inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "regs.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "target.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "toplev.h"
37 #include "params.h"
38 #include "df.h"
39 #include "sparseset.h"
40 #include "ira-int.h"
41
42 /* The code in this file is similar to one in global but the code
43 works on the allocno basis and creates live ranges instead of
44 pseudo-register conflicts. */
45
46 /* Program points are enumerated by numbers from range
47 0..IRA_MAX_POINT-1. There are approximately two times more program
48 points than insns. Program points are places in the program where
49 liveness info can be changed. In most general case (there are more
50 complicated cases too) some program points correspond to places
51 where input operand dies and other ones correspond to places where
52 output operands are born. */
53 int ira_max_point;
54
55 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
56 live ranges with given start/finish point. */
57 allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
58
59 /* Number of the current program point. */
60 static int curr_point;
61
62 /* Point where register pressure excess started or -1 if there is no
63 register pressure excess. Excess pressure for a register class at
64 some point means that there are more allocnos of given register
65 class living at the point than number of hard-registers of the
66 class available for the allocation. It is defined only for cover
67 classes. */
68 static int high_pressure_start_point[N_REG_CLASSES];
69
70 /* Allocnos live at current point in the scan. */
71 static sparseset allocnos_live;
72
73 /* Set of hard regs (except eliminable ones) currently live. */
74 static HARD_REG_SET hard_regs_live;
75
76 /* The loop tree node corresponding to the current basic block. */
77 static ira_loop_tree_node_t curr_bb_node;
78
79 /* The number of the last processed call. */
80 static int last_call_num;
81 /* The number of last call at which given allocno was saved. */
82 static int *allocno_saved_at_call;
83
84 /* The function processing birth of register REGNO. It updates living
85 hard regs and conflict hard regs for living allocnos or starts a
86 new live range for the allocno corresponding to REGNO if it is
87 necessary. */
88 static void
89 make_regno_born (int regno)
90 {
91 unsigned int i;
92 ira_allocno_t a;
93 allocno_live_range_t p;
94
95 if (regno < FIRST_PSEUDO_REGISTER)
96 {
97 SET_HARD_REG_BIT (hard_regs_live, regno);
98 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
99 {
100 SET_HARD_REG_BIT (ALLOCNO_CONFLICT_HARD_REGS (ira_allocnos[i]),
101 regno);
102 SET_HARD_REG_BIT (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (ira_allocnos[i]),
103 regno);
104 }
105 return;
106 }
107 a = ira_curr_regno_allocno_map[regno];
108 if (a == NULL)
109 return;
110 if ((p = ALLOCNO_LIVE_RANGES (a)) == NULL
111 || (p->finish != curr_point && p->finish + 1 != curr_point))
112 ALLOCNO_LIVE_RANGES (a)
113 = ira_create_allocno_live_range (a, curr_point, -1,
114 ALLOCNO_LIVE_RANGES (a));
115 }
116
117 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for allocno A. */
118 static void
119 update_allocno_pressure_excess_length (ira_allocno_t a)
120 {
121 int start, i;
122 enum reg_class cover_class, cl;
123 allocno_live_range_t p;
124
125 cover_class = ALLOCNO_COVER_CLASS (a);
126 for (i = 0;
127 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
128 i++)
129 {
130 if (high_pressure_start_point[cl] < 0)
131 continue;
132 p = ALLOCNO_LIVE_RANGES (a);
133 ira_assert (p != NULL);
134 start = (high_pressure_start_point[cl] > p->start
135 ? high_pressure_start_point[cl] : p->start);
136 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
137 }
138 }
139
140 /* Process the death of register REGNO. This updates hard_regs_live
141 or finishes the current live range for the allocno corresponding to
142 REGNO. */
143 static void
144 make_regno_dead (int regno)
145 {
146 ira_allocno_t a;
147 allocno_live_range_t p;
148
149 if (regno < FIRST_PSEUDO_REGISTER)
150 {
151 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
152 return;
153 }
154 a = ira_curr_regno_allocno_map[regno];
155 if (a == NULL)
156 return;
157 p = ALLOCNO_LIVE_RANGES (a);
158 ira_assert (p != NULL);
159 p->finish = curr_point;
160 update_allocno_pressure_excess_length (a);
161 }
162
163 /* The current register pressures for each cover class for the current
164 basic block. */
165 static int curr_reg_pressure[N_REG_CLASSES];
166
167 /* Mark allocno A as currently living and update current register
168 pressure, maximal register pressure for the current BB, start point
169 of the register pressure excess, and conflicting hard registers of
170 A. */
171 static void
172 set_allocno_live (ira_allocno_t a)
173 {
174 int i;
175 enum reg_class cover_class, cl;
176
177 /* Invalidate because it is referenced. */
178 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
179 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
180 return;
181 sparseset_set_bit (allocnos_live, ALLOCNO_NUM (a));
182 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a), hard_regs_live);
183 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a), hard_regs_live);
184 cover_class = ALLOCNO_COVER_CLASS (a);
185 for (i = 0;
186 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
187 i++)
188 {
189 curr_reg_pressure[cl] += ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
190 if (high_pressure_start_point[cl] < 0
191 && (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
192 high_pressure_start_point[cl] = curr_point;
193 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
194 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
195 }
196 }
197
198 /* Mark allocno A as currently not living and update current register
199 pressure, start point of the register pressure excess, and register
200 pressure excess length for living allocnos. */
201 static void
202 clear_allocno_live (ira_allocno_t a)
203 {
204 int i;
205 unsigned int j;
206 enum reg_class cover_class, cl;
207 bool set_p;
208
209 /* Invalidate because it is referenced. */
210 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
211 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
212 {
213 cover_class = ALLOCNO_COVER_CLASS (a);
214 set_p = false;
215 for (i = 0;
216 (cl = ira_reg_class_super_classes[cover_class][i])
217 != LIM_REG_CLASSES;
218 i++)
219 {
220 curr_reg_pressure[cl] -= ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
221 ira_assert (curr_reg_pressure[cl] >= 0);
222 if (high_pressure_start_point[cl] >= 0
223 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
224 set_p = true;
225 }
226 if (set_p)
227 {
228 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
229 update_allocno_pressure_excess_length (ira_allocnos[j]);
230 for (i = 0;
231 (cl = ira_reg_class_super_classes[cover_class][i])
232 != LIM_REG_CLASSES;
233 i++)
234 if (high_pressure_start_point[cl] >= 0
235 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
236 high_pressure_start_point[cl] = -1;
237
238 }
239 }
240 sparseset_clear_bit (allocnos_live, ALLOCNO_NUM (a));
241 }
242
243 /* Mark the register REG as live. Store a 1 in hard_regs_live or
244 allocnos_live for this register or the corresponding allocno,
245 record how many consecutive hardware registers it actually
246 needs. */
247 static void
248 mark_reg_live (rtx reg)
249 {
250 int i, regno;
251
252 gcc_assert (REG_P (reg));
253 regno = REGNO (reg);
254
255 if (regno >= FIRST_PSEUDO_REGISTER)
256 {
257 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
258
259 if (a != NULL)
260 {
261 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
262 {
263 /* Invalidate because it is referenced. */
264 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
265 return;
266 }
267 set_allocno_live (a);
268 }
269 make_regno_born (regno);
270 }
271 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
272 {
273 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
274 enum reg_class cover_class, cl;
275
276 while (regno < last)
277 {
278 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
279 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
280 {
281 cover_class = ira_hard_regno_cover_class[regno];
282 for (i = 0;
283 (cl = ira_reg_class_super_classes[cover_class][i])
284 != LIM_REG_CLASSES;
285 i++)
286 {
287 curr_reg_pressure[cl]++;
288 if (high_pressure_start_point[cl] < 0
289 && (curr_reg_pressure[cl]
290 > ira_available_class_regs[cl]))
291 high_pressure_start_point[cl] = curr_point;
292 }
293 make_regno_born (regno);
294 for (i = 0;
295 (cl = ira_reg_class_super_classes[cover_class][i])
296 != LIM_REG_CLASSES;
297 i++)
298 {
299 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
300 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
301 }
302 }
303 regno++;
304 }
305 }
306 }
307
308 /* Mark the register referenced by use or def REF as live. */
309 static void
310 mark_ref_live (df_ref ref)
311 {
312 rtx reg;
313
314 reg = DF_REF_REG (ref);
315 if (GET_CODE (reg) == SUBREG)
316 reg = SUBREG_REG (reg);
317 mark_reg_live (reg);
318 }
319
320 /* Mark the register REG as dead. Store a 0 in hard_regs_live or
321 allocnos_live for the register. */
322 static void
323 mark_reg_dead (rtx reg)
324 {
325 int regno;
326
327 gcc_assert (REG_P (reg));
328 regno = REGNO (reg);
329
330 if (regno >= FIRST_PSEUDO_REGISTER)
331 {
332 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
333
334 if (a != NULL)
335 {
336 if (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
337 {
338 /* Invalidate because it is referenced. */
339 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
340 return;
341 }
342 clear_allocno_live (a);
343 }
344 make_regno_dead (regno);
345 }
346 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
347 {
348 int i;
349 unsigned int j;
350 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
351 enum reg_class cover_class, cl;
352 bool set_p;
353
354 while (regno < last)
355 {
356 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
357 {
358 set_p = false;
359 cover_class = ira_hard_regno_cover_class[regno];
360 for (i = 0;
361 (cl = ira_reg_class_super_classes[cover_class][i])
362 != LIM_REG_CLASSES;
363 i++)
364 {
365 curr_reg_pressure[cl]--;
366 if (high_pressure_start_point[cl] >= 0
367 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
368 set_p = true;
369 ira_assert (curr_reg_pressure[cl] >= 0);
370 }
371 if (set_p)
372 {
373 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
374 update_allocno_pressure_excess_length (ira_allocnos[j]);
375 for (i = 0;
376 (cl = ira_reg_class_super_classes[cover_class][i])
377 != LIM_REG_CLASSES;
378 i++)
379 if (high_pressure_start_point[cl] >= 0
380 && (curr_reg_pressure[cl]
381 <= ira_available_class_regs[cl]))
382 high_pressure_start_point[cl] = -1;
383 }
384 make_regno_dead (regno);
385 }
386 regno++;
387 }
388 }
389 }
390
391 /* Mark the register referenced by definition DEF as dead, if the
392 definition is a total one. */
393 static void
394 mark_ref_dead (df_ref def)
395 {
396 rtx reg;
397
398 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
399 || DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
400 return;
401
402 reg = DF_REF_REG (def);
403 if (GET_CODE (reg) == SUBREG)
404 reg = SUBREG_REG (reg);
405 mark_reg_dead (reg);
406 }
407
408 /* Make pseudo REG conflicting with pseudo DREG, if the 1st pseudo
409 class is intersected with class CL. Advance the current program
410 point before making the conflict if ADVANCE_P. Return TRUE if we
411 will need to advance the current program point. */
412 static bool
413 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, bool advance_p)
414 {
415 ira_allocno_t a;
416
417 if (GET_CODE (reg) == SUBREG)
418 reg = SUBREG_REG (reg);
419
420 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
421 return advance_p;
422
423 a = ira_curr_regno_allocno_map[REGNO (reg)];
424 if (! reg_classes_intersect_p (cl, ALLOCNO_COVER_CLASS (a)))
425 return advance_p;
426
427 if (advance_p)
428 curr_point++;
429
430 mark_reg_live (reg);
431 mark_reg_live (dreg);
432 mark_reg_dead (reg);
433 mark_reg_dead (dreg);
434
435 return false;
436 }
437
438 /* Check and make if necessary conflicts for pseudo DREG of class
439 DEF_CL of the current insn with input operand USE of class USE_CL.
440 Advance the current program point before making the conflict if
441 ADVANCE_P. Return TRUE if we will need to advance the current
442 program point. */
443 static bool
444 check_and_make_def_use_conflict (rtx dreg, enum reg_class def_cl,
445 int use, enum reg_class use_cl,
446 bool advance_p)
447 {
448 if (! reg_classes_intersect_p (def_cl, use_cl))
449 return advance_p;
450
451 advance_p = make_pseudo_conflict (recog_data.operand[use],
452 use_cl, dreg, advance_p);
453 /* Reload may end up swapping commutative operands, so you
454 have to take both orderings into account. The
455 constraints for the two operands can be completely
456 different. (Indeed, if the constraints for the two
457 operands are the same for all alternatives, there's no
458 point marking them as commutative.) */
459 if (use < recog_data.n_operands + 1
460 && recog_data.constraints[use][0] == '%')
461 advance_p
462 = make_pseudo_conflict (recog_data.operand[use + 1],
463 use_cl, dreg, advance_p);
464 if (use >= 1
465 && recog_data.constraints[use - 1][0] == '%')
466 advance_p
467 = make_pseudo_conflict (recog_data.operand[use - 1],
468 use_cl, dreg, advance_p);
469 return advance_p;
470 }
471
472 /* Check and make if necessary conflicts for definition DEF of class
473 DEF_CL of the current insn with input operands. Process only
474 constraints of alternative ALT. */
475 static void
476 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
477 {
478 int use, use_match;
479 ira_allocno_t a;
480 enum reg_class use_cl, acl;
481 bool advance_p;
482 rtx dreg = recog_data.operand[def];
483
484 if (def_cl == NO_REGS)
485 return;
486
487 if (GET_CODE (dreg) == SUBREG)
488 dreg = SUBREG_REG (dreg);
489
490 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
491 return;
492
493 a = ira_curr_regno_allocno_map[REGNO (dreg)];
494 acl = ALLOCNO_COVER_CLASS (a);
495 if (! reg_classes_intersect_p (acl, def_cl))
496 return;
497
498 advance_p = true;
499
500 for (use = 0; use < recog_data.n_operands; use++)
501 {
502 if (use == def || recog_data.operand_type[use] == OP_OUT)
503 return;
504
505 if (recog_op_alt[use][alt].anything_ok)
506 use_cl = ALL_REGS;
507 else
508 use_cl = recog_op_alt[use][alt].cl;
509
510 advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
511 use_cl, advance_p);
512
513 if ((use_match = recog_op_alt[use][alt].matches) >= 0)
514 {
515 if (use_match == def)
516 return;
517
518 if (recog_op_alt[use_match][alt].anything_ok)
519 use_cl = ALL_REGS;
520 else
521 use_cl = recog_op_alt[use_match][alt].cl;
522 advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
523 use_cl, advance_p);
524 }
525 }
526 }
527
528 /* Make conflicts of early clobber pseudo registers of the current
529 insn with its inputs. Avoid introducing unnecessary conflicts by
530 checking classes of the constraints and pseudos because otherwise
531 significant code degradation is possible for some targets. */
532 static void
533 make_early_clobber_and_input_conflicts (void)
534 {
535 int alt;
536 int def, def_match;
537 enum reg_class def_cl;
538
539 for (alt = 0; alt < recog_data.n_alternatives; alt++)
540 for (def = 0; def < recog_data.n_operands; def++)
541 {
542 def_cl = NO_REGS;
543 if (recog_op_alt[def][alt].earlyclobber)
544 {
545 if (recog_op_alt[def][alt].anything_ok)
546 def_cl = ALL_REGS;
547 else
548 def_cl = recog_op_alt[def][alt].cl;
549 check_and_make_def_conflict (alt, def, def_cl);
550 }
551 if ((def_match = recog_op_alt[def][alt].matches) >= 0
552 && (recog_op_alt[def_match][alt].earlyclobber
553 || recog_op_alt[def][alt].earlyclobber))
554 {
555 if (recog_op_alt[def_match][alt].anything_ok)
556 def_cl = ALL_REGS;
557 else
558 def_cl = recog_op_alt[def_match][alt].cl;
559 check_and_make_def_conflict (alt, def, def_cl);
560 }
561 }
562 }
563
564 /* Mark early clobber hard registers of the current INSN as live (if
565 LIVE_P) or dead. Return true if there are such registers. */
566 static bool
567 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
568 {
569 df_ref *def_rec;
570 bool set_p = false;
571
572 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
573 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
574 {
575 rtx dreg = DF_REF_REG (*def_rec);
576
577 if (GET_CODE (dreg) == SUBREG)
578 dreg = SUBREG_REG (dreg);
579 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
580 continue;
581
582 /* Hard register clobbers are believed to be early clobber
583 because there is no way to say that non-operand hard
584 register clobbers are not early ones. */
585 if (live_p)
586 mark_ref_live (*def_rec);
587 else
588 mark_ref_dead (*def_rec);
589 set_p = true;
590 }
591
592 return set_p;
593 }
594
595 /* Checks that CONSTRAINTS permits to use only one hard register. If
596 it is so, the function returns the class of the hard register.
597 Otherwise it returns NO_REGS. */
598 static enum reg_class
599 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
600 {
601 int ignore_p;
602 enum reg_class cl, next_cl;
603 int c;
604
605 cl = NO_REGS;
606 for (ignore_p = false;
607 (c = *constraints);
608 constraints += CONSTRAINT_LEN (c, constraints))
609 if (c == '#')
610 ignore_p = true;
611 else if (c == ',')
612 ignore_p = false;
613 else if (! ignore_p)
614 switch (c)
615 {
616 case ' ':
617 case '\t':
618 case '=':
619 case '+':
620 case '*':
621 case '&':
622 case '%':
623 case '!':
624 case '?':
625 break;
626 case 'i':
627 if (CONSTANT_P (op)
628 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
629 return NO_REGS;
630 break;
631
632 case 'n':
633 if (CONST_INT_P (op)
634 || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
635 || (equiv_const != NULL_RTX
636 && (CONST_INT_P (equiv_const)
637 || (GET_CODE (equiv_const) == CONST_DOUBLE
638 && GET_MODE (equiv_const) == VOIDmode))))
639 return NO_REGS;
640 break;
641
642 case 's':
643 if ((CONSTANT_P (op) && !CONST_INT_P (op)
644 && (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
645 || (equiv_const != NULL_RTX
646 && CONSTANT_P (equiv_const)
647 && !CONST_INT_P (equiv_const)
648 && (GET_CODE (equiv_const) != CONST_DOUBLE
649 || GET_MODE (equiv_const) != VOIDmode)))
650 return NO_REGS;
651 break;
652
653 case 'I':
654 case 'J':
655 case 'K':
656 case 'L':
657 case 'M':
658 case 'N':
659 case 'O':
660 case 'P':
661 if ((CONST_INT_P (op)
662 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
663 || (equiv_const != NULL_RTX
664 && CONST_INT_P (equiv_const)
665 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
666 c, constraints)))
667 return NO_REGS;
668 break;
669
670 case 'E':
671 case 'F':
672 if (GET_CODE (op) == CONST_DOUBLE
673 || (GET_CODE (op) == CONST_VECTOR
674 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
675 || (equiv_const != NULL_RTX
676 && (GET_CODE (equiv_const) == CONST_DOUBLE
677 || (GET_CODE (equiv_const) == CONST_VECTOR
678 && (GET_MODE_CLASS (GET_MODE (equiv_const))
679 == MODE_VECTOR_FLOAT)))))
680 return NO_REGS;
681 break;
682
683 case 'G':
684 case 'H':
685 if ((GET_CODE (op) == CONST_DOUBLE
686 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
687 || (equiv_const != NULL_RTX
688 && GET_CODE (equiv_const) == CONST_DOUBLE
689 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
690 c, constraints)))
691 return NO_REGS;
692 /* ??? what about memory */
693 case 'r':
694 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
695 case 'h': case 'j': case 'k': case 'l':
696 case 'q': case 't': case 'u':
697 case 'v': case 'w': case 'x': case 'y': case 'z':
698 case 'A': case 'B': case 'C': case 'D':
699 case 'Q': case 'R': case 'S': case 'T': case 'U':
700 case 'W': case 'Y': case 'Z':
701 next_cl = (c == 'r'
702 ? GENERAL_REGS
703 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
704 if ((cl != NO_REGS && next_cl != cl)
705 || ira_available_class_regs[next_cl] > 1)
706 return NO_REGS;
707 cl = next_cl;
708 break;
709
710 case '0': case '1': case '2': case '3': case '4':
711 case '5': case '6': case '7': case '8': case '9':
712 next_cl
713 = single_reg_class (recog_data.constraints[c - '0'],
714 recog_data.operand[c - '0'], NULL_RTX);
715 if ((cl != NO_REGS && next_cl != cl) || next_cl == NO_REGS
716 || ira_available_class_regs[next_cl] > 1)
717 return NO_REGS;
718 cl = next_cl;
719 break;
720
721 default:
722 return NO_REGS;
723 }
724 return cl;
725 }
726
727 /* The function checks that operand OP_NUM of the current insn can use
728 only one hard register. If it is so, the function returns the
729 class of the hard register. Otherwise it returns NO_REGS. */
730 static enum reg_class
731 single_reg_operand_class (int op_num)
732 {
733 if (op_num < 0 || recog_data.n_alternatives == 0)
734 return NO_REGS;
735 return single_reg_class (recog_data.constraints[op_num],
736 recog_data.operand[op_num], NULL_RTX);
737 }
738
739 /* Processes input operands, if IN_P, or output operands otherwise of
740 the current insn with FREQ to find allocno which can use only one
741 hard register and makes other currently living allocnos conflicting
742 with the hard register. */
743 static void
744 process_single_reg_class_operands (bool in_p, int freq)
745 {
746 int i, regno, cost;
747 unsigned int px;
748 enum reg_class cl, cover_class;
749 rtx operand;
750 ira_allocno_t operand_a, a;
751
752 for (i = 0; i < recog_data.n_operands; i++)
753 {
754 operand = recog_data.operand[i];
755 if (in_p && recog_data.operand_type[i] != OP_IN
756 && recog_data.operand_type[i] != OP_INOUT)
757 continue;
758 if (! in_p && recog_data.operand_type[i] != OP_OUT
759 && recog_data.operand_type[i] != OP_INOUT)
760 continue;
761 cl = single_reg_operand_class (i);
762 if (cl == NO_REGS)
763 continue;
764
765 operand_a = NULL;
766
767 if (GET_CODE (operand) == SUBREG)
768 operand = SUBREG_REG (operand);
769
770 if (REG_P (operand)
771 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
772 {
773 enum machine_mode mode;
774 enum reg_class cover_class;
775
776 operand_a = ira_curr_regno_allocno_map[regno];
777 mode = ALLOCNO_MODE (operand_a);
778 cover_class = ALLOCNO_COVER_CLASS (operand_a);
779 if (ira_class_subset_p[cl][cover_class]
780 && ira_class_hard_regs_num[cl] != 0
781 && (ira_class_hard_reg_index[cover_class]
782 [ira_class_hard_regs[cl][0]]) >= 0
783 && reg_class_size[cl] <= (unsigned) CLASS_MAX_NREGS (cl, mode))
784 {
785 cost
786 = (freq
787 * (in_p
788 ? ira_get_register_move_cost (mode, cover_class, cl)
789 : ira_get_register_move_cost (mode, cl, cover_class)));
790 ira_allocate_and_set_costs
791 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a), cover_class, 0);
792 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
793 [ira_class_hard_reg_index
794 [cover_class][ira_class_hard_regs[cl][0]]]
795 -= cost;
796 }
797 }
798
799 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
800 {
801 a = ira_allocnos[px];
802 cover_class = ALLOCNO_COVER_CLASS (a);
803 if (a != operand_a)
804 {
805 /* We could increase costs of A instead of making it
806 conflicting with the hard register. But it works worse
807 because it will be spilled in reload in anyway. */
808 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
809 reg_class_contents[cl]);
810 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
811 reg_class_contents[cl]);
812 }
813 }
814 }
815 }
816
817 /* Return true when one of the predecessor edges of BB is marked with
818 EDGE_ABNORMAL_CALL or EDGE_EH. */
819 static bool
820 bb_has_abnormal_call_pred (basic_block bb)
821 {
822 edge e;
823 edge_iterator ei;
824
825 FOR_EACH_EDGE (e, ei, bb->preds)
826 {
827 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
828 return true;
829 }
830 return false;
831 }
832
833 /* Process insns of the basic block given by its LOOP_TREE_NODE to
834 update allocno live ranges, allocno hard register conflicts,
835 intersected calls, and register pressure info for allocnos for the
836 basic block for and regions containing the basic block. */
837 static void
838 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
839 {
840 int i, freq;
841 unsigned int j;
842 basic_block bb;
843 rtx insn;
844 bitmap_iterator bi;
845 bitmap reg_live_out;
846 unsigned int px;
847 bool set_p;
848
849 bb = loop_tree_node->bb;
850 if (bb != NULL)
851 {
852 for (i = 0; i < ira_reg_class_cover_size; i++)
853 {
854 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
855 high_pressure_start_point[ira_reg_class_cover[i]] = -1;
856 }
857 curr_bb_node = loop_tree_node;
858 reg_live_out = DF_LR_OUT (bb);
859 sparseset_clear (allocnos_live);
860 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
861 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
862 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
863 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
864 if (TEST_HARD_REG_BIT (hard_regs_live, i))
865 {
866 enum reg_class cover_class, cl;
867
868 cover_class = ira_class_translate[REGNO_REG_CLASS (i)];
869 for (j = 0;
870 (cl = ira_reg_class_super_classes[cover_class][j])
871 != LIM_REG_CLASSES;
872 j++)
873 {
874 curr_reg_pressure[cl]++;
875 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
876 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
877 ira_assert (curr_reg_pressure[cl]
878 <= ira_available_class_regs[cl]);
879 }
880 }
881 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
882 {
883 ira_allocno_t a = ira_curr_regno_allocno_map[j];
884
885 if (a == NULL)
886 continue;
887 ira_assert (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)));
888 set_allocno_live (a);
889 make_regno_born (j);
890 }
891
892 freq = REG_FREQ_FROM_BB (bb);
893 if (freq == 0)
894 freq = 1;
895
896 /* Invalidate all allocno_saved_at_call entries. */
897 last_call_num++;
898
899 /* Scan the code of this basic block, noting which allocnos and
900 hard regs are born or die.
901
902 Note that this loop treats uninitialized values as live until
903 the beginning of the block. For example, if an instruction
904 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
905 set, FOO will remain live until the beginning of the block.
906 Likewise if FOO is not set at all. This is unnecessarily
907 pessimistic, but it probably doesn't matter much in practice. */
908 FOR_BB_INSNS_REVERSE (bb, insn)
909 {
910 df_ref *def_rec, *use_rec;
911 bool call_p;
912
913 if (! INSN_P (insn))
914 continue;
915
916 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
917 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
918 INSN_UID (insn), loop_tree_node->parent->loop->num,
919 curr_point);
920
921 /* Mark each defined value as live. We need to do this for
922 unused values because they still conflict with quantities
923 that are live at the time of the definition.
924
925 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
926 references represent the effect of the called function
927 on a call-clobbered register. Marking the register as
928 live would stop us from allocating it to a call-crossing
929 allocno. */
930 call_p = CALL_P (insn);
931 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
932 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
933 mark_ref_live (*def_rec);
934
935 /* If INSN has multiple outputs, then any value used in one
936 of the outputs conflicts with the other outputs. Model this
937 by making the used value live during the output phase.
938
939 It is unsafe to use !single_set here since it will ignore
940 an unused output. Just because an output is unused does
941 not mean the compiler can assume the side effect will not
942 occur. Consider if ALLOCNO appears in the address of an
943 output and we reload the output. If we allocate ALLOCNO
944 to the same hard register as an unused output we could
945 set the hard register before the output reload insn. */
946 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
947 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
948 {
949 int i;
950 rtx reg;
951
952 reg = DF_REF_REG (*use_rec);
953 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
954 {
955 rtx set;
956
957 set = XVECEXP (PATTERN (insn), 0, i);
958 if (GET_CODE (set) == SET
959 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
960 {
961 /* After the previous loop, this is a no-op if
962 REG is contained within SET_DEST (SET). */
963 mark_ref_live (*use_rec);
964 break;
965 }
966 }
967 }
968
969 extract_insn (insn);
970 preprocess_constraints ();
971 process_single_reg_class_operands (false, freq);
972
973 /* See which defined values die here. */
974 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
975 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
976 mark_ref_dead (*def_rec);
977
978 if (call_p)
979 {
980 last_call_num++;
981 /* The current set of live allocnos are live across the call. */
982 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
983 {
984 ira_allocno_t a = ira_allocnos[i];
985
986 if (allocno_saved_at_call[i] != last_call_num)
987 /* Here we are mimicking caller-save.c behaviour
988 which does not save hard register at a call if
989 it was saved on previous call in the same basic
990 block and the hard register was not mentioned
991 between the two calls. */
992 ALLOCNO_CALL_FREQ (a) += freq;
993 /* Mark it as saved at the next call. */
994 allocno_saved_at_call[i] = last_call_num + 1;
995 ALLOCNO_CALLS_CROSSED_NUM (a)++;
996 /* Don't allocate allocnos that cross setjmps or any
997 call, if this function receives a nonlocal
998 goto. */
999 if (cfun->has_nonlocal_label
1000 || find_reg_note (insn, REG_SETJMP,
1001 NULL_RTX) != NULL_RTX)
1002 {
1003 SET_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a));
1004 SET_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a));
1005 }
1006 if (can_throw_internal (insn))
1007 {
1008 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
1009 call_used_reg_set);
1010 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
1011 call_used_reg_set);
1012 }
1013 }
1014 }
1015
1016 make_early_clobber_and_input_conflicts ();
1017
1018 curr_point++;
1019
1020 /* Mark each used value as live. */
1021 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1022 mark_ref_live (*use_rec);
1023
1024 process_single_reg_class_operands (true, freq);
1025
1026 set_p = mark_hard_reg_early_clobbers (insn, true);
1027
1028 if (set_p)
1029 {
1030 mark_hard_reg_early_clobbers (insn, false);
1031
1032 /* Mark each hard reg as live again. For example, a
1033 hard register can be in clobber and in an insn
1034 input. */
1035 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1036 {
1037 rtx ureg = DF_REF_REG (*use_rec);
1038
1039 if (GET_CODE (ureg) == SUBREG)
1040 ureg = SUBREG_REG (ureg);
1041 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1042 continue;
1043
1044 mark_ref_live (*use_rec);
1045 }
1046 }
1047
1048 curr_point++;
1049 }
1050
1051 #ifdef EH_RETURN_DATA_REGNO
1052 if (bb_has_eh_pred (bb))
1053 for (j = 0; ; ++j)
1054 {
1055 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1056 if (regno == INVALID_REGNUM)
1057 break;
1058 make_regno_born (regno);
1059 }
1060 #endif
1061
1062 /* Allocnos can't go in stack regs at the start of a basic block
1063 that is reached by an abnormal edge. Likewise for call
1064 clobbered regs, because caller-save, fixup_abnormal_edges and
1065 possibly the table driven EH machinery are not quite ready to
1066 handle such allocnos live across such edges. */
1067 if (bb_has_abnormal_pred (bb))
1068 {
1069 #ifdef STACK_REGS
1070 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
1071 {
1072 ALLOCNO_NO_STACK_REG_P (ira_allocnos[px]) = true;
1073 ALLOCNO_TOTAL_NO_STACK_REG_P (ira_allocnos[px]) = true;
1074 }
1075 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1076 make_regno_born (px);
1077 #endif
1078 /* No need to record conflicts for call clobbered regs if we
1079 have nonlocal labels around, as we don't ever try to
1080 allocate such regs in this case. */
1081 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1082 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1083 if (call_used_regs[px])
1084 make_regno_born (px);
1085 }
1086
1087 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
1088 {
1089 make_regno_dead (ALLOCNO_REGNO (ira_allocnos[i]));
1090 }
1091
1092 curr_point++;
1093
1094 }
1095 /* Propagate register pressure to upper loop tree nodes: */
1096 if (loop_tree_node != ira_loop_tree_root)
1097 for (i = 0; i < ira_reg_class_cover_size; i++)
1098 {
1099 enum reg_class cover_class;
1100
1101 cover_class = ira_reg_class_cover[i];
1102 if (loop_tree_node->reg_pressure[cover_class]
1103 > loop_tree_node->parent->reg_pressure[cover_class])
1104 loop_tree_node->parent->reg_pressure[cover_class]
1105 = loop_tree_node->reg_pressure[cover_class];
1106 }
1107 }
1108
1109 /* Create and set up IRA_START_POINT_RANGES and
1110 IRA_FINISH_POINT_RANGES. */
1111 static void
1112 create_start_finish_chains (void)
1113 {
1114 ira_allocno_t a;
1115 ira_allocno_iterator ai;
1116 allocno_live_range_t r;
1117
1118 ira_start_point_ranges
1119 = (allocno_live_range_t *) ira_allocate (ira_max_point
1120 * sizeof (allocno_live_range_t));
1121 memset (ira_start_point_ranges, 0,
1122 ira_max_point * sizeof (allocno_live_range_t));
1123 ira_finish_point_ranges
1124 = (allocno_live_range_t *) ira_allocate (ira_max_point
1125 * sizeof (allocno_live_range_t));
1126 memset (ira_finish_point_ranges, 0,
1127 ira_max_point * sizeof (allocno_live_range_t));
1128 FOR_EACH_ALLOCNO (a, ai)
1129 {
1130 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1131 {
1132 r->start_next = ira_start_point_ranges[r->start];
1133 ira_start_point_ranges[r->start] = r;
1134 r->finish_next = ira_finish_point_ranges[r->finish];
1135 ira_finish_point_ranges[r->finish] = r;
1136 }
1137 }
1138 }
1139
1140 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1141 new live ranges and program points were added as a result if new
1142 insn generation. */
1143 void
1144 ira_rebuild_start_finish_chains (void)
1145 {
1146 ira_free (ira_finish_point_ranges);
1147 ira_free (ira_start_point_ranges);
1148 create_start_finish_chains ();
1149 }
1150
1151 /* Compress allocno live ranges by removing program points where
1152 nothing happens. */
1153 static void
1154 remove_some_program_points_and_update_live_ranges (void)
1155 {
1156 unsigned i;
1157 int n;
1158 int *map;
1159 ira_allocno_t a;
1160 ira_allocno_iterator ai;
1161 allocno_live_range_t r;
1162 bitmap born_or_died;
1163 bitmap_iterator bi;
1164
1165 born_or_died = ira_allocate_bitmap ();
1166 FOR_EACH_ALLOCNO (a, ai)
1167 {
1168 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1169 {
1170 ira_assert (r->start <= r->finish);
1171 bitmap_set_bit (born_or_died, r->start);
1172 bitmap_set_bit (born_or_died, r->finish);
1173 }
1174 }
1175 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1176 n = 0;
1177 EXECUTE_IF_SET_IN_BITMAP(born_or_died, 0, i, bi)
1178 {
1179 map[i] = n++;
1180 }
1181 ira_free_bitmap (born_or_died);
1182 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1183 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1184 ira_max_point, n, 100 * n / ira_max_point);
1185 ira_max_point = n;
1186 FOR_EACH_ALLOCNO (a, ai)
1187 {
1188 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1189 {
1190 r->start = map[r->start];
1191 r->finish = map[r->finish];
1192 }
1193 }
1194 ira_free (map);
1195 }
1196
1197 /* Print live ranges R to file F. */
1198 void
1199 ira_print_live_range_list (FILE *f, allocno_live_range_t r)
1200 {
1201 for (; r != NULL; r = r->next)
1202 fprintf (f, " [%d..%d]", r->start, r->finish);
1203 fprintf (f, "\n");
1204 }
1205
1206 /* Print live ranges R to stderr. */
1207 void
1208 ira_debug_live_range_list (allocno_live_range_t r)
1209 {
1210 ira_print_live_range_list (stderr, r);
1211 }
1212
1213 /* Print live ranges of allocno A to file F. */
1214 static void
1215 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1216 {
1217 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1218 ira_print_live_range_list (f, ALLOCNO_LIVE_RANGES (a));
1219 }
1220
1221 /* Print live ranges of allocno A to stderr. */
1222 void
1223 ira_debug_allocno_live_ranges (ira_allocno_t a)
1224 {
1225 print_allocno_live_ranges (stderr, a);
1226 }
1227
1228 /* Print live ranges of all allocnos to file F. */
1229 static void
1230 print_live_ranges (FILE *f)
1231 {
1232 ira_allocno_t a;
1233 ira_allocno_iterator ai;
1234
1235 FOR_EACH_ALLOCNO (a, ai)
1236 print_allocno_live_ranges (f, a);
1237 }
1238
1239 /* Print live ranges of all allocnos to stderr. */
1240 void
1241 ira_debug_live_ranges (void)
1242 {
1243 print_live_ranges (stderr);
1244 }
1245
1246 /* The main entry function creates live ranges, set up
1247 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for allocnos, and
1248 calculate register pressure info. */
1249 void
1250 ira_create_allocno_live_ranges (void)
1251 {
1252 allocnos_live = sparseset_alloc (ira_allocnos_num);
1253 curr_point = 0;
1254 last_call_num = 0;
1255 allocno_saved_at_call
1256 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1257 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1258 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1259 process_bb_node_lives);
1260 ira_max_point = curr_point;
1261 create_start_finish_chains ();
1262 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1263 print_live_ranges (ira_dump_file);
1264 /* Clean up. */
1265 ira_free (allocno_saved_at_call);
1266 sparseset_free (allocnos_live);
1267 }
1268
1269 /* Compress allocno live ranges. */
1270 void
1271 ira_compress_allocno_live_ranges (void)
1272 {
1273 remove_some_program_points_and_update_live_ranges ();
1274 ira_rebuild_start_finish_chains ();
1275 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1276 {
1277 fprintf (ira_dump_file, "Ranges after the compression:\n");
1278 print_live_ranges (ira_dump_file);
1279 }
1280 }
1281
1282 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1283 void
1284 ira_finish_allocno_live_ranges (void)
1285 {
1286 ira_free (ira_finish_point_ranges);
1287 ira_free (ira_start_point_ranges);
1288 }