extern void ira_init_costs_once (void);
997 extern void ira_init_costs (void);
998 extern void ira_finish_costs_once (void);
999 extern void ira_costs (void);
1000 extern void ira_tune_allocno_costs (void);
1001
1002 /* ira-lives.c */
1003
1004 extern void ira_rebuild_start_finish_chains (void);
1005 extern void ira_print_live_range_list (FILE *, live_range_t);
1006 extern void ira_debug_live_range_list (live_range_t);
1007 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1008 extern void ira_debug_live_ranges (void);
1009 extern void ira_create_allocno_live_ranges (void);
1010 extern void ira_compress_allocno_live_ranges (void);
1011 extern void ira_finish_allocno_live_ranges (void);
1012
1013 /* ira-conflicts.c */
1014 extern void ira_debug_conflicts (bool);
1015 extern void ira_build_conflicts (void);
1016
1017 /* ira-color.c */
1018 extern void ira_debug_hard_regs_forest (void);
1019 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1020 extern void ira_reassign_conflict_allocnos (int);
1021 extern void ira_initiate_assign (void);
1022 extern void ira_finish_assign (void);
1023 extern void ira_color (void);
1024
1025 /* ira-emit.c */
1026 extern void ira_initiate_emit_data (void);
1027 extern void ira_finish_emit_data (void);
1028 extern void ira_emit (bool);
1029
1030 \f
1031
1032 /* Initialize register costs for MODE if necessary. */
1033 static inline void
1034 ira_init_register_move_cost_if_necessary (enum machine_mode mode)
1035 {
1036 if (ira_register_move_cost[mode] == NULL)
1037 ira_init_register_move_cost (mode);
1038 }
1039
1040 \f
1041
1042 /* The iterator for all allocnos. */
1043 typedef struct {
1044 /* The number of the current element in IRA_ALLOCNOS. */
1045 int n;
1046 } ira_allocno_iterator;
1047
1048 /* Initialize the iterator I. */
1049 static inline void
1050 ira_allocno_iter_init (ira_allocno_iterator *i)
1051 {
1052 i->n = 0;
1053 }
1054
1055 /* Return TRUE if we have more allocnos to visit, in which case *A is
1056 set to the allocno to be visited. Otherwise, return FALSE. */
1057 static inline bool
1058 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1059 {
1060 int n;
1061
1062 for (n = i->n; n < ira_allocnos_num; n++)
1063 if (ira_allocnos[n] != NULL)
1064 {
1065 *a = ira_allocnos[n];
1066 i->n = n + 1;
1067 return true;
1068 }
1069 return false;
1070 }
1071
1072 /* Loop over all allocnos. In each iteration, A is set to the next
1073 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1074 the allocnos. */
1075 #define FOR_EACH_ALLOCNO(A, ITER) \
1076 for (ira_allocno_iter_init (&(ITER)); \
1077 ira_allocno_iter_cond (&(ITER), &(A));)
1078 \f
1079 /* The iterator for all objects. */
1080 typedef struct {
1081 /* The number of the current element in ira_object_id_map. */
1082 int n;
1083 } ira_object_iterator;
1084
1085 /* Initialize the iterator I. */
1086 static inline void
1087 ira_object_iter_init (ira_object_iterator *i)
1088 {
1089 i->n = 0;
1090 }
1091
1092 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1093 set to the object to be visited. Otherwise, return FALSE. */
1094 static inline bool
1095 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1096 {
1097 int n;
1098
1099 for (n = i->n; n < ira_objects_num; n++)
1100 if (ira_object_id_map[n] != NULL)
1101 {
1102 *obj = ira_object_id_map[n];
1103 i->n = n + 1;
1104 return true;
1105 }
1106 return false;
1107 }
1108
1109 /* Loop over all objects. In each iteration, OBJ is set to the next
1110 object. ITER is an instance of ira_object_iterator used to iterate
1111 the objects. */
1112 #define FOR_EACH_OBJECT(OBJ, ITER) \
1113 for (ira_object_iter_init (&(ITER)); \
1114 ira_object_iter_cond (&(ITER), &(OBJ));)
1115 \f
1116 /* The iterator for objects associated with an allocno. */
1117 typedef struct {
1118 /* The number of the element the allocno's object array. */
1119 int n;
1120 } ira_allocno_object_iterator;
1121
1122 /* Initialize the iterator I. */
1123 static inline void
1124 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1125 {
1126 i->n = 0;
1127 }
1128
1129 /* Return TRUE if we have more objects to visit in allocno A, in which
1130 case *O is set to the object to be visited. Otherwise, return
1131 FALSE. */
1132 static inline bool
1133 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1134 ira_object_t *o)
1135 {
1136 *o = ALLOCNO_OBJECT (a, i->n);
1137 return i->n++ < ALLOCNO_NUM_OBJECTS (a);
1138 }
1139
1140 /* Loop over all objects associated with allocno A. In each
1141 iteration, O is set to the next object. ITER is an instance of
1142 ira_allocno_object_iterator used to iterate the conflicts. */
1143 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1144 for (ira_allocno_object_iter_init (&(ITER)); \
1145 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1146 \f
1147
1148 /* The iterator for copies. */
1149 typedef struct {
1150 /* The number of the current element in IRA_COPIES. */
1151 int n;
1152 } ira_copy_iterator;
1153
1154 /* Initialize the iterator I. */
1155 static inline void
1156 ira_copy_iter_init (ira_copy_iterator *i)
1157 {
1158 i->n = 0;
1159 }
1160
1161 /* Return TRUE if we have more copies to visit, in which case *CP is
1162 set to the copy to be visited. Otherwise, return FALSE. */
1163 static inline bool
1164 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1165 {
1166 int n;
1167
1168 for (n = i->n; n < ira_copies_num; n++)
1169 if (ira_copies[n] != NULL)
1170 {
1171 *cp = ira_copies[n];
1172 i->n = n + 1;
1173 return true;
1174 }
1175 return false;
1176 }
1177
1178 /* Loop over all copies. In each iteration, C is set to the next
1179 copy. ITER is an instance of ira_copy_iterator used to iterate
1180 the copies. */
1181 #define FOR_EACH_COPY(C, ITER) \
1182 for (ira_copy_iter_init (&(ITER)); \
1183 ira_copy_iter_cond (&(ITER), &(C));)
1184 \f
1185 /* The iterator for object conflicts. */
1186 typedef struct {
1187
1188 /* TRUE if the conflicts are represented by vector of allocnos. */
1189 bool conflict_vec_p;
1190
1191 /* The conflict vector or conflict bit vector. */
1192 void *vec;
1193
1194 /* The number of the current element in the vector (of type
1195 ira_object_t or IRA_INT_TYPE). */
1196 unsigned int word_num;
1197
1198 /* The bit vector size. It is defined only if
1199 OBJECT_CONFLICT_VEC_P is FALSE. */
1200 unsigned int size;
1201
1202 /* The current bit index of bit vector. It is defined only if
1203 OBJECT_CONFLICT_VEC_P is FALSE. */
1204 unsigned int bit_num;
1205
1206 /* The object id corresponding to the 1st bit of the bit vector. It
1207 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1208 int base_conflict_id;
1209
1210 /* The word of bit vector currently visited. It is defined only if
1211 OBJECT_CONFLICT_VEC_P is FALSE. */
1212 unsigned IRA_INT_TYPE word;
1213 } ira_object_conflict_iterator;
1214
1215 /* Initialize the iterator I with ALLOCNO conflicts. */
1216 static inline void
1217 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1218 ira_object_t obj)
1219 {
1220 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1221 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1222 i->word_num = 0;
1223 if (i->conflict_vec_p)
1224 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1225 else
1226 {
1227 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1228 i->size = 0;
1229 else
1230 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1231 + IRA_INT_BITS)
1232 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1233 i->bit_num = 0;
1234 i->base_conflict_id = OBJECT_MIN (obj);
1235 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1236 }
1237 }
1238
1239 /* Return TRUE if we have more conflicting allocnos to visit, in which
1240 case *A is set to the allocno to be visited. Otherwise, return
1241 FALSE. */
1242 static inline bool
1243 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1244 ira_object_t *pobj)
1245 {
1246 ira_object_t obj;
1247
1248 if (i->conflict_vec_p)
1249 {
1250 obj = ((ira_object_t *) i->vec)[i->word_num++];
1251 if (obj == NULL)
1252 return false;
1253 }
1254 else
1255 {
1256 unsigned IRA_INT_TYPE word = i->word;
1257 unsigned int bit_num = i->bit_num;
1258
1259 /* Skip words that are zeros. */
1260 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1261 {
1262 i->word_num++;
1263
1264 /* If we have reached the end, break. */
1265 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1266 return false;
1267
1268 bit_num = i->word_num * IRA_INT_BITS;
1269 }
1270
1271 /* Skip bits that are zero. */
1272 for (; (word & 1) == 0; word >>= 1)
1273 bit_num++;
1274
1275 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1276 i->bit_num = bit_num + 1;
1277 i->word = word >> 1;
1278 }
1279
1280 *pobj = obj;
1281 return true;
1282 }
1283
1284 /* Loop over all objects conflicting with OBJ. In each iteration,
1285 CONF is set to the next conflicting object. ITER is an instance
1286 of ira_object_conflict_iterator used to iterate the conflicts. */
1287 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1288 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1289 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1290
1291 \f
1292
1293 /* The function returns TRUE if at least one hard register from ones
1294 starting with HARD_REGNO and containing value of MODE are in set
1295 HARD_REGSET. */
1296 static inline bool
1297 ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1298 HARD_REG_SET hard_regset)
1299 {
1300 int i;
1301
1302 gcc_assert (hard_regno >= 0);
1303 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1304 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1305 return true;
1306 return false;
1307 }
1308
1309 /* Return number of hard registers in hard register SET. */
1310 static inline int
1311 hard_reg_set_size (HARD_REG_SET set)
1312 {
1313 int i, size;
1314
1315 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1316 if (TEST_HARD_REG_BIT (set, i))
1317 size++;
1318 return size;
1319 }
1320
1321 /* The function returns TRUE if hard registers starting with
1322 HARD_REGNO and containing value of MODE are fully in set
1323 HARD_REGSET. */
1324 static inline bool
1325 ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1326 HARD_REG_SET hard_regset)
1327 {
1328 int i;
1329
1330 ira_assert (hard_regno >= 0);
1331 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1332 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1333 return false;
1334 return true;
1335 }
1336
1337 \f
1338
1339 /* To save memory we use a lazy approach for allocation and
1340 initialization of the cost vectors. We do this only when it is
1341 really necessary. */
1342
1343 /* Allocate cost vector *VEC for hard registers of ACLASS and
1344 initialize the elements by VAL if it is necessary */
1345 static inline void
1346 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1347 {
1348 int i, *reg_costs;
1349 int len;
1350
1351 if (*vec != NULL)
1352 return;
1353 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1354 len = ira_class_hard_regs_num[(int) aclass];
1355 for (i = 0; i < len; i++)
1356 reg_costs[i] = val;
1357 }
1358
1359 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1360 values of vector SRC into the vector if it is necessary */
1361 static inline void
1362 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1363 {
1364 int len;
1365
1366 if (*vec != NULL || src == NULL)
1367 return;
1368 *vec = ira_allocate_cost_vector (aclass);
1369 len = ira_class_hard_regs_num[aclass];
1370 memcpy (*vec, src, sizeof (int) * len);
1371 }
1372
1373 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1374 values of vector SRC into the vector if it is necessary */
1375 static inline void
1376 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1377 {
1378 int i, len;
1379
1380 if (src == NULL)
1381 return;
1382 len = ira_class_hard_regs_num[aclass];
1383 if (*vec == NULL)
1384 {
1385 *vec = ira_allocate_cost_vector (aclass);
1386 memset (*vec, 0, sizeof (int) * len);
1387 }
1388 for (i = 0; i < len; i++)
1389 (*vec)[i] += src[i];
1390 }
1391
1392 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1393 values of vector SRC into the vector or initialize it by VAL (if
1394 SRC is null). */
1395 static inline void
1396 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1397 int val, int *src)
1398 {
1399 int i, *reg_costs;
1400 int len;
1401
1402 if (*vec != NULL)
1403 return;
1404 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1405 len = ira_class_hard_regs_num[aclass];
1406 if (src != NULL)
1407 memcpy (reg_costs, src, sizeof (int) * len);
1408 else
1409 {
1410 for (i = 0; i < len; i++)
1411 reg_costs[i] = val;
1412 }
1413 }