Fix commit of testcase which got truncated somehow.
[gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "regs.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "target.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "diagnostic-core.h"
37 #include "params.h"
38 #include "df.h"
39 #include "sbitmap.h"
40 #include "sparseset.h"
41 #include "ira-int.h"
42
43 /* The code in this file is similar to one in global but the code
44 works on the allocno basis and creates live ranges instead of
45 pseudo-register conflicts. */
46
47 /* Program points are enumerated by numbers from range
48 0..IRA_MAX_POINT-1. There are approximately two times more program
49 points than insns. Program points are places in the program where
50 liveness info can be changed. In most general case (there are more
51 complicated cases too) some program points correspond to places
52 where input operand dies and other ones correspond to places where
53 output operands are born. */
54 int ira_max_point;
55
56 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
57 live ranges with given start/finish point. */
58 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
59
60 /* Number of the current program point. */
61 static int curr_point;
62
63 /* Point where register pressure excess started or -1 if there is no
64 register pressure excess. Excess pressure for a register class at
65 some point means that there are more allocnos of given register
66 class living at the point than number of hard-registers of the
67 class available for the allocation. It is defined only for
68 pressure classes. */
69 static int high_pressure_start_point[N_REG_CLASSES];
70
71 /* Objects live at current point in the scan. */
72 static sparseset objects_live;
73
74 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
75 multiple times. */
76 static sparseset allocnos_processed;
77
78 /* Set of hard regs (except eliminable ones) currently live. */
79 static HARD_REG_SET hard_regs_live;
80
81 /* The loop tree node corresponding to the current basic block. */
82 static ira_loop_tree_node_t curr_bb_node;
83
84 /* The number of the last processed call. */
85 static int last_call_num;
86 /* The number of last call at which given allocno was saved. */
87 static int *allocno_saved_at_call;
88
89 /* Record the birth of hard register REGNO, updating hard_regs_live and
90 hard reg conflict information for living allocnos. */
91 static void
92 make_hard_regno_born (int regno)
93 {
94 unsigned int i;
95
96 SET_HARD_REG_BIT (hard_regs_live, regno);
97 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
98 {
99 ira_object_t obj = ira_object_id_map[i];
100
101 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
102 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
103 }
104 }
105
106 /* Process the death of hard register REGNO. This updates
107 hard_regs_live. */
108 static void
109 make_hard_regno_dead (int regno)
110 {
111 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
112 }
113
114 /* Record the birth of object OBJ. Set a bit for it in objects_live,
115 start a new live range for it if necessary and update hard register
116 conflicts. */
117 static void
118 make_object_born (ira_object_t obj)
119 {
120 live_range_t lr = OBJECT_LIVE_RANGES (obj);
121
122 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
123 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
124 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
125
126 if (lr == NULL
127 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
128 ira_add_live_range_to_object (obj, curr_point, -1);
129 }
130
131 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
132 associated with object OBJ. */
133 static void
134 update_allocno_pressure_excess_length (ira_object_t obj)
135 {
136 ira_allocno_t a = OBJECT_ALLOCNO (obj);
137 int start, i;
138 enum reg_class aclass, pclass, cl;
139 live_range_t p;
140
141 aclass = ALLOCNO_CLASS (a);
142 pclass = ira_pressure_class_translate[aclass];
143 for (i = 0;
144 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
145 i++)
146 {
147 if (! ira_reg_pressure_class_p[cl])
148 continue;
149 if (high_pressure_start_point[cl] < 0)
150 continue;
151 p = OBJECT_LIVE_RANGES (obj);
152 ira_assert (p != NULL);
153 start = (high_pressure_start_point[cl] > p->start
154 ? high_pressure_start_point[cl] : p->start);
155 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
156 }
157 }
158
159 /* Process the death of object OBJ, which is associated with allocno
160 A. This finishes the current live range for it. */
161 static void
162 make_object_dead (ira_object_t obj)
163 {
164 live_range_t lr;
165
166 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
167 lr = OBJECT_LIVE_RANGES (obj);
168 ira_assert (lr != NULL);
169 lr->finish = curr_point;
170 update_allocno_pressure_excess_length (obj);
171 }
172
173 /* The current register pressures for each pressure class for the current
174 basic block. */
175 static int curr_reg_pressure[N_REG_CLASSES];
176
177 /* Record that register pressure for PCLASS increased by N registers.
178 Update the current register pressure, maximal register pressure for
179 the current BB and the start point of the register pressure
180 excess. */
181 static void
182 inc_register_pressure (enum reg_class pclass, int n)
183 {
184 int i;
185 enum reg_class cl;
186
187 for (i = 0;
188 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
189 i++)
190 {
191 if (! ira_reg_pressure_class_p[cl])
192 continue;
193 curr_reg_pressure[cl] += n;
194 if (high_pressure_start_point[cl] < 0
195 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
196 high_pressure_start_point[cl] = curr_point;
197 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
198 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
199 }
200 }
201
202 /* Record that register pressure for PCLASS has decreased by NREGS
203 registers; update current register pressure, start point of the
204 register pressure excess, and register pressure excess length for
205 living allocnos. */
206
207 static void
208 dec_register_pressure (enum reg_class pclass, int nregs)
209 {
210 int i;
211 unsigned int j;
212 enum reg_class cl;
213 bool set_p = false;
214
215 for (i = 0;
216 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
217 i++)
218 {
219 if (! ira_reg_pressure_class_p[cl])
220 continue;
221 curr_reg_pressure[cl] -= nregs;
222 ira_assert (curr_reg_pressure[cl] >= 0);
223 if (high_pressure_start_point[cl] >= 0
224 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
225 set_p = true;
226 }
227 if (set_p)
228 {
229 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
230 update_allocno_pressure_excess_length (ira_object_id_map[j]);
231 for (i = 0;
232 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
233 i++)
234 {
235 if (! ira_reg_pressure_class_p[cl])
236 continue;
237 if (high_pressure_start_point[cl] >= 0
238 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
239 high_pressure_start_point[cl] = -1;
240 }
241 }
242 }
243
244 /* Determine from the objects_live bitmap whether REGNO is currently live,
245 and occupies only one object. Return false if we have no information. */
246 static bool
247 pseudo_regno_single_word_and_live_p (int regno)
248 {
249 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
250 ira_object_t obj;
251
252 if (a == NULL)
253 return false;
254 if (ALLOCNO_NUM_OBJECTS (a) > 1)
255 return false;
256
257 obj = ALLOCNO_OBJECT (a, 0);
258
259 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
260 }
261
262 /* Mark the pseudo register REGNO as live. Update all information about
263 live ranges and register pressure. */
264 static void
265 mark_pseudo_regno_live (int regno)
266 {
267 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
268 enum reg_class pclass;
269 int i, n, nregs;
270
271 if (a == NULL)
272 return;
273
274 /* Invalidate because it is referenced. */
275 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
276
277 n = ALLOCNO_NUM_OBJECTS (a);
278 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
279 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
280 if (n > 1)
281 {
282 /* We track every subobject separately. */
283 gcc_assert (nregs == n);
284 nregs = 1;
285 }
286
287 for (i = 0; i < n; i++)
288 {
289 ira_object_t obj = ALLOCNO_OBJECT (a, i);
290
291 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
292 continue;
293
294 inc_register_pressure (pclass, nregs);
295 make_object_born (obj);
296 }
297 }
298
299 /* Like mark_pseudo_regno_live, but try to only mark one subword of
300 the pseudo as live. SUBWORD indicates which; a value of 0
301 indicates the low part. */
302 static void
303 mark_pseudo_regno_subword_live (int regno, int subword)
304 {
305 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
306 int n;
307 enum reg_class pclass;
308 ira_object_t obj;
309
310 if (a == NULL)
311 return;
312
313 /* Invalidate because it is referenced. */
314 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
315
316 n = ALLOCNO_NUM_OBJECTS (a);
317 if (n == 1)
318 {
319 mark_pseudo_regno_live (regno);
320 return;
321 }
322
323 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
324 gcc_assert
325 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
326 obj = ALLOCNO_OBJECT (a, subword);
327
328 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
329 return;
330
331 inc_register_pressure (pclass, 1);
332 make_object_born (obj);
333 }
334
335 /* Mark the register REG as live. Store a 1 in hard_regs_live for
336 this register, record how many consecutive hardware registers it
337 actually needs. */
338 static void
339 mark_hard_reg_live (rtx reg)
340 {
341 int regno = REGNO (reg);
342
343 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
344 {
345 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
346 enum reg_class aclass, pclass;
347
348 while (regno < last)
349 {
350 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
351 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
352 {
353 aclass = ira_hard_regno_allocno_class[regno];
354 pclass = ira_pressure_class_translate[aclass];
355 inc_register_pressure (pclass, 1);
356 make_hard_regno_born (regno);
357 }
358 regno++;
359 }
360 }
361 }
362
363 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
364 register number; ORIG_REG is the access in the insn, which may be a
365 subreg. */
366 static void
367 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
368 {
369 if (df_read_modify_subreg_p (orig_reg))
370 {
371 mark_pseudo_regno_subword_live (regno,
372 subreg_lowpart_p (orig_reg) ? 0 : 1);
373 }
374 else
375 mark_pseudo_regno_live (regno);
376 }
377
378 /* Mark the register referenced by use or def REF as live. */
379 static void
380 mark_ref_live (df_ref ref)
381 {
382 rtx reg = DF_REF_REG (ref);
383 rtx orig_reg = reg;
384
385 if (GET_CODE (reg) == SUBREG)
386 reg = SUBREG_REG (reg);
387
388 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
389 mark_pseudo_reg_live (orig_reg, REGNO (reg));
390 else
391 mark_hard_reg_live (reg);
392 }
393
394 /* Mark the pseudo register REGNO as dead. Update all information about
395 live ranges and register pressure. */
396 static void
397 mark_pseudo_regno_dead (int regno)
398 {
399 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
400 int n, i, nregs;
401 enum reg_class cl;
402
403 if (a == NULL)
404 return;
405
406 /* Invalidate because it is referenced. */
407 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
408
409 n = ALLOCNO_NUM_OBJECTS (a);
410 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
411 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
412 if (n > 1)
413 {
414 /* We track every subobject separately. */
415 gcc_assert (nregs == n);
416 nregs = 1;
417 }
418 for (i = 0; i < n; i++)
419 {
420 ira_object_t obj = ALLOCNO_OBJECT (a, i);
421 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
422 continue;
423
424 dec_register_pressure (cl, nregs);
425 make_object_dead (obj);
426 }
427 }
428
429 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
430 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
431 static void
432 mark_pseudo_regno_subword_dead (int regno, int subword)
433 {
434 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
435 int n;
436 enum reg_class cl;
437 ira_object_t obj;
438
439 if (a == NULL)
440 return;
441
442 /* Invalidate because it is referenced. */
443 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
444
445 n = ALLOCNO_NUM_OBJECTS (a);
446 if (n == 1)
447 /* The allocno as a whole doesn't die in this case. */
448 return;
449
450 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
451 gcc_assert
452 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
453
454 obj = ALLOCNO_OBJECT (a, subword);
455 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
456 return;
457
458 dec_register_pressure (cl, 1);
459 make_object_dead (obj);
460 }
461
462 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
463 register. */
464 static void
465 mark_hard_reg_dead (rtx reg)
466 {
467 int regno = REGNO (reg);
468
469 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
470 {
471 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
472 enum reg_class aclass, pclass;
473
474 while (regno < last)
475 {
476 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
477 {
478 aclass = ira_hard_regno_allocno_class[regno];
479 pclass = ira_pressure_class_translate[aclass];
480 dec_register_pressure (pclass, 1);
481 make_hard_regno_dead (regno);
482 }
483 regno++;
484 }
485 }
486 }
487
488 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
489 register number; ORIG_REG is the access in the insn, which may be a
490 subreg. */
491 static void
492 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
493 {
494 if (df_read_modify_subreg_p (orig_reg))
495 {
496 mark_pseudo_regno_subword_dead (regno,
497 subreg_lowpart_p (orig_reg) ? 0 : 1);
498 }
499 else
500 mark_pseudo_regno_dead (regno);
501 }
502
503 /* Mark the register referenced by definition DEF as dead, if the
504 definition is a total one. */
505 static void
506 mark_ref_dead (df_ref def)
507 {
508 rtx reg = DF_REF_REG (def);
509 rtx orig_reg = reg;
510
511 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
512 return;
513
514 if (GET_CODE (reg) == SUBREG)
515 reg = SUBREG_REG (reg);
516
517 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
518 && (GET_CODE (orig_reg) != SUBREG
519 || REGNO (reg) < FIRST_PSEUDO_REGISTER
520 || !df_read_modify_subreg_p (orig_reg)))
521 return;
522
523 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
524 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
525 else
526 mark_hard_reg_dead (reg);
527 }
528
529 /* If REG is a pseudo or a subreg of it, and the class of its allocno
530 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
531 rtx actually accessed, it may be identical to DREG or a subreg of it.
532 Advance the current program point before making the conflict if
533 ADVANCE_P. Return TRUE if we will need to advance the current
534 program point. */
535 static bool
536 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
537 bool advance_p)
538 {
539 rtx orig_reg = reg;
540 ira_allocno_t a;
541
542 if (GET_CODE (reg) == SUBREG)
543 reg = SUBREG_REG (reg);
544
545 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
546 return advance_p;
547
548 a = ira_curr_regno_allocno_map[REGNO (reg)];
549 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
550 return advance_p;
551
552 if (advance_p)
553 curr_point++;
554
555 mark_pseudo_reg_live (orig_reg, REGNO (reg));
556 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
557 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
558 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
559
560 return false;
561 }
562
563 /* Check and make if necessary conflicts for pseudo DREG of class
564 DEF_CL of the current insn with input operand USE of class USE_CL.
565 ORIG_DREG is the rtx actually accessed, it may be identical to
566 DREG or a subreg of it. Advance the current program point before
567 making the conflict if ADVANCE_P. Return TRUE if we will need to
568 advance the current program point. */
569 static bool
570 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
571 enum reg_class def_cl, int use,
572 enum reg_class use_cl, bool advance_p)
573 {
574 if (! reg_classes_intersect_p (def_cl, use_cl))
575 return advance_p;
576
577 advance_p = make_pseudo_conflict (recog_data.operand[use],
578 use_cl, dreg, orig_dreg, advance_p);
579
580 /* Reload may end up swapping commutative operands, so you
581 have to take both orderings into account. The
582 constraints for the two operands can be completely
583 different. (Indeed, if the constraints for the two
584 operands are the same for all alternatives, there's no
585 point marking them as commutative.) */
586 if (use < recog_data.n_operands - 1
587 && recog_data.constraints[use][0] == '%')
588 advance_p
589 = make_pseudo_conflict (recog_data.operand[use + 1],
590 use_cl, dreg, orig_dreg, advance_p);
591 if (use >= 1
592 && recog_data.constraints[use - 1][0] == '%')
593 advance_p
594 = make_pseudo_conflict (recog_data.operand[use - 1],
595 use_cl, dreg, orig_dreg, advance_p);
596 return advance_p;
597 }
598
599 /* Check and make if necessary conflicts for definition DEF of class
600 DEF_CL of the current insn with input operands. Process only
601 constraints of alternative ALT. */
602 static void
603 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
604 {
605 int use, use_match;
606 ira_allocno_t a;
607 enum reg_class use_cl, acl;
608 bool advance_p;
609 rtx dreg = recog_data.operand[def];
610 rtx orig_dreg = dreg;
611
612 if (def_cl == NO_REGS)
613 return;
614
615 if (GET_CODE (dreg) == SUBREG)
616 dreg = SUBREG_REG (dreg);
617
618 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
619 return;
620
621 a = ira_curr_regno_allocno_map[REGNO (dreg)];
622 acl = ALLOCNO_CLASS (a);
623 if (! reg_classes_intersect_p (acl, def_cl))
624 return;
625
626 advance_p = true;
627
628 for (use = 0; use < recog_data.n_operands; use++)
629 {
630 int alt1;
631
632 if (use == def || recog_data.operand_type[use] == OP_OUT)
633 continue;
634
635 if (recog_op_alt[use][alt].anything_ok)
636 use_cl = ALL_REGS;
637 else
638 use_cl = recog_op_alt[use][alt].cl;
639
640 /* If there's any alternative that allows USE to match DEF, do not
641 record a conflict. If that causes us to create an invalid
642 instruction due to the earlyclobber, reload must fix it up. */
643 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
644 if (recog_op_alt[use][alt1].matches == def
645 || (use < recog_data.n_operands - 1
646 && recog_data.constraints[use][0] == '%'
647 && recog_op_alt[use + 1][alt1].matches == def)
648 || (use >= 1
649 && recog_data.constraints[use - 1][0] == '%'
650 && recog_op_alt[use - 1][alt1].matches == def))
651 break;
652
653 if (alt1 < recog_data.n_alternatives)
654 continue;
655
656 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
657 use, use_cl, advance_p);
658
659 if ((use_match = recog_op_alt[use][alt].matches) >= 0)
660 {
661 if (use_match == def)
662 continue;
663
664 if (recog_op_alt[use_match][alt].anything_ok)
665 use_cl = ALL_REGS;
666 else
667 use_cl = recog_op_alt[use_match][alt].cl;
668 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
669 use, use_cl, advance_p);
670 }
671 }
672 }
673
674 /* Make conflicts of early clobber pseudo registers of the current
675 insn with its inputs. Avoid introducing unnecessary conflicts by
676 checking classes of the constraints and pseudos because otherwise
677 significant code degradation is possible for some targets. */
678 static void
679 make_early_clobber_and_input_conflicts (void)
680 {
681 int alt;
682 int def, def_match;
683 enum reg_class def_cl;
684
685 for (alt = 0; alt < recog_data.n_alternatives; alt++)
686 for (def = 0; def < recog_data.n_operands; def++)
687 {
688 def_cl = NO_REGS;
689 if (recog_op_alt[def][alt].earlyclobber)
690 {
691 if (recog_op_alt[def][alt].anything_ok)
692 def_cl = ALL_REGS;
693 else
694 def_cl = recog_op_alt[def][alt].cl;
695 check_and_make_def_conflict (alt, def, def_cl);
696 }
697 if ((def_match = recog_op_alt[def][alt].matches) >= 0
698 && (recog_op_alt[def_match][alt].earlyclobber
699 || recog_op_alt[def][alt].earlyclobber))
700 {
701 if (recog_op_alt[def_match][alt].anything_ok)
702 def_cl = ALL_REGS;
703 else
704 def_cl = recog_op_alt[def_match][alt].cl;
705 check_and_make_def_conflict (alt, def, def_cl);
706 }
707 }
708 }
709
710 /* Mark early clobber hard registers of the current INSN as live (if
711 LIVE_P) or dead. Return true if there are such registers. */
712 static bool
713 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
714 {
715 df_ref *def_rec;
716 bool set_p = false;
717
718 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
719 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
720 {
721 rtx dreg = DF_REF_REG (*def_rec);
722
723 if (GET_CODE (dreg) == SUBREG)
724 dreg = SUBREG_REG (dreg);
725 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
726 continue;
727
728 /* Hard register clobbers are believed to be early clobber
729 because there is no way to say that non-operand hard
730 register clobbers are not early ones. */
731 if (live_p)
732 mark_ref_live (*def_rec);
733 else
734 mark_ref_dead (*def_rec);
735 set_p = true;
736 }
737
738 return set_p;
739 }
740
741 /* Checks that CONSTRAINTS permits to use only one hard register. If
742 it is so, the function returns the class of the hard register.
743 Otherwise it returns NO_REGS. */
744 static enum reg_class
745 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
746 {
747 int curr_alt, c;
748 bool ignore_p;
749 enum reg_class cl, next_cl;
750
751 cl = NO_REGS;
752 for (ignore_p = false, curr_alt = 0;
753 (c = *constraints);
754 constraints += CONSTRAINT_LEN (c, constraints))
755 if (c == '#' || !recog_data.alternative_enabled_p[curr_alt])
756 ignore_p = true;
757 else if (c == ',')
758 {
759 curr_alt++;
760 ignore_p = false;
761 }
762 else if (! ignore_p)
763 switch (c)
764 {
765 case ' ':
766 case '\t':
767 case '=':
768 case '+':
769 case '*':
770 case '&':
771 case '%':
772 case '!':
773 case '?':
774 break;
775 case 'i':
776 if (CONSTANT_P (op)
777 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
778 return NO_REGS;
779 break;
780
781 case 'n':
782 if (CONST_SCALAR_INT_P (op)
783 || (equiv_const != NULL_RTX && CONST_SCALAR_INT_P (equiv_const)))
784 return NO_REGS;
785 break;
786
787 case 's':
788 if ((CONSTANT_P (op) && !CONST_SCALAR_INT_P (op))
789 || (equiv_const != NULL_RTX
790 && CONSTANT_P (equiv_const)
791 && !CONST_SCALAR_INT_P (equiv_const)))
792 return NO_REGS;
793 break;
794
795 case 'I':
796 case 'J':
797 case 'K':
798 case 'L':
799 case 'M':
800 case 'N':
801 case 'O':
802 case 'P':
803 if ((CONST_INT_P (op)
804 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
805 || (equiv_const != NULL_RTX
806 && CONST_INT_P (equiv_const)
807 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
808 c, constraints)))
809 return NO_REGS;
810 break;
811
812 case 'E':
813 case 'F':
814 if (CONST_DOUBLE_AS_FLOAT_P (op)
815 || (GET_CODE (op) == CONST_VECTOR
816 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
817 || (equiv_const != NULL_RTX
818 && (CONST_DOUBLE_AS_FLOAT_P (equiv_const)
819 || (GET_CODE (equiv_const) == CONST_VECTOR
820 && (GET_MODE_CLASS (GET_MODE (equiv_const))
821 == MODE_VECTOR_FLOAT)))))
822 return NO_REGS;
823 break;
824
825 case 'G':
826 case 'H':
827 if ((CONST_DOUBLE_AS_FLOAT_P (op)
828 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
829 || (equiv_const != NULL_RTX
830 && CONST_DOUBLE_AS_FLOAT_P (equiv_const)
831 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
832 c, constraints)))
833 return NO_REGS;
834 /* ??? what about memory */
835 case 'r':
836 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
837 case 'h': case 'j': case 'k': case 'l':
838 case 'q': case 't': case 'u':
839 case 'v': case 'w': case 'x': case 'y': case 'z':
840 case 'A': case 'B': case 'C': case 'D':
841 case 'Q': case 'R': case 'S': case 'T': case 'U':
842 case 'W': case 'Y': case 'Z':
843 next_cl = (c == 'r'
844 ? GENERAL_REGS
845 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
846 if (cl == NO_REGS
847 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
848 : (ira_class_singleton[cl][GET_MODE (op)]
849 != ira_class_singleton[next_cl][GET_MODE (op)]))
850 return NO_REGS;
851 cl = next_cl;
852 break;
853
854 case '0': case '1': case '2': case '3': case '4':
855 case '5': case '6': case '7': case '8': case '9':
856 next_cl
857 = single_reg_class (recog_data.constraints[c - '0'],
858 recog_data.operand[c - '0'], NULL_RTX);
859 if (cl == NO_REGS
860 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
861 : (ira_class_singleton[cl][GET_MODE (op)]
862 != ira_class_singleton[next_cl][GET_MODE (op)]))
863 return NO_REGS;
864 cl = next_cl;
865 break;
866
867 default:
868 return NO_REGS;
869 }
870 return cl;
871 }
872
873 /* The function checks that operand OP_NUM of the current insn can use
874 only one hard register. If it is so, the function returns the
875 class of the hard register. Otherwise it returns NO_REGS. */
876 static enum reg_class
877 single_reg_operand_class (int op_num)
878 {
879 if (op_num < 0 || recog_data.n_alternatives == 0)
880 return NO_REGS;
881 return single_reg_class (recog_data.constraints[op_num],
882 recog_data.operand[op_num], NULL_RTX);
883 }
884
885 /* The function sets up hard register set *SET to hard registers which
886 might be used by insn reloads because the constraints are too
887 strict. */
888 void
889 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
890 {
891 int i, curr_alt, c, regno = 0;
892 bool ignore_p;
893 enum reg_class cl;
894 rtx op;
895 enum machine_mode mode;
896
897 CLEAR_HARD_REG_SET (*set);
898 for (i = 0; i < recog_data.n_operands; i++)
899 {
900 op = recog_data.operand[i];
901
902 if (GET_CODE (op) == SUBREG)
903 op = SUBREG_REG (op);
904
905 if (GET_CODE (op) == SCRATCH
906 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
907 {
908 const char *p = recog_data.constraints[i];
909
910 mode = (GET_CODE (op) == SCRATCH
911 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
912 cl = NO_REGS;
913 for (ignore_p = false, curr_alt = 0;
914 (c = *p);
915 p += CONSTRAINT_LEN (c, p))
916 if (c == '#' || !recog_data.alternative_enabled_p[curr_alt])
917 ignore_p = true;
918 else if (c == ',')
919 {
920 curr_alt++;
921 ignore_p = false;
922 }
923 else if (! ignore_p)
924 switch (c)
925 {
926 case 'r':
927 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
928 case 'h': case 'j': case 'k': case 'l':
929 case 'q': case 't': case 'u':
930 case 'v': case 'w': case 'x': case 'y': case 'z':
931 case 'A': case 'B': case 'C': case 'D':
932 case 'Q': case 'R': case 'S': case 'T': case 'U':
933 case 'W': case 'Y': case 'Z':
934 cl = (c == 'r'
935 ? GENERAL_REGS
936 : REG_CLASS_FROM_CONSTRAINT (c, p));
937 if (cl != NO_REGS)
938 {
939 /* There is no register pressure problem if all of the
940 regs in this class are fixed. */
941 int regno = ira_class_singleton[cl][mode];
942 if (regno >= 0)
943 add_to_hard_reg_set (set, mode, regno);
944 }
945 break;
946 }
947 }
948 }
949 }
950 /* Processes input operands, if IN_P, or output operands otherwise of
951 the current insn with FREQ to find allocno which can use only one
952 hard register and makes other currently living allocnos conflicting
953 with the hard register. */
954 static void
955 process_single_reg_class_operands (bool in_p, int freq)
956 {
957 int i, regno;
958 unsigned int px;
959 enum reg_class cl;
960 rtx operand;
961 ira_allocno_t operand_a, a;
962
963 for (i = 0; i < recog_data.n_operands; i++)
964 {
965 operand = recog_data.operand[i];
966 if (in_p && recog_data.operand_type[i] != OP_IN
967 && recog_data.operand_type[i] != OP_INOUT)
968 continue;
969 if (! in_p && recog_data.operand_type[i] != OP_OUT
970 && recog_data.operand_type[i] != OP_INOUT)
971 continue;
972 cl = single_reg_operand_class (i);
973 if (cl == NO_REGS)
974 continue;
975
976 operand_a = NULL;
977
978 if (GET_CODE (operand) == SUBREG)
979 operand = SUBREG_REG (operand);
980
981 if (REG_P (operand)
982 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
983 {
984 enum reg_class aclass;
985
986 operand_a = ira_curr_regno_allocno_map[regno];
987 aclass = ALLOCNO_CLASS (operand_a);
988 if (ira_class_subset_p[cl][aclass])
989 {
990 /* View the desired allocation of OPERAND as:
991
992 (REG:YMODE YREGNO),
993
994 a simplification of:
995
996 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
997 enum machine_mode ymode, xmode;
998 int xregno, yregno;
999 HOST_WIDE_INT offset;
1000
1001 xmode = recog_data.operand_mode[i];
1002 xregno = ira_class_singleton[cl][xmode];
1003 gcc_assert (xregno >= 0);
1004 ymode = ALLOCNO_MODE (operand_a);
1005 offset = subreg_lowpart_offset (ymode, xmode);
1006 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
1007 if (yregno >= 0
1008 && ira_class_hard_reg_index[aclass][yregno] >= 0)
1009 {
1010 int cost;
1011
1012 ira_allocate_and_set_costs
1013 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
1014 aclass, 0);
1015 ira_init_register_move_cost_if_necessary (xmode);
1016 cost = freq * (in_p
1017 ? ira_register_move_cost[xmode][aclass][cl]
1018 : ira_register_move_cost[xmode][cl][aclass]);
1019 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
1020 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
1021 }
1022 }
1023 }
1024
1025 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1026 {
1027 ira_object_t obj = ira_object_id_map[px];
1028 a = OBJECT_ALLOCNO (obj);
1029 if (a != operand_a)
1030 {
1031 /* We could increase costs of A instead of making it
1032 conflicting with the hard register. But it works worse
1033 because it will be spilled in reload in anyway. */
1034 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1035 reg_class_contents[cl]);
1036 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1037 reg_class_contents[cl]);
1038 }
1039 }
1040 }
1041 }
1042
1043 /* Return true when one of the predecessor edges of BB is marked with
1044 EDGE_ABNORMAL_CALL or EDGE_EH. */
1045 static bool
1046 bb_has_abnormal_call_pred (basic_block bb)
1047 {
1048 edge e;
1049 edge_iterator ei;
1050
1051 FOR_EACH_EDGE (e, ei, bb->preds)
1052 {
1053 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1054 return true;
1055 }
1056 return false;
1057 }
1058
1059 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
1060 we find a SET rtx that we can use to deduce that a register can be cheaply
1061 caller-saved. Return such a register, or NULL_RTX if none is found. */
1062 static rtx
1063 find_call_crossed_cheap_reg (rtx insn)
1064 {
1065 rtx cheap_reg = NULL_RTX;
1066 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1067
1068 while (exp != NULL)
1069 {
1070 rtx x = XEXP (exp, 0);
1071 if (GET_CODE (x) == SET)
1072 {
1073 exp = x;
1074 break;
1075 }
1076 exp = XEXP (exp, 1);
1077 }
1078 if (exp != NULL)
1079 {
1080 basic_block bb = BLOCK_FOR_INSN (insn);
1081 rtx reg = SET_SRC (exp);
1082 rtx prev = PREV_INSN (insn);
1083 while (prev && !(INSN_P (prev)
1084 && BLOCK_FOR_INSN (prev) != bb))
1085 {
1086 if (NONDEBUG_INSN_P (prev))
1087 {
1088 rtx set = single_set (prev);
1089
1090 if (set && rtx_equal_p (SET_DEST (set), reg))
1091 {
1092 rtx src = SET_SRC (set);
1093 if (!REG_P (src) || HARD_REGISTER_P (src)
1094 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1095 break;
1096 if (!modified_between_p (src, prev, insn))
1097 cheap_reg = src;
1098 break;
1099 }
1100 if (set && rtx_equal_p (SET_SRC (set), reg))
1101 {
1102 rtx dest = SET_DEST (set);
1103 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1104 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1105 break;
1106 if (!modified_between_p (dest, prev, insn))
1107 cheap_reg = dest;
1108 break;
1109 }
1110
1111 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1112 break;
1113 }
1114 prev = PREV_INSN (prev);
1115 }
1116 }
1117 return cheap_reg;
1118 }
1119
1120 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1121 update allocno live ranges, allocno hard register conflicts,
1122 intersected calls, and register pressure info for allocnos for the
1123 basic block for and regions containing the basic block. */
1124 static void
1125 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1126 {
1127 int i, freq;
1128 unsigned int j;
1129 basic_block bb;
1130 rtx insn;
1131 bitmap_iterator bi;
1132 bitmap reg_live_out;
1133 unsigned int px;
1134 bool set_p;
1135
1136 bb = loop_tree_node->bb;
1137 if (bb != NULL)
1138 {
1139 for (i = 0; i < ira_pressure_classes_num; i++)
1140 {
1141 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1142 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1143 }
1144 curr_bb_node = loop_tree_node;
1145 reg_live_out = df_get_live_out (bb);
1146 sparseset_clear (objects_live);
1147 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1148 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1149 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1150 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1151 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1152 {
1153 enum reg_class aclass, pclass, cl;
1154
1155 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1156 pclass = ira_pressure_class_translate[aclass];
1157 for (j = 0;
1158 (cl = ira_reg_class_super_classes[pclass][j])
1159 != LIM_REG_CLASSES;
1160 j++)
1161 {
1162 if (! ira_reg_pressure_class_p[cl])
1163 continue;
1164 curr_reg_pressure[cl]++;
1165 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1166 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1167 ira_assert (curr_reg_pressure[cl]
1168 <= ira_class_hard_regs_num[cl]);
1169 }
1170 }
1171 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1172 mark_pseudo_regno_live (j);
1173
1174 freq = REG_FREQ_FROM_BB (bb);
1175 if (freq == 0)
1176 freq = 1;
1177
1178 /* Invalidate all allocno_saved_at_call entries. */
1179 last_call_num++;
1180
1181 /* Scan the code of this basic block, noting which allocnos and
1182 hard regs are born or die.
1183
1184 Note that this loop treats uninitialized values as live until
1185 the beginning of the block. For example, if an instruction
1186 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1187 set, FOO will remain live until the beginning of the block.
1188 Likewise if FOO is not set at all. This is unnecessarily
1189 pessimistic, but it probably doesn't matter much in practice. */
1190 FOR_BB_INSNS_REVERSE (bb, insn)
1191 {
1192 df_ref *def_rec, *use_rec;
1193 bool call_p;
1194
1195 if (!NONDEBUG_INSN_P (insn))
1196 continue;
1197
1198 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1199 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1200 INSN_UID (insn), loop_tree_node->parent->loop_num,
1201 curr_point);
1202
1203 /* Mark each defined value as live. We need to do this for
1204 unused values because they still conflict with quantities
1205 that are live at the time of the definition.
1206
1207 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1208 references represent the effect of the called function
1209 on a call-clobbered register. Marking the register as
1210 live would stop us from allocating it to a call-crossing
1211 allocno. */
1212 call_p = CALL_P (insn);
1213 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1214 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1215 mark_ref_live (*def_rec);
1216
1217 /* If INSN has multiple outputs, then any value used in one
1218 of the outputs conflicts with the other outputs. Model this
1219 by making the used value live during the output phase.
1220
1221 It is unsafe to use !single_set here since it will ignore
1222 an unused output. Just because an output is unused does
1223 not mean the compiler can assume the side effect will not
1224 occur. Consider if ALLOCNO appears in the address of an
1225 output and we reload the output. If we allocate ALLOCNO
1226 to the same hard register as an unused output we could
1227 set the hard register before the output reload insn. */
1228 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1229 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1230 {
1231 int i;
1232 rtx reg;
1233
1234 reg = DF_REF_REG (*use_rec);
1235 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1236 {
1237 rtx set;
1238
1239 set = XVECEXP (PATTERN (insn), 0, i);
1240 if (GET_CODE (set) == SET
1241 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1242 {
1243 /* After the previous loop, this is a no-op if
1244 REG is contained within SET_DEST (SET). */
1245 mark_ref_live (*use_rec);
1246 break;
1247 }
1248 }
1249 }
1250
1251 extract_insn (insn);
1252 preprocess_constraints ();
1253 process_single_reg_class_operands (false, freq);
1254
1255 /* See which defined values die here. */
1256 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1257 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1258 mark_ref_dead (*def_rec);
1259
1260 if (call_p)
1261 {
1262 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1263 there, try to find a pseudo that is live across the call but
1264 can be cheaply reconstructed from the return value. */
1265 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1266 if (cheap_reg != NULL_RTX)
1267 add_reg_note (insn, REG_RETURNED, cheap_reg);
1268
1269 last_call_num++;
1270 sparseset_clear (allocnos_processed);
1271 /* The current set of live allocnos are live across the call. */
1272 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1273 {
1274 ira_object_t obj = ira_object_id_map[i];
1275 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1276 int num = ALLOCNO_NUM (a);
1277
1278 /* Don't allocate allocnos that cross setjmps or any
1279 call, if this function receives a nonlocal
1280 goto. */
1281 if (cfun->has_nonlocal_label
1282 || find_reg_note (insn, REG_SETJMP,
1283 NULL_RTX) != NULL_RTX)
1284 {
1285 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1286 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1287 }
1288 if (can_throw_internal (insn))
1289 {
1290 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1291 call_used_reg_set);
1292 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1293 call_used_reg_set);
1294 }
1295
1296 if (sparseset_bit_p (allocnos_processed, num))
1297 continue;
1298 sparseset_set_bit (allocnos_processed, num);
1299
1300 if (allocno_saved_at_call[num] != last_call_num)
1301 /* Here we are mimicking caller-save.c behaviour
1302 which does not save hard register at a call if
1303 it was saved on previous call in the same basic
1304 block and the hard register was not mentioned
1305 between the two calls. */
1306 ALLOCNO_CALL_FREQ (a) += freq;
1307 /* Mark it as saved at the next call. */
1308 allocno_saved_at_call[num] = last_call_num + 1;
1309 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1310 if (cheap_reg != NULL_RTX
1311 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1312 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1313 }
1314 }
1315
1316 make_early_clobber_and_input_conflicts ();
1317
1318 curr_point++;
1319
1320 /* Mark each used value as live. */
1321 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1322 mark_ref_live (*use_rec);
1323
1324 process_single_reg_class_operands (true, freq);
1325
1326 set_p = mark_hard_reg_early_clobbers (insn, true);
1327
1328 if (set_p)
1329 {
1330 mark_hard_reg_early_clobbers (insn, false);
1331
1332 /* Mark each hard reg as live again. For example, a
1333 hard register can be in clobber and in an insn
1334 input. */
1335 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1336 {
1337 rtx ureg = DF_REF_REG (*use_rec);
1338
1339 if (GET_CODE (ureg) == SUBREG)
1340 ureg = SUBREG_REG (ureg);
1341 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1342 continue;
1343
1344 mark_ref_live (*use_rec);
1345 }
1346 }
1347
1348 curr_point++;
1349 }
1350
1351 #ifdef EH_RETURN_DATA_REGNO
1352 if (bb_has_eh_pred (bb))
1353 for (j = 0; ; ++j)
1354 {
1355 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1356 if (regno == INVALID_REGNUM)
1357 break;
1358 make_hard_regno_born (regno);
1359 }
1360 #endif
1361
1362 /* Allocnos can't go in stack regs at the start of a basic block
1363 that is reached by an abnormal edge. Likewise for call
1364 clobbered regs, because caller-save, fixup_abnormal_edges and
1365 possibly the table driven EH machinery are not quite ready to
1366 handle such allocnos live across such edges. */
1367 if (bb_has_abnormal_pred (bb))
1368 {
1369 #ifdef STACK_REGS
1370 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1371 {
1372 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1373
1374 ALLOCNO_NO_STACK_REG_P (a) = true;
1375 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1376 }
1377 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1378 make_hard_regno_born (px);
1379 #endif
1380 /* No need to record conflicts for call clobbered regs if we
1381 have nonlocal labels around, as we don't ever try to
1382 allocate such regs in this case. */
1383 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1384 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1385 if (call_used_regs[px])
1386 make_hard_regno_born (px);
1387 }
1388
1389 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1390 make_object_dead (ira_object_id_map[i]);
1391
1392 curr_point++;
1393
1394 }
1395 /* Propagate register pressure to upper loop tree nodes: */
1396 if (loop_tree_node != ira_loop_tree_root)
1397 for (i = 0; i < ira_pressure_classes_num; i++)
1398 {
1399 enum reg_class pclass;
1400
1401 pclass = ira_pressure_classes[i];
1402 if (loop_tree_node->reg_pressure[pclass]
1403 > loop_tree_node->parent->reg_pressure[pclass])
1404 loop_tree_node->parent->reg_pressure[pclass]
1405 = loop_tree_node->reg_pressure[pclass];
1406 }
1407 }
1408
1409 /* Create and set up IRA_START_POINT_RANGES and
1410 IRA_FINISH_POINT_RANGES. */
1411 static void
1412 create_start_finish_chains (void)
1413 {
1414 ira_object_t obj;
1415 ira_object_iterator oi;
1416 live_range_t r;
1417
1418 ira_start_point_ranges
1419 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1420 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1421 ira_finish_point_ranges
1422 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1423 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1424 FOR_EACH_OBJECT (obj, oi)
1425 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1426 {
1427 r->start_next = ira_start_point_ranges[r->start];
1428 ira_start_point_ranges[r->start] = r;
1429 r->finish_next = ira_finish_point_ranges[r->finish];
1430 ira_finish_point_ranges[r->finish] = r;
1431 }
1432 }
1433
1434 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1435 new live ranges and program points were added as a result if new
1436 insn generation. */
1437 void
1438 ira_rebuild_start_finish_chains (void)
1439 {
1440 ira_free (ira_finish_point_ranges);
1441 ira_free (ira_start_point_ranges);
1442 create_start_finish_chains ();
1443 }
1444
1445 /* Compress allocno live ranges by removing program points where
1446 nothing happens. */
1447 static void
1448 remove_some_program_points_and_update_live_ranges (void)
1449 {
1450 unsigned i;
1451 int n;
1452 int *map;
1453 ira_object_t obj;
1454 ira_object_iterator oi;
1455 live_range_t r, prev_r, next_r;
1456 sbitmap born_or_dead, born, dead;
1457 sbitmap_iterator sbi;
1458 bool born_p, dead_p, prev_born_p, prev_dead_p;
1459
1460 born = sbitmap_alloc (ira_max_point);
1461 dead = sbitmap_alloc (ira_max_point);
1462 bitmap_clear (born);
1463 bitmap_clear (dead);
1464 FOR_EACH_OBJECT (obj, oi)
1465 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1466 {
1467 ira_assert (r->start <= r->finish);
1468 bitmap_set_bit (born, r->start);
1469 bitmap_set_bit (dead, r->finish);
1470 }
1471
1472 born_or_dead = sbitmap_alloc (ira_max_point);
1473 bitmap_ior (born_or_dead, born, dead);
1474 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1475 n = -1;
1476 prev_born_p = prev_dead_p = false;
1477 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1478 {
1479 born_p = bitmap_bit_p (born, i);
1480 dead_p = bitmap_bit_p (dead, i);
1481 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1482 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1483 map[i] = n;
1484 else
1485 map[i] = ++n;
1486 prev_born_p = born_p;
1487 prev_dead_p = dead_p;
1488 }
1489 sbitmap_free (born_or_dead);
1490 sbitmap_free (born);
1491 sbitmap_free (dead);
1492 n++;
1493 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1494 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1495 ira_max_point, n, 100 * n / ira_max_point);
1496 ira_max_point = n;
1497
1498 FOR_EACH_OBJECT (obj, oi)
1499 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1500 {
1501 next_r = r->next;
1502 r->start = map[r->start];
1503 r->finish = map[r->finish];
1504 if (prev_r == NULL || prev_r->start > r->finish + 1)
1505 {
1506 prev_r = r;
1507 continue;
1508 }
1509 prev_r->start = r->start;
1510 prev_r->next = next_r;
1511 ira_finish_live_range (r);
1512 }
1513
1514 ira_free (map);
1515 }
1516
1517 /* Print live ranges R to file F. */
1518 void
1519 ira_print_live_range_list (FILE *f, live_range_t r)
1520 {
1521 for (; r != NULL; r = r->next)
1522 fprintf (f, " [%d..%d]", r->start, r->finish);
1523 fprintf (f, "\n");
1524 }
1525
1526 /* Print live ranges R to stderr. */
1527 void
1528 ira_debug_live_range_list (live_range_t r)
1529 {
1530 ira_print_live_range_list (stderr, r);
1531 }
1532
1533 /* Print live ranges of object OBJ to file F. */
1534 static void
1535 print_object_live_ranges (FILE *f, ira_object_t obj)
1536 {
1537 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1538 }
1539
1540 /* Print live ranges of allocno A to file F. */
1541 static void
1542 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1543 {
1544 int n = ALLOCNO_NUM_OBJECTS (a);
1545 int i;
1546
1547 for (i = 0; i < n; i++)
1548 {
1549 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1550 if (n > 1)
1551 fprintf (f, " [%d]", i);
1552 fprintf (f, "):");
1553 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1554 }
1555 }
1556
1557 /* Print live ranges of allocno A to stderr. */
1558 void
1559 ira_debug_allocno_live_ranges (ira_allocno_t a)
1560 {
1561 print_allocno_live_ranges (stderr, a);
1562 }
1563
1564 /* Print live ranges of all allocnos to file F. */
1565 static void
1566 print_live_ranges (FILE *f)
1567 {
1568 ira_allocno_t a;
1569 ira_allocno_iterator ai;
1570
1571 FOR_EACH_ALLOCNO (a, ai)
1572 print_allocno_live_ranges (f, a);
1573 }
1574
1575 /* Print live ranges of all allocnos to stderr. */
1576 void
1577 ira_debug_live_ranges (void)
1578 {
1579 print_live_ranges (stderr);
1580 }
1581
1582 /* The main entry function creates live ranges, set up
1583 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1584 calculate register pressure info. */
1585 void
1586 ira_create_allocno_live_ranges (void)
1587 {
1588 objects_live = sparseset_alloc (ira_objects_num);
1589 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1590 curr_point = 0;
1591 last_call_num = 0;
1592 allocno_saved_at_call
1593 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1594 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1595 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1596 process_bb_node_lives);
1597 ira_max_point = curr_point;
1598 create_start_finish_chains ();
1599 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1600 print_live_ranges (ira_dump_file);
1601 /* Clean up. */
1602 ira_free (allocno_saved_at_call);
1603 sparseset_free (objects_live);
1604 sparseset_free (allocnos_processed);
1605 }
1606
1607 /* Compress allocno live ranges. */
1608 void
1609 ira_compress_allocno_live_ranges (void)
1610 {
1611 remove_some_program_points_and_update_live_ranges ();
1612 ira_rebuild_start_finish_chains ();
1613 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1614 {
1615 fprintf (ira_dump_file, "Ranges after the compression:\n");
1616 print_live_ranges (ira_dump_file);
1617 }
1618 }
1619
1620 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1621 void
1622 ira_finish_allocno_live_ranges (void)
1623 {
1624 ira_free (ira_finish_point_ranges);
1625 ira_free (ira_start_point_ranges);
1626 }