[ARM] Add ACLE 2.0 predefined marco __ARM_FEATURE_IDIV
[gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "regs.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "target.h"
29 #include "flags.h"
30 #include "except.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "params.h"
37 #include "df.h"
38 #include "sbitmap.h"
39 #include "sparseset.h"
40 #include "ira-int.h"
41
42 /* The code in this file is similar to one in global but the code
43 works on the allocno basis and creates live ranges instead of
44 pseudo-register conflicts. */
45
46 /* Program points are enumerated by numbers from range
47 0..IRA_MAX_POINT-1. There are approximately two times more program
48 points than insns. Program points are places in the program where
49 liveness info can be changed. In most general case (there are more
50 complicated cases too) some program points correspond to places
51 where input operand dies and other ones correspond to places where
52 output operands are born. */
53 int ira_max_point;
54
55 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
56 live ranges with given start/finish point. */
57 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
58
59 /* Number of the current program point. */
60 static int curr_point;
61
62 /* Point where register pressure excess started or -1 if there is no
63 register pressure excess. Excess pressure for a register class at
64 some point means that there are more allocnos of given register
65 class living at the point than number of hard-registers of the
66 class available for the allocation. It is defined only for
67 pressure classes. */
68 static int high_pressure_start_point[N_REG_CLASSES];
69
70 /* Objects live at current point in the scan. */
71 static sparseset objects_live;
72
73 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
74 multiple times. */
75 static sparseset allocnos_processed;
76
77 /* Set of hard regs (except eliminable ones) currently live. */
78 static HARD_REG_SET hard_regs_live;
79
80 /* The loop tree node corresponding to the current basic block. */
81 static ira_loop_tree_node_t curr_bb_node;
82
83 /* The number of the last processed call. */
84 static int last_call_num;
85 /* The number of last call at which given allocno was saved. */
86 static int *allocno_saved_at_call;
87
88 /* Record the birth of hard register REGNO, updating hard_regs_live and
89 hard reg conflict information for living allocnos. */
90 static void
91 make_hard_regno_born (int regno)
92 {
93 unsigned int i;
94
95 SET_HARD_REG_BIT (hard_regs_live, regno);
96 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
97 {
98 ira_object_t obj = ira_object_id_map[i];
99
100 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
101 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
102 }
103 }
104
105 /* Process the death of hard register REGNO. This updates
106 hard_regs_live. */
107 static void
108 make_hard_regno_dead (int regno)
109 {
110 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
111 }
112
113 /* Record the birth of object OBJ. Set a bit for it in objects_live,
114 start a new live range for it if necessary and update hard register
115 conflicts. */
116 static void
117 make_object_born (ira_object_t obj)
118 {
119 live_range_t lr = OBJECT_LIVE_RANGES (obj);
120
121 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
122 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
123 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
124
125 if (lr == NULL
126 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
127 ira_add_live_range_to_object (obj, curr_point, -1);
128 }
129
130 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
131 associated with object OBJ. */
132 static void
133 update_allocno_pressure_excess_length (ira_object_t obj)
134 {
135 ira_allocno_t a = OBJECT_ALLOCNO (obj);
136 int start, i;
137 enum reg_class aclass, pclass, cl;
138 live_range_t p;
139
140 aclass = ALLOCNO_CLASS (a);
141 pclass = ira_pressure_class_translate[aclass];
142 for (i = 0;
143 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
144 i++)
145 {
146 if (! ira_reg_pressure_class_p[cl])
147 continue;
148 if (high_pressure_start_point[cl] < 0)
149 continue;
150 p = OBJECT_LIVE_RANGES (obj);
151 ira_assert (p != NULL);
152 start = (high_pressure_start_point[cl] > p->start
153 ? high_pressure_start_point[cl] : p->start);
154 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
155 }
156 }
157
158 /* Process the death of object OBJ, which is associated with allocno
159 A. This finishes the current live range for it. */
160 static void
161 make_object_dead (ira_object_t obj)
162 {
163 live_range_t lr;
164
165 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
166 lr = OBJECT_LIVE_RANGES (obj);
167 ira_assert (lr != NULL);
168 lr->finish = curr_point;
169 update_allocno_pressure_excess_length (obj);
170 }
171
172 /* The current register pressures for each pressure class for the current
173 basic block. */
174 static int curr_reg_pressure[N_REG_CLASSES];
175
176 /* Record that register pressure for PCLASS increased by N registers.
177 Update the current register pressure, maximal register pressure for
178 the current BB and the start point of the register pressure
179 excess. */
180 static void
181 inc_register_pressure (enum reg_class pclass, int n)
182 {
183 int i;
184 enum reg_class cl;
185
186 for (i = 0;
187 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
188 i++)
189 {
190 if (! ira_reg_pressure_class_p[cl])
191 continue;
192 curr_reg_pressure[cl] += n;
193 if (high_pressure_start_point[cl] < 0
194 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
195 high_pressure_start_point[cl] = curr_point;
196 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
197 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
198 }
199 }
200
201 /* Record that register pressure for PCLASS has decreased by NREGS
202 registers; update current register pressure, start point of the
203 register pressure excess, and register pressure excess length for
204 living allocnos. */
205
206 static void
207 dec_register_pressure (enum reg_class pclass, int nregs)
208 {
209 int i;
210 unsigned int j;
211 enum reg_class cl;
212 bool set_p = false;
213
214 for (i = 0;
215 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
216 i++)
217 {
218 if (! ira_reg_pressure_class_p[cl])
219 continue;
220 curr_reg_pressure[cl] -= nregs;
221 ira_assert (curr_reg_pressure[cl] >= 0);
222 if (high_pressure_start_point[cl] >= 0
223 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
224 set_p = true;
225 }
226 if (set_p)
227 {
228 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
229 update_allocno_pressure_excess_length (ira_object_id_map[j]);
230 for (i = 0;
231 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
232 i++)
233 {
234 if (! ira_reg_pressure_class_p[cl])
235 continue;
236 if (high_pressure_start_point[cl] >= 0
237 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
238 high_pressure_start_point[cl] = -1;
239 }
240 }
241 }
242
243 /* Determine from the objects_live bitmap whether REGNO is currently live,
244 and occupies only one object. Return false if we have no information. */
245 static bool
246 pseudo_regno_single_word_and_live_p (int regno)
247 {
248 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
249 ira_object_t obj;
250
251 if (a == NULL)
252 return false;
253 if (ALLOCNO_NUM_OBJECTS (a) > 1)
254 return false;
255
256 obj = ALLOCNO_OBJECT (a, 0);
257
258 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
259 }
260
261 /* Mark the pseudo register REGNO as live. Update all information about
262 live ranges and register pressure. */
263 static void
264 mark_pseudo_regno_live (int regno)
265 {
266 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
267 enum reg_class pclass;
268 int i, n, nregs;
269
270 if (a == NULL)
271 return;
272
273 /* Invalidate because it is referenced. */
274 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
275
276 n = ALLOCNO_NUM_OBJECTS (a);
277 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
278 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
279 if (n > 1)
280 {
281 /* We track every subobject separately. */
282 gcc_assert (nregs == n);
283 nregs = 1;
284 }
285
286 for (i = 0; i < n; i++)
287 {
288 ira_object_t obj = ALLOCNO_OBJECT (a, i);
289
290 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
291 continue;
292
293 inc_register_pressure (pclass, nregs);
294 make_object_born (obj);
295 }
296 }
297
298 /* Like mark_pseudo_regno_live, but try to only mark one subword of
299 the pseudo as live. SUBWORD indicates which; a value of 0
300 indicates the low part. */
301 static void
302 mark_pseudo_regno_subword_live (int regno, int subword)
303 {
304 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
305 int n;
306 enum reg_class pclass;
307 ira_object_t obj;
308
309 if (a == NULL)
310 return;
311
312 /* Invalidate because it is referenced. */
313 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
314
315 n = ALLOCNO_NUM_OBJECTS (a);
316 if (n == 1)
317 {
318 mark_pseudo_regno_live (regno);
319 return;
320 }
321
322 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
323 gcc_assert
324 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
325 obj = ALLOCNO_OBJECT (a, subword);
326
327 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
328 return;
329
330 inc_register_pressure (pclass, 1);
331 make_object_born (obj);
332 }
333
334 /* Mark the register REG as live. Store a 1 in hard_regs_live for
335 this register, record how many consecutive hardware registers it
336 actually needs. */
337 static void
338 mark_hard_reg_live (rtx reg)
339 {
340 int regno = REGNO (reg);
341
342 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
343 {
344 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
345 enum reg_class aclass, pclass;
346
347 while (regno < last)
348 {
349 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
350 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
351 {
352 aclass = ira_hard_regno_allocno_class[regno];
353 pclass = ira_pressure_class_translate[aclass];
354 inc_register_pressure (pclass, 1);
355 make_hard_regno_born (regno);
356 }
357 regno++;
358 }
359 }
360 }
361
362 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
363 register number; ORIG_REG is the access in the insn, which may be a
364 subreg. */
365 static void
366 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
367 {
368 if (df_read_modify_subreg_p (orig_reg))
369 {
370 mark_pseudo_regno_subword_live (regno,
371 subreg_lowpart_p (orig_reg) ? 0 : 1);
372 }
373 else
374 mark_pseudo_regno_live (regno);
375 }
376
377 /* Mark the register referenced by use or def REF as live. */
378 static void
379 mark_ref_live (df_ref ref)
380 {
381 rtx reg = DF_REF_REG (ref);
382 rtx orig_reg = reg;
383
384 if (GET_CODE (reg) == SUBREG)
385 reg = SUBREG_REG (reg);
386
387 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
388 mark_pseudo_reg_live (orig_reg, REGNO (reg));
389 else
390 mark_hard_reg_live (reg);
391 }
392
393 /* Mark the pseudo register REGNO as dead. Update all information about
394 live ranges and register pressure. */
395 static void
396 mark_pseudo_regno_dead (int regno)
397 {
398 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
399 int n, i, nregs;
400 enum reg_class cl;
401
402 if (a == NULL)
403 return;
404
405 /* Invalidate because it is referenced. */
406 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
407
408 n = ALLOCNO_NUM_OBJECTS (a);
409 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
410 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
411 if (n > 1)
412 {
413 /* We track every subobject separately. */
414 gcc_assert (nregs == n);
415 nregs = 1;
416 }
417 for (i = 0; i < n; i++)
418 {
419 ira_object_t obj = ALLOCNO_OBJECT (a, i);
420 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
421 continue;
422
423 dec_register_pressure (cl, nregs);
424 make_object_dead (obj);
425 }
426 }
427
428 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
429 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
430 static void
431 mark_pseudo_regno_subword_dead (int regno, int subword)
432 {
433 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
434 int n;
435 enum reg_class cl;
436 ira_object_t obj;
437
438 if (a == NULL)
439 return;
440
441 /* Invalidate because it is referenced. */
442 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
443
444 n = ALLOCNO_NUM_OBJECTS (a);
445 if (n == 1)
446 /* The allocno as a whole doesn't die in this case. */
447 return;
448
449 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
450 gcc_assert
451 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
452
453 obj = ALLOCNO_OBJECT (a, subword);
454 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
455 return;
456
457 dec_register_pressure (cl, 1);
458 make_object_dead (obj);
459 }
460
461 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
462 register. */
463 static void
464 mark_hard_reg_dead (rtx reg)
465 {
466 int regno = REGNO (reg);
467
468 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
469 {
470 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
471 enum reg_class aclass, pclass;
472
473 while (regno < last)
474 {
475 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
476 {
477 aclass = ira_hard_regno_allocno_class[regno];
478 pclass = ira_pressure_class_translate[aclass];
479 dec_register_pressure (pclass, 1);
480 make_hard_regno_dead (regno);
481 }
482 regno++;
483 }
484 }
485 }
486
487 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
488 register number; ORIG_REG is the access in the insn, which may be a
489 subreg. */
490 static void
491 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
492 {
493 if (df_read_modify_subreg_p (orig_reg))
494 {
495 mark_pseudo_regno_subword_dead (regno,
496 subreg_lowpart_p (orig_reg) ? 0 : 1);
497 }
498 else
499 mark_pseudo_regno_dead (regno);
500 }
501
502 /* Mark the register referenced by definition DEF as dead, if the
503 definition is a total one. */
504 static void
505 mark_ref_dead (df_ref def)
506 {
507 rtx reg = DF_REF_REG (def);
508 rtx orig_reg = reg;
509
510 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
511 return;
512
513 if (GET_CODE (reg) == SUBREG)
514 reg = SUBREG_REG (reg);
515
516 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
517 && (GET_CODE (orig_reg) != SUBREG
518 || REGNO (reg) < FIRST_PSEUDO_REGISTER
519 || !df_read_modify_subreg_p (orig_reg)))
520 return;
521
522 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
523 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
524 else
525 mark_hard_reg_dead (reg);
526 }
527
528 /* If REG is a pseudo or a subreg of it, and the class of its allocno
529 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
530 rtx actually accessed, it may be identical to DREG or a subreg of it.
531 Advance the current program point before making the conflict if
532 ADVANCE_P. Return TRUE if we will need to advance the current
533 program point. */
534 static bool
535 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
536 bool advance_p)
537 {
538 rtx orig_reg = reg;
539 ira_allocno_t a;
540
541 if (GET_CODE (reg) == SUBREG)
542 reg = SUBREG_REG (reg);
543
544 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
545 return advance_p;
546
547 a = ira_curr_regno_allocno_map[REGNO (reg)];
548 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
549 return advance_p;
550
551 if (advance_p)
552 curr_point++;
553
554 mark_pseudo_reg_live (orig_reg, REGNO (reg));
555 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
556 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
557 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
558
559 return false;
560 }
561
562 /* Check and make if necessary conflicts for pseudo DREG of class
563 DEF_CL of the current insn with input operand USE of class USE_CL.
564 ORIG_DREG is the rtx actually accessed, it may be identical to
565 DREG or a subreg of it. Advance the current program point before
566 making the conflict if ADVANCE_P. Return TRUE if we will need to
567 advance the current program point. */
568 static bool
569 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
570 enum reg_class def_cl, int use,
571 enum reg_class use_cl, bool advance_p)
572 {
573 if (! reg_classes_intersect_p (def_cl, use_cl))
574 return advance_p;
575
576 advance_p = make_pseudo_conflict (recog_data.operand[use],
577 use_cl, dreg, orig_dreg, advance_p);
578
579 /* Reload may end up swapping commutative operands, so you
580 have to take both orderings into account. The
581 constraints for the two operands can be completely
582 different. (Indeed, if the constraints for the two
583 operands are the same for all alternatives, there's no
584 point marking them as commutative.) */
585 if (use < recog_data.n_operands - 1
586 && recog_data.constraints[use][0] == '%')
587 advance_p
588 = make_pseudo_conflict (recog_data.operand[use + 1],
589 use_cl, dreg, orig_dreg, advance_p);
590 if (use >= 1
591 && recog_data.constraints[use - 1][0] == '%')
592 advance_p
593 = make_pseudo_conflict (recog_data.operand[use - 1],
594 use_cl, dreg, orig_dreg, advance_p);
595 return advance_p;
596 }
597
598 /* Check and make if necessary conflicts for definition DEF of class
599 DEF_CL of the current insn with input operands. Process only
600 constraints of alternative ALT. */
601 static void
602 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
603 {
604 int use, use_match;
605 ira_allocno_t a;
606 enum reg_class use_cl, acl;
607 bool advance_p;
608 rtx dreg = recog_data.operand[def];
609 rtx orig_dreg = dreg;
610
611 if (def_cl == NO_REGS)
612 return;
613
614 if (GET_CODE (dreg) == SUBREG)
615 dreg = SUBREG_REG (dreg);
616
617 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
618 return;
619
620 a = ira_curr_regno_allocno_map[REGNO (dreg)];
621 acl = ALLOCNO_CLASS (a);
622 if (! reg_classes_intersect_p (acl, def_cl))
623 return;
624
625 advance_p = true;
626
627 int n_operands = recog_data.n_operands;
628 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
629 for (use = 0; use < n_operands; use++)
630 {
631 int alt1;
632
633 if (use == def || recog_data.operand_type[use] == OP_OUT)
634 continue;
635
636 if (op_alt[use].anything_ok)
637 use_cl = ALL_REGS;
638 else
639 use_cl = op_alt[use].cl;
640
641 /* If there's any alternative that allows USE to match DEF, do not
642 record a conflict. If that causes us to create an invalid
643 instruction due to the earlyclobber, reload must fix it up. */
644 alternative_mask enabled = recog_data.enabled_alternatives;
645 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
646 {
647 if (!TEST_BIT (enabled, alt1))
648 continue;
649 const operand_alternative *op_alt1
650 = &recog_op_alt[alt1 * n_operands];
651 if (op_alt1[use].matches == def
652 || (use < n_operands - 1
653 && recog_data.constraints[use][0] == '%'
654 && op_alt1[use + 1].matches == def)
655 || (use >= 1
656 && recog_data.constraints[use - 1][0] == '%'
657 && op_alt1[use - 1].matches == def))
658 break;
659 }
660
661 if (alt1 < recog_data.n_alternatives)
662 continue;
663
664 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
665 use, use_cl, advance_p);
666
667 if ((use_match = op_alt[use].matches) >= 0)
668 {
669 if (use_match == def)
670 continue;
671
672 if (op_alt[use_match].anything_ok)
673 use_cl = ALL_REGS;
674 else
675 use_cl = op_alt[use_match].cl;
676 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
677 use, use_cl, advance_p);
678 }
679 }
680 }
681
682 /* Make conflicts of early clobber pseudo registers of the current
683 insn with its inputs. Avoid introducing unnecessary conflicts by
684 checking classes of the constraints and pseudos because otherwise
685 significant code degradation is possible for some targets. */
686 static void
687 make_early_clobber_and_input_conflicts (void)
688 {
689 int alt;
690 int def, def_match;
691 enum reg_class def_cl;
692
693 int n_alternatives = recog_data.n_alternatives;
694 int n_operands = recog_data.n_operands;
695 alternative_mask enabled = recog_data.enabled_alternatives;
696 const operand_alternative *op_alt = recog_op_alt;
697 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
698 if (TEST_BIT (enabled, alt))
699 for (def = 0; def < n_operands; def++)
700 {
701 def_cl = NO_REGS;
702 if (op_alt[def].earlyclobber)
703 {
704 if (op_alt[def].anything_ok)
705 def_cl = ALL_REGS;
706 else
707 def_cl = op_alt[def].cl;
708 check_and_make_def_conflict (alt, def, def_cl);
709 }
710 if ((def_match = op_alt[def].matches) >= 0
711 && (op_alt[def_match].earlyclobber
712 || op_alt[def].earlyclobber))
713 {
714 if (op_alt[def_match].anything_ok)
715 def_cl = ALL_REGS;
716 else
717 def_cl = op_alt[def_match].cl;
718 check_and_make_def_conflict (alt, def, def_cl);
719 }
720 }
721 }
722
723 /* Mark early clobber hard registers of the current INSN as live (if
724 LIVE_P) or dead. Return true if there are such registers. */
725 static bool
726 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
727 {
728 df_ref def;
729 bool set_p = false;
730
731 FOR_EACH_INSN_DEF (def, insn)
732 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
733 {
734 rtx dreg = DF_REF_REG (def);
735
736 if (GET_CODE (dreg) == SUBREG)
737 dreg = SUBREG_REG (dreg);
738 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
739 continue;
740
741 /* Hard register clobbers are believed to be early clobber
742 because there is no way to say that non-operand hard
743 register clobbers are not early ones. */
744 if (live_p)
745 mark_ref_live (def);
746 else
747 mark_ref_dead (def);
748 set_p = true;
749 }
750
751 return set_p;
752 }
753
754 /* Checks that CONSTRAINTS permits to use only one hard register. If
755 it is so, the function returns the class of the hard register.
756 Otherwise it returns NO_REGS. */
757 static enum reg_class
758 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
759 {
760 int c;
761 enum reg_class cl, next_cl;
762 enum constraint_num cn;
763
764 cl = NO_REGS;
765 alternative_mask enabled = recog_data.enabled_alternatives;
766 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
767 if (c == '#')
768 enabled &= ~ALTERNATIVE_BIT (0);
769 else if (c == ',')
770 enabled >>= 1;
771 else if (enabled & 1)
772 switch (c)
773 {
774 case 'g':
775 return NO_REGS;
776
777 default:
778 /* ??? Is this the best way to handle memory constraints? */
779 cn = lookup_constraint (constraints);
780 if (insn_extra_memory_constraint (cn)
781 || insn_extra_address_constraint (cn))
782 return NO_REGS;
783 if (constraint_satisfied_p (op, cn)
784 || (equiv_const != NULL_RTX
785 && CONSTANT_P (equiv_const)
786 && constraint_satisfied_p (equiv_const, cn)))
787 return NO_REGS;
788 next_cl = reg_class_for_constraint (cn);
789 if (next_cl == NO_REGS)
790 break;
791 if (cl == NO_REGS
792 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
793 : (ira_class_singleton[cl][GET_MODE (op)]
794 != ira_class_singleton[next_cl][GET_MODE (op)]))
795 return NO_REGS;
796 cl = next_cl;
797 break;
798
799 case '0': case '1': case '2': case '3': case '4':
800 case '5': case '6': case '7': case '8': case '9':
801 next_cl
802 = single_reg_class (recog_data.constraints[c - '0'],
803 recog_data.operand[c - '0'], NULL_RTX);
804 if (cl == NO_REGS
805 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
806 : (ira_class_singleton[cl][GET_MODE (op)]
807 != ira_class_singleton[next_cl][GET_MODE (op)]))
808 return NO_REGS;
809 cl = next_cl;
810 break;
811 }
812 return cl;
813 }
814
815 /* The function checks that operand OP_NUM of the current insn can use
816 only one hard register. If it is so, the function returns the
817 class of the hard register. Otherwise it returns NO_REGS. */
818 static enum reg_class
819 single_reg_operand_class (int op_num)
820 {
821 if (op_num < 0 || recog_data.n_alternatives == 0)
822 return NO_REGS;
823 return single_reg_class (recog_data.constraints[op_num],
824 recog_data.operand[op_num], NULL_RTX);
825 }
826
827 /* The function sets up hard register set *SET to hard registers which
828 might be used by insn reloads because the constraints are too
829 strict. */
830 void
831 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
832 {
833 int i, c, regno = 0;
834 enum reg_class cl;
835 rtx op;
836 enum machine_mode mode;
837
838 CLEAR_HARD_REG_SET (*set);
839 for (i = 0; i < recog_data.n_operands; i++)
840 {
841 op = recog_data.operand[i];
842
843 if (GET_CODE (op) == SUBREG)
844 op = SUBREG_REG (op);
845
846 if (GET_CODE (op) == SCRATCH
847 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
848 {
849 const char *p = recog_data.constraints[i];
850
851 mode = (GET_CODE (op) == SCRATCH
852 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
853 cl = NO_REGS;
854 alternative_mask enabled = recog_data.enabled_alternatives;
855 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
856 if (c == '#')
857 enabled &= ~ALTERNATIVE_BIT (0);
858 else if (c == ',')
859 enabled >>= 1;
860 else if (enabled & 1)
861 {
862 cl = reg_class_for_constraint (lookup_constraint (p));
863 if (cl != NO_REGS)
864 {
865 /* There is no register pressure problem if all of the
866 regs in this class are fixed. */
867 int regno = ira_class_singleton[cl][mode];
868 if (regno >= 0)
869 add_to_hard_reg_set (set, mode, regno);
870 }
871 }
872 }
873 }
874 }
875 /* Processes input operands, if IN_P, or output operands otherwise of
876 the current insn with FREQ to find allocno which can use only one
877 hard register and makes other currently living allocnos conflicting
878 with the hard register. */
879 static void
880 process_single_reg_class_operands (bool in_p, int freq)
881 {
882 int i, regno;
883 unsigned int px;
884 enum reg_class cl;
885 rtx operand;
886 ira_allocno_t operand_a, a;
887
888 for (i = 0; i < recog_data.n_operands; i++)
889 {
890 operand = recog_data.operand[i];
891 if (in_p && recog_data.operand_type[i] != OP_IN
892 && recog_data.operand_type[i] != OP_INOUT)
893 continue;
894 if (! in_p && recog_data.operand_type[i] != OP_OUT
895 && recog_data.operand_type[i] != OP_INOUT)
896 continue;
897 cl = single_reg_operand_class (i);
898 if (cl == NO_REGS)
899 continue;
900
901 operand_a = NULL;
902
903 if (GET_CODE (operand) == SUBREG)
904 operand = SUBREG_REG (operand);
905
906 if (REG_P (operand)
907 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
908 {
909 enum reg_class aclass;
910
911 operand_a = ira_curr_regno_allocno_map[regno];
912 aclass = ALLOCNO_CLASS (operand_a);
913 if (ira_class_subset_p[cl][aclass])
914 {
915 /* View the desired allocation of OPERAND as:
916
917 (REG:YMODE YREGNO),
918
919 a simplification of:
920
921 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
922 enum machine_mode ymode, xmode;
923 int xregno, yregno;
924 HOST_WIDE_INT offset;
925
926 xmode = recog_data.operand_mode[i];
927 xregno = ira_class_singleton[cl][xmode];
928 gcc_assert (xregno >= 0);
929 ymode = ALLOCNO_MODE (operand_a);
930 offset = subreg_lowpart_offset (ymode, xmode);
931 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
932 if (yregno >= 0
933 && ira_class_hard_reg_index[aclass][yregno] >= 0)
934 {
935 int cost;
936
937 ira_allocate_and_set_costs
938 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
939 aclass, 0);
940 ira_init_register_move_cost_if_necessary (xmode);
941 cost = freq * (in_p
942 ? ira_register_move_cost[xmode][aclass][cl]
943 : ira_register_move_cost[xmode][cl][aclass]);
944 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
945 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
946 }
947 }
948 }
949
950 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
951 {
952 ira_object_t obj = ira_object_id_map[px];
953 a = OBJECT_ALLOCNO (obj);
954 if (a != operand_a)
955 {
956 /* We could increase costs of A instead of making it
957 conflicting with the hard register. But it works worse
958 because it will be spilled in reload in anyway. */
959 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
960 reg_class_contents[cl]);
961 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
962 reg_class_contents[cl]);
963 }
964 }
965 }
966 }
967
968 /* Return true when one of the predecessor edges of BB is marked with
969 EDGE_ABNORMAL_CALL or EDGE_EH. */
970 static bool
971 bb_has_abnormal_call_pred (basic_block bb)
972 {
973 edge e;
974 edge_iterator ei;
975
976 FOR_EACH_EDGE (e, ei, bb->preds)
977 {
978 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
979 return true;
980 }
981 return false;
982 }
983
984 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
985 we find a SET rtx that we can use to deduce that a register can be cheaply
986 caller-saved. Return such a register, or NULL_RTX if none is found. */
987 static rtx
988 find_call_crossed_cheap_reg (rtx_insn *insn)
989 {
990 rtx cheap_reg = NULL_RTX;
991 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
992
993 while (exp != NULL)
994 {
995 rtx x = XEXP (exp, 0);
996 if (GET_CODE (x) == SET)
997 {
998 exp = x;
999 break;
1000 }
1001 exp = XEXP (exp, 1);
1002 }
1003 if (exp != NULL)
1004 {
1005 basic_block bb = BLOCK_FOR_INSN (insn);
1006 rtx reg = SET_SRC (exp);
1007 rtx_insn *prev = PREV_INSN (insn);
1008 while (prev && !(INSN_P (prev)
1009 && BLOCK_FOR_INSN (prev) != bb))
1010 {
1011 if (NONDEBUG_INSN_P (prev))
1012 {
1013 rtx set = single_set (prev);
1014
1015 if (set && rtx_equal_p (SET_DEST (set), reg))
1016 {
1017 rtx src = SET_SRC (set);
1018 if (!REG_P (src) || HARD_REGISTER_P (src)
1019 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1020 break;
1021 if (!modified_between_p (src, prev, insn))
1022 cheap_reg = src;
1023 break;
1024 }
1025 if (set && rtx_equal_p (SET_SRC (set), reg))
1026 {
1027 rtx dest = SET_DEST (set);
1028 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1029 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1030 break;
1031 if (!modified_between_p (dest, prev, insn))
1032 cheap_reg = dest;
1033 break;
1034 }
1035
1036 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1037 break;
1038 }
1039 prev = PREV_INSN (prev);
1040 }
1041 }
1042 return cheap_reg;
1043 }
1044
1045 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1046 update allocno live ranges, allocno hard register conflicts,
1047 intersected calls, and register pressure info for allocnos for the
1048 basic block for and regions containing the basic block. */
1049 static void
1050 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1051 {
1052 int i, freq;
1053 unsigned int j;
1054 basic_block bb;
1055 rtx_insn *insn;
1056 bitmap_iterator bi;
1057 bitmap reg_live_out;
1058 unsigned int px;
1059 bool set_p;
1060
1061 bb = loop_tree_node->bb;
1062 if (bb != NULL)
1063 {
1064 for (i = 0; i < ira_pressure_classes_num; i++)
1065 {
1066 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1067 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1068 }
1069 curr_bb_node = loop_tree_node;
1070 reg_live_out = df_get_live_out (bb);
1071 sparseset_clear (objects_live);
1072 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1073 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1074 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1075 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1076 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1077 {
1078 enum reg_class aclass, pclass, cl;
1079
1080 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1081 pclass = ira_pressure_class_translate[aclass];
1082 for (j = 0;
1083 (cl = ira_reg_class_super_classes[pclass][j])
1084 != LIM_REG_CLASSES;
1085 j++)
1086 {
1087 if (! ira_reg_pressure_class_p[cl])
1088 continue;
1089 curr_reg_pressure[cl]++;
1090 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1091 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1092 ira_assert (curr_reg_pressure[cl]
1093 <= ira_class_hard_regs_num[cl]);
1094 }
1095 }
1096 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1097 mark_pseudo_regno_live (j);
1098
1099 freq = REG_FREQ_FROM_BB (bb);
1100 if (freq == 0)
1101 freq = 1;
1102
1103 /* Invalidate all allocno_saved_at_call entries. */
1104 last_call_num++;
1105
1106 /* Scan the code of this basic block, noting which allocnos and
1107 hard regs are born or die.
1108
1109 Note that this loop treats uninitialized values as live until
1110 the beginning of the block. For example, if an instruction
1111 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1112 set, FOO will remain live until the beginning of the block.
1113 Likewise if FOO is not set at all. This is unnecessarily
1114 pessimistic, but it probably doesn't matter much in practice. */
1115 FOR_BB_INSNS_REVERSE (bb, insn)
1116 {
1117 df_ref def, use;
1118 bool call_p;
1119
1120 if (!NONDEBUG_INSN_P (insn))
1121 continue;
1122
1123 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1124 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1125 INSN_UID (insn), loop_tree_node->parent->loop_num,
1126 curr_point);
1127
1128 /* Mark each defined value as live. We need to do this for
1129 unused values because they still conflict with quantities
1130 that are live at the time of the definition.
1131
1132 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1133 references represent the effect of the called function
1134 on a call-clobbered register. Marking the register as
1135 live would stop us from allocating it to a call-crossing
1136 allocno. */
1137 call_p = CALL_P (insn);
1138 FOR_EACH_INSN_DEF (def, insn)
1139 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1140 mark_ref_live (def);
1141
1142 /* If INSN has multiple outputs, then any value used in one
1143 of the outputs conflicts with the other outputs. Model this
1144 by making the used value live during the output phase.
1145
1146 It is unsafe to use !single_set here since it will ignore
1147 an unused output. Just because an output is unused does
1148 not mean the compiler can assume the side effect will not
1149 occur. Consider if ALLOCNO appears in the address of an
1150 output and we reload the output. If we allocate ALLOCNO
1151 to the same hard register as an unused output we could
1152 set the hard register before the output reload insn. */
1153 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1154 FOR_EACH_INSN_USE (use, insn)
1155 {
1156 int i;
1157 rtx reg;
1158
1159 reg = DF_REF_REG (use);
1160 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1161 {
1162 rtx set;
1163
1164 set = XVECEXP (PATTERN (insn), 0, i);
1165 if (GET_CODE (set) == SET
1166 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1167 {
1168 /* After the previous loop, this is a no-op if
1169 REG is contained within SET_DEST (SET). */
1170 mark_ref_live (use);
1171 break;
1172 }
1173 }
1174 }
1175
1176 extract_insn (insn);
1177 preprocess_constraints (insn);
1178 process_single_reg_class_operands (false, freq);
1179
1180 /* See which defined values die here. */
1181 FOR_EACH_INSN_DEF (def, insn)
1182 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1183 mark_ref_dead (def);
1184
1185 if (call_p)
1186 {
1187 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1188 there, try to find a pseudo that is live across the call but
1189 can be cheaply reconstructed from the return value. */
1190 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1191 if (cheap_reg != NULL_RTX)
1192 add_reg_note (insn, REG_RETURNED, cheap_reg);
1193
1194 last_call_num++;
1195 sparseset_clear (allocnos_processed);
1196 /* The current set of live allocnos are live across the call. */
1197 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1198 {
1199 ira_object_t obj = ira_object_id_map[i];
1200 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1201 int num = ALLOCNO_NUM (a);
1202 HARD_REG_SET this_call_used_reg_set;
1203
1204 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1205 call_used_reg_set);
1206
1207 /* Don't allocate allocnos that cross setjmps or any
1208 call, if this function receives a nonlocal
1209 goto. */
1210 if (cfun->has_nonlocal_label
1211 || find_reg_note (insn, REG_SETJMP,
1212 NULL_RTX) != NULL_RTX)
1213 {
1214 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1215 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1216 }
1217 if (can_throw_internal (insn))
1218 {
1219 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1220 this_call_used_reg_set);
1221 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1222 this_call_used_reg_set);
1223 }
1224
1225 if (sparseset_bit_p (allocnos_processed, num))
1226 continue;
1227 sparseset_set_bit (allocnos_processed, num);
1228
1229 if (allocno_saved_at_call[num] != last_call_num)
1230 /* Here we are mimicking caller-save.c behavior
1231 which does not save hard register at a call if
1232 it was saved on previous call in the same basic
1233 block and the hard register was not mentioned
1234 between the two calls. */
1235 ALLOCNO_CALL_FREQ (a) += freq;
1236 /* Mark it as saved at the next call. */
1237 allocno_saved_at_call[num] = last_call_num + 1;
1238 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1239 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1240 this_call_used_reg_set);
1241 if (cheap_reg != NULL_RTX
1242 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1243 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1244 }
1245 }
1246
1247 make_early_clobber_and_input_conflicts ();
1248
1249 curr_point++;
1250
1251 /* Mark each used value as live. */
1252 FOR_EACH_INSN_USE (use, insn)
1253 mark_ref_live (use);
1254
1255 process_single_reg_class_operands (true, freq);
1256
1257 set_p = mark_hard_reg_early_clobbers (insn, true);
1258
1259 if (set_p)
1260 {
1261 mark_hard_reg_early_clobbers (insn, false);
1262
1263 /* Mark each hard reg as live again. For example, a
1264 hard register can be in clobber and in an insn
1265 input. */
1266 FOR_EACH_INSN_USE (use, insn)
1267 {
1268 rtx ureg = DF_REF_REG (use);
1269
1270 if (GET_CODE (ureg) == SUBREG)
1271 ureg = SUBREG_REG (ureg);
1272 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1273 continue;
1274
1275 mark_ref_live (use);
1276 }
1277 }
1278
1279 curr_point++;
1280 }
1281
1282 #ifdef EH_RETURN_DATA_REGNO
1283 if (bb_has_eh_pred (bb))
1284 for (j = 0; ; ++j)
1285 {
1286 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1287 if (regno == INVALID_REGNUM)
1288 break;
1289 make_hard_regno_born (regno);
1290 }
1291 #endif
1292
1293 /* Allocnos can't go in stack regs at the start of a basic block
1294 that is reached by an abnormal edge. Likewise for call
1295 clobbered regs, because caller-save, fixup_abnormal_edges and
1296 possibly the table driven EH machinery are not quite ready to
1297 handle such allocnos live across such edges. */
1298 if (bb_has_abnormal_pred (bb))
1299 {
1300 #ifdef STACK_REGS
1301 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1302 {
1303 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1304
1305 ALLOCNO_NO_STACK_REG_P (a) = true;
1306 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1307 }
1308 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1309 make_hard_regno_born (px);
1310 #endif
1311 /* No need to record conflicts for call clobbered regs if we
1312 have nonlocal labels around, as we don't ever try to
1313 allocate such regs in this case. */
1314 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1315 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1316 if (call_used_regs[px])
1317 make_hard_regno_born (px);
1318 }
1319
1320 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1321 make_object_dead (ira_object_id_map[i]);
1322
1323 curr_point++;
1324
1325 }
1326 /* Propagate register pressure to upper loop tree nodes. */
1327 if (loop_tree_node != ira_loop_tree_root)
1328 for (i = 0; i < ira_pressure_classes_num; i++)
1329 {
1330 enum reg_class pclass;
1331
1332 pclass = ira_pressure_classes[i];
1333 if (loop_tree_node->reg_pressure[pclass]
1334 > loop_tree_node->parent->reg_pressure[pclass])
1335 loop_tree_node->parent->reg_pressure[pclass]
1336 = loop_tree_node->reg_pressure[pclass];
1337 }
1338 }
1339
1340 /* Create and set up IRA_START_POINT_RANGES and
1341 IRA_FINISH_POINT_RANGES. */
1342 static void
1343 create_start_finish_chains (void)
1344 {
1345 ira_object_t obj;
1346 ira_object_iterator oi;
1347 live_range_t r;
1348
1349 ira_start_point_ranges
1350 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1351 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1352 ira_finish_point_ranges
1353 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1354 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1355 FOR_EACH_OBJECT (obj, oi)
1356 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1357 {
1358 r->start_next = ira_start_point_ranges[r->start];
1359 ira_start_point_ranges[r->start] = r;
1360 r->finish_next = ira_finish_point_ranges[r->finish];
1361 ira_finish_point_ranges[r->finish] = r;
1362 }
1363 }
1364
1365 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1366 new live ranges and program points were added as a result if new
1367 insn generation. */
1368 void
1369 ira_rebuild_start_finish_chains (void)
1370 {
1371 ira_free (ira_finish_point_ranges);
1372 ira_free (ira_start_point_ranges);
1373 create_start_finish_chains ();
1374 }
1375
1376 /* Compress allocno live ranges by removing program points where
1377 nothing happens. */
1378 static void
1379 remove_some_program_points_and_update_live_ranges (void)
1380 {
1381 unsigned i;
1382 int n;
1383 int *map;
1384 ira_object_t obj;
1385 ira_object_iterator oi;
1386 live_range_t r, prev_r, next_r;
1387 sbitmap born_or_dead, born, dead;
1388 sbitmap_iterator sbi;
1389 bool born_p, dead_p, prev_born_p, prev_dead_p;
1390
1391 born = sbitmap_alloc (ira_max_point);
1392 dead = sbitmap_alloc (ira_max_point);
1393 bitmap_clear (born);
1394 bitmap_clear (dead);
1395 FOR_EACH_OBJECT (obj, oi)
1396 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1397 {
1398 ira_assert (r->start <= r->finish);
1399 bitmap_set_bit (born, r->start);
1400 bitmap_set_bit (dead, r->finish);
1401 }
1402
1403 born_or_dead = sbitmap_alloc (ira_max_point);
1404 bitmap_ior (born_or_dead, born, dead);
1405 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1406 n = -1;
1407 prev_born_p = prev_dead_p = false;
1408 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1409 {
1410 born_p = bitmap_bit_p (born, i);
1411 dead_p = bitmap_bit_p (dead, i);
1412 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1413 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1414 map[i] = n;
1415 else
1416 map[i] = ++n;
1417 prev_born_p = born_p;
1418 prev_dead_p = dead_p;
1419 }
1420 sbitmap_free (born_or_dead);
1421 sbitmap_free (born);
1422 sbitmap_free (dead);
1423 n++;
1424 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1425 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1426 ira_max_point, n, 100 * n / ira_max_point);
1427 ira_max_point = n;
1428
1429 FOR_EACH_OBJECT (obj, oi)
1430 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1431 {
1432 next_r = r->next;
1433 r->start = map[r->start];
1434 r->finish = map[r->finish];
1435 if (prev_r == NULL || prev_r->start > r->finish + 1)
1436 {
1437 prev_r = r;
1438 continue;
1439 }
1440 prev_r->start = r->start;
1441 prev_r->next = next_r;
1442 ira_finish_live_range (r);
1443 }
1444
1445 ira_free (map);
1446 }
1447
1448 /* Print live ranges R to file F. */
1449 void
1450 ira_print_live_range_list (FILE *f, live_range_t r)
1451 {
1452 for (; r != NULL; r = r->next)
1453 fprintf (f, " [%d..%d]", r->start, r->finish);
1454 fprintf (f, "\n");
1455 }
1456
1457 DEBUG_FUNCTION void
1458 debug (live_range &ref)
1459 {
1460 ira_print_live_range_list (stderr, &ref);
1461 }
1462
1463 DEBUG_FUNCTION void
1464 debug (live_range *ptr)
1465 {
1466 if (ptr)
1467 debug (*ptr);
1468 else
1469 fprintf (stderr, "<nil>\n");
1470 }
1471
1472 /* Print live ranges R to stderr. */
1473 void
1474 ira_debug_live_range_list (live_range_t r)
1475 {
1476 ira_print_live_range_list (stderr, r);
1477 }
1478
1479 /* Print live ranges of object OBJ to file F. */
1480 static void
1481 print_object_live_ranges (FILE *f, ira_object_t obj)
1482 {
1483 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1484 }
1485
1486 /* Print live ranges of allocno A to file F. */
1487 static void
1488 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1489 {
1490 int n = ALLOCNO_NUM_OBJECTS (a);
1491 int i;
1492
1493 for (i = 0; i < n; i++)
1494 {
1495 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1496 if (n > 1)
1497 fprintf (f, " [%d]", i);
1498 fprintf (f, "):");
1499 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1500 }
1501 }
1502
1503 /* Print live ranges of allocno A to stderr. */
1504 void
1505 ira_debug_allocno_live_ranges (ira_allocno_t a)
1506 {
1507 print_allocno_live_ranges (stderr, a);
1508 }
1509
1510 /* Print live ranges of all allocnos to file F. */
1511 static void
1512 print_live_ranges (FILE *f)
1513 {
1514 ira_allocno_t a;
1515 ira_allocno_iterator ai;
1516
1517 FOR_EACH_ALLOCNO (a, ai)
1518 print_allocno_live_ranges (f, a);
1519 }
1520
1521 /* Print live ranges of all allocnos to stderr. */
1522 void
1523 ira_debug_live_ranges (void)
1524 {
1525 print_live_ranges (stderr);
1526 }
1527
1528 /* The main entry function creates live ranges, set up
1529 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1530 calculate register pressure info. */
1531 void
1532 ira_create_allocno_live_ranges (void)
1533 {
1534 objects_live = sparseset_alloc (ira_objects_num);
1535 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1536 curr_point = 0;
1537 last_call_num = 0;
1538 allocno_saved_at_call
1539 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1540 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1541 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1542 process_bb_node_lives);
1543 ira_max_point = curr_point;
1544 create_start_finish_chains ();
1545 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1546 print_live_ranges (ira_dump_file);
1547 /* Clean up. */
1548 ira_free (allocno_saved_at_call);
1549 sparseset_free (objects_live);
1550 sparseset_free (allocnos_processed);
1551 }
1552
1553 /* Compress allocno live ranges. */
1554 void
1555 ira_compress_allocno_live_ranges (void)
1556 {
1557 remove_some_program_points_and_update_live_ranges ();
1558 ira_rebuild_start_finish_chains ();
1559 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1560 {
1561 fprintf (ira_dump_file, "Ranges after the compression:\n");
1562 print_live_ranges (ira_dump_file);
1563 }
1564 }
1565
1566 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1567 void
1568 ira_finish_allocno_live_ranges (void)
1569 {
1570 ira_free (ira_finish_point_ranges);
1571 ira_free (ira_start_point_ranges);
1572 }