Make create_parallel_loop return void
[gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363 */
364
365
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
394
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
401
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
404
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
407
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
410
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
414
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
424
425 /* All registers that can be eliminated. */
426
427 HARD_REG_SET eliminable_regset;
428
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
433
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
436
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
439 \f
440
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
444 {
445 int i, m, hard_regno;
446
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
449 {
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
455 }
456 }
457
458 \f
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
461
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
465 {
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
468
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
471 {
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
476 {
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
479 }
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
481 {
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
493 {
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
496 }
497 }
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
503 }
504 }
505
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
511 {
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
519 }
520
521 \f
522
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
525
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
529 {
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
532
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
536
537 for (i = 0; i < N_REG_CLASSES; i++)
538 {
539 if (i == (int) NO_REGS)
540 continue;
541
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
548 {
549 enum reg_class *p;
550
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
559 }
560 }
561 }
562
563 \f
564
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
568 {
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
571
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 {
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 {
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
601 }
602 }
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605 {
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
616 {
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
623 }
624 }
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
627 {
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
632 }
633 setup_reg_subclasses ();
634 }
635
636 \f
637
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
641
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
647
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
650
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
654 {
655 void *res;
656
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
663 }
664
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
668 {
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
674 }
675
676
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
680 {
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
682 }
683
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
687 {
688 /* do nothing */
689 }
690
691 \f
692
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
697 {
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
701
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
708 {
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
721 }
722 fprintf (f, "\n");
723 }
724
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
729 {
730 ira_print_disposition (stderr);
731 }
732
733 \f
734
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
743 {
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
746 {
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
750
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
756 {
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
762 {
763 best = size;
764 ira_stack_reg_pressure_class = cl;
765 }
766 }
767 }
768 #endif
769 }
770
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
775
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
786 {
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
793
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
796 {
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
805 {
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
812 {
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
824 }
825 if (m >= NUM_MACHINE_MODES)
826 continue;
827 }
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
840 {
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
847 {
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
851 }
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
859 }
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
866 }
867 #ifdef ENABLE_IRA_CHECKING
868 {
869 HARD_REG_SET ignore_hard_regs;
870
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
878 {
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
886 {
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
889 }
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
896 }
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
905 }
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
909 {
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
913 }
914 setup_stack_reg_pressure_class ();
915 }
916
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
923 {
924 int i, cl, cl2, m;
925
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
927 {
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
937 {
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
942 {
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
947 }
948 if (m < NUM_MACHINE_MODES)
949 break;
950 }
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
953 }
954 }
955
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
958
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
966
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
983 {
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
988
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
994 {
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
998 {
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1006 }
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1015 }
1016 classes[n] = LIM_REG_CLASSES;
1017
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1030 {
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1035 {
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1044 }
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1048 }
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1054 {
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1057 }
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1062 }
1063
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1071
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1082 {
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1086
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1089
1090 for (i = 0; i < classes_num; i++)
1091 {
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1099 }
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1104 {
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1110 {
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1117 {
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1120 {
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1125 }
1126 if (best_class == NO_REGS || best_cost > min_cost)
1127 {
1128 best_class = aclass;
1129 best_cost = min_cost;
1130 }
1131 }
1132 }
1133 class_translate[cl] = best_class;
1134 }
1135 }
1136
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1141 {
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1146 }
1147
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1151
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1155 {
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1160
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1167 }
1168
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1175
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1182 {
1183 int i;
1184
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1193 }
1194
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1201 {
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1205
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1210 {
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1213 {
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1223 {
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1228 {
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1235 }
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1239 }
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1244 {
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1249
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1255 }
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1265 {
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1269 {
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1274 {
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1295 }
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1309 }
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1312 {
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1322
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1335 }
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1337 {
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1347
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1360 }
1361 }
1362 }
1363 }
1364 }
1365
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1369 {
1370 int i, cl;
1371
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1380 }
1381
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1386 {
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1395
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1403 }
1404
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1409 {
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1413 }
1414
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1419 {
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1424 }
1425
1426 \f
1427
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1431 {
1432 int i;
1433
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1435 {
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1446 {
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1449 {
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1452 }
1453 }
1454 #endif
1455 }
1456 }
1457
1458 \f
1459
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1463 {
1464 int i, cl, cl2, m;
1465
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1467 {
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1479 }
1480 }
1481
1482 \f
1483
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1488 {
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1490
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1492 {
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1496 {
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1501 {
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1508 {
1509 last_hard_regno = hard_regno;
1510 count++;
1511 }
1512 }
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1514 }
1515 }
1516 }
1517
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1523 {
1524 int j, k, hard_regno, cl, pclass, nregs;
1525
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1528 {
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1531 {
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1537 {
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1541 }
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1547 {
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1551 }
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1556 }
1557 }
1558 }
1559 \f
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1564 {
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1568
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1575 {
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1579 {
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1588 }
1589 else
1590 {
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1594 }
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1597 }
1598 if (all_match && last_mode_for_init_move_cost != -1)
1599 {
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1607 }
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1614 {
1615 int cost;
1616 enum reg_class *p1, *p2;
1617
1618 if (last_move_cost[cl1][cl2] == 65535)
1619 {
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1623 }
1624 else
1625 {
1626 cost = last_move_cost[cl1][cl2];
1627
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1634
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1641
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1644
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1649
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1654 }
1655 }
1656 }
1657
1658 \f
1659
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1665 {
1666 ira_init_costs_once ();
1667 lra_init_once ();
1668 }
1669
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1674 {
1675 int mode, i;
1676
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1681 {
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1686 ;
1687 if (i == mode)
1688 {
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1692 }
1693 }
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1698 }
1699
1700 target_ira_int::~target_ira_int ()
1701 {
1702 free_ira_costs ();
1703 free_register_move_costs ();
1704 }
1705
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1710 {
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1721 }
1722
1723 \f
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1726
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1730 {
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1734
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1743 {
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1746 {
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1761 }
1762 }
1763 }
1764
1765 \f
1766
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1770 {
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1778
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1792 {
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1796 {
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1800 {
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1803 p++;
1804 if (*p)
1805 p++;
1806 }
1807 }
1808 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1809 {
1810 if (!TEST_BIT (preferred, nalt)
1811 || TEST_HARD_REG_BIT (alts, nalt))
1812 continue;
1813
1814 for (nop = 0; nop < recog_data.n_operands; nop++)
1815 {
1816 int c, len;
1817
1818 rtx op = recog_data.operand[nop];
1819 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1820 if (*p == 0 || *p == ',')
1821 continue;
1822
1823 do
1824 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1825 {
1826 case '#':
1827 case ',':
1828 c = '\0';
1829 case '\0':
1830 len = 0;
1831 break;
1832
1833 case '%':
1834 /* We only support one commutative marker, the
1835 first one. We already set commutative
1836 above. */
1837 if (commutative < 0)
1838 commutative = nop;
1839 break;
1840
1841 case '0': case '1': case '2': case '3': case '4':
1842 case '5': case '6': case '7': case '8': case '9':
1843 goto op_success;
1844 break;
1845
1846 case 'g':
1847 goto op_success;
1848 break;
1849
1850 default:
1851 {
1852 enum constraint_num cn = lookup_constraint (p);
1853 switch (get_constraint_type (cn))
1854 {
1855 case CT_REGISTER:
1856 if (reg_class_for_constraint (cn) != NO_REGS)
1857 goto op_success;
1858 break;
1859
1860 case CT_CONST_INT:
1861 if (CONST_INT_P (op)
1862 && (insn_const_int_ok_for_constraint
1863 (INTVAL (op), cn)))
1864 goto op_success;
1865 break;
1866
1867 case CT_ADDRESS:
1868 case CT_MEMORY:
1869 goto op_success;
1870
1871 case CT_FIXED_FORM:
1872 if (constraint_satisfied_p (op, cn))
1873 goto op_success;
1874 break;
1875 }
1876 break;
1877 }
1878 }
1879 while (p += len, c);
1880 break;
1881 op_success:
1882 ;
1883 }
1884 if (nop >= recog_data.n_operands)
1885 SET_HARD_REG_BIT (alts, nalt);
1886 }
1887 if (commutative < 0)
1888 break;
1889 if (curr_swapped)
1890 break;
1891 std::swap (recog_data.operand[commutative],
1892 recog_data.operand[commutative + 1]);
1893 }
1894 }
1895
1896 /* Return the number of the output non-early clobber operand which
1897 should be the same in any case as operand with number OP_NUM (or
1898 negative value if there is no such operand). The function takes
1899 only really possible alternatives into consideration. */
1900 int
1901 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1902 {
1903 int curr_alt, c, original, dup;
1904 bool ignore_p, use_commut_op_p;
1905 const char *str;
1906
1907 if (op_num < 0 || recog_data.n_alternatives == 0)
1908 return -1;
1909 /* We should find duplications only for input operands. */
1910 if (recog_data.operand_type[op_num] != OP_IN)
1911 return -1;
1912 str = recog_data.constraints[op_num];
1913 use_commut_op_p = false;
1914 for (;;)
1915 {
1916 rtx op = recog_data.operand[op_num];
1917
1918 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1919 original = -1;;)
1920 {
1921 c = *str;
1922 if (c == '\0')
1923 break;
1924 if (c == '#')
1925 ignore_p = true;
1926 else if (c == ',')
1927 {
1928 curr_alt++;
1929 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1930 }
1931 else if (! ignore_p)
1932 switch (c)
1933 {
1934 case 'g':
1935 goto fail;
1936 default:
1937 {
1938 enum constraint_num cn = lookup_constraint (str);
1939 enum reg_class cl = reg_class_for_constraint (cn);
1940 if (cl != NO_REGS
1941 && !targetm.class_likely_spilled_p (cl))
1942 goto fail;
1943 if (constraint_satisfied_p (op, cn))
1944 goto fail;
1945 break;
1946 }
1947
1948 case '0': case '1': case '2': case '3': case '4':
1949 case '5': case '6': case '7': case '8': case '9':
1950 if (original != -1 && original != c)
1951 goto fail;
1952 original = c;
1953 break;
1954 }
1955 str += CONSTRAINT_LEN (c, str);
1956 }
1957 if (original == -1)
1958 goto fail;
1959 dup = -1;
1960 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1961 *str != 0;
1962 str++)
1963 if (ignore_p)
1964 {
1965 if (*str == ',')
1966 ignore_p = false;
1967 }
1968 else if (*str == '#')
1969 ignore_p = true;
1970 else if (! ignore_p)
1971 {
1972 if (*str == '=')
1973 dup = original - '0';
1974 /* It is better ignore an alternative with early clobber. */
1975 else if (*str == '&')
1976 goto fail;
1977 }
1978 if (dup >= 0)
1979 return dup;
1980 fail:
1981 if (use_commut_op_p)
1982 break;
1983 use_commut_op_p = true;
1984 if (recog_data.constraints[op_num][0] == '%')
1985 str = recog_data.constraints[op_num + 1];
1986 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1987 str = recog_data.constraints[op_num - 1];
1988 else
1989 break;
1990 }
1991 return -1;
1992 }
1993
1994 \f
1995
1996 /* Search forward to see if the source register of a copy insn dies
1997 before either it or the destination register is modified, but don't
1998 scan past the end of the basic block. If so, we can replace the
1999 source with the destination and let the source die in the copy
2000 insn.
2001
2002 This will reduce the number of registers live in that range and may
2003 enable the destination and the source coalescing, thus often saving
2004 one register in addition to a register-register copy. */
2005
2006 static void
2007 decrease_live_ranges_number (void)
2008 {
2009 basic_block bb;
2010 rtx_insn *insn;
2011 rtx set, src, dest, dest_death, note;
2012 rtx_insn *p, *q;
2013 int sregno, dregno;
2014
2015 if (! flag_expensive_optimizations)
2016 return;
2017
2018 if (ira_dump_file)
2019 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2020
2021 FOR_EACH_BB_FN (bb, cfun)
2022 FOR_BB_INSNS (bb, insn)
2023 {
2024 set = single_set (insn);
2025 if (! set)
2026 continue;
2027 src = SET_SRC (set);
2028 dest = SET_DEST (set);
2029 if (! REG_P (src) || ! REG_P (dest)
2030 || find_reg_note (insn, REG_DEAD, src))
2031 continue;
2032 sregno = REGNO (src);
2033 dregno = REGNO (dest);
2034
2035 /* We don't want to mess with hard regs if register classes
2036 are small. */
2037 if (sregno == dregno
2038 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2039 && (sregno < FIRST_PSEUDO_REGISTER
2040 || dregno < FIRST_PSEUDO_REGISTER))
2041 /* We don't see all updates to SP if they are in an
2042 auto-inc memory reference, so we must disallow this
2043 optimization on them. */
2044 || sregno == STACK_POINTER_REGNUM
2045 || dregno == STACK_POINTER_REGNUM)
2046 continue;
2047
2048 dest_death = NULL_RTX;
2049
2050 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2051 {
2052 if (! INSN_P (p))
2053 continue;
2054 if (BLOCK_FOR_INSN (p) != bb)
2055 break;
2056
2057 if (reg_set_p (src, p) || reg_set_p (dest, p)
2058 /* If SRC is an asm-declared register, it must not be
2059 replaced in any asm. Unfortunately, the REG_EXPR
2060 tree for the asm variable may be absent in the SRC
2061 rtx, so we can't check the actual register
2062 declaration easily (the asm operand will have it,
2063 though). To avoid complicating the test for a rare
2064 case, we just don't perform register replacement
2065 for a hard reg mentioned in an asm. */
2066 || (sregno < FIRST_PSEUDO_REGISTER
2067 && asm_noperands (PATTERN (p)) >= 0
2068 && reg_overlap_mentioned_p (src, PATTERN (p)))
2069 /* Don't change hard registers used by a call. */
2070 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2071 && find_reg_fusage (p, USE, src))
2072 /* Don't change a USE of a register. */
2073 || (GET_CODE (PATTERN (p)) == USE
2074 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2075 break;
2076
2077 /* See if all of SRC dies in P. This test is slightly
2078 more conservative than it needs to be. */
2079 if ((note = find_regno_note (p, REG_DEAD, sregno))
2080 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2081 {
2082 int failed = 0;
2083
2084 /* We can do the optimization. Scan forward from INSN
2085 again, replacing regs as we go. Set FAILED if a
2086 replacement can't be done. In that case, we can't
2087 move the death note for SRC. This should be
2088 rare. */
2089
2090 /* Set to stop at next insn. */
2091 for (q = next_real_insn (insn);
2092 q != next_real_insn (p);
2093 q = next_real_insn (q))
2094 {
2095 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2096 {
2097 /* If SRC is a hard register, we might miss
2098 some overlapping registers with
2099 validate_replace_rtx, so we would have to
2100 undo it. We can't if DEST is present in
2101 the insn, so fail in that combination of
2102 cases. */
2103 if (sregno < FIRST_PSEUDO_REGISTER
2104 && reg_mentioned_p (dest, PATTERN (q)))
2105 failed = 1;
2106
2107 /* Attempt to replace all uses. */
2108 else if (!validate_replace_rtx (src, dest, q))
2109 failed = 1;
2110
2111 /* If this succeeded, but some part of the
2112 register is still present, undo the
2113 replacement. */
2114 else if (sregno < FIRST_PSEUDO_REGISTER
2115 && reg_overlap_mentioned_p (src, PATTERN (q)))
2116 {
2117 validate_replace_rtx (dest, src, q);
2118 failed = 1;
2119 }
2120 }
2121
2122 /* If DEST dies here, remove the death note and
2123 save it for later. Make sure ALL of DEST dies
2124 here; again, this is overly conservative. */
2125 if (! dest_death
2126 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2127 {
2128 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2129 remove_note (q, dest_death);
2130 else
2131 {
2132 failed = 1;
2133 dest_death = 0;
2134 }
2135 }
2136 }
2137
2138 if (! failed)
2139 {
2140 /* Move death note of SRC from P to INSN. */
2141 remove_note (p, note);
2142 XEXP (note, 1) = REG_NOTES (insn);
2143 REG_NOTES (insn) = note;
2144 }
2145
2146 /* DEST is also dead if INSN has a REG_UNUSED note for
2147 DEST. */
2148 if (! dest_death
2149 && (dest_death
2150 = find_regno_note (insn, REG_UNUSED, dregno)))
2151 {
2152 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2153 remove_note (insn, dest_death);
2154 }
2155
2156 /* Put death note of DEST on P if we saw it die. */
2157 if (dest_death)
2158 {
2159 XEXP (dest_death, 1) = REG_NOTES (p);
2160 REG_NOTES (p) = dest_death;
2161 }
2162 break;
2163 }
2164
2165 /* If SRC is a hard register which is set or killed in
2166 some other way, we can't do this optimization. */
2167 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2168 break;
2169 }
2170 }
2171 }
2172
2173 \f
2174
2175 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2176 static bool
2177 ira_bad_reload_regno_1 (int regno, rtx x)
2178 {
2179 int x_regno, n, i;
2180 ira_allocno_t a;
2181 enum reg_class pref;
2182
2183 /* We only deal with pseudo regs. */
2184 if (! x || GET_CODE (x) != REG)
2185 return false;
2186
2187 x_regno = REGNO (x);
2188 if (x_regno < FIRST_PSEUDO_REGISTER)
2189 return false;
2190
2191 /* If the pseudo prefers REGNO explicitly, then do not consider
2192 REGNO a bad spill choice. */
2193 pref = reg_preferred_class (x_regno);
2194 if (reg_class_size[pref] == 1)
2195 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2196
2197 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2198 poor choice for a reload regno. */
2199 a = ira_regno_allocno_map[x_regno];
2200 n = ALLOCNO_NUM_OBJECTS (a);
2201 for (i = 0; i < n; i++)
2202 {
2203 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2204 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2205 return true;
2206 }
2207 return false;
2208 }
2209
2210 /* Return nonzero if REGNO is a particularly bad choice for reloading
2211 IN or OUT. */
2212 bool
2213 ira_bad_reload_regno (int regno, rtx in, rtx out)
2214 {
2215 return (ira_bad_reload_regno_1 (regno, in)
2216 || ira_bad_reload_regno_1 (regno, out));
2217 }
2218
2219 /* Add register clobbers from asm statements. */
2220 static void
2221 compute_regs_asm_clobbered (void)
2222 {
2223 basic_block bb;
2224
2225 FOR_EACH_BB_FN (bb, cfun)
2226 {
2227 rtx_insn *insn;
2228 FOR_BB_INSNS_REVERSE (bb, insn)
2229 {
2230 df_ref def;
2231
2232 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2233 FOR_EACH_INSN_DEF (def, insn)
2234 {
2235 unsigned int dregno = DF_REF_REGNO (def);
2236 if (HARD_REGISTER_NUM_P (dregno))
2237 add_to_hard_reg_set (&crtl->asm_clobbers,
2238 GET_MODE (DF_REF_REAL_REG (def)),
2239 dregno);
2240 }
2241 }
2242 }
2243 }
2244
2245
2246 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2247 REGS_EVER_LIVE. */
2248 void
2249 ira_setup_eliminable_regset (void)
2250 {
2251 #ifdef ELIMINABLE_REGS
2252 int i;
2253 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2254 #endif
2255 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2256 sp for alloca. So we can't eliminate the frame pointer in that
2257 case. At some point, we should improve this by emitting the
2258 sp-adjusting insns for this case. */
2259 frame_pointer_needed
2260 = (! flag_omit_frame_pointer
2261 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2262 /* We need the frame pointer to catch stack overflow exceptions if
2263 the stack pointer is moving (as for the alloca case just above). */
2264 || (STACK_CHECK_MOVING_SP
2265 && flag_stack_check
2266 && flag_exceptions
2267 && cfun->can_throw_non_call_exceptions)
2268 || crtl->accesses_prior_frames
2269 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2270 /* We need a frame pointer for all Cilk Plus functions that use
2271 Cilk keywords. */
2272 || (flag_cilkplus && cfun->is_cilk_function)
2273 || targetm.frame_pointer_required ());
2274
2275 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2276 RTL is very small. So if we use frame pointer for RA and RTL
2277 actually prevents this, we will spill pseudos assigned to the
2278 frame pointer in LRA. */
2279
2280 if (frame_pointer_needed)
2281 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2282
2283 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2284 CLEAR_HARD_REG_SET (eliminable_regset);
2285
2286 compute_regs_asm_clobbered ();
2287
2288 /* Build the regset of all eliminable registers and show we can't
2289 use those that we already know won't be eliminated. */
2290 #ifdef ELIMINABLE_REGS
2291 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2292 {
2293 bool cannot_elim
2294 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2295 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2296
2297 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2298 {
2299 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2300
2301 if (cannot_elim)
2302 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2303 }
2304 else if (cannot_elim)
2305 error ("%s cannot be used in asm here",
2306 reg_names[eliminables[i].from]);
2307 else
2308 df_set_regs_ever_live (eliminables[i].from, true);
2309 }
2310 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2311 {
2312 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2313 {
2314 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2315 if (frame_pointer_needed)
2316 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2317 }
2318 else if (frame_pointer_needed)
2319 error ("%s cannot be used in asm here",
2320 reg_names[HARD_FRAME_POINTER_REGNUM]);
2321 else
2322 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2323 }
2324
2325 #else
2326 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2327 {
2328 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2329 if (frame_pointer_needed)
2330 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2331 }
2332 else if (frame_pointer_needed)
2333 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2334 else
2335 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2336 #endif
2337 }
2338
2339 \f
2340
2341 /* Vector of substitutions of register numbers,
2342 used to map pseudo regs into hardware regs.
2343 This is set up as a result of register allocation.
2344 Element N is the hard reg assigned to pseudo reg N,
2345 or is -1 if no hard reg was assigned.
2346 If N is a hard reg number, element N is N. */
2347 short *reg_renumber;
2348
2349 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2350 the allocation found by IRA. */
2351 static void
2352 setup_reg_renumber (void)
2353 {
2354 int regno, hard_regno;
2355 ira_allocno_t a;
2356 ira_allocno_iterator ai;
2357
2358 caller_save_needed = 0;
2359 FOR_EACH_ALLOCNO (a, ai)
2360 {
2361 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2362 continue;
2363 /* There are no caps at this point. */
2364 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2365 if (! ALLOCNO_ASSIGNED_P (a))
2366 /* It can happen if A is not referenced but partially anticipated
2367 somewhere in a region. */
2368 ALLOCNO_ASSIGNED_P (a) = true;
2369 ira_free_allocno_updated_costs (a);
2370 hard_regno = ALLOCNO_HARD_REGNO (a);
2371 regno = ALLOCNO_REGNO (a);
2372 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2373 if (hard_regno >= 0)
2374 {
2375 int i, nwords;
2376 enum reg_class pclass;
2377 ira_object_t obj;
2378
2379 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2380 nwords = ALLOCNO_NUM_OBJECTS (a);
2381 for (i = 0; i < nwords; i++)
2382 {
2383 obj = ALLOCNO_OBJECT (a, i);
2384 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2385 reg_class_contents[pclass]);
2386 }
2387 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2388 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2389 call_used_reg_set))
2390 {
2391 ira_assert (!optimize || flag_caller_saves
2392 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2393 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2394 || regno >= ira_reg_equiv_len
2395 || ira_equiv_no_lvalue_p (regno));
2396 caller_save_needed = 1;
2397 }
2398 }
2399 }
2400 }
2401
2402 /* Set up allocno assignment flags for further allocation
2403 improvements. */
2404 static void
2405 setup_allocno_assignment_flags (void)
2406 {
2407 int hard_regno;
2408 ira_allocno_t a;
2409 ira_allocno_iterator ai;
2410
2411 FOR_EACH_ALLOCNO (a, ai)
2412 {
2413 if (! ALLOCNO_ASSIGNED_P (a))
2414 /* It can happen if A is not referenced but partially anticipated
2415 somewhere in a region. */
2416 ira_free_allocno_updated_costs (a);
2417 hard_regno = ALLOCNO_HARD_REGNO (a);
2418 /* Don't assign hard registers to allocnos which are destination
2419 of removed store at the end of loop. It has no sense to keep
2420 the same value in different hard registers. It is also
2421 impossible to assign hard registers correctly to such
2422 allocnos because the cost info and info about intersected
2423 calls are incorrect for them. */
2424 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2425 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2426 || (ALLOCNO_MEMORY_COST (a)
2427 - ALLOCNO_CLASS_COST (a)) < 0);
2428 ira_assert
2429 (hard_regno < 0
2430 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2431 reg_class_contents[ALLOCNO_CLASS (a)]));
2432 }
2433 }
2434
2435 /* Evaluate overall allocation cost and the costs for using hard
2436 registers and memory for allocnos. */
2437 static void
2438 calculate_allocation_cost (void)
2439 {
2440 int hard_regno, cost;
2441 ira_allocno_t a;
2442 ira_allocno_iterator ai;
2443
2444 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2445 FOR_EACH_ALLOCNO (a, ai)
2446 {
2447 hard_regno = ALLOCNO_HARD_REGNO (a);
2448 ira_assert (hard_regno < 0
2449 || (ira_hard_reg_in_set_p
2450 (hard_regno, ALLOCNO_MODE (a),
2451 reg_class_contents[ALLOCNO_CLASS (a)])));
2452 if (hard_regno < 0)
2453 {
2454 cost = ALLOCNO_MEMORY_COST (a);
2455 ira_mem_cost += cost;
2456 }
2457 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2458 {
2459 cost = (ALLOCNO_HARD_REG_COSTS (a)
2460 [ira_class_hard_reg_index
2461 [ALLOCNO_CLASS (a)][hard_regno]]);
2462 ira_reg_cost += cost;
2463 }
2464 else
2465 {
2466 cost = ALLOCNO_CLASS_COST (a);
2467 ira_reg_cost += cost;
2468 }
2469 ira_overall_cost += cost;
2470 }
2471
2472 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2473 {
2474 fprintf (ira_dump_file,
2475 "+++Costs: overall %" PRId64
2476 ", reg %" PRId64
2477 ", mem %" PRId64
2478 ", ld %" PRId64
2479 ", st %" PRId64
2480 ", move %" PRId64,
2481 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2482 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2483 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2484 ira_move_loops_num, ira_additional_jumps_num);
2485 }
2486
2487 }
2488
2489 #ifdef ENABLE_IRA_CHECKING
2490 /* Check the correctness of the allocation. We do need this because
2491 of complicated code to transform more one region internal
2492 representation into one region representation. */
2493 static void
2494 check_allocation (void)
2495 {
2496 ira_allocno_t a;
2497 int hard_regno, nregs, conflict_nregs;
2498 ira_allocno_iterator ai;
2499
2500 FOR_EACH_ALLOCNO (a, ai)
2501 {
2502 int n = ALLOCNO_NUM_OBJECTS (a);
2503 int i;
2504
2505 if (ALLOCNO_CAP_MEMBER (a) != NULL
2506 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2507 continue;
2508 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2509 if (nregs == 1)
2510 /* We allocated a single hard register. */
2511 n = 1;
2512 else if (n > 1)
2513 /* We allocated multiple hard registers, and we will test
2514 conflicts in a granularity of single hard regs. */
2515 nregs = 1;
2516
2517 for (i = 0; i < n; i++)
2518 {
2519 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2520 ira_object_t conflict_obj;
2521 ira_object_conflict_iterator oci;
2522 int this_regno = hard_regno;
2523 if (n > 1)
2524 {
2525 if (REG_WORDS_BIG_ENDIAN)
2526 this_regno += n - i - 1;
2527 else
2528 this_regno += i;
2529 }
2530 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2531 {
2532 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2533 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2534 if (conflict_hard_regno < 0)
2535 continue;
2536
2537 conflict_nregs
2538 = (hard_regno_nregs
2539 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2540
2541 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2542 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2543 {
2544 if (REG_WORDS_BIG_ENDIAN)
2545 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2546 - OBJECT_SUBWORD (conflict_obj) - 1);
2547 else
2548 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2549 conflict_nregs = 1;
2550 }
2551
2552 if ((conflict_hard_regno <= this_regno
2553 && this_regno < conflict_hard_regno + conflict_nregs)
2554 || (this_regno <= conflict_hard_regno
2555 && conflict_hard_regno < this_regno + nregs))
2556 {
2557 fprintf (stderr, "bad allocation for %d and %d\n",
2558 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2559 gcc_unreachable ();
2560 }
2561 }
2562 }
2563 }
2564 }
2565 #endif
2566
2567 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2568 be already calculated. */
2569 static void
2570 setup_reg_equiv_init (void)
2571 {
2572 int i;
2573 int max_regno = max_reg_num ();
2574
2575 for (i = 0; i < max_regno; i++)
2576 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2577 }
2578
2579 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2580 are insns which were generated for such movement. It is assumed
2581 that FROM_REGNO and TO_REGNO always have the same value at the
2582 point of any move containing such registers. This function is used
2583 to update equiv info for register shuffles on the region borders
2584 and for caller save/restore insns. */
2585 void
2586 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2587 {
2588 rtx_insn *insn;
2589 rtx x, note;
2590
2591 if (! ira_reg_equiv[from_regno].defined_p
2592 && (! ira_reg_equiv[to_regno].defined_p
2593 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2594 && ! MEM_READONLY_P (x))))
2595 return;
2596 insn = insns;
2597 if (NEXT_INSN (insn) != NULL_RTX)
2598 {
2599 if (! ira_reg_equiv[to_regno].defined_p)
2600 {
2601 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2602 return;
2603 }
2604 ira_reg_equiv[to_regno].defined_p = false;
2605 ira_reg_equiv[to_regno].memory
2606 = ira_reg_equiv[to_regno].constant
2607 = ira_reg_equiv[to_regno].invariant
2608 = ira_reg_equiv[to_regno].init_insns = NULL;
2609 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2610 fprintf (ira_dump_file,
2611 " Invalidating equiv info for reg %d\n", to_regno);
2612 return;
2613 }
2614 /* It is possible that FROM_REGNO still has no equivalence because
2615 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2616 insn was not processed yet. */
2617 if (ira_reg_equiv[from_regno].defined_p)
2618 {
2619 ira_reg_equiv[to_regno].defined_p = true;
2620 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2621 {
2622 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2623 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2624 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2625 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2626 ira_reg_equiv[to_regno].memory = x;
2627 if (! MEM_READONLY_P (x))
2628 /* We don't add the insn to insn init list because memory
2629 equivalence is just to say what memory is better to use
2630 when the pseudo is spilled. */
2631 return;
2632 }
2633 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2634 {
2635 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2636 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2637 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2638 ira_reg_equiv[to_regno].constant = x;
2639 }
2640 else
2641 {
2642 x = ira_reg_equiv[from_regno].invariant;
2643 ira_assert (x != NULL_RTX);
2644 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2645 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2646 ira_reg_equiv[to_regno].invariant = x;
2647 }
2648 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2649 {
2650 note = set_unique_reg_note (insn, REG_EQUIV, x);
2651 gcc_assert (note != NULL_RTX);
2652 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2653 {
2654 fprintf (ira_dump_file,
2655 " Adding equiv note to insn %u for reg %d ",
2656 INSN_UID (insn), to_regno);
2657 dump_value_slim (ira_dump_file, x, 1);
2658 fprintf (ira_dump_file, "\n");
2659 }
2660 }
2661 }
2662 ira_reg_equiv[to_regno].init_insns
2663 = gen_rtx_INSN_LIST (VOIDmode, insn,
2664 ira_reg_equiv[to_regno].init_insns);
2665 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2666 fprintf (ira_dump_file,
2667 " Adding equiv init move insn %u to reg %d\n",
2668 INSN_UID (insn), to_regno);
2669 }
2670
2671 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2672 by IRA. */
2673 static void
2674 fix_reg_equiv_init (void)
2675 {
2676 int max_regno = max_reg_num ();
2677 int i, new_regno, max;
2678 rtx set;
2679 rtx_insn_list *x, *next, *prev;
2680 rtx_insn *insn;
2681
2682 if (max_regno_before_ira < max_regno)
2683 {
2684 max = vec_safe_length (reg_equivs);
2685 grow_reg_equivs ();
2686 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2687 for (prev = NULL, x = reg_equiv_init (i);
2688 x != NULL_RTX;
2689 x = next)
2690 {
2691 next = x->next ();
2692 insn = x->insn ();
2693 set = single_set (insn);
2694 ira_assert (set != NULL_RTX
2695 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2696 if (REG_P (SET_DEST (set))
2697 && ((int) REGNO (SET_DEST (set)) == i
2698 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2699 new_regno = REGNO (SET_DEST (set));
2700 else if (REG_P (SET_SRC (set))
2701 && ((int) REGNO (SET_SRC (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2703 new_regno = REGNO (SET_SRC (set));
2704 else
2705 gcc_unreachable ();
2706 if (new_regno == i)
2707 prev = x;
2708 else
2709 {
2710 /* Remove the wrong list element. */
2711 if (prev == NULL_RTX)
2712 reg_equiv_init (i) = next;
2713 else
2714 XEXP (prev, 1) = next;
2715 XEXP (x, 1) = reg_equiv_init (new_regno);
2716 reg_equiv_init (new_regno) = x;
2717 }
2718 }
2719 }
2720 }
2721
2722 #ifdef ENABLE_IRA_CHECKING
2723 /* Print redundant memory-memory copies. */
2724 static void
2725 print_redundant_copies (void)
2726 {
2727 int hard_regno;
2728 ira_allocno_t a;
2729 ira_copy_t cp, next_cp;
2730 ira_allocno_iterator ai;
2731
2732 FOR_EACH_ALLOCNO (a, ai)
2733 {
2734 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2735 /* It is a cap. */
2736 continue;
2737 hard_regno = ALLOCNO_HARD_REGNO (a);
2738 if (hard_regno >= 0)
2739 continue;
2740 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2741 if (cp->first == a)
2742 next_cp = cp->next_first_allocno_copy;
2743 else
2744 {
2745 next_cp = cp->next_second_allocno_copy;
2746 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2747 && cp->insn != NULL_RTX
2748 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2749 fprintf (ira_dump_file,
2750 " Redundant move from %d(freq %d):%d\n",
2751 INSN_UID (cp->insn), cp->freq, hard_regno);
2752 }
2753 }
2754 }
2755 #endif
2756
2757 /* Setup preferred and alternative classes for new pseudo-registers
2758 created by IRA starting with START. */
2759 static void
2760 setup_preferred_alternate_classes_for_new_pseudos (int start)
2761 {
2762 int i, old_regno;
2763 int max_regno = max_reg_num ();
2764
2765 for (i = start; i < max_regno; i++)
2766 {
2767 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2768 ira_assert (i != old_regno);
2769 setup_reg_classes (i, reg_preferred_class (old_regno),
2770 reg_alternate_class (old_regno),
2771 reg_allocno_class (old_regno));
2772 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2773 fprintf (ira_dump_file,
2774 " New r%d: setting preferred %s, alternative %s\n",
2775 i, reg_class_names[reg_preferred_class (old_regno)],
2776 reg_class_names[reg_alternate_class (old_regno)]);
2777 }
2778 }
2779
2780 \f
2781 /* The number of entries allocated in reg_info. */
2782 static int allocated_reg_info_size;
2783
2784 /* Regional allocation can create new pseudo-registers. This function
2785 expands some arrays for pseudo-registers. */
2786 static void
2787 expand_reg_info (void)
2788 {
2789 int i;
2790 int size = max_reg_num ();
2791
2792 resize_reg_info ();
2793 for (i = allocated_reg_info_size; i < size; i++)
2794 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2795 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2796 allocated_reg_info_size = size;
2797 }
2798
2799 /* Return TRUE if there is too high register pressure in the function.
2800 It is used to decide when stack slot sharing is worth to do. */
2801 static bool
2802 too_high_register_pressure_p (void)
2803 {
2804 int i;
2805 enum reg_class pclass;
2806
2807 for (i = 0; i < ira_pressure_classes_num; i++)
2808 {
2809 pclass = ira_pressure_classes[i];
2810 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2811 return true;
2812 }
2813 return false;
2814 }
2815
2816 \f
2817
2818 /* Indicate that hard register number FROM was eliminated and replaced with
2819 an offset from hard register number TO. The status of hard registers live
2820 at the start of a basic block is updated by replacing a use of FROM with
2821 a use of TO. */
2822
2823 void
2824 mark_elimination (int from, int to)
2825 {
2826 basic_block bb;
2827 bitmap r;
2828
2829 FOR_EACH_BB_FN (bb, cfun)
2830 {
2831 r = DF_LR_IN (bb);
2832 if (bitmap_bit_p (r, from))
2833 {
2834 bitmap_clear_bit (r, from);
2835 bitmap_set_bit (r, to);
2836 }
2837 if (! df_live)
2838 continue;
2839 r = DF_LIVE_IN (bb);
2840 if (bitmap_bit_p (r, from))
2841 {
2842 bitmap_clear_bit (r, from);
2843 bitmap_set_bit (r, to);
2844 }
2845 }
2846 }
2847
2848 \f
2849
2850 /* The length of the following array. */
2851 int ira_reg_equiv_len;
2852
2853 /* Info about equiv. info for each register. */
2854 struct ira_reg_equiv_s *ira_reg_equiv;
2855
2856 /* Expand ira_reg_equiv if necessary. */
2857 void
2858 ira_expand_reg_equiv (void)
2859 {
2860 int old = ira_reg_equiv_len;
2861
2862 if (ira_reg_equiv_len > max_reg_num ())
2863 return;
2864 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2865 ira_reg_equiv
2866 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2867 ira_reg_equiv_len
2868 * sizeof (struct ira_reg_equiv_s));
2869 gcc_assert (old < ira_reg_equiv_len);
2870 memset (ira_reg_equiv + old, 0,
2871 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2872 }
2873
2874 static void
2875 init_reg_equiv (void)
2876 {
2877 ira_reg_equiv_len = 0;
2878 ira_reg_equiv = NULL;
2879 ira_expand_reg_equiv ();
2880 }
2881
2882 static void
2883 finish_reg_equiv (void)
2884 {
2885 free (ira_reg_equiv);
2886 }
2887
2888 \f
2889
2890 struct equivalence
2891 {
2892 /* Set when a REG_EQUIV note is found or created. Use to
2893 keep track of what memory accesses might be created later,
2894 e.g. by reload. */
2895 rtx replacement;
2896 rtx *src_p;
2897
2898 /* The list of each instruction which initializes this register.
2899
2900 NULL indicates we know nothing about this register's equivalence
2901 properties.
2902
2903 An INSN_LIST with a NULL insn indicates this pseudo is already
2904 known to not have a valid equivalence. */
2905 rtx_insn_list *init_insns;
2906
2907 /* Loop depth is used to recognize equivalences which appear
2908 to be present within the same loop (or in an inner loop). */
2909 short loop_depth;
2910 /* Nonzero if this had a preexisting REG_EQUIV note. */
2911 unsigned char is_arg_equivalence : 1;
2912 /* Set when an attempt should be made to replace a register
2913 with the associated src_p entry. */
2914 unsigned char replace : 1;
2915 /* Set if this register has no known equivalence. */
2916 unsigned char no_equiv : 1;
2917 };
2918
2919 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2920 structure for that register. */
2921 static struct equivalence *reg_equiv;
2922
2923 /* Used for communication between the following two functions: contains
2924 a MEM that we wish to ensure remains unchanged. */
2925 static rtx equiv_mem;
2926
2927 /* Set nonzero if EQUIV_MEM is modified. */
2928 static int equiv_mem_modified;
2929
2930 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2931 Called via note_stores. */
2932 static void
2933 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2934 void *data ATTRIBUTE_UNUSED)
2935 {
2936 if ((REG_P (dest)
2937 && reg_overlap_mentioned_p (dest, equiv_mem))
2938 || (MEM_P (dest)
2939 && anti_dependence (equiv_mem, dest)))
2940 equiv_mem_modified = 1;
2941 }
2942
2943 /* Verify that no store between START and the death of REG invalidates
2944 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2945 by storing into an overlapping memory location, or with a non-const
2946 CALL_INSN.
2947
2948 Return 1 if MEMREF remains valid. */
2949 static int
2950 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2951 {
2952 rtx_insn *insn;
2953 rtx note;
2954
2955 equiv_mem = memref;
2956 equiv_mem_modified = 0;
2957
2958 /* If the memory reference has side effects or is volatile, it isn't a
2959 valid equivalence. */
2960 if (side_effects_p (memref))
2961 return 0;
2962
2963 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2964 {
2965 if (! INSN_P (insn))
2966 continue;
2967
2968 if (find_reg_note (insn, REG_DEAD, reg))
2969 return 1;
2970
2971 /* This used to ignore readonly memory and const/pure calls. The problem
2972 is the equivalent form may reference a pseudo which gets assigned a
2973 call clobbered hard reg. When we later replace REG with its
2974 equivalent form, the value in the call-clobbered reg has been
2975 changed and all hell breaks loose. */
2976 if (CALL_P (insn))
2977 return 0;
2978
2979 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2980
2981 /* If a register mentioned in MEMREF is modified via an
2982 auto-increment, we lose the equivalence. Do the same if one
2983 dies; although we could extend the life, it doesn't seem worth
2984 the trouble. */
2985
2986 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2987 if ((REG_NOTE_KIND (note) == REG_INC
2988 || REG_NOTE_KIND (note) == REG_DEAD)
2989 && REG_P (XEXP (note, 0))
2990 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2991 return 0;
2992 }
2993
2994 return 0;
2995 }
2996
2997 /* Returns zero if X is known to be invariant. */
2998 static int
2999 equiv_init_varies_p (rtx x)
3000 {
3001 RTX_CODE code = GET_CODE (x);
3002 int i;
3003 const char *fmt;
3004
3005 switch (code)
3006 {
3007 case MEM:
3008 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3009
3010 case CONST:
3011 CASE_CONST_ANY:
3012 case SYMBOL_REF:
3013 case LABEL_REF:
3014 return 0;
3015
3016 case REG:
3017 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3018
3019 case ASM_OPERANDS:
3020 if (MEM_VOLATILE_P (x))
3021 return 1;
3022
3023 /* Fall through. */
3024
3025 default:
3026 break;
3027 }
3028
3029 fmt = GET_RTX_FORMAT (code);
3030 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3031 if (fmt[i] == 'e')
3032 {
3033 if (equiv_init_varies_p (XEXP (x, i)))
3034 return 1;
3035 }
3036 else if (fmt[i] == 'E')
3037 {
3038 int j;
3039 for (j = 0; j < XVECLEN (x, i); j++)
3040 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3041 return 1;
3042 }
3043
3044 return 0;
3045 }
3046
3047 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3048 X is only movable if the registers it uses have equivalent initializations
3049 which appear to be within the same loop (or in an inner loop) and movable
3050 or if they are not candidates for local_alloc and don't vary. */
3051 static int
3052 equiv_init_movable_p (rtx x, int regno)
3053 {
3054 int i, j;
3055 const char *fmt;
3056 enum rtx_code code = GET_CODE (x);
3057
3058 switch (code)
3059 {
3060 case SET:
3061 return equiv_init_movable_p (SET_SRC (x), regno);
3062
3063 case CC0:
3064 case CLOBBER:
3065 return 0;
3066
3067 case PRE_INC:
3068 case PRE_DEC:
3069 case POST_INC:
3070 case POST_DEC:
3071 case PRE_MODIFY:
3072 case POST_MODIFY:
3073 return 0;
3074
3075 case REG:
3076 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3077 && reg_equiv[REGNO (x)].replace)
3078 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3079 && ! rtx_varies_p (x, 0)));
3080
3081 case UNSPEC_VOLATILE:
3082 return 0;
3083
3084 case ASM_OPERANDS:
3085 if (MEM_VOLATILE_P (x))
3086 return 0;
3087
3088 /* Fall through. */
3089
3090 default:
3091 break;
3092 }
3093
3094 fmt = GET_RTX_FORMAT (code);
3095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3096 switch (fmt[i])
3097 {
3098 case 'e':
3099 if (! equiv_init_movable_p (XEXP (x, i), regno))
3100 return 0;
3101 break;
3102 case 'E':
3103 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3104 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3105 return 0;
3106 break;
3107 }
3108
3109 return 1;
3110 }
3111
3112 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3113 true. */
3114 static int
3115 contains_replace_regs (rtx x)
3116 {
3117 int i, j;
3118 const char *fmt;
3119 enum rtx_code code = GET_CODE (x);
3120
3121 switch (code)
3122 {
3123 case CONST:
3124 case LABEL_REF:
3125 case SYMBOL_REF:
3126 CASE_CONST_ANY:
3127 case PC:
3128 case CC0:
3129 case HIGH:
3130 return 0;
3131
3132 case REG:
3133 return reg_equiv[REGNO (x)].replace;
3134
3135 default:
3136 break;
3137 }
3138
3139 fmt = GET_RTX_FORMAT (code);
3140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3141 switch (fmt[i])
3142 {
3143 case 'e':
3144 if (contains_replace_regs (XEXP (x, i)))
3145 return 1;
3146 break;
3147 case 'E':
3148 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3149 if (contains_replace_regs (XVECEXP (x, i, j)))
3150 return 1;
3151 break;
3152 }
3153
3154 return 0;
3155 }
3156
3157 /* TRUE if X references a memory location that would be affected by a store
3158 to MEMREF. */
3159 static int
3160 memref_referenced_p (rtx memref, rtx x)
3161 {
3162 int i, j;
3163 const char *fmt;
3164 enum rtx_code code = GET_CODE (x);
3165
3166 switch (code)
3167 {
3168 case CONST:
3169 case LABEL_REF:
3170 case SYMBOL_REF:
3171 CASE_CONST_ANY:
3172 case PC:
3173 case CC0:
3174 case HIGH:
3175 case LO_SUM:
3176 return 0;
3177
3178 case REG:
3179 return (reg_equiv[REGNO (x)].replacement
3180 && memref_referenced_p (memref,
3181 reg_equiv[REGNO (x)].replacement));
3182
3183 case MEM:
3184 if (true_dependence (memref, VOIDmode, x))
3185 return 1;
3186 break;
3187
3188 case SET:
3189 /* If we are setting a MEM, it doesn't count (its address does), but any
3190 other SET_DEST that has a MEM in it is referencing the MEM. */
3191 if (MEM_P (SET_DEST (x)))
3192 {
3193 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3194 return 1;
3195 }
3196 else if (memref_referenced_p (memref, SET_DEST (x)))
3197 return 1;
3198
3199 return memref_referenced_p (memref, SET_SRC (x));
3200
3201 default:
3202 break;
3203 }
3204
3205 fmt = GET_RTX_FORMAT (code);
3206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3207 switch (fmt[i])
3208 {
3209 case 'e':
3210 if (memref_referenced_p (memref, XEXP (x, i)))
3211 return 1;
3212 break;
3213 case 'E':
3214 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3215 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3216 return 1;
3217 break;
3218 }
3219
3220 return 0;
3221 }
3222
3223 /* TRUE if some insn in the range (START, END] references a memory location
3224 that would be affected by a store to MEMREF. */
3225 static int
3226 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3227 {
3228 rtx_insn *insn;
3229
3230 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3231 insn = NEXT_INSN (insn))
3232 {
3233 if (!NONDEBUG_INSN_P (insn))
3234 continue;
3235
3236 if (memref_referenced_p (memref, PATTERN (insn)))
3237 return 1;
3238
3239 /* Nonconst functions may access memory. */
3240 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3241 return 1;
3242 }
3243
3244 return 0;
3245 }
3246
3247 /* Mark REG as having no known equivalence.
3248 Some instructions might have been processed before and furnished
3249 with REG_EQUIV notes for this register; these notes will have to be
3250 removed.
3251 STORE is the piece of RTL that does the non-constant / conflicting
3252 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3253 but needs to be there because this function is called from note_stores. */
3254 static void
3255 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3256 void *data ATTRIBUTE_UNUSED)
3257 {
3258 int regno;
3259 rtx_insn_list *list;
3260
3261 if (!REG_P (reg))
3262 return;
3263 regno = REGNO (reg);
3264 reg_equiv[regno].no_equiv = 1;
3265 list = reg_equiv[regno].init_insns;
3266 if (list && list->insn () == NULL)
3267 return;
3268 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3269 reg_equiv[regno].replacement = NULL_RTX;
3270 /* This doesn't matter for equivalences made for argument registers, we
3271 should keep their initialization insns. */
3272 if (reg_equiv[regno].is_arg_equivalence)
3273 return;
3274 ira_reg_equiv[regno].defined_p = false;
3275 ira_reg_equiv[regno].init_insns = NULL;
3276 for (; list; list = list->next ())
3277 {
3278 rtx_insn *insn = list->insn ();
3279 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3280 }
3281 }
3282
3283 /* Check whether the SUBREG is a paradoxical subreg and set the result
3284 in PDX_SUBREGS. */
3285
3286 static void
3287 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3288 {
3289 subrtx_iterator::array_type array;
3290 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3291 {
3292 const_rtx subreg = *iter;
3293 if (GET_CODE (subreg) == SUBREG)
3294 {
3295 const_rtx reg = SUBREG_REG (subreg);
3296 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3297 pdx_subregs[REGNO (reg)] = true;
3298 }
3299 }
3300 }
3301
3302 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3303 equivalent replacement. */
3304
3305 static rtx
3306 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3307 {
3308 if (REG_P (loc))
3309 {
3310 bitmap cleared_regs = (bitmap) data;
3311 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3312 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3313 NULL_RTX, adjust_cleared_regs, data);
3314 }
3315 return NULL_RTX;
3316 }
3317
3318 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3319 static int recorded_label_ref;
3320
3321 /* Find registers that are equivalent to a single value throughout the
3322 compilation (either because they can be referenced in memory or are
3323 set once from a single constant). Lower their priority for a
3324 register.
3325
3326 If such a register is only referenced once, try substituting its
3327 value into the using insn. If it succeeds, we can eliminate the
3328 register completely.
3329
3330 Initialize init_insns in ira_reg_equiv array.
3331
3332 Return non-zero if jump label rebuilding should be done. */
3333 static int
3334 update_equiv_regs (void)
3335 {
3336 rtx_insn *insn;
3337 basic_block bb;
3338 int loop_depth;
3339 bitmap cleared_regs;
3340 bool *pdx_subregs;
3341
3342 /* We need to keep track of whether or not we recorded a LABEL_REF so
3343 that we know if the jump optimizer needs to be rerun. */
3344 recorded_label_ref = 0;
3345
3346 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3347 subreg. */
3348 pdx_subregs = XCNEWVEC (bool, max_regno);
3349
3350 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3351 grow_reg_equivs ();
3352
3353 init_alias_analysis ();
3354
3355 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3356 paradoxical subreg. Don't set such reg equivalent to a mem,
3357 because lra will not substitute such equiv memory in order to
3358 prevent access beyond allocated memory for paradoxical memory subreg. */
3359 FOR_EACH_BB_FN (bb, cfun)
3360 FOR_BB_INSNS (bb, insn)
3361 if (NONDEBUG_INSN_P (insn))
3362 set_paradoxical_subreg (insn, pdx_subregs);
3363
3364 /* Scan the insns and find which registers have equivalences. Do this
3365 in a separate scan of the insns because (due to -fcse-follow-jumps)
3366 a register can be set below its use. */
3367 FOR_EACH_BB_FN (bb, cfun)
3368 {
3369 loop_depth = bb_loop_depth (bb);
3370
3371 for (insn = BB_HEAD (bb);
3372 insn != NEXT_INSN (BB_END (bb));
3373 insn = NEXT_INSN (insn))
3374 {
3375 rtx note;
3376 rtx set;
3377 rtx dest, src;
3378 int regno;
3379
3380 if (! INSN_P (insn))
3381 continue;
3382
3383 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3384 if (REG_NOTE_KIND (note) == REG_INC)
3385 no_equiv (XEXP (note, 0), note, NULL);
3386
3387 set = single_set (insn);
3388
3389 /* If this insn contains more (or less) than a single SET,
3390 only mark all destinations as having no known equivalence. */
3391 if (set == NULL_RTX)
3392 {
3393 note_stores (PATTERN (insn), no_equiv, NULL);
3394 continue;
3395 }
3396 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3397 {
3398 int i;
3399
3400 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3401 {
3402 rtx part = XVECEXP (PATTERN (insn), 0, i);
3403 if (part != set)
3404 note_stores (part, no_equiv, NULL);
3405 }
3406 }
3407
3408 dest = SET_DEST (set);
3409 src = SET_SRC (set);
3410
3411 /* See if this is setting up the equivalence between an argument
3412 register and its stack slot. */
3413 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3414 if (note)
3415 {
3416 gcc_assert (REG_P (dest));
3417 regno = REGNO (dest);
3418
3419 /* Note that we don't want to clear init_insns in
3420 ira_reg_equiv even if there are multiple sets of this
3421 register. */
3422 reg_equiv[regno].is_arg_equivalence = 1;
3423
3424 /* The insn result can have equivalence memory although
3425 the equivalence is not set up by the insn. We add
3426 this insn to init insns as it is a flag for now that
3427 regno has an equivalence. We will remove the insn
3428 from init insn list later. */
3429 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3430 ira_reg_equiv[regno].init_insns
3431 = gen_rtx_INSN_LIST (VOIDmode, insn,
3432 ira_reg_equiv[regno].init_insns);
3433
3434 /* Continue normally in case this is a candidate for
3435 replacements. */
3436 }
3437
3438 if (!optimize)
3439 continue;
3440
3441 /* We only handle the case of a pseudo register being set
3442 once, or always to the same value. */
3443 /* ??? The mn10200 port breaks if we add equivalences for
3444 values that need an ADDRESS_REGS register and set them equivalent
3445 to a MEM of a pseudo. The actual problem is in the over-conservative
3446 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3447 calculate_needs, but we traditionally work around this problem
3448 here by rejecting equivalences when the destination is in a register
3449 that's likely spilled. This is fragile, of course, since the
3450 preferred class of a pseudo depends on all instructions that set
3451 or use it. */
3452
3453 if (!REG_P (dest)
3454 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3455 || (reg_equiv[regno].init_insns
3456 && reg_equiv[regno].init_insns->insn () == NULL)
3457 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3458 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3459 {
3460 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3461 also set somewhere else to a constant. */
3462 note_stores (set, no_equiv, NULL);
3463 continue;
3464 }
3465
3466 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3467 if (MEM_P (src) && pdx_subregs[regno])
3468 {
3469 note_stores (set, no_equiv, NULL);
3470 continue;
3471 }
3472
3473 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3474
3475 /* cse sometimes generates function invariants, but doesn't put a
3476 REG_EQUAL note on the insn. Since this note would be redundant,
3477 there's no point creating it earlier than here. */
3478 if (! note && ! rtx_varies_p (src, 0))
3479 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3480
3481 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3482 since it represents a function call. */
3483 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3484 note = NULL_RTX;
3485
3486 if (DF_REG_DEF_COUNT (regno) != 1)
3487 {
3488 bool equal_p = true;
3489 rtx_insn_list *list;
3490
3491 /* If we have already processed this pseudo and determined it
3492 can not have an equivalence, then honor that decision. */
3493 if (reg_equiv[regno].no_equiv)
3494 continue;
3495
3496 if (! note
3497 || rtx_varies_p (XEXP (note, 0), 0)
3498 || (reg_equiv[regno].replacement
3499 && ! rtx_equal_p (XEXP (note, 0),
3500 reg_equiv[regno].replacement)))
3501 {
3502 no_equiv (dest, set, NULL);
3503 continue;
3504 }
3505
3506 list = reg_equiv[regno].init_insns;
3507 for (; list; list = list->next ())
3508 {
3509 rtx note_tmp;
3510 rtx_insn *insn_tmp;
3511
3512 insn_tmp = list->insn ();
3513 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3514 gcc_assert (note_tmp);
3515 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3516 {
3517 equal_p = false;
3518 break;
3519 }
3520 }
3521
3522 if (! equal_p)
3523 {
3524 no_equiv (dest, set, NULL);
3525 continue;
3526 }
3527 }
3528
3529 /* Record this insn as initializing this register. */
3530 reg_equiv[regno].init_insns
3531 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3532
3533 /* If this register is known to be equal to a constant, record that
3534 it is always equivalent to the constant. */
3535 if (DF_REG_DEF_COUNT (regno) == 1
3536 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3537 {
3538 rtx note_value = XEXP (note, 0);
3539 remove_note (insn, note);
3540 set_unique_reg_note (insn, REG_EQUIV, note_value);
3541 }
3542
3543 /* If this insn introduces a "constant" register, decrease the priority
3544 of that register. Record this insn if the register is only used once
3545 more and the equivalence value is the same as our source.
3546
3547 The latter condition is checked for two reasons: First, it is an
3548 indication that it may be more efficient to actually emit the insn
3549 as written (if no registers are available, reload will substitute
3550 the equivalence). Secondly, it avoids problems with any registers
3551 dying in this insn whose death notes would be missed.
3552
3553 If we don't have a REG_EQUIV note, see if this insn is loading
3554 a register used only in one basic block from a MEM. If so, and the
3555 MEM remains unchanged for the life of the register, add a REG_EQUIV
3556 note. */
3557 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3558
3559 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3560 && MEM_P (SET_SRC (set))
3561 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3562 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3563
3564 if (note)
3565 {
3566 int regno = REGNO (dest);
3567 rtx x = XEXP (note, 0);
3568
3569 /* If we haven't done so, record for reload that this is an
3570 equivalencing insn. */
3571 if (!reg_equiv[regno].is_arg_equivalence)
3572 ira_reg_equiv[regno].init_insns
3573 = gen_rtx_INSN_LIST (VOIDmode, insn,
3574 ira_reg_equiv[regno].init_insns);
3575
3576 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3577 We might end up substituting the LABEL_REF for uses of the
3578 pseudo here or later. That kind of transformation may turn an
3579 indirect jump into a direct jump, in which case we must rerun the
3580 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3581 if (GET_CODE (x) == LABEL_REF
3582 || (GET_CODE (x) == CONST
3583 && GET_CODE (XEXP (x, 0)) == PLUS
3584 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3585 recorded_label_ref = 1;
3586
3587 reg_equiv[regno].replacement = x;
3588 reg_equiv[regno].src_p = &SET_SRC (set);
3589 reg_equiv[regno].loop_depth = (short) loop_depth;
3590
3591 /* Don't mess with things live during setjmp. */
3592 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3593 {
3594 /* Note that the statement below does not affect the priority
3595 in local-alloc! */
3596 REG_LIVE_LENGTH (regno) *= 2;
3597
3598 /* If the register is referenced exactly twice, meaning it is
3599 set once and used once, indicate that the reference may be
3600 replaced by the equivalence we computed above. Do this
3601 even if the register is only used in one block so that
3602 dependencies can be handled where the last register is
3603 used in a different block (i.e. HIGH / LO_SUM sequences)
3604 and to reduce the number of registers alive across
3605 calls. */
3606
3607 if (REG_N_REFS (regno) == 2
3608 && (rtx_equal_p (x, src)
3609 || ! equiv_init_varies_p (src))
3610 && NONJUMP_INSN_P (insn)
3611 && equiv_init_movable_p (PATTERN (insn), regno))
3612 reg_equiv[regno].replace = 1;
3613 }
3614 }
3615 }
3616 }
3617
3618 if (!optimize)
3619 goto out;
3620
3621 /* A second pass, to gather additional equivalences with memory. This needs
3622 to be done after we know which registers we are going to replace. */
3623
3624 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3625 {
3626 rtx set, src, dest;
3627 unsigned regno;
3628
3629 if (! INSN_P (insn))
3630 continue;
3631
3632 set = single_set (insn);
3633 if (! set)
3634 continue;
3635
3636 dest = SET_DEST (set);
3637 src = SET_SRC (set);
3638
3639 /* If this sets a MEM to the contents of a REG that is only used
3640 in a single basic block, see if the register is always equivalent
3641 to that memory location and if moving the store from INSN to the
3642 insn that set REG is safe. If so, put a REG_EQUIV note on the
3643 initializing insn.
3644
3645 Don't add a REG_EQUIV note if the insn already has one. The existing
3646 REG_EQUIV is likely more useful than the one we are adding.
3647
3648 If one of the regs in the address has reg_equiv[REGNO].replace set,
3649 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3650 optimization may move the set of this register immediately before
3651 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3652 the mention in the REG_EQUIV note would be to an uninitialized
3653 pseudo. */
3654
3655 if (MEM_P (dest) && REG_P (src)
3656 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3657 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3658 && DF_REG_DEF_COUNT (regno) == 1
3659 && reg_equiv[regno].init_insns != NULL
3660 && reg_equiv[regno].init_insns->insn () != NULL
3661 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3662 REG_EQUIV, NULL_RTX)
3663 && ! contains_replace_regs (XEXP (dest, 0))
3664 && ! pdx_subregs[regno])
3665 {
3666 rtx_insn *init_insn =
3667 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3668 if (validate_equiv_mem (init_insn, src, dest)
3669 && ! memref_used_between_p (dest, init_insn, insn)
3670 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3671 multiple sets. */
3672 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3673 {
3674 /* This insn makes the equivalence, not the one initializing
3675 the register. */
3676 ira_reg_equiv[regno].init_insns
3677 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3678 df_notes_rescan (init_insn);
3679 }
3680 }
3681 }
3682
3683 cleared_regs = BITMAP_ALLOC (NULL);
3684 /* Now scan all regs killed in an insn to see if any of them are
3685 registers only used that once. If so, see if we can replace the
3686 reference with the equivalent form. If we can, delete the
3687 initializing reference and this register will go away. If we
3688 can't replace the reference, and the initializing reference is
3689 within the same loop (or in an inner loop), then move the register
3690 initialization just before the use, so that they are in the same
3691 basic block. */
3692 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3693 {
3694 loop_depth = bb_loop_depth (bb);
3695 for (insn = BB_END (bb);
3696 insn != PREV_INSN (BB_HEAD (bb));
3697 insn = PREV_INSN (insn))
3698 {
3699 rtx link;
3700
3701 if (! INSN_P (insn))
3702 continue;
3703
3704 /* Don't substitute into a non-local goto, this confuses CFG. */
3705 if (JUMP_P (insn)
3706 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3707 continue;
3708
3709 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3710 {
3711 if (REG_NOTE_KIND (link) == REG_DEAD
3712 /* Make sure this insn still refers to the register. */
3713 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3714 {
3715 int regno = REGNO (XEXP (link, 0));
3716 rtx equiv_insn;
3717
3718 if (! reg_equiv[regno].replace
3719 || reg_equiv[regno].loop_depth < (short) loop_depth
3720 /* There is no sense to move insns if live range
3721 shrinkage or register pressure-sensitive
3722 scheduling were done because it will not
3723 improve allocation but worsen insn schedule
3724 with a big probability. */
3725 || flag_live_range_shrinkage
3726 || (flag_sched_pressure && flag_schedule_insns))
3727 continue;
3728
3729 /* reg_equiv[REGNO].replace gets set only when
3730 REG_N_REFS[REGNO] is 2, i.e. the register is set
3731 once and used once. (If it were only set, but
3732 not used, flow would have deleted the setting
3733 insns.) Hence there can only be one insn in
3734 reg_equiv[REGNO].init_insns. */
3735 gcc_assert (reg_equiv[regno].init_insns
3736 && !XEXP (reg_equiv[regno].init_insns, 1));
3737 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3738
3739 /* We may not move instructions that can throw, since
3740 that changes basic block boundaries and we are not
3741 prepared to adjust the CFG to match. */
3742 if (can_throw_internal (equiv_insn))
3743 continue;
3744
3745 if (asm_noperands (PATTERN (equiv_insn)) < 0
3746 && validate_replace_rtx (regno_reg_rtx[regno],
3747 *(reg_equiv[regno].src_p), insn))
3748 {
3749 rtx equiv_link;
3750 rtx last_link;
3751 rtx note;
3752
3753 /* Find the last note. */
3754 for (last_link = link; XEXP (last_link, 1);
3755 last_link = XEXP (last_link, 1))
3756 ;
3757
3758 /* Append the REG_DEAD notes from equiv_insn. */
3759 equiv_link = REG_NOTES (equiv_insn);
3760 while (equiv_link)
3761 {
3762 note = equiv_link;
3763 equiv_link = XEXP (equiv_link, 1);
3764 if (REG_NOTE_KIND (note) == REG_DEAD)
3765 {
3766 remove_note (equiv_insn, note);
3767 XEXP (last_link, 1) = note;
3768 XEXP (note, 1) = NULL_RTX;
3769 last_link = note;
3770 }
3771 }
3772
3773 remove_death (regno, insn);
3774 SET_REG_N_REFS (regno, 0);
3775 REG_FREQ (regno) = 0;
3776 delete_insn (equiv_insn);
3777
3778 reg_equiv[regno].init_insns
3779 = reg_equiv[regno].init_insns->next ();
3780
3781 ira_reg_equiv[regno].init_insns = NULL;
3782 bitmap_set_bit (cleared_regs, regno);
3783 }
3784 /* Move the initialization of the register to just before
3785 INSN. Update the flow information. */
3786 else if (prev_nondebug_insn (insn) != equiv_insn)
3787 {
3788 rtx_insn *new_insn;
3789
3790 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3791 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3792 REG_NOTES (equiv_insn) = 0;
3793 /* Rescan it to process the notes. */
3794 df_insn_rescan (new_insn);
3795
3796 /* Make sure this insn is recognized before
3797 reload begins, otherwise
3798 eliminate_regs_in_insn will die. */
3799 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3800
3801 delete_insn (equiv_insn);
3802
3803 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3804
3805 REG_BASIC_BLOCK (regno) = bb->index;
3806 REG_N_CALLS_CROSSED (regno) = 0;
3807 REG_FREQ_CALLS_CROSSED (regno) = 0;
3808 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3809 REG_LIVE_LENGTH (regno) = 2;
3810
3811 if (insn == BB_HEAD (bb))
3812 BB_HEAD (bb) = PREV_INSN (insn);
3813
3814 ira_reg_equiv[regno].init_insns
3815 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3816 bitmap_set_bit (cleared_regs, regno);
3817 }
3818 }
3819 }
3820 }
3821 }
3822
3823 if (!bitmap_empty_p (cleared_regs))
3824 {
3825 FOR_EACH_BB_FN (bb, cfun)
3826 {
3827 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3828 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3829 if (! df_live)
3830 continue;
3831 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3832 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3833 }
3834
3835 /* Last pass - adjust debug insns referencing cleared regs. */
3836 if (MAY_HAVE_DEBUG_INSNS)
3837 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3838 if (DEBUG_INSN_P (insn))
3839 {
3840 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3841 INSN_VAR_LOCATION_LOC (insn)
3842 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3843 adjust_cleared_regs,
3844 (void *) cleared_regs);
3845 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3846 df_insn_rescan (insn);
3847 }
3848 }
3849
3850 BITMAP_FREE (cleared_regs);
3851
3852 out:
3853 /* Clean up. */
3854
3855 end_alias_analysis ();
3856 free (reg_equiv);
3857 free (pdx_subregs);
3858 return recorded_label_ref;
3859 }
3860
3861 \f
3862
3863 /* Set up fields memory, constant, and invariant from init_insns in
3864 the structures of array ira_reg_equiv. */
3865 static void
3866 setup_reg_equiv (void)
3867 {
3868 int i;
3869 rtx_insn_list *elem, *prev_elem, *next_elem;
3870 rtx_insn *insn;
3871 rtx set, x;
3872
3873 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3874 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3875 elem;
3876 prev_elem = elem, elem = next_elem)
3877 {
3878 next_elem = elem->next ();
3879 insn = elem->insn ();
3880 set = single_set (insn);
3881
3882 /* Init insns can set up equivalence when the reg is a destination or
3883 a source (in this case the destination is memory). */
3884 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3885 {
3886 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3887 {
3888 x = XEXP (x, 0);
3889 if (REG_P (SET_DEST (set))
3890 && REGNO (SET_DEST (set)) == (unsigned int) i
3891 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3892 {
3893 /* This insn reporting the equivalence but
3894 actually not setting it. Remove it from the
3895 list. */
3896 if (prev_elem == NULL)
3897 ira_reg_equiv[i].init_insns = next_elem;
3898 else
3899 XEXP (prev_elem, 1) = next_elem;
3900 elem = prev_elem;
3901 }
3902 }
3903 else if (REG_P (SET_DEST (set))
3904 && REGNO (SET_DEST (set)) == (unsigned int) i)
3905 x = SET_SRC (set);
3906 else
3907 {
3908 gcc_assert (REG_P (SET_SRC (set))
3909 && REGNO (SET_SRC (set)) == (unsigned int) i);
3910 x = SET_DEST (set);
3911 }
3912 if (! function_invariant_p (x)
3913 || ! flag_pic
3914 /* A function invariant is often CONSTANT_P but may
3915 include a register. We promise to only pass
3916 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3917 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3918 {
3919 /* It can happen that a REG_EQUIV note contains a MEM
3920 that is not a legitimate memory operand. As later
3921 stages of reload assume that all addresses found in
3922 the lra_regno_equiv_* arrays were originally
3923 legitimate, we ignore such REG_EQUIV notes. */
3924 if (memory_operand (x, VOIDmode))
3925 {
3926 ira_reg_equiv[i].defined_p = true;
3927 ira_reg_equiv[i].memory = x;
3928 continue;
3929 }
3930 else if (function_invariant_p (x))
3931 {
3932 machine_mode mode;
3933
3934 mode = GET_MODE (SET_DEST (set));
3935 if (GET_CODE (x) == PLUS
3936 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3937 /* This is PLUS of frame pointer and a constant,
3938 or fp, or argp. */
3939 ira_reg_equiv[i].invariant = x;
3940 else if (targetm.legitimate_constant_p (mode, x))
3941 ira_reg_equiv[i].constant = x;
3942 else
3943 {
3944 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3945 if (ira_reg_equiv[i].memory == NULL_RTX)
3946 {
3947 ira_reg_equiv[i].defined_p = false;
3948 ira_reg_equiv[i].init_insns = NULL;
3949 break;
3950 }
3951 }
3952 ira_reg_equiv[i].defined_p = true;
3953 continue;
3954 }
3955 }
3956 }
3957 ira_reg_equiv[i].defined_p = false;
3958 ira_reg_equiv[i].init_insns = NULL;
3959 break;
3960 }
3961 }
3962
3963 \f
3964
3965 /* Print chain C to FILE. */
3966 static void
3967 print_insn_chain (FILE *file, struct insn_chain *c)
3968 {
3969 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3970 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3971 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3972 }
3973
3974
3975 /* Print all reload_insn_chains to FILE. */
3976 static void
3977 print_insn_chains (FILE *file)
3978 {
3979 struct insn_chain *c;
3980 for (c = reload_insn_chain; c ; c = c->next)
3981 print_insn_chain (file, c);
3982 }
3983
3984 /* Return true if pseudo REGNO should be added to set live_throughout
3985 or dead_or_set of the insn chains for reload consideration. */
3986 static bool
3987 pseudo_for_reload_consideration_p (int regno)
3988 {
3989 /* Consider spilled pseudos too for IRA because they still have a
3990 chance to get hard-registers in the reload when IRA is used. */
3991 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3992 }
3993
3994 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3995 REG to the number of nregs, and INIT_VALUE to get the
3996 initialization. ALLOCNUM need not be the regno of REG. */
3997 static void
3998 init_live_subregs (bool init_value, sbitmap *live_subregs,
3999 bitmap live_subregs_used, int allocnum, rtx reg)
4000 {
4001 unsigned int regno = REGNO (SUBREG_REG (reg));
4002 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4003
4004 gcc_assert (size > 0);
4005
4006 /* Been there, done that. */
4007 if (bitmap_bit_p (live_subregs_used, allocnum))
4008 return;
4009
4010 /* Create a new one. */
4011 if (live_subregs[allocnum] == NULL)
4012 live_subregs[allocnum] = sbitmap_alloc (size);
4013
4014 /* If the entire reg was live before blasting into subregs, we need
4015 to init all of the subregs to ones else init to 0. */
4016 if (init_value)
4017 bitmap_ones (live_subregs[allocnum]);
4018 else
4019 bitmap_clear (live_subregs[allocnum]);
4020
4021 bitmap_set_bit (live_subregs_used, allocnum);
4022 }
4023
4024 /* Walk the insns of the current function and build reload_insn_chain,
4025 and record register life information. */
4026 static void
4027 build_insn_chain (void)
4028 {
4029 unsigned int i;
4030 struct insn_chain **p = &reload_insn_chain;
4031 basic_block bb;
4032 struct insn_chain *c = NULL;
4033 struct insn_chain *next = NULL;
4034 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4035 bitmap elim_regset = BITMAP_ALLOC (NULL);
4036 /* live_subregs is a vector used to keep accurate information about
4037 which hardregs are live in multiword pseudos. live_subregs and
4038 live_subregs_used are indexed by pseudo number. The live_subreg
4039 entry for a particular pseudo is only used if the corresponding
4040 element is non zero in live_subregs_used. The sbitmap size of
4041 live_subreg[allocno] is number of bytes that the pseudo can
4042 occupy. */
4043 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4044 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4045
4046 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4047 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4048 bitmap_set_bit (elim_regset, i);
4049 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4050 {
4051 bitmap_iterator bi;
4052 rtx_insn *insn;
4053
4054 CLEAR_REG_SET (live_relevant_regs);
4055 bitmap_clear (live_subregs_used);
4056
4057 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4058 {
4059 if (i >= FIRST_PSEUDO_REGISTER)
4060 break;
4061 bitmap_set_bit (live_relevant_regs, i);
4062 }
4063
4064 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4065 FIRST_PSEUDO_REGISTER, i, bi)
4066 {
4067 if (pseudo_for_reload_consideration_p (i))
4068 bitmap_set_bit (live_relevant_regs, i);
4069 }
4070
4071 FOR_BB_INSNS_REVERSE (bb, insn)
4072 {
4073 if (!NOTE_P (insn) && !BARRIER_P (insn))
4074 {
4075 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4076 df_ref def, use;
4077
4078 c = new_insn_chain ();
4079 c->next = next;
4080 next = c;
4081 *p = c;
4082 p = &c->prev;
4083
4084 c->insn = insn;
4085 c->block = bb->index;
4086
4087 if (NONDEBUG_INSN_P (insn))
4088 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4089 {
4090 unsigned int regno = DF_REF_REGNO (def);
4091
4092 /* Ignore may clobbers because these are generated
4093 from calls. However, every other kind of def is
4094 added to dead_or_set. */
4095 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4096 {
4097 if (regno < FIRST_PSEUDO_REGISTER)
4098 {
4099 if (!fixed_regs[regno])
4100 bitmap_set_bit (&c->dead_or_set, regno);
4101 }
4102 else if (pseudo_for_reload_consideration_p (regno))
4103 bitmap_set_bit (&c->dead_or_set, regno);
4104 }
4105
4106 if ((regno < FIRST_PSEUDO_REGISTER
4107 || reg_renumber[regno] >= 0
4108 || ira_conflicts_p)
4109 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4110 {
4111 rtx reg = DF_REF_REG (def);
4112
4113 /* We can model subregs, but not if they are
4114 wrapped in ZERO_EXTRACTS. */
4115 if (GET_CODE (reg) == SUBREG
4116 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4117 {
4118 unsigned int start = SUBREG_BYTE (reg);
4119 unsigned int last = start
4120 + GET_MODE_SIZE (GET_MODE (reg));
4121
4122 init_live_subregs
4123 (bitmap_bit_p (live_relevant_regs, regno),
4124 live_subregs, live_subregs_used, regno, reg);
4125
4126 if (!DF_REF_FLAGS_IS_SET
4127 (def, DF_REF_STRICT_LOW_PART))
4128 {
4129 /* Expand the range to cover entire words.
4130 Bytes added here are "don't care". */
4131 start
4132 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4133 last = ((last + UNITS_PER_WORD - 1)
4134 / UNITS_PER_WORD * UNITS_PER_WORD);
4135 }
4136
4137 /* Ignore the paradoxical bits. */
4138 if (last > SBITMAP_SIZE (live_subregs[regno]))
4139 last = SBITMAP_SIZE (live_subregs[regno]);
4140
4141 while (start < last)
4142 {
4143 bitmap_clear_bit (live_subregs[regno], start);
4144 start++;
4145 }
4146
4147 if (bitmap_empty_p (live_subregs[regno]))
4148 {
4149 bitmap_clear_bit (live_subregs_used, regno);
4150 bitmap_clear_bit (live_relevant_regs, regno);
4151 }
4152 else
4153 /* Set live_relevant_regs here because
4154 that bit has to be true to get us to
4155 look at the live_subregs fields. */
4156 bitmap_set_bit (live_relevant_regs, regno);
4157 }
4158 else
4159 {
4160 /* DF_REF_PARTIAL is generated for
4161 subregs, STRICT_LOW_PART, and
4162 ZERO_EXTRACT. We handle the subreg
4163 case above so here we have to keep from
4164 modeling the def as a killing def. */
4165 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4166 {
4167 bitmap_clear_bit (live_subregs_used, regno);
4168 bitmap_clear_bit (live_relevant_regs, regno);
4169 }
4170 }
4171 }
4172 }
4173
4174 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4175 bitmap_copy (&c->live_throughout, live_relevant_regs);
4176
4177 if (NONDEBUG_INSN_P (insn))
4178 FOR_EACH_INSN_INFO_USE (use, insn_info)
4179 {
4180 unsigned int regno = DF_REF_REGNO (use);
4181 rtx reg = DF_REF_REG (use);
4182
4183 /* DF_REF_READ_WRITE on a use means that this use
4184 is fabricated from a def that is a partial set
4185 to a multiword reg. Here, we only model the
4186 subreg case that is not wrapped in ZERO_EXTRACT
4187 precisely so we do not need to look at the
4188 fabricated use. */
4189 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4190 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4191 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4192 continue;
4193
4194 /* Add the last use of each var to dead_or_set. */
4195 if (!bitmap_bit_p (live_relevant_regs, regno))
4196 {
4197 if (regno < FIRST_PSEUDO_REGISTER)
4198 {
4199 if (!fixed_regs[regno])
4200 bitmap_set_bit (&c->dead_or_set, regno);
4201 }
4202 else if (pseudo_for_reload_consideration_p (regno))
4203 bitmap_set_bit (&c->dead_or_set, regno);
4204 }
4205
4206 if (regno < FIRST_PSEUDO_REGISTER
4207 || pseudo_for_reload_consideration_p (regno))
4208 {
4209 if (GET_CODE (reg) == SUBREG
4210 && !DF_REF_FLAGS_IS_SET (use,
4211 DF_REF_SIGN_EXTRACT
4212 | DF_REF_ZERO_EXTRACT))
4213 {
4214 unsigned int start = SUBREG_BYTE (reg);
4215 unsigned int last = start
4216 + GET_MODE_SIZE (GET_MODE (reg));
4217
4218 init_live_subregs
4219 (bitmap_bit_p (live_relevant_regs, regno),
4220 live_subregs, live_subregs_used, regno, reg);
4221
4222 /* Ignore the paradoxical bits. */
4223 if (last > SBITMAP_SIZE (live_subregs[regno]))
4224 last = SBITMAP_SIZE (live_subregs[regno]);
4225
4226 while (start < last)
4227 {
4228 bitmap_set_bit (live_subregs[regno], start);
4229 start++;
4230 }
4231 }
4232 else
4233 /* Resetting the live_subregs_used is
4234 effectively saying do not use the subregs
4235 because we are reading the whole
4236 pseudo. */
4237 bitmap_clear_bit (live_subregs_used, regno);
4238 bitmap_set_bit (live_relevant_regs, regno);
4239 }
4240 }
4241 }
4242 }
4243
4244 /* FIXME!! The following code is a disaster. Reload needs to see the
4245 labels and jump tables that are just hanging out in between
4246 the basic blocks. See pr33676. */
4247 insn = BB_HEAD (bb);
4248
4249 /* Skip over the barriers and cruft. */
4250 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4251 || BLOCK_FOR_INSN (insn) == bb))
4252 insn = PREV_INSN (insn);
4253
4254 /* While we add anything except barriers and notes, the focus is
4255 to get the labels and jump tables into the
4256 reload_insn_chain. */
4257 while (insn)
4258 {
4259 if (!NOTE_P (insn) && !BARRIER_P (insn))
4260 {
4261 if (BLOCK_FOR_INSN (insn))
4262 break;
4263
4264 c = new_insn_chain ();
4265 c->next = next;
4266 next = c;
4267 *p = c;
4268 p = &c->prev;
4269
4270 /* The block makes no sense here, but it is what the old
4271 code did. */
4272 c->block = bb->index;
4273 c->insn = insn;
4274 bitmap_copy (&c->live_throughout, live_relevant_regs);
4275 }
4276 insn = PREV_INSN (insn);
4277 }
4278 }
4279
4280 reload_insn_chain = c;
4281 *p = NULL;
4282
4283 for (i = 0; i < (unsigned int) max_regno; i++)
4284 if (live_subregs[i] != NULL)
4285 sbitmap_free (live_subregs[i]);
4286 free (live_subregs);
4287 BITMAP_FREE (live_subregs_used);
4288 BITMAP_FREE (live_relevant_regs);
4289 BITMAP_FREE (elim_regset);
4290
4291 if (dump_file)
4292 print_insn_chains (dump_file);
4293 }
4294 \f
4295 /* Examine the rtx found in *LOC, which is read or written to as determined
4296 by TYPE. Return false if we find a reason why an insn containing this
4297 rtx should not be moved (such as accesses to non-constant memory), true
4298 otherwise. */
4299 static bool
4300 rtx_moveable_p (rtx *loc, enum op_type type)
4301 {
4302 const char *fmt;
4303 rtx x = *loc;
4304 enum rtx_code code = GET_CODE (x);
4305 int i, j;
4306
4307 code = GET_CODE (x);
4308 switch (code)
4309 {
4310 case CONST:
4311 CASE_CONST_ANY:
4312 case SYMBOL_REF:
4313 case LABEL_REF:
4314 return true;
4315
4316 case PC:
4317 return type == OP_IN;
4318
4319 case CC0:
4320 return false;
4321
4322 case REG:
4323 if (x == frame_pointer_rtx)
4324 return true;
4325 if (HARD_REGISTER_P (x))
4326 return false;
4327
4328 return true;
4329
4330 case MEM:
4331 if (type == OP_IN && MEM_READONLY_P (x))
4332 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4333 return false;
4334
4335 case SET:
4336 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4337 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4338
4339 case STRICT_LOW_PART:
4340 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4341
4342 case ZERO_EXTRACT:
4343 case SIGN_EXTRACT:
4344 return (rtx_moveable_p (&XEXP (x, 0), type)
4345 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4346 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4347
4348 case CLOBBER:
4349 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4350
4351 case UNSPEC_VOLATILE:
4352 /* It is a bad idea to consider insns with such rtl
4353 as moveable ones. The insn scheduler also considers them as barrier
4354 for a reason. */
4355 return false;
4356
4357 default:
4358 break;
4359 }
4360
4361 fmt = GET_RTX_FORMAT (code);
4362 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4363 {
4364 if (fmt[i] == 'e')
4365 {
4366 if (!rtx_moveable_p (&XEXP (x, i), type))
4367 return false;
4368 }
4369 else if (fmt[i] == 'E')
4370 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4371 {
4372 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4373 return false;
4374 }
4375 }
4376 return true;
4377 }
4378
4379 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4380 to give dominance relationships between two insns I1 and I2. */
4381 static bool
4382 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4383 {
4384 basic_block bb1 = BLOCK_FOR_INSN (i1);
4385 basic_block bb2 = BLOCK_FOR_INSN (i2);
4386
4387 if (bb1 == bb2)
4388 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4389 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4390 }
4391
4392 /* Record the range of register numbers added by find_moveable_pseudos. */
4393 int first_moveable_pseudo, last_moveable_pseudo;
4394
4395 /* These two vectors hold data for every register added by
4396 find_movable_pseudos, with index 0 holding data for the
4397 first_moveable_pseudo. */
4398 /* The original home register. */
4399 static vec<rtx> pseudo_replaced_reg;
4400
4401 /* Look for instances where we have an instruction that is known to increase
4402 register pressure, and whose result is not used immediately. If it is
4403 possible to move the instruction downwards to just before its first use,
4404 split its lifetime into two ranges. We create a new pseudo to compute the
4405 value, and emit a move instruction just before the first use. If, after
4406 register allocation, the new pseudo remains unallocated, the function
4407 move_unallocated_pseudos then deletes the move instruction and places
4408 the computation just before the first use.
4409
4410 Such a move is safe and profitable if all the input registers remain live
4411 and unchanged between the original computation and its first use. In such
4412 a situation, the computation is known to increase register pressure, and
4413 moving it is known to at least not worsen it.
4414
4415 We restrict moves to only those cases where a register remains unallocated,
4416 in order to avoid interfering too much with the instruction schedule. As
4417 an exception, we may move insns which only modify their input register
4418 (typically induction variables), as this increases the freedom for our
4419 intended transformation, and does not limit the second instruction
4420 scheduler pass. */
4421
4422 static void
4423 find_moveable_pseudos (void)
4424 {
4425 unsigned i;
4426 int max_regs = max_reg_num ();
4427 int max_uid = get_max_uid ();
4428 basic_block bb;
4429 int *uid_luid = XNEWVEC (int, max_uid);
4430 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4431 /* A set of registers which are live but not modified throughout a block. */
4432 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4433 last_basic_block_for_fn (cfun));
4434 /* A set of registers which only exist in a given basic block. */
4435 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4436 last_basic_block_for_fn (cfun));
4437 /* A set of registers which are set once, in an instruction that can be
4438 moved freely downwards, but are otherwise transparent to a block. */
4439 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4440 last_basic_block_for_fn (cfun));
4441 bitmap_head live, used, set, interesting, unusable_as_input;
4442 bitmap_iterator bi;
4443 bitmap_initialize (&interesting, 0);
4444
4445 first_moveable_pseudo = max_regs;
4446 pseudo_replaced_reg.release ();
4447 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4448
4449 df_analyze ();
4450 calculate_dominance_info (CDI_DOMINATORS);
4451
4452 i = 0;
4453 bitmap_initialize (&live, 0);
4454 bitmap_initialize (&used, 0);
4455 bitmap_initialize (&set, 0);
4456 bitmap_initialize (&unusable_as_input, 0);
4457 FOR_EACH_BB_FN (bb, cfun)
4458 {
4459 rtx_insn *insn;
4460 bitmap transp = bb_transp_live + bb->index;
4461 bitmap moveable = bb_moveable_reg_sets + bb->index;
4462 bitmap local = bb_local + bb->index;
4463
4464 bitmap_initialize (local, 0);
4465 bitmap_initialize (transp, 0);
4466 bitmap_initialize (moveable, 0);
4467 bitmap_copy (&live, df_get_live_out (bb));
4468 bitmap_and_into (&live, df_get_live_in (bb));
4469 bitmap_copy (transp, &live);
4470 bitmap_clear (moveable);
4471 bitmap_clear (&live);
4472 bitmap_clear (&used);
4473 bitmap_clear (&set);
4474 FOR_BB_INSNS (bb, insn)
4475 if (NONDEBUG_INSN_P (insn))
4476 {
4477 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4478 df_ref def, use;
4479
4480 uid_luid[INSN_UID (insn)] = i++;
4481
4482 def = df_single_def (insn_info);
4483 use = df_single_use (insn_info);
4484 if (use
4485 && def
4486 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4487 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4488 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4489 {
4490 unsigned regno = DF_REF_REGNO (use);
4491 bitmap_set_bit (moveable, regno);
4492 bitmap_set_bit (&set, regno);
4493 bitmap_set_bit (&used, regno);
4494 bitmap_clear_bit (transp, regno);
4495 continue;
4496 }
4497 FOR_EACH_INSN_INFO_USE (use, insn_info)
4498 {
4499 unsigned regno = DF_REF_REGNO (use);
4500 bitmap_set_bit (&used, regno);
4501 if (bitmap_clear_bit (moveable, regno))
4502 bitmap_clear_bit (transp, regno);
4503 }
4504
4505 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4506 {
4507 unsigned regno = DF_REF_REGNO (def);
4508 bitmap_set_bit (&set, regno);
4509 bitmap_clear_bit (transp, regno);
4510 bitmap_clear_bit (moveable, regno);
4511 }
4512 }
4513 }
4514
4515 bitmap_clear (&live);
4516 bitmap_clear (&used);
4517 bitmap_clear (&set);
4518
4519 FOR_EACH_BB_FN (bb, cfun)
4520 {
4521 bitmap local = bb_local + bb->index;
4522 rtx_insn *insn;
4523
4524 FOR_BB_INSNS (bb, insn)
4525 if (NONDEBUG_INSN_P (insn))
4526 {
4527 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4528 rtx_insn *def_insn;
4529 rtx closest_use, note;
4530 df_ref def, use;
4531 unsigned regno;
4532 bool all_dominated, all_local;
4533 machine_mode mode;
4534
4535 def = df_single_def (insn_info);
4536 /* There must be exactly one def in this insn. */
4537 if (!def || !single_set (insn))
4538 continue;
4539 /* This must be the only definition of the reg. We also limit
4540 which modes we deal with so that we can assume we can generate
4541 move instructions. */
4542 regno = DF_REF_REGNO (def);
4543 mode = GET_MODE (DF_REF_REG (def));
4544 if (DF_REG_DEF_COUNT (regno) != 1
4545 || !DF_REF_INSN_INFO (def)
4546 || HARD_REGISTER_NUM_P (regno)
4547 || DF_REG_EQ_USE_COUNT (regno) > 0
4548 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4549 continue;
4550 def_insn = DF_REF_INSN (def);
4551
4552 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4553 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4554 break;
4555
4556 if (note)
4557 {
4558 if (dump_file)
4559 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4560 regno);
4561 bitmap_set_bit (&unusable_as_input, regno);
4562 continue;
4563 }
4564
4565 use = DF_REG_USE_CHAIN (regno);
4566 all_dominated = true;
4567 all_local = true;
4568 closest_use = NULL_RTX;
4569 for (; use; use = DF_REF_NEXT_REG (use))
4570 {
4571 rtx_insn *insn;
4572 if (!DF_REF_INSN_INFO (use))
4573 {
4574 all_dominated = false;
4575 all_local = false;
4576 break;
4577 }
4578 insn = DF_REF_INSN (use);
4579 if (DEBUG_INSN_P (insn))
4580 continue;
4581 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4582 all_local = false;
4583 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4584 all_dominated = false;
4585 if (closest_use != insn && closest_use != const0_rtx)
4586 {
4587 if (closest_use == NULL_RTX)
4588 closest_use = insn;
4589 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4590 closest_use = insn;
4591 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4592 closest_use = const0_rtx;
4593 }
4594 }
4595 if (!all_dominated)
4596 {
4597 if (dump_file)
4598 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4599 regno);
4600 continue;
4601 }
4602 if (all_local)
4603 bitmap_set_bit (local, regno);
4604 if (closest_use == const0_rtx || closest_use == NULL
4605 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4606 {
4607 if (dump_file)
4608 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4609 closest_use == const0_rtx || closest_use == NULL
4610 ? " (no unique first use)" : "");
4611 continue;
4612 }
4613 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4614 {
4615 if (dump_file)
4616 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4617 regno);
4618 continue;
4619 }
4620
4621 bitmap_set_bit (&interesting, regno);
4622 /* If we get here, we know closest_use is a non-NULL insn
4623 (as opposed to const_0_rtx). */
4624 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4625
4626 if (dump_file && (all_local || all_dominated))
4627 {
4628 fprintf (dump_file, "Reg %u:", regno);
4629 if (all_local)
4630 fprintf (dump_file, " local to bb %d", bb->index);
4631 if (all_dominated)
4632 fprintf (dump_file, " def dominates all uses");
4633 if (closest_use != const0_rtx)
4634 fprintf (dump_file, " has unique first use");
4635 fputs ("\n", dump_file);
4636 }
4637 }
4638 }
4639
4640 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4641 {
4642 df_ref def = DF_REG_DEF_CHAIN (i);
4643 rtx_insn *def_insn = DF_REF_INSN (def);
4644 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4645 bitmap def_bb_local = bb_local + def_block->index;
4646 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4647 bitmap def_bb_transp = bb_transp_live + def_block->index;
4648 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4649 rtx_insn *use_insn = closest_uses[i];
4650 df_ref use;
4651 bool all_ok = true;
4652 bool all_transp = true;
4653
4654 if (!REG_P (DF_REF_REG (def)))
4655 continue;
4656
4657 if (!local_to_bb_p)
4658 {
4659 if (dump_file)
4660 fprintf (dump_file, "Reg %u not local to one basic block\n",
4661 i);
4662 continue;
4663 }
4664 if (reg_equiv_init (i) != NULL_RTX)
4665 {
4666 if (dump_file)
4667 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4668 i);
4669 continue;
4670 }
4671 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4672 {
4673 if (dump_file)
4674 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4675 INSN_UID (def_insn), i);
4676 continue;
4677 }
4678 if (dump_file)
4679 fprintf (dump_file, "Examining insn %d, def for %d\n",
4680 INSN_UID (def_insn), i);
4681 FOR_EACH_INSN_USE (use, def_insn)
4682 {
4683 unsigned regno = DF_REF_REGNO (use);
4684 if (bitmap_bit_p (&unusable_as_input, regno))
4685 {
4686 all_ok = false;
4687 if (dump_file)
4688 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4689 break;
4690 }
4691 if (!bitmap_bit_p (def_bb_transp, regno))
4692 {
4693 if (bitmap_bit_p (def_bb_moveable, regno)
4694 && !control_flow_insn_p (use_insn)
4695 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4696 {
4697 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4698 {
4699 rtx_insn *x = NEXT_INSN (def_insn);
4700 while (!modified_in_p (DF_REF_REG (use), x))
4701 {
4702 gcc_assert (x != use_insn);
4703 x = NEXT_INSN (x);
4704 }
4705 if (dump_file)
4706 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4707 regno, INSN_UID (x));
4708 emit_insn_after (PATTERN (x), use_insn);
4709 set_insn_deleted (x);
4710 }
4711 else
4712 {
4713 if (dump_file)
4714 fprintf (dump_file, " input reg %u modified between def and use\n",
4715 regno);
4716 all_transp = false;
4717 }
4718 }
4719 else
4720 all_transp = false;
4721 }
4722 }
4723 if (!all_ok)
4724 continue;
4725 if (!dbg_cnt (ira_move))
4726 break;
4727 if (dump_file)
4728 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4729
4730 if (all_transp)
4731 {
4732 rtx def_reg = DF_REF_REG (def);
4733 rtx newreg = ira_create_new_reg (def_reg);
4734 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4735 {
4736 unsigned nregno = REGNO (newreg);
4737 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4738 nregno -= max_regs;
4739 pseudo_replaced_reg[nregno] = def_reg;
4740 }
4741 }
4742 }
4743
4744 FOR_EACH_BB_FN (bb, cfun)
4745 {
4746 bitmap_clear (bb_local + bb->index);
4747 bitmap_clear (bb_transp_live + bb->index);
4748 bitmap_clear (bb_moveable_reg_sets + bb->index);
4749 }
4750 bitmap_clear (&interesting);
4751 bitmap_clear (&unusable_as_input);
4752 free (uid_luid);
4753 free (closest_uses);
4754 free (bb_local);
4755 free (bb_transp_live);
4756 free (bb_moveable_reg_sets);
4757
4758 last_moveable_pseudo = max_reg_num ();
4759
4760 fix_reg_equiv_init ();
4761 expand_reg_info ();
4762 regstat_free_n_sets_and_refs ();
4763 regstat_free_ri ();
4764 regstat_init_n_sets_and_refs ();
4765 regstat_compute_ri ();
4766 free_dominance_info (CDI_DOMINATORS);
4767 }
4768
4769 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4770 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4771 the destination. Otherwise return NULL. */
4772
4773 static rtx
4774 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4775 {
4776 rtx src = SET_SRC (set);
4777 rtx dest = SET_DEST (set);
4778 if (!REG_P (src) || !HARD_REGISTER_P (src)
4779 || !REG_P (dest) || HARD_REGISTER_P (dest)
4780 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4781 return NULL;
4782 return dest;
4783 }
4784
4785 /* If insn is interesting for parameter range-splitting shrink-wrapping
4786 preparation, i.e. it is a single set from a hard register to a pseudo, which
4787 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4788 parallel statement with only one such statement, return the destination.
4789 Otherwise return NULL. */
4790
4791 static rtx
4792 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4793 {
4794 if (!INSN_P (insn))
4795 return NULL;
4796 rtx pat = PATTERN (insn);
4797 if (GET_CODE (pat) == SET)
4798 return interesting_dest_for_shprep_1 (pat, call_dom);
4799
4800 if (GET_CODE (pat) != PARALLEL)
4801 return NULL;
4802 rtx ret = NULL;
4803 for (int i = 0; i < XVECLEN (pat, 0); i++)
4804 {
4805 rtx sub = XVECEXP (pat, 0, i);
4806 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4807 continue;
4808 if (GET_CODE (sub) != SET
4809 || side_effects_p (sub))
4810 return NULL;
4811 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4812 if (dest && ret)
4813 return NULL;
4814 if (dest)
4815 ret = dest;
4816 }
4817 return ret;
4818 }
4819
4820 /* Split live ranges of pseudos that are loaded from hard registers in the
4821 first BB in a BB that dominates all non-sibling call if such a BB can be
4822 found and is not in a loop. Return true if the function has made any
4823 changes. */
4824
4825 static bool
4826 split_live_ranges_for_shrink_wrap (void)
4827 {
4828 basic_block bb, call_dom = NULL;
4829 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4830 rtx_insn *insn, *last_interesting_insn = NULL;
4831 bitmap_head need_new, reachable;
4832 vec<basic_block> queue;
4833
4834 if (!SHRINK_WRAPPING_ENABLED)
4835 return false;
4836
4837 bitmap_initialize (&need_new, 0);
4838 bitmap_initialize (&reachable, 0);
4839 queue.create (n_basic_blocks_for_fn (cfun));
4840
4841 FOR_EACH_BB_FN (bb, cfun)
4842 FOR_BB_INSNS (bb, insn)
4843 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4844 {
4845 if (bb == first)
4846 {
4847 bitmap_clear (&need_new);
4848 bitmap_clear (&reachable);
4849 queue.release ();
4850 return false;
4851 }
4852
4853 bitmap_set_bit (&need_new, bb->index);
4854 bitmap_set_bit (&reachable, bb->index);
4855 queue.quick_push (bb);
4856 break;
4857 }
4858
4859 if (queue.is_empty ())
4860 {
4861 bitmap_clear (&need_new);
4862 bitmap_clear (&reachable);
4863 queue.release ();
4864 return false;
4865 }
4866
4867 while (!queue.is_empty ())
4868 {
4869 edge e;
4870 edge_iterator ei;
4871
4872 bb = queue.pop ();
4873 FOR_EACH_EDGE (e, ei, bb->succs)
4874 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4875 && bitmap_set_bit (&reachable, e->dest->index))
4876 queue.quick_push (e->dest);
4877 }
4878 queue.release ();
4879
4880 FOR_BB_INSNS (first, insn)
4881 {
4882 rtx dest = interesting_dest_for_shprep (insn, NULL);
4883 if (!dest)
4884 continue;
4885
4886 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4887 {
4888 bitmap_clear (&need_new);
4889 bitmap_clear (&reachable);
4890 return false;
4891 }
4892
4893 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4894 use;
4895 use = DF_REF_NEXT_REG (use))
4896 {
4897 int ubbi = DF_REF_BB (use)->index;
4898 if (bitmap_bit_p (&reachable, ubbi))
4899 bitmap_set_bit (&need_new, ubbi);
4900 }
4901 last_interesting_insn = insn;
4902 }
4903
4904 bitmap_clear (&reachable);
4905 if (!last_interesting_insn)
4906 {
4907 bitmap_clear (&need_new);
4908 return false;
4909 }
4910
4911 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4912 bitmap_clear (&need_new);
4913 if (call_dom == first)
4914 return false;
4915
4916 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4917 while (bb_loop_depth (call_dom) > 0)
4918 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4919 loop_optimizer_finalize ();
4920
4921 if (call_dom == first)
4922 return false;
4923
4924 calculate_dominance_info (CDI_POST_DOMINATORS);
4925 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4926 {
4927 free_dominance_info (CDI_POST_DOMINATORS);
4928 return false;
4929 }
4930 free_dominance_info (CDI_POST_DOMINATORS);
4931
4932 if (dump_file)
4933 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4934 call_dom->index);
4935
4936 bool ret = false;
4937 FOR_BB_INSNS (first, insn)
4938 {
4939 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4940 if (!dest || dest == pic_offset_table_rtx)
4941 continue;
4942
4943 rtx newreg = NULL_RTX;
4944 df_ref use, next;
4945 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4946 {
4947 rtx_insn *uin = DF_REF_INSN (use);
4948 next = DF_REF_NEXT_REG (use);
4949
4950 basic_block ubb = BLOCK_FOR_INSN (uin);
4951 if (ubb == call_dom
4952 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4953 {
4954 if (!newreg)
4955 newreg = ira_create_new_reg (dest);
4956 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4957 }
4958 }
4959
4960 if (newreg)
4961 {
4962 rtx_insn *new_move = gen_move_insn (newreg, dest);
4963 emit_insn_after (new_move, bb_note (call_dom));
4964 if (dump_file)
4965 {
4966 fprintf (dump_file, "Split live-range of register ");
4967 print_rtl_single (dump_file, dest);
4968 }
4969 ret = true;
4970 }
4971
4972 if (insn == last_interesting_insn)
4973 break;
4974 }
4975 apply_change_group ();
4976 return ret;
4977 }
4978
4979 /* Perform the second half of the transformation started in
4980 find_moveable_pseudos. We look for instances where the newly introduced
4981 pseudo remains unallocated, and remove it by moving the definition to
4982 just before its use, replacing the move instruction generated by
4983 find_moveable_pseudos. */
4984 static void
4985 move_unallocated_pseudos (void)
4986 {
4987 int i;
4988 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4989 if (reg_renumber[i] < 0)
4990 {
4991 int idx = i - first_moveable_pseudo;
4992 rtx other_reg = pseudo_replaced_reg[idx];
4993 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4994 /* The use must follow all definitions of OTHER_REG, so we can
4995 insert the new definition immediately after any of them. */
4996 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4997 rtx_insn *move_insn = DF_REF_INSN (other_def);
4998 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4999 rtx set;
5000 int success;
5001
5002 if (dump_file)
5003 fprintf (dump_file, "moving def of %d (insn %d now) ",
5004 REGNO (other_reg), INSN_UID (def_insn));
5005
5006 delete_insn (move_insn);
5007 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5008 delete_insn (DF_REF_INSN (other_def));
5009 delete_insn (def_insn);
5010
5011 set = single_set (newinsn);
5012 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5013 gcc_assert (success);
5014 if (dump_file)
5015 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5016 INSN_UID (newinsn), i);
5017 SET_REG_N_REFS (i, 0);
5018 }
5019 }
5020 \f
5021 /* If the backend knows where to allocate pseudos for hard
5022 register initial values, register these allocations now. */
5023 static void
5024 allocate_initial_values (void)
5025 {
5026 if (targetm.allocate_initial_value)
5027 {
5028 rtx hreg, preg, x;
5029 int i, regno;
5030
5031 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5032 {
5033 if (! initial_value_entry (i, &hreg, &preg))
5034 break;
5035
5036 x = targetm.allocate_initial_value (hreg);
5037 regno = REGNO (preg);
5038 if (x && REG_N_SETS (regno) <= 1)
5039 {
5040 if (MEM_P (x))
5041 reg_equiv_memory_loc (regno) = x;
5042 else
5043 {
5044 basic_block bb;
5045 int new_regno;
5046
5047 gcc_assert (REG_P (x));
5048 new_regno = REGNO (x);
5049 reg_renumber[regno] = new_regno;
5050 /* Poke the regno right into regno_reg_rtx so that even
5051 fixed regs are accepted. */
5052 SET_REGNO (preg, new_regno);
5053 /* Update global register liveness information. */
5054 FOR_EACH_BB_FN (bb, cfun)
5055 {
5056 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5057 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5058 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5059 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5060 }
5061 }
5062 }
5063 }
5064
5065 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5066 &hreg, &preg));
5067 }
5068 }
5069 \f
5070
5071 /* True when we use LRA instead of reload pass for the current
5072 function. */
5073 bool ira_use_lra_p;
5074
5075 /* True if we have allocno conflicts. It is false for non-optimized
5076 mode or when the conflict table is too big. */
5077 bool ira_conflicts_p;
5078
5079 /* Saved between IRA and reload. */
5080 static int saved_flag_ira_share_spill_slots;
5081
5082 /* This is the main entry of IRA. */
5083 static void
5084 ira (FILE *f)
5085 {
5086 bool loops_p;
5087 int ira_max_point_before_emit;
5088 int rebuild_p;
5089 bool saved_flag_caller_saves = flag_caller_saves;
5090 enum ira_region saved_flag_ira_region = flag_ira_region;
5091
5092 /* Perform target specific PIC register initialization. */
5093 targetm.init_pic_reg ();
5094
5095 ira_conflicts_p = optimize > 0;
5096
5097 ira_use_lra_p = targetm.lra_p ();
5098 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5099 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5100 use simplified and faster algorithms in LRA. */
5101 lra_simple_p
5102 = (ira_use_lra_p
5103 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5104 if (lra_simple_p)
5105 {
5106 /* It permits to skip live range splitting in LRA. */
5107 flag_caller_saves = false;
5108 /* There is no sense to do regional allocation when we use
5109 simplified LRA. */
5110 flag_ira_region = IRA_REGION_ONE;
5111 ira_conflicts_p = false;
5112 }
5113
5114 #ifndef IRA_NO_OBSTACK
5115 gcc_obstack_init (&ira_obstack);
5116 #endif
5117 bitmap_obstack_initialize (&ira_bitmap_obstack);
5118
5119 /* LRA uses its own infrastructure to handle caller save registers. */
5120 if (flag_caller_saves && !ira_use_lra_p)
5121 init_caller_save ();
5122
5123 if (flag_ira_verbose < 10)
5124 {
5125 internal_flag_ira_verbose = flag_ira_verbose;
5126 ira_dump_file = f;
5127 }
5128 else
5129 {
5130 internal_flag_ira_verbose = flag_ira_verbose - 10;
5131 ira_dump_file = stderr;
5132 }
5133
5134 setup_prohibited_mode_move_regs ();
5135 decrease_live_ranges_number ();
5136 df_note_add_problem ();
5137
5138 /* DF_LIVE can't be used in the register allocator, too many other
5139 parts of the compiler depend on using the "classic" liveness
5140 interpretation of the DF_LR problem. See PR38711.
5141 Remove the problem, so that we don't spend time updating it in
5142 any of the df_analyze() calls during IRA/LRA. */
5143 if (optimize > 1)
5144 df_remove_problem (df_live);
5145 gcc_checking_assert (df_live == NULL);
5146
5147 if (flag_checking)
5148 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5149
5150 df_analyze ();
5151
5152 init_reg_equiv ();
5153 if (ira_conflicts_p)
5154 {
5155 calculate_dominance_info (CDI_DOMINATORS);
5156
5157 if (split_live_ranges_for_shrink_wrap ())
5158 df_analyze ();
5159
5160 free_dominance_info (CDI_DOMINATORS);
5161 }
5162
5163 df_clear_flags (DF_NO_INSN_RESCAN);
5164
5165 regstat_init_n_sets_and_refs ();
5166 regstat_compute_ri ();
5167
5168 /* If we are not optimizing, then this is the only place before
5169 register allocation where dataflow is done. And that is needed
5170 to generate these warnings. */
5171 if (warn_clobbered)
5172 generate_setjmp_warnings ();
5173
5174 /* Determine if the current function is a leaf before running IRA
5175 since this can impact optimizations done by the prologue and
5176 epilogue thus changing register elimination offsets. */
5177 crtl->is_leaf = leaf_function_p ();
5178
5179 if (resize_reg_info () && flag_ira_loop_pressure)
5180 ira_set_pseudo_classes (true, ira_dump_file);
5181
5182 rebuild_p = update_equiv_regs ();
5183 setup_reg_equiv ();
5184 setup_reg_equiv_init ();
5185
5186 if (optimize && rebuild_p)
5187 {
5188 timevar_push (TV_JUMP);
5189 rebuild_jump_labels (get_insns ());
5190 if (purge_all_dead_edges ())
5191 delete_unreachable_blocks ();
5192 timevar_pop (TV_JUMP);
5193 }
5194
5195 allocated_reg_info_size = max_reg_num ();
5196
5197 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5198 df_analyze ();
5199
5200 /* It is not worth to do such improvement when we use a simple
5201 allocation because of -O0 usage or because the function is too
5202 big. */
5203 if (ira_conflicts_p)
5204 find_moveable_pseudos ();
5205
5206 max_regno_before_ira = max_reg_num ();
5207 ira_setup_eliminable_regset ();
5208
5209 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5210 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5211 ira_move_loops_num = ira_additional_jumps_num = 0;
5212
5213 ira_assert (current_loops == NULL);
5214 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5215 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5216
5217 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5218 fprintf (ira_dump_file, "Building IRA IR\n");
5219 loops_p = ira_build ();
5220
5221 ira_assert (ira_conflicts_p || !loops_p);
5222
5223 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5224 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5225 /* It is just wasting compiler's time to pack spilled pseudos into
5226 stack slots in this case -- prohibit it. We also do this if
5227 there is setjmp call because a variable not modified between
5228 setjmp and longjmp the compiler is required to preserve its
5229 value and sharing slots does not guarantee it. */
5230 flag_ira_share_spill_slots = FALSE;
5231
5232 ira_color ();
5233
5234 ira_max_point_before_emit = ira_max_point;
5235
5236 ira_initiate_emit_data ();
5237
5238 ira_emit (loops_p);
5239
5240 max_regno = max_reg_num ();
5241 if (ira_conflicts_p)
5242 {
5243 if (! loops_p)
5244 {
5245 if (! ira_use_lra_p)
5246 ira_initiate_assign ();
5247 }
5248 else
5249 {
5250 expand_reg_info ();
5251
5252 if (ira_use_lra_p)
5253 {
5254 ira_allocno_t a;
5255 ira_allocno_iterator ai;
5256
5257 FOR_EACH_ALLOCNO (a, ai)
5258 {
5259 int old_regno = ALLOCNO_REGNO (a);
5260 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5261
5262 ALLOCNO_REGNO (a) = new_regno;
5263
5264 if (old_regno != new_regno)
5265 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5266 reg_alternate_class (old_regno),
5267 reg_allocno_class (old_regno));
5268 }
5269
5270 }
5271 else
5272 {
5273 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5274 fprintf (ira_dump_file, "Flattening IR\n");
5275 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5276 }
5277 /* New insns were generated: add notes and recalculate live
5278 info. */
5279 df_analyze ();
5280
5281 /* ??? Rebuild the loop tree, but why? Does the loop tree
5282 change if new insns were generated? Can that be handled
5283 by updating the loop tree incrementally? */
5284 loop_optimizer_finalize ();
5285 free_dominance_info (CDI_DOMINATORS);
5286 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5287 | LOOPS_HAVE_RECORDED_EXITS);
5288
5289 if (! ira_use_lra_p)
5290 {
5291 setup_allocno_assignment_flags ();
5292 ira_initiate_assign ();
5293 ira_reassign_conflict_allocnos (max_regno);
5294 }
5295 }
5296 }
5297
5298 ira_finish_emit_data ();
5299
5300 setup_reg_renumber ();
5301
5302 calculate_allocation_cost ();
5303
5304 #ifdef ENABLE_IRA_CHECKING
5305 if (ira_conflicts_p)
5306 check_allocation ();
5307 #endif
5308
5309 if (max_regno != max_regno_before_ira)
5310 {
5311 regstat_free_n_sets_and_refs ();
5312 regstat_free_ri ();
5313 regstat_init_n_sets_and_refs ();
5314 regstat_compute_ri ();
5315 }
5316
5317 overall_cost_before = ira_overall_cost;
5318 if (! ira_conflicts_p)
5319 grow_reg_equivs ();
5320 else
5321 {
5322 fix_reg_equiv_init ();
5323
5324 #ifdef ENABLE_IRA_CHECKING
5325 print_redundant_copies ();
5326 #endif
5327 if (! ira_use_lra_p)
5328 {
5329 ira_spilled_reg_stack_slots_num = 0;
5330 ira_spilled_reg_stack_slots
5331 = ((struct ira_spilled_reg_stack_slot *)
5332 ira_allocate (max_regno
5333 * sizeof (struct ira_spilled_reg_stack_slot)));
5334 memset (ira_spilled_reg_stack_slots, 0,
5335 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5336 }
5337 }
5338 allocate_initial_values ();
5339
5340 /* See comment for find_moveable_pseudos call. */
5341 if (ira_conflicts_p)
5342 move_unallocated_pseudos ();
5343
5344 /* Restore original values. */
5345 if (lra_simple_p)
5346 {
5347 flag_caller_saves = saved_flag_caller_saves;
5348 flag_ira_region = saved_flag_ira_region;
5349 }
5350 }
5351
5352 static void
5353 do_reload (void)
5354 {
5355 basic_block bb;
5356 bool need_dce;
5357 unsigned pic_offset_table_regno = INVALID_REGNUM;
5358
5359 if (flag_ira_verbose < 10)
5360 ira_dump_file = dump_file;
5361
5362 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5363 after reload to avoid possible wrong usages of hard reg assigned
5364 to it. */
5365 if (pic_offset_table_rtx
5366 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5367 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5368
5369 timevar_push (TV_RELOAD);
5370 if (ira_use_lra_p)
5371 {
5372 if (current_loops != NULL)
5373 {
5374 loop_optimizer_finalize ();
5375 free_dominance_info (CDI_DOMINATORS);
5376 }
5377 FOR_ALL_BB_FN (bb, cfun)
5378 bb->loop_father = NULL;
5379 current_loops = NULL;
5380
5381 ira_destroy ();
5382
5383 lra (ira_dump_file);
5384 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5385 LRA. */
5386 vec_free (reg_equivs);
5387 reg_equivs = NULL;
5388 need_dce = false;
5389 }
5390 else
5391 {
5392 df_set_flags (DF_NO_INSN_RESCAN);
5393 build_insn_chain ();
5394
5395 need_dce = reload (get_insns (), ira_conflicts_p);
5396
5397 }
5398
5399 timevar_pop (TV_RELOAD);
5400
5401 timevar_push (TV_IRA);
5402
5403 if (ira_conflicts_p && ! ira_use_lra_p)
5404 {
5405 ira_free (ira_spilled_reg_stack_slots);
5406 ira_finish_assign ();
5407 }
5408
5409 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5410 && overall_cost_before != ira_overall_cost)
5411 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5412 ira_overall_cost);
5413
5414 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5415
5416 if (! ira_use_lra_p)
5417 {
5418 ira_destroy ();
5419 if (current_loops != NULL)
5420 {
5421 loop_optimizer_finalize ();
5422 free_dominance_info (CDI_DOMINATORS);
5423 }
5424 FOR_ALL_BB_FN (bb, cfun)
5425 bb->loop_father = NULL;
5426 current_loops = NULL;
5427
5428 regstat_free_ri ();
5429 regstat_free_n_sets_and_refs ();
5430 }
5431
5432 if (optimize)
5433 cleanup_cfg (CLEANUP_EXPENSIVE);
5434
5435 finish_reg_equiv ();
5436
5437 bitmap_obstack_release (&ira_bitmap_obstack);
5438 #ifndef IRA_NO_OBSTACK
5439 obstack_free (&ira_obstack, NULL);
5440 #endif
5441
5442 /* The code after the reload has changed so much that at this point
5443 we might as well just rescan everything. Note that
5444 df_rescan_all_insns is not going to help here because it does not
5445 touch the artificial uses and defs. */
5446 df_finish_pass (true);
5447 df_scan_alloc (NULL);
5448 df_scan_blocks ();
5449
5450 if (optimize > 1)
5451 {
5452 df_live_add_problem ();
5453 df_live_set_all_dirty ();
5454 }
5455
5456 if (optimize)
5457 df_analyze ();
5458
5459 if (need_dce && optimize)
5460 run_fast_dce ();
5461
5462 /* Diagnose uses of the hard frame pointer when it is used as a global
5463 register. Often we can get away with letting the user appropriate
5464 the frame pointer, but we should let them know when code generation
5465 makes that impossible. */
5466 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5467 {
5468 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5469 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5470 "frame pointer required, but reserved");
5471 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5472 }
5473
5474 if (pic_offset_table_regno != INVALID_REGNUM)
5475 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5476
5477 timevar_pop (TV_IRA);
5478 }
5479 \f
5480 /* Run the integrated register allocator. */
5481
5482 namespace {
5483
5484 const pass_data pass_data_ira =
5485 {
5486 RTL_PASS, /* type */
5487 "ira", /* name */
5488 OPTGROUP_NONE, /* optinfo_flags */
5489 TV_IRA, /* tv_id */
5490 0, /* properties_required */
5491 0, /* properties_provided */
5492 0, /* properties_destroyed */
5493 0, /* todo_flags_start */
5494 TODO_do_not_ggc_collect, /* todo_flags_finish */
5495 };
5496
5497 class pass_ira : public rtl_opt_pass
5498 {
5499 public:
5500 pass_ira (gcc::context *ctxt)
5501 : rtl_opt_pass (pass_data_ira, ctxt)
5502 {}
5503
5504 /* opt_pass methods: */
5505 virtual bool gate (function *)
5506 {
5507 return !targetm.no_register_allocation;
5508 }
5509 virtual unsigned int execute (function *)
5510 {
5511 ira (dump_file);
5512 return 0;
5513 }
5514
5515 }; // class pass_ira
5516
5517 } // anon namespace
5518
5519 rtl_opt_pass *
5520 make_pass_ira (gcc::context *ctxt)
5521 {
5522 return new pass_ira (ctxt);
5523 }
5524
5525 namespace {
5526
5527 const pass_data pass_data_reload =
5528 {
5529 RTL_PASS, /* type */
5530 "reload", /* name */
5531 OPTGROUP_NONE, /* optinfo_flags */
5532 TV_RELOAD, /* tv_id */
5533 0, /* properties_required */
5534 0, /* properties_provided */
5535 0, /* properties_destroyed */
5536 0, /* todo_flags_start */
5537 0, /* todo_flags_finish */
5538 };
5539
5540 class pass_reload : public rtl_opt_pass
5541 {
5542 public:
5543 pass_reload (gcc::context *ctxt)
5544 : rtl_opt_pass (pass_data_reload, ctxt)
5545 {}
5546
5547 /* opt_pass methods: */
5548 virtual bool gate (function *)
5549 {
5550 return !targetm.no_register_allocation;
5551 }
5552 virtual unsigned int execute (function *)
5553 {
5554 do_reload ();
5555 return 0;
5556 }
5557
5558 }; // class pass_reload
5559
5560 } // anon namespace
5561
5562 rtl_opt_pass *
5563 make_pass_reload (gcc::context *ctxt)
5564 {
5565 return new pass_reload (ctxt);
5566 }