libgo/testsuite: kill sleep process in gotest
[gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "predict.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "regs.h"
29 #include "tm_p.h"
30 #include "target.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "params.h"
37 #include "sparseset.h"
38 #include "cfgloop.h"
39 #include "ira.h"
40 #include "alloc-pool.h"
41 #include "ira-int.h"
42
43 /* The code in this file is similar to one in global but the code
44 works on the allocno basis and creates live ranges instead of
45 pseudo-register conflicts. */
46
47 /* Program points are enumerated by numbers from range
48 0..IRA_MAX_POINT-1. There are approximately two times more program
49 points than insns. Program points are places in the program where
50 liveness info can be changed. In most general case (there are more
51 complicated cases too) some program points correspond to places
52 where input operand dies and other ones correspond to places where
53 output operands are born. */
54 int ira_max_point;
55
56 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
57 live ranges with given start/finish point. */
58 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
59
60 /* Number of the current program point. */
61 static int curr_point;
62
63 /* Point where register pressure excess started or -1 if there is no
64 register pressure excess. Excess pressure for a register class at
65 some point means that there are more allocnos of given register
66 class living at the point than number of hard-registers of the
67 class available for the allocation. It is defined only for
68 pressure classes. */
69 static int high_pressure_start_point[N_REG_CLASSES];
70
71 /* Objects live at current point in the scan. */
72 static sparseset objects_live;
73
74 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
75 multiple times. */
76 static sparseset allocnos_processed;
77
78 /* Set of hard regs (except eliminable ones) currently live. */
79 static HARD_REG_SET hard_regs_live;
80
81 /* The loop tree node corresponding to the current basic block. */
82 static ira_loop_tree_node_t curr_bb_node;
83
84 /* The number of the last processed call. */
85 static int last_call_num;
86 /* The number of last call at which given allocno was saved. */
87 static int *allocno_saved_at_call;
88
89 /* The value of get_preferred_alternatives for the current instruction,
90 supplemental to recog_data. */
91 static alternative_mask preferred_alternatives;
92
93 /* Record the birth of hard register REGNO, updating hard_regs_live and
94 hard reg conflict information for living allocnos. */
95 static void
96 make_hard_regno_born (int regno)
97 {
98 unsigned int i;
99
100 SET_HARD_REG_BIT (hard_regs_live, regno);
101 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
102 {
103 ira_object_t obj = ira_object_id_map[i];
104
105 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
106 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
107 }
108 }
109
110 /* Process the death of hard register REGNO. This updates
111 hard_regs_live. */
112 static void
113 make_hard_regno_dead (int regno)
114 {
115 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
116 }
117
118 /* Record the birth of object OBJ. Set a bit for it in objects_live,
119 start a new live range for it if necessary and update hard register
120 conflicts. */
121 static void
122 make_object_born (ira_object_t obj)
123 {
124 live_range_t lr = OBJECT_LIVE_RANGES (obj);
125
126 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
127 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
128 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
129
130 if (lr == NULL
131 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
132 ira_add_live_range_to_object (obj, curr_point, -1);
133 }
134
135 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
136 associated with object OBJ. */
137 static void
138 update_allocno_pressure_excess_length (ira_object_t obj)
139 {
140 ira_allocno_t a = OBJECT_ALLOCNO (obj);
141 int start, i;
142 enum reg_class aclass, pclass, cl;
143 live_range_t p;
144
145 aclass = ALLOCNO_CLASS (a);
146 pclass = ira_pressure_class_translate[aclass];
147 for (i = 0;
148 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
149 i++)
150 {
151 if (! ira_reg_pressure_class_p[cl])
152 continue;
153 if (high_pressure_start_point[cl] < 0)
154 continue;
155 p = OBJECT_LIVE_RANGES (obj);
156 ira_assert (p != NULL);
157 start = (high_pressure_start_point[cl] > p->start
158 ? high_pressure_start_point[cl] : p->start);
159 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
160 }
161 }
162
163 /* Process the death of object OBJ, which is associated with allocno
164 A. This finishes the current live range for it. */
165 static void
166 make_object_dead (ira_object_t obj)
167 {
168 live_range_t lr;
169
170 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
171 lr = OBJECT_LIVE_RANGES (obj);
172 ira_assert (lr != NULL);
173 lr->finish = curr_point;
174 update_allocno_pressure_excess_length (obj);
175 }
176
177 /* The current register pressures for each pressure class for the current
178 basic block. */
179 static int curr_reg_pressure[N_REG_CLASSES];
180
181 /* Record that register pressure for PCLASS increased by N registers.
182 Update the current register pressure, maximal register pressure for
183 the current BB and the start point of the register pressure
184 excess. */
185 static void
186 inc_register_pressure (enum reg_class pclass, int n)
187 {
188 int i;
189 enum reg_class cl;
190
191 for (i = 0;
192 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
193 i++)
194 {
195 if (! ira_reg_pressure_class_p[cl])
196 continue;
197 curr_reg_pressure[cl] += n;
198 if (high_pressure_start_point[cl] < 0
199 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
200 high_pressure_start_point[cl] = curr_point;
201 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
202 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
203 }
204 }
205
206 /* Record that register pressure for PCLASS has decreased by NREGS
207 registers; update current register pressure, start point of the
208 register pressure excess, and register pressure excess length for
209 living allocnos. */
210
211 static void
212 dec_register_pressure (enum reg_class pclass, int nregs)
213 {
214 int i;
215 unsigned int j;
216 enum reg_class cl;
217 bool set_p = false;
218
219 for (i = 0;
220 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
221 i++)
222 {
223 if (! ira_reg_pressure_class_p[cl])
224 continue;
225 curr_reg_pressure[cl] -= nregs;
226 ira_assert (curr_reg_pressure[cl] >= 0);
227 if (high_pressure_start_point[cl] >= 0
228 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
229 set_p = true;
230 }
231 if (set_p)
232 {
233 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
234 update_allocno_pressure_excess_length (ira_object_id_map[j]);
235 for (i = 0;
236 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
237 i++)
238 {
239 if (! ira_reg_pressure_class_p[cl])
240 continue;
241 if (high_pressure_start_point[cl] >= 0
242 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
243 high_pressure_start_point[cl] = -1;
244 }
245 }
246 }
247
248 /* Determine from the objects_live bitmap whether REGNO is currently live,
249 and occupies only one object. Return false if we have no information. */
250 static bool
251 pseudo_regno_single_word_and_live_p (int regno)
252 {
253 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
254 ira_object_t obj;
255
256 if (a == NULL)
257 return false;
258 if (ALLOCNO_NUM_OBJECTS (a) > 1)
259 return false;
260
261 obj = ALLOCNO_OBJECT (a, 0);
262
263 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
264 }
265
266 /* Mark the pseudo register REGNO as live. Update all information about
267 live ranges and register pressure. */
268 static void
269 mark_pseudo_regno_live (int regno)
270 {
271 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
272 enum reg_class pclass;
273 int i, n, nregs;
274
275 if (a == NULL)
276 return;
277
278 /* Invalidate because it is referenced. */
279 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
280
281 n = ALLOCNO_NUM_OBJECTS (a);
282 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
283 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
284 if (n > 1)
285 {
286 /* We track every subobject separately. */
287 gcc_assert (nregs == n);
288 nregs = 1;
289 }
290
291 for (i = 0; i < n; i++)
292 {
293 ira_object_t obj = ALLOCNO_OBJECT (a, i);
294
295 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
296 continue;
297
298 inc_register_pressure (pclass, nregs);
299 make_object_born (obj);
300 }
301 }
302
303 /* Like mark_pseudo_regno_live, but try to only mark one subword of
304 the pseudo as live. SUBWORD indicates which; a value of 0
305 indicates the low part. */
306 static void
307 mark_pseudo_regno_subword_live (int regno, int subword)
308 {
309 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
310 int n;
311 enum reg_class pclass;
312 ira_object_t obj;
313
314 if (a == NULL)
315 return;
316
317 /* Invalidate because it is referenced. */
318 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
319
320 n = ALLOCNO_NUM_OBJECTS (a);
321 if (n == 1)
322 {
323 mark_pseudo_regno_live (regno);
324 return;
325 }
326
327 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
328 gcc_assert
329 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
330 obj = ALLOCNO_OBJECT (a, subword);
331
332 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
333 return;
334
335 inc_register_pressure (pclass, 1);
336 make_object_born (obj);
337 }
338
339 /* Mark the register REG as live. Store a 1 in hard_regs_live for
340 this register, record how many consecutive hardware registers it
341 actually needs. */
342 static void
343 mark_hard_reg_live (rtx reg)
344 {
345 int regno = REGNO (reg);
346
347 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
348 {
349 int last = END_REGNO (reg);
350 enum reg_class aclass, pclass;
351
352 while (regno < last)
353 {
354 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
355 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
356 {
357 aclass = ira_hard_regno_allocno_class[regno];
358 pclass = ira_pressure_class_translate[aclass];
359 inc_register_pressure (pclass, 1);
360 make_hard_regno_born (regno);
361 }
362 regno++;
363 }
364 }
365 }
366
367 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
368 register number; ORIG_REG is the access in the insn, which may be a
369 subreg. */
370 static void
371 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
372 {
373 if (df_read_modify_subreg_p (orig_reg))
374 {
375 mark_pseudo_regno_subword_live (regno,
376 subreg_lowpart_p (orig_reg) ? 0 : 1);
377 }
378 else
379 mark_pseudo_regno_live (regno);
380 }
381
382 /* Mark the register referenced by use or def REF as live. */
383 static void
384 mark_ref_live (df_ref ref)
385 {
386 rtx reg = DF_REF_REG (ref);
387 rtx orig_reg = reg;
388
389 if (GET_CODE (reg) == SUBREG)
390 reg = SUBREG_REG (reg);
391
392 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
393 mark_pseudo_reg_live (orig_reg, REGNO (reg));
394 else
395 mark_hard_reg_live (reg);
396 }
397
398 /* Mark the pseudo register REGNO as dead. Update all information about
399 live ranges and register pressure. */
400 static void
401 mark_pseudo_regno_dead (int regno)
402 {
403 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
404 int n, i, nregs;
405 enum reg_class cl;
406
407 if (a == NULL)
408 return;
409
410 /* Invalidate because it is referenced. */
411 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
412
413 n = ALLOCNO_NUM_OBJECTS (a);
414 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
415 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
416 if (n > 1)
417 {
418 /* We track every subobject separately. */
419 gcc_assert (nregs == n);
420 nregs = 1;
421 }
422 for (i = 0; i < n; i++)
423 {
424 ira_object_t obj = ALLOCNO_OBJECT (a, i);
425 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
426 continue;
427
428 dec_register_pressure (cl, nregs);
429 make_object_dead (obj);
430 }
431 }
432
433 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
434 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
435 static void
436 mark_pseudo_regno_subword_dead (int regno, int subword)
437 {
438 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
439 int n;
440 enum reg_class cl;
441 ira_object_t obj;
442
443 if (a == NULL)
444 return;
445
446 /* Invalidate because it is referenced. */
447 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
448
449 n = ALLOCNO_NUM_OBJECTS (a);
450 if (n == 1)
451 /* The allocno as a whole doesn't die in this case. */
452 return;
453
454 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
455 gcc_assert
456 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
457
458 obj = ALLOCNO_OBJECT (a, subword);
459 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
460 return;
461
462 dec_register_pressure (cl, 1);
463 make_object_dead (obj);
464 }
465
466 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
467 register. */
468 static void
469 mark_hard_reg_dead (rtx reg)
470 {
471 int regno = REGNO (reg);
472
473 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
474 {
475 int last = END_REGNO (reg);
476 enum reg_class aclass, pclass;
477
478 while (regno < last)
479 {
480 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
481 {
482 aclass = ira_hard_regno_allocno_class[regno];
483 pclass = ira_pressure_class_translate[aclass];
484 dec_register_pressure (pclass, 1);
485 make_hard_regno_dead (regno);
486 }
487 regno++;
488 }
489 }
490 }
491
492 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
493 register number; ORIG_REG is the access in the insn, which may be a
494 subreg. */
495 static void
496 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
497 {
498 if (df_read_modify_subreg_p (orig_reg))
499 {
500 mark_pseudo_regno_subword_dead (regno,
501 subreg_lowpart_p (orig_reg) ? 0 : 1);
502 }
503 else
504 mark_pseudo_regno_dead (regno);
505 }
506
507 /* Mark the register referenced by definition DEF as dead, if the
508 definition is a total one. */
509 static void
510 mark_ref_dead (df_ref def)
511 {
512 rtx reg = DF_REF_REG (def);
513 rtx orig_reg = reg;
514
515 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
516 return;
517
518 if (GET_CODE (reg) == SUBREG)
519 reg = SUBREG_REG (reg);
520
521 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
522 && (GET_CODE (orig_reg) != SUBREG
523 || REGNO (reg) < FIRST_PSEUDO_REGISTER
524 || !df_read_modify_subreg_p (orig_reg)))
525 return;
526
527 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
528 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
529 else
530 mark_hard_reg_dead (reg);
531 }
532
533 /* If REG is a pseudo or a subreg of it, and the class of its allocno
534 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
535 rtx actually accessed, it may be identical to DREG or a subreg of it.
536 Advance the current program point before making the conflict if
537 ADVANCE_P. Return TRUE if we will need to advance the current
538 program point. */
539 static bool
540 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
541 bool advance_p)
542 {
543 rtx orig_reg = reg;
544 ira_allocno_t a;
545
546 if (GET_CODE (reg) == SUBREG)
547 reg = SUBREG_REG (reg);
548
549 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
550 return advance_p;
551
552 a = ira_curr_regno_allocno_map[REGNO (reg)];
553 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
554 return advance_p;
555
556 if (advance_p)
557 curr_point++;
558
559 mark_pseudo_reg_live (orig_reg, REGNO (reg));
560 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
561 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
562 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
563
564 return false;
565 }
566
567 /* Check and make if necessary conflicts for pseudo DREG of class
568 DEF_CL of the current insn with input operand USE of class USE_CL.
569 ORIG_DREG is the rtx actually accessed, it may be identical to
570 DREG or a subreg of it. Advance the current program point before
571 making the conflict if ADVANCE_P. Return TRUE if we will need to
572 advance the current program point. */
573 static bool
574 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
575 enum reg_class def_cl, int use,
576 enum reg_class use_cl, bool advance_p)
577 {
578 if (! reg_classes_intersect_p (def_cl, use_cl))
579 return advance_p;
580
581 advance_p = make_pseudo_conflict (recog_data.operand[use],
582 use_cl, dreg, orig_dreg, advance_p);
583
584 /* Reload may end up swapping commutative operands, so you
585 have to take both orderings into account. The
586 constraints for the two operands can be completely
587 different. (Indeed, if the constraints for the two
588 operands are the same for all alternatives, there's no
589 point marking them as commutative.) */
590 if (use < recog_data.n_operands - 1
591 && recog_data.constraints[use][0] == '%')
592 advance_p
593 = make_pseudo_conflict (recog_data.operand[use + 1],
594 use_cl, dreg, orig_dreg, advance_p);
595 if (use >= 1
596 && recog_data.constraints[use - 1][0] == '%')
597 advance_p
598 = make_pseudo_conflict (recog_data.operand[use - 1],
599 use_cl, dreg, orig_dreg, advance_p);
600 return advance_p;
601 }
602
603 /* Check and make if necessary conflicts for definition DEF of class
604 DEF_CL of the current insn with input operands. Process only
605 constraints of alternative ALT. */
606 static void
607 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
608 {
609 int use, use_match;
610 ira_allocno_t a;
611 enum reg_class use_cl, acl;
612 bool advance_p;
613 rtx dreg = recog_data.operand[def];
614 rtx orig_dreg = dreg;
615
616 if (def_cl == NO_REGS)
617 return;
618
619 if (GET_CODE (dreg) == SUBREG)
620 dreg = SUBREG_REG (dreg);
621
622 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
623 return;
624
625 a = ira_curr_regno_allocno_map[REGNO (dreg)];
626 acl = ALLOCNO_CLASS (a);
627 if (! reg_classes_intersect_p (acl, def_cl))
628 return;
629
630 advance_p = true;
631
632 int n_operands = recog_data.n_operands;
633 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
634 for (use = 0; use < n_operands; use++)
635 {
636 int alt1;
637
638 if (use == def || recog_data.operand_type[use] == OP_OUT)
639 continue;
640
641 if (op_alt[use].anything_ok)
642 use_cl = ALL_REGS;
643 else
644 use_cl = op_alt[use].cl;
645
646 /* If there's any alternative that allows USE to match DEF, do not
647 record a conflict. If that causes us to create an invalid
648 instruction due to the earlyclobber, reload must fix it up. */
649 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
650 {
651 if (!TEST_BIT (preferred_alternatives, alt1))
652 continue;
653 const operand_alternative *op_alt1
654 = &recog_op_alt[alt1 * n_operands];
655 if (op_alt1[use].matches == def
656 || (use < n_operands - 1
657 && recog_data.constraints[use][0] == '%'
658 && op_alt1[use + 1].matches == def)
659 || (use >= 1
660 && recog_data.constraints[use - 1][0] == '%'
661 && op_alt1[use - 1].matches == def))
662 break;
663 }
664
665 if (alt1 < recog_data.n_alternatives)
666 continue;
667
668 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
669 use, use_cl, advance_p);
670
671 if ((use_match = op_alt[use].matches) >= 0)
672 {
673 if (use_match == def)
674 continue;
675
676 if (op_alt[use_match].anything_ok)
677 use_cl = ALL_REGS;
678 else
679 use_cl = op_alt[use_match].cl;
680 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
681 use, use_cl, advance_p);
682 }
683 }
684 }
685
686 /* Make conflicts of early clobber pseudo registers of the current
687 insn with its inputs. Avoid introducing unnecessary conflicts by
688 checking classes of the constraints and pseudos because otherwise
689 significant code degradation is possible for some targets. */
690 static void
691 make_early_clobber_and_input_conflicts (void)
692 {
693 int alt;
694 int def, def_match;
695 enum reg_class def_cl;
696
697 int n_alternatives = recog_data.n_alternatives;
698 int n_operands = recog_data.n_operands;
699 const operand_alternative *op_alt = recog_op_alt;
700 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
701 if (TEST_BIT (preferred_alternatives, alt))
702 for (def = 0; def < n_operands; def++)
703 {
704 def_cl = NO_REGS;
705 if (op_alt[def].earlyclobber)
706 {
707 if (op_alt[def].anything_ok)
708 def_cl = ALL_REGS;
709 else
710 def_cl = op_alt[def].cl;
711 check_and_make_def_conflict (alt, def, def_cl);
712 }
713 if ((def_match = op_alt[def].matches) >= 0
714 && (op_alt[def_match].earlyclobber
715 || op_alt[def].earlyclobber))
716 {
717 if (op_alt[def_match].anything_ok)
718 def_cl = ALL_REGS;
719 else
720 def_cl = op_alt[def_match].cl;
721 check_and_make_def_conflict (alt, def, def_cl);
722 }
723 }
724 }
725
726 /* Mark early clobber hard registers of the current INSN as live (if
727 LIVE_P) or dead. Return true if there are such registers. */
728 static bool
729 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
730 {
731 df_ref def;
732 bool set_p = false;
733
734 FOR_EACH_INSN_DEF (def, insn)
735 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
736 {
737 rtx dreg = DF_REF_REG (def);
738
739 if (GET_CODE (dreg) == SUBREG)
740 dreg = SUBREG_REG (dreg);
741 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
742 continue;
743
744 /* Hard register clobbers are believed to be early clobber
745 because there is no way to say that non-operand hard
746 register clobbers are not early ones. */
747 if (live_p)
748 mark_ref_live (def);
749 else
750 mark_ref_dead (def);
751 set_p = true;
752 }
753
754 return set_p;
755 }
756
757 /* Checks that CONSTRAINTS permits to use only one hard register. If
758 it is so, the function returns the class of the hard register.
759 Otherwise it returns NO_REGS. */
760 static enum reg_class
761 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
762 {
763 int c;
764 enum reg_class cl, next_cl;
765 enum constraint_num cn;
766
767 cl = NO_REGS;
768 alternative_mask preferred = preferred_alternatives;
769 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
770 if (c == '#')
771 preferred &= ~ALTERNATIVE_BIT (0);
772 else if (c == ',')
773 preferred >>= 1;
774 else if (preferred & 1)
775 switch (c)
776 {
777 case 'g':
778 return NO_REGS;
779
780 default:
781 /* ??? Is this the best way to handle memory constraints? */
782 cn = lookup_constraint (constraints);
783 if (insn_extra_memory_constraint (cn)
784 || insn_extra_address_constraint (cn))
785 return NO_REGS;
786 if (constraint_satisfied_p (op, cn)
787 || (equiv_const != NULL_RTX
788 && CONSTANT_P (equiv_const)
789 && constraint_satisfied_p (equiv_const, cn)))
790 return NO_REGS;
791 next_cl = reg_class_for_constraint (cn);
792 if (next_cl == NO_REGS)
793 break;
794 if (cl == NO_REGS
795 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
796 : (ira_class_singleton[cl][GET_MODE (op)]
797 != ira_class_singleton[next_cl][GET_MODE (op)]))
798 return NO_REGS;
799 cl = next_cl;
800 break;
801
802 case '0': case '1': case '2': case '3': case '4':
803 case '5': case '6': case '7': case '8': case '9':
804 next_cl
805 = single_reg_class (recog_data.constraints[c - '0'],
806 recog_data.operand[c - '0'], NULL_RTX);
807 if (cl == NO_REGS
808 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
809 : (ira_class_singleton[cl][GET_MODE (op)]
810 != ira_class_singleton[next_cl][GET_MODE (op)]))
811 return NO_REGS;
812 cl = next_cl;
813 break;
814 }
815 return cl;
816 }
817
818 /* The function checks that operand OP_NUM of the current insn can use
819 only one hard register. If it is so, the function returns the
820 class of the hard register. Otherwise it returns NO_REGS. */
821 static enum reg_class
822 single_reg_operand_class (int op_num)
823 {
824 if (op_num < 0 || recog_data.n_alternatives == 0)
825 return NO_REGS;
826 return single_reg_class (recog_data.constraints[op_num],
827 recog_data.operand[op_num], NULL_RTX);
828 }
829
830 /* The function sets up hard register set *SET to hard registers which
831 might be used by insn reloads because the constraints are too
832 strict. */
833 void
834 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
835 {
836 int i, c, regno = 0;
837 enum reg_class cl;
838 rtx op;
839 machine_mode mode;
840
841 CLEAR_HARD_REG_SET (*set);
842 for (i = 0; i < recog_data.n_operands; i++)
843 {
844 op = recog_data.operand[i];
845
846 if (GET_CODE (op) == SUBREG)
847 op = SUBREG_REG (op);
848
849 if (GET_CODE (op) == SCRATCH
850 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
851 {
852 const char *p = recog_data.constraints[i];
853
854 mode = (GET_CODE (op) == SCRATCH
855 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
856 cl = NO_REGS;
857 alternative_mask preferred = preferred_alternatives;
858 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
859 if (c == '#')
860 preferred &= ~ALTERNATIVE_BIT (0);
861 else if (c == ',')
862 preferred >>= 1;
863 else if (preferred & 1)
864 {
865 cl = reg_class_for_constraint (lookup_constraint (p));
866 if (cl != NO_REGS)
867 {
868 /* There is no register pressure problem if all of the
869 regs in this class are fixed. */
870 int regno = ira_class_singleton[cl][mode];
871 if (regno >= 0)
872 add_to_hard_reg_set (set, mode, regno);
873 }
874 }
875 }
876 }
877 }
878 /* Processes input operands, if IN_P, or output operands otherwise of
879 the current insn with FREQ to find allocno which can use only one
880 hard register and makes other currently living allocnos conflicting
881 with the hard register. */
882 static void
883 process_single_reg_class_operands (bool in_p, int freq)
884 {
885 int i, regno;
886 unsigned int px;
887 enum reg_class cl;
888 rtx operand;
889 ira_allocno_t operand_a, a;
890
891 for (i = 0; i < recog_data.n_operands; i++)
892 {
893 operand = recog_data.operand[i];
894 if (in_p && recog_data.operand_type[i] != OP_IN
895 && recog_data.operand_type[i] != OP_INOUT)
896 continue;
897 if (! in_p && recog_data.operand_type[i] != OP_OUT
898 && recog_data.operand_type[i] != OP_INOUT)
899 continue;
900 cl = single_reg_operand_class (i);
901 if (cl == NO_REGS)
902 continue;
903
904 operand_a = NULL;
905
906 if (GET_CODE (operand) == SUBREG)
907 operand = SUBREG_REG (operand);
908
909 if (REG_P (operand)
910 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
911 {
912 enum reg_class aclass;
913
914 operand_a = ira_curr_regno_allocno_map[regno];
915 aclass = ALLOCNO_CLASS (operand_a);
916 if (ira_class_subset_p[cl][aclass])
917 {
918 /* View the desired allocation of OPERAND as:
919
920 (REG:YMODE YREGNO),
921
922 a simplification of:
923
924 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
925 machine_mode ymode, xmode;
926 int xregno, yregno;
927 HOST_WIDE_INT offset;
928
929 xmode = recog_data.operand_mode[i];
930 xregno = ira_class_singleton[cl][xmode];
931 gcc_assert (xregno >= 0);
932 ymode = ALLOCNO_MODE (operand_a);
933 offset = subreg_lowpart_offset (ymode, xmode);
934 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
935 if (yregno >= 0
936 && ira_class_hard_reg_index[aclass][yregno] >= 0)
937 {
938 int cost;
939
940 ira_allocate_and_set_costs
941 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
942 aclass, 0);
943 ira_init_register_move_cost_if_necessary (xmode);
944 cost = freq * (in_p
945 ? ira_register_move_cost[xmode][aclass][cl]
946 : ira_register_move_cost[xmode][cl][aclass]);
947 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
948 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
949 }
950 }
951 }
952
953 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
954 {
955 ira_object_t obj = ira_object_id_map[px];
956 a = OBJECT_ALLOCNO (obj);
957 if (a != operand_a)
958 {
959 /* We could increase costs of A instead of making it
960 conflicting with the hard register. But it works worse
961 because it will be spilled in reload in anyway. */
962 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
963 reg_class_contents[cl]);
964 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
965 reg_class_contents[cl]);
966 }
967 }
968 }
969 }
970
971 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
972 we find a SET rtx that we can use to deduce that a register can be cheaply
973 caller-saved. Return such a register, or NULL_RTX if none is found. */
974 static rtx
975 find_call_crossed_cheap_reg (rtx_insn *insn)
976 {
977 rtx cheap_reg = NULL_RTX;
978 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
979
980 while (exp != NULL)
981 {
982 rtx x = XEXP (exp, 0);
983 if (GET_CODE (x) == SET)
984 {
985 exp = x;
986 break;
987 }
988 exp = XEXP (exp, 1);
989 }
990 if (exp != NULL)
991 {
992 basic_block bb = BLOCK_FOR_INSN (insn);
993 rtx reg = SET_SRC (exp);
994 rtx_insn *prev = PREV_INSN (insn);
995 while (prev && !(INSN_P (prev)
996 && BLOCK_FOR_INSN (prev) != bb))
997 {
998 if (NONDEBUG_INSN_P (prev))
999 {
1000 rtx set = single_set (prev);
1001
1002 if (set && rtx_equal_p (SET_DEST (set), reg))
1003 {
1004 rtx src = SET_SRC (set);
1005 if (!REG_P (src) || HARD_REGISTER_P (src)
1006 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1007 break;
1008 if (!modified_between_p (src, prev, insn))
1009 cheap_reg = src;
1010 break;
1011 }
1012 if (set && rtx_equal_p (SET_SRC (set), reg))
1013 {
1014 rtx dest = SET_DEST (set);
1015 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1016 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1017 break;
1018 if (!modified_between_p (dest, prev, insn))
1019 cheap_reg = dest;
1020 break;
1021 }
1022
1023 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1024 break;
1025 }
1026 prev = PREV_INSN (prev);
1027 }
1028 }
1029 return cheap_reg;
1030 }
1031
1032 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1033 update allocno live ranges, allocno hard register conflicts,
1034 intersected calls, and register pressure info for allocnos for the
1035 basic block for and regions containing the basic block. */
1036 static void
1037 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1038 {
1039 int i, freq;
1040 unsigned int j;
1041 basic_block bb;
1042 rtx_insn *insn;
1043 bitmap_iterator bi;
1044 bitmap reg_live_out;
1045 unsigned int px;
1046 bool set_p;
1047
1048 bb = loop_tree_node->bb;
1049 if (bb != NULL)
1050 {
1051 for (i = 0; i < ira_pressure_classes_num; i++)
1052 {
1053 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1054 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1055 }
1056 curr_bb_node = loop_tree_node;
1057 reg_live_out = df_get_live_out (bb);
1058 sparseset_clear (objects_live);
1059 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1060 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1061 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1062 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1063 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1064 {
1065 enum reg_class aclass, pclass, cl;
1066
1067 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1068 pclass = ira_pressure_class_translate[aclass];
1069 for (j = 0;
1070 (cl = ira_reg_class_super_classes[pclass][j])
1071 != LIM_REG_CLASSES;
1072 j++)
1073 {
1074 if (! ira_reg_pressure_class_p[cl])
1075 continue;
1076 curr_reg_pressure[cl]++;
1077 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1078 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1079 ira_assert (curr_reg_pressure[cl]
1080 <= ira_class_hard_regs_num[cl]);
1081 }
1082 }
1083 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1084 mark_pseudo_regno_live (j);
1085
1086 freq = REG_FREQ_FROM_BB (bb);
1087 if (freq == 0)
1088 freq = 1;
1089
1090 /* Invalidate all allocno_saved_at_call entries. */
1091 last_call_num++;
1092
1093 /* Scan the code of this basic block, noting which allocnos and
1094 hard regs are born or die.
1095
1096 Note that this loop treats uninitialized values as live until
1097 the beginning of the block. For example, if an instruction
1098 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1099 set, FOO will remain live until the beginning of the block.
1100 Likewise if FOO is not set at all. This is unnecessarily
1101 pessimistic, but it probably doesn't matter much in practice. */
1102 FOR_BB_INSNS_REVERSE (bb, insn)
1103 {
1104 ira_allocno_t a;
1105 df_ref def, use;
1106 bool call_p;
1107
1108 if (!NONDEBUG_INSN_P (insn))
1109 continue;
1110
1111 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1112 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1113 INSN_UID (insn), loop_tree_node->parent->loop_num,
1114 curr_point);
1115
1116 call_p = CALL_P (insn);
1117 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1118 int regno;
1119 bool clear_pic_use_conflict_p = false;
1120 /* Processing insn usage in call insn can create conflict
1121 with pic pseudo and pic hard reg and that is wrong.
1122 Check this situation and fix it at the end of the insn
1123 processing. */
1124 if (call_p && pic_offset_table_rtx != NULL_RTX
1125 && (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER
1126 && (a = ira_curr_regno_allocno_map[regno]) != NULL)
1127 clear_pic_use_conflict_p
1128 = (find_regno_fusage (insn, USE, REAL_PIC_OFFSET_TABLE_REGNUM)
1129 && ! TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS
1130 (ALLOCNO_OBJECT (a, 0)),
1131 REAL_PIC_OFFSET_TABLE_REGNUM));
1132 #endif
1133
1134 /* Mark each defined value as live. We need to do this for
1135 unused values because they still conflict with quantities
1136 that are live at the time of the definition.
1137
1138 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1139 references represent the effect of the called function
1140 on a call-clobbered register. Marking the register as
1141 live would stop us from allocating it to a call-crossing
1142 allocno. */
1143 FOR_EACH_INSN_DEF (def, insn)
1144 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1145 mark_ref_live (def);
1146
1147 /* If INSN has multiple outputs, then any value used in one
1148 of the outputs conflicts with the other outputs. Model this
1149 by making the used value live during the output phase.
1150
1151 It is unsafe to use !single_set here since it will ignore
1152 an unused output. Just because an output is unused does
1153 not mean the compiler can assume the side effect will not
1154 occur. Consider if ALLOCNO appears in the address of an
1155 output and we reload the output. If we allocate ALLOCNO
1156 to the same hard register as an unused output we could
1157 set the hard register before the output reload insn. */
1158 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1159 FOR_EACH_INSN_USE (use, insn)
1160 {
1161 int i;
1162 rtx reg;
1163
1164 reg = DF_REF_REG (use);
1165 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1166 {
1167 rtx set;
1168
1169 set = XVECEXP (PATTERN (insn), 0, i);
1170 if (GET_CODE (set) == SET
1171 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1172 {
1173 /* After the previous loop, this is a no-op if
1174 REG is contained within SET_DEST (SET). */
1175 mark_ref_live (use);
1176 break;
1177 }
1178 }
1179 }
1180
1181 extract_insn (insn);
1182 preferred_alternatives = get_preferred_alternatives (insn);
1183 preprocess_constraints (insn);
1184 process_single_reg_class_operands (false, freq);
1185
1186 /* See which defined values die here. */
1187 FOR_EACH_INSN_DEF (def, insn)
1188 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1189 mark_ref_dead (def);
1190
1191 if (call_p)
1192 {
1193 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1194 there, try to find a pseudo that is live across the call but
1195 can be cheaply reconstructed from the return value. */
1196 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1197 if (cheap_reg != NULL_RTX)
1198 add_reg_note (insn, REG_RETURNED, cheap_reg);
1199
1200 last_call_num++;
1201 sparseset_clear (allocnos_processed);
1202 /* The current set of live allocnos are live across the call. */
1203 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1204 {
1205 ira_object_t obj = ira_object_id_map[i];
1206 a = OBJECT_ALLOCNO (obj);
1207 int num = ALLOCNO_NUM (a);
1208 HARD_REG_SET this_call_used_reg_set;
1209
1210 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1211 call_used_reg_set);
1212
1213 /* Don't allocate allocnos that cross setjmps or any
1214 call, if this function receives a nonlocal
1215 goto. */
1216 if (cfun->has_nonlocal_label
1217 || find_reg_note (insn, REG_SETJMP,
1218 NULL_RTX) != NULL_RTX)
1219 {
1220 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1221 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1222 }
1223 if (can_throw_internal (insn))
1224 {
1225 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1226 this_call_used_reg_set);
1227 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1228 this_call_used_reg_set);
1229 }
1230
1231 if (sparseset_bit_p (allocnos_processed, num))
1232 continue;
1233 sparseset_set_bit (allocnos_processed, num);
1234
1235 if (allocno_saved_at_call[num] != last_call_num)
1236 /* Here we are mimicking caller-save.c behavior
1237 which does not save hard register at a call if
1238 it was saved on previous call in the same basic
1239 block and the hard register was not mentioned
1240 between the two calls. */
1241 ALLOCNO_CALL_FREQ (a) += freq;
1242 /* Mark it as saved at the next call. */
1243 allocno_saved_at_call[num] = last_call_num + 1;
1244 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1245 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1246 this_call_used_reg_set);
1247 if (cheap_reg != NULL_RTX
1248 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1249 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1250 }
1251 }
1252
1253 make_early_clobber_and_input_conflicts ();
1254
1255 curr_point++;
1256
1257 /* Mark each used value as live. */
1258 FOR_EACH_INSN_USE (use, insn)
1259 mark_ref_live (use);
1260
1261 process_single_reg_class_operands (true, freq);
1262
1263 set_p = mark_hard_reg_early_clobbers (insn, true);
1264
1265 if (set_p)
1266 {
1267 mark_hard_reg_early_clobbers (insn, false);
1268
1269 /* Mark each hard reg as live again. For example, a
1270 hard register can be in clobber and in an insn
1271 input. */
1272 FOR_EACH_INSN_USE (use, insn)
1273 {
1274 rtx ureg = DF_REF_REG (use);
1275
1276 if (GET_CODE (ureg) == SUBREG)
1277 ureg = SUBREG_REG (ureg);
1278 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1279 continue;
1280
1281 mark_ref_live (use);
1282 }
1283 }
1284
1285 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1286 if (clear_pic_use_conflict_p)
1287 {
1288 regno = REGNO (pic_offset_table_rtx);
1289 a = ira_curr_regno_allocno_map[regno];
1290 CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (ALLOCNO_OBJECT (a, 0)),
1291 REAL_PIC_OFFSET_TABLE_REGNUM);
1292 CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS
1293 (ALLOCNO_OBJECT (a, 0)),
1294 REAL_PIC_OFFSET_TABLE_REGNUM);
1295 }
1296 #endif
1297 curr_point++;
1298 }
1299
1300 if (bb_has_eh_pred (bb))
1301 for (j = 0; ; ++j)
1302 {
1303 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1304 if (regno == INVALID_REGNUM)
1305 break;
1306 make_hard_regno_born (regno);
1307 }
1308
1309 /* Allocnos can't go in stack regs at the start of a basic block
1310 that is reached by an abnormal edge. Likewise for call
1311 clobbered regs, because caller-save, fixup_abnormal_edges and
1312 possibly the table driven EH machinery are not quite ready to
1313 handle such allocnos live across such edges. */
1314 if (bb_has_abnormal_pred (bb))
1315 {
1316 #ifdef STACK_REGS
1317 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1318 {
1319 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1320
1321 ALLOCNO_NO_STACK_REG_P (a) = true;
1322 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1323 }
1324 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1325 make_hard_regno_born (px);
1326 #endif
1327 /* No need to record conflicts for call clobbered regs if we
1328 have nonlocal labels around, as we don't ever try to
1329 allocate such regs in this case. */
1330 if (!cfun->has_nonlocal_label
1331 && has_abnormal_call_or_eh_pred_edge_p (bb))
1332 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1333 if (call_used_regs[px]
1334 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1335 /* We should create a conflict of PIC pseudo with
1336 PIC hard reg as PIC hard reg can have a wrong
1337 value after jump described by the abnormal edge.
1338 In this case we can not allocate PIC hard reg to
1339 PIC pseudo as PIC pseudo will also have a wrong
1340 value. This code is not critical as LRA can fix
1341 it but it is better to have the right allocation
1342 earlier. */
1343 || (px == REAL_PIC_OFFSET_TABLE_REGNUM
1344 && pic_offset_table_rtx != NULL_RTX
1345 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
1346 #endif
1347 )
1348 make_hard_regno_born (px);
1349 }
1350
1351 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1352 make_object_dead (ira_object_id_map[i]);
1353
1354 curr_point++;
1355
1356 }
1357 /* Propagate register pressure to upper loop tree nodes. */
1358 if (loop_tree_node != ira_loop_tree_root)
1359 for (i = 0; i < ira_pressure_classes_num; i++)
1360 {
1361 enum reg_class pclass;
1362
1363 pclass = ira_pressure_classes[i];
1364 if (loop_tree_node->reg_pressure[pclass]
1365 > loop_tree_node->parent->reg_pressure[pclass])
1366 loop_tree_node->parent->reg_pressure[pclass]
1367 = loop_tree_node->reg_pressure[pclass];
1368 }
1369 }
1370
1371 /* Create and set up IRA_START_POINT_RANGES and
1372 IRA_FINISH_POINT_RANGES. */
1373 static void
1374 create_start_finish_chains (void)
1375 {
1376 ira_object_t obj;
1377 ira_object_iterator oi;
1378 live_range_t r;
1379
1380 ira_start_point_ranges
1381 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1382 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1383 ira_finish_point_ranges
1384 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1385 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1386 FOR_EACH_OBJECT (obj, oi)
1387 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1388 {
1389 r->start_next = ira_start_point_ranges[r->start];
1390 ira_start_point_ranges[r->start] = r;
1391 r->finish_next = ira_finish_point_ranges[r->finish];
1392 ira_finish_point_ranges[r->finish] = r;
1393 }
1394 }
1395
1396 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1397 new live ranges and program points were added as a result if new
1398 insn generation. */
1399 void
1400 ira_rebuild_start_finish_chains (void)
1401 {
1402 ira_free (ira_finish_point_ranges);
1403 ira_free (ira_start_point_ranges);
1404 create_start_finish_chains ();
1405 }
1406
1407 /* Compress allocno live ranges by removing program points where
1408 nothing happens. */
1409 static void
1410 remove_some_program_points_and_update_live_ranges (void)
1411 {
1412 unsigned i;
1413 int n;
1414 int *map;
1415 ira_object_t obj;
1416 ira_object_iterator oi;
1417 live_range_t r, prev_r, next_r;
1418 sbitmap born_or_dead, born, dead;
1419 sbitmap_iterator sbi;
1420 bool born_p, dead_p, prev_born_p, prev_dead_p;
1421
1422 born = sbitmap_alloc (ira_max_point);
1423 dead = sbitmap_alloc (ira_max_point);
1424 bitmap_clear (born);
1425 bitmap_clear (dead);
1426 FOR_EACH_OBJECT (obj, oi)
1427 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1428 {
1429 ira_assert (r->start <= r->finish);
1430 bitmap_set_bit (born, r->start);
1431 bitmap_set_bit (dead, r->finish);
1432 }
1433
1434 born_or_dead = sbitmap_alloc (ira_max_point);
1435 bitmap_ior (born_or_dead, born, dead);
1436 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1437 n = -1;
1438 prev_born_p = prev_dead_p = false;
1439 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1440 {
1441 born_p = bitmap_bit_p (born, i);
1442 dead_p = bitmap_bit_p (dead, i);
1443 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1444 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1445 map[i] = n;
1446 else
1447 map[i] = ++n;
1448 prev_born_p = born_p;
1449 prev_dead_p = dead_p;
1450 }
1451 sbitmap_free (born_or_dead);
1452 sbitmap_free (born);
1453 sbitmap_free (dead);
1454 n++;
1455 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1456 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1457 ira_max_point, n, 100 * n / ira_max_point);
1458 ira_max_point = n;
1459
1460 FOR_EACH_OBJECT (obj, oi)
1461 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1462 {
1463 next_r = r->next;
1464 r->start = map[r->start];
1465 r->finish = map[r->finish];
1466 if (prev_r == NULL || prev_r->start > r->finish + 1)
1467 {
1468 prev_r = r;
1469 continue;
1470 }
1471 prev_r->start = r->start;
1472 prev_r->next = next_r;
1473 ira_finish_live_range (r);
1474 }
1475
1476 ira_free (map);
1477 }
1478
1479 /* Print live ranges R to file F. */
1480 void
1481 ira_print_live_range_list (FILE *f, live_range_t r)
1482 {
1483 for (; r != NULL; r = r->next)
1484 fprintf (f, " [%d..%d]", r->start, r->finish);
1485 fprintf (f, "\n");
1486 }
1487
1488 DEBUG_FUNCTION void
1489 debug (live_range &ref)
1490 {
1491 ira_print_live_range_list (stderr, &ref);
1492 }
1493
1494 DEBUG_FUNCTION void
1495 debug (live_range *ptr)
1496 {
1497 if (ptr)
1498 debug (*ptr);
1499 else
1500 fprintf (stderr, "<nil>\n");
1501 }
1502
1503 /* Print live ranges R to stderr. */
1504 void
1505 ira_debug_live_range_list (live_range_t r)
1506 {
1507 ira_print_live_range_list (stderr, r);
1508 }
1509
1510 /* Print live ranges of object OBJ to file F. */
1511 static void
1512 print_object_live_ranges (FILE *f, ira_object_t obj)
1513 {
1514 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1515 }
1516
1517 /* Print live ranges of allocno A to file F. */
1518 static void
1519 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1520 {
1521 int n = ALLOCNO_NUM_OBJECTS (a);
1522 int i;
1523
1524 for (i = 0; i < n; i++)
1525 {
1526 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1527 if (n > 1)
1528 fprintf (f, " [%d]", i);
1529 fprintf (f, "):");
1530 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1531 }
1532 }
1533
1534 /* Print live ranges of allocno A to stderr. */
1535 void
1536 ira_debug_allocno_live_ranges (ira_allocno_t a)
1537 {
1538 print_allocno_live_ranges (stderr, a);
1539 }
1540
1541 /* Print live ranges of all allocnos to file F. */
1542 static void
1543 print_live_ranges (FILE *f)
1544 {
1545 ira_allocno_t a;
1546 ira_allocno_iterator ai;
1547
1548 FOR_EACH_ALLOCNO (a, ai)
1549 print_allocno_live_ranges (f, a);
1550 }
1551
1552 /* Print live ranges of all allocnos to stderr. */
1553 void
1554 ira_debug_live_ranges (void)
1555 {
1556 print_live_ranges (stderr);
1557 }
1558
1559 /* The main entry function creates live ranges, set up
1560 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1561 calculate register pressure info. */
1562 void
1563 ira_create_allocno_live_ranges (void)
1564 {
1565 objects_live = sparseset_alloc (ira_objects_num);
1566 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1567 curr_point = 0;
1568 last_call_num = 0;
1569 allocno_saved_at_call
1570 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1571 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1572 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1573 process_bb_node_lives);
1574 ira_max_point = curr_point;
1575 create_start_finish_chains ();
1576 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1577 print_live_ranges (ira_dump_file);
1578 /* Clean up. */
1579 ira_free (allocno_saved_at_call);
1580 sparseset_free (objects_live);
1581 sparseset_free (allocnos_processed);
1582 }
1583
1584 /* Compress allocno live ranges. */
1585 void
1586 ira_compress_allocno_live_ranges (void)
1587 {
1588 remove_some_program_points_and_update_live_ranges ();
1589 ira_rebuild_start_finish_chains ();
1590 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1591 {
1592 fprintf (ira_dump_file, "Ranges after the compression:\n");
1593 print_live_ranges (ira_dump_file);
1594 }
1595 }
1596
1597 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1598 void
1599 ira_finish_allocno_live_ranges (void)
1600 {
1601 ira_free (ira_finish_point_ranges);
1602 ira_free (ira_start_point_ranges);
1603 }