20020201-1.c: Remove declarations for exit, abort, rand, srand.
[gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
31
32 Major IRA notions are:
33
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
40
41 o *Allocno class* is a register class used for allocation of
42 given allocno. It means that only hard register of given
43 register class can be assigned to given allocno. In reality,
44 even smaller subset of (*profitable*) hard registers can be
45 assigned. In rare cases, the subset can be even smaller
46 because our modification of Chaitin-Briggs algorithm requires
47 that sets of hard registers can be assigned to allocnos forms a
48 forest, i.e. the sets can be ordered in a way where any
49 previous set is not intersected with given set or is a superset
50 of given set.
51
52 o *Pressure class* is a register class belonging to a set of
53 register classes containing all of the hard-registers available
54 for register allocation. The set of all pressure classes for a
55 target is defined in the corresponding machine-description file
56 according some criteria. Register pressure is calculated only
57 for pressure classes and it affects some IRA decisions as
58 forming allocation regions.
59
60 o *Allocno* represents the live range of a pseudo-register in a
61 region. Besides the obvious attributes like the corresponding
62 pseudo-register number, allocno class, conflicting allocnos and
63 conflicting hard-registers, there are a few allocno attributes
64 which are important for understanding the allocation algorithm:
65
66 - *Live ranges*. This is a list of ranges of *program points*
67 where the allocno lives. Program points represent places
68 where a pseudo can be born or become dead (there are
69 approximately two times more program points than the insns)
70 and they are represented by integers starting with 0. The
71 live ranges are used to find conflicts between allocnos.
72 They also play very important role for the transformation of
73 the IRA internal representation of several regions into a one
74 region representation. The later is used during the reload
75 pass work because each allocno represents all of the
76 corresponding pseudo-registers.
77
78 - *Hard-register costs*. This is a vector of size equal to the
79 number of available hard-registers of the allocno class. The
80 cost of a callee-clobbered hard-register for an allocno is
81 increased by the cost of save/restore code around the calls
82 through the given allocno's life. If the allocno is a move
83 instruction operand and another operand is a hard-register of
84 the allocno class, the cost of the hard-register is decreased
85 by the move cost.
86
87 When an allocno is assigned, the hard-register with minimal
88 full cost is used. Initially, a hard-register's full cost is
89 the corresponding value from the hard-register's cost vector.
90 If the allocno is connected by a *copy* (see below) to
91 another allocno which has just received a hard-register, the
92 cost of the hard-register is decreased. Before choosing a
93 hard-register for an allocno, the allocno's current costs of
94 the hard-registers are modified by the conflict hard-register
95 costs of all of the conflicting allocnos which are not
96 assigned yet.
97
98 - *Conflict hard-register costs*. This is a vector of the same
99 size as the hard-register costs vector. To permit an
100 unassigned allocno to get a better hard-register, IRA uses
101 this vector to calculate the final full cost of the
102 available hard-registers. Conflict hard-register costs of an
103 unassigned allocno are also changed with a change of the
104 hard-register cost of the allocno when a copy involving the
105 allocno is processed as described above. This is done to
106 show other unassigned allocnos that a given allocno prefers
107 some hard-registers in order to remove the move instruction
108 corresponding to the copy.
109
110 o *Cap*. If a pseudo-register does not live in a region but
111 lives in a nested region, IRA creates a special allocno called
112 a cap in the outer region. A region cap is also created for a
113 subregion cap.
114
115 o *Copy*. Allocnos can be connected by copies. Copies are used
116 to modify hard-register costs for allocnos during coloring.
117 Such modifications reflects a preference to use the same
118 hard-register for the allocnos connected by copies. Usually
119 copies are created for move insns (in this case it results in
120 register coalescing). But IRA also creates copies for operands
121 of an insn which should be assigned to the same hard-register
122 due to constraints in the machine description (it usually
123 results in removing a move generated in reload to satisfy
124 the constraints) and copies referring to the allocno which is
125 the output operand of an instruction and the allocno which is
126 an input operand dying in the instruction (creation of such
127 copies results in less register shuffling). IRA *does not*
128 create copies between the same register allocnos from different
129 regions because we use another technique for propagating
130 hard-register preference on the borders of regions.
131
132 Allocnos (including caps) for the upper region in the region tree
133 *accumulate* information important for coloring from allocnos with
134 the same pseudo-register from nested regions. This includes
135 hard-register and memory costs, conflicts with hard-registers,
136 allocno conflicts, allocno copies and more. *Thus, attributes for
137 allocnos in a region have the same values as if the region had no
138 subregions*. It means that attributes for allocnos in the
139 outermost region corresponding to the function have the same values
140 as though the allocation used only one region which is the entire
141 function. It also means that we can look at IRA work as if the
142 first IRA did allocation for all function then it improved the
143 allocation for loops then their subloops and so on.
144
145 IRA major passes are:
146
147 o Building IRA internal representation which consists of the
148 following subpasses:
149
150 * First, IRA builds regions and creates allocnos (file
151 ira-build.c) and initializes most of their attributes.
152
153 * Then IRA finds an allocno class for each allocno and
154 calculates its initial (non-accumulated) cost of memory and
155 each hard-register of its allocno class (file ira-cost.c).
156
157 * IRA creates live ranges of each allocno, calulates register
158 pressure for each pressure class in each region, sets up
159 conflict hard registers for each allocno and info about calls
160 the allocno lives through (file ira-lives.c).
161
162 * IRA removes low register pressure loops from the regions
163 mostly to speed IRA up (file ira-build.c).
164
165 * IRA propagates accumulated allocno info from lower region
166 allocnos to corresponding upper region allocnos (file
167 ira-build.c).
168
169 * IRA creates all caps (file ira-build.c).
170
171 * Having live-ranges of allocnos and their classes, IRA creates
172 conflicting allocnos for each allocno. Conflicting allocnos
173 are stored as a bit vector or array of pointers to the
174 conflicting allocnos whatever is more profitable (file
175 ira-conflicts.c). At this point IRA creates allocno copies.
176
177 o Coloring. Now IRA has all necessary info to start graph coloring
178 process. It is done in each region on top-down traverse of the
179 region tree (file ira-color.c). There are following subpasses:
180
181 * Finding profitable hard registers of corresponding allocno
182 class for each allocno. For example, only callee-saved hard
183 registers are frequently profitable for allocnos living
184 through colors. If the profitable hard register set of
185 allocno does not form a tree based on subset relation, we use
186 some approximation to form the tree. This approximation is
187 used to figure out trivial colorability of allocnos. The
188 approximation is a pretty rare case.
189
190 * Putting allocnos onto the coloring stack. IRA uses Briggs
191 optimistic coloring which is a major improvement over
192 Chaitin's coloring. Therefore IRA does not spill allocnos at
193 this point. There is some freedom in the order of putting
194 allocnos on the stack which can affect the final result of
195 the allocation. IRA uses some heuristics to improve the
196 order.
197
198 We also use a modification of Chaitin-Briggs algorithm which
199 works for intersected register classes of allocnos. To
200 figure out trivial colorability of allocnos, the mentioned
201 above tree of hard register sets is used. To get an idea how
202 the algorithm works in i386 example, let us consider an
203 allocno to which any general hard register can be assigned.
204 If the allocno conflicts with eight allocnos to which only
205 EAX register can be assigned, given allocno is still
206 trivially colorable because all conflicting allocnos might be
207 assigned only to EAX and all other general hard registers are
208 still free.
209
210 To get an idea of the used trivial colorability criterion, it
211 is also useful to read article "Graph-Coloring Register
212 Allocation for Irregular Architectures" by Michael D. Smith
213 and Glen Holloway. Major difference between the article
214 approach and approach used in IRA is that Smith's approach
215 takes register classes only from machine description and IRA
216 calculate register classes from intermediate code too
217 (e.g. an explicit usage of hard registers in RTL code for
218 parameter passing can result in creation of additional
219 register classes which contain or exclude the hard
220 registers). That makes IRA approach useful for improving
221 coloring even for architectures with regular register files
222 and in fact some benchmarking shows the improvement for
223 regular class architectures is even bigger than for irregular
224 ones. Another difference is that Smith's approach chooses
225 intersection of classes of all insn operands in which a given
226 pseudo occurs. IRA can use bigger classes if it is still
227 more profitable than memory usage.
228
229 * Popping the allocnos from the stack and assigning them hard
230 registers. If IRA can not assign a hard register to an
231 allocno and the allocno is coalesced, IRA undoes the
232 coalescing and puts the uncoalesced allocnos onto the stack in
233 the hope that some such allocnos will get a hard register
234 separately. If IRA fails to assign hard register or memory
235 is more profitable for it, IRA spills the allocno. IRA
236 assigns the allocno the hard-register with minimal full
237 allocation cost which reflects the cost of usage of the
238 hard-register for the allocno and cost of usage of the
239 hard-register for allocnos conflicting with given allocno.
240
241 * Chaitin-Briggs coloring assigns as many pseudos as possible
242 to hard registers. After coloringh we try to improve
243 allocation with cost point of view. We improve the
244 allocation by spilling some allocnos and assigning the freed
245 hard registers to other allocnos if it decreases the overall
246 allocation cost.
247
248 * After allono assigning in the region, IRA modifies the hard
249 register and memory costs for the corresponding allocnos in
250 the subregions to reflect the cost of possible loads, stores,
251 or moves on the border of the region and its subregions.
252 When default regional allocation algorithm is used
253 (-fira-algorithm=mixed), IRA just propagates the assignment
254 for allocnos if the register pressure in the region for the
255 corresponding pressure class is less than number of available
256 hard registers for given pressure class.
257
258 o Spill/restore code moving. When IRA performs an allocation
259 by traversing regions in top-down order, it does not know what
260 happens below in the region tree. Therefore, sometimes IRA
261 misses opportunities to perform a better allocation. A simple
262 optimization tries to improve allocation in a region having
263 subregions and containing in another region. If the
264 corresponding allocnos in the subregion are spilled, it spills
265 the region allocno if it is profitable. The optimization
266 implements a simple iterative algorithm performing profitable
267 transformations while they are still possible. It is fast in
268 practice, so there is no real need for a better time complexity
269 algorithm.
270
271 o Code change. After coloring, two allocnos representing the
272 same pseudo-register outside and inside a region respectively
273 may be assigned to different locations (hard-registers or
274 memory). In this case IRA creates and uses a new
275 pseudo-register inside the region and adds code to move allocno
276 values on the region's borders. This is done during top-down
277 traversal of the regions (file ira-emit.c). In some
278 complicated cases IRA can create a new allocno to move allocno
279 values (e.g. when a swap of values stored in two hard-registers
280 is needed). At this stage, the new allocno is marked as
281 spilled. IRA still creates the pseudo-register and the moves
282 on the region borders even when both allocnos were assigned to
283 the same hard-register. If the reload pass spills a
284 pseudo-register for some reason, the effect will be smaller
285 because another allocno will still be in the hard-register. In
286 most cases, this is better then spilling both allocnos. If
287 reload does not change the allocation for the two
288 pseudo-registers, the trivial move will be removed by
289 post-reload optimizations. IRA does not generate moves for
290 allocnos assigned to the same hard register when the default
291 regional allocation algorithm is used and the register pressure
292 in the region for the corresponding pressure class is less than
293 number of available hard registers for given pressure class.
294 IRA also does some optimizations to remove redundant stores and
295 to reduce code duplication on the region borders.
296
297 o Flattening internal representation. After changing code, IRA
298 transforms its internal representation for several regions into
299 one region representation (file ira-build.c). This process is
300 called IR flattening. Such process is more complicated than IR
301 rebuilding would be, but is much faster.
302
303 o After IR flattening, IRA tries to assign hard registers to all
304 spilled allocnos. This is impelemented by a simple and fast
305 priority coloring algorithm (see function
306 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
307 created during the code change pass can be assigned to hard
308 registers.
309
310 o At the end IRA calls the reload pass. The reload pass
311 communicates with IRA through several functions in file
312 ira-color.c to improve its decisions in
313
314 * sharing stack slots for the spilled pseudos based on IRA info
315 about pseudo-register conflicts.
316
317 * reassigning hard-registers to all spilled pseudos at the end
318 of each reload iteration.
319
320 * choosing a better hard-register to spill based on IRA info
321 about pseudo-register live ranges and the register pressure
322 in places where the pseudo-register lives.
323
324 IRA uses a lot of data representing the target processors. These
325 data are initilized in file ira.c.
326
327 If function has no loops (or the loops are ignored when
328 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329 coloring (only instead of separate pass of coalescing, we use hard
330 register preferencing). In such case, IRA works much faster
331 because many things are not made (like IR flattening, the
332 spill/restore optimization, and the code change).
333
334 Literature is worth to read for better understanding the code:
335
336 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
337 Graph Coloring Register Allocation.
338
339 o David Callahan, Brian Koblenz. Register allocation via
340 hierarchical graph coloring.
341
342 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343 Coloring Register Allocation: A Study of the Chaitin-Briggs and
344 Callahan-Koblenz Algorithms.
345
346 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347 Register Allocation Based on Graph Fusion.
348
349 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
350 Allocation for Irregular Architectures
351
352 o Vladimir Makarov. The Integrated Register Allocator for GCC.
353
354 o Vladimir Makarov. The top-down register allocator for irregular
355 register file architectures.
356
357 */
358
359
360 #include "config.h"
361 #include "system.h"
362 #include "coretypes.h"
363 #include "tm.h"
364 #include "regs.h"
365 #include "rtl.h"
366 #include "tm_p.h"
367 #include "target.h"
368 #include "flags.h"
369 #include "obstack.h"
370 #include "bitmap.h"
371 #include "hard-reg-set.h"
372 #include "basic-block.h"
373 #include "df.h"
374 #include "expr.h"
375 #include "recog.h"
376 #include "params.h"
377 #include "tree-pass.h"
378 #include "output.h"
379 #include "except.h"
380 #include "reload.h"
381 #include "diagnostic-core.h"
382 #include "function.h"
383 #include "ggc.h"
384 #include "ira-int.h"
385 #include "dce.h"
386 #include "dbgcnt.h"
387
388 struct target_ira default_target_ira;
389 struct target_ira_int default_target_ira_int;
390 #if SWITCHABLE_TARGET
391 struct target_ira *this_target_ira = &default_target_ira;
392 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
393 #endif
394
395 /* A modified value of flag `-fira-verbose' used internally. */
396 int internal_flag_ira_verbose;
397
398 /* Dump file of the allocator if it is not NULL. */
399 FILE *ira_dump_file;
400
401 /* The number of elements in the following array. */
402 int ira_spilled_reg_stack_slots_num;
403
404 /* The following array contains info about spilled pseudo-registers
405 stack slots used in current function so far. */
406 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
407
408 /* Correspondingly overall cost of the allocation, overall cost before
409 reload, cost of the allocnos assigned to hard-registers, cost of
410 the allocnos assigned to memory, cost of loads, stores and register
411 move insns generated for pseudo-register live range splitting (see
412 ira-emit.c). */
413 int ira_overall_cost, overall_cost_before;
414 int ira_reg_cost, ira_mem_cost;
415 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
416 int ira_move_loops_num, ira_additional_jumps_num;
417
418 /* All registers that can be eliminated. */
419
420 HARD_REG_SET eliminable_regset;
421
422 /* Temporary hard reg set used for a different calculation. */
423 static HARD_REG_SET temp_hard_regset;
424
425 #define last_mode_for_init_move_cost \
426 (this_target_ira_int->x_last_mode_for_init_move_cost)
427 \f
428
429 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
430 static void
431 setup_reg_mode_hard_regset (void)
432 {
433 int i, m, hard_regno;
434
435 for (m = 0; m < NUM_MACHINE_MODES; m++)
436 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
437 {
438 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
439 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
440 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
441 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
442 hard_regno + i);
443 }
444 }
445
446 \f
447 #define no_unit_alloc_regs \
448 (this_target_ira_int->x_no_unit_alloc_regs)
449
450 /* The function sets up the three arrays declared above. */
451 static void
452 setup_class_hard_regs (void)
453 {
454 int cl, i, hard_regno, n;
455 HARD_REG_SET processed_hard_reg_set;
456
457 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
458 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
459 {
460 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
461 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
462 CLEAR_HARD_REG_SET (processed_hard_reg_set);
463 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
464 {
465 ira_non_ordered_class_hard_regs[cl][i] = -1;
466 ira_class_hard_reg_index[cl][i] = -1;
467 }
468 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
469 {
470 #ifdef REG_ALLOC_ORDER
471 hard_regno = reg_alloc_order[i];
472 #else
473 hard_regno = i;
474 #endif
475 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
476 continue;
477 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
478 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
479 ira_class_hard_reg_index[cl][hard_regno] = -1;
480 else
481 {
482 ira_class_hard_reg_index[cl][hard_regno] = n;
483 ira_class_hard_regs[cl][n++] = hard_regno;
484 }
485 }
486 ira_class_hard_regs_num[cl] = n;
487 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
488 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
489 ira_non_ordered_class_hard_regs[cl][n++] = i;
490 ira_assert (ira_class_hard_regs_num[cl] == n);
491 }
492 }
493
494 /* Set up global variables defining info about hard registers for the
495 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
496 that we can use the hard frame pointer for the allocation. */
497 static void
498 setup_alloc_regs (bool use_hard_frame_p)
499 {
500 #ifdef ADJUST_REG_ALLOC_ORDER
501 ADJUST_REG_ALLOC_ORDER;
502 #endif
503 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
504 if (! use_hard_frame_p)
505 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
506 setup_class_hard_regs ();
507 }
508
509 \f
510
511 #define alloc_reg_class_subclasses \
512 (this_target_ira_int->x_alloc_reg_class_subclasses)
513
514 /* Initialize the table of subclasses of each reg class. */
515 static void
516 setup_reg_subclasses (void)
517 {
518 int i, j;
519 HARD_REG_SET temp_hard_regset2;
520
521 for (i = 0; i < N_REG_CLASSES; i++)
522 for (j = 0; j < N_REG_CLASSES; j++)
523 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
524
525 for (i = 0; i < N_REG_CLASSES; i++)
526 {
527 if (i == (int) NO_REGS)
528 continue;
529
530 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
531 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
532 if (hard_reg_set_empty_p (temp_hard_regset))
533 continue;
534 for (j = 0; j < N_REG_CLASSES; j++)
535 if (i != j)
536 {
537 enum reg_class *p;
538
539 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
540 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
541 if (! hard_reg_set_subset_p (temp_hard_regset,
542 temp_hard_regset2))
543 continue;
544 p = &alloc_reg_class_subclasses[j][0];
545 while (*p != LIM_REG_CLASSES) p++;
546 *p = (enum reg_class) i;
547 }
548 }
549 }
550
551 \f
552
553 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
554 static void
555 setup_class_subset_and_memory_move_costs (void)
556 {
557 int cl, cl2, mode, cost;
558 HARD_REG_SET temp_hard_regset2;
559
560 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
561 ira_memory_move_cost[mode][NO_REGS][0]
562 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
563 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
564 {
565 if (cl != (int) NO_REGS)
566 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
567 {
568 ira_max_memory_move_cost[mode][cl][0]
569 = ira_memory_move_cost[mode][cl][0]
570 = memory_move_cost ((enum machine_mode) mode,
571 (reg_class_t) cl, false);
572 ira_max_memory_move_cost[mode][cl][1]
573 = ira_memory_move_cost[mode][cl][1]
574 = memory_move_cost ((enum machine_mode) mode,
575 (reg_class_t) cl, true);
576 /* Costs for NO_REGS are used in cost calculation on the
577 1st pass when the preferred register classes are not
578 known yet. In this case we take the best scenario. */
579 if (ira_memory_move_cost[mode][NO_REGS][0]
580 > ira_memory_move_cost[mode][cl][0])
581 ira_max_memory_move_cost[mode][NO_REGS][0]
582 = ira_memory_move_cost[mode][NO_REGS][0]
583 = ira_memory_move_cost[mode][cl][0];
584 if (ira_memory_move_cost[mode][NO_REGS][1]
585 > ira_memory_move_cost[mode][cl][1])
586 ira_max_memory_move_cost[mode][NO_REGS][1]
587 = ira_memory_move_cost[mode][NO_REGS][1]
588 = ira_memory_move_cost[mode][cl][1];
589 }
590 }
591 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
592 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
593 {
594 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
595 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
596 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
597 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
598 ira_class_subset_p[cl][cl2]
599 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
600 if (! hard_reg_set_empty_p (temp_hard_regset2)
601 && hard_reg_set_subset_p (reg_class_contents[cl2],
602 reg_class_contents[cl]))
603 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
604 {
605 cost = ira_memory_move_cost[mode][cl2][0];
606 if (cost > ira_max_memory_move_cost[mode][cl][0])
607 ira_max_memory_move_cost[mode][cl][0] = cost;
608 cost = ira_memory_move_cost[mode][cl2][1];
609 if (cost > ira_max_memory_move_cost[mode][cl][1])
610 ira_max_memory_move_cost[mode][cl][1] = cost;
611 }
612 }
613 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
614 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
615 {
616 ira_memory_move_cost[mode][cl][0]
617 = ira_max_memory_move_cost[mode][cl][0];
618 ira_memory_move_cost[mode][cl][1]
619 = ira_max_memory_move_cost[mode][cl][1];
620 }
621 setup_reg_subclasses ();
622 }
623
624 \f
625
626 /* Define the following macro if allocation through malloc if
627 preferable. */
628 #define IRA_NO_OBSTACK
629
630 #ifndef IRA_NO_OBSTACK
631 /* Obstack used for storing all dynamic data (except bitmaps) of the
632 IRA. */
633 static struct obstack ira_obstack;
634 #endif
635
636 /* Obstack used for storing all bitmaps of the IRA. */
637 static struct bitmap_obstack ira_bitmap_obstack;
638
639 /* Allocate memory of size LEN for IRA data. */
640 void *
641 ira_allocate (size_t len)
642 {
643 void *res;
644
645 #ifndef IRA_NO_OBSTACK
646 res = obstack_alloc (&ira_obstack, len);
647 #else
648 res = xmalloc (len);
649 #endif
650 return res;
651 }
652
653 /* Free memory ADDR allocated for IRA data. */
654 void
655 ira_free (void *addr ATTRIBUTE_UNUSED)
656 {
657 #ifndef IRA_NO_OBSTACK
658 /* do nothing */
659 #else
660 free (addr);
661 #endif
662 }
663
664
665 /* Allocate and returns bitmap for IRA. */
666 bitmap
667 ira_allocate_bitmap (void)
668 {
669 return BITMAP_ALLOC (&ira_bitmap_obstack);
670 }
671
672 /* Free bitmap B allocated for IRA. */
673 void
674 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
675 {
676 /* do nothing */
677 }
678
679 \f
680
681 /* Output information about allocation of all allocnos (except for
682 caps) into file F. */
683 void
684 ira_print_disposition (FILE *f)
685 {
686 int i, n, max_regno;
687 ira_allocno_t a;
688 basic_block bb;
689
690 fprintf (f, "Disposition:");
691 max_regno = max_reg_num ();
692 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
693 for (a = ira_regno_allocno_map[i];
694 a != NULL;
695 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
696 {
697 if (n % 4 == 0)
698 fprintf (f, "\n");
699 n++;
700 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
701 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
702 fprintf (f, "b%-3d", bb->index);
703 else
704 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
705 if (ALLOCNO_HARD_REGNO (a) >= 0)
706 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
707 else
708 fprintf (f, " mem");
709 }
710 fprintf (f, "\n");
711 }
712
713 /* Outputs information about allocation of all allocnos into
714 stderr. */
715 void
716 ira_debug_disposition (void)
717 {
718 ira_print_disposition (stderr);
719 }
720
721 \f
722
723 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
724 register class containing stack registers or NO_REGS if there are
725 no stack registers. To find this class, we iterate through all
726 register pressure classes and choose the first register pressure
727 class containing all the stack registers and having the biggest
728 size. */
729 static void
730 setup_stack_reg_pressure_class (void)
731 {
732 ira_stack_reg_pressure_class = NO_REGS;
733 #ifdef STACK_REGS
734 {
735 int i, best, size;
736 enum reg_class cl;
737 HARD_REG_SET temp_hard_regset2;
738
739 CLEAR_HARD_REG_SET (temp_hard_regset);
740 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
741 SET_HARD_REG_BIT (temp_hard_regset, i);
742 best = 0;
743 for (i = 0; i < ira_pressure_classes_num; i++)
744 {
745 cl = ira_pressure_classes[i];
746 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
747 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
748 size = hard_reg_set_size (temp_hard_regset2);
749 if (best < size)
750 {
751 best = size;
752 ira_stack_reg_pressure_class = cl;
753 }
754 }
755 }
756 #endif
757 }
758
759 /* Find pressure classes which are register classes for which we
760 calculate register pressure in IRA, register pressure sensitive
761 insn scheduling, and register pressure sensitive loop invariant
762 motion.
763
764 To make register pressure calculation easy, we always use
765 non-intersected register pressure classes. A move of hard
766 registers from one register pressure class is not more expensive
767 than load and store of the hard registers. Most likely an allocno
768 class will be a subset of a register pressure class and in many
769 cases a register pressure class. That makes usage of register
770 pressure classes a good approximation to find a high register
771 pressure. */
772 static void
773 setup_pressure_classes (void)
774 {
775 int cost, i, n, curr;
776 int cl, cl2;
777 enum reg_class pressure_classes[N_REG_CLASSES];
778 int m;
779 HARD_REG_SET temp_hard_regset2;
780 bool insert_p;
781
782 n = 0;
783 for (cl = 0; cl < N_REG_CLASSES; cl++)
784 {
785 if (ira_class_hard_regs_num[cl] == 0)
786 continue;
787 if (ira_class_hard_regs_num[cl] != 1
788 /* A register class without subclasses may contain a few
789 hard registers and movement between them is costly
790 (e.g. SPARC FPCC registers). We still should consider it
791 as a candidate for a pressure class. */
792 && alloc_reg_class_subclasses[cl][0] != LIM_REG_CLASSES)
793 {
794 /* Check that the moves between any hard registers of the
795 current class are not more expensive for a legal mode
796 than load/store of the hard registers of the current
797 class. Such class is a potential candidate to be a
798 register pressure class. */
799 for (m = 0; m < NUM_MACHINE_MODES; m++)
800 {
801 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
802 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
803 AND_COMPL_HARD_REG_SET (temp_hard_regset,
804 ira_prohibited_class_mode_regs[cl][m]);
805 if (hard_reg_set_empty_p (temp_hard_regset))
806 continue;
807 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
808 cost = ira_register_move_cost[m][cl][cl];
809 if (cost <= ira_max_memory_move_cost[m][cl][1]
810 || cost <= ira_max_memory_move_cost[m][cl][0])
811 break;
812 }
813 if (m >= NUM_MACHINE_MODES)
814 continue;
815 }
816 curr = 0;
817 insert_p = true;
818 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
819 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
820 /* Remove so far added pressure classes which are subset of the
821 current candidate class. Prefer GENERAL_REGS as a pressure
822 register class to another class containing the same
823 allocatable hard registers. We do this because machine
824 dependent cost hooks might give wrong costs for the latter
825 class but always give the right cost for the former class
826 (GENERAL_REGS). */
827 for (i = 0; i < n; i++)
828 {
829 cl2 = pressure_classes[i];
830 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
832 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
833 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
834 || cl2 == (int) GENERAL_REGS))
835 {
836 pressure_classes[curr++] = (enum reg_class) cl2;
837 insert_p = false;
838 continue;
839 }
840 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
841 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
842 || cl == (int) GENERAL_REGS))
843 continue;
844 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
845 insert_p = false;
846 pressure_classes[curr++] = (enum reg_class) cl2;
847 }
848 /* If the current candidate is a subset of a so far added
849 pressure class, don't add it to the list of the pressure
850 classes. */
851 if (insert_p)
852 pressure_classes[curr++] = (enum reg_class) cl;
853 n = curr;
854 }
855 #ifdef ENABLE_IRA_CHECKING
856 {
857 HARD_REG_SET ignore_hard_regs;
858
859 /* Check pressure classes correctness: here we check that hard
860 registers from all register pressure classes contains all hard
861 registers available for the allocation. */
862 CLEAR_HARD_REG_SET (temp_hard_regset);
863 CLEAR_HARD_REG_SET (temp_hard_regset2);
864 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
865 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
866 {
867 /* For some targets (like MIPS with MD_REGS), there are some
868 classes with hard registers available for allocation but
869 not able to hold value of any mode. */
870 for (m = 0; m < NUM_MACHINE_MODES; m++)
871 if (contains_reg_of_mode[cl][m])
872 break;
873 if (m >= NUM_MACHINE_MODES)
874 {
875 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
876 continue;
877 }
878 for (i = 0; i < n; i++)
879 if ((int) pressure_classes[i] == cl)
880 break;
881 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
882 if (i < n)
883 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
884 }
885 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
886 /* Some targets (like SPARC with ICC reg) have alocatable regs
887 for which no reg class is defined. */
888 if (REGNO_REG_CLASS (i) == NO_REGS)
889 SET_HARD_REG_BIT (ignore_hard_regs, i);
890 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
891 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
892 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
893 }
894 #endif
895 ira_pressure_classes_num = 0;
896 for (i = 0; i < n; i++)
897 {
898 cl = (int) pressure_classes[i];
899 ira_reg_pressure_class_p[cl] = true;
900 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
901 }
902 setup_stack_reg_pressure_class ();
903 }
904
905 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
906 whose register move cost between any registers of the class is the
907 same as for all its subclasses. We use the data to speed up the
908 2nd pass of calculations of allocno costs. */
909 static void
910 setup_uniform_class_p (void)
911 {
912 int i, cl, cl2, m;
913
914 for (cl = 0; cl < N_REG_CLASSES; cl++)
915 {
916 ira_uniform_class_p[cl] = false;
917 if (ira_class_hard_regs_num[cl] == 0)
918 continue;
919 /* We can not use alloc_reg_class_subclasses here because move
920 cost hooks does not take into account that some registers are
921 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
922 is element of alloc_reg_class_subclasses for GENERAL_REGS
923 because SSE regs are unavailable. */
924 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
925 {
926 if (ira_class_hard_regs_num[cl2] == 0)
927 continue;
928 for (m = 0; m < NUM_MACHINE_MODES; m++)
929 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
930 {
931 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
932 if (ira_register_move_cost[m][cl][cl]
933 != ira_register_move_cost[m][cl2][cl2])
934 break;
935 }
936 if (m < NUM_MACHINE_MODES)
937 break;
938 }
939 if (cl2 == LIM_REG_CLASSES)
940 ira_uniform_class_p[cl] = true;
941 }
942 }
943
944 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
945 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
946
947 Target may have many subtargets and not all target hard regiters can
948 be used for allocation, e.g. x86 port in 32-bit mode can not use
949 hard registers introduced in x86-64 like r8-r15). Some classes
950 might have the same allocatable hard registers, e.g. INDEX_REGS
951 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
952 calculations efforts we introduce allocno classes which contain
953 unique non-empty sets of allocatable hard-registers.
954
955 Pseudo class cost calculation in ira-costs.c is very expensive.
956 Therefore we are trying to decrease number of classes involved in
957 such calculation. Register classes used in the cost calculation
958 are called important classes. They are allocno classes and other
959 non-empty classes whose allocatable hard register sets are inside
960 of an allocno class hard register set. From the first sight, it
961 looks like that they are just allocno classes. It is not true. In
962 example of x86-port in 32-bit mode, allocno classes will contain
963 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
964 registers are the same for the both classes). The important
965 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
966 because a machine description insn constraint may refers for
967 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
968 of the insn constraints. */
969 static void
970 setup_allocno_and_important_classes (void)
971 {
972 int i, j, n, cl;
973 bool set_p;
974 HARD_REG_SET temp_hard_regset2;
975 static enum reg_class classes[LIM_REG_CLASSES + 1];
976
977 n = 0;
978 /* Collect classes which contain unique sets of allocatable hard
979 registers. Prefer GENERAL_REGS to other classes containing the
980 same set of hard registers. */
981 for (i = 0; i < LIM_REG_CLASSES; i++)
982 {
983 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
984 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
985 for (j = 0; j < n; j++)
986 {
987 cl = classes[j];
988 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
989 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
990 no_unit_alloc_regs);
991 if (hard_reg_set_equal_p (temp_hard_regset,
992 temp_hard_regset2))
993 break;
994 }
995 if (j >= n)
996 classes[n++] = (enum reg_class) i;
997 else if (i == GENERAL_REGS)
998 /* Prefer general regs. For i386 example, it means that
999 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1000 (all of them consists of the same available hard
1001 registers). */
1002 classes[j] = (enum reg_class) i;
1003 }
1004 classes[n] = LIM_REG_CLASSES;
1005
1006 /* Set up classes which can be used for allocnos as classes
1007 conatining non-empty unique sets of allocatable hard
1008 registers. */
1009 ira_allocno_classes_num = 0;
1010 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1011 if (ira_class_hard_regs_num[cl] > 0)
1012 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1013 ira_important_classes_num = 0;
1014 /* Add non-allocno classes containing to non-empty set of
1015 allocatable hard regs. */
1016 for (cl = 0; cl < N_REG_CLASSES; cl++)
1017 if (ira_class_hard_regs_num[cl] > 0)
1018 {
1019 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1020 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1021 set_p = false;
1022 for (j = 0; j < ira_allocno_classes_num; j++)
1023 {
1024 COPY_HARD_REG_SET (temp_hard_regset2,
1025 reg_class_contents[ira_allocno_classes[j]]);
1026 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1027 if ((enum reg_class) cl == ira_allocno_classes[j])
1028 break;
1029 else if (hard_reg_set_subset_p (temp_hard_regset,
1030 temp_hard_regset2))
1031 set_p = true;
1032 }
1033 if (set_p && j >= ira_allocno_classes_num)
1034 ira_important_classes[ira_important_classes_num++]
1035 = (enum reg_class) cl;
1036 }
1037 /* Now add allocno classes to the important classes. */
1038 for (j = 0; j < ira_allocno_classes_num; j++)
1039 ira_important_classes[ira_important_classes_num++]
1040 = ira_allocno_classes[j];
1041 for (cl = 0; cl < N_REG_CLASSES; cl++)
1042 {
1043 ira_reg_allocno_class_p[cl] = false;
1044 ira_reg_pressure_class_p[cl] = false;
1045 }
1046 for (j = 0; j < ira_allocno_classes_num; j++)
1047 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1048 setup_pressure_classes ();
1049 setup_uniform_class_p ();
1050 }
1051
1052 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1053 given by array CLASSES of length CLASSES_NUM. The function is used
1054 make translation any reg class to an allocno class or to an
1055 pressure class. This translation is necessary for some
1056 calculations when we can use only allocno or pressure classes and
1057 such translation represents an approximate representation of all
1058 classes.
1059
1060 The translation in case when allocatable hard register set of a
1061 given class is subset of allocatable hard register set of a class
1062 in CLASSES is pretty simple. We use smallest classes from CLASSES
1063 containing a given class. If allocatable hard register set of a
1064 given class is not a subset of any corresponding set of a class
1065 from CLASSES, we use the cheapest (with load/store point of view)
1066 class from CLASSES whose set intersects with given class set */
1067 static void
1068 setup_class_translate_array (enum reg_class *class_translate,
1069 int classes_num, enum reg_class *classes)
1070 {
1071 int cl, mode;
1072 enum reg_class aclass, best_class, *cl_ptr;
1073 int i, cost, min_cost, best_cost;
1074
1075 for (cl = 0; cl < N_REG_CLASSES; cl++)
1076 class_translate[cl] = NO_REGS;
1077
1078 for (i = 0; i < classes_num; i++)
1079 {
1080 aclass = classes[i];
1081 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1082 (cl = *cl_ptr) != LIM_REG_CLASSES;
1083 cl_ptr++)
1084 if (class_translate[cl] == NO_REGS)
1085 class_translate[cl] = aclass;
1086 class_translate[aclass] = aclass;
1087 }
1088 /* For classes which are not fully covered by one of given classes
1089 (in other words covered by more one given class), use the
1090 cheapest class. */
1091 for (cl = 0; cl < N_REG_CLASSES; cl++)
1092 {
1093 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1094 continue;
1095 best_class = NO_REGS;
1096 best_cost = INT_MAX;
1097 for (i = 0; i < classes_num; i++)
1098 {
1099 aclass = classes[i];
1100 COPY_HARD_REG_SET (temp_hard_regset,
1101 reg_class_contents[aclass]);
1102 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1103 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1104 if (! hard_reg_set_empty_p (temp_hard_regset))
1105 {
1106 min_cost = INT_MAX;
1107 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1108 {
1109 cost = (ira_memory_move_cost[mode][cl][0]
1110 + ira_memory_move_cost[mode][cl][1]);
1111 if (min_cost > cost)
1112 min_cost = cost;
1113 }
1114 if (best_class == NO_REGS || best_cost > min_cost)
1115 {
1116 best_class = aclass;
1117 best_cost = min_cost;
1118 }
1119 }
1120 }
1121 class_translate[cl] = best_class;
1122 }
1123 }
1124
1125 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1126 IRA_PRESSURE_CLASS_TRANSLATE. */
1127 static void
1128 setup_class_translate (void)
1129 {
1130 setup_class_translate_array (ira_allocno_class_translate,
1131 ira_allocno_classes_num, ira_allocno_classes);
1132 setup_class_translate_array (ira_pressure_class_translate,
1133 ira_pressure_classes_num, ira_pressure_classes);
1134 }
1135
1136 /* Order numbers of allocno classes in original target allocno class
1137 array, -1 for non-allocno classes. */
1138 static int allocno_class_order[N_REG_CLASSES];
1139
1140 /* The function used to sort the important classes. */
1141 static int
1142 comp_reg_classes_func (const void *v1p, const void *v2p)
1143 {
1144 enum reg_class cl1 = *(const enum reg_class *) v1p;
1145 enum reg_class cl2 = *(const enum reg_class *) v2p;
1146 enum reg_class tcl1, tcl2;
1147 int diff;
1148
1149 tcl1 = ira_allocno_class_translate[cl1];
1150 tcl2 = ira_allocno_class_translate[cl2];
1151 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1152 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1153 return diff;
1154 return (int) cl1 - (int) cl2;
1155 }
1156
1157 /* For correct work of function setup_reg_class_relation we need to
1158 reorder important classes according to the order of their allocno
1159 classes. It places important classes containing the same
1160 allocatable hard register set adjacent to each other and allocno
1161 class with the allocatable hard register set right after the other
1162 important classes with the same set.
1163
1164 In example from comments of function
1165 setup_allocno_and_important_classes, it places LEGACY_REGS and
1166 GENERAL_REGS close to each other and GENERAL_REGS is after
1167 LEGACY_REGS. */
1168 static void
1169 reorder_important_classes (void)
1170 {
1171 int i;
1172
1173 for (i = 0; i < N_REG_CLASSES; i++)
1174 allocno_class_order[i] = -1;
1175 for (i = 0; i < ira_allocno_classes_num; i++)
1176 allocno_class_order[ira_allocno_classes[i]] = i;
1177 qsort (ira_important_classes, ira_important_classes_num,
1178 sizeof (enum reg_class), comp_reg_classes_func);
1179 for (i = 0; i < ira_important_classes_num; i++)
1180 ira_important_class_nums[ira_important_classes[i]] = i;
1181 }
1182
1183 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1184 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1185 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1186 please see corresponding comments in ira-int.h. */
1187 static void
1188 setup_reg_class_relations (void)
1189 {
1190 int i, cl1, cl2, cl3;
1191 HARD_REG_SET intersection_set, union_set, temp_set2;
1192 bool important_class_p[N_REG_CLASSES];
1193
1194 memset (important_class_p, 0, sizeof (important_class_p));
1195 for (i = 0; i < ira_important_classes_num; i++)
1196 important_class_p[ira_important_classes[i]] = true;
1197 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1198 {
1199 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1200 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1201 {
1202 ira_reg_classes_intersect_p[cl1][cl2] = false;
1203 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1204 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1205 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1206 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1207 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1208 if (hard_reg_set_empty_p (temp_hard_regset)
1209 && hard_reg_set_empty_p (temp_set2))
1210 {
1211 /* The both classes have no allocatable hard registers
1212 -- take all class hard registers into account and use
1213 reg_class_subunion and reg_class_superunion. */
1214 for (i = 0;; i++)
1215 {
1216 cl3 = reg_class_subclasses[cl1][i];
1217 if (cl3 == LIM_REG_CLASSES)
1218 break;
1219 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1220 (enum reg_class) cl3))
1221 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1222 }
1223 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1224 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1225 continue;
1226 }
1227 ira_reg_classes_intersect_p[cl1][cl2]
1228 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1229 if (important_class_p[cl1] && important_class_p[cl2]
1230 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1231 {
1232 /* CL1 and CL2 are important classes and CL1 allocatable
1233 hard register set is inside of CL2 allocatable hard
1234 registers -- make CL1 a superset of CL2. */
1235 enum reg_class *p;
1236
1237 p = &ira_reg_class_super_classes[cl1][0];
1238 while (*p != LIM_REG_CLASSES)
1239 p++;
1240 *p++ = (enum reg_class) cl2;
1241 *p = LIM_REG_CLASSES;
1242 }
1243 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1244 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1245 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1246 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1247 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1248 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1249 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1250 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1251 for (i = 0; i < ira_important_classes_num; i++)
1252 {
1253 cl3 = ira_important_classes[i];
1254 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1255 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1256 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1257 {
1258 /* CL3 allocatable hard register set is inside of
1259 intersection of allocatable hard register sets
1260 of CL1 and CL2. */
1261 COPY_HARD_REG_SET
1262 (temp_set2,
1263 reg_class_contents[(int)
1264 ira_reg_class_intersect[cl1][cl2]]);
1265 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1266 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1267 /* If the allocatable hard register sets are the
1268 same, prefer GENERAL_REGS or the smallest
1269 class for debugging purposes. */
1270 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1271 && (cl3 == GENERAL_REGS
1272 || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
1273 && hard_reg_set_subset_p
1274 (reg_class_contents[cl3],
1275 reg_class_contents
1276 [(int) ira_reg_class_intersect[cl1][cl2]])))))
1277 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1278 }
1279 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1280 {
1281 /* CL3 allocatbale hard register set is inside of
1282 union of allocatable hard register sets of CL1
1283 and CL2. */
1284 COPY_HARD_REG_SET
1285 (temp_set2,
1286 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1287 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1288 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1289 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1290
1291 && (! hard_reg_set_equal_p (temp_set2,
1292 temp_hard_regset)
1293 || cl3 == GENERAL_REGS
1294 /* If the allocatable hard register sets are the
1295 same, prefer GENERAL_REGS or the smallest
1296 class for debugging purposes. */
1297 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1298 && hard_reg_set_subset_p
1299 (reg_class_contents[cl3],
1300 reg_class_contents
1301 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1302 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1303 }
1304 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1305 {
1306 /* CL3 allocatable hard register set contains union
1307 of allocatable hard register sets of CL1 and
1308 CL2. */
1309 COPY_HARD_REG_SET
1310 (temp_set2,
1311 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1312 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1313 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1314 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1315
1316 && (! hard_reg_set_equal_p (temp_set2,
1317 temp_hard_regset)
1318 || cl3 == GENERAL_REGS
1319 /* If the allocatable hard register sets are the
1320 same, prefer GENERAL_REGS or the smallest
1321 class for debugging purposes. */
1322 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1323 && hard_reg_set_subset_p
1324 (reg_class_contents[cl3],
1325 reg_class_contents
1326 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1327 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1328 }
1329 }
1330 }
1331 }
1332 }
1333
1334 /* Output all unifrom and important classes into file F. */
1335 static void
1336 print_unform_and_important_classes (FILE *f)
1337 {
1338 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1339 int i, cl;
1340
1341 fprintf (f, "Uniform classes:\n");
1342 for (cl = 0; cl < N_REG_CLASSES; cl++)
1343 if (ira_uniform_class_p[cl])
1344 fprintf (f, " %s", reg_class_names[cl]);
1345 fprintf (f, "\nImportant classes:\n");
1346 for (i = 0; i < ira_important_classes_num; i++)
1347 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1348 fprintf (f, "\n");
1349 }
1350
1351 /* Output all possible allocno or pressure classes and their
1352 translation map into file F. */
1353 static void
1354 print_translated_classes (FILE *f, bool pressure_p)
1355 {
1356 int classes_num = (pressure_p
1357 ? ira_pressure_classes_num : ira_allocno_classes_num);
1358 enum reg_class *classes = (pressure_p
1359 ? ira_pressure_classes : ira_allocno_classes);
1360 enum reg_class *class_translate = (pressure_p
1361 ? ira_pressure_class_translate
1362 : ira_allocno_class_translate);
1363 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1364 int i;
1365
1366 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1367 for (i = 0; i < classes_num; i++)
1368 fprintf (f, " %s", reg_class_names[classes[i]]);
1369 fprintf (f, "\nClass translation:\n");
1370 for (i = 0; i < N_REG_CLASSES; i++)
1371 fprintf (f, " %s -> %s\n", reg_class_names[i],
1372 reg_class_names[class_translate[i]]);
1373 }
1374
1375 /* Output all possible allocno and translation classes and the
1376 translation maps into stderr. */
1377 void
1378 ira_debug_allocno_classes (void)
1379 {
1380 print_unform_and_important_classes (stderr);
1381 print_translated_classes (stderr, false);
1382 print_translated_classes (stderr, true);
1383 }
1384
1385 /* Set up different arrays concerning class subsets, allocno and
1386 important classes. */
1387 static void
1388 find_reg_classes (void)
1389 {
1390 setup_allocno_and_important_classes ();
1391 setup_class_translate ();
1392 reorder_important_classes ();
1393 setup_reg_class_relations ();
1394 }
1395
1396 \f
1397
1398 /* Set up the array above. */
1399 static void
1400 setup_hard_regno_aclass (void)
1401 {
1402 int i;
1403
1404 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1405 {
1406 #if 1
1407 ira_hard_regno_allocno_class[i]
1408 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1409 ? NO_REGS
1410 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1411 #else
1412 int j;
1413 enum reg_class cl;
1414 ira_hard_regno_allocno_class[i] = NO_REGS;
1415 for (j = 0; j < ira_allocno_classes_num; j++)
1416 {
1417 cl = ira_allocno_classes[j];
1418 if (ira_class_hard_reg_index[cl][i] >= 0)
1419 {
1420 ira_hard_regno_allocno_class[i] = cl;
1421 break;
1422 }
1423 }
1424 #endif
1425 }
1426 }
1427
1428 \f
1429
1430 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1431 static void
1432 setup_reg_class_nregs (void)
1433 {
1434 int i, cl, cl2, m;
1435
1436 for (m = 0; m < MAX_MACHINE_MODE; m++)
1437 {
1438 for (cl = 0; cl < N_REG_CLASSES; cl++)
1439 ira_reg_class_max_nregs[cl][m]
1440 = ira_reg_class_min_nregs[cl][m]
1441 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1442 for (cl = 0; cl < N_REG_CLASSES; cl++)
1443 for (i = 0;
1444 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1445 i++)
1446 if (ira_reg_class_min_nregs[cl2][m]
1447 < ira_reg_class_min_nregs[cl][m])
1448 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1449 }
1450 }
1451
1452 \f
1453
1454 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
1455 static void
1456 setup_prohibited_class_mode_regs (void)
1457 {
1458 int j, k, hard_regno, cl;
1459
1460 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1461 {
1462 for (j = 0; j < NUM_MACHINE_MODES; j++)
1463 {
1464 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1465 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1466 {
1467 hard_regno = ira_class_hard_regs[cl][k];
1468 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1469 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1470 hard_regno);
1471 }
1472 }
1473 }
1474 }
1475
1476 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1477 spanning from one register pressure class to another one. It is
1478 called after defining the pressure classes. */
1479 static void
1480 clarify_prohibited_class_mode_regs (void)
1481 {
1482 int j, k, hard_regno, cl, pclass, nregs;
1483
1484 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1485 for (j = 0; j < NUM_MACHINE_MODES; j++)
1486 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1487 {
1488 hard_regno = ira_class_hard_regs[cl][k];
1489 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1490 continue;
1491 nregs = hard_regno_nregs[hard_regno][j];
1492 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1493 {
1494 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1495 hard_regno);
1496 continue;
1497 }
1498 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1499 for (nregs-- ;nregs >= 0; nregs--)
1500 if (((enum reg_class) pclass
1501 != ira_pressure_class_translate[REGNO_REG_CLASS
1502 (hard_regno + nregs)]))
1503 {
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 break;
1507 }
1508 }
1509 }
1510 \f
1511 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1512 and IRA_MAY_MOVE_OUT_COST for MODE. */
1513 void
1514 ira_init_register_move_cost (enum machine_mode mode)
1515 {
1516 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1517 bool all_match = true;
1518 unsigned int cl1, cl2;
1519
1520 ira_assert (ira_register_move_cost[mode] == NULL
1521 && ira_may_move_in_cost[mode] == NULL
1522 && ira_may_move_out_cost[mode] == NULL);
1523 ira_assert (have_regs_of_mode[mode]);
1524 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1525 if (contains_reg_of_mode[cl1][mode])
1526 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1527 {
1528 int cost;
1529 if (!contains_reg_of_mode[cl2][mode])
1530 cost = 65535;
1531 else
1532 {
1533 cost = register_move_cost (mode, (enum reg_class) cl1,
1534 (enum reg_class) cl2);
1535 ira_assert (cost < 65535);
1536 }
1537 all_match &= (last_move_cost[cl1][cl2] == cost);
1538 last_move_cost[cl1][cl2] = cost;
1539 }
1540 if (all_match && last_mode_for_init_move_cost != -1)
1541 {
1542 ira_register_move_cost[mode]
1543 = ira_register_move_cost[last_mode_for_init_move_cost];
1544 ira_may_move_in_cost[mode]
1545 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1546 ira_may_move_out_cost[mode]
1547 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1548 return;
1549 }
1550 last_mode_for_init_move_cost = mode;
1551 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1552 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1553 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1554 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1555 if (contains_reg_of_mode[cl1][mode])
1556 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1557 {
1558 int cost;
1559 enum reg_class *p1, *p2;
1560
1561 if (last_move_cost[cl1][cl2] == 65535)
1562 {
1563 ira_register_move_cost[mode][cl1][cl2] = 65535;
1564 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1565 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1566 }
1567 else
1568 {
1569 cost = last_move_cost[cl1][cl2];
1570
1571 for (p2 = &reg_class_subclasses[cl2][0];
1572 *p2 != LIM_REG_CLASSES; p2++)
1573 if (ira_class_hard_regs_num[*p2] > 0
1574 && (ira_reg_class_max_nregs[*p2][mode]
1575 <= ira_class_hard_regs_num[*p2]))
1576 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1577
1578 for (p1 = &reg_class_subclasses[cl1][0];
1579 *p1 != LIM_REG_CLASSES; p1++)
1580 if (ira_class_hard_regs_num[*p1] > 0
1581 && (ira_reg_class_max_nregs[*p1][mode]
1582 <= ira_class_hard_regs_num[*p1]))
1583 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1584
1585 ira_assert (cost <= 65535);
1586 ira_register_move_cost[mode][cl1][cl2] = cost;
1587
1588 if (ira_class_subset_p[cl1][cl2])
1589 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1590 else
1591 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1592
1593 if (ira_class_subset_p[cl2][cl1])
1594 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1595 else
1596 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1597 }
1598 }
1599 else
1600 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1601 {
1602 ira_register_move_cost[mode][cl1][cl2] = 65535;
1603 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1604 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1605 }
1606 }
1607 \f
1608
1609 /* This is called once during compiler work. It sets up
1610 different arrays whose values don't depend on the compiled
1611 function. */
1612 void
1613 ira_init_once (void)
1614 {
1615 ira_init_costs_once ();
1616 }
1617
1618 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1619 ira_may_move_out_cost for each mode. */
1620 static void
1621 free_register_move_costs (void)
1622 {
1623 int mode, i;
1624
1625 /* Reset move_cost and friends, making sure we only free shared
1626 table entries once. */
1627 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1628 if (ira_register_move_cost[mode])
1629 {
1630 for (i = 0;
1631 i < mode && (ira_register_move_cost[i]
1632 != ira_register_move_cost[mode]);
1633 i++)
1634 ;
1635 if (i == mode)
1636 {
1637 free (ira_register_move_cost[mode]);
1638 free (ira_may_move_in_cost[mode]);
1639 free (ira_may_move_out_cost[mode]);
1640 }
1641 }
1642 memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1643 memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1644 memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
1645 last_mode_for_init_move_cost = -1;
1646 }
1647
1648 /* This is called every time when register related information is
1649 changed. */
1650 void
1651 ira_init (void)
1652 {
1653 free_register_move_costs ();
1654 setup_reg_mode_hard_regset ();
1655 setup_alloc_regs (flag_omit_frame_pointer != 0);
1656 setup_class_subset_and_memory_move_costs ();
1657 setup_reg_class_nregs ();
1658 setup_prohibited_class_mode_regs ();
1659 find_reg_classes ();
1660 clarify_prohibited_class_mode_regs ();
1661 setup_hard_regno_aclass ();
1662 ira_init_costs ();
1663 }
1664
1665 /* Function called once at the end of compiler work. */
1666 void
1667 ira_finish_once (void)
1668 {
1669 ira_finish_costs_once ();
1670 free_register_move_costs ();
1671 }
1672
1673 \f
1674 #define ira_prohibited_mode_move_regs_initialized_p \
1675 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1676
1677 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1678 static void
1679 setup_prohibited_mode_move_regs (void)
1680 {
1681 int i, j;
1682 rtx test_reg1, test_reg2, move_pat, move_insn;
1683
1684 if (ira_prohibited_mode_move_regs_initialized_p)
1685 return;
1686 ira_prohibited_mode_move_regs_initialized_p = true;
1687 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1688 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1689 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1690 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1691 for (i = 0; i < NUM_MACHINE_MODES; i++)
1692 {
1693 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1694 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1695 {
1696 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1697 continue;
1698 SET_REGNO_RAW (test_reg1, j);
1699 PUT_MODE (test_reg1, (enum machine_mode) i);
1700 SET_REGNO_RAW (test_reg2, j);
1701 PUT_MODE (test_reg2, (enum machine_mode) i);
1702 INSN_CODE (move_insn) = -1;
1703 recog_memoized (move_insn);
1704 if (INSN_CODE (move_insn) < 0)
1705 continue;
1706 extract_insn (move_insn);
1707 if (! constrain_operands (1))
1708 continue;
1709 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1710 }
1711 }
1712 }
1713
1714 \f
1715
1716 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1717 static bool
1718 ira_bad_reload_regno_1 (int regno, rtx x)
1719 {
1720 int x_regno, n, i;
1721 ira_allocno_t a;
1722 enum reg_class pref;
1723
1724 /* We only deal with pseudo regs. */
1725 if (! x || GET_CODE (x) != REG)
1726 return false;
1727
1728 x_regno = REGNO (x);
1729 if (x_regno < FIRST_PSEUDO_REGISTER)
1730 return false;
1731
1732 /* If the pseudo prefers REGNO explicitly, then do not consider
1733 REGNO a bad spill choice. */
1734 pref = reg_preferred_class (x_regno);
1735 if (reg_class_size[pref] == 1)
1736 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1737
1738 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1739 poor choice for a reload regno. */
1740 a = ira_regno_allocno_map[x_regno];
1741 n = ALLOCNO_NUM_OBJECTS (a);
1742 for (i = 0; i < n; i++)
1743 {
1744 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1745 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1746 return true;
1747 }
1748 return false;
1749 }
1750
1751 /* Return nonzero if REGNO is a particularly bad choice for reloading
1752 IN or OUT. */
1753 bool
1754 ira_bad_reload_regno (int regno, rtx in, rtx out)
1755 {
1756 return (ira_bad_reload_regno_1 (regno, in)
1757 || ira_bad_reload_regno_1 (regno, out));
1758 }
1759
1760 /* Return TRUE if *LOC contains an asm. */
1761 static int
1762 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1763 {
1764 if ( !*loc)
1765 return FALSE;
1766 if (GET_CODE (*loc) == ASM_OPERANDS)
1767 return TRUE;
1768 return FALSE;
1769 }
1770
1771
1772 /* Return TRUE if INSN contains an ASM. */
1773 static bool
1774 insn_contains_asm (rtx insn)
1775 {
1776 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1777 }
1778
1779 /* Add register clobbers from asm statements. */
1780 static void
1781 compute_regs_asm_clobbered (void)
1782 {
1783 basic_block bb;
1784
1785 FOR_EACH_BB (bb)
1786 {
1787 rtx insn;
1788 FOR_BB_INSNS_REVERSE (bb, insn)
1789 {
1790 df_ref *def_rec;
1791
1792 if (insn_contains_asm (insn))
1793 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1794 {
1795 df_ref def = *def_rec;
1796 unsigned int dregno = DF_REF_REGNO (def);
1797 if (HARD_REGISTER_NUM_P (dregno))
1798 add_to_hard_reg_set (&crtl->asm_clobbers,
1799 GET_MODE (DF_REF_REAL_REG (def)),
1800 dregno);
1801 }
1802 }
1803 }
1804 }
1805
1806
1807 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1808 void
1809 ira_setup_eliminable_regset (void)
1810 {
1811 #ifdef ELIMINABLE_REGS
1812 int i;
1813 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1814 #endif
1815 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1816 sp for alloca. So we can't eliminate the frame pointer in that
1817 case. At some point, we should improve this by emitting the
1818 sp-adjusting insns for this case. */
1819 int need_fp
1820 = (! flag_omit_frame_pointer
1821 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1822 /* We need the frame pointer to catch stack overflow exceptions
1823 if the stack pointer is moving. */
1824 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1825 || crtl->accesses_prior_frames
1826 || crtl->stack_realign_needed
1827 || targetm.frame_pointer_required ());
1828
1829 frame_pointer_needed = need_fp;
1830
1831 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1832 CLEAR_HARD_REG_SET (eliminable_regset);
1833
1834 compute_regs_asm_clobbered ();
1835
1836 /* Build the regset of all eliminable registers and show we can't
1837 use those that we already know won't be eliminated. */
1838 #ifdef ELIMINABLE_REGS
1839 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1840 {
1841 bool cannot_elim
1842 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1843 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1844
1845 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1846 {
1847 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1848
1849 if (cannot_elim)
1850 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1851 }
1852 else if (cannot_elim)
1853 error ("%s cannot be used in asm here",
1854 reg_names[eliminables[i].from]);
1855 else
1856 df_set_regs_ever_live (eliminables[i].from, true);
1857 }
1858 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1859 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1860 {
1861 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1862 if (need_fp)
1863 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1864 }
1865 else if (need_fp)
1866 error ("%s cannot be used in asm here",
1867 reg_names[HARD_FRAME_POINTER_REGNUM]);
1868 else
1869 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1870 #endif
1871
1872 #else
1873 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1874 {
1875 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1876 if (need_fp)
1877 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1878 }
1879 else if (need_fp)
1880 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1881 else
1882 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1883 #endif
1884 }
1885
1886 \f
1887
1888 /* The length of the following two arrays. */
1889 int ira_reg_equiv_len;
1890
1891 /* The element value is TRUE if the corresponding regno value is
1892 invariant. */
1893 bool *ira_reg_equiv_invariant_p;
1894
1895 /* The element value is equiv constant of given pseudo-register or
1896 NULL_RTX. */
1897 rtx *ira_reg_equiv_const;
1898
1899 /* Set up the two arrays declared above. */
1900 static void
1901 find_reg_equiv_invariant_const (void)
1902 {
1903 unsigned int i;
1904 bool invariant_p;
1905 rtx list, insn, note, constant, x;
1906
1907 for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
1908 {
1909 constant = NULL_RTX;
1910 invariant_p = false;
1911 for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
1912 {
1913 insn = XEXP (list, 0);
1914 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1915
1916 if (note == NULL_RTX)
1917 continue;
1918
1919 x = XEXP (note, 0);
1920
1921 if (! CONSTANT_P (x)
1922 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1923 {
1924 /* It can happen that a REG_EQUIV note contains a MEM
1925 that is not a legitimate memory operand. As later
1926 stages of the reload assume that all addresses found
1927 in the reg_equiv_* arrays were originally legitimate,
1928 we ignore such REG_EQUIV notes. */
1929 if (memory_operand (x, VOIDmode))
1930 invariant_p = MEM_READONLY_P (x);
1931 else if (function_invariant_p (x))
1932 {
1933 if (GET_CODE (x) == PLUS
1934 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1935 invariant_p = true;
1936 else
1937 constant = x;
1938 }
1939 }
1940 }
1941 ira_reg_equiv_invariant_p[i] = invariant_p;
1942 ira_reg_equiv_const[i] = constant;
1943 }
1944 }
1945
1946 \f
1947
1948 /* Vector of substitutions of register numbers,
1949 used to map pseudo regs into hardware regs.
1950 This is set up as a result of register allocation.
1951 Element N is the hard reg assigned to pseudo reg N,
1952 or is -1 if no hard reg was assigned.
1953 If N is a hard reg number, element N is N. */
1954 short *reg_renumber;
1955
1956 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1957 the allocation found by IRA. */
1958 static void
1959 setup_reg_renumber (void)
1960 {
1961 int regno, hard_regno;
1962 ira_allocno_t a;
1963 ira_allocno_iterator ai;
1964
1965 caller_save_needed = 0;
1966 FOR_EACH_ALLOCNO (a, ai)
1967 {
1968 /* There are no caps at this point. */
1969 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1970 if (! ALLOCNO_ASSIGNED_P (a))
1971 /* It can happen if A is not referenced but partially anticipated
1972 somewhere in a region. */
1973 ALLOCNO_ASSIGNED_P (a) = true;
1974 ira_free_allocno_updated_costs (a);
1975 hard_regno = ALLOCNO_HARD_REGNO (a);
1976 regno = ALLOCNO_REGNO (a);
1977 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1978 if (hard_regno >= 0)
1979 {
1980 int i, nwords;
1981 enum reg_class pclass;
1982 ira_object_t obj;
1983
1984 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1985 nwords = ALLOCNO_NUM_OBJECTS (a);
1986 for (i = 0; i < nwords; i++)
1987 {
1988 obj = ALLOCNO_OBJECT (a, i);
1989 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1990 reg_class_contents[pclass]);
1991 }
1992 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1993 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
1994 call_used_reg_set))
1995 {
1996 ira_assert (!optimize || flag_caller_saves
1997 || (ALLOCNO_CALLS_CROSSED_NUM (a)
1998 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
1999 || regno >= ira_reg_equiv_len
2000 || ira_reg_equiv_const[regno]
2001 || ira_reg_equiv_invariant_p[regno]);
2002 caller_save_needed = 1;
2003 }
2004 }
2005 }
2006 }
2007
2008 /* Set up allocno assignment flags for further allocation
2009 improvements. */
2010 static void
2011 setup_allocno_assignment_flags (void)
2012 {
2013 int hard_regno;
2014 ira_allocno_t a;
2015 ira_allocno_iterator ai;
2016
2017 FOR_EACH_ALLOCNO (a, ai)
2018 {
2019 if (! ALLOCNO_ASSIGNED_P (a))
2020 /* It can happen if A is not referenced but partially anticipated
2021 somewhere in a region. */
2022 ira_free_allocno_updated_costs (a);
2023 hard_regno = ALLOCNO_HARD_REGNO (a);
2024 /* Don't assign hard registers to allocnos which are destination
2025 of removed store at the end of loop. It has no sense to keep
2026 the same value in different hard registers. It is also
2027 impossible to assign hard registers correctly to such
2028 allocnos because the cost info and info about intersected
2029 calls are incorrect for them. */
2030 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2031 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2032 || (ALLOCNO_MEMORY_COST (a)
2033 - ALLOCNO_CLASS_COST (a)) < 0);
2034 ira_assert
2035 (hard_regno < 0
2036 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2037 reg_class_contents[ALLOCNO_CLASS (a)]));
2038 }
2039 }
2040
2041 /* Evaluate overall allocation cost and the costs for using hard
2042 registers and memory for allocnos. */
2043 static void
2044 calculate_allocation_cost (void)
2045 {
2046 int hard_regno, cost;
2047 ira_allocno_t a;
2048 ira_allocno_iterator ai;
2049
2050 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2051 FOR_EACH_ALLOCNO (a, ai)
2052 {
2053 hard_regno = ALLOCNO_HARD_REGNO (a);
2054 ira_assert (hard_regno < 0
2055 || (ira_hard_reg_in_set_p
2056 (hard_regno, ALLOCNO_MODE (a),
2057 reg_class_contents[ALLOCNO_CLASS (a)])));
2058 if (hard_regno < 0)
2059 {
2060 cost = ALLOCNO_MEMORY_COST (a);
2061 ira_mem_cost += cost;
2062 }
2063 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2064 {
2065 cost = (ALLOCNO_HARD_REG_COSTS (a)
2066 [ira_class_hard_reg_index
2067 [ALLOCNO_CLASS (a)][hard_regno]]);
2068 ira_reg_cost += cost;
2069 }
2070 else
2071 {
2072 cost = ALLOCNO_CLASS_COST (a);
2073 ira_reg_cost += cost;
2074 }
2075 ira_overall_cost += cost;
2076 }
2077
2078 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2079 {
2080 fprintf (ira_dump_file,
2081 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2082 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2083 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2084 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2085 ira_move_loops_num, ira_additional_jumps_num);
2086 }
2087
2088 }
2089
2090 #ifdef ENABLE_IRA_CHECKING
2091 /* Check the correctness of the allocation. We do need this because
2092 of complicated code to transform more one region internal
2093 representation into one region representation. */
2094 static void
2095 check_allocation (void)
2096 {
2097 ira_allocno_t a;
2098 int hard_regno, nregs, conflict_nregs;
2099 ira_allocno_iterator ai;
2100
2101 FOR_EACH_ALLOCNO (a, ai)
2102 {
2103 int n = ALLOCNO_NUM_OBJECTS (a);
2104 int i;
2105
2106 if (ALLOCNO_CAP_MEMBER (a) != NULL
2107 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2108 continue;
2109 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2110 if (nregs == 1)
2111 /* We allocated a single hard register. */
2112 n = 1;
2113 else if (n > 1)
2114 /* We allocated multiple hard registers, and we will test
2115 conflicts in a granularity of single hard regs. */
2116 nregs = 1;
2117
2118 for (i = 0; i < n; i++)
2119 {
2120 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2121 ira_object_t conflict_obj;
2122 ira_object_conflict_iterator oci;
2123 int this_regno = hard_regno;
2124 if (n > 1)
2125 {
2126 if (REG_WORDS_BIG_ENDIAN)
2127 this_regno += n - i - 1;
2128 else
2129 this_regno += i;
2130 }
2131 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2132 {
2133 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2134 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2135 if (conflict_hard_regno < 0)
2136 continue;
2137
2138 conflict_nregs
2139 = (hard_regno_nregs
2140 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2141
2142 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2143 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2144 {
2145 if (REG_WORDS_BIG_ENDIAN)
2146 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2147 - OBJECT_SUBWORD (conflict_obj) - 1);
2148 else
2149 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2150 conflict_nregs = 1;
2151 }
2152
2153 if ((conflict_hard_regno <= this_regno
2154 && this_regno < conflict_hard_regno + conflict_nregs)
2155 || (this_regno <= conflict_hard_regno
2156 && conflict_hard_regno < this_regno + nregs))
2157 {
2158 fprintf (stderr, "bad allocation for %d and %d\n",
2159 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2160 gcc_unreachable ();
2161 }
2162 }
2163 }
2164 }
2165 }
2166 #endif
2167
2168 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2169 by IRA. */
2170 static void
2171 fix_reg_equiv_init (void)
2172 {
2173 unsigned int max_regno = max_reg_num ();
2174 int i, new_regno, max;
2175 rtx x, prev, next, insn, set;
2176
2177 if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
2178 {
2179 max = VEC_length (reg_equivs_t, reg_equivs);
2180 grow_reg_equivs ();
2181 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2182 for (prev = NULL_RTX, x = reg_equiv_init (i);
2183 x != NULL_RTX;
2184 x = next)
2185 {
2186 next = XEXP (x, 1);
2187 insn = XEXP (x, 0);
2188 set = single_set (insn);
2189 ira_assert (set != NULL_RTX
2190 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2191 if (REG_P (SET_DEST (set))
2192 && ((int) REGNO (SET_DEST (set)) == i
2193 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2194 new_regno = REGNO (SET_DEST (set));
2195 else if (REG_P (SET_SRC (set))
2196 && ((int) REGNO (SET_SRC (set)) == i
2197 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2198 new_regno = REGNO (SET_SRC (set));
2199 else
2200 gcc_unreachable ();
2201 if (new_regno == i)
2202 prev = x;
2203 else
2204 {
2205 if (prev == NULL_RTX)
2206 reg_equiv_init (i) = next;
2207 else
2208 XEXP (prev, 1) = next;
2209 XEXP (x, 1) = reg_equiv_init (new_regno);
2210 reg_equiv_init (new_regno) = x;
2211 }
2212 }
2213 }
2214 }
2215
2216 #ifdef ENABLE_IRA_CHECKING
2217 /* Print redundant memory-memory copies. */
2218 static void
2219 print_redundant_copies (void)
2220 {
2221 int hard_regno;
2222 ira_allocno_t a;
2223 ira_copy_t cp, next_cp;
2224 ira_allocno_iterator ai;
2225
2226 FOR_EACH_ALLOCNO (a, ai)
2227 {
2228 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2229 /* It is a cap. */
2230 continue;
2231 hard_regno = ALLOCNO_HARD_REGNO (a);
2232 if (hard_regno >= 0)
2233 continue;
2234 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2235 if (cp->first == a)
2236 next_cp = cp->next_first_allocno_copy;
2237 else
2238 {
2239 next_cp = cp->next_second_allocno_copy;
2240 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2241 && cp->insn != NULL_RTX
2242 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2243 fprintf (ira_dump_file,
2244 " Redundant move from %d(freq %d):%d\n",
2245 INSN_UID (cp->insn), cp->freq, hard_regno);
2246 }
2247 }
2248 }
2249 #endif
2250
2251 /* Setup preferred and alternative classes for new pseudo-registers
2252 created by IRA starting with START. */
2253 static void
2254 setup_preferred_alternate_classes_for_new_pseudos (int start)
2255 {
2256 int i, old_regno;
2257 int max_regno = max_reg_num ();
2258
2259 for (i = start; i < max_regno; i++)
2260 {
2261 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2262 ira_assert (i != old_regno);
2263 setup_reg_classes (i, reg_preferred_class (old_regno),
2264 reg_alternate_class (old_regno),
2265 reg_allocno_class (old_regno));
2266 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2267 fprintf (ira_dump_file,
2268 " New r%d: setting preferred %s, alternative %s\n",
2269 i, reg_class_names[reg_preferred_class (old_regno)],
2270 reg_class_names[reg_alternate_class (old_regno)]);
2271 }
2272 }
2273
2274 \f
2275 /* The number of entries allocated in teg_info. */
2276 static int allocated_reg_info_size;
2277
2278 /* Regional allocation can create new pseudo-registers. This function
2279 expands some arrays for pseudo-registers. */
2280 static void
2281 expand_reg_info (void)
2282 {
2283 int i;
2284 int size = max_reg_num ();
2285
2286 resize_reg_info ();
2287 for (i = allocated_reg_info_size; i < size; i++)
2288 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2289 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2290 allocated_reg_info_size = size;
2291 }
2292
2293 /* Return TRUE if there is too high register pressure in the function.
2294 It is used to decide when stack slot sharing is worth to do. */
2295 static bool
2296 too_high_register_pressure_p (void)
2297 {
2298 int i;
2299 enum reg_class pclass;
2300
2301 for (i = 0; i < ira_pressure_classes_num; i++)
2302 {
2303 pclass = ira_pressure_classes[i];
2304 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2305 return true;
2306 }
2307 return false;
2308 }
2309
2310 \f
2311
2312 /* Indicate that hard register number FROM was eliminated and replaced with
2313 an offset from hard register number TO. The status of hard registers live
2314 at the start of a basic block is updated by replacing a use of FROM with
2315 a use of TO. */
2316
2317 void
2318 mark_elimination (int from, int to)
2319 {
2320 basic_block bb;
2321
2322 FOR_EACH_BB (bb)
2323 {
2324 /* We don't use LIVE info in IRA. */
2325 bitmap r = DF_LR_IN (bb);
2326
2327 if (REGNO_REG_SET_P (r, from))
2328 {
2329 CLEAR_REGNO_REG_SET (r, from);
2330 SET_REGNO_REG_SET (r, to);
2331 }
2332 }
2333 }
2334
2335 \f
2336
2337 struct equivalence
2338 {
2339 /* Set when a REG_EQUIV note is found or created. Use to
2340 keep track of what memory accesses might be created later,
2341 e.g. by reload. */
2342 rtx replacement;
2343 rtx *src_p;
2344 /* The list of each instruction which initializes this register. */
2345 rtx init_insns;
2346 /* Loop depth is used to recognize equivalences which appear
2347 to be present within the same loop (or in an inner loop). */
2348 int loop_depth;
2349 /* Nonzero if this had a preexisting REG_EQUIV note. */
2350 int is_arg_equivalence;
2351 /* Set when an attempt should be made to replace a register
2352 with the associated src_p entry. */
2353 char replace;
2354 };
2355
2356 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2357 structure for that register. */
2358 static struct equivalence *reg_equiv;
2359
2360 /* Used for communication between the following two functions: contains
2361 a MEM that we wish to ensure remains unchanged. */
2362 static rtx equiv_mem;
2363
2364 /* Set nonzero if EQUIV_MEM is modified. */
2365 static int equiv_mem_modified;
2366
2367 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2368 Called via note_stores. */
2369 static void
2370 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2371 void *data ATTRIBUTE_UNUSED)
2372 {
2373 if ((REG_P (dest)
2374 && reg_overlap_mentioned_p (dest, equiv_mem))
2375 || (MEM_P (dest)
2376 && true_dependence (dest, VOIDmode, equiv_mem)))
2377 equiv_mem_modified = 1;
2378 }
2379
2380 /* Verify that no store between START and the death of REG invalidates
2381 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2382 by storing into an overlapping memory location, or with a non-const
2383 CALL_INSN.
2384
2385 Return 1 if MEMREF remains valid. */
2386 static int
2387 validate_equiv_mem (rtx start, rtx reg, rtx memref)
2388 {
2389 rtx insn;
2390 rtx note;
2391
2392 equiv_mem = memref;
2393 equiv_mem_modified = 0;
2394
2395 /* If the memory reference has side effects or is volatile, it isn't a
2396 valid equivalence. */
2397 if (side_effects_p (memref))
2398 return 0;
2399
2400 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2401 {
2402 if (! INSN_P (insn))
2403 continue;
2404
2405 if (find_reg_note (insn, REG_DEAD, reg))
2406 return 1;
2407
2408 /* This used to ignore readonly memory and const/pure calls. The problem
2409 is the equivalent form may reference a pseudo which gets assigned a
2410 call clobbered hard reg. When we later replace REG with its
2411 equivalent form, the value in the call-clobbered reg has been
2412 changed and all hell breaks loose. */
2413 if (CALL_P (insn))
2414 return 0;
2415
2416 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2417
2418 /* If a register mentioned in MEMREF is modified via an
2419 auto-increment, we lose the equivalence. Do the same if one
2420 dies; although we could extend the life, it doesn't seem worth
2421 the trouble. */
2422
2423 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2424 if ((REG_NOTE_KIND (note) == REG_INC
2425 || REG_NOTE_KIND (note) == REG_DEAD)
2426 && REG_P (XEXP (note, 0))
2427 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2428 return 0;
2429 }
2430
2431 return 0;
2432 }
2433
2434 /* Returns zero if X is known to be invariant. */
2435 static int
2436 equiv_init_varies_p (rtx x)
2437 {
2438 RTX_CODE code = GET_CODE (x);
2439 int i;
2440 const char *fmt;
2441
2442 switch (code)
2443 {
2444 case MEM:
2445 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2446
2447 case CONST:
2448 case CONST_INT:
2449 case CONST_DOUBLE:
2450 case CONST_FIXED:
2451 case CONST_VECTOR:
2452 case SYMBOL_REF:
2453 case LABEL_REF:
2454 return 0;
2455
2456 case REG:
2457 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2458
2459 case ASM_OPERANDS:
2460 if (MEM_VOLATILE_P (x))
2461 return 1;
2462
2463 /* Fall through. */
2464
2465 default:
2466 break;
2467 }
2468
2469 fmt = GET_RTX_FORMAT (code);
2470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2471 if (fmt[i] == 'e')
2472 {
2473 if (equiv_init_varies_p (XEXP (x, i)))
2474 return 1;
2475 }
2476 else if (fmt[i] == 'E')
2477 {
2478 int j;
2479 for (j = 0; j < XVECLEN (x, i); j++)
2480 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2481 return 1;
2482 }
2483
2484 return 0;
2485 }
2486
2487 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2488 X is only movable if the registers it uses have equivalent initializations
2489 which appear to be within the same loop (or in an inner loop) and movable
2490 or if they are not candidates for local_alloc and don't vary. */
2491 static int
2492 equiv_init_movable_p (rtx x, int regno)
2493 {
2494 int i, j;
2495 const char *fmt;
2496 enum rtx_code code = GET_CODE (x);
2497
2498 switch (code)
2499 {
2500 case SET:
2501 return equiv_init_movable_p (SET_SRC (x), regno);
2502
2503 case CC0:
2504 case CLOBBER:
2505 return 0;
2506
2507 case PRE_INC:
2508 case PRE_DEC:
2509 case POST_INC:
2510 case POST_DEC:
2511 case PRE_MODIFY:
2512 case POST_MODIFY:
2513 return 0;
2514
2515 case REG:
2516 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2517 && reg_equiv[REGNO (x)].replace)
2518 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2519 && ! rtx_varies_p (x, 0)));
2520
2521 case UNSPEC_VOLATILE:
2522 return 0;
2523
2524 case ASM_OPERANDS:
2525 if (MEM_VOLATILE_P (x))
2526 return 0;
2527
2528 /* Fall through. */
2529
2530 default:
2531 break;
2532 }
2533
2534 fmt = GET_RTX_FORMAT (code);
2535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2536 switch (fmt[i])
2537 {
2538 case 'e':
2539 if (! equiv_init_movable_p (XEXP (x, i), regno))
2540 return 0;
2541 break;
2542 case 'E':
2543 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2544 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2545 return 0;
2546 break;
2547 }
2548
2549 return 1;
2550 }
2551
2552 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2553 true. */
2554 static int
2555 contains_replace_regs (rtx x)
2556 {
2557 int i, j;
2558 const char *fmt;
2559 enum rtx_code code = GET_CODE (x);
2560
2561 switch (code)
2562 {
2563 case CONST_INT:
2564 case CONST:
2565 case LABEL_REF:
2566 case SYMBOL_REF:
2567 case CONST_DOUBLE:
2568 case CONST_FIXED:
2569 case CONST_VECTOR:
2570 case PC:
2571 case CC0:
2572 case HIGH:
2573 return 0;
2574
2575 case REG:
2576 return reg_equiv[REGNO (x)].replace;
2577
2578 default:
2579 break;
2580 }
2581
2582 fmt = GET_RTX_FORMAT (code);
2583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2584 switch (fmt[i])
2585 {
2586 case 'e':
2587 if (contains_replace_regs (XEXP (x, i)))
2588 return 1;
2589 break;
2590 case 'E':
2591 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2592 if (contains_replace_regs (XVECEXP (x, i, j)))
2593 return 1;
2594 break;
2595 }
2596
2597 return 0;
2598 }
2599
2600 /* TRUE if X references a memory location that would be affected by a store
2601 to MEMREF. */
2602 static int
2603 memref_referenced_p (rtx memref, rtx x)
2604 {
2605 int i, j;
2606 const char *fmt;
2607 enum rtx_code code = GET_CODE (x);
2608
2609 switch (code)
2610 {
2611 case CONST_INT:
2612 case CONST:
2613 case LABEL_REF:
2614 case SYMBOL_REF:
2615 case CONST_DOUBLE:
2616 case CONST_FIXED:
2617 case CONST_VECTOR:
2618 case PC:
2619 case CC0:
2620 case HIGH:
2621 case LO_SUM:
2622 return 0;
2623
2624 case REG:
2625 return (reg_equiv[REGNO (x)].replacement
2626 && memref_referenced_p (memref,
2627 reg_equiv[REGNO (x)].replacement));
2628
2629 case MEM:
2630 if (true_dependence (memref, VOIDmode, x))
2631 return 1;
2632 break;
2633
2634 case SET:
2635 /* If we are setting a MEM, it doesn't count (its address does), but any
2636 other SET_DEST that has a MEM in it is referencing the MEM. */
2637 if (MEM_P (SET_DEST (x)))
2638 {
2639 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2640 return 1;
2641 }
2642 else if (memref_referenced_p (memref, SET_DEST (x)))
2643 return 1;
2644
2645 return memref_referenced_p (memref, SET_SRC (x));
2646
2647 default:
2648 break;
2649 }
2650
2651 fmt = GET_RTX_FORMAT (code);
2652 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2653 switch (fmt[i])
2654 {
2655 case 'e':
2656 if (memref_referenced_p (memref, XEXP (x, i)))
2657 return 1;
2658 break;
2659 case 'E':
2660 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2661 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2662 return 1;
2663 break;
2664 }
2665
2666 return 0;
2667 }
2668
2669 /* TRUE if some insn in the range (START, END] references a memory location
2670 that would be affected by a store to MEMREF. */
2671 static int
2672 memref_used_between_p (rtx memref, rtx start, rtx end)
2673 {
2674 rtx insn;
2675
2676 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2677 insn = NEXT_INSN (insn))
2678 {
2679 if (!NONDEBUG_INSN_P (insn))
2680 continue;
2681
2682 if (memref_referenced_p (memref, PATTERN (insn)))
2683 return 1;
2684
2685 /* Nonconst functions may access memory. */
2686 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2687 return 1;
2688 }
2689
2690 return 0;
2691 }
2692
2693 /* Mark REG as having no known equivalence.
2694 Some instructions might have been processed before and furnished
2695 with REG_EQUIV notes for this register; these notes will have to be
2696 removed.
2697 STORE is the piece of RTL that does the non-constant / conflicting
2698 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2699 but needs to be there because this function is called from note_stores. */
2700 static void
2701 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2702 void *data ATTRIBUTE_UNUSED)
2703 {
2704 int regno;
2705 rtx list;
2706
2707 if (!REG_P (reg))
2708 return;
2709 regno = REGNO (reg);
2710 list = reg_equiv[regno].init_insns;
2711 if (list == const0_rtx)
2712 return;
2713 reg_equiv[regno].init_insns = const0_rtx;
2714 reg_equiv[regno].replacement = NULL_RTX;
2715 /* This doesn't matter for equivalences made for argument registers, we
2716 should keep their initialization insns. */
2717 if (reg_equiv[regno].is_arg_equivalence)
2718 return;
2719 reg_equiv_init (regno) = NULL_RTX;
2720 for (; list; list = XEXP (list, 1))
2721 {
2722 rtx insn = XEXP (list, 0);
2723 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2724 }
2725 }
2726
2727 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2728 equivalent replacement. */
2729
2730 static rtx
2731 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2732 {
2733 if (REG_P (loc))
2734 {
2735 bitmap cleared_regs = (bitmap) data;
2736 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2737 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2738 NULL_RTX, adjust_cleared_regs, data);
2739 }
2740 return NULL_RTX;
2741 }
2742
2743 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2744 static int recorded_label_ref;
2745
2746 /* Find registers that are equivalent to a single value throughout the
2747 compilation (either because they can be referenced in memory or are
2748 set once from a single constant). Lower their priority for a
2749 register.
2750
2751 If such a register is only referenced once, try substituting its
2752 value into the using insn. If it succeeds, we can eliminate the
2753 register completely.
2754
2755 Initialize the REG_EQUIV_INIT array of initializing insns.
2756
2757 Return non-zero if jump label rebuilding should be done. */
2758 static int
2759 update_equiv_regs (void)
2760 {
2761 rtx insn;
2762 basic_block bb;
2763 int loop_depth;
2764 bitmap cleared_regs;
2765
2766 /* We need to keep track of whether or not we recorded a LABEL_REF so
2767 that we know if the jump optimizer needs to be rerun. */
2768 recorded_label_ref = 0;
2769
2770 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2771 grow_reg_equivs ();
2772
2773 init_alias_analysis ();
2774
2775 /* Scan the insns and find which registers have equivalences. Do this
2776 in a separate scan of the insns because (due to -fcse-follow-jumps)
2777 a register can be set below its use. */
2778 FOR_EACH_BB (bb)
2779 {
2780 loop_depth = bb->loop_depth;
2781
2782 for (insn = BB_HEAD (bb);
2783 insn != NEXT_INSN (BB_END (bb));
2784 insn = NEXT_INSN (insn))
2785 {
2786 rtx note;
2787 rtx set;
2788 rtx dest, src;
2789 int regno;
2790
2791 if (! INSN_P (insn))
2792 continue;
2793
2794 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2795 if (REG_NOTE_KIND (note) == REG_INC)
2796 no_equiv (XEXP (note, 0), note, NULL);
2797
2798 set = single_set (insn);
2799
2800 /* If this insn contains more (or less) than a single SET,
2801 only mark all destinations as having no known equivalence. */
2802 if (set == 0)
2803 {
2804 note_stores (PATTERN (insn), no_equiv, NULL);
2805 continue;
2806 }
2807 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2808 {
2809 int i;
2810
2811 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2812 {
2813 rtx part = XVECEXP (PATTERN (insn), 0, i);
2814 if (part != set)
2815 note_stores (part, no_equiv, NULL);
2816 }
2817 }
2818
2819 dest = SET_DEST (set);
2820 src = SET_SRC (set);
2821
2822 /* See if this is setting up the equivalence between an argument
2823 register and its stack slot. */
2824 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2825 if (note)
2826 {
2827 gcc_assert (REG_P (dest));
2828 regno = REGNO (dest);
2829
2830 /* Note that we don't want to clear reg_equiv_init even if there
2831 are multiple sets of this register. */
2832 reg_equiv[regno].is_arg_equivalence = 1;
2833
2834 /* Record for reload that this is an equivalencing insn. */
2835 if (rtx_equal_p (src, XEXP (note, 0)))
2836 reg_equiv_init (regno)
2837 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2838
2839 /* Continue normally in case this is a candidate for
2840 replacements. */
2841 }
2842
2843 if (!optimize)
2844 continue;
2845
2846 /* We only handle the case of a pseudo register being set
2847 once, or always to the same value. */
2848 /* ??? The mn10200 port breaks if we add equivalences for
2849 values that need an ADDRESS_REGS register and set them equivalent
2850 to a MEM of a pseudo. The actual problem is in the over-conservative
2851 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2852 calculate_needs, but we traditionally work around this problem
2853 here by rejecting equivalences when the destination is in a register
2854 that's likely spilled. This is fragile, of course, since the
2855 preferred class of a pseudo depends on all instructions that set
2856 or use it. */
2857
2858 if (!REG_P (dest)
2859 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2860 || reg_equiv[regno].init_insns == const0_rtx
2861 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
2862 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2863 {
2864 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2865 also set somewhere else to a constant. */
2866 note_stores (set, no_equiv, NULL);
2867 continue;
2868 }
2869
2870 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2871
2872 /* cse sometimes generates function invariants, but doesn't put a
2873 REG_EQUAL note on the insn. Since this note would be redundant,
2874 there's no point creating it earlier than here. */
2875 if (! note && ! rtx_varies_p (src, 0))
2876 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2877
2878 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2879 since it represents a function call */
2880 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2881 note = NULL_RTX;
2882
2883 if (DF_REG_DEF_COUNT (regno) != 1
2884 && (! note
2885 || rtx_varies_p (XEXP (note, 0), 0)
2886 || (reg_equiv[regno].replacement
2887 && ! rtx_equal_p (XEXP (note, 0),
2888 reg_equiv[regno].replacement))))
2889 {
2890 no_equiv (dest, set, NULL);
2891 continue;
2892 }
2893 /* Record this insn as initializing this register. */
2894 reg_equiv[regno].init_insns
2895 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2896
2897 /* If this register is known to be equal to a constant, record that
2898 it is always equivalent to the constant. */
2899 if (DF_REG_DEF_COUNT (regno) == 1
2900 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2901 {
2902 rtx note_value = XEXP (note, 0);
2903 remove_note (insn, note);
2904 set_unique_reg_note (insn, REG_EQUIV, note_value);
2905 }
2906
2907 /* If this insn introduces a "constant" register, decrease the priority
2908 of that register. Record this insn if the register is only used once
2909 more and the equivalence value is the same as our source.
2910
2911 The latter condition is checked for two reasons: First, it is an
2912 indication that it may be more efficient to actually emit the insn
2913 as written (if no registers are available, reload will substitute
2914 the equivalence). Secondly, it avoids problems with any registers
2915 dying in this insn whose death notes would be missed.
2916
2917 If we don't have a REG_EQUIV note, see if this insn is loading
2918 a register used only in one basic block from a MEM. If so, and the
2919 MEM remains unchanged for the life of the register, add a REG_EQUIV
2920 note. */
2921
2922 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2923
2924 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2925 && MEM_P (SET_SRC (set))
2926 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2927 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2928
2929 if (note)
2930 {
2931 int regno = REGNO (dest);
2932 rtx x = XEXP (note, 0);
2933
2934 /* If we haven't done so, record for reload that this is an
2935 equivalencing insn. */
2936 if (!reg_equiv[regno].is_arg_equivalence)
2937 reg_equiv_init (regno)
2938 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2939
2940 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2941 We might end up substituting the LABEL_REF for uses of the
2942 pseudo here or later. That kind of transformation may turn an
2943 indirect jump into a direct jump, in which case we must rerun the
2944 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2945 if (GET_CODE (x) == LABEL_REF
2946 || (GET_CODE (x) == CONST
2947 && GET_CODE (XEXP (x, 0)) == PLUS
2948 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2949 recorded_label_ref = 1;
2950
2951 reg_equiv[regno].replacement = x;
2952 reg_equiv[regno].src_p = &SET_SRC (set);
2953 reg_equiv[regno].loop_depth = loop_depth;
2954
2955 /* Don't mess with things live during setjmp. */
2956 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2957 {
2958 /* Note that the statement below does not affect the priority
2959 in local-alloc! */
2960 REG_LIVE_LENGTH (regno) *= 2;
2961
2962 /* If the register is referenced exactly twice, meaning it is
2963 set once and used once, indicate that the reference may be
2964 replaced by the equivalence we computed above. Do this
2965 even if the register is only used in one block so that
2966 dependencies can be handled where the last register is
2967 used in a different block (i.e. HIGH / LO_SUM sequences)
2968 and to reduce the number of registers alive across
2969 calls. */
2970
2971 if (REG_N_REFS (regno) == 2
2972 && (rtx_equal_p (x, src)
2973 || ! equiv_init_varies_p (src))
2974 && NONJUMP_INSN_P (insn)
2975 && equiv_init_movable_p (PATTERN (insn), regno))
2976 reg_equiv[regno].replace = 1;
2977 }
2978 }
2979 }
2980 }
2981
2982 if (!optimize)
2983 goto out;
2984
2985 /* A second pass, to gather additional equivalences with memory. This needs
2986 to be done after we know which registers we are going to replace. */
2987
2988 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2989 {
2990 rtx set, src, dest;
2991 unsigned regno;
2992
2993 if (! INSN_P (insn))
2994 continue;
2995
2996 set = single_set (insn);
2997 if (! set)
2998 continue;
2999
3000 dest = SET_DEST (set);
3001 src = SET_SRC (set);
3002
3003 /* If this sets a MEM to the contents of a REG that is only used
3004 in a single basic block, see if the register is always equivalent
3005 to that memory location and if moving the store from INSN to the
3006 insn that set REG is safe. If so, put a REG_EQUIV note on the
3007 initializing insn.
3008
3009 Don't add a REG_EQUIV note if the insn already has one. The existing
3010 REG_EQUIV is likely more useful than the one we are adding.
3011
3012 If one of the regs in the address has reg_equiv[REGNO].replace set,
3013 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3014 optimization may move the set of this register immediately before
3015 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3016 the mention in the REG_EQUIV note would be to an uninitialized
3017 pseudo. */
3018
3019 if (MEM_P (dest) && REG_P (src)
3020 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3021 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3022 && DF_REG_DEF_COUNT (regno) == 1
3023 && reg_equiv[regno].init_insns != 0
3024 && reg_equiv[regno].init_insns != const0_rtx
3025 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3026 REG_EQUIV, NULL_RTX)
3027 && ! contains_replace_regs (XEXP (dest, 0)))
3028 {
3029 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3030 if (validate_equiv_mem (init_insn, src, dest)
3031 && ! memref_used_between_p (dest, init_insn, insn)
3032 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3033 multiple sets. */
3034 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3035 {
3036 /* This insn makes the equivalence, not the one initializing
3037 the register. */
3038 reg_equiv_init (regno)
3039 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3040 df_notes_rescan (init_insn);
3041 }
3042 }
3043 }
3044
3045 cleared_regs = BITMAP_ALLOC (NULL);
3046 /* Now scan all regs killed in an insn to see if any of them are
3047 registers only used that once. If so, see if we can replace the
3048 reference with the equivalent form. If we can, delete the
3049 initializing reference and this register will go away. If we
3050 can't replace the reference, and the initializing reference is
3051 within the same loop (or in an inner loop), then move the register
3052 initialization just before the use, so that they are in the same
3053 basic block. */
3054 FOR_EACH_BB_REVERSE (bb)
3055 {
3056 loop_depth = bb->loop_depth;
3057 for (insn = BB_END (bb);
3058 insn != PREV_INSN (BB_HEAD (bb));
3059 insn = PREV_INSN (insn))
3060 {
3061 rtx link;
3062
3063 if (! INSN_P (insn))
3064 continue;
3065
3066 /* Don't substitute into a non-local goto, this confuses CFG. */
3067 if (JUMP_P (insn)
3068 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3069 continue;
3070
3071 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3072 {
3073 if (REG_NOTE_KIND (link) == REG_DEAD
3074 /* Make sure this insn still refers to the register. */
3075 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3076 {
3077 int regno = REGNO (XEXP (link, 0));
3078 rtx equiv_insn;
3079
3080 if (! reg_equiv[regno].replace
3081 || reg_equiv[regno].loop_depth < loop_depth
3082 /* There is no sense to move insns if we did
3083 register pressure-sensitive scheduling was
3084 done because it will not improve allocation
3085 but worsen insn schedule with a big
3086 probability. */
3087 || (flag_sched_pressure && flag_schedule_insns))
3088 continue;
3089
3090 /* reg_equiv[REGNO].replace gets set only when
3091 REG_N_REFS[REGNO] is 2, i.e. the register is set
3092 once and used once. (If it were only set, but not used,
3093 flow would have deleted the setting insns.) Hence
3094 there can only be one insn in reg_equiv[REGNO].init_insns. */
3095 gcc_assert (reg_equiv[regno].init_insns
3096 && !XEXP (reg_equiv[regno].init_insns, 1));
3097 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3098
3099 /* We may not move instructions that can throw, since
3100 that changes basic block boundaries and we are not
3101 prepared to adjust the CFG to match. */
3102 if (can_throw_internal (equiv_insn))
3103 continue;
3104
3105 if (asm_noperands (PATTERN (equiv_insn)) < 0
3106 && validate_replace_rtx (regno_reg_rtx[regno],
3107 *(reg_equiv[regno].src_p), insn))
3108 {
3109 rtx equiv_link;
3110 rtx last_link;
3111 rtx note;
3112
3113 /* Find the last note. */
3114 for (last_link = link; XEXP (last_link, 1);
3115 last_link = XEXP (last_link, 1))
3116 ;
3117
3118 /* Append the REG_DEAD notes from equiv_insn. */
3119 equiv_link = REG_NOTES (equiv_insn);
3120 while (equiv_link)
3121 {
3122 note = equiv_link;
3123 equiv_link = XEXP (equiv_link, 1);
3124 if (REG_NOTE_KIND (note) == REG_DEAD)
3125 {
3126 remove_note (equiv_insn, note);
3127 XEXP (last_link, 1) = note;
3128 XEXP (note, 1) = NULL_RTX;
3129 last_link = note;
3130 }
3131 }
3132
3133 remove_death (regno, insn);
3134 SET_REG_N_REFS (regno, 0);
3135 REG_FREQ (regno) = 0;
3136 delete_insn (equiv_insn);
3137
3138 reg_equiv[regno].init_insns
3139 = XEXP (reg_equiv[regno].init_insns, 1);
3140
3141 reg_equiv_init (regno) = NULL_RTX;
3142 bitmap_set_bit (cleared_regs, regno);
3143 }
3144 /* Move the initialization of the register to just before
3145 INSN. Update the flow information. */
3146 else if (prev_nondebug_insn (insn) != equiv_insn)
3147 {
3148 rtx new_insn;
3149
3150 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3151 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3152 REG_NOTES (equiv_insn) = 0;
3153 /* Rescan it to process the notes. */
3154 df_insn_rescan (new_insn);
3155
3156 /* Make sure this insn is recognized before
3157 reload begins, otherwise
3158 eliminate_regs_in_insn will die. */
3159 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3160
3161 delete_insn (equiv_insn);
3162
3163 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3164
3165 REG_BASIC_BLOCK (regno) = bb->index;
3166 REG_N_CALLS_CROSSED (regno) = 0;
3167 REG_FREQ_CALLS_CROSSED (regno) = 0;
3168 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3169 REG_LIVE_LENGTH (regno) = 2;
3170
3171 if (insn == BB_HEAD (bb))
3172 BB_HEAD (bb) = PREV_INSN (insn);
3173
3174 reg_equiv_init (regno)
3175 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3176 bitmap_set_bit (cleared_regs, regno);
3177 }
3178 }
3179 }
3180 }
3181 }
3182
3183 if (!bitmap_empty_p (cleared_regs))
3184 {
3185 FOR_EACH_BB (bb)
3186 {
3187 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3188 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3189 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3190 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3191 }
3192
3193 /* Last pass - adjust debug insns referencing cleared regs. */
3194 if (MAY_HAVE_DEBUG_INSNS)
3195 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3196 if (DEBUG_INSN_P (insn))
3197 {
3198 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3199 INSN_VAR_LOCATION_LOC (insn)
3200 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3201 adjust_cleared_regs,
3202 (void *) cleared_regs);
3203 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3204 df_insn_rescan (insn);
3205 }
3206 }
3207
3208 BITMAP_FREE (cleared_regs);
3209
3210 out:
3211 /* Clean up. */
3212
3213 end_alias_analysis ();
3214 free (reg_equiv);
3215 return recorded_label_ref;
3216 }
3217
3218 \f
3219
3220 /* Print chain C to FILE. */
3221 static void
3222 print_insn_chain (FILE *file, struct insn_chain *c)
3223 {
3224 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3225 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3226 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3227 }
3228
3229
3230 /* Print all reload_insn_chains to FILE. */
3231 static void
3232 print_insn_chains (FILE *file)
3233 {
3234 struct insn_chain *c;
3235 for (c = reload_insn_chain; c ; c = c->next)
3236 print_insn_chain (file, c);
3237 }
3238
3239 /* Return true if pseudo REGNO should be added to set live_throughout
3240 or dead_or_set of the insn chains for reload consideration. */
3241 static bool
3242 pseudo_for_reload_consideration_p (int regno)
3243 {
3244 /* Consider spilled pseudos too for IRA because they still have a
3245 chance to get hard-registers in the reload when IRA is used. */
3246 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3247 }
3248
3249 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3250 REG to the number of nregs, and INIT_VALUE to get the
3251 initialization. ALLOCNUM need not be the regno of REG. */
3252 static void
3253 init_live_subregs (bool init_value, sbitmap *live_subregs,
3254 int *live_subregs_used, int allocnum, rtx reg)
3255 {
3256 unsigned int regno = REGNO (SUBREG_REG (reg));
3257 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3258
3259 gcc_assert (size > 0);
3260
3261 /* Been there, done that. */
3262 if (live_subregs_used[allocnum])
3263 return;
3264
3265 /* Create a new one with zeros. */
3266 if (live_subregs[allocnum] == NULL)
3267 live_subregs[allocnum] = sbitmap_alloc (size);
3268
3269 /* If the entire reg was live before blasting into subregs, we need
3270 to init all of the subregs to ones else init to 0. */
3271 if (init_value)
3272 sbitmap_ones (live_subregs[allocnum]);
3273 else
3274 sbitmap_zero (live_subregs[allocnum]);
3275
3276 /* Set the number of bits that we really want. */
3277 live_subregs_used[allocnum] = size;
3278 }
3279
3280 /* Walk the insns of the current function and build reload_insn_chain,
3281 and record register life information. */
3282 static void
3283 build_insn_chain (void)
3284 {
3285 unsigned int i;
3286 struct insn_chain **p = &reload_insn_chain;
3287 basic_block bb;
3288 struct insn_chain *c = NULL;
3289 struct insn_chain *next = NULL;
3290 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3291 bitmap elim_regset = BITMAP_ALLOC (NULL);
3292 /* live_subregs is a vector used to keep accurate information about
3293 which hardregs are live in multiword pseudos. live_subregs and
3294 live_subregs_used are indexed by pseudo number. The live_subreg
3295 entry for a particular pseudo is only used if the corresponding
3296 element is non zero in live_subregs_used. The value in
3297 live_subregs_used is number of bytes that the pseudo can
3298 occupy. */
3299 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3300 int *live_subregs_used = XNEWVEC (int, max_regno);
3301
3302 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3303 if (TEST_HARD_REG_BIT (eliminable_regset, i))
3304 bitmap_set_bit (elim_regset, i);
3305 FOR_EACH_BB_REVERSE (bb)
3306 {
3307 bitmap_iterator bi;
3308 rtx insn;
3309
3310 CLEAR_REG_SET (live_relevant_regs);
3311 memset (live_subregs_used, 0, max_regno * sizeof (int));
3312
3313 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
3314 {
3315 if (i >= FIRST_PSEUDO_REGISTER)
3316 break;
3317 bitmap_set_bit (live_relevant_regs, i);
3318 }
3319
3320 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
3321 FIRST_PSEUDO_REGISTER, i, bi)
3322 {
3323 if (pseudo_for_reload_consideration_p (i))
3324 bitmap_set_bit (live_relevant_regs, i);
3325 }
3326
3327 FOR_BB_INSNS_REVERSE (bb, insn)
3328 {
3329 if (!NOTE_P (insn) && !BARRIER_P (insn))
3330 {
3331 unsigned int uid = INSN_UID (insn);
3332 df_ref *def_rec;
3333 df_ref *use_rec;
3334
3335 c = new_insn_chain ();
3336 c->next = next;
3337 next = c;
3338 *p = c;
3339 p = &c->prev;
3340
3341 c->insn = insn;
3342 c->block = bb->index;
3343
3344 if (INSN_P (insn))
3345 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3346 {
3347 df_ref def = *def_rec;
3348 unsigned int regno = DF_REF_REGNO (def);
3349
3350 /* Ignore may clobbers because these are generated
3351 from calls. However, every other kind of def is
3352 added to dead_or_set. */
3353 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3354 {
3355 if (regno < FIRST_PSEUDO_REGISTER)
3356 {
3357 if (!fixed_regs[regno])
3358 bitmap_set_bit (&c->dead_or_set, regno);
3359 }
3360 else if (pseudo_for_reload_consideration_p (regno))
3361 bitmap_set_bit (&c->dead_or_set, regno);
3362 }
3363
3364 if ((regno < FIRST_PSEUDO_REGISTER
3365 || reg_renumber[regno] >= 0
3366 || ira_conflicts_p)
3367 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3368 {
3369 rtx reg = DF_REF_REG (def);
3370
3371 /* We can model subregs, but not if they are
3372 wrapped in ZERO_EXTRACTS. */
3373 if (GET_CODE (reg) == SUBREG
3374 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3375 {
3376 unsigned int start = SUBREG_BYTE (reg);
3377 unsigned int last = start
3378 + GET_MODE_SIZE (GET_MODE (reg));
3379
3380 init_live_subregs
3381 (bitmap_bit_p (live_relevant_regs, regno),
3382 live_subregs, live_subregs_used, regno, reg);
3383
3384 if (!DF_REF_FLAGS_IS_SET
3385 (def, DF_REF_STRICT_LOW_PART))
3386 {
3387 /* Expand the range to cover entire words.
3388 Bytes added here are "don't care". */
3389 start
3390 = start / UNITS_PER_WORD * UNITS_PER_WORD;
3391 last = ((last + UNITS_PER_WORD - 1)
3392 / UNITS_PER_WORD * UNITS_PER_WORD);
3393 }
3394
3395 /* Ignore the paradoxical bits. */
3396 if ((int)last > live_subregs_used[regno])
3397 last = live_subregs_used[regno];
3398
3399 while (start < last)
3400 {
3401 RESET_BIT (live_subregs[regno], start);
3402 start++;
3403 }
3404
3405 if (sbitmap_empty_p (live_subregs[regno]))
3406 {
3407 live_subregs_used[regno] = 0;
3408 bitmap_clear_bit (live_relevant_regs, regno);
3409 }
3410 else
3411 /* Set live_relevant_regs here because
3412 that bit has to be true to get us to
3413 look at the live_subregs fields. */
3414 bitmap_set_bit (live_relevant_regs, regno);
3415 }
3416 else
3417 {
3418 /* DF_REF_PARTIAL is generated for
3419 subregs, STRICT_LOW_PART, and
3420 ZERO_EXTRACT. We handle the subreg
3421 case above so here we have to keep from
3422 modeling the def as a killing def. */
3423 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3424 {
3425 bitmap_clear_bit (live_relevant_regs, regno);
3426 live_subregs_used[regno] = 0;
3427 }
3428 }
3429 }
3430 }
3431
3432 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3433 bitmap_copy (&c->live_throughout, live_relevant_regs);
3434
3435 if (INSN_P (insn))
3436 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3437 {
3438 df_ref use = *use_rec;
3439 unsigned int regno = DF_REF_REGNO (use);
3440 rtx reg = DF_REF_REG (use);
3441
3442 /* DF_REF_READ_WRITE on a use means that this use
3443 is fabricated from a def that is a partial set
3444 to a multiword reg. Here, we only model the
3445 subreg case that is not wrapped in ZERO_EXTRACT
3446 precisely so we do not need to look at the
3447 fabricated use. */
3448 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3449 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3450 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3451 continue;
3452
3453 /* Add the last use of each var to dead_or_set. */
3454 if (!bitmap_bit_p (live_relevant_regs, regno))
3455 {
3456 if (regno < FIRST_PSEUDO_REGISTER)
3457 {
3458 if (!fixed_regs[regno])
3459 bitmap_set_bit (&c->dead_or_set, regno);
3460 }
3461 else if (pseudo_for_reload_consideration_p (regno))
3462 bitmap_set_bit (&c->dead_or_set, regno);
3463 }
3464
3465 if (regno < FIRST_PSEUDO_REGISTER
3466 || pseudo_for_reload_consideration_p (regno))
3467 {
3468 if (GET_CODE (reg) == SUBREG
3469 && !DF_REF_FLAGS_IS_SET (use,
3470 DF_REF_SIGN_EXTRACT
3471 | DF_REF_ZERO_EXTRACT))
3472 {
3473 unsigned int start = SUBREG_BYTE (reg);
3474 unsigned int last = start
3475 + GET_MODE_SIZE (GET_MODE (reg));
3476
3477 init_live_subregs
3478 (bitmap_bit_p (live_relevant_regs, regno),
3479 live_subregs, live_subregs_used, regno, reg);
3480
3481 /* Ignore the paradoxical bits. */
3482 if ((int)last > live_subregs_used[regno])
3483 last = live_subregs_used[regno];
3484
3485 while (start < last)
3486 {
3487 SET_BIT (live_subregs[regno], start);
3488 start++;
3489 }
3490 }
3491 else
3492 /* Resetting the live_subregs_used is
3493 effectively saying do not use the subregs
3494 because we are reading the whole
3495 pseudo. */
3496 live_subregs_used[regno] = 0;
3497 bitmap_set_bit (live_relevant_regs, regno);
3498 }
3499 }
3500 }
3501 }
3502
3503 /* FIXME!! The following code is a disaster. Reload needs to see the
3504 labels and jump tables that are just hanging out in between
3505 the basic blocks. See pr33676. */
3506 insn = BB_HEAD (bb);
3507
3508 /* Skip over the barriers and cruft. */
3509 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3510 || BLOCK_FOR_INSN (insn) == bb))
3511 insn = PREV_INSN (insn);
3512
3513 /* While we add anything except barriers and notes, the focus is
3514 to get the labels and jump tables into the
3515 reload_insn_chain. */
3516 while (insn)
3517 {
3518 if (!NOTE_P (insn) && !BARRIER_P (insn))
3519 {
3520 if (BLOCK_FOR_INSN (insn))
3521 break;
3522
3523 c = new_insn_chain ();
3524 c->next = next;
3525 next = c;
3526 *p = c;
3527 p = &c->prev;
3528
3529 /* The block makes no sense here, but it is what the old
3530 code did. */
3531 c->block = bb->index;
3532 c->insn = insn;
3533 bitmap_copy (&c->live_throughout, live_relevant_regs);
3534 }
3535 insn = PREV_INSN (insn);
3536 }
3537 }
3538
3539 for (i = 0; i < (unsigned int) max_regno; i++)
3540 free (live_subregs[i]);
3541
3542 reload_insn_chain = c;
3543 *p = NULL;
3544
3545 free (live_subregs);
3546 free (live_subregs_used);
3547 BITMAP_FREE (live_relevant_regs);
3548 BITMAP_FREE (elim_regset);
3549
3550 if (dump_file)
3551 print_insn_chains (dump_file);
3552 }
3553 \f
3554 /* Examine the rtx found in *LOC, which is read or written to as determined
3555 by TYPE. Return false if we find a reason why an insn containing this
3556 rtx should not be moved (such as accesses to non-constant memory), true
3557 otherwise. */
3558 static bool
3559 rtx_moveable_p (rtx *loc, enum op_type type)
3560 {
3561 const char *fmt;
3562 rtx x = *loc;
3563 enum rtx_code code = GET_CODE (x);
3564 int i, j;
3565
3566 code = GET_CODE (x);
3567 switch (code)
3568 {
3569 case CONST:
3570 case CONST_INT:
3571 case CONST_DOUBLE:
3572 case CONST_FIXED:
3573 case CONST_VECTOR:
3574 case SYMBOL_REF:
3575 case LABEL_REF:
3576 return true;
3577
3578 case PC:
3579 return type == OP_IN;
3580
3581 case CC0:
3582 return false;
3583
3584 case REG:
3585 if (x == frame_pointer_rtx)
3586 return true;
3587 if (HARD_REGISTER_P (x))
3588 return false;
3589
3590 return true;
3591
3592 case MEM:
3593 if (type == OP_IN && MEM_READONLY_P (x))
3594 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
3595 return false;
3596
3597 case SET:
3598 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
3599 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
3600
3601 case STRICT_LOW_PART:
3602 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
3603
3604 case ZERO_EXTRACT:
3605 case SIGN_EXTRACT:
3606 return (rtx_moveable_p (&XEXP (x, 0), type)
3607 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
3608 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
3609
3610 case CLOBBER:
3611 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
3612
3613 default:
3614 break;
3615 }
3616
3617 fmt = GET_RTX_FORMAT (code);
3618 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3619 {
3620 if (fmt[i] == 'e')
3621 {
3622 if (!rtx_moveable_p (&XEXP (x, i), type))
3623 return false;
3624 }
3625 else if (fmt[i] == 'E')
3626 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3627 {
3628 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
3629 return false;
3630 }
3631 }
3632 return true;
3633 }
3634
3635 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
3636 to give dominance relationships between two insns I1 and I2. */
3637 static bool
3638 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
3639 {
3640 basic_block bb1 = BLOCK_FOR_INSN (i1);
3641 basic_block bb2 = BLOCK_FOR_INSN (i2);
3642
3643 if (bb1 == bb2)
3644 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
3645 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
3646 }
3647
3648 /* Record the range of register numbers added by find_moveable_pseudos. */
3649 int first_moveable_pseudo, last_moveable_pseudo;
3650
3651 /* These two vectors hold data for every register added by
3652 find_movable_pseudos, with index 0 holding data for the
3653 first_moveable_pseudo. */
3654 /* The original home register. */
3655 static VEC (rtx, heap) *pseudo_replaced_reg;
3656
3657 /* Look for instances where we have an instruction that is known to increase
3658 register pressure, and whose result is not used immediately. If it is
3659 possible to move the instruction downwards to just before its first use,
3660 split its lifetime into two ranges. We create a new pseudo to compute the
3661 value, and emit a move instruction just before the first use. If, after
3662 register allocation, the new pseudo remains unallocated, the function
3663 move_unallocated_pseudos then deletes the move instruction and places
3664 the computation just before the first use.
3665
3666 Such a move is safe and profitable if all the input registers remain live
3667 and unchanged between the original computation and its first use. In such
3668 a situation, the computation is known to increase register pressure, and
3669 moving it is known to at least not worsen it.
3670
3671 We restrict moves to only those cases where a register remains unallocated,
3672 in order to avoid interfering too much with the instruction schedule. As
3673 an exception, we may move insns which only modify their input register
3674 (typically induction variables), as this increases the freedom for our
3675 intended transformation, and does not limit the second instruction
3676 scheduler pass. */
3677
3678 static void
3679 find_moveable_pseudos (void)
3680 {
3681 unsigned i;
3682 int max_regs = max_reg_num ();
3683 int max_uid = get_max_uid ();
3684 basic_block bb;
3685 int *uid_luid = XNEWVEC (int, max_uid);
3686 rtx *closest_uses = XNEWVEC (rtx, max_regs);
3687 /* A set of registers which are live but not modified throughout a block. */
3688 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block);
3689 /* A set of registers which only exist in a given basic block. */
3690 bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block);
3691 /* A set of registers which are set once, in an instruction that can be
3692 moved freely downwards, but are otherwise transparent to a block. */
3693 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block);
3694 bitmap_head live, used, set, interesting, unusable_as_input;
3695 bitmap_iterator bi;
3696 bitmap_initialize (&interesting, 0);
3697
3698 first_moveable_pseudo = max_regs;
3699 VEC_free (rtx, heap, pseudo_replaced_reg);
3700 VEC_safe_grow (rtx, heap, pseudo_replaced_reg, max_regs);
3701
3702 df_analyze ();
3703 calculate_dominance_info (CDI_DOMINATORS);
3704
3705 i = 0;
3706 bitmap_initialize (&live, 0);
3707 bitmap_initialize (&used, 0);
3708 bitmap_initialize (&set, 0);
3709 bitmap_initialize (&unusable_as_input, 0);
3710 FOR_EACH_BB (bb)
3711 {
3712 rtx insn;
3713 bitmap transp = bb_transp_live + bb->index;
3714 bitmap moveable = bb_moveable_reg_sets + bb->index;
3715 bitmap local = bb_local + bb->index;
3716
3717 bitmap_initialize (local, 0);
3718 bitmap_initialize (transp, 0);
3719 bitmap_initialize (moveable, 0);
3720 bitmap_copy (&live, df_get_live_out (bb));
3721 bitmap_and_into (&live, df_get_live_in (bb));
3722 bitmap_copy (transp, &live);
3723 bitmap_clear (moveable);
3724 bitmap_clear (&live);
3725 bitmap_clear (&used);
3726 bitmap_clear (&set);
3727 FOR_BB_INSNS (bb, insn)
3728 if (NONDEBUG_INSN_P (insn))
3729 {
3730 df_ref *u_rec, *d_rec;
3731
3732 uid_luid[INSN_UID (insn)] = i++;
3733
3734 u_rec = DF_INSN_USES (insn);
3735 d_rec = DF_INSN_DEFS (insn);
3736 if (d_rec[0] != NULL && d_rec[1] == NULL
3737 && u_rec[0] != NULL && u_rec[1] == NULL
3738 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
3739 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
3740 && rtx_moveable_p (&PATTERN (insn), OP_IN))
3741 {
3742 unsigned regno = DF_REF_REGNO (*u_rec);
3743 bitmap_set_bit (moveable, regno);
3744 bitmap_set_bit (&set, regno);
3745 bitmap_set_bit (&used, regno);
3746 bitmap_clear_bit (transp, regno);
3747 continue;
3748 }
3749 while (*u_rec)
3750 {
3751 unsigned regno = DF_REF_REGNO (*u_rec);
3752 bitmap_set_bit (&used, regno);
3753 if (bitmap_clear_bit (moveable, regno))
3754 bitmap_clear_bit (transp, regno);
3755 u_rec++;
3756 }
3757
3758 while (*d_rec)
3759 {
3760 unsigned regno = DF_REF_REGNO (*d_rec);
3761 bitmap_set_bit (&set, regno);
3762 bitmap_clear_bit (transp, regno);
3763 bitmap_clear_bit (moveable, regno);
3764 d_rec++;
3765 }
3766 }
3767 }
3768
3769 bitmap_clear (&live);
3770 bitmap_clear (&used);
3771 bitmap_clear (&set);
3772
3773 FOR_EACH_BB (bb)
3774 {
3775 bitmap local = bb_local + bb->index;
3776 rtx insn;
3777
3778 FOR_BB_INSNS (bb, insn)
3779 if (NONDEBUG_INSN_P (insn))
3780 {
3781 rtx def_insn, closest_use, note;
3782 df_ref *def_rec, def, use;
3783 unsigned regno;
3784 bool all_dominated, all_local;
3785 enum machine_mode mode;
3786
3787 def_rec = DF_INSN_DEFS (insn);
3788 /* There must be exactly one def in this insn. */
3789 def = *def_rec;
3790 if (!def || def_rec[1] || !single_set (insn))
3791 continue;
3792 /* This must be the only definition of the reg. We also limit
3793 which modes we deal with so that we can assume we can generate
3794 move instructions. */
3795 regno = DF_REF_REGNO (def);
3796 mode = GET_MODE (DF_REF_REG (def));
3797 if (DF_REG_DEF_COUNT (regno) != 1
3798 || !DF_REF_INSN_INFO (def)
3799 || HARD_REGISTER_NUM_P (regno)
3800 || DF_REG_EQ_USE_COUNT (regno) > 0
3801 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
3802 continue;
3803 def_insn = DF_REF_INSN (def);
3804
3805 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
3806 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
3807 break;
3808
3809 if (note)
3810 {
3811 if (dump_file)
3812 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
3813 regno);
3814 bitmap_set_bit (&unusable_as_input, regno);
3815 continue;
3816 }
3817
3818 use = DF_REG_USE_CHAIN (regno);
3819 all_dominated = true;
3820 all_local = true;
3821 closest_use = NULL_RTX;
3822 for (; use; use = DF_REF_NEXT_REG (use))
3823 {
3824 rtx insn;
3825 if (!DF_REF_INSN_INFO (use))
3826 {
3827 all_dominated = false;
3828 all_local = false;
3829 break;
3830 }
3831 insn = DF_REF_INSN (use);
3832 if (DEBUG_INSN_P (insn))
3833 continue;
3834 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
3835 all_local = false;
3836 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
3837 all_dominated = false;
3838 if (closest_use != insn && closest_use != const0_rtx)
3839 {
3840 if (closest_use == NULL_RTX)
3841 closest_use = insn;
3842 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
3843 closest_use = insn;
3844 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
3845 closest_use = const0_rtx;
3846 }
3847 }
3848 if (!all_dominated)
3849 {
3850 if (dump_file)
3851 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
3852 regno);
3853 continue;
3854 }
3855 if (all_local)
3856 bitmap_set_bit (local, regno);
3857 if (closest_use == const0_rtx || closest_use == NULL
3858 || next_nonnote_nondebug_insn (def_insn) == closest_use)
3859 {
3860 if (dump_file)
3861 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
3862 closest_use == const0_rtx || closest_use == NULL
3863 ? " (no unique first use)" : "");
3864 continue;
3865 }
3866 #ifdef HAVE_cc0
3867 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
3868 {
3869 if (dump_file)
3870 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
3871 regno);
3872 continue;
3873 }
3874 #endif
3875 bitmap_set_bit (&interesting, regno);
3876 closest_uses[regno] = closest_use;
3877
3878 if (dump_file && (all_local || all_dominated))
3879 {
3880 fprintf (dump_file, "Reg %u:", regno);
3881 if (all_local)
3882 fprintf (dump_file, " local to bb %d", bb->index);
3883 if (all_dominated)
3884 fprintf (dump_file, " def dominates all uses");
3885 if (closest_use != const0_rtx)
3886 fprintf (dump_file, " has unique first use");
3887 fputs ("\n", dump_file);
3888 }
3889 }
3890 }
3891
3892 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
3893 {
3894 df_ref def = DF_REG_DEF_CHAIN (i);
3895 rtx def_insn = DF_REF_INSN (def);
3896 basic_block def_block = BLOCK_FOR_INSN (def_insn);
3897 bitmap def_bb_local = bb_local + def_block->index;
3898 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
3899 bitmap def_bb_transp = bb_transp_live + def_block->index;
3900 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
3901 rtx use_insn = closest_uses[i];
3902 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
3903 bool all_ok = true;
3904 bool all_transp = true;
3905
3906 if (!REG_P (DF_REF_REG (def)))
3907 continue;
3908
3909 if (!local_to_bb_p)
3910 {
3911 if (dump_file)
3912 fprintf (dump_file, "Reg %u not local to one basic block\n",
3913 i);
3914 continue;
3915 }
3916 if (reg_equiv_init (i) != NULL_RTX)
3917 {
3918 if (dump_file)
3919 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
3920 i);
3921 continue;
3922 }
3923 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
3924 {
3925 if (dump_file)
3926 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
3927 INSN_UID (def_insn), i);
3928 continue;
3929 }
3930 if (dump_file)
3931 fprintf (dump_file, "Examining insn %d, def for %d\n",
3932 INSN_UID (def_insn), i);
3933 while (*def_insn_use_rec != NULL)
3934 {
3935 df_ref use = *def_insn_use_rec;
3936 unsigned regno = DF_REF_REGNO (use);
3937 if (bitmap_bit_p (&unusable_as_input, regno))
3938 {
3939 all_ok = false;
3940 if (dump_file)
3941 fprintf (dump_file, " found unusable input reg %u.\n", regno);
3942 break;
3943 }
3944 if (!bitmap_bit_p (def_bb_transp, regno))
3945 {
3946 if (bitmap_bit_p (def_bb_moveable, regno)
3947 && !control_flow_insn_p (use_insn)
3948 #ifdef HAVE_cc0
3949 && !sets_cc0_p (use_insn)
3950 #endif
3951 )
3952 {
3953 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
3954 {
3955 rtx x = NEXT_INSN (def_insn);
3956 while (!modified_in_p (DF_REF_REG (use), x))
3957 {
3958 gcc_assert (x != use_insn);
3959 x = NEXT_INSN (x);
3960 }
3961 if (dump_file)
3962 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
3963 regno, INSN_UID (x));
3964 emit_insn_after (PATTERN (x), use_insn);
3965 set_insn_deleted (x);
3966 }
3967 else
3968 {
3969 if (dump_file)
3970 fprintf (dump_file, " input reg %u modified between def and use\n",
3971 regno);
3972 all_transp = false;
3973 }
3974 }
3975 else
3976 all_transp = false;
3977 }
3978
3979 def_insn_use_rec++;
3980 }
3981 if (!all_ok)
3982 continue;
3983 if (!dbg_cnt (ira_move))
3984 break;
3985 if (dump_file)
3986 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
3987
3988 if (all_transp)
3989 {
3990 rtx def_reg = DF_REF_REG (def);
3991 rtx newreg = ira_create_new_reg (def_reg);
3992 if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0))
3993 {
3994 unsigned nregno = REGNO (newreg);
3995 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
3996 nregno -= max_regs;
3997 VEC_replace (rtx, pseudo_replaced_reg, nregno, def_reg);
3998 }
3999 }
4000 }
4001
4002 FOR_EACH_BB (bb)
4003 {
4004 bitmap_clear (bb_local + bb->index);
4005 bitmap_clear (bb_transp_live + bb->index);
4006 bitmap_clear (bb_moveable_reg_sets + bb->index);
4007 }
4008 bitmap_clear (&interesting);
4009 bitmap_clear (&unusable_as_input);
4010 free (uid_luid);
4011 free (closest_uses);
4012 free (bb_local);
4013 free (bb_transp_live);
4014 free (bb_moveable_reg_sets);
4015
4016 last_moveable_pseudo = max_reg_num ();
4017
4018 fix_reg_equiv_init ();
4019 expand_reg_info ();
4020 regstat_free_n_sets_and_refs ();
4021 regstat_free_ri ();
4022 regstat_init_n_sets_and_refs ();
4023 regstat_compute_ri ();
4024 free_dominance_info (CDI_DOMINATORS);
4025 }
4026
4027 /* Perform the second half of the transformation started in
4028 find_moveable_pseudos. We look for instances where the newly introduced
4029 pseudo remains unallocated, and remove it by moving the definition to
4030 just before its use, replacing the move instruction generated by
4031 find_moveable_pseudos. */
4032 static void
4033 move_unallocated_pseudos (void)
4034 {
4035 int i;
4036 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4037 if (reg_renumber[i] < 0)
4038 {
4039 int idx = i - first_moveable_pseudo;
4040 rtx other_reg = VEC_index (rtx, pseudo_replaced_reg, idx);
4041 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4042 /* The use must follow all definitions of OTHER_REG, so we can
4043 insert the new definition immediately after any of them. */
4044 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4045 rtx move_insn = DF_REF_INSN (other_def);
4046 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4047 rtx set;
4048 int success;
4049
4050 if (dump_file)
4051 fprintf (dump_file, "moving def of %d (insn %d now) ",
4052 REGNO (other_reg), INSN_UID (def_insn));
4053
4054 delete_insn (move_insn);
4055 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4056 delete_insn (DF_REF_INSN (other_def));
4057 delete_insn (def_insn);
4058
4059 set = single_set (newinsn);
4060 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4061 gcc_assert (success);
4062 if (dump_file)
4063 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4064 INSN_UID (newinsn), i);
4065 SET_REG_N_REFS (i, 0);
4066 }
4067 }
4068 \f
4069 /* If the backend knows where to allocate pseudos for hard
4070 register initial values, register these allocations now. */
4071 static void
4072 allocate_initial_values (void)
4073 {
4074 if (targetm.allocate_initial_value)
4075 {
4076 rtx hreg, preg, x;
4077 int i, regno;
4078
4079 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
4080 {
4081 if (! initial_value_entry (i, &hreg, &preg))
4082 break;
4083
4084 x = targetm.allocate_initial_value (hreg);
4085 regno = REGNO (preg);
4086 if (x && REG_N_SETS (regno) <= 1)
4087 {
4088 if (MEM_P (x))
4089 reg_equiv_memory_loc (regno) = x;
4090 else
4091 {
4092 basic_block bb;
4093 int new_regno;
4094
4095 gcc_assert (REG_P (x));
4096 new_regno = REGNO (x);
4097 reg_renumber[regno] = new_regno;
4098 /* Poke the regno right into regno_reg_rtx so that even
4099 fixed regs are accepted. */
4100 SET_REGNO (preg, new_regno);
4101 /* Update global register liveness information. */
4102 FOR_EACH_BB (bb)
4103 {
4104 if (REGNO_REG_SET_P(df_get_live_in (bb), regno))
4105 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
4106 if (REGNO_REG_SET_P(df_get_live_out (bb), regno))
4107 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
4108 }
4109 }
4110 }
4111 }
4112
4113 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
4114 &hreg, &preg));
4115 }
4116 }
4117 \f
4118 /* All natural loops. */
4119 struct loops ira_loops;
4120
4121 /* True if we have allocno conflicts. It is false for non-optimized
4122 mode or when the conflict table is too big. */
4123 bool ira_conflicts_p;
4124
4125 /* Saved between IRA and reload. */
4126 static int saved_flag_ira_share_spill_slots;
4127
4128 /* This is the main entry of IRA. */
4129 static void
4130 ira (FILE *f)
4131 {
4132 bool loops_p;
4133 int max_regno_before_ira, ira_max_point_before_emit;
4134 int rebuild_p;
4135
4136 if (flag_caller_saves)
4137 init_caller_save ();
4138
4139 if (flag_ira_verbose < 10)
4140 {
4141 internal_flag_ira_verbose = flag_ira_verbose;
4142 ira_dump_file = f;
4143 }
4144 else
4145 {
4146 internal_flag_ira_verbose = flag_ira_verbose - 10;
4147 ira_dump_file = stderr;
4148 }
4149
4150 ira_conflicts_p = optimize > 0;
4151 setup_prohibited_mode_move_regs ();
4152
4153 df_note_add_problem ();
4154
4155 if (optimize == 1)
4156 {
4157 df_live_add_problem ();
4158 df_live_set_all_dirty ();
4159 }
4160 #ifdef ENABLE_CHECKING
4161 df->changeable_flags |= DF_VERIFY_SCHEDULED;
4162 #endif
4163 df_analyze ();
4164 df_clear_flags (DF_NO_INSN_RESCAN);
4165 regstat_init_n_sets_and_refs ();
4166 regstat_compute_ri ();
4167
4168 /* If we are not optimizing, then this is the only place before
4169 register allocation where dataflow is done. And that is needed
4170 to generate these warnings. */
4171 if (warn_clobbered)
4172 generate_setjmp_warnings ();
4173
4174 /* Determine if the current function is a leaf before running IRA
4175 since this can impact optimizations done by the prologue and
4176 epilogue thus changing register elimination offsets. */
4177 crtl->is_leaf = leaf_function_p ();
4178
4179 if (resize_reg_info () && flag_ira_loop_pressure)
4180 ira_set_pseudo_classes (ira_dump_file);
4181
4182 rebuild_p = update_equiv_regs ();
4183
4184 #ifndef IRA_NO_OBSTACK
4185 gcc_obstack_init (&ira_obstack);
4186 #endif
4187 bitmap_obstack_initialize (&ira_bitmap_obstack);
4188 if (optimize)
4189 {
4190 max_regno = max_reg_num ();
4191 ira_reg_equiv_len = max_regno;
4192 ira_reg_equiv_invariant_p
4193 = (bool *) ira_allocate (max_regno * sizeof (bool));
4194 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
4195 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
4196 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
4197 find_reg_equiv_invariant_const ();
4198 if (rebuild_p)
4199 {
4200 timevar_push (TV_JUMP);
4201 rebuild_jump_labels (get_insns ());
4202 if (purge_all_dead_edges ())
4203 delete_unreachable_blocks ();
4204 timevar_pop (TV_JUMP);
4205 }
4206 }
4207
4208 allocated_reg_info_size = max_reg_num ();
4209
4210 /* It is not worth to do such improvement when we use a simple
4211 allocation because of -O0 usage or because the function is too
4212 big. */
4213 if (ira_conflicts_p)
4214 find_moveable_pseudos ();
4215
4216 max_regno_before_ira = max_reg_num ();
4217 ira_setup_eliminable_regset ();
4218
4219 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
4220 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
4221 ira_move_loops_num = ira_additional_jumps_num = 0;
4222
4223 ira_assert (current_loops == NULL);
4224 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
4225 {
4226 flow_loops_find (&ira_loops);
4227 record_loop_exits ();
4228 current_loops = &ira_loops;
4229 }
4230
4231 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4232 fprintf (ira_dump_file, "Building IRA IR\n");
4233 loops_p = ira_build ();
4234
4235 ira_assert (ira_conflicts_p || !loops_p);
4236
4237 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
4238 if (too_high_register_pressure_p () || cfun->calls_setjmp)
4239 /* It is just wasting compiler's time to pack spilled pseudos into
4240 stack slots in this case -- prohibit it. We also do this if
4241 there is setjmp call because a variable not modified between
4242 setjmp and longjmp the compiler is required to preserve its
4243 value and sharing slots does not guarantee it. */
4244 flag_ira_share_spill_slots = FALSE;
4245
4246 ira_color ();
4247
4248 ira_max_point_before_emit = ira_max_point;
4249
4250 ira_initiate_emit_data ();
4251
4252 ira_emit (loops_p);
4253
4254 if (ira_conflicts_p)
4255 {
4256 max_regno = max_reg_num ();
4257
4258 if (! loops_p)
4259 ira_initiate_assign ();
4260 else
4261 {
4262 expand_reg_info ();
4263
4264 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4265 fprintf (ira_dump_file, "Flattening IR\n");
4266 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
4267 /* New insns were generated: add notes and recalculate live
4268 info. */
4269 df_analyze ();
4270
4271 flow_loops_find (&ira_loops);
4272 record_loop_exits ();
4273 current_loops = &ira_loops;
4274
4275 setup_allocno_assignment_flags ();
4276 ira_initiate_assign ();
4277 ira_reassign_conflict_allocnos (max_regno);
4278 }
4279 }
4280
4281 ira_finish_emit_data ();
4282
4283 setup_reg_renumber ();
4284
4285 calculate_allocation_cost ();
4286
4287 #ifdef ENABLE_IRA_CHECKING
4288 if (ira_conflicts_p)
4289 check_allocation ();
4290 #endif
4291
4292 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
4293 df_analyze ();
4294
4295 if (max_regno != max_regno_before_ira)
4296 {
4297 regstat_free_n_sets_and_refs ();
4298 regstat_free_ri ();
4299 regstat_init_n_sets_and_refs ();
4300 regstat_compute_ri ();
4301 }
4302
4303 overall_cost_before = ira_overall_cost;
4304 if (! ira_conflicts_p)
4305 grow_reg_equivs ();
4306 else
4307 {
4308 fix_reg_equiv_init ();
4309
4310 #ifdef ENABLE_IRA_CHECKING
4311 print_redundant_copies ();
4312 #endif
4313
4314 ira_spilled_reg_stack_slots_num = 0;
4315 ira_spilled_reg_stack_slots
4316 = ((struct ira_spilled_reg_stack_slot *)
4317 ira_allocate (max_regno
4318 * sizeof (struct ira_spilled_reg_stack_slot)));
4319 memset (ira_spilled_reg_stack_slots, 0,
4320 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
4321 }
4322 allocate_initial_values ();
4323
4324 /* See comment for find_moveable_pseudos call. */
4325 if (ira_conflicts_p)
4326 move_unallocated_pseudos ();
4327 }
4328
4329 static void
4330 do_reload (void)
4331 {
4332 basic_block bb;
4333 bool need_dce;
4334
4335 if (flag_ira_verbose < 10)
4336 ira_dump_file = dump_file;
4337
4338 df_set_flags (DF_NO_INSN_RESCAN);
4339 build_insn_chain ();
4340
4341 need_dce = reload (get_insns (), ira_conflicts_p);
4342
4343 timevar_push (TV_IRA);
4344
4345 if (ira_conflicts_p)
4346 {
4347 ira_free (ira_spilled_reg_stack_slots);
4348
4349 ira_finish_assign ();
4350 }
4351 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
4352 && overall_cost_before != ira_overall_cost)
4353 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
4354 ira_destroy ();
4355
4356 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
4357
4358 if (current_loops != NULL)
4359 {
4360 flow_loops_free (&ira_loops);
4361 free_dominance_info (CDI_DOMINATORS);
4362 }
4363 FOR_ALL_BB (bb)
4364 bb->loop_father = NULL;
4365 current_loops = NULL;
4366
4367 regstat_free_ri ();
4368 regstat_free_n_sets_and_refs ();
4369
4370 if (optimize)
4371 {
4372 cleanup_cfg (CLEANUP_EXPENSIVE);
4373
4374 ira_free (ira_reg_equiv_invariant_p);
4375 ira_free (ira_reg_equiv_const);
4376 }
4377
4378 bitmap_obstack_release (&ira_bitmap_obstack);
4379 #ifndef IRA_NO_OBSTACK
4380 obstack_free (&ira_obstack, NULL);
4381 #endif
4382
4383 /* The code after the reload has changed so much that at this point
4384 we might as well just rescan everything. Note that
4385 df_rescan_all_insns is not going to help here because it does not
4386 touch the artificial uses and defs. */
4387 df_finish_pass (true);
4388 if (optimize > 1)
4389 df_live_add_problem ();
4390 df_scan_alloc (NULL);
4391 df_scan_blocks ();
4392
4393 if (optimize)
4394 df_analyze ();
4395
4396 if (need_dce && optimize)
4397 run_fast_dce ();
4398
4399 timevar_pop (TV_IRA);
4400 }
4401 \f
4402 /* Run the integrated register allocator. */
4403 static unsigned int
4404 rest_of_handle_ira (void)
4405 {
4406 ira (dump_file);
4407 return 0;
4408 }
4409
4410 struct rtl_opt_pass pass_ira =
4411 {
4412 {
4413 RTL_PASS,
4414 "ira", /* name */
4415 NULL, /* gate */
4416 rest_of_handle_ira, /* execute */
4417 NULL, /* sub */
4418 NULL, /* next */
4419 0, /* static_pass_number */
4420 TV_IRA, /* tv_id */
4421 0, /* properties_required */
4422 0, /* properties_provided */
4423 0, /* properties_destroyed */
4424 0, /* todo_flags_start */
4425 0, /* todo_flags_finish */
4426 }
4427 };
4428
4429 static unsigned int
4430 rest_of_handle_reload (void)
4431 {
4432 do_reload ();
4433 return 0;
4434 }
4435
4436 struct rtl_opt_pass pass_reload =
4437 {
4438 {
4439 RTL_PASS,
4440 "reload", /* name */
4441 NULL, /* gate */
4442 rest_of_handle_reload, /* execute */
4443 NULL, /* sub */
4444 NULL, /* next */
4445 0, /* static_pass_number */
4446 TV_RELOAD, /* tv_id */
4447 0, /* properties_required */
4448 0, /* properties_provided */
4449 0, /* properties_destroyed */
4450 0, /* todo_flags_start */
4451 TODO_ggc_collect /* todo_flags_finish */
4452 }
4453 };