attribs.c (decl_attributes): Avoid emitting a warning if ATTR_FLAG_BUILT_IN.
[gcc.git] / gcc / ira-int.h
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "cfgloop.h"
23 #include "ira.h"
24 #include "alloc-pool.h"
25
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
31 #endif
32
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 /* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38 #define ira_assert(c) ((void)(0 && (c)))
39 #endif
40
41 /* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50
51 /* All natural loops. */
52 extern struct loops ira_loops;
53
54 /* A modified value of flag `-fira-verbose' used internally. */
55 extern int internal_flag_ira_verbose;
56
57 /* Dump file of the allocator if it is not NULL. */
58 extern FILE *ira_dump_file;
59
60 /* Typedefs for pointers to allocno live range, allocno, and copy of
61 allocnos. */
62 typedef struct live_range *live_range_t;
63 typedef struct ira_allocno *ira_allocno_t;
64 typedef struct ira_allocno_copy *ira_copy_t;
65 typedef struct ira_object *ira_object_t;
66
67 /* Definition of vector of allocnos and copies. */
68 DEF_VEC_P(ira_allocno_t);
69 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
70 DEF_VEC_P(ira_object_t);
71 DEF_VEC_ALLOC_P(ira_object_t, heap);
72 DEF_VEC_P(ira_copy_t);
73 DEF_VEC_ALLOC_P(ira_copy_t, heap);
74
75 /* Typedef for pointer to the subsequent structure. */
76 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
77
78 /* In general case, IRA is a regional allocator. The regions are
79 nested and form a tree. Currently regions are natural loops. The
80 following structure describes loop tree node (representing basic
81 block or loop). We need such tree because the loop tree from
82 cfgloop.h is not convenient for the optimization: basic blocks are
83 not a part of the tree from cfgloop.h. We also use the nodes for
84 storing additional information about basic blocks/loops for the
85 register allocation purposes. */
86 struct ira_loop_tree_node
87 {
88 /* The node represents basic block if children == NULL. */
89 basic_block bb; /* NULL for loop. */
90 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
91 struct loop *loop;
92 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
93 SUBLOOP_NEXT is always NULL for BBs. */
94 ira_loop_tree_node_t subloop_next, next;
95 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
96 the node. They are NULL for BBs. */
97 ira_loop_tree_node_t subloops, children;
98 /* The node immediately containing given node. */
99 ira_loop_tree_node_t parent;
100
101 /* Loop level in range [0, ira_loop_tree_height). */
102 int level;
103
104 /* All the following members are defined only for nodes representing
105 loops. */
106
107 /* The loop number from CFG loop tree. The root number is 0. */
108 int loop_num;
109
110 /* True if the loop was marked for removal from the register
111 allocation. */
112 bool to_remove_p;
113
114 /* Allocnos in the loop corresponding to their regnos. If it is
115 NULL the loop does not form a separate register allocation region
116 (e.g. because it has abnormal enter/exit edges and we can not put
117 code for register shuffling on the edges if a different
118 allocation is used for a pseudo-register on different sides of
119 the edges). Caps are not in the map (remember we can have more
120 one cap with the same regno in a region). */
121 ira_allocno_t *regno_allocno_map;
122
123 /* True if there is an entry to given loop not from its parent (or
124 grandparent) basic block. For example, it is possible for two
125 adjacent loops inside another loop. */
126 bool entered_from_non_parent_p;
127
128 /* Maximal register pressure inside loop for given register class
129 (defined only for the pressure classes). */
130 int reg_pressure[N_REG_CLASSES];
131
132 /* Numbers of allocnos referred or living in the loop node (except
133 for its subloops). */
134 bitmap all_allocnos;
135
136 /* Numbers of allocnos living at the loop borders. */
137 bitmap border_allocnos;
138
139 /* Regnos of pseudos modified in the loop node (including its
140 subloops). */
141 bitmap modified_regnos;
142
143 /* Numbers of copies referred in the corresponding loop. */
144 bitmap local_copies;
145 };
146
147 /* The root of the loop tree corresponding to the all function. */
148 extern ira_loop_tree_node_t ira_loop_tree_root;
149
150 /* Height of the loop tree. */
151 extern int ira_loop_tree_height;
152
153 /* All nodes representing basic blocks are referred through the
154 following array. We can not use basic block member `aux' for this
155 because it is used for insertion of insns on edges. */
156 extern ira_loop_tree_node_t ira_bb_nodes;
157
158 /* Two access macros to the nodes representing basic blocks. */
159 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
160 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
161 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
162 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
163 { \
164 fprintf (stderr, \
165 "\n%s: %d: error in %s: it is not a block node\n", \
166 __FILE__, __LINE__, __FUNCTION__); \
167 gcc_unreachable (); \
168 } \
169 _node; }))
170 #else
171 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
172 #endif
173
174 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
175
176 /* All nodes representing loops are referred through the following
177 array. */
178 extern ira_loop_tree_node_t ira_loop_nodes;
179
180 /* Two access macros to the nodes representing loops. */
181 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
182 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
183 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
184 if (_node->children == NULL || _node->bb != NULL \
185 || (_node->loop == NULL && current_loops != NULL)) \
186 { \
187 fprintf (stderr, \
188 "\n%s: %d: error in %s: it is not a loop node\n", \
189 __FILE__, __LINE__, __FUNCTION__); \
190 gcc_unreachable (); \
191 } \
192 _node; }))
193 #else
194 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
195 #endif
196
197 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
198
199 \f
200 /* The structure describes program points where a given allocno lives.
201 If the live ranges of two allocnos are intersected, the allocnos
202 are in conflict. */
203 struct live_range
204 {
205 /* Object whose live range is described by given structure. */
206 ira_object_t object;
207 /* Program point range. */
208 int start, finish;
209 /* Next structure describing program points where the allocno
210 lives. */
211 live_range_t next;
212 /* Pointer to structures with the same start/finish. */
213 live_range_t start_next, finish_next;
214 };
215
216 /* Program points are enumerated by numbers from range
217 0..IRA_MAX_POINT-1. There are approximately two times more program
218 points than insns. Program points are places in the program where
219 liveness info can be changed. In most general case (there are more
220 complicated cases too) some program points correspond to places
221 where input operand dies and other ones correspond to places where
222 output operands are born. */
223 extern int ira_max_point;
224
225 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
226 live ranges with given start/finish point. */
227 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
228
229 /* A structure representing conflict information for an allocno
230 (or one of its subwords). */
231 struct ira_object
232 {
233 /* The allocno associated with this record. */
234 ira_allocno_t allocno;
235 /* Vector of accumulated conflicting conflict_redords with NULL end
236 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
237 otherwise. */
238 void *conflicts_array;
239 /* Pointer to structures describing at what program point the
240 object lives. We always maintain the list in such way that *the
241 ranges in the list are not intersected and ordered by decreasing
242 their program points*. */
243 live_range_t live_ranges;
244 /* The subword within ALLOCNO which is represented by this object.
245 Zero means the lowest-order subword (or the entire allocno in case
246 it is not being tracked in subwords). */
247 int subword;
248 /* Allocated size of the conflicts array. */
249 unsigned int conflicts_array_size;
250 /* A unique number for every instance of this structure, which is used
251 to represent it in conflict bit vectors. */
252 int id;
253 /* Before building conflicts, MIN and MAX are initialized to
254 correspondingly minimal and maximal points of the accumulated
255 live ranges. Afterwards, they hold the minimal and maximal ids
256 of other ira_objects that this one can conflict with. */
257 int min, max;
258 /* Initial and accumulated hard registers conflicting with this
259 object and as a consequences can not be assigned to the allocno.
260 All non-allocatable hard regs and hard regs of register classes
261 different from given allocno one are included in the sets. */
262 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
263 /* Number of accumulated conflicts in the vector of conflicting
264 objects. */
265 int num_accumulated_conflicts;
266 /* TRUE if conflicts are represented by a vector of pointers to
267 ira_object structures. Otherwise, we use a bit vector indexed
268 by conflict ID numbers. */
269 unsigned int conflict_vec_p : 1;
270 };
271
272 /* A structure representing an allocno (allocation entity). Allocno
273 represents a pseudo-register in an allocation region. If
274 pseudo-register does not live in a region but it lives in the
275 nested regions, it is represented in the region by special allocno
276 called *cap*. There may be more one cap representing the same
277 pseudo-register in region. It means that the corresponding
278 pseudo-register lives in more one non-intersected subregion. */
279 struct ira_allocno
280 {
281 /* The allocno order number starting with 0. Each allocno has an
282 unique number and the number is never changed for the
283 allocno. */
284 int num;
285 /* Regno for allocno or cap. */
286 int regno;
287 /* Mode of the allocno which is the mode of the corresponding
288 pseudo-register. */
289 ENUM_BITFIELD (machine_mode) mode : 8;
290 /* Register class which should be used for allocation for given
291 allocno. NO_REGS means that we should use memory. */
292 ENUM_BITFIELD (reg_class) aclass : 16;
293 /* During the reload, value TRUE means that we should not reassign a
294 hard register to the allocno got memory earlier. It is set up
295 when we removed memory-memory move insn before each iteration of
296 the reload. */
297 unsigned int dont_reassign_p : 1;
298 #ifdef STACK_REGS
299 /* Set to TRUE if allocno can't be assigned to the stack hard
300 register correspondingly in this region and area including the
301 region and all its subregions recursively. */
302 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
303 #endif
304 /* TRUE value means that there is no sense to spill the allocno
305 during coloring because the spill will result in additional
306 reloads in reload pass. */
307 unsigned int bad_spill_p : 1;
308 /* TRUE if a hard register or memory has been assigned to the
309 allocno. */
310 unsigned int assigned_p : 1;
311 /* TRUE if conflicts for given allocno are represented by vector of
312 pointers to the conflicting allocnos. Otherwise, we use a bit
313 vector where a bit with given index represents allocno with the
314 same number. */
315 unsigned int conflict_vec_p : 1;
316 /* Hard register assigned to given allocno. Negative value means
317 that memory was allocated to the allocno. During the reload,
318 spilled allocno has value equal to the corresponding stack slot
319 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
320 reload (at this point pseudo-register has only one allocno) which
321 did not get stack slot yet. */
322 short int hard_regno;
323 /* Allocnos with the same regno are linked by the following member.
324 Allocnos corresponding to inner loops are first in the list (it
325 corresponds to depth-first traverse of the loops). */
326 ira_allocno_t next_regno_allocno;
327 /* There may be different allocnos with the same regno in different
328 regions. Allocnos are bound to the corresponding loop tree node.
329 Pseudo-register may have only one regular allocno with given loop
330 tree node but more than one cap (see comments above). */
331 ira_loop_tree_node_t loop_tree_node;
332 /* Accumulated usage references of the allocno. Here and below,
333 word 'accumulated' means info for given region and all nested
334 subregions. In this case, 'accumulated' means sum of references
335 of the corresponding pseudo-register in this region and in all
336 nested subregions recursively. */
337 int nrefs;
338 /* Accumulated frequency of usage of the allocno. */
339 int freq;
340 /* Minimal accumulated and updated costs of usage register of the
341 allocno class. */
342 int class_cost, updated_class_cost;
343 /* Minimal accumulated, and updated costs of memory for the allocno.
344 At the allocation start, the original and updated costs are
345 equal. The updated cost may be changed after finishing
346 allocation in a region and starting allocation in a subregion.
347 The change reflects the cost of spill/restore code on the
348 subregion border if we assign memory to the pseudo in the
349 subregion. */
350 int memory_cost, updated_memory_cost;
351 /* Accumulated number of points where the allocno lives and there is
352 excess pressure for its class. Excess pressure for a register
353 class at some point means that there are more allocnos of given
354 register class living at the point than number of hard-registers
355 of the class available for the allocation. */
356 int excess_pressure_points_num;
357 /* Copies to other non-conflicting allocnos. The copies can
358 represent move insn or potential move insn usually because of two
359 operand insn constraints. */
360 ira_copy_t allocno_copies;
361 /* It is a allocno (cap) representing given allocno on upper loop tree
362 level. */
363 ira_allocno_t cap;
364 /* It is a link to allocno (cap) on lower loop level represented by
365 given cap. Null if given allocno is not a cap. */
366 ira_allocno_t cap_member;
367 /* The number of objects tracked in the following array. */
368 int num_objects;
369 /* An array of structures describing conflict information and live
370 ranges for each object associated with the allocno. There may be
371 more than one such object in cases where the allocno represents a
372 multi-word register. */
373 ira_object_t objects[2];
374 /* Accumulated frequency of calls which given allocno
375 intersects. */
376 int call_freq;
377 /* Accumulated number of the intersected calls. */
378 int calls_crossed_num;
379 /* The number of calls across which it is live, but which should not
380 affect register preferences. */
381 int cheap_calls_crossed_num;
382 /* Array of usage costs (accumulated and the one updated during
383 coloring) for each hard register of the allocno class. The
384 member value can be NULL if all costs are the same and equal to
385 CLASS_COST. For example, the costs of two different hard
386 registers can be different if one hard register is callee-saved
387 and another one is callee-used and the allocno lives through
388 calls. Another example can be case when for some insn the
389 corresponding pseudo-register value should be put in specific
390 register class (e.g. AREG for x86) which is a strict subset of
391 the allocno class (GENERAL_REGS for x86). We have updated costs
392 to reflect the situation when the usage cost of a hard register
393 is decreased because the allocno is connected to another allocno
394 by a copy and the another allocno has been assigned to the hard
395 register. */
396 int *hard_reg_costs, *updated_hard_reg_costs;
397 /* Array of decreasing costs (accumulated and the one updated during
398 coloring) for allocnos conflicting with given allocno for hard
399 regno of the allocno class. The member value can be NULL if all
400 costs are the same. These costs are used to reflect preferences
401 of other allocnos not assigned yet during assigning to given
402 allocno. */
403 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
404 /* Different additional data. It is used to decrease size of
405 allocno data footprint. */
406 void *add_data;
407 };
408
409
410 /* All members of the allocno structures should be accessed only
411 through the following macros. */
412 #define ALLOCNO_NUM(A) ((A)->num)
413 #define ALLOCNO_REGNO(A) ((A)->regno)
414 #define ALLOCNO_REG(A) ((A)->reg)
415 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
416 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
417 #define ALLOCNO_CAP(A) ((A)->cap)
418 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
419 #define ALLOCNO_NREFS(A) ((A)->nrefs)
420 #define ALLOCNO_FREQ(A) ((A)->freq)
421 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
422 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
423 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
424 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
425 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
426 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
427 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
428 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
429 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
430 #ifdef STACK_REGS
431 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
432 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
433 #endif
434 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
435 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
436 #define ALLOCNO_MODE(A) ((A)->mode)
437 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
438 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
439 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
440 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
441 ((A)->conflict_hard_reg_costs)
442 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
443 ((A)->updated_conflict_hard_reg_costs)
444 #define ALLOCNO_CLASS(A) ((A)->aclass)
445 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
446 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
447 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
448 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
449 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
450 ((A)->excess_pressure_points_num)
451 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
452 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
453 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
454
455 /* Typedef for pointer to the subsequent structure. */
456 typedef struct ira_emit_data *ira_emit_data_t;
457
458 /* Allocno bound data used for emit pseudo live range split insns and
459 to flattening IR. */
460 struct ira_emit_data
461 {
462 /* TRUE if the allocno assigned to memory was a destination of
463 removed move (see ira-emit.c) at loop exit because the value of
464 the corresponding pseudo-register is not changed inside the
465 loop. */
466 unsigned int mem_optimized_dest_p : 1;
467 /* TRUE if the corresponding pseudo-register has disjoint live
468 ranges and the other allocnos of the pseudo-register except this
469 one changed REG. */
470 unsigned int somewhere_renamed_p : 1;
471 /* TRUE if allocno with the same REGNO in a subregion has been
472 renamed, in other words, got a new pseudo-register. */
473 unsigned int child_renamed_p : 1;
474 /* Final rtx representation of the allocno. */
475 rtx reg;
476 /* Non NULL if we remove restoring value from given allocno to
477 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
478 allocno value is not changed inside the loop. */
479 ira_allocno_t mem_optimized_dest;
480 };
481
482 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
483
484 /* Data used to emit live range split insns and to flattening IR. */
485 extern ira_emit_data_t ira_allocno_emit_data;
486
487 /* Abbreviation for frequent emit data access. */
488 static inline rtx
489 allocno_emit_reg (ira_allocno_t a)
490 {
491 return ALLOCNO_EMIT_DATA (a)->reg;
492 }
493
494 #define OBJECT_ALLOCNO(O) ((O)->allocno)
495 #define OBJECT_SUBWORD(O) ((O)->subword)
496 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
497 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
498 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
499 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
500 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
501 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
502 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
503 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
504 #define OBJECT_MIN(O) ((O)->min)
505 #define OBJECT_MAX(O) ((O)->max)
506 #define OBJECT_CONFLICT_ID(O) ((O)->id)
507 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
508
509 /* Map regno -> allocnos with given regno (see comments for
510 allocno member `next_regno_allocno'). */
511 extern ira_allocno_t *ira_regno_allocno_map;
512
513 /* Array of references to all allocnos. The order number of the
514 allocno corresponds to the index in the array. Removed allocnos
515 have NULL element value. */
516 extern ira_allocno_t *ira_allocnos;
517
518 /* The size of the previous array. */
519 extern int ira_allocnos_num;
520
521 /* Map a conflict id to its corresponding ira_object structure. */
522 extern ira_object_t *ira_object_id_map;
523
524 /* The size of the previous array. */
525 extern int ira_objects_num;
526
527 /* The following structure represents a copy of two allocnos. The
528 copies represent move insns or potential move insns usually because
529 of two operand insn constraints. To remove register shuffle, we
530 also create copies between allocno which is output of an insn and
531 allocno becoming dead in the insn. */
532 struct ira_allocno_copy
533 {
534 /* The unique order number of the copy node starting with 0. */
535 int num;
536 /* Allocnos connected by the copy. The first allocno should have
537 smaller order number than the second one. */
538 ira_allocno_t first, second;
539 /* Execution frequency of the copy. */
540 int freq;
541 bool constraint_p;
542 /* It is a move insn which is an origin of the copy. The member
543 value for the copy representing two operand insn constraints or
544 for the copy created to remove register shuffle is NULL. In last
545 case the copy frequency is smaller than the corresponding insn
546 execution frequency. */
547 rtx insn;
548 /* All copies with the same allocno as FIRST are linked by the two
549 following members. */
550 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
551 /* All copies with the same allocno as SECOND are linked by the two
552 following members. */
553 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
554 /* Region from which given copy is originated. */
555 ira_loop_tree_node_t loop_tree_node;
556 };
557
558 /* Array of references to all copies. The order number of the copy
559 corresponds to the index in the array. Removed copies have NULL
560 element value. */
561 extern ira_copy_t *ira_copies;
562
563 /* Size of the previous array. */
564 extern int ira_copies_num;
565
566 /* The following structure describes a stack slot used for spilled
567 pseudo-registers. */
568 struct ira_spilled_reg_stack_slot
569 {
570 /* pseudo-registers assigned to the stack slot. */
571 bitmap_head spilled_regs;
572 /* RTL representation of the stack slot. */
573 rtx mem;
574 /* Size of the stack slot. */
575 unsigned int width;
576 };
577
578 /* The number of elements in the following array. */
579 extern int ira_spilled_reg_stack_slots_num;
580
581 /* The following array contains info about spilled pseudo-registers
582 stack slots used in current function so far. */
583 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
584
585 /* Correspondingly overall cost of the allocation, cost of the
586 allocnos assigned to hard-registers, cost of the allocnos assigned
587 to memory, cost of loads, stores and register move insns generated
588 for pseudo-register live range splitting (see ira-emit.c). */
589 extern int ira_overall_cost;
590 extern int ira_reg_cost, ira_mem_cost;
591 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
592 extern int ira_move_loops_num, ira_additional_jumps_num;
593
594 \f
595 /* This page contains a bitset implementation called 'min/max sets' used to
596 record conflicts in IRA.
597 They are named min/maxs set since we keep track of a minimum and a maximum
598 bit number for each set representing the bounds of valid elements. Otherwise,
599 the implementation resembles sbitmaps in that we store an array of integers
600 whose bits directly represent the members of the set. */
601
602 /* The type used as elements in the array, and the number of bits in
603 this type. */
604
605 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
606 #define IRA_INT_TYPE HOST_WIDE_INT
607
608 /* Set, clear or test bit number I in R, a bit vector of elements with
609 minimal index and maximal index equal correspondingly to MIN and
610 MAX. */
611 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
612
613 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
614 (({ int _min = (MIN), _max = (MAX), _i = (I); \
615 if (_i < _min || _i > _max) \
616 { \
617 fprintf (stderr, \
618 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
619 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
620 gcc_unreachable (); \
621 } \
622 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
623 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
624
625
626 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
627 (({ int _min = (MIN), _max = (MAX), _i = (I); \
628 if (_i < _min || _i > _max) \
629 { \
630 fprintf (stderr, \
631 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
632 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
633 gcc_unreachable (); \
634 } \
635 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
636 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
637
638 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
639 (({ int _min = (MIN), _max = (MAX), _i = (I); \
640 if (_i < _min || _i > _max) \
641 { \
642 fprintf (stderr, \
643 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
644 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
645 gcc_unreachable (); \
646 } \
647 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
648 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
649
650 #else
651
652 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
653 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
654 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
655
656 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
657 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
658 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
659
660 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
661 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
662 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
663
664 #endif
665
666 /* The iterator for min/max sets. */
667 typedef struct {
668
669 /* Array containing the bit vector. */
670 IRA_INT_TYPE *vec;
671
672 /* The number of the current element in the vector. */
673 unsigned int word_num;
674
675 /* The number of bits in the bit vector. */
676 unsigned int nel;
677
678 /* The current bit index of the bit vector. */
679 unsigned int bit_num;
680
681 /* Index corresponding to the 1st bit of the bit vector. */
682 int start_val;
683
684 /* The word of the bit vector currently visited. */
685 unsigned IRA_INT_TYPE word;
686 } minmax_set_iterator;
687
688 /* Initialize the iterator I for bit vector VEC containing minimal and
689 maximal values MIN and MAX. */
690 static inline void
691 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
692 int max)
693 {
694 i->vec = vec;
695 i->word_num = 0;
696 i->nel = max < min ? 0 : max - min + 1;
697 i->start_val = min;
698 i->bit_num = 0;
699 i->word = i->nel == 0 ? 0 : vec[0];
700 }
701
702 /* Return TRUE if we have more allocnos to visit, in which case *N is
703 set to the number of the element to be visited. Otherwise, return
704 FALSE. */
705 static inline bool
706 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
707 {
708 /* Skip words that are zeros. */
709 for (; i->word == 0; i->word = i->vec[i->word_num])
710 {
711 i->word_num++;
712 i->bit_num = i->word_num * IRA_INT_BITS;
713
714 /* If we have reached the end, break. */
715 if (i->bit_num >= i->nel)
716 return false;
717 }
718
719 /* Skip bits that are zero. */
720 for (; (i->word & 1) == 0; i->word >>= 1)
721 i->bit_num++;
722
723 *n = (int) i->bit_num + i->start_val;
724
725 return true;
726 }
727
728 /* Advance to the next element in the set. */
729 static inline void
730 minmax_set_iter_next (minmax_set_iterator *i)
731 {
732 i->word >>= 1;
733 i->bit_num++;
734 }
735
736 /* Loop over all elements of a min/max set given by bit vector VEC and
737 their minimal and maximal values MIN and MAX. In each iteration, N
738 is set to the number of next allocno. ITER is an instance of
739 minmax_set_iterator used to iterate over the set. */
740 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
741 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
742 minmax_set_iter_cond (&(ITER), &(N)); \
743 minmax_set_iter_next (&(ITER)))
744 \f
745 struct target_ira_int {
746 /* Initialized once. It is a maximal possible size of the allocated
747 struct costs. */
748 int x_max_struct_costs_size;
749
750 /* Allocated and initialized once, and used to initialize cost values
751 for each insn. */
752 struct costs *x_init_cost;
753
754 /* Allocated once, and used for temporary purposes. */
755 struct costs *x_temp_costs;
756
757 /* Allocated once, and used for the cost calculation. */
758 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
759 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
760
761 /* Hard registers that can not be used for the register allocator for
762 all functions of the current compilation unit. */
763 HARD_REG_SET x_no_unit_alloc_regs;
764
765 /* Map: hard regs X modes -> set of hard registers for storing value
766 of given mode starting with given hard register. */
767 HARD_REG_SET (x_ira_reg_mode_hard_regset
768 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
769
770 /* Array based on TARGET_REGISTER_MOVE_COST. Don't use
771 ira_register_move_cost directly. Use function of
772 ira_get_may_move_cost instead. */
773 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
774
775 /* Array analogs of the macros MEMORY_MOVE_COST and
776 REGISTER_MOVE_COST but they contain maximal cost not minimal as
777 the previous two ones do. */
778 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
779 move_table *x_ira_max_register_move_cost[MAX_MACHINE_MODE];
780
781 /* Similar to may_move_in_cost but it is calculated in IRA instead of
782 regclass. Another difference we take only available hard registers
783 into account to figure out that one register class is a subset of
784 the another one. Don't use it directly. Use function of
785 ira_get_may_move_cost instead. */
786 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
787
788 /* Similar to may_move_out_cost but it is calculated in IRA instead of
789 regclass. Another difference we take only available hard registers
790 into account to figure out that one register class is a subset of
791 the another one. Don't use it directly. Use function of
792 ira_get_may_move_cost instead. */
793 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
794
795 /* Similar to ira_may_move_in_cost and ira_may_move_out_cost but they
796 return maximal cost. */
797 move_table *x_ira_max_may_move_in_cost[MAX_MACHINE_MODE];
798 move_table *x_ira_max_may_move_out_cost[MAX_MACHINE_MODE];
799
800 /* Map class->true if class is a possible allocno class, false
801 otherwise. */
802 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
803
804 /* Map class->true if class is a pressure class, false otherwise. */
805 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
806
807 /* Register class subset relation: TRUE if the first class is a subset
808 of the second one considering only hard registers available for the
809 allocation. */
810 int x_ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
811
812 /* Array of the number of hard registers of given class which are
813 available for allocation. The order is defined by the hard
814 register numbers. */
815 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
816
817 /* Index (in ira_class_hard_regs; for given register class and hard
818 register (in general case a hard register can belong to several
819 register classes;. The index is negative for hard registers
820 unavailable for the allocation. */
821 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
822
823 /* Array whose values are hard regset of hard registers available for
824 the allocation of given register class whose HARD_REGNO_MODE_OK
825 values for given mode are zero. */
826 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
827
828 /* The value is number of elements in the subsequent array. */
829 int x_ira_important_classes_num;
830
831 /* The array containing all non-empty classes. Such classes is
832 important for calculation of the hard register usage costs. */
833 enum reg_class x_ira_important_classes[N_REG_CLASSES];
834
835 /* The array containing indexes of important classes in the previous
836 array. The array elements are defined only for important
837 classes. */
838 int x_ira_important_class_nums[N_REG_CLASSES];
839
840 /* The biggest important class inside of intersection of the two
841 classes (that is calculated taking only hard registers available
842 for allocation into account;. If the both classes contain no hard
843 registers available for allocation, the value is calculated with
844 taking all hard-registers including fixed ones into account. */
845 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
846
847 /* True if the two classes (that is calculated taking only hard
848 registers available for allocation into account; are
849 intersected. */
850 bool x_ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
851
852 /* Classes with end marker LIM_REG_CLASSES which are intersected with
853 given class (the first index;. That includes given class itself.
854 This is calculated taking only hard registers available for
855 allocation into account. */
856 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
857
858 /* The biggest (smallest) important class inside of (covering) union
859 of the two classes (that is calculated taking only hard registers
860 available for allocation into account). If the both classes
861 contain no hard registers available for allocation, the value is
862 calculated with taking all hard-registers including fixed ones
863 into account. In other words, the value is the corresponding
864 reg_class_subunion (reg_class_superunion) value. */
865 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
866 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
867
868 /* For each reg class, table listing all the classes contained in it
869 (excluding the class itself. Non-allocatable registers are
870 excluded from the consideration;. */
871 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
872
873 /* Array whose values are hard regset of hard registers for which
874 move of the hard register in given mode into itself is
875 prohibited. */
876 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
877
878 /* Flag of that the above array has been initialized. */
879 bool x_ira_prohibited_mode_move_regs_initialized_p;
880 };
881
882 extern struct target_ira_int default_target_ira_int;
883 #if SWITCHABLE_TARGET
884 extern struct target_ira_int *this_target_ira_int;
885 #else
886 #define this_target_ira_int (&default_target_ira_int)
887 #endif
888
889 #define ira_reg_mode_hard_regset \
890 (this_target_ira_int->x_ira_reg_mode_hard_regset)
891 #define ira_register_move_cost \
892 (this_target_ira_int->x_ira_register_move_cost)
893 #define ira_max_memory_move_cost \
894 (this_target_ira_int->x_ira_max_memory_move_cost)
895 #define ira_max_register_move_cost \
896 (this_target_ira_int->x_ira_max_register_move_cost)
897 #define ira_may_move_in_cost \
898 (this_target_ira_int->x_ira_may_move_in_cost)
899 #define ira_may_move_out_cost \
900 (this_target_ira_int->x_ira_may_move_out_cost)
901 #define ira_max_may_move_in_cost \
902 (this_target_ira_int->x_ira_max_may_move_in_cost)
903 #define ira_max_may_move_out_cost \
904 (this_target_ira_int->x_ira_max_may_move_out_cost)
905 #define ira_reg_allocno_class_p \
906 (this_target_ira_int->x_ira_reg_allocno_class_p)
907 #define ira_reg_pressure_class_p \
908 (this_target_ira_int->x_ira_reg_pressure_class_p)
909 #define ira_class_subset_p \
910 (this_target_ira_int->x_ira_class_subset_p)
911 #define ira_non_ordered_class_hard_regs \
912 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
913 #define ira_class_hard_reg_index \
914 (this_target_ira_int->x_ira_class_hard_reg_index)
915 #define ira_prohibited_class_mode_regs \
916 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
917 #define ira_important_classes_num \
918 (this_target_ira_int->x_ira_important_classes_num)
919 #define ira_important_classes \
920 (this_target_ira_int->x_ira_important_classes)
921 #define ira_important_class_nums \
922 (this_target_ira_int->x_ira_important_class_nums)
923 #define ira_reg_class_intersect \
924 (this_target_ira_int->x_ira_reg_class_intersect)
925 #define ira_reg_classes_intersect_p \
926 (this_target_ira_int->x_ira_reg_classes_intersect_p)
927 #define ira_reg_class_super_classes \
928 (this_target_ira_int->x_ira_reg_class_super_classes)
929 #define ira_reg_class_subunion \
930 (this_target_ira_int->x_ira_reg_class_subunion)
931 #define ira_reg_class_superunion \
932 (this_target_ira_int->x_ira_reg_class_superunion)
933 #define ira_prohibited_mode_move_regs \
934 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
935 \f
936 /* ira.c: */
937
938 extern void *ira_allocate (size_t);
939 extern void ira_free (void *addr);
940 extern bitmap ira_allocate_bitmap (void);
941 extern void ira_free_bitmap (bitmap);
942 extern void ira_print_disposition (FILE *);
943 extern void ira_debug_disposition (void);
944 extern void ira_debug_allocno_classes (void);
945 extern void ira_init_register_move_cost (enum machine_mode);
946
947 /* The length of the two following arrays. */
948 extern int ira_reg_equiv_len;
949
950 /* The element value is TRUE if the corresponding regno value is
951 invariant. */
952 extern bool *ira_reg_equiv_invariant_p;
953
954 /* The element value is equiv constant of given pseudo-register or
955 NULL_RTX. */
956 extern rtx *ira_reg_equiv_const;
957
958 /* ira-build.c */
959
960 /* The current loop tree node and its regno allocno map. */
961 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
962 extern ira_allocno_t *ira_curr_regno_allocno_map;
963
964 extern void ira_debug_copy (ira_copy_t);
965 extern void ira_debug_copies (void);
966 extern void ira_debug_allocno_copies (ira_allocno_t);
967
968 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
969 void (*) (ira_loop_tree_node_t),
970 void (*) (ira_loop_tree_node_t));
971 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
972 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
973 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
974 extern void ira_create_allocno_objects (ira_allocno_t);
975 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
976 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
977 extern void ira_allocate_conflict_vec (ira_object_t, int);
978 extern void ira_allocate_object_conflicts (ira_object_t, int);
979 extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
980 extern void ira_print_expanded_allocno (ira_allocno_t);
981 extern void ira_add_live_range_to_object (ira_object_t, int, int);
982 extern live_range_t ira_create_live_range (ira_object_t, int, int,
983 live_range_t);
984 extern live_range_t ira_copy_live_range_list (live_range_t);
985 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
986 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
987 extern void ira_finish_live_range (live_range_t);
988 extern void ira_finish_live_range_list (live_range_t);
989 extern void ira_free_allocno_updated_costs (ira_allocno_t);
990 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
991 int, bool, rtx, ira_loop_tree_node_t);
992 extern void ira_add_allocno_copy_to_list (ira_copy_t);
993 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
994 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
995 bool, rtx, ira_loop_tree_node_t);
996
997 extern int *ira_allocate_cost_vector (reg_class_t);
998 extern void ira_free_cost_vector (int *, reg_class_t);
999
1000 extern void ira_flattening (int, int);
1001 extern bool ira_build (void);
1002 extern void ira_destroy (void);
1003
1004 /* ira-costs.c */
1005 extern void ira_init_costs_once (void);
1006 extern void ira_init_costs (void);
1007 extern void ira_finish_costs_once (void);
1008 extern void ira_costs (void);
1009 extern void ira_tune_allocno_costs (void);
1010
1011 /* ira-lives.c */
1012
1013 extern void ira_rebuild_start_finish_chains (void);
1014 extern void ira_print_live_range_list (FILE *, live_range_t);
1015 extern void ira_debug_live_range_list (live_range_t);
1016 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1017 extern void ira_debug_live_ranges (void);
1018 extern void ira_create_allocno_live_ranges (void);
1019 extern void ira_compress_allocno_live_ranges (void);
1020 extern void ira_finish_allocno_live_ranges (void);
1021
1022 /* ira-conflicts.c */
1023 extern void ira_debug_conflicts (bool);
1024 extern void ira_build_conflicts (void);
1025
1026 /* ira-color.c */
1027 extern void ira_debug_hard_regs_forest (void);
1028 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1029 extern void ira_reassign_conflict_allocnos (int);
1030 extern void ira_initiate_assign (void);
1031 extern void ira_finish_assign (void);
1032 extern void ira_color (void);
1033
1034 /* ira-emit.c */
1035 extern void ira_initiate_emit_data (void);
1036 extern void ira_finish_emit_data (void);
1037 extern void ira_emit (bool);
1038
1039 \f
1040
1041 /* Initialize register costs for MODE if necessary. */
1042 static inline void
1043 ira_init_register_move_cost_if_necessary (enum machine_mode mode)
1044 {
1045 if (ira_register_move_cost[mode] == NULL)
1046 ira_init_register_move_cost (mode);
1047 }
1048
1049 \f
1050
1051 /* The iterator for all allocnos. */
1052 typedef struct {
1053 /* The number of the current element in IRA_ALLOCNOS. */
1054 int n;
1055 } ira_allocno_iterator;
1056
1057 /* Initialize the iterator I. */
1058 static inline void
1059 ira_allocno_iter_init (ira_allocno_iterator *i)
1060 {
1061 i->n = 0;
1062 }
1063
1064 /* Return TRUE if we have more allocnos to visit, in which case *A is
1065 set to the allocno to be visited. Otherwise, return FALSE. */
1066 static inline bool
1067 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1068 {
1069 int n;
1070
1071 for (n = i->n; n < ira_allocnos_num; n++)
1072 if (ira_allocnos[n] != NULL)
1073 {
1074 *a = ira_allocnos[n];
1075 i->n = n + 1;
1076 return true;
1077 }
1078 return false;
1079 }
1080
1081 /* Loop over all allocnos. In each iteration, A is set to the next
1082 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1083 the allocnos. */
1084 #define FOR_EACH_ALLOCNO(A, ITER) \
1085 for (ira_allocno_iter_init (&(ITER)); \
1086 ira_allocno_iter_cond (&(ITER), &(A));)
1087 \f
1088 /* The iterator for all objects. */
1089 typedef struct {
1090 /* The number of the current element in ira_object_id_map. */
1091 int n;
1092 } ira_object_iterator;
1093
1094 /* Initialize the iterator I. */
1095 static inline void
1096 ira_object_iter_init (ira_object_iterator *i)
1097 {
1098 i->n = 0;
1099 }
1100
1101 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1102 set to the object to be visited. Otherwise, return FALSE. */
1103 static inline bool
1104 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1105 {
1106 int n;
1107
1108 for (n = i->n; n < ira_objects_num; n++)
1109 if (ira_object_id_map[n] != NULL)
1110 {
1111 *obj = ira_object_id_map[n];
1112 i->n = n + 1;
1113 return true;
1114 }
1115 return false;
1116 }
1117
1118 /* Loop over all objects. In each iteration, OBJ is set to the next
1119 object. ITER is an instance of ira_object_iterator used to iterate
1120 the objects. */
1121 #define FOR_EACH_OBJECT(OBJ, ITER) \
1122 for (ira_object_iter_init (&(ITER)); \
1123 ira_object_iter_cond (&(ITER), &(OBJ));)
1124 \f
1125 /* The iterator for objects associated with an allocno. */
1126 typedef struct {
1127 /* The number of the element the allocno's object array. */
1128 int n;
1129 } ira_allocno_object_iterator;
1130
1131 /* Initialize the iterator I. */
1132 static inline void
1133 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1134 {
1135 i->n = 0;
1136 }
1137
1138 /* Return TRUE if we have more objects to visit in allocno A, in which
1139 case *O is set to the object to be visited. Otherwise, return
1140 FALSE. */
1141 static inline bool
1142 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1143 ira_object_t *o)
1144 {
1145 int n = i->n++;
1146 if (n < ALLOCNO_NUM_OBJECTS (a))
1147 {
1148 *o = ALLOCNO_OBJECT (a, n);
1149 return true;
1150 }
1151 return false;
1152 }
1153
1154 /* Loop over all objects associated with allocno A. In each
1155 iteration, O is set to the next object. ITER is an instance of
1156 ira_allocno_object_iterator used to iterate the conflicts. */
1157 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1158 for (ira_allocno_object_iter_init (&(ITER)); \
1159 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1160 \f
1161
1162 /* The iterator for copies. */
1163 typedef struct {
1164 /* The number of the current element in IRA_COPIES. */
1165 int n;
1166 } ira_copy_iterator;
1167
1168 /* Initialize the iterator I. */
1169 static inline void
1170 ira_copy_iter_init (ira_copy_iterator *i)
1171 {
1172 i->n = 0;
1173 }
1174
1175 /* Return TRUE if we have more copies to visit, in which case *CP is
1176 set to the copy to be visited. Otherwise, return FALSE. */
1177 static inline bool
1178 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1179 {
1180 int n;
1181
1182 for (n = i->n; n < ira_copies_num; n++)
1183 if (ira_copies[n] != NULL)
1184 {
1185 *cp = ira_copies[n];
1186 i->n = n + 1;
1187 return true;
1188 }
1189 return false;
1190 }
1191
1192 /* Loop over all copies. In each iteration, C is set to the next
1193 copy. ITER is an instance of ira_copy_iterator used to iterate
1194 the copies. */
1195 #define FOR_EACH_COPY(C, ITER) \
1196 for (ira_copy_iter_init (&(ITER)); \
1197 ira_copy_iter_cond (&(ITER), &(C));)
1198 \f
1199 /* The iterator for object conflicts. */
1200 typedef struct {
1201
1202 /* TRUE if the conflicts are represented by vector of allocnos. */
1203 bool conflict_vec_p;
1204
1205 /* The conflict vector or conflict bit vector. */
1206 void *vec;
1207
1208 /* The number of the current element in the vector (of type
1209 ira_object_t or IRA_INT_TYPE). */
1210 unsigned int word_num;
1211
1212 /* The bit vector size. It is defined only if
1213 OBJECT_CONFLICT_VEC_P is FALSE. */
1214 unsigned int size;
1215
1216 /* The current bit index of bit vector. It is defined only if
1217 OBJECT_CONFLICT_VEC_P is FALSE. */
1218 unsigned int bit_num;
1219
1220 /* The object id corresponding to the 1st bit of the bit vector. It
1221 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1222 int base_conflict_id;
1223
1224 /* The word of bit vector currently visited. It is defined only if
1225 OBJECT_CONFLICT_VEC_P is FALSE. */
1226 unsigned IRA_INT_TYPE word;
1227 } ira_object_conflict_iterator;
1228
1229 /* Initialize the iterator I with ALLOCNO conflicts. */
1230 static inline void
1231 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1232 ira_object_t obj)
1233 {
1234 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1235 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1236 i->word_num = 0;
1237 if (i->conflict_vec_p)
1238 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1239 else
1240 {
1241 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1242 i->size = 0;
1243 else
1244 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1245 + IRA_INT_BITS)
1246 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1247 i->bit_num = 0;
1248 i->base_conflict_id = OBJECT_MIN (obj);
1249 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1250 }
1251 }
1252
1253 /* Return TRUE if we have more conflicting allocnos to visit, in which
1254 case *A is set to the allocno to be visited. Otherwise, return
1255 FALSE. */
1256 static inline bool
1257 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1258 ira_object_t *pobj)
1259 {
1260 ira_object_t obj;
1261
1262 if (i->conflict_vec_p)
1263 {
1264 obj = ((ira_object_t *) i->vec)[i->word_num++];
1265 if (obj == NULL)
1266 return false;
1267 }
1268 else
1269 {
1270 unsigned IRA_INT_TYPE word = i->word;
1271 unsigned int bit_num = i->bit_num;
1272
1273 /* Skip words that are zeros. */
1274 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1275 {
1276 i->word_num++;
1277
1278 /* If we have reached the end, break. */
1279 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1280 return false;
1281
1282 bit_num = i->word_num * IRA_INT_BITS;
1283 }
1284
1285 /* Skip bits that are zero. */
1286 for (; (word & 1) == 0; word >>= 1)
1287 bit_num++;
1288
1289 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1290 i->bit_num = bit_num + 1;
1291 i->word = word >> 1;
1292 }
1293
1294 *pobj = obj;
1295 return true;
1296 }
1297
1298 /* Loop over all objects conflicting with OBJ. In each iteration,
1299 CONF is set to the next conflicting object. ITER is an instance
1300 of ira_object_conflict_iterator used to iterate the conflicts. */
1301 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1302 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1303 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1304
1305 \f
1306
1307 /* The function returns TRUE if at least one hard register from ones
1308 starting with HARD_REGNO and containing value of MODE are in set
1309 HARD_REGSET. */
1310 static inline bool
1311 ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1312 HARD_REG_SET hard_regset)
1313 {
1314 int i;
1315
1316 gcc_assert (hard_regno >= 0);
1317 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1318 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1319 return true;
1320 return false;
1321 }
1322
1323 /* Return number of hard registers in hard register SET. */
1324 static inline int
1325 hard_reg_set_size (HARD_REG_SET set)
1326 {
1327 int i, size;
1328
1329 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1330 if (TEST_HARD_REG_BIT (set, i))
1331 size++;
1332 return size;
1333 }
1334
1335 /* The function returns TRUE if hard registers starting with
1336 HARD_REGNO and containing value of MODE are fully in set
1337 HARD_REGSET. */
1338 static inline bool
1339 ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1340 HARD_REG_SET hard_regset)
1341 {
1342 int i;
1343
1344 ira_assert (hard_regno >= 0);
1345 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1346 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1347 return false;
1348 return true;
1349 }
1350
1351 \f
1352
1353 /* To save memory we use a lazy approach for allocation and
1354 initialization of the cost vectors. We do this only when it is
1355 really necessary. */
1356
1357 /* Allocate cost vector *VEC for hard registers of ACLASS and
1358 initialize the elements by VAL if it is necessary */
1359 static inline void
1360 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1361 {
1362 int i, *reg_costs;
1363 int len;
1364
1365 if (*vec != NULL)
1366 return;
1367 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1368 len = ira_class_hard_regs_num[(int) aclass];
1369 for (i = 0; i < len; i++)
1370 reg_costs[i] = val;
1371 }
1372
1373 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1374 values of vector SRC into the vector if it is necessary */
1375 static inline void
1376 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1377 {
1378 int len;
1379
1380 if (*vec != NULL || src == NULL)
1381 return;
1382 *vec = ira_allocate_cost_vector (aclass);
1383 len = ira_class_hard_regs_num[aclass];
1384 memcpy (*vec, src, sizeof (int) * len);
1385 }
1386
1387 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1388 values of vector SRC into the vector if it is necessary */
1389 static inline void
1390 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1391 {
1392 int i, len;
1393
1394 if (src == NULL)
1395 return;
1396 len = ira_class_hard_regs_num[aclass];
1397 if (*vec == NULL)
1398 {
1399 *vec = ira_allocate_cost_vector (aclass);
1400 memset (*vec, 0, sizeof (int) * len);
1401 }
1402 for (i = 0; i < len; i++)
1403 (*vec)[i] += src[i];
1404 }
1405
1406 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1407 values of vector SRC into the vector or initialize it by VAL (if
1408 SRC is null). */
1409 static inline void
1410 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1411 int val, int *src)
1412 {
1413 int i, *reg_costs;
1414 int len;
1415
1416 if (*vec != NULL)
1417 return;
1418 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1419 len = ira_class_hard_regs_num[aclass];
1420 if (src != NULL)
1421 memcpy (reg_costs, src, sizeof (int) * len);
1422 else
1423 {
1424 for (i = 0; i < len; i++)
1425 reg_costs[i] = val;
1426 }
1427 }
1428
1429 extern rtx ira_create_new_reg (rtx);
1430 extern int first_moveable_pseudo, last_moveable_pseudo;