tree-outof-ssa.c (queue_phi_copy_p): Combine phi_ssa_name_p from gimple.h and the...
[gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calulates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order.
196
197 We also use a modification of Chaitin-Briggs algorithm which
198 works for intersected register classes of allocnos. To
199 figure out trivial colorability of allocnos, the mentioned
200 above tree of hard register sets is used. To get an idea how
201 the algorithm works in i386 example, let us consider an
202 allocno to which any general hard register can be assigned.
203 If the allocno conflicts with eight allocnos to which only
204 EAX register can be assigned, given allocno is still
205 trivially colorable because all conflicting allocnos might be
206 assigned only to EAX and all other general hard registers are
207 still free.
208
209 To get an idea of the used trivial colorability criterion, it
210 is also useful to read article "Graph-Coloring Register
211 Allocation for Irregular Architectures" by Michael D. Smith
212 and Glen Holloway. Major difference between the article
213 approach and approach used in IRA is that Smith's approach
214 takes register classes only from machine description and IRA
215 calculate register classes from intermediate code too
216 (e.g. an explicit usage of hard registers in RTL code for
217 parameter passing can result in creation of additional
218 register classes which contain or exclude the hard
219 registers). That makes IRA approach useful for improving
220 coloring even for architectures with regular register files
221 and in fact some benchmarking shows the improvement for
222 regular class architectures is even bigger than for irregular
223 ones. Another difference is that Smith's approach chooses
224 intersection of classes of all insn operands in which a given
225 pseudo occurs. IRA can use bigger classes if it is still
226 more profitable than memory usage.
227
228 * Popping the allocnos from the stack and assigning them hard
229 registers. If IRA can not assign a hard register to an
230 allocno and the allocno is coalesced, IRA undoes the
231 coalescing and puts the uncoalesced allocnos onto the stack in
232 the hope that some such allocnos will get a hard register
233 separately. If IRA fails to assign hard register or memory
234 is more profitable for it, IRA spills the allocno. IRA
235 assigns the allocno the hard-register with minimal full
236 allocation cost which reflects the cost of usage of the
237 hard-register for the allocno and cost of usage of the
238 hard-register for allocnos conflicting with given allocno.
239
240 * Chaitin-Briggs coloring assigns as many pseudos as possible
241 to hard registers. After coloringh we try to improve
242 allocation with cost point of view. We improve the
243 allocation by spilling some allocnos and assigning the freed
244 hard registers to other allocnos if it decreases the overall
245 allocation cost.
246
247 * After allono assigning in the region, IRA modifies the hard
248 register and memory costs for the corresponding allocnos in
249 the subregions to reflect the cost of possible loads, stores,
250 or moves on the border of the region and its subregions.
251 When default regional allocation algorithm is used
252 (-fira-algorithm=mixed), IRA just propagates the assignment
253 for allocnos if the register pressure in the region for the
254 corresponding pressure class is less than number of available
255 hard registers for given pressure class.
256
257 o Spill/restore code moving. When IRA performs an allocation
258 by traversing regions in top-down order, it does not know what
259 happens below in the region tree. Therefore, sometimes IRA
260 misses opportunities to perform a better allocation. A simple
261 optimization tries to improve allocation in a region having
262 subregions and containing in another region. If the
263 corresponding allocnos in the subregion are spilled, it spills
264 the region allocno if it is profitable. The optimization
265 implements a simple iterative algorithm performing profitable
266 transformations while they are still possible. It is fast in
267 practice, so there is no real need for a better time complexity
268 algorithm.
269
270 o Code change. After coloring, two allocnos representing the
271 same pseudo-register outside and inside a region respectively
272 may be assigned to different locations (hard-registers or
273 memory). In this case IRA creates and uses a new
274 pseudo-register inside the region and adds code to move allocno
275 values on the region's borders. This is done during top-down
276 traversal of the regions (file ira-emit.c). In some
277 complicated cases IRA can create a new allocno to move allocno
278 values (e.g. when a swap of values stored in two hard-registers
279 is needed). At this stage, the new allocno is marked as
280 spilled. IRA still creates the pseudo-register and the moves
281 on the region borders even when both allocnos were assigned to
282 the same hard-register. If the reload pass spills a
283 pseudo-register for some reason, the effect will be smaller
284 because another allocno will still be in the hard-register. In
285 most cases, this is better then spilling both allocnos. If
286 reload does not change the allocation for the two
287 pseudo-registers, the trivial move will be removed by
288 post-reload optimizations. IRA does not generate moves for
289 allocnos assigned to the same hard register when the default
290 regional allocation algorithm is used and the register pressure
291 in the region for the corresponding pressure class is less than
292 number of available hard registers for given pressure class.
293 IRA also does some optimizations to remove redundant stores and
294 to reduce code duplication on the region borders.
295
296 o Flattening internal representation. After changing code, IRA
297 transforms its internal representation for several regions into
298 one region representation (file ira-build.c). This process is
299 called IR flattening. Such process is more complicated than IR
300 rebuilding would be, but is much faster.
301
302 o After IR flattening, IRA tries to assign hard registers to all
303 spilled allocnos. This is impelemented by a simple and fast
304 priority coloring algorithm (see function
305 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
306 created during the code change pass can be assigned to hard
307 registers.
308
309 o At the end IRA calls the reload pass. The reload pass
310 communicates with IRA through several functions in file
311 ira-color.c to improve its decisions in
312
313 * sharing stack slots for the spilled pseudos based on IRA info
314 about pseudo-register conflicts.
315
316 * reassigning hard-registers to all spilled pseudos at the end
317 of each reload iteration.
318
319 * choosing a better hard-register to spill based on IRA info
320 about pseudo-register live ranges and the register pressure
321 in places where the pseudo-register lives.
322
323 IRA uses a lot of data representing the target processors. These
324 data are initilized in file ira.c.
325
326 If function has no loops (or the loops are ignored when
327 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
328 coloring (only instead of separate pass of coalescing, we use hard
329 register preferencing). In such case, IRA works much faster
330 because many things are not made (like IR flattening, the
331 spill/restore optimization, and the code change).
332
333 Literature is worth to read for better understanding the code:
334
335 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
336 Graph Coloring Register Allocation.
337
338 o David Callahan, Brian Koblenz. Register allocation via
339 hierarchical graph coloring.
340
341 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
342 Coloring Register Allocation: A Study of the Chaitin-Briggs and
343 Callahan-Koblenz Algorithms.
344
345 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
346 Register Allocation Based on Graph Fusion.
347
348 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
349 Allocation for Irregular Architectures
350
351 o Vladimir Makarov. The Integrated Register Allocator for GCC.
352
353 o Vladimir Makarov. The top-down register allocator for irregular
354 register file architectures.
355
356 */
357
358
359 #include "config.h"
360 #include "system.h"
361 #include "coretypes.h"
362 #include "tm.h"
363 #include "regs.h"
364 #include "tree.h"
365 #include "rtl.h"
366 #include "tm_p.h"
367 #include "target.h"
368 #include "flags.h"
369 #include "obstack.h"
370 #include "bitmap.h"
371 #include "hard-reg-set.h"
372 #include "basic-block.h"
373 #include "df.h"
374 #include "expr.h"
375 #include "recog.h"
376 #include "params.h"
377 #include "tree-pass.h"
378 #include "output.h"
379 #include "except.h"
380 #include "reload.h"
381 #include "diagnostic-core.h"
382 #include "function.h"
383 #include "ggc.h"
384 #include "ira-int.h"
385 #include "lra.h"
386 #include "dce.h"
387 #include "dbgcnt.h"
388
389 struct target_ira default_target_ira;
390 struct target_ira_int default_target_ira_int;
391 #if SWITCHABLE_TARGET
392 struct target_ira *this_target_ira = &default_target_ira;
393 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
394 #endif
395
396 /* A modified value of flag `-fira-verbose' used internally. */
397 int internal_flag_ira_verbose;
398
399 /* Dump file of the allocator if it is not NULL. */
400 FILE *ira_dump_file;
401
402 /* The number of elements in the following array. */
403 int ira_spilled_reg_stack_slots_num;
404
405 /* The following array contains info about spilled pseudo-registers
406 stack slots used in current function so far. */
407 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
408
409 /* Correspondingly overall cost of the allocation, overall cost before
410 reload, cost of the allocnos assigned to hard-registers, cost of
411 the allocnos assigned to memory, cost of loads, stores and register
412 move insns generated for pseudo-register live range splitting (see
413 ira-emit.c). */
414 int ira_overall_cost, overall_cost_before;
415 int ira_reg_cost, ira_mem_cost;
416 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
417 int ira_move_loops_num, ira_additional_jumps_num;
418
419 /* All registers that can be eliminated. */
420
421 HARD_REG_SET eliminable_regset;
422
423 /* Value of max_reg_num () before IRA work start. This value helps
424 us to recognize a situation when new pseudos were created during
425 IRA work. */
426 static int max_regno_before_ira;
427
428 /* Temporary hard reg set used for a different calculation. */
429 static HARD_REG_SET temp_hard_regset;
430
431 #define last_mode_for_init_move_cost \
432 (this_target_ira_int->x_last_mode_for_init_move_cost)
433 \f
434
435 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
436 static void
437 setup_reg_mode_hard_regset (void)
438 {
439 int i, m, hard_regno;
440
441 for (m = 0; m < NUM_MACHINE_MODES; m++)
442 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
443 {
444 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
445 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
446 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
447 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
448 hard_regno + i);
449 }
450 }
451
452 \f
453 #define no_unit_alloc_regs \
454 (this_target_ira_int->x_no_unit_alloc_regs)
455
456 /* The function sets up the three arrays declared above. */
457 static void
458 setup_class_hard_regs (void)
459 {
460 int cl, i, hard_regno, n;
461 HARD_REG_SET processed_hard_reg_set;
462
463 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
464 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
465 {
466 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
467 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
468 CLEAR_HARD_REG_SET (processed_hard_reg_set);
469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 {
471 ira_non_ordered_class_hard_regs[cl][i] = -1;
472 ira_class_hard_reg_index[cl][i] = -1;
473 }
474 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
475 {
476 #ifdef REG_ALLOC_ORDER
477 hard_regno = reg_alloc_order[i];
478 #else
479 hard_regno = i;
480 #endif
481 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
482 continue;
483 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
484 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
485 ira_class_hard_reg_index[cl][hard_regno] = -1;
486 else
487 {
488 ira_class_hard_reg_index[cl][hard_regno] = n;
489 ira_class_hard_regs[cl][n++] = hard_regno;
490 }
491 }
492 ira_class_hard_regs_num[cl] = n;
493 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
494 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
495 ira_non_ordered_class_hard_regs[cl][n++] = i;
496 ira_assert (ira_class_hard_regs_num[cl] == n);
497 }
498 }
499
500 /* Set up global variables defining info about hard registers for the
501 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
502 that we can use the hard frame pointer for the allocation. */
503 static void
504 setup_alloc_regs (bool use_hard_frame_p)
505 {
506 #ifdef ADJUST_REG_ALLOC_ORDER
507 ADJUST_REG_ALLOC_ORDER;
508 #endif
509 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
510 if (! use_hard_frame_p)
511 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
512 setup_class_hard_regs ();
513 }
514
515 \f
516
517 #define alloc_reg_class_subclasses \
518 (this_target_ira_int->x_alloc_reg_class_subclasses)
519
520 /* Initialize the table of subclasses of each reg class. */
521 static void
522 setup_reg_subclasses (void)
523 {
524 int i, j;
525 HARD_REG_SET temp_hard_regset2;
526
527 for (i = 0; i < N_REG_CLASSES; i++)
528 for (j = 0; j < N_REG_CLASSES; j++)
529 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
530
531 for (i = 0; i < N_REG_CLASSES; i++)
532 {
533 if (i == (int) NO_REGS)
534 continue;
535
536 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
537 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
538 if (hard_reg_set_empty_p (temp_hard_regset))
539 continue;
540 for (j = 0; j < N_REG_CLASSES; j++)
541 if (i != j)
542 {
543 enum reg_class *p;
544
545 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
546 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
547 if (! hard_reg_set_subset_p (temp_hard_regset,
548 temp_hard_regset2))
549 continue;
550 p = &alloc_reg_class_subclasses[j][0];
551 while (*p != LIM_REG_CLASSES) p++;
552 *p = (enum reg_class) i;
553 }
554 }
555 }
556
557 \f
558
559 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
560 static void
561 setup_class_subset_and_memory_move_costs (void)
562 {
563 int cl, cl2, mode, cost;
564 HARD_REG_SET temp_hard_regset2;
565
566 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
567 ira_memory_move_cost[mode][NO_REGS][0]
568 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
569 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
570 {
571 if (cl != (int) NO_REGS)
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 {
574 ira_max_memory_move_cost[mode][cl][0]
575 = ira_memory_move_cost[mode][cl][0]
576 = memory_move_cost ((enum machine_mode) mode,
577 (reg_class_t) cl, false);
578 ira_max_memory_move_cost[mode][cl][1]
579 = ira_memory_move_cost[mode][cl][1]
580 = memory_move_cost ((enum machine_mode) mode,
581 (reg_class_t) cl, true);
582 /* Costs for NO_REGS are used in cost calculation on the
583 1st pass when the preferred register classes are not
584 known yet. In this case we take the best scenario. */
585 if (ira_memory_move_cost[mode][NO_REGS][0]
586 > ira_memory_move_cost[mode][cl][0])
587 ira_max_memory_move_cost[mode][NO_REGS][0]
588 = ira_memory_move_cost[mode][NO_REGS][0]
589 = ira_memory_move_cost[mode][cl][0];
590 if (ira_memory_move_cost[mode][NO_REGS][1]
591 > ira_memory_move_cost[mode][cl][1])
592 ira_max_memory_move_cost[mode][NO_REGS][1]
593 = ira_memory_move_cost[mode][NO_REGS][1]
594 = ira_memory_move_cost[mode][cl][1];
595 }
596 }
597 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
598 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
599 {
600 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
601 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
602 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
603 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
604 ira_class_subset_p[cl][cl2]
605 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
606 if (! hard_reg_set_empty_p (temp_hard_regset2)
607 && hard_reg_set_subset_p (reg_class_contents[cl2],
608 reg_class_contents[cl]))
609 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
610 {
611 cost = ira_memory_move_cost[mode][cl2][0];
612 if (cost > ira_max_memory_move_cost[mode][cl][0])
613 ira_max_memory_move_cost[mode][cl][0] = cost;
614 cost = ira_memory_move_cost[mode][cl2][1];
615 if (cost > ira_max_memory_move_cost[mode][cl][1])
616 ira_max_memory_move_cost[mode][cl][1] = cost;
617 }
618 }
619 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
620 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
621 {
622 ira_memory_move_cost[mode][cl][0]
623 = ira_max_memory_move_cost[mode][cl][0];
624 ira_memory_move_cost[mode][cl][1]
625 = ira_max_memory_move_cost[mode][cl][1];
626 }
627 setup_reg_subclasses ();
628 }
629
630 \f
631
632 /* Define the following macro if allocation through malloc if
633 preferable. */
634 #define IRA_NO_OBSTACK
635
636 #ifndef IRA_NO_OBSTACK
637 /* Obstack used for storing all dynamic data (except bitmaps) of the
638 IRA. */
639 static struct obstack ira_obstack;
640 #endif
641
642 /* Obstack used for storing all bitmaps of the IRA. */
643 static struct bitmap_obstack ira_bitmap_obstack;
644
645 /* Allocate memory of size LEN for IRA data. */
646 void *
647 ira_allocate (size_t len)
648 {
649 void *res;
650
651 #ifndef IRA_NO_OBSTACK
652 res = obstack_alloc (&ira_obstack, len);
653 #else
654 res = xmalloc (len);
655 #endif
656 return res;
657 }
658
659 /* Free memory ADDR allocated for IRA data. */
660 void
661 ira_free (void *addr ATTRIBUTE_UNUSED)
662 {
663 #ifndef IRA_NO_OBSTACK
664 /* do nothing */
665 #else
666 free (addr);
667 #endif
668 }
669
670
671 /* Allocate and returns bitmap for IRA. */
672 bitmap
673 ira_allocate_bitmap (void)
674 {
675 return BITMAP_ALLOC (&ira_bitmap_obstack);
676 }
677
678 /* Free bitmap B allocated for IRA. */
679 void
680 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
681 {
682 /* do nothing */
683 }
684
685 \f
686
687 /* Output information about allocation of all allocnos (except for
688 caps) into file F. */
689 void
690 ira_print_disposition (FILE *f)
691 {
692 int i, n, max_regno;
693 ira_allocno_t a;
694 basic_block bb;
695
696 fprintf (f, "Disposition:");
697 max_regno = max_reg_num ();
698 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
699 for (a = ira_regno_allocno_map[i];
700 a != NULL;
701 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
702 {
703 if (n % 4 == 0)
704 fprintf (f, "\n");
705 n++;
706 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
707 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
708 fprintf (f, "b%-3d", bb->index);
709 else
710 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
711 if (ALLOCNO_HARD_REGNO (a) >= 0)
712 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
713 else
714 fprintf (f, " mem");
715 }
716 fprintf (f, "\n");
717 }
718
719 /* Outputs information about allocation of all allocnos into
720 stderr. */
721 void
722 ira_debug_disposition (void)
723 {
724 ira_print_disposition (stderr);
725 }
726
727 \f
728
729 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
730 register class containing stack registers or NO_REGS if there are
731 no stack registers. To find this class, we iterate through all
732 register pressure classes and choose the first register pressure
733 class containing all the stack registers and having the biggest
734 size. */
735 static void
736 setup_stack_reg_pressure_class (void)
737 {
738 ira_stack_reg_pressure_class = NO_REGS;
739 #ifdef STACK_REGS
740 {
741 int i, best, size;
742 enum reg_class cl;
743 HARD_REG_SET temp_hard_regset2;
744
745 CLEAR_HARD_REG_SET (temp_hard_regset);
746 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
747 SET_HARD_REG_BIT (temp_hard_regset, i);
748 best = 0;
749 for (i = 0; i < ira_pressure_classes_num; i++)
750 {
751 cl = ira_pressure_classes[i];
752 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
753 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
754 size = hard_reg_set_size (temp_hard_regset2);
755 if (best < size)
756 {
757 best = size;
758 ira_stack_reg_pressure_class = cl;
759 }
760 }
761 }
762 #endif
763 }
764
765 /* Find pressure classes which are register classes for which we
766 calculate register pressure in IRA, register pressure sensitive
767 insn scheduling, and register pressure sensitive loop invariant
768 motion.
769
770 To make register pressure calculation easy, we always use
771 non-intersected register pressure classes. A move of hard
772 registers from one register pressure class is not more expensive
773 than load and store of the hard registers. Most likely an allocno
774 class will be a subset of a register pressure class and in many
775 cases a register pressure class. That makes usage of register
776 pressure classes a good approximation to find a high register
777 pressure. */
778 static void
779 setup_pressure_classes (void)
780 {
781 int cost, i, n, curr;
782 int cl, cl2;
783 enum reg_class pressure_classes[N_REG_CLASSES];
784 int m;
785 HARD_REG_SET temp_hard_regset2;
786 bool insert_p;
787
788 n = 0;
789 for (cl = 0; cl < N_REG_CLASSES; cl++)
790 {
791 if (ira_class_hard_regs_num[cl] == 0)
792 continue;
793 if (ira_class_hard_regs_num[cl] != 1
794 /* A register class without subclasses may contain a few
795 hard registers and movement between them is costly
796 (e.g. SPARC FPCC registers). We still should consider it
797 as a candidate for a pressure class. */
798 && alloc_reg_class_subclasses[cl][0] < cl)
799 {
800 /* Check that the moves between any hard registers of the
801 current class are not more expensive for a legal mode
802 than load/store of the hard registers of the current
803 class. Such class is a potential candidate to be a
804 register pressure class. */
805 for (m = 0; m < NUM_MACHINE_MODES; m++)
806 {
807 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
808 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
809 AND_COMPL_HARD_REG_SET (temp_hard_regset,
810 ira_prohibited_class_mode_regs[cl][m]);
811 if (hard_reg_set_empty_p (temp_hard_regset))
812 continue;
813 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
814 cost = ira_register_move_cost[m][cl][cl];
815 if (cost <= ira_max_memory_move_cost[m][cl][1]
816 || cost <= ira_max_memory_move_cost[m][cl][0])
817 break;
818 }
819 if (m >= NUM_MACHINE_MODES)
820 continue;
821 }
822 curr = 0;
823 insert_p = true;
824 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
825 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
826 /* Remove so far added pressure classes which are subset of the
827 current candidate class. Prefer GENERAL_REGS as a pressure
828 register class to another class containing the same
829 allocatable hard registers. We do this because machine
830 dependent cost hooks might give wrong costs for the latter
831 class but always give the right cost for the former class
832 (GENERAL_REGS). */
833 for (i = 0; i < n; i++)
834 {
835 cl2 = pressure_classes[i];
836 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
837 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
838 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
839 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
840 || cl2 == (int) GENERAL_REGS))
841 {
842 pressure_classes[curr++] = (enum reg_class) cl2;
843 insert_p = false;
844 continue;
845 }
846 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
847 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
848 || cl == (int) GENERAL_REGS))
849 continue;
850 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
851 insert_p = false;
852 pressure_classes[curr++] = (enum reg_class) cl2;
853 }
854 /* If the current candidate is a subset of a so far added
855 pressure class, don't add it to the list of the pressure
856 classes. */
857 if (insert_p)
858 pressure_classes[curr++] = (enum reg_class) cl;
859 n = curr;
860 }
861 #ifdef ENABLE_IRA_CHECKING
862 {
863 HARD_REG_SET ignore_hard_regs;
864
865 /* Check pressure classes correctness: here we check that hard
866 registers from all register pressure classes contains all hard
867 registers available for the allocation. */
868 CLEAR_HARD_REG_SET (temp_hard_regset);
869 CLEAR_HARD_REG_SET (temp_hard_regset2);
870 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
871 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
872 {
873 /* For some targets (like MIPS with MD_REGS), there are some
874 classes with hard registers available for allocation but
875 not able to hold value of any mode. */
876 for (m = 0; m < NUM_MACHINE_MODES; m++)
877 if (contains_reg_of_mode[cl][m])
878 break;
879 if (m >= NUM_MACHINE_MODES)
880 {
881 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
882 continue;
883 }
884 for (i = 0; i < n; i++)
885 if ((int) pressure_classes[i] == cl)
886 break;
887 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
888 if (i < n)
889 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
890 }
891 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
892 /* Some targets (like SPARC with ICC reg) have alocatable regs
893 for which no reg class is defined. */
894 if (REGNO_REG_CLASS (i) == NO_REGS)
895 SET_HARD_REG_BIT (ignore_hard_regs, i);
896 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
897 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
898 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
899 }
900 #endif
901 ira_pressure_classes_num = 0;
902 for (i = 0; i < n; i++)
903 {
904 cl = (int) pressure_classes[i];
905 ira_reg_pressure_class_p[cl] = true;
906 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
907 }
908 setup_stack_reg_pressure_class ();
909 }
910
911 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
912 whose register move cost between any registers of the class is the
913 same as for all its subclasses. We use the data to speed up the
914 2nd pass of calculations of allocno costs. */
915 static void
916 setup_uniform_class_p (void)
917 {
918 int i, cl, cl2, m;
919
920 for (cl = 0; cl < N_REG_CLASSES; cl++)
921 {
922 ira_uniform_class_p[cl] = false;
923 if (ira_class_hard_regs_num[cl] == 0)
924 continue;
925 /* We can not use alloc_reg_class_subclasses here because move
926 cost hooks does not take into account that some registers are
927 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
928 is element of alloc_reg_class_subclasses for GENERAL_REGS
929 because SSE regs are unavailable. */
930 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
931 {
932 if (ira_class_hard_regs_num[cl2] == 0)
933 continue;
934 for (m = 0; m < NUM_MACHINE_MODES; m++)
935 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
936 {
937 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
938 if (ira_register_move_cost[m][cl][cl]
939 != ira_register_move_cost[m][cl2][cl2])
940 break;
941 }
942 if (m < NUM_MACHINE_MODES)
943 break;
944 }
945 if (cl2 == LIM_REG_CLASSES)
946 ira_uniform_class_p[cl] = true;
947 }
948 }
949
950 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
951 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
952
953 Target may have many subtargets and not all target hard regiters can
954 be used for allocation, e.g. x86 port in 32-bit mode can not use
955 hard registers introduced in x86-64 like r8-r15). Some classes
956 might have the same allocatable hard registers, e.g. INDEX_REGS
957 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
958 calculations efforts we introduce allocno classes which contain
959 unique non-empty sets of allocatable hard-registers.
960
961 Pseudo class cost calculation in ira-costs.c is very expensive.
962 Therefore we are trying to decrease number of classes involved in
963 such calculation. Register classes used in the cost calculation
964 are called important classes. They are allocno classes and other
965 non-empty classes whose allocatable hard register sets are inside
966 of an allocno class hard register set. From the first sight, it
967 looks like that they are just allocno classes. It is not true. In
968 example of x86-port in 32-bit mode, allocno classes will contain
969 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
970 registers are the same for the both classes). The important
971 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
972 because a machine description insn constraint may refers for
973 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
974 of the insn constraints. */
975 static void
976 setup_allocno_and_important_classes (void)
977 {
978 int i, j, n, cl;
979 bool set_p;
980 HARD_REG_SET temp_hard_regset2;
981 static enum reg_class classes[LIM_REG_CLASSES + 1];
982
983 n = 0;
984 /* Collect classes which contain unique sets of allocatable hard
985 registers. Prefer GENERAL_REGS to other classes containing the
986 same set of hard registers. */
987 for (i = 0; i < LIM_REG_CLASSES; i++)
988 {
989 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
990 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
991 for (j = 0; j < n; j++)
992 {
993 cl = classes[j];
994 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
995 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
996 no_unit_alloc_regs);
997 if (hard_reg_set_equal_p (temp_hard_regset,
998 temp_hard_regset2))
999 break;
1000 }
1001 if (j >= n)
1002 classes[n++] = (enum reg_class) i;
1003 else if (i == GENERAL_REGS)
1004 /* Prefer general regs. For i386 example, it means that
1005 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1006 (all of them consists of the same available hard
1007 registers). */
1008 classes[j] = (enum reg_class) i;
1009 }
1010 classes[n] = LIM_REG_CLASSES;
1011
1012 /* Set up classes which can be used for allocnos as classes
1013 conatining non-empty unique sets of allocatable hard
1014 registers. */
1015 ira_allocno_classes_num = 0;
1016 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1017 if (ira_class_hard_regs_num[cl] > 0)
1018 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1019 ira_important_classes_num = 0;
1020 /* Add non-allocno classes containing to non-empty set of
1021 allocatable hard regs. */
1022 for (cl = 0; cl < N_REG_CLASSES; cl++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 {
1025 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1026 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1027 set_p = false;
1028 for (j = 0; j < ira_allocno_classes_num; j++)
1029 {
1030 COPY_HARD_REG_SET (temp_hard_regset2,
1031 reg_class_contents[ira_allocno_classes[j]]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1033 if ((enum reg_class) cl == ira_allocno_classes[j])
1034 break;
1035 else if (hard_reg_set_subset_p (temp_hard_regset,
1036 temp_hard_regset2))
1037 set_p = true;
1038 }
1039 if (set_p && j >= ira_allocno_classes_num)
1040 ira_important_classes[ira_important_classes_num++]
1041 = (enum reg_class) cl;
1042 }
1043 /* Now add allocno classes to the important classes. */
1044 for (j = 0; j < ira_allocno_classes_num; j++)
1045 ira_important_classes[ira_important_classes_num++]
1046 = ira_allocno_classes[j];
1047 for (cl = 0; cl < N_REG_CLASSES; cl++)
1048 {
1049 ira_reg_allocno_class_p[cl] = false;
1050 ira_reg_pressure_class_p[cl] = false;
1051 }
1052 for (j = 0; j < ira_allocno_classes_num; j++)
1053 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1054 setup_pressure_classes ();
1055 setup_uniform_class_p ();
1056 }
1057
1058 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1059 given by array CLASSES of length CLASSES_NUM. The function is used
1060 make translation any reg class to an allocno class or to an
1061 pressure class. This translation is necessary for some
1062 calculations when we can use only allocno or pressure classes and
1063 such translation represents an approximate representation of all
1064 classes.
1065
1066 The translation in case when allocatable hard register set of a
1067 given class is subset of allocatable hard register set of a class
1068 in CLASSES is pretty simple. We use smallest classes from CLASSES
1069 containing a given class. If allocatable hard register set of a
1070 given class is not a subset of any corresponding set of a class
1071 from CLASSES, we use the cheapest (with load/store point of view)
1072 class from CLASSES whose set intersects with given class set */
1073 static void
1074 setup_class_translate_array (enum reg_class *class_translate,
1075 int classes_num, enum reg_class *classes)
1076 {
1077 int cl, mode;
1078 enum reg_class aclass, best_class, *cl_ptr;
1079 int i, cost, min_cost, best_cost;
1080
1081 for (cl = 0; cl < N_REG_CLASSES; cl++)
1082 class_translate[cl] = NO_REGS;
1083
1084 for (i = 0; i < classes_num; i++)
1085 {
1086 aclass = classes[i];
1087 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1088 (cl = *cl_ptr) != LIM_REG_CLASSES;
1089 cl_ptr++)
1090 if (class_translate[cl] == NO_REGS)
1091 class_translate[cl] = aclass;
1092 class_translate[aclass] = aclass;
1093 }
1094 /* For classes which are not fully covered by one of given classes
1095 (in other words covered by more one given class), use the
1096 cheapest class. */
1097 for (cl = 0; cl < N_REG_CLASSES; cl++)
1098 {
1099 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1100 continue;
1101 best_class = NO_REGS;
1102 best_cost = INT_MAX;
1103 for (i = 0; i < classes_num; i++)
1104 {
1105 aclass = classes[i];
1106 COPY_HARD_REG_SET (temp_hard_regset,
1107 reg_class_contents[aclass]);
1108 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1109 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1110 if (! hard_reg_set_empty_p (temp_hard_regset))
1111 {
1112 min_cost = INT_MAX;
1113 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 {
1115 cost = (ira_memory_move_cost[mode][aclass][0]
1116 + ira_memory_move_cost[mode][aclass][1]);
1117 if (min_cost > cost)
1118 min_cost = cost;
1119 }
1120 if (best_class == NO_REGS || best_cost > min_cost)
1121 {
1122 best_class = aclass;
1123 best_cost = min_cost;
1124 }
1125 }
1126 }
1127 class_translate[cl] = best_class;
1128 }
1129 }
1130
1131 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1132 IRA_PRESSURE_CLASS_TRANSLATE. */
1133 static void
1134 setup_class_translate (void)
1135 {
1136 setup_class_translate_array (ira_allocno_class_translate,
1137 ira_allocno_classes_num, ira_allocno_classes);
1138 setup_class_translate_array (ira_pressure_class_translate,
1139 ira_pressure_classes_num, ira_pressure_classes);
1140 }
1141
1142 /* Order numbers of allocno classes in original target allocno class
1143 array, -1 for non-allocno classes. */
1144 static int allocno_class_order[N_REG_CLASSES];
1145
1146 /* The function used to sort the important classes. */
1147 static int
1148 comp_reg_classes_func (const void *v1p, const void *v2p)
1149 {
1150 enum reg_class cl1 = *(const enum reg_class *) v1p;
1151 enum reg_class cl2 = *(const enum reg_class *) v2p;
1152 enum reg_class tcl1, tcl2;
1153 int diff;
1154
1155 tcl1 = ira_allocno_class_translate[cl1];
1156 tcl2 = ira_allocno_class_translate[cl2];
1157 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1158 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1159 return diff;
1160 return (int) cl1 - (int) cl2;
1161 }
1162
1163 /* For correct work of function setup_reg_class_relation we need to
1164 reorder important classes according to the order of their allocno
1165 classes. It places important classes containing the same
1166 allocatable hard register set adjacent to each other and allocno
1167 class with the allocatable hard register set right after the other
1168 important classes with the same set.
1169
1170 In example from comments of function
1171 setup_allocno_and_important_classes, it places LEGACY_REGS and
1172 GENERAL_REGS close to each other and GENERAL_REGS is after
1173 LEGACY_REGS. */
1174 static void
1175 reorder_important_classes (void)
1176 {
1177 int i;
1178
1179 for (i = 0; i < N_REG_CLASSES; i++)
1180 allocno_class_order[i] = -1;
1181 for (i = 0; i < ira_allocno_classes_num; i++)
1182 allocno_class_order[ira_allocno_classes[i]] = i;
1183 qsort (ira_important_classes, ira_important_classes_num,
1184 sizeof (enum reg_class), comp_reg_classes_func);
1185 for (i = 0; i < ira_important_classes_num; i++)
1186 ira_important_class_nums[ira_important_classes[i]] = i;
1187 }
1188
1189 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1190 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1191 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1192 please see corresponding comments in ira-int.h. */
1193 static void
1194 setup_reg_class_relations (void)
1195 {
1196 int i, cl1, cl2, cl3;
1197 HARD_REG_SET intersection_set, union_set, temp_set2;
1198 bool important_class_p[N_REG_CLASSES];
1199
1200 memset (important_class_p, 0, sizeof (important_class_p));
1201 for (i = 0; i < ira_important_classes_num; i++)
1202 important_class_p[ira_important_classes[i]] = true;
1203 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1204 {
1205 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1206 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1207 {
1208 ira_reg_classes_intersect_p[cl1][cl2] = false;
1209 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1210 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1211 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1212 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1213 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1214 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1215 if (hard_reg_set_empty_p (temp_hard_regset)
1216 && hard_reg_set_empty_p (temp_set2))
1217 {
1218 /* The both classes have no allocatable hard registers
1219 -- take all class hard registers into account and use
1220 reg_class_subunion and reg_class_superunion. */
1221 for (i = 0;; i++)
1222 {
1223 cl3 = reg_class_subclasses[cl1][i];
1224 if (cl3 == LIM_REG_CLASSES)
1225 break;
1226 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1227 (enum reg_class) cl3))
1228 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1229 }
1230 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1231 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1232 continue;
1233 }
1234 ira_reg_classes_intersect_p[cl1][cl2]
1235 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1236 if (important_class_p[cl1] && important_class_p[cl2]
1237 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1238 {
1239 /* CL1 and CL2 are important classes and CL1 allocatable
1240 hard register set is inside of CL2 allocatable hard
1241 registers -- make CL1 a superset of CL2. */
1242 enum reg_class *p;
1243
1244 p = &ira_reg_class_super_classes[cl1][0];
1245 while (*p != LIM_REG_CLASSES)
1246 p++;
1247 *p++ = (enum reg_class) cl2;
1248 *p = LIM_REG_CLASSES;
1249 }
1250 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1251 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1252 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1253 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1254 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1255 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1256 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1257 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1258 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1259 {
1260 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1261 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1262 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1263 {
1264 /* CL3 allocatable hard register set is inside of
1265 intersection of allocatable hard register sets
1266 of CL1 and CL2. */
1267 if (important_class_p[cl3])
1268 {
1269 COPY_HARD_REG_SET
1270 (temp_set2,
1271 reg_class_contents
1272 [(int) ira_reg_class_intersect[cl1][cl2]]);
1273 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1274 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1275 /* If the allocatable hard register sets are
1276 the same, prefer GENERAL_REGS or the
1277 smallest class for debugging
1278 purposes. */
1279 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1280 && (cl3 == GENERAL_REGS
1281 || ((ira_reg_class_intersect[cl1][cl2]
1282 != GENERAL_REGS)
1283 && hard_reg_set_subset_p
1284 (reg_class_contents[cl3],
1285 reg_class_contents
1286 [(int)
1287 ira_reg_class_intersect[cl1][cl2]])))))
1288 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1289 }
1290 COPY_HARD_REG_SET
1291 (temp_set2,
1292 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1293 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1294 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1295 /* Ignore unavailable hard registers and prefer
1296 smallest class for debugging purposes. */
1297 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1298 && hard_reg_set_subset_p
1299 (reg_class_contents[cl3],
1300 reg_class_contents
1301 [(int) ira_reg_class_subset[cl1][cl2]])))
1302 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1303 }
1304 if (important_class_p[cl3]
1305 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1306 {
1307 /* CL3 allocatbale hard register set is inside of
1308 union of allocatable hard register sets of CL1
1309 and CL2. */
1310 COPY_HARD_REG_SET
1311 (temp_set2,
1312 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1313 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1314 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1315 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1316
1317 && (! hard_reg_set_equal_p (temp_set2,
1318 temp_hard_regset)
1319 || cl3 == GENERAL_REGS
1320 /* If the allocatable hard register sets are the
1321 same, prefer GENERAL_REGS or the smallest
1322 class for debugging purposes. */
1323 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1324 && hard_reg_set_subset_p
1325 (reg_class_contents[cl3],
1326 reg_class_contents
1327 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1328 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1329 }
1330 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1331 {
1332 /* CL3 allocatable hard register set contains union
1333 of allocatable hard register sets of CL1 and
1334 CL2. */
1335 COPY_HARD_REG_SET
1336 (temp_set2,
1337 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1338 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1339 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1340 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1341
1342 && (! hard_reg_set_equal_p (temp_set2,
1343 temp_hard_regset)
1344 || cl3 == GENERAL_REGS
1345 /* If the allocatable hard register sets are the
1346 same, prefer GENERAL_REGS or the smallest
1347 class for debugging purposes. */
1348 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1349 && hard_reg_set_subset_p
1350 (reg_class_contents[cl3],
1351 reg_class_contents
1352 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1353 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1354 }
1355 }
1356 }
1357 }
1358 }
1359
1360 /* Output all unifrom and important classes into file F. */
1361 static void
1362 print_unform_and_important_classes (FILE *f)
1363 {
1364 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1365 int i, cl;
1366
1367 fprintf (f, "Uniform classes:\n");
1368 for (cl = 0; cl < N_REG_CLASSES; cl++)
1369 if (ira_uniform_class_p[cl])
1370 fprintf (f, " %s", reg_class_names[cl]);
1371 fprintf (f, "\nImportant classes:\n");
1372 for (i = 0; i < ira_important_classes_num; i++)
1373 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1374 fprintf (f, "\n");
1375 }
1376
1377 /* Output all possible allocno or pressure classes and their
1378 translation map into file F. */
1379 static void
1380 print_translated_classes (FILE *f, bool pressure_p)
1381 {
1382 int classes_num = (pressure_p
1383 ? ira_pressure_classes_num : ira_allocno_classes_num);
1384 enum reg_class *classes = (pressure_p
1385 ? ira_pressure_classes : ira_allocno_classes);
1386 enum reg_class *class_translate = (pressure_p
1387 ? ira_pressure_class_translate
1388 : ira_allocno_class_translate);
1389 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1390 int i;
1391
1392 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1393 for (i = 0; i < classes_num; i++)
1394 fprintf (f, " %s", reg_class_names[classes[i]]);
1395 fprintf (f, "\nClass translation:\n");
1396 for (i = 0; i < N_REG_CLASSES; i++)
1397 fprintf (f, " %s -> %s\n", reg_class_names[i],
1398 reg_class_names[class_translate[i]]);
1399 }
1400
1401 /* Output all possible allocno and translation classes and the
1402 translation maps into stderr. */
1403 void
1404 ira_debug_allocno_classes (void)
1405 {
1406 print_unform_and_important_classes (stderr);
1407 print_translated_classes (stderr, false);
1408 print_translated_classes (stderr, true);
1409 }
1410
1411 /* Set up different arrays concerning class subsets, allocno and
1412 important classes. */
1413 static void
1414 find_reg_classes (void)
1415 {
1416 setup_allocno_and_important_classes ();
1417 setup_class_translate ();
1418 reorder_important_classes ();
1419 setup_reg_class_relations ();
1420 }
1421
1422 \f
1423
1424 /* Set up the array above. */
1425 static void
1426 setup_hard_regno_aclass (void)
1427 {
1428 int i;
1429
1430 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1431 {
1432 #if 1
1433 ira_hard_regno_allocno_class[i]
1434 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1435 ? NO_REGS
1436 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1437 #else
1438 int j;
1439 enum reg_class cl;
1440 ira_hard_regno_allocno_class[i] = NO_REGS;
1441 for (j = 0; j < ira_allocno_classes_num; j++)
1442 {
1443 cl = ira_allocno_classes[j];
1444 if (ira_class_hard_reg_index[cl][i] >= 0)
1445 {
1446 ira_hard_regno_allocno_class[i] = cl;
1447 break;
1448 }
1449 }
1450 #endif
1451 }
1452 }
1453
1454 \f
1455
1456 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1457 static void
1458 setup_reg_class_nregs (void)
1459 {
1460 int i, cl, cl2, m;
1461
1462 for (m = 0; m < MAX_MACHINE_MODE; m++)
1463 {
1464 for (cl = 0; cl < N_REG_CLASSES; cl++)
1465 ira_reg_class_max_nregs[cl][m]
1466 = ira_reg_class_min_nregs[cl][m]
1467 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 for (i = 0;
1470 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1471 i++)
1472 if (ira_reg_class_min_nregs[cl2][m]
1473 < ira_reg_class_min_nregs[cl][m])
1474 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1475 }
1476 }
1477
1478 \f
1479
1480 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1481 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1482 static void
1483 setup_prohibited_class_mode_regs (void)
1484 {
1485 int j, k, hard_regno, cl, last_hard_regno, count;
1486
1487 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1488 {
1489 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1490 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1491 for (j = 0; j < NUM_MACHINE_MODES; j++)
1492 {
1493 count = 0;
1494 last_hard_regno = -1;
1495 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1496 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1497 {
1498 hard_regno = ira_class_hard_regs[cl][k];
1499 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1500 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1501 hard_regno);
1502 else if (in_hard_reg_set_p (temp_hard_regset,
1503 (enum machine_mode) j, hard_regno))
1504 {
1505 last_hard_regno = hard_regno;
1506 count++;
1507 }
1508 }
1509 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1510 }
1511 }
1512 }
1513
1514 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1515 spanning from one register pressure class to another one. It is
1516 called after defining the pressure classes. */
1517 static void
1518 clarify_prohibited_class_mode_regs (void)
1519 {
1520 int j, k, hard_regno, cl, pclass, nregs;
1521
1522 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1523 for (j = 0; j < NUM_MACHINE_MODES; j++)
1524 {
1525 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1526 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1527 {
1528 hard_regno = ira_class_hard_regs[cl][k];
1529 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1530 continue;
1531 nregs = hard_regno_nregs[hard_regno][j];
1532 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1533 {
1534 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1535 hard_regno);
1536 continue;
1537 }
1538 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1539 for (nregs-- ;nregs >= 0; nregs--)
1540 if (((enum reg_class) pclass
1541 != ira_pressure_class_translate[REGNO_REG_CLASS
1542 (hard_regno + nregs)]))
1543 {
1544 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1545 hard_regno);
1546 break;
1547 }
1548 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno))
1550 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1551 (enum machine_mode) j, hard_regno);
1552 }
1553 }
1554 }
1555 \f
1556 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1557 and IRA_MAY_MOVE_OUT_COST for MODE. */
1558 void
1559 ira_init_register_move_cost (enum machine_mode mode)
1560 {
1561 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1562 bool all_match = true;
1563 unsigned int cl1, cl2;
1564
1565 ira_assert (ira_register_move_cost[mode] == NULL
1566 && ira_may_move_in_cost[mode] == NULL
1567 && ira_may_move_out_cost[mode] == NULL);
1568 ira_assert (have_regs_of_mode[mode]);
1569 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1570 if (contains_reg_of_mode[cl1][mode])
1571 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1572 {
1573 int cost;
1574 if (!contains_reg_of_mode[cl2][mode])
1575 cost = 65535;
1576 else
1577 {
1578 cost = register_move_cost (mode, (enum reg_class) cl1,
1579 (enum reg_class) cl2);
1580 ira_assert (cost < 65535);
1581 }
1582 all_match &= (last_move_cost[cl1][cl2] == cost);
1583 last_move_cost[cl1][cl2] = cost;
1584 }
1585 if (all_match && last_mode_for_init_move_cost != -1)
1586 {
1587 ira_register_move_cost[mode]
1588 = ira_register_move_cost[last_mode_for_init_move_cost];
1589 ira_may_move_in_cost[mode]
1590 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1591 ira_may_move_out_cost[mode]
1592 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1593 return;
1594 }
1595 last_mode_for_init_move_cost = mode;
1596 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1597 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1598 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1599 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1600 if (contains_reg_of_mode[cl1][mode])
1601 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1602 {
1603 int cost;
1604 enum reg_class *p1, *p2;
1605
1606 if (last_move_cost[cl1][cl2] == 65535)
1607 {
1608 ira_register_move_cost[mode][cl1][cl2] = 65535;
1609 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1610 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1611 }
1612 else
1613 {
1614 cost = last_move_cost[cl1][cl2];
1615
1616 for (p2 = &reg_class_subclasses[cl2][0];
1617 *p2 != LIM_REG_CLASSES; p2++)
1618 if (ira_class_hard_regs_num[*p2] > 0
1619 && (ira_reg_class_max_nregs[*p2][mode]
1620 <= ira_class_hard_regs_num[*p2]))
1621 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1622
1623 for (p1 = &reg_class_subclasses[cl1][0];
1624 *p1 != LIM_REG_CLASSES; p1++)
1625 if (ira_class_hard_regs_num[*p1] > 0
1626 && (ira_reg_class_max_nregs[*p1][mode]
1627 <= ira_class_hard_regs_num[*p1]))
1628 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1629
1630 ira_assert (cost <= 65535);
1631 ira_register_move_cost[mode][cl1][cl2] = cost;
1632
1633 if (ira_class_subset_p[cl1][cl2])
1634 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1635 else
1636 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1637
1638 if (ira_class_subset_p[cl2][cl1])
1639 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1640 else
1641 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1642 }
1643 }
1644 else
1645 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1646 {
1647 ira_register_move_cost[mode][cl1][cl2] = 65535;
1648 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1649 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1650 }
1651 }
1652 \f
1653
1654 /* This is called once during compiler work. It sets up
1655 different arrays whose values don't depend on the compiled
1656 function. */
1657 void
1658 ira_init_once (void)
1659 {
1660 ira_init_costs_once ();
1661 lra_init_once ();
1662 }
1663
1664 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1665 ira_may_move_out_cost for each mode. */
1666 static void
1667 free_register_move_costs (void)
1668 {
1669 int mode, i;
1670
1671 /* Reset move_cost and friends, making sure we only free shared
1672 table entries once. */
1673 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1674 if (ira_register_move_cost[mode])
1675 {
1676 for (i = 0;
1677 i < mode && (ira_register_move_cost[i]
1678 != ira_register_move_cost[mode]);
1679 i++)
1680 ;
1681 if (i == mode)
1682 {
1683 free (ira_register_move_cost[mode]);
1684 free (ira_may_move_in_cost[mode]);
1685 free (ira_may_move_out_cost[mode]);
1686 }
1687 }
1688 memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1689 memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1690 memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
1691 last_mode_for_init_move_cost = -1;
1692 }
1693
1694 /* This is called every time when register related information is
1695 changed. */
1696 void
1697 ira_init (void)
1698 {
1699 free_register_move_costs ();
1700 setup_reg_mode_hard_regset ();
1701 setup_alloc_regs (flag_omit_frame_pointer != 0);
1702 setup_class_subset_and_memory_move_costs ();
1703 setup_reg_class_nregs ();
1704 setup_prohibited_class_mode_regs ();
1705 find_reg_classes ();
1706 clarify_prohibited_class_mode_regs ();
1707 setup_hard_regno_aclass ();
1708 ira_init_costs ();
1709 lra_init ();
1710 }
1711
1712 /* Function called once at the end of compiler work. */
1713 void
1714 ira_finish_once (void)
1715 {
1716 ira_finish_costs_once ();
1717 free_register_move_costs ();
1718 lra_finish_once ();
1719 }
1720
1721 \f
1722 #define ira_prohibited_mode_move_regs_initialized_p \
1723 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1724
1725 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1726 static void
1727 setup_prohibited_mode_move_regs (void)
1728 {
1729 int i, j;
1730 rtx test_reg1, test_reg2, move_pat, move_insn;
1731
1732 if (ira_prohibited_mode_move_regs_initialized_p)
1733 return;
1734 ira_prohibited_mode_move_regs_initialized_p = true;
1735 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1736 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1737 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1738 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1739 for (i = 0; i < NUM_MACHINE_MODES; i++)
1740 {
1741 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1742 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1743 {
1744 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1745 continue;
1746 SET_REGNO_RAW (test_reg1, j);
1747 PUT_MODE (test_reg1, (enum machine_mode) i);
1748 SET_REGNO_RAW (test_reg2, j);
1749 PUT_MODE (test_reg2, (enum machine_mode) i);
1750 INSN_CODE (move_insn) = -1;
1751 recog_memoized (move_insn);
1752 if (INSN_CODE (move_insn) < 0)
1753 continue;
1754 extract_insn (move_insn);
1755 if (! constrain_operands (1))
1756 continue;
1757 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1758 }
1759 }
1760 }
1761
1762 \f
1763
1764 /* Return TRUE if the operand constraint STR is commutative. */
1765 static bool
1766 commutative_constraint_p (const char *str)
1767 {
1768 int curr_alt, c;
1769 bool ignore_p;
1770
1771 for (ignore_p = false, curr_alt = 0;;)
1772 {
1773 c = *str;
1774 if (c == '\0')
1775 break;
1776 str += CONSTRAINT_LEN (c, str);
1777 if (c == '#' || !recog_data.alternative_enabled_p[curr_alt])
1778 ignore_p = true;
1779 else if (c == ',')
1780 {
1781 curr_alt++;
1782 ignore_p = false;
1783 }
1784 else if (! ignore_p)
1785 {
1786 /* Usually `%' is the first constraint character but the
1787 documentation does not require this. */
1788 if (c == '%')
1789 return true;
1790 }
1791 }
1792 return false;
1793 }
1794
1795 /* Setup possible alternatives in ALTS for INSN. */
1796 void
1797 ira_setup_alts (rtx insn, HARD_REG_SET &alts)
1798 {
1799 /* MAP nalt * nop -> start of constraints for given operand and
1800 alternative */
1801 static vec<const char *> insn_constraints;
1802 int nop, nalt;
1803 bool curr_swapped;
1804 const char *p;
1805 rtx op;
1806 int commutative = -1;
1807
1808 extract_insn (insn);
1809 CLEAR_HARD_REG_SET (alts);
1810 insn_constraints.release ();
1811 insn_constraints.safe_grow_cleared (recog_data.n_operands
1812 * recog_data.n_alternatives + 1);
1813 /* Check that the hard reg set is enough for holding all
1814 alternatives. It is hard to imagine the situation when the
1815 assertion is wrong. */
1816 ira_assert (recog_data.n_alternatives
1817 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1818 FIRST_PSEUDO_REGISTER));
1819 for (curr_swapped = false;; curr_swapped = true)
1820 {
1821 /* Calculate some data common for all alternatives to speed up the
1822 function. */
1823 for (nop = 0; nop < recog_data.n_operands; nop++)
1824 {
1825 for (nalt = 0, p = recog_data.constraints[nop];
1826 nalt < recog_data.n_alternatives;
1827 nalt++)
1828 {
1829 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1830 while (*p && *p != ',')
1831 p++;
1832 if (*p)
1833 p++;
1834 }
1835 }
1836 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1837 {
1838 if (! recog_data.alternative_enabled_p[nalt] || TEST_HARD_REG_BIT (alts, nalt))
1839 continue;
1840
1841 for (nop = 0; nop < recog_data.n_operands; nop++)
1842 {
1843 int c, len;
1844
1845 op = recog_data.operand[nop];
1846 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1847 if (*p == 0 || *p == ',')
1848 continue;
1849
1850 do
1851 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1852 {
1853 case '#':
1854 case ',':
1855 c = '\0';
1856 case '\0':
1857 len = 0;
1858 break;
1859
1860 case '?': case '!': case '*': case '=': case '+':
1861 break;
1862
1863 case '%':
1864 /* We only support one commutative marker, the
1865 first one. We already set commutative
1866 above. */
1867 if (commutative < 0)
1868 commutative = nop;
1869 break;
1870
1871 case '&':
1872 break;
1873
1874 case '0': case '1': case '2': case '3': case '4':
1875 case '5': case '6': case '7': case '8': case '9':
1876 goto op_success;
1877 break;
1878
1879 case 'p':
1880 case 'g':
1881 case 'X':
1882 case TARGET_MEM_CONSTRAINT:
1883 goto op_success;
1884 break;
1885
1886 case '<':
1887 if (MEM_P (op)
1888 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1889 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1890 goto op_success;
1891 break;
1892
1893 case '>':
1894 if (MEM_P (op)
1895 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1896 || GET_CODE (XEXP (op, 0)) == POST_INC))
1897 goto op_success;
1898 break;
1899
1900 case 'E':
1901 case 'F':
1902 if (CONST_DOUBLE_AS_FLOAT_P (op)
1903 || (GET_CODE (op) == CONST_VECTOR
1904 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1905 goto op_success;
1906 break;
1907
1908 case 'G':
1909 case 'H':
1910 if (CONST_DOUBLE_AS_FLOAT_P (op)
1911 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1912 goto op_success;
1913 break;
1914
1915 case 's':
1916 if (CONST_SCALAR_INT_P (op))
1917 break;
1918 case 'i':
1919 if (CONSTANT_P (op))
1920 goto op_success;
1921 break;
1922
1923 case 'n':
1924 if (CONST_SCALAR_INT_P (op))
1925 goto op_success;
1926 break;
1927
1928 case 'I':
1929 case 'J':
1930 case 'K':
1931 case 'L':
1932 case 'M':
1933 case 'N':
1934 case 'O':
1935 case 'P':
1936 if (CONST_INT_P (op)
1937 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1938 goto op_success;
1939 break;
1940
1941 case 'V':
1942 if (MEM_P (op) && ! offsettable_memref_p (op))
1943 goto op_success;
1944 break;
1945
1946 case 'o':
1947 goto op_success;
1948 break;
1949
1950 default:
1951 {
1952 enum reg_class cl;
1953
1954 cl = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
1955 if (cl != NO_REGS)
1956 goto op_success;
1957 #ifdef EXTRA_CONSTRAINT_STR
1958 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1959 goto op_success;
1960 else if (EXTRA_MEMORY_CONSTRAINT (c, p))
1961 goto op_success;
1962 else if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1963 goto op_success;
1964 #endif
1965 break;
1966 }
1967 }
1968 while (p += len, c);
1969 break;
1970 op_success:
1971 ;
1972 }
1973 if (nop >= recog_data.n_operands)
1974 SET_HARD_REG_BIT (alts, nalt);
1975 }
1976 if (commutative < 0)
1977 break;
1978 if (curr_swapped)
1979 break;
1980 op = recog_data.operand[commutative];
1981 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1982 recog_data.operand[commutative + 1] = op;
1983
1984 }
1985 }
1986
1987 /* Return the number of the output non-early clobber operand which
1988 should be the same in any case as operand with number OP_NUM (or
1989 negative value if there is no such operand). The function takes
1990 only really possible alternatives into consideration. */
1991 int
1992 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1993 {
1994 int curr_alt, c, original, dup;
1995 bool ignore_p, use_commut_op_p;
1996 const char *str;
1997 #ifdef EXTRA_CONSTRAINT_STR
1998 rtx op;
1999 #endif
2000
2001 if (op_num < 0 || recog_data.n_alternatives == 0)
2002 return -1;
2003 use_commut_op_p = false;
2004 str = recog_data.constraints[op_num];
2005 for (;;)
2006 {
2007 #ifdef EXTRA_CONSTRAINT_STR
2008 op = recog_data.operand[op_num];
2009 #endif
2010
2011 for (ignore_p = false, original = -1, curr_alt = 0;;)
2012 {
2013 c = *str;
2014 if (c == '\0')
2015 break;
2016 if (c == '#' || !TEST_HARD_REG_BIT (alts, curr_alt))
2017 ignore_p = true;
2018 else if (c == ',')
2019 {
2020 curr_alt++;
2021 ignore_p = false;
2022 }
2023 else if (! ignore_p)
2024 switch (c)
2025 {
2026 /* We should find duplications only for input operands. */
2027 case '=':
2028 case '+':
2029 goto fail;
2030 case 'X':
2031 case 'p':
2032 case 'g':
2033 goto fail;
2034 case 'r':
2035 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2036 case 'h': case 'j': case 'k': case 'l':
2037 case 'q': case 't': case 'u':
2038 case 'v': case 'w': case 'x': case 'y': case 'z':
2039 case 'A': case 'B': case 'C': case 'D':
2040 case 'Q': case 'R': case 'S': case 'T': case 'U':
2041 case 'W': case 'Y': case 'Z':
2042 {
2043 enum reg_class cl;
2044
2045 cl = (c == 'r'
2046 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, str));
2047 if (cl != NO_REGS)
2048 {
2049 if (! targetm.class_likely_spilled_p (cl))
2050 goto fail;
2051 }
2052 #ifdef EXTRA_CONSTRAINT_STR
2053 else if (EXTRA_CONSTRAINT_STR (op, c, str))
2054 goto fail;
2055 #endif
2056 break;
2057 }
2058
2059 case '0': case '1': case '2': case '3': case '4':
2060 case '5': case '6': case '7': case '8': case '9':
2061 if (original != -1 && original != c)
2062 goto fail;
2063 original = c;
2064 break;
2065 }
2066 str += CONSTRAINT_LEN (c, str);
2067 }
2068 if (original == -1)
2069 goto fail;
2070 dup = -1;
2071 for (ignore_p = false, str = recog_data.constraints[original - '0'];
2072 *str != 0;
2073 str++)
2074 if (ignore_p)
2075 {
2076 if (*str == ',')
2077 ignore_p = false;
2078 }
2079 else if (*str == '#')
2080 ignore_p = true;
2081 else if (! ignore_p)
2082 {
2083 if (*str == '=')
2084 dup = original - '0';
2085 /* It is better ignore an alternative with early clobber. */
2086 else if (*str == '&')
2087 goto fail;
2088 }
2089 if (dup >= 0)
2090 return dup;
2091 fail:
2092 if (use_commut_op_p)
2093 break;
2094 use_commut_op_p = true;
2095 if (commutative_constraint_p (recog_data.constraints[op_num]))
2096 str = recog_data.constraints[op_num + 1];
2097 else if (op_num > 0 && commutative_constraint_p (recog_data.constraints
2098 [op_num - 1]))
2099 str = recog_data.constraints[op_num - 1];
2100 else
2101 break;
2102 }
2103 return -1;
2104 }
2105
2106 \f
2107
2108 /* Search forward to see if the source register of a copy insn dies
2109 before either it or the destination register is modified, but don't
2110 scan past the end of the basic block. If so, we can replace the
2111 source with the destination and let the source die in the copy
2112 insn.
2113
2114 This will reduce the number of registers live in that range and may
2115 enable the destination and the source coalescing, thus often saving
2116 one register in addition to a register-register copy. */
2117
2118 static void
2119 decrease_live_ranges_number (void)
2120 {
2121 basic_block bb;
2122 rtx insn, set, src, dest, dest_death, p, q, note;
2123 int sregno, dregno;
2124
2125 if (! flag_expensive_optimizations)
2126 return;
2127
2128 if (ira_dump_file)
2129 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2130
2131 FOR_EACH_BB (bb)
2132 FOR_BB_INSNS (bb, insn)
2133 {
2134 set = single_set (insn);
2135 if (! set)
2136 continue;
2137 src = SET_SRC (set);
2138 dest = SET_DEST (set);
2139 if (! REG_P (src) || ! REG_P (dest)
2140 || find_reg_note (insn, REG_DEAD, src))
2141 continue;
2142 sregno = REGNO (src);
2143 dregno = REGNO (dest);
2144
2145 /* We don't want to mess with hard regs if register classes
2146 are small. */
2147 if (sregno == dregno
2148 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2149 && (sregno < FIRST_PSEUDO_REGISTER
2150 || dregno < FIRST_PSEUDO_REGISTER))
2151 /* We don't see all updates to SP if they are in an
2152 auto-inc memory reference, so we must disallow this
2153 optimization on them. */
2154 || sregno == STACK_POINTER_REGNUM
2155 || dregno == STACK_POINTER_REGNUM)
2156 continue;
2157
2158 dest_death = NULL_RTX;
2159
2160 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2161 {
2162 if (! INSN_P (p))
2163 continue;
2164 if (BLOCK_FOR_INSN (p) != bb)
2165 break;
2166
2167 if (reg_set_p (src, p) || reg_set_p (dest, p)
2168 /* If SRC is an asm-declared register, it must not be
2169 replaced in any asm. Unfortunately, the REG_EXPR
2170 tree for the asm variable may be absent in the SRC
2171 rtx, so we can't check the actual register
2172 declaration easily (the asm operand will have it,
2173 though). To avoid complicating the test for a rare
2174 case, we just don't perform register replacement
2175 for a hard reg mentioned in an asm. */
2176 || (sregno < FIRST_PSEUDO_REGISTER
2177 && asm_noperands (PATTERN (p)) >= 0
2178 && reg_overlap_mentioned_p (src, PATTERN (p)))
2179 /* Don't change hard registers used by a call. */
2180 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2181 && find_reg_fusage (p, USE, src))
2182 /* Don't change a USE of a register. */
2183 || (GET_CODE (PATTERN (p)) == USE
2184 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2185 break;
2186
2187 /* See if all of SRC dies in P. This test is slightly
2188 more conservative than it needs to be. */
2189 if ((note = find_regno_note (p, REG_DEAD, sregno))
2190 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2191 {
2192 int failed = 0;
2193
2194 /* We can do the optimization. Scan forward from INSN
2195 again, replacing regs as we go. Set FAILED if a
2196 replacement can't be done. In that case, we can't
2197 move the death note for SRC. This should be
2198 rare. */
2199
2200 /* Set to stop at next insn. */
2201 for (q = next_real_insn (insn);
2202 q != next_real_insn (p);
2203 q = next_real_insn (q))
2204 {
2205 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2206 {
2207 /* If SRC is a hard register, we might miss
2208 some overlapping registers with
2209 validate_replace_rtx, so we would have to
2210 undo it. We can't if DEST is present in
2211 the insn, so fail in that combination of
2212 cases. */
2213 if (sregno < FIRST_PSEUDO_REGISTER
2214 && reg_mentioned_p (dest, PATTERN (q)))
2215 failed = 1;
2216
2217 /* Attempt to replace all uses. */
2218 else if (!validate_replace_rtx (src, dest, q))
2219 failed = 1;
2220
2221 /* If this succeeded, but some part of the
2222 register is still present, undo the
2223 replacement. */
2224 else if (sregno < FIRST_PSEUDO_REGISTER
2225 && reg_overlap_mentioned_p (src, PATTERN (q)))
2226 {
2227 validate_replace_rtx (dest, src, q);
2228 failed = 1;
2229 }
2230 }
2231
2232 /* If DEST dies here, remove the death note and
2233 save it for later. Make sure ALL of DEST dies
2234 here; again, this is overly conservative. */
2235 if (! dest_death
2236 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2237 {
2238 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2239 remove_note (q, dest_death);
2240 else
2241 {
2242 failed = 1;
2243 dest_death = 0;
2244 }
2245 }
2246 }
2247
2248 if (! failed)
2249 {
2250 /* Move death note of SRC from P to INSN. */
2251 remove_note (p, note);
2252 XEXP (note, 1) = REG_NOTES (insn);
2253 REG_NOTES (insn) = note;
2254 }
2255
2256 /* DEST is also dead if INSN has a REG_UNUSED note for
2257 DEST. */
2258 if (! dest_death
2259 && (dest_death
2260 = find_regno_note (insn, REG_UNUSED, dregno)))
2261 {
2262 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2263 remove_note (insn, dest_death);
2264 }
2265
2266 /* Put death note of DEST on P if we saw it die. */
2267 if (dest_death)
2268 {
2269 XEXP (dest_death, 1) = REG_NOTES (p);
2270 REG_NOTES (p) = dest_death;
2271 }
2272 break;
2273 }
2274
2275 /* If SRC is a hard register which is set or killed in
2276 some other way, we can't do this optimization. */
2277 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2278 break;
2279 }
2280 }
2281 }
2282
2283 \f
2284
2285 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2286 static bool
2287 ira_bad_reload_regno_1 (int regno, rtx x)
2288 {
2289 int x_regno, n, i;
2290 ira_allocno_t a;
2291 enum reg_class pref;
2292
2293 /* We only deal with pseudo regs. */
2294 if (! x || GET_CODE (x) != REG)
2295 return false;
2296
2297 x_regno = REGNO (x);
2298 if (x_regno < FIRST_PSEUDO_REGISTER)
2299 return false;
2300
2301 /* If the pseudo prefers REGNO explicitly, then do not consider
2302 REGNO a bad spill choice. */
2303 pref = reg_preferred_class (x_regno);
2304 if (reg_class_size[pref] == 1)
2305 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2306
2307 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2308 poor choice for a reload regno. */
2309 a = ira_regno_allocno_map[x_regno];
2310 n = ALLOCNO_NUM_OBJECTS (a);
2311 for (i = 0; i < n; i++)
2312 {
2313 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2314 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2315 return true;
2316 }
2317 return false;
2318 }
2319
2320 /* Return nonzero if REGNO is a particularly bad choice for reloading
2321 IN or OUT. */
2322 bool
2323 ira_bad_reload_regno (int regno, rtx in, rtx out)
2324 {
2325 return (ira_bad_reload_regno_1 (regno, in)
2326 || ira_bad_reload_regno_1 (regno, out));
2327 }
2328
2329 /* Return TRUE if *LOC contains an asm. */
2330 static int
2331 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2332 {
2333 if ( !*loc)
2334 return FALSE;
2335 if (GET_CODE (*loc) == ASM_OPERANDS)
2336 return TRUE;
2337 return FALSE;
2338 }
2339
2340
2341 /* Return TRUE if INSN contains an ASM. */
2342 static bool
2343 insn_contains_asm (rtx insn)
2344 {
2345 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
2346 }
2347
2348 /* Add register clobbers from asm statements. */
2349 static void
2350 compute_regs_asm_clobbered (void)
2351 {
2352 basic_block bb;
2353
2354 FOR_EACH_BB (bb)
2355 {
2356 rtx insn;
2357 FOR_BB_INSNS_REVERSE (bb, insn)
2358 {
2359 df_ref *def_rec;
2360
2361 if (insn_contains_asm (insn))
2362 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
2363 {
2364 df_ref def = *def_rec;
2365 unsigned int dregno = DF_REF_REGNO (def);
2366 if (HARD_REGISTER_NUM_P (dregno))
2367 add_to_hard_reg_set (&crtl->asm_clobbers,
2368 GET_MODE (DF_REF_REAL_REG (def)),
2369 dregno);
2370 }
2371 }
2372 }
2373 }
2374
2375
2376 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.
2377 If the function is called from IRA (not from the insn scheduler or
2378 RTL loop invariant motion), FROM_IRA_P is true. */
2379 void
2380 ira_setup_eliminable_regset (bool from_ira_p)
2381 {
2382 #ifdef ELIMINABLE_REGS
2383 int i;
2384 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2385 #endif
2386 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2387 sp for alloca. So we can't eliminate the frame pointer in that
2388 case. At some point, we should improve this by emitting the
2389 sp-adjusting insns for this case. */
2390 frame_pointer_needed
2391 = (! flag_omit_frame_pointer
2392 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2393 /* We need the frame pointer to catch stack overflow exceptions
2394 if the stack pointer is moving. */
2395 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2396 || crtl->accesses_prior_frames
2397 || crtl->stack_realign_needed
2398 /* We need a frame pointer for all Cilk Plus functions that use
2399 Cilk keywords. */
2400 || (flag_enable_cilkplus && cfun->is_cilk_function)
2401 || targetm.frame_pointer_required ());
2402
2403 if (from_ira_p && ira_use_lra_p)
2404 /* It can change FRAME_POINTER_NEEDED. We call it only from IRA
2405 because it is expensive. */
2406 lra_init_elimination ();
2407
2408 if (frame_pointer_needed)
2409 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2410
2411 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2412 CLEAR_HARD_REG_SET (eliminable_regset);
2413
2414 compute_regs_asm_clobbered ();
2415
2416 /* Build the regset of all eliminable registers and show we can't
2417 use those that we already know won't be eliminated. */
2418 #ifdef ELIMINABLE_REGS
2419 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2420 {
2421 bool cannot_elim
2422 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2423 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2424
2425 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2426 {
2427 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2428
2429 if (cannot_elim)
2430 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2431 }
2432 else if (cannot_elim)
2433 error ("%s cannot be used in asm here",
2434 reg_names[eliminables[i].from]);
2435 else
2436 df_set_regs_ever_live (eliminables[i].from, true);
2437 }
2438 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2439 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2440 {
2441 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2442 if (frame_pointer_needed)
2443 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2444 }
2445 else if (frame_pointer_needed)
2446 error ("%s cannot be used in asm here",
2447 reg_names[HARD_FRAME_POINTER_REGNUM]);
2448 else
2449 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2450 #endif
2451
2452 #else
2453 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2454 {
2455 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2456 if (frame_pointer_needed)
2457 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2458 }
2459 else if (frame_pointer_needed)
2460 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2461 else
2462 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2463 #endif
2464 }
2465
2466 \f
2467
2468 /* Vector of substitutions of register numbers,
2469 used to map pseudo regs into hardware regs.
2470 This is set up as a result of register allocation.
2471 Element N is the hard reg assigned to pseudo reg N,
2472 or is -1 if no hard reg was assigned.
2473 If N is a hard reg number, element N is N. */
2474 short *reg_renumber;
2475
2476 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2477 the allocation found by IRA. */
2478 static void
2479 setup_reg_renumber (void)
2480 {
2481 int regno, hard_regno;
2482 ira_allocno_t a;
2483 ira_allocno_iterator ai;
2484
2485 caller_save_needed = 0;
2486 FOR_EACH_ALLOCNO (a, ai)
2487 {
2488 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2489 continue;
2490 /* There are no caps at this point. */
2491 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2492 if (! ALLOCNO_ASSIGNED_P (a))
2493 /* It can happen if A is not referenced but partially anticipated
2494 somewhere in a region. */
2495 ALLOCNO_ASSIGNED_P (a) = true;
2496 ira_free_allocno_updated_costs (a);
2497 hard_regno = ALLOCNO_HARD_REGNO (a);
2498 regno = ALLOCNO_REGNO (a);
2499 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2500 if (hard_regno >= 0)
2501 {
2502 int i, nwords;
2503 enum reg_class pclass;
2504 ira_object_t obj;
2505
2506 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2507 nwords = ALLOCNO_NUM_OBJECTS (a);
2508 for (i = 0; i < nwords; i++)
2509 {
2510 obj = ALLOCNO_OBJECT (a, i);
2511 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2512 reg_class_contents[pclass]);
2513 }
2514 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2515 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2516 call_used_reg_set))
2517 {
2518 ira_assert (!optimize || flag_caller_saves
2519 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2520 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2521 || regno >= ira_reg_equiv_len
2522 || ira_equiv_no_lvalue_p (regno));
2523 caller_save_needed = 1;
2524 }
2525 }
2526 }
2527 }
2528
2529 /* Set up allocno assignment flags for further allocation
2530 improvements. */
2531 static void
2532 setup_allocno_assignment_flags (void)
2533 {
2534 int hard_regno;
2535 ira_allocno_t a;
2536 ira_allocno_iterator ai;
2537
2538 FOR_EACH_ALLOCNO (a, ai)
2539 {
2540 if (! ALLOCNO_ASSIGNED_P (a))
2541 /* It can happen if A is not referenced but partially anticipated
2542 somewhere in a region. */
2543 ira_free_allocno_updated_costs (a);
2544 hard_regno = ALLOCNO_HARD_REGNO (a);
2545 /* Don't assign hard registers to allocnos which are destination
2546 of removed store at the end of loop. It has no sense to keep
2547 the same value in different hard registers. It is also
2548 impossible to assign hard registers correctly to such
2549 allocnos because the cost info and info about intersected
2550 calls are incorrect for them. */
2551 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2552 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2553 || (ALLOCNO_MEMORY_COST (a)
2554 - ALLOCNO_CLASS_COST (a)) < 0);
2555 ira_assert
2556 (hard_regno < 0
2557 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2558 reg_class_contents[ALLOCNO_CLASS (a)]));
2559 }
2560 }
2561
2562 /* Evaluate overall allocation cost and the costs for using hard
2563 registers and memory for allocnos. */
2564 static void
2565 calculate_allocation_cost (void)
2566 {
2567 int hard_regno, cost;
2568 ira_allocno_t a;
2569 ira_allocno_iterator ai;
2570
2571 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2572 FOR_EACH_ALLOCNO (a, ai)
2573 {
2574 hard_regno = ALLOCNO_HARD_REGNO (a);
2575 ira_assert (hard_regno < 0
2576 || (ira_hard_reg_in_set_p
2577 (hard_regno, ALLOCNO_MODE (a),
2578 reg_class_contents[ALLOCNO_CLASS (a)])));
2579 if (hard_regno < 0)
2580 {
2581 cost = ALLOCNO_MEMORY_COST (a);
2582 ira_mem_cost += cost;
2583 }
2584 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2585 {
2586 cost = (ALLOCNO_HARD_REG_COSTS (a)
2587 [ira_class_hard_reg_index
2588 [ALLOCNO_CLASS (a)][hard_regno]]);
2589 ira_reg_cost += cost;
2590 }
2591 else
2592 {
2593 cost = ALLOCNO_CLASS_COST (a);
2594 ira_reg_cost += cost;
2595 }
2596 ira_overall_cost += cost;
2597 }
2598
2599 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2600 {
2601 fprintf (ira_dump_file,
2602 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2603 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2604 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2605 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2606 ira_move_loops_num, ira_additional_jumps_num);
2607 }
2608
2609 }
2610
2611 #ifdef ENABLE_IRA_CHECKING
2612 /* Check the correctness of the allocation. We do need this because
2613 of complicated code to transform more one region internal
2614 representation into one region representation. */
2615 static void
2616 check_allocation (void)
2617 {
2618 ira_allocno_t a;
2619 int hard_regno, nregs, conflict_nregs;
2620 ira_allocno_iterator ai;
2621
2622 FOR_EACH_ALLOCNO (a, ai)
2623 {
2624 int n = ALLOCNO_NUM_OBJECTS (a);
2625 int i;
2626
2627 if (ALLOCNO_CAP_MEMBER (a) != NULL
2628 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2629 continue;
2630 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2631 if (nregs == 1)
2632 /* We allocated a single hard register. */
2633 n = 1;
2634 else if (n > 1)
2635 /* We allocated multiple hard registers, and we will test
2636 conflicts in a granularity of single hard regs. */
2637 nregs = 1;
2638
2639 for (i = 0; i < n; i++)
2640 {
2641 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2642 ira_object_t conflict_obj;
2643 ira_object_conflict_iterator oci;
2644 int this_regno = hard_regno;
2645 if (n > 1)
2646 {
2647 if (REG_WORDS_BIG_ENDIAN)
2648 this_regno += n - i - 1;
2649 else
2650 this_regno += i;
2651 }
2652 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2653 {
2654 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2655 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2656 if (conflict_hard_regno < 0)
2657 continue;
2658
2659 conflict_nregs
2660 = (hard_regno_nregs
2661 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2662
2663 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2664 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2665 {
2666 if (REG_WORDS_BIG_ENDIAN)
2667 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2668 - OBJECT_SUBWORD (conflict_obj) - 1);
2669 else
2670 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2671 conflict_nregs = 1;
2672 }
2673
2674 if ((conflict_hard_regno <= this_regno
2675 && this_regno < conflict_hard_regno + conflict_nregs)
2676 || (this_regno <= conflict_hard_regno
2677 && conflict_hard_regno < this_regno + nregs))
2678 {
2679 fprintf (stderr, "bad allocation for %d and %d\n",
2680 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2681 gcc_unreachable ();
2682 }
2683 }
2684 }
2685 }
2686 }
2687 #endif
2688
2689 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2690 be already calculated. */
2691 static void
2692 setup_reg_equiv_init (void)
2693 {
2694 int i;
2695 int max_regno = max_reg_num ();
2696
2697 for (i = 0; i < max_regno; i++)
2698 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2699 }
2700
2701 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2702 are insns which were generated for such movement. It is assumed
2703 that FROM_REGNO and TO_REGNO always have the same value at the
2704 point of any move containing such registers. This function is used
2705 to update equiv info for register shuffles on the region borders
2706 and for caller save/restore insns. */
2707 void
2708 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx insns)
2709 {
2710 rtx insn, x, note;
2711
2712 if (! ira_reg_equiv[from_regno].defined_p
2713 && (! ira_reg_equiv[to_regno].defined_p
2714 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2715 && ! MEM_READONLY_P (x))))
2716 return;
2717 insn = insns;
2718 if (NEXT_INSN (insn) != NULL_RTX)
2719 {
2720 if (! ira_reg_equiv[to_regno].defined_p)
2721 {
2722 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2723 return;
2724 }
2725 ira_reg_equiv[to_regno].defined_p = false;
2726 ira_reg_equiv[to_regno].memory
2727 = ira_reg_equiv[to_regno].constant
2728 = ira_reg_equiv[to_regno].invariant
2729 = ira_reg_equiv[to_regno].init_insns = NULL_RTX;
2730 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2731 fprintf (ira_dump_file,
2732 " Invalidating equiv info for reg %d\n", to_regno);
2733 return;
2734 }
2735 /* It is possible that FROM_REGNO still has no equivalence because
2736 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2737 insn was not processed yet. */
2738 if (ira_reg_equiv[from_regno].defined_p)
2739 {
2740 ira_reg_equiv[to_regno].defined_p = true;
2741 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2742 {
2743 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2744 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2745 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2746 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2747 ira_reg_equiv[to_regno].memory = x;
2748 if (! MEM_READONLY_P (x))
2749 /* We don't add the insn to insn init list because memory
2750 equivalence is just to say what memory is better to use
2751 when the pseudo is spilled. */
2752 return;
2753 }
2754 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2755 {
2756 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2757 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2758 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2759 ira_reg_equiv[to_regno].constant = x;
2760 }
2761 else
2762 {
2763 x = ira_reg_equiv[from_regno].invariant;
2764 ira_assert (x != NULL_RTX);
2765 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2766 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2767 ira_reg_equiv[to_regno].invariant = x;
2768 }
2769 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2770 {
2771 note = set_unique_reg_note (insn, REG_EQUIV, x);
2772 gcc_assert (note != NULL_RTX);
2773 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2774 {
2775 fprintf (ira_dump_file,
2776 " Adding equiv note to insn %u for reg %d ",
2777 INSN_UID (insn), to_regno);
2778 dump_value_slim (ira_dump_file, x, 1);
2779 fprintf (ira_dump_file, "\n");
2780 }
2781 }
2782 }
2783 ira_reg_equiv[to_regno].init_insns
2784 = gen_rtx_INSN_LIST (VOIDmode, insn,
2785 ira_reg_equiv[to_regno].init_insns);
2786 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2787 fprintf (ira_dump_file,
2788 " Adding equiv init move insn %u to reg %d\n",
2789 INSN_UID (insn), to_regno);
2790 }
2791
2792 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2793 by IRA. */
2794 static void
2795 fix_reg_equiv_init (void)
2796 {
2797 int max_regno = max_reg_num ();
2798 int i, new_regno, max;
2799 rtx x, prev, next, insn, set;
2800
2801 if (max_regno_before_ira < max_regno)
2802 {
2803 max = vec_safe_length (reg_equivs);
2804 grow_reg_equivs ();
2805 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2806 for (prev = NULL_RTX, x = reg_equiv_init (i);
2807 x != NULL_RTX;
2808 x = next)
2809 {
2810 next = XEXP (x, 1);
2811 insn = XEXP (x, 0);
2812 set = single_set (insn);
2813 ira_assert (set != NULL_RTX
2814 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2815 if (REG_P (SET_DEST (set))
2816 && ((int) REGNO (SET_DEST (set)) == i
2817 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2818 new_regno = REGNO (SET_DEST (set));
2819 else if (REG_P (SET_SRC (set))
2820 && ((int) REGNO (SET_SRC (set)) == i
2821 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2822 new_regno = REGNO (SET_SRC (set));
2823 else
2824 gcc_unreachable ();
2825 if (new_regno == i)
2826 prev = x;
2827 else
2828 {
2829 /* Remove the wrong list element. */
2830 if (prev == NULL_RTX)
2831 reg_equiv_init (i) = next;
2832 else
2833 XEXP (prev, 1) = next;
2834 XEXP (x, 1) = reg_equiv_init (new_regno);
2835 reg_equiv_init (new_regno) = x;
2836 }
2837 }
2838 }
2839 }
2840
2841 #ifdef ENABLE_IRA_CHECKING
2842 /* Print redundant memory-memory copies. */
2843 static void
2844 print_redundant_copies (void)
2845 {
2846 int hard_regno;
2847 ira_allocno_t a;
2848 ira_copy_t cp, next_cp;
2849 ira_allocno_iterator ai;
2850
2851 FOR_EACH_ALLOCNO (a, ai)
2852 {
2853 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2854 /* It is a cap. */
2855 continue;
2856 hard_regno = ALLOCNO_HARD_REGNO (a);
2857 if (hard_regno >= 0)
2858 continue;
2859 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2860 if (cp->first == a)
2861 next_cp = cp->next_first_allocno_copy;
2862 else
2863 {
2864 next_cp = cp->next_second_allocno_copy;
2865 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2866 && cp->insn != NULL_RTX
2867 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2868 fprintf (ira_dump_file,
2869 " Redundant move from %d(freq %d):%d\n",
2870 INSN_UID (cp->insn), cp->freq, hard_regno);
2871 }
2872 }
2873 }
2874 #endif
2875
2876 /* Setup preferred and alternative classes for new pseudo-registers
2877 created by IRA starting with START. */
2878 static void
2879 setup_preferred_alternate_classes_for_new_pseudos (int start)
2880 {
2881 int i, old_regno;
2882 int max_regno = max_reg_num ();
2883
2884 for (i = start; i < max_regno; i++)
2885 {
2886 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2887 ira_assert (i != old_regno);
2888 setup_reg_classes (i, reg_preferred_class (old_regno),
2889 reg_alternate_class (old_regno),
2890 reg_allocno_class (old_regno));
2891 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2892 fprintf (ira_dump_file,
2893 " New r%d: setting preferred %s, alternative %s\n",
2894 i, reg_class_names[reg_preferred_class (old_regno)],
2895 reg_class_names[reg_alternate_class (old_regno)]);
2896 }
2897 }
2898
2899 \f
2900 /* The number of entries allocated in teg_info. */
2901 static int allocated_reg_info_size;
2902
2903 /* Regional allocation can create new pseudo-registers. This function
2904 expands some arrays for pseudo-registers. */
2905 static void
2906 expand_reg_info (void)
2907 {
2908 int i;
2909 int size = max_reg_num ();
2910
2911 resize_reg_info ();
2912 for (i = allocated_reg_info_size; i < size; i++)
2913 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2914 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2915 allocated_reg_info_size = size;
2916 }
2917
2918 /* Return TRUE if there is too high register pressure in the function.
2919 It is used to decide when stack slot sharing is worth to do. */
2920 static bool
2921 too_high_register_pressure_p (void)
2922 {
2923 int i;
2924 enum reg_class pclass;
2925
2926 for (i = 0; i < ira_pressure_classes_num; i++)
2927 {
2928 pclass = ira_pressure_classes[i];
2929 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2930 return true;
2931 }
2932 return false;
2933 }
2934
2935 \f
2936
2937 /* Indicate that hard register number FROM was eliminated and replaced with
2938 an offset from hard register number TO. The status of hard registers live
2939 at the start of a basic block is updated by replacing a use of FROM with
2940 a use of TO. */
2941
2942 void
2943 mark_elimination (int from, int to)
2944 {
2945 basic_block bb;
2946 bitmap r;
2947
2948 FOR_EACH_BB (bb)
2949 {
2950 r = DF_LR_IN (bb);
2951 if (bitmap_bit_p (r, from))
2952 {
2953 bitmap_clear_bit (r, from);
2954 bitmap_set_bit (r, to);
2955 }
2956 if (! df_live)
2957 continue;
2958 r = DF_LIVE_IN (bb);
2959 if (bitmap_bit_p (r, from))
2960 {
2961 bitmap_clear_bit (r, from);
2962 bitmap_set_bit (r, to);
2963 }
2964 }
2965 }
2966
2967 \f
2968
2969 /* The length of the following array. */
2970 int ira_reg_equiv_len;
2971
2972 /* Info about equiv. info for each register. */
2973 struct ira_reg_equiv *ira_reg_equiv;
2974
2975 /* Expand ira_reg_equiv if necessary. */
2976 void
2977 ira_expand_reg_equiv (void)
2978 {
2979 int old = ira_reg_equiv_len;
2980
2981 if (ira_reg_equiv_len > max_reg_num ())
2982 return;
2983 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2984 ira_reg_equiv
2985 = (struct ira_reg_equiv *) xrealloc (ira_reg_equiv,
2986 ira_reg_equiv_len
2987 * sizeof (struct ira_reg_equiv));
2988 gcc_assert (old < ira_reg_equiv_len);
2989 memset (ira_reg_equiv + old, 0,
2990 sizeof (struct ira_reg_equiv) * (ira_reg_equiv_len - old));
2991 }
2992
2993 static void
2994 init_reg_equiv (void)
2995 {
2996 ira_reg_equiv_len = 0;
2997 ira_reg_equiv = NULL;
2998 ira_expand_reg_equiv ();
2999 }
3000
3001 static void
3002 finish_reg_equiv (void)
3003 {
3004 free (ira_reg_equiv);
3005 }
3006
3007 \f
3008
3009 struct equivalence
3010 {
3011 /* Set when a REG_EQUIV note is found or created. Use to
3012 keep track of what memory accesses might be created later,
3013 e.g. by reload. */
3014 rtx replacement;
3015 rtx *src_p;
3016 /* The list of each instruction which initializes this register. */
3017 rtx init_insns;
3018 /* Loop depth is used to recognize equivalences which appear
3019 to be present within the same loop (or in an inner loop). */
3020 int loop_depth;
3021 /* Nonzero if this had a preexisting REG_EQUIV note. */
3022 int is_arg_equivalence;
3023 /* Set when an attempt should be made to replace a register
3024 with the associated src_p entry. */
3025 char replace;
3026 };
3027
3028 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3029 structure for that register. */
3030 static struct equivalence *reg_equiv;
3031
3032 /* Used for communication between the following two functions: contains
3033 a MEM that we wish to ensure remains unchanged. */
3034 static rtx equiv_mem;
3035
3036 /* Set nonzero if EQUIV_MEM is modified. */
3037 static int equiv_mem_modified;
3038
3039 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3040 Called via note_stores. */
3041 static void
3042 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3043 void *data ATTRIBUTE_UNUSED)
3044 {
3045 if ((REG_P (dest)
3046 && reg_overlap_mentioned_p (dest, equiv_mem))
3047 || (MEM_P (dest)
3048 && anti_dependence (equiv_mem, dest)))
3049 equiv_mem_modified = 1;
3050 }
3051
3052 /* Verify that no store between START and the death of REG invalidates
3053 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3054 by storing into an overlapping memory location, or with a non-const
3055 CALL_INSN.
3056
3057 Return 1 if MEMREF remains valid. */
3058 static int
3059 validate_equiv_mem (rtx start, rtx reg, rtx memref)
3060 {
3061 rtx insn;
3062 rtx note;
3063
3064 equiv_mem = memref;
3065 equiv_mem_modified = 0;
3066
3067 /* If the memory reference has side effects or is volatile, it isn't a
3068 valid equivalence. */
3069 if (side_effects_p (memref))
3070 return 0;
3071
3072 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
3073 {
3074 if (! INSN_P (insn))
3075 continue;
3076
3077 if (find_reg_note (insn, REG_DEAD, reg))
3078 return 1;
3079
3080 /* This used to ignore readonly memory and const/pure calls. The problem
3081 is the equivalent form may reference a pseudo which gets assigned a
3082 call clobbered hard reg. When we later replace REG with its
3083 equivalent form, the value in the call-clobbered reg has been
3084 changed and all hell breaks loose. */
3085 if (CALL_P (insn))
3086 return 0;
3087
3088 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
3089
3090 /* If a register mentioned in MEMREF is modified via an
3091 auto-increment, we lose the equivalence. Do the same if one
3092 dies; although we could extend the life, it doesn't seem worth
3093 the trouble. */
3094
3095 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3096 if ((REG_NOTE_KIND (note) == REG_INC
3097 || REG_NOTE_KIND (note) == REG_DEAD)
3098 && REG_P (XEXP (note, 0))
3099 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3100 return 0;
3101 }
3102
3103 return 0;
3104 }
3105
3106 /* Returns zero if X is known to be invariant. */
3107 static int
3108 equiv_init_varies_p (rtx x)
3109 {
3110 RTX_CODE code = GET_CODE (x);
3111 int i;
3112 const char *fmt;
3113
3114 switch (code)
3115 {
3116 case MEM:
3117 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3118
3119 case CONST:
3120 CASE_CONST_ANY:
3121 case SYMBOL_REF:
3122 case LABEL_REF:
3123 return 0;
3124
3125 case REG:
3126 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3127
3128 case ASM_OPERANDS:
3129 if (MEM_VOLATILE_P (x))
3130 return 1;
3131
3132 /* Fall through. */
3133
3134 default:
3135 break;
3136 }
3137
3138 fmt = GET_RTX_FORMAT (code);
3139 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3140 if (fmt[i] == 'e')
3141 {
3142 if (equiv_init_varies_p (XEXP (x, i)))
3143 return 1;
3144 }
3145 else if (fmt[i] == 'E')
3146 {
3147 int j;
3148 for (j = 0; j < XVECLEN (x, i); j++)
3149 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3150 return 1;
3151 }
3152
3153 return 0;
3154 }
3155
3156 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3157 X is only movable if the registers it uses have equivalent initializations
3158 which appear to be within the same loop (or in an inner loop) and movable
3159 or if they are not candidates for local_alloc and don't vary. */
3160 static int
3161 equiv_init_movable_p (rtx x, int regno)
3162 {
3163 int i, j;
3164 const char *fmt;
3165 enum rtx_code code = GET_CODE (x);
3166
3167 switch (code)
3168 {
3169 case SET:
3170 return equiv_init_movable_p (SET_SRC (x), regno);
3171
3172 case CC0:
3173 case CLOBBER:
3174 return 0;
3175
3176 case PRE_INC:
3177 case PRE_DEC:
3178 case POST_INC:
3179 case POST_DEC:
3180 case PRE_MODIFY:
3181 case POST_MODIFY:
3182 return 0;
3183
3184 case REG:
3185 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3186 && reg_equiv[REGNO (x)].replace)
3187 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3188 && ! rtx_varies_p (x, 0)));
3189
3190 case UNSPEC_VOLATILE:
3191 return 0;
3192
3193 case ASM_OPERANDS:
3194 if (MEM_VOLATILE_P (x))
3195 return 0;
3196
3197 /* Fall through. */
3198
3199 default:
3200 break;
3201 }
3202
3203 fmt = GET_RTX_FORMAT (code);
3204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3205 switch (fmt[i])
3206 {
3207 case 'e':
3208 if (! equiv_init_movable_p (XEXP (x, i), regno))
3209 return 0;
3210 break;
3211 case 'E':
3212 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3213 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3214 return 0;
3215 break;
3216 }
3217
3218 return 1;
3219 }
3220
3221 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3222 true. */
3223 static int
3224 contains_replace_regs (rtx x)
3225 {
3226 int i, j;
3227 const char *fmt;
3228 enum rtx_code code = GET_CODE (x);
3229
3230 switch (code)
3231 {
3232 case CONST:
3233 case LABEL_REF:
3234 case SYMBOL_REF:
3235 CASE_CONST_ANY:
3236 case PC:
3237 case CC0:
3238 case HIGH:
3239 return 0;
3240
3241 case REG:
3242 return reg_equiv[REGNO (x)].replace;
3243
3244 default:
3245 break;
3246 }
3247
3248 fmt = GET_RTX_FORMAT (code);
3249 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3250 switch (fmt[i])
3251 {
3252 case 'e':
3253 if (contains_replace_regs (XEXP (x, i)))
3254 return 1;
3255 break;
3256 case 'E':
3257 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3258 if (contains_replace_regs (XVECEXP (x, i, j)))
3259 return 1;
3260 break;
3261 }
3262
3263 return 0;
3264 }
3265
3266 /* TRUE if X references a memory location that would be affected by a store
3267 to MEMREF. */
3268 static int
3269 memref_referenced_p (rtx memref, rtx x)
3270 {
3271 int i, j;
3272 const char *fmt;
3273 enum rtx_code code = GET_CODE (x);
3274
3275 switch (code)
3276 {
3277 case CONST:
3278 case LABEL_REF:
3279 case SYMBOL_REF:
3280 CASE_CONST_ANY:
3281 case PC:
3282 case CC0:
3283 case HIGH:
3284 case LO_SUM:
3285 return 0;
3286
3287 case REG:
3288 return (reg_equiv[REGNO (x)].replacement
3289 && memref_referenced_p (memref,
3290 reg_equiv[REGNO (x)].replacement));
3291
3292 case MEM:
3293 if (true_dependence (memref, VOIDmode, x))
3294 return 1;
3295 break;
3296
3297 case SET:
3298 /* If we are setting a MEM, it doesn't count (its address does), but any
3299 other SET_DEST that has a MEM in it is referencing the MEM. */
3300 if (MEM_P (SET_DEST (x)))
3301 {
3302 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3303 return 1;
3304 }
3305 else if (memref_referenced_p (memref, SET_DEST (x)))
3306 return 1;
3307
3308 return memref_referenced_p (memref, SET_SRC (x));
3309
3310 default:
3311 break;
3312 }
3313
3314 fmt = GET_RTX_FORMAT (code);
3315 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3316 switch (fmt[i])
3317 {
3318 case 'e':
3319 if (memref_referenced_p (memref, XEXP (x, i)))
3320 return 1;
3321 break;
3322 case 'E':
3323 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3324 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3325 return 1;
3326 break;
3327 }
3328
3329 return 0;
3330 }
3331
3332 /* TRUE if some insn in the range (START, END] references a memory location
3333 that would be affected by a store to MEMREF. */
3334 static int
3335 memref_used_between_p (rtx memref, rtx start, rtx end)
3336 {
3337 rtx insn;
3338
3339 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3340 insn = NEXT_INSN (insn))
3341 {
3342 if (!NONDEBUG_INSN_P (insn))
3343 continue;
3344
3345 if (memref_referenced_p (memref, PATTERN (insn)))
3346 return 1;
3347
3348 /* Nonconst functions may access memory. */
3349 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3350 return 1;
3351 }
3352
3353 return 0;
3354 }
3355
3356 /* Mark REG as having no known equivalence.
3357 Some instructions might have been processed before and furnished
3358 with REG_EQUIV notes for this register; these notes will have to be
3359 removed.
3360 STORE is the piece of RTL that does the non-constant / conflicting
3361 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3362 but needs to be there because this function is called from note_stores. */
3363 static void
3364 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3365 void *data ATTRIBUTE_UNUSED)
3366 {
3367 int regno;
3368 rtx list;
3369
3370 if (!REG_P (reg))
3371 return;
3372 regno = REGNO (reg);
3373 list = reg_equiv[regno].init_insns;
3374 if (list == const0_rtx)
3375 return;
3376 reg_equiv[regno].init_insns = const0_rtx;
3377 reg_equiv[regno].replacement = NULL_RTX;
3378 /* This doesn't matter for equivalences made for argument registers, we
3379 should keep their initialization insns. */
3380 if (reg_equiv[regno].is_arg_equivalence)
3381 return;
3382 ira_reg_equiv[regno].defined_p = false;
3383 ira_reg_equiv[regno].init_insns = NULL_RTX;
3384 for (; list; list = XEXP (list, 1))
3385 {
3386 rtx insn = XEXP (list, 0);
3387 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3388 }
3389 }
3390
3391 /* Check whether the SUBREG is a paradoxical subreg and set the result
3392 in PDX_SUBREGS. */
3393
3394 static int
3395 set_paradoxical_subreg (rtx *subreg, void *pdx_subregs)
3396 {
3397 rtx reg;
3398
3399 if ((*subreg) == NULL_RTX)
3400 return 1;
3401 if (GET_CODE (*subreg) != SUBREG)
3402 return 0;
3403 reg = SUBREG_REG (*subreg);
3404 if (!REG_P (reg))
3405 return 0;
3406
3407 if (paradoxical_subreg_p (*subreg))
3408 ((bool *)pdx_subregs)[REGNO (reg)] = true;
3409
3410 return 0;
3411 }
3412
3413 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3414 equivalent replacement. */
3415
3416 static rtx
3417 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3418 {
3419 if (REG_P (loc))
3420 {
3421 bitmap cleared_regs = (bitmap) data;
3422 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3423 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
3424 NULL_RTX, adjust_cleared_regs, data);
3425 }
3426 return NULL_RTX;
3427 }
3428
3429 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3430 static int recorded_label_ref;
3431
3432 /* Find registers that are equivalent to a single value throughout the
3433 compilation (either because they can be referenced in memory or are
3434 set once from a single constant). Lower their priority for a
3435 register.
3436
3437 If such a register is only referenced once, try substituting its
3438 value into the using insn. If it succeeds, we can eliminate the
3439 register completely.
3440
3441 Initialize init_insns in ira_reg_equiv array.
3442
3443 Return non-zero if jump label rebuilding should be done. */
3444 static int
3445 update_equiv_regs (void)
3446 {
3447 rtx insn;
3448 basic_block bb;
3449 int loop_depth;
3450 bitmap cleared_regs;
3451 bool *pdx_subregs;
3452
3453 /* We need to keep track of whether or not we recorded a LABEL_REF so
3454 that we know if the jump optimizer needs to be rerun. */
3455 recorded_label_ref = 0;
3456
3457 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3458 subreg. */
3459 pdx_subregs = XCNEWVEC (bool, max_regno);
3460
3461 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3462 grow_reg_equivs ();
3463
3464 init_alias_analysis ();
3465
3466 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3467 paradoxical subreg. Don't set such reg sequivalent to a mem,
3468 because lra will not substitute such equiv memory in order to
3469 prevent access beyond allocated memory for paradoxical memory subreg. */
3470 FOR_EACH_BB (bb)
3471 FOR_BB_INSNS (bb, insn)
3472 if (NONDEBUG_INSN_P (insn))
3473 for_each_rtx (&insn, set_paradoxical_subreg, (void *) pdx_subregs);
3474
3475 /* Scan the insns and find which registers have equivalences. Do this
3476 in a separate scan of the insns because (due to -fcse-follow-jumps)
3477 a register can be set below its use. */
3478 FOR_EACH_BB (bb)
3479 {
3480 loop_depth = bb_loop_depth (bb);
3481
3482 for (insn = BB_HEAD (bb);
3483 insn != NEXT_INSN (BB_END (bb));
3484 insn = NEXT_INSN (insn))
3485 {
3486 rtx note;
3487 rtx set;
3488 rtx dest, src;
3489 int regno;
3490
3491 if (! INSN_P (insn))
3492 continue;
3493
3494 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3495 if (REG_NOTE_KIND (note) == REG_INC)
3496 no_equiv (XEXP (note, 0), note, NULL);
3497
3498 set = single_set (insn);
3499
3500 /* If this insn contains more (or less) than a single SET,
3501 only mark all destinations as having no known equivalence. */
3502 if (set == 0)
3503 {
3504 note_stores (PATTERN (insn), no_equiv, NULL);
3505 continue;
3506 }
3507 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3508 {
3509 int i;
3510
3511 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3512 {
3513 rtx part = XVECEXP (PATTERN (insn), 0, i);
3514 if (part != set)
3515 note_stores (part, no_equiv, NULL);
3516 }
3517 }
3518
3519 dest = SET_DEST (set);
3520 src = SET_SRC (set);
3521
3522 /* See if this is setting up the equivalence between an argument
3523 register and its stack slot. */
3524 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3525 if (note)
3526 {
3527 gcc_assert (REG_P (dest));
3528 regno = REGNO (dest);
3529
3530 /* Note that we don't want to clear init_insns in
3531 ira_reg_equiv even if there are multiple sets of this
3532 register. */
3533 reg_equiv[regno].is_arg_equivalence = 1;
3534
3535 /* The insn result can have equivalence memory although
3536 the equivalence is not set up by the insn. We add
3537 this insn to init insns as it is a flag for now that
3538 regno has an equivalence. We will remove the insn
3539 from init insn list later. */
3540 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3541 ira_reg_equiv[regno].init_insns
3542 = gen_rtx_INSN_LIST (VOIDmode, insn,
3543 ira_reg_equiv[regno].init_insns);
3544
3545 /* Continue normally in case this is a candidate for
3546 replacements. */
3547 }
3548
3549 if (!optimize)
3550 continue;
3551
3552 /* We only handle the case of a pseudo register being set
3553 once, or always to the same value. */
3554 /* ??? The mn10200 port breaks if we add equivalences for
3555 values that need an ADDRESS_REGS register and set them equivalent
3556 to a MEM of a pseudo. The actual problem is in the over-conservative
3557 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3558 calculate_needs, but we traditionally work around this problem
3559 here by rejecting equivalences when the destination is in a register
3560 that's likely spilled. This is fragile, of course, since the
3561 preferred class of a pseudo depends on all instructions that set
3562 or use it. */
3563
3564 if (!REG_P (dest)
3565 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3566 || reg_equiv[regno].init_insns == const0_rtx
3567 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3568 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3569 {
3570 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3571 also set somewhere else to a constant. */
3572 note_stores (set, no_equiv, NULL);
3573 continue;
3574 }
3575
3576 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3577 if (MEM_P (src) && pdx_subregs[regno])
3578 {
3579 note_stores (set, no_equiv, NULL);
3580 continue;
3581 }
3582
3583 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3584
3585 /* cse sometimes generates function invariants, but doesn't put a
3586 REG_EQUAL note on the insn. Since this note would be redundant,
3587 there's no point creating it earlier than here. */
3588 if (! note && ! rtx_varies_p (src, 0))
3589 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3590
3591 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3592 since it represents a function call */
3593 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3594 note = NULL_RTX;
3595
3596 if (DF_REG_DEF_COUNT (regno) != 1
3597 && (! note
3598 || rtx_varies_p (XEXP (note, 0), 0)
3599 || (reg_equiv[regno].replacement
3600 && ! rtx_equal_p (XEXP (note, 0),
3601 reg_equiv[regno].replacement))))
3602 {
3603 no_equiv (dest, set, NULL);
3604 continue;
3605 }
3606 /* Record this insn as initializing this register. */
3607 reg_equiv[regno].init_insns
3608 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3609
3610 /* If this register is known to be equal to a constant, record that
3611 it is always equivalent to the constant. */
3612 if (DF_REG_DEF_COUNT (regno) == 1
3613 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3614 {
3615 rtx note_value = XEXP (note, 0);
3616 remove_note (insn, note);
3617 set_unique_reg_note (insn, REG_EQUIV, note_value);
3618 }
3619
3620 /* If this insn introduces a "constant" register, decrease the priority
3621 of that register. Record this insn if the register is only used once
3622 more and the equivalence value is the same as our source.
3623
3624 The latter condition is checked for two reasons: First, it is an
3625 indication that it may be more efficient to actually emit the insn
3626 as written (if no registers are available, reload will substitute
3627 the equivalence). Secondly, it avoids problems with any registers
3628 dying in this insn whose death notes would be missed.
3629
3630 If we don't have a REG_EQUIV note, see if this insn is loading
3631 a register used only in one basic block from a MEM. If so, and the
3632 MEM remains unchanged for the life of the register, add a REG_EQUIV
3633 note. */
3634
3635 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3636
3637 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3638 && MEM_P (SET_SRC (set))
3639 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3640 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3641
3642 if (note)
3643 {
3644 int regno = REGNO (dest);
3645 rtx x = XEXP (note, 0);
3646
3647 /* If we haven't done so, record for reload that this is an
3648 equivalencing insn. */
3649 if (!reg_equiv[regno].is_arg_equivalence)
3650 ira_reg_equiv[regno].init_insns
3651 = gen_rtx_INSN_LIST (VOIDmode, insn,
3652 ira_reg_equiv[regno].init_insns);
3653
3654 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3655 We might end up substituting the LABEL_REF for uses of the
3656 pseudo here or later. That kind of transformation may turn an
3657 indirect jump into a direct jump, in which case we must rerun the
3658 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3659 if (GET_CODE (x) == LABEL_REF
3660 || (GET_CODE (x) == CONST
3661 && GET_CODE (XEXP (x, 0)) == PLUS
3662 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3663 recorded_label_ref = 1;
3664
3665 reg_equiv[regno].replacement = x;
3666 reg_equiv[regno].src_p = &SET_SRC (set);
3667 reg_equiv[regno].loop_depth = loop_depth;
3668
3669 /* Don't mess with things live during setjmp. */
3670 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3671 {
3672 /* Note that the statement below does not affect the priority
3673 in local-alloc! */
3674 REG_LIVE_LENGTH (regno) *= 2;
3675
3676 /* If the register is referenced exactly twice, meaning it is
3677 set once and used once, indicate that the reference may be
3678 replaced by the equivalence we computed above. Do this
3679 even if the register is only used in one block so that
3680 dependencies can be handled where the last register is
3681 used in a different block (i.e. HIGH / LO_SUM sequences)
3682 and to reduce the number of registers alive across
3683 calls. */
3684
3685 if (REG_N_REFS (regno) == 2
3686 && (rtx_equal_p (x, src)
3687 || ! equiv_init_varies_p (src))
3688 && NONJUMP_INSN_P (insn)
3689 && equiv_init_movable_p (PATTERN (insn), regno))
3690 reg_equiv[regno].replace = 1;
3691 }
3692 }
3693 }
3694 }
3695
3696 if (!optimize)
3697 goto out;
3698
3699 /* A second pass, to gather additional equivalences with memory. This needs
3700 to be done after we know which registers we are going to replace. */
3701
3702 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3703 {
3704 rtx set, src, dest;
3705 unsigned regno;
3706
3707 if (! INSN_P (insn))
3708 continue;
3709
3710 set = single_set (insn);
3711 if (! set)
3712 continue;
3713
3714 dest = SET_DEST (set);
3715 src = SET_SRC (set);
3716
3717 /* If this sets a MEM to the contents of a REG that is only used
3718 in a single basic block, see if the register is always equivalent
3719 to that memory location and if moving the store from INSN to the
3720 insn that set REG is safe. If so, put a REG_EQUIV note on the
3721 initializing insn.
3722
3723 Don't add a REG_EQUIV note if the insn already has one. The existing
3724 REG_EQUIV is likely more useful than the one we are adding.
3725
3726 If one of the regs in the address has reg_equiv[REGNO].replace set,
3727 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3728 optimization may move the set of this register immediately before
3729 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3730 the mention in the REG_EQUIV note would be to an uninitialized
3731 pseudo. */
3732
3733 if (MEM_P (dest) && REG_P (src)
3734 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3735 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3736 && DF_REG_DEF_COUNT (regno) == 1
3737 && reg_equiv[regno].init_insns != 0
3738 && reg_equiv[regno].init_insns != const0_rtx
3739 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3740 REG_EQUIV, NULL_RTX)
3741 && ! contains_replace_regs (XEXP (dest, 0))
3742 && ! pdx_subregs[regno])
3743 {
3744 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3745 if (validate_equiv_mem (init_insn, src, dest)
3746 && ! memref_used_between_p (dest, init_insn, insn)
3747 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3748 multiple sets. */
3749 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3750 {
3751 /* This insn makes the equivalence, not the one initializing
3752 the register. */
3753 ira_reg_equiv[regno].init_insns
3754 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3755 df_notes_rescan (init_insn);
3756 }
3757 }
3758 }
3759
3760 cleared_regs = BITMAP_ALLOC (NULL);
3761 /* Now scan all regs killed in an insn to see if any of them are
3762 registers only used that once. If so, see if we can replace the
3763 reference with the equivalent form. If we can, delete the
3764 initializing reference and this register will go away. If we
3765 can't replace the reference, and the initializing reference is
3766 within the same loop (or in an inner loop), then move the register
3767 initialization just before the use, so that they are in the same
3768 basic block. */
3769 FOR_EACH_BB_REVERSE (bb)
3770 {
3771 loop_depth = bb_loop_depth (bb);
3772 for (insn = BB_END (bb);
3773 insn != PREV_INSN (BB_HEAD (bb));
3774 insn = PREV_INSN (insn))
3775 {
3776 rtx link;
3777
3778 if (! INSN_P (insn))
3779 continue;
3780
3781 /* Don't substitute into a non-local goto, this confuses CFG. */
3782 if (JUMP_P (insn)
3783 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3784 continue;
3785
3786 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3787 {
3788 if (REG_NOTE_KIND (link) == REG_DEAD
3789 /* Make sure this insn still refers to the register. */
3790 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3791 {
3792 int regno = REGNO (XEXP (link, 0));
3793 rtx equiv_insn;
3794
3795 if (! reg_equiv[regno].replace
3796 || reg_equiv[regno].loop_depth < loop_depth
3797 /* There is no sense to move insns if we did
3798 register pressure-sensitive scheduling was
3799 done because it will not improve allocation
3800 but worsen insn schedule with a big
3801 probability. */
3802 || (flag_sched_pressure && flag_schedule_insns))
3803 continue;
3804
3805 /* reg_equiv[REGNO].replace gets set only when
3806 REG_N_REFS[REGNO] is 2, i.e. the register is set
3807 once and used once. (If it were only set, but
3808 not used, flow would have deleted the setting
3809 insns.) Hence there can only be one insn in
3810 reg_equiv[REGNO].init_insns. */
3811 gcc_assert (reg_equiv[regno].init_insns
3812 && !XEXP (reg_equiv[regno].init_insns, 1));
3813 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3814
3815 /* We may not move instructions that can throw, since
3816 that changes basic block boundaries and we are not
3817 prepared to adjust the CFG to match. */
3818 if (can_throw_internal (equiv_insn))
3819 continue;
3820
3821 if (asm_noperands (PATTERN (equiv_insn)) < 0
3822 && validate_replace_rtx (regno_reg_rtx[regno],
3823 *(reg_equiv[regno].src_p), insn))
3824 {
3825 rtx equiv_link;
3826 rtx last_link;
3827 rtx note;
3828
3829 /* Find the last note. */
3830 for (last_link = link; XEXP (last_link, 1);
3831 last_link = XEXP (last_link, 1))
3832 ;
3833
3834 /* Append the REG_DEAD notes from equiv_insn. */
3835 equiv_link = REG_NOTES (equiv_insn);
3836 while (equiv_link)
3837 {
3838 note = equiv_link;
3839 equiv_link = XEXP (equiv_link, 1);
3840 if (REG_NOTE_KIND (note) == REG_DEAD)
3841 {
3842 remove_note (equiv_insn, note);
3843 XEXP (last_link, 1) = note;
3844 XEXP (note, 1) = NULL_RTX;
3845 last_link = note;
3846 }
3847 }
3848
3849 remove_death (regno, insn);
3850 SET_REG_N_REFS (regno, 0);
3851 REG_FREQ (regno) = 0;
3852 delete_insn (equiv_insn);
3853
3854 reg_equiv[regno].init_insns
3855 = XEXP (reg_equiv[regno].init_insns, 1);
3856
3857 ira_reg_equiv[regno].init_insns = NULL_RTX;
3858 bitmap_set_bit (cleared_regs, regno);
3859 }
3860 /* Move the initialization of the register to just before
3861 INSN. Update the flow information. */
3862 else if (prev_nondebug_insn (insn) != equiv_insn)
3863 {
3864 rtx new_insn;
3865
3866 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3867 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3868 REG_NOTES (equiv_insn) = 0;
3869 /* Rescan it to process the notes. */
3870 df_insn_rescan (new_insn);
3871
3872 /* Make sure this insn is recognized before
3873 reload begins, otherwise
3874 eliminate_regs_in_insn will die. */
3875 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3876
3877 delete_insn (equiv_insn);
3878
3879 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3880
3881 REG_BASIC_BLOCK (regno) = bb->index;
3882 REG_N_CALLS_CROSSED (regno) = 0;
3883 REG_FREQ_CALLS_CROSSED (regno) = 0;
3884 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3885 REG_LIVE_LENGTH (regno) = 2;
3886
3887 if (insn == BB_HEAD (bb))
3888 BB_HEAD (bb) = PREV_INSN (insn);
3889
3890 ira_reg_equiv[regno].init_insns
3891 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3892 bitmap_set_bit (cleared_regs, regno);
3893 }
3894 }
3895 }
3896 }
3897 }
3898
3899 if (!bitmap_empty_p (cleared_regs))
3900 {
3901 FOR_EACH_BB (bb)
3902 {
3903 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3904 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3905 if (! df_live)
3906 continue;
3907 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3908 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3909 }
3910
3911 /* Last pass - adjust debug insns referencing cleared regs. */
3912 if (MAY_HAVE_DEBUG_INSNS)
3913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3914 if (DEBUG_INSN_P (insn))
3915 {
3916 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3917 INSN_VAR_LOCATION_LOC (insn)
3918 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3919 adjust_cleared_regs,
3920 (void *) cleared_regs);
3921 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3922 df_insn_rescan (insn);
3923 }
3924 }
3925
3926 BITMAP_FREE (cleared_regs);
3927
3928 out:
3929 /* Clean up. */
3930
3931 end_alias_analysis ();
3932 free (reg_equiv);
3933 free (pdx_subregs);
3934 return recorded_label_ref;
3935 }
3936
3937 \f
3938
3939 /* Set up fields memory, constant, and invariant from init_insns in
3940 the structures of array ira_reg_equiv. */
3941 static void
3942 setup_reg_equiv (void)
3943 {
3944 int i;
3945 rtx elem, prev_elem, next_elem, insn, set, x;
3946
3947 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3948 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3949 elem;
3950 prev_elem = elem, elem = next_elem)
3951 {
3952 next_elem = XEXP (elem, 1);
3953 insn = XEXP (elem, 0);
3954 set = single_set (insn);
3955
3956 /* Init insns can set up equivalence when the reg is a destination or
3957 a source (in this case the destination is memory). */
3958 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3959 {
3960 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3961 {
3962 x = XEXP (x, 0);
3963 if (REG_P (SET_DEST (set))
3964 && REGNO (SET_DEST (set)) == (unsigned int) i
3965 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3966 {
3967 /* This insn reporting the equivalence but
3968 actually not setting it. Remove it from the
3969 list. */
3970 if (prev_elem == NULL)
3971 ira_reg_equiv[i].init_insns = next_elem;
3972 else
3973 XEXP (prev_elem, 1) = next_elem;
3974 elem = prev_elem;
3975 }
3976 }
3977 else if (REG_P (SET_DEST (set))
3978 && REGNO (SET_DEST (set)) == (unsigned int) i)
3979 x = SET_SRC (set);
3980 else
3981 {
3982 gcc_assert (REG_P (SET_SRC (set))
3983 && REGNO (SET_SRC (set)) == (unsigned int) i);
3984 x = SET_DEST (set);
3985 }
3986 if (! function_invariant_p (x)
3987 || ! flag_pic
3988 /* A function invariant is often CONSTANT_P but may
3989 include a register. We promise to only pass
3990 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3991 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3992 {
3993 /* It can happen that a REG_EQUIV note contains a MEM
3994 that is not a legitimate memory operand. As later
3995 stages of reload assume that all addresses found in
3996 the lra_regno_equiv_* arrays were originally
3997 legitimate, we ignore such REG_EQUIV notes. */
3998 if (memory_operand (x, VOIDmode))
3999 {
4000 ira_reg_equiv[i].defined_p = true;
4001 ira_reg_equiv[i].memory = x;
4002 continue;
4003 }
4004 else if (function_invariant_p (x))
4005 {
4006 enum machine_mode mode;
4007
4008 mode = GET_MODE (SET_DEST (set));
4009 if (GET_CODE (x) == PLUS
4010 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4011 /* This is PLUS of frame pointer and a constant,
4012 or fp, or argp. */
4013 ira_reg_equiv[i].invariant = x;
4014 else if (targetm.legitimate_constant_p (mode, x))
4015 ira_reg_equiv[i].constant = x;
4016 else
4017 {
4018 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4019 if (ira_reg_equiv[i].memory == NULL_RTX)
4020 {
4021 ira_reg_equiv[i].defined_p = false;
4022 ira_reg_equiv[i].init_insns = NULL_RTX;
4023 break;
4024 }
4025 }
4026 ira_reg_equiv[i].defined_p = true;
4027 continue;
4028 }
4029 }
4030 }
4031 ira_reg_equiv[i].defined_p = false;
4032 ira_reg_equiv[i].init_insns = NULL_RTX;
4033 break;
4034 }
4035 }
4036
4037 \f
4038
4039 /* Print chain C to FILE. */
4040 static void
4041 print_insn_chain (FILE *file, struct insn_chain *c)
4042 {
4043 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4044 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4045 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4046 }
4047
4048
4049 /* Print all reload_insn_chains to FILE. */
4050 static void
4051 print_insn_chains (FILE *file)
4052 {
4053 struct insn_chain *c;
4054 for (c = reload_insn_chain; c ; c = c->next)
4055 print_insn_chain (file, c);
4056 }
4057
4058 /* Return true if pseudo REGNO should be added to set live_throughout
4059 or dead_or_set of the insn chains for reload consideration. */
4060 static bool
4061 pseudo_for_reload_consideration_p (int regno)
4062 {
4063 /* Consider spilled pseudos too for IRA because they still have a
4064 chance to get hard-registers in the reload when IRA is used. */
4065 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4066 }
4067
4068 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4069 REG to the number of nregs, and INIT_VALUE to get the
4070 initialization. ALLOCNUM need not be the regno of REG. */
4071 static void
4072 init_live_subregs (bool init_value, sbitmap *live_subregs,
4073 bitmap live_subregs_used, int allocnum, rtx reg)
4074 {
4075 unsigned int regno = REGNO (SUBREG_REG (reg));
4076 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4077
4078 gcc_assert (size > 0);
4079
4080 /* Been there, done that. */
4081 if (bitmap_bit_p (live_subregs_used, allocnum))
4082 return;
4083
4084 /* Create a new one. */
4085 if (live_subregs[allocnum] == NULL)
4086 live_subregs[allocnum] = sbitmap_alloc (size);
4087
4088 /* If the entire reg was live before blasting into subregs, we need
4089 to init all of the subregs to ones else init to 0. */
4090 if (init_value)
4091 bitmap_ones (live_subregs[allocnum]);
4092 else
4093 bitmap_clear (live_subregs[allocnum]);
4094
4095 bitmap_set_bit (live_subregs_used, allocnum);
4096 }
4097
4098 /* Walk the insns of the current function and build reload_insn_chain,
4099 and record register life information. */
4100 static void
4101 build_insn_chain (void)
4102 {
4103 unsigned int i;
4104 struct insn_chain **p = &reload_insn_chain;
4105 basic_block bb;
4106 struct insn_chain *c = NULL;
4107 struct insn_chain *next = NULL;
4108 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4109 bitmap elim_regset = BITMAP_ALLOC (NULL);
4110 /* live_subregs is a vector used to keep accurate information about
4111 which hardregs are live in multiword pseudos. live_subregs and
4112 live_subregs_used are indexed by pseudo number. The live_subreg
4113 entry for a particular pseudo is only used if the corresponding
4114 element is non zero in live_subregs_used. The sbitmap size of
4115 live_subreg[allocno] is number of bytes that the pseudo can
4116 occupy. */
4117 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4118 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4119
4120 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4121 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4122 bitmap_set_bit (elim_regset, i);
4123 FOR_EACH_BB_REVERSE (bb)
4124 {
4125 bitmap_iterator bi;
4126 rtx insn;
4127
4128 CLEAR_REG_SET (live_relevant_regs);
4129 bitmap_clear (live_subregs_used);
4130
4131 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4132 {
4133 if (i >= FIRST_PSEUDO_REGISTER)
4134 break;
4135 bitmap_set_bit (live_relevant_regs, i);
4136 }
4137
4138 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4139 FIRST_PSEUDO_REGISTER, i, bi)
4140 {
4141 if (pseudo_for_reload_consideration_p (i))
4142 bitmap_set_bit (live_relevant_regs, i);
4143 }
4144
4145 FOR_BB_INSNS_REVERSE (bb, insn)
4146 {
4147 if (!NOTE_P (insn) && !BARRIER_P (insn))
4148 {
4149 unsigned int uid = INSN_UID (insn);
4150 df_ref *def_rec;
4151 df_ref *use_rec;
4152
4153 c = new_insn_chain ();
4154 c->next = next;
4155 next = c;
4156 *p = c;
4157 p = &c->prev;
4158
4159 c->insn = insn;
4160 c->block = bb->index;
4161
4162 if (NONDEBUG_INSN_P (insn))
4163 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4164 {
4165 df_ref def = *def_rec;
4166 unsigned int regno = DF_REF_REGNO (def);
4167
4168 /* Ignore may clobbers because these are generated
4169 from calls. However, every other kind of def is
4170 added to dead_or_set. */
4171 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4172 {
4173 if (regno < FIRST_PSEUDO_REGISTER)
4174 {
4175 if (!fixed_regs[regno])
4176 bitmap_set_bit (&c->dead_or_set, regno);
4177 }
4178 else if (pseudo_for_reload_consideration_p (regno))
4179 bitmap_set_bit (&c->dead_or_set, regno);
4180 }
4181
4182 if ((regno < FIRST_PSEUDO_REGISTER
4183 || reg_renumber[regno] >= 0
4184 || ira_conflicts_p)
4185 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4186 {
4187 rtx reg = DF_REF_REG (def);
4188
4189 /* We can model subregs, but not if they are
4190 wrapped in ZERO_EXTRACTS. */
4191 if (GET_CODE (reg) == SUBREG
4192 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4193 {
4194 unsigned int start = SUBREG_BYTE (reg);
4195 unsigned int last = start
4196 + GET_MODE_SIZE (GET_MODE (reg));
4197
4198 init_live_subregs
4199 (bitmap_bit_p (live_relevant_regs, regno),
4200 live_subregs, live_subregs_used, regno, reg);
4201
4202 if (!DF_REF_FLAGS_IS_SET
4203 (def, DF_REF_STRICT_LOW_PART))
4204 {
4205 /* Expand the range to cover entire words.
4206 Bytes added here are "don't care". */
4207 start
4208 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4209 last = ((last + UNITS_PER_WORD - 1)
4210 / UNITS_PER_WORD * UNITS_PER_WORD);
4211 }
4212
4213 /* Ignore the paradoxical bits. */
4214 if (last > SBITMAP_SIZE (live_subregs[regno]))
4215 last = SBITMAP_SIZE (live_subregs[regno]);
4216
4217 while (start < last)
4218 {
4219 bitmap_clear_bit (live_subregs[regno], start);
4220 start++;
4221 }
4222
4223 if (bitmap_empty_p (live_subregs[regno]))
4224 {
4225 bitmap_clear_bit (live_subregs_used, regno);
4226 bitmap_clear_bit (live_relevant_regs, regno);
4227 }
4228 else
4229 /* Set live_relevant_regs here because
4230 that bit has to be true to get us to
4231 look at the live_subregs fields. */
4232 bitmap_set_bit (live_relevant_regs, regno);
4233 }
4234 else
4235 {
4236 /* DF_REF_PARTIAL is generated for
4237 subregs, STRICT_LOW_PART, and
4238 ZERO_EXTRACT. We handle the subreg
4239 case above so here we have to keep from
4240 modeling the def as a killing def. */
4241 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4242 {
4243 bitmap_clear_bit (live_subregs_used, regno);
4244 bitmap_clear_bit (live_relevant_regs, regno);
4245 }
4246 }
4247 }
4248 }
4249
4250 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4251 bitmap_copy (&c->live_throughout, live_relevant_regs);
4252
4253 if (NONDEBUG_INSN_P (insn))
4254 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
4255 {
4256 df_ref use = *use_rec;
4257 unsigned int regno = DF_REF_REGNO (use);
4258 rtx reg = DF_REF_REG (use);
4259
4260 /* DF_REF_READ_WRITE on a use means that this use
4261 is fabricated from a def that is a partial set
4262 to a multiword reg. Here, we only model the
4263 subreg case that is not wrapped in ZERO_EXTRACT
4264 precisely so we do not need to look at the
4265 fabricated use. */
4266 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4267 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4268 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4269 continue;
4270
4271 /* Add the last use of each var to dead_or_set. */
4272 if (!bitmap_bit_p (live_relevant_regs, regno))
4273 {
4274 if (regno < FIRST_PSEUDO_REGISTER)
4275 {
4276 if (!fixed_regs[regno])
4277 bitmap_set_bit (&c->dead_or_set, regno);
4278 }
4279 else if (pseudo_for_reload_consideration_p (regno))
4280 bitmap_set_bit (&c->dead_or_set, regno);
4281 }
4282
4283 if (regno < FIRST_PSEUDO_REGISTER
4284 || pseudo_for_reload_consideration_p (regno))
4285 {
4286 if (GET_CODE (reg) == SUBREG
4287 && !DF_REF_FLAGS_IS_SET (use,
4288 DF_REF_SIGN_EXTRACT
4289 | DF_REF_ZERO_EXTRACT))
4290 {
4291 unsigned int start = SUBREG_BYTE (reg);
4292 unsigned int last = start
4293 + GET_MODE_SIZE (GET_MODE (reg));
4294
4295 init_live_subregs
4296 (bitmap_bit_p (live_relevant_regs, regno),
4297 live_subregs, live_subregs_used, regno, reg);
4298
4299 /* Ignore the paradoxical bits. */
4300 if (last > SBITMAP_SIZE (live_subregs[regno]))
4301 last = SBITMAP_SIZE (live_subregs[regno]);
4302
4303 while (start < last)
4304 {
4305 bitmap_set_bit (live_subregs[regno], start);
4306 start++;
4307 }
4308 }
4309 else
4310 /* Resetting the live_subregs_used is
4311 effectively saying do not use the subregs
4312 because we are reading the whole
4313 pseudo. */
4314 bitmap_clear_bit (live_subregs_used, regno);
4315 bitmap_set_bit (live_relevant_regs, regno);
4316 }
4317 }
4318 }
4319 }
4320
4321 /* FIXME!! The following code is a disaster. Reload needs to see the
4322 labels and jump tables that are just hanging out in between
4323 the basic blocks. See pr33676. */
4324 insn = BB_HEAD (bb);
4325
4326 /* Skip over the barriers and cruft. */
4327 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4328 || BLOCK_FOR_INSN (insn) == bb))
4329 insn = PREV_INSN (insn);
4330
4331 /* While we add anything except barriers and notes, the focus is
4332 to get the labels and jump tables into the
4333 reload_insn_chain. */
4334 while (insn)
4335 {
4336 if (!NOTE_P (insn) && !BARRIER_P (insn))
4337 {
4338 if (BLOCK_FOR_INSN (insn))
4339 break;
4340
4341 c = new_insn_chain ();
4342 c->next = next;
4343 next = c;
4344 *p = c;
4345 p = &c->prev;
4346
4347 /* The block makes no sense here, but it is what the old
4348 code did. */
4349 c->block = bb->index;
4350 c->insn = insn;
4351 bitmap_copy (&c->live_throughout, live_relevant_regs);
4352 }
4353 insn = PREV_INSN (insn);
4354 }
4355 }
4356
4357 reload_insn_chain = c;
4358 *p = NULL;
4359
4360 for (i = 0; i < (unsigned int) max_regno; i++)
4361 if (live_subregs[i] != NULL)
4362 sbitmap_free (live_subregs[i]);
4363 free (live_subregs);
4364 BITMAP_FREE (live_subregs_used);
4365 BITMAP_FREE (live_relevant_regs);
4366 BITMAP_FREE (elim_regset);
4367
4368 if (dump_file)
4369 print_insn_chains (dump_file);
4370 }
4371 \f
4372 /* Examine the rtx found in *LOC, which is read or written to as determined
4373 by TYPE. Return false if we find a reason why an insn containing this
4374 rtx should not be moved (such as accesses to non-constant memory), true
4375 otherwise. */
4376 static bool
4377 rtx_moveable_p (rtx *loc, enum op_type type)
4378 {
4379 const char *fmt;
4380 rtx x = *loc;
4381 enum rtx_code code = GET_CODE (x);
4382 int i, j;
4383
4384 code = GET_CODE (x);
4385 switch (code)
4386 {
4387 case CONST:
4388 CASE_CONST_ANY:
4389 case SYMBOL_REF:
4390 case LABEL_REF:
4391 return true;
4392
4393 case PC:
4394 return type == OP_IN;
4395
4396 case CC0:
4397 return false;
4398
4399 case REG:
4400 if (x == frame_pointer_rtx)
4401 return true;
4402 if (HARD_REGISTER_P (x))
4403 return false;
4404
4405 return true;
4406
4407 case MEM:
4408 if (type == OP_IN && MEM_READONLY_P (x))
4409 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4410 return false;
4411
4412 case SET:
4413 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4414 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4415
4416 case STRICT_LOW_PART:
4417 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4418
4419 case ZERO_EXTRACT:
4420 case SIGN_EXTRACT:
4421 return (rtx_moveable_p (&XEXP (x, 0), type)
4422 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4423 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4424
4425 case CLOBBER:
4426 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4427
4428 default:
4429 break;
4430 }
4431
4432 fmt = GET_RTX_FORMAT (code);
4433 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4434 {
4435 if (fmt[i] == 'e')
4436 {
4437 if (!rtx_moveable_p (&XEXP (x, i), type))
4438 return false;
4439 }
4440 else if (fmt[i] == 'E')
4441 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4442 {
4443 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4444 return false;
4445 }
4446 }
4447 return true;
4448 }
4449
4450 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4451 to give dominance relationships between two insns I1 and I2. */
4452 static bool
4453 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4454 {
4455 basic_block bb1 = BLOCK_FOR_INSN (i1);
4456 basic_block bb2 = BLOCK_FOR_INSN (i2);
4457
4458 if (bb1 == bb2)
4459 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4460 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4461 }
4462
4463 /* Record the range of register numbers added by find_moveable_pseudos. */
4464 int first_moveable_pseudo, last_moveable_pseudo;
4465
4466 /* These two vectors hold data for every register added by
4467 find_movable_pseudos, with index 0 holding data for the
4468 first_moveable_pseudo. */
4469 /* The original home register. */
4470 static vec<rtx> pseudo_replaced_reg;
4471
4472 /* Look for instances where we have an instruction that is known to increase
4473 register pressure, and whose result is not used immediately. If it is
4474 possible to move the instruction downwards to just before its first use,
4475 split its lifetime into two ranges. We create a new pseudo to compute the
4476 value, and emit a move instruction just before the first use. If, after
4477 register allocation, the new pseudo remains unallocated, the function
4478 move_unallocated_pseudos then deletes the move instruction and places
4479 the computation just before the first use.
4480
4481 Such a move is safe and profitable if all the input registers remain live
4482 and unchanged between the original computation and its first use. In such
4483 a situation, the computation is known to increase register pressure, and
4484 moving it is known to at least not worsen it.
4485
4486 We restrict moves to only those cases where a register remains unallocated,
4487 in order to avoid interfering too much with the instruction schedule. As
4488 an exception, we may move insns which only modify their input register
4489 (typically induction variables), as this increases the freedom for our
4490 intended transformation, and does not limit the second instruction
4491 scheduler pass. */
4492
4493 static void
4494 find_moveable_pseudos (void)
4495 {
4496 unsigned i;
4497 int max_regs = max_reg_num ();
4498 int max_uid = get_max_uid ();
4499 basic_block bb;
4500 int *uid_luid = XNEWVEC (int, max_uid);
4501 rtx *closest_uses = XNEWVEC (rtx, max_regs);
4502 /* A set of registers which are live but not modified throughout a block. */
4503 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block);
4504 /* A set of registers which only exist in a given basic block. */
4505 bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block);
4506 /* A set of registers which are set once, in an instruction that can be
4507 moved freely downwards, but are otherwise transparent to a block. */
4508 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block);
4509 bitmap_head live, used, set, interesting, unusable_as_input;
4510 bitmap_iterator bi;
4511 bitmap_initialize (&interesting, 0);
4512
4513 first_moveable_pseudo = max_regs;
4514 pseudo_replaced_reg.release ();
4515 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4516
4517 df_analyze ();
4518 calculate_dominance_info (CDI_DOMINATORS);
4519
4520 i = 0;
4521 bitmap_initialize (&live, 0);
4522 bitmap_initialize (&used, 0);
4523 bitmap_initialize (&set, 0);
4524 bitmap_initialize (&unusable_as_input, 0);
4525 FOR_EACH_BB (bb)
4526 {
4527 rtx insn;
4528 bitmap transp = bb_transp_live + bb->index;
4529 bitmap moveable = bb_moveable_reg_sets + bb->index;
4530 bitmap local = bb_local + bb->index;
4531
4532 bitmap_initialize (local, 0);
4533 bitmap_initialize (transp, 0);
4534 bitmap_initialize (moveable, 0);
4535 bitmap_copy (&live, df_get_live_out (bb));
4536 bitmap_and_into (&live, df_get_live_in (bb));
4537 bitmap_copy (transp, &live);
4538 bitmap_clear (moveable);
4539 bitmap_clear (&live);
4540 bitmap_clear (&used);
4541 bitmap_clear (&set);
4542 FOR_BB_INSNS (bb, insn)
4543 if (NONDEBUG_INSN_P (insn))
4544 {
4545 df_ref *u_rec, *d_rec;
4546
4547 uid_luid[INSN_UID (insn)] = i++;
4548
4549 u_rec = DF_INSN_USES (insn);
4550 d_rec = DF_INSN_DEFS (insn);
4551 if (d_rec[0] != NULL && d_rec[1] == NULL
4552 && u_rec[0] != NULL && u_rec[1] == NULL
4553 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
4554 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
4555 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4556 {
4557 unsigned regno = DF_REF_REGNO (*u_rec);
4558 bitmap_set_bit (moveable, regno);
4559 bitmap_set_bit (&set, regno);
4560 bitmap_set_bit (&used, regno);
4561 bitmap_clear_bit (transp, regno);
4562 continue;
4563 }
4564 while (*u_rec)
4565 {
4566 unsigned regno = DF_REF_REGNO (*u_rec);
4567 bitmap_set_bit (&used, regno);
4568 if (bitmap_clear_bit (moveable, regno))
4569 bitmap_clear_bit (transp, regno);
4570 u_rec++;
4571 }
4572
4573 while (*d_rec)
4574 {
4575 unsigned regno = DF_REF_REGNO (*d_rec);
4576 bitmap_set_bit (&set, regno);
4577 bitmap_clear_bit (transp, regno);
4578 bitmap_clear_bit (moveable, regno);
4579 d_rec++;
4580 }
4581 }
4582 }
4583
4584 bitmap_clear (&live);
4585 bitmap_clear (&used);
4586 bitmap_clear (&set);
4587
4588 FOR_EACH_BB (bb)
4589 {
4590 bitmap local = bb_local + bb->index;
4591 rtx insn;
4592
4593 FOR_BB_INSNS (bb, insn)
4594 if (NONDEBUG_INSN_P (insn))
4595 {
4596 rtx def_insn, closest_use, note;
4597 df_ref *def_rec, def, use;
4598 unsigned regno;
4599 bool all_dominated, all_local;
4600 enum machine_mode mode;
4601
4602 def_rec = DF_INSN_DEFS (insn);
4603 /* There must be exactly one def in this insn. */
4604 def = *def_rec;
4605 if (!def || def_rec[1] || !single_set (insn))
4606 continue;
4607 /* This must be the only definition of the reg. We also limit
4608 which modes we deal with so that we can assume we can generate
4609 move instructions. */
4610 regno = DF_REF_REGNO (def);
4611 mode = GET_MODE (DF_REF_REG (def));
4612 if (DF_REG_DEF_COUNT (regno) != 1
4613 || !DF_REF_INSN_INFO (def)
4614 || HARD_REGISTER_NUM_P (regno)
4615 || DF_REG_EQ_USE_COUNT (regno) > 0
4616 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4617 continue;
4618 def_insn = DF_REF_INSN (def);
4619
4620 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4621 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4622 break;
4623
4624 if (note)
4625 {
4626 if (dump_file)
4627 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4628 regno);
4629 bitmap_set_bit (&unusable_as_input, regno);
4630 continue;
4631 }
4632
4633 use = DF_REG_USE_CHAIN (regno);
4634 all_dominated = true;
4635 all_local = true;
4636 closest_use = NULL_RTX;
4637 for (; use; use = DF_REF_NEXT_REG (use))
4638 {
4639 rtx insn;
4640 if (!DF_REF_INSN_INFO (use))
4641 {
4642 all_dominated = false;
4643 all_local = false;
4644 break;
4645 }
4646 insn = DF_REF_INSN (use);
4647 if (DEBUG_INSN_P (insn))
4648 continue;
4649 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4650 all_local = false;
4651 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4652 all_dominated = false;
4653 if (closest_use != insn && closest_use != const0_rtx)
4654 {
4655 if (closest_use == NULL_RTX)
4656 closest_use = insn;
4657 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4658 closest_use = insn;
4659 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4660 closest_use = const0_rtx;
4661 }
4662 }
4663 if (!all_dominated)
4664 {
4665 if (dump_file)
4666 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4667 regno);
4668 continue;
4669 }
4670 if (all_local)
4671 bitmap_set_bit (local, regno);
4672 if (closest_use == const0_rtx || closest_use == NULL
4673 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4674 {
4675 if (dump_file)
4676 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4677 closest_use == const0_rtx || closest_use == NULL
4678 ? " (no unique first use)" : "");
4679 continue;
4680 }
4681 #ifdef HAVE_cc0
4682 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4683 {
4684 if (dump_file)
4685 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4686 regno);
4687 continue;
4688 }
4689 #endif
4690 bitmap_set_bit (&interesting, regno);
4691 closest_uses[regno] = closest_use;
4692
4693 if (dump_file && (all_local || all_dominated))
4694 {
4695 fprintf (dump_file, "Reg %u:", regno);
4696 if (all_local)
4697 fprintf (dump_file, " local to bb %d", bb->index);
4698 if (all_dominated)
4699 fprintf (dump_file, " def dominates all uses");
4700 if (closest_use != const0_rtx)
4701 fprintf (dump_file, " has unique first use");
4702 fputs ("\n", dump_file);
4703 }
4704 }
4705 }
4706
4707 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4708 {
4709 df_ref def = DF_REG_DEF_CHAIN (i);
4710 rtx def_insn = DF_REF_INSN (def);
4711 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4712 bitmap def_bb_local = bb_local + def_block->index;
4713 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4714 bitmap def_bb_transp = bb_transp_live + def_block->index;
4715 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4716 rtx use_insn = closest_uses[i];
4717 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
4718 bool all_ok = true;
4719 bool all_transp = true;
4720
4721 if (!REG_P (DF_REF_REG (def)))
4722 continue;
4723
4724 if (!local_to_bb_p)
4725 {
4726 if (dump_file)
4727 fprintf (dump_file, "Reg %u not local to one basic block\n",
4728 i);
4729 continue;
4730 }
4731 if (reg_equiv_init (i) != NULL_RTX)
4732 {
4733 if (dump_file)
4734 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4735 i);
4736 continue;
4737 }
4738 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4739 {
4740 if (dump_file)
4741 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4742 INSN_UID (def_insn), i);
4743 continue;
4744 }
4745 if (dump_file)
4746 fprintf (dump_file, "Examining insn %d, def for %d\n",
4747 INSN_UID (def_insn), i);
4748 while (*def_insn_use_rec != NULL)
4749 {
4750 df_ref use = *def_insn_use_rec;
4751 unsigned regno = DF_REF_REGNO (use);
4752 if (bitmap_bit_p (&unusable_as_input, regno))
4753 {
4754 all_ok = false;
4755 if (dump_file)
4756 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4757 break;
4758 }
4759 if (!bitmap_bit_p (def_bb_transp, regno))
4760 {
4761 if (bitmap_bit_p (def_bb_moveable, regno)
4762 && !control_flow_insn_p (use_insn)
4763 #ifdef HAVE_cc0
4764 && !sets_cc0_p (use_insn)
4765 #endif
4766 )
4767 {
4768 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4769 {
4770 rtx x = NEXT_INSN (def_insn);
4771 while (!modified_in_p (DF_REF_REG (use), x))
4772 {
4773 gcc_assert (x != use_insn);
4774 x = NEXT_INSN (x);
4775 }
4776 if (dump_file)
4777 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4778 regno, INSN_UID (x));
4779 emit_insn_after (PATTERN (x), use_insn);
4780 set_insn_deleted (x);
4781 }
4782 else
4783 {
4784 if (dump_file)
4785 fprintf (dump_file, " input reg %u modified between def and use\n",
4786 regno);
4787 all_transp = false;
4788 }
4789 }
4790 else
4791 all_transp = false;
4792 }
4793
4794 def_insn_use_rec++;
4795 }
4796 if (!all_ok)
4797 continue;
4798 if (!dbg_cnt (ira_move))
4799 break;
4800 if (dump_file)
4801 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4802
4803 if (all_transp)
4804 {
4805 rtx def_reg = DF_REF_REG (def);
4806 rtx newreg = ira_create_new_reg (def_reg);
4807 if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0))
4808 {
4809 unsigned nregno = REGNO (newreg);
4810 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4811 nregno -= max_regs;
4812 pseudo_replaced_reg[nregno] = def_reg;
4813 }
4814 }
4815 }
4816
4817 FOR_EACH_BB (bb)
4818 {
4819 bitmap_clear (bb_local + bb->index);
4820 bitmap_clear (bb_transp_live + bb->index);
4821 bitmap_clear (bb_moveable_reg_sets + bb->index);
4822 }
4823 bitmap_clear (&interesting);
4824 bitmap_clear (&unusable_as_input);
4825 free (uid_luid);
4826 free (closest_uses);
4827 free (bb_local);
4828 free (bb_transp_live);
4829 free (bb_moveable_reg_sets);
4830
4831 last_moveable_pseudo = max_reg_num ();
4832
4833 fix_reg_equiv_init ();
4834 expand_reg_info ();
4835 regstat_free_n_sets_and_refs ();
4836 regstat_free_ri ();
4837 regstat_init_n_sets_and_refs ();
4838 regstat_compute_ri ();
4839 free_dominance_info (CDI_DOMINATORS);
4840 }
4841
4842 /* Perform the second half of the transformation started in
4843 find_moveable_pseudos. We look for instances where the newly introduced
4844 pseudo remains unallocated, and remove it by moving the definition to
4845 just before its use, replacing the move instruction generated by
4846 find_moveable_pseudos. */
4847 static void
4848 move_unallocated_pseudos (void)
4849 {
4850 int i;
4851 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4852 if (reg_renumber[i] < 0)
4853 {
4854 int idx = i - first_moveable_pseudo;
4855 rtx other_reg = pseudo_replaced_reg[idx];
4856 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4857 /* The use must follow all definitions of OTHER_REG, so we can
4858 insert the new definition immediately after any of them. */
4859 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4860 rtx move_insn = DF_REF_INSN (other_def);
4861 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4862 rtx set;
4863 int success;
4864
4865 if (dump_file)
4866 fprintf (dump_file, "moving def of %d (insn %d now) ",
4867 REGNO (other_reg), INSN_UID (def_insn));
4868
4869 delete_insn (move_insn);
4870 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4871 delete_insn (DF_REF_INSN (other_def));
4872 delete_insn (def_insn);
4873
4874 set = single_set (newinsn);
4875 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4876 gcc_assert (success);
4877 if (dump_file)
4878 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4879 INSN_UID (newinsn), i);
4880 SET_REG_N_REFS (i, 0);
4881 }
4882 }
4883 \f
4884 /* If the backend knows where to allocate pseudos for hard
4885 register initial values, register these allocations now. */
4886 static void
4887 allocate_initial_values (void)
4888 {
4889 if (targetm.allocate_initial_value)
4890 {
4891 rtx hreg, preg, x;
4892 int i, regno;
4893
4894 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
4895 {
4896 if (! initial_value_entry (i, &hreg, &preg))
4897 break;
4898
4899 x = targetm.allocate_initial_value (hreg);
4900 regno = REGNO (preg);
4901 if (x && REG_N_SETS (regno) <= 1)
4902 {
4903 if (MEM_P (x))
4904 reg_equiv_memory_loc (regno) = x;
4905 else
4906 {
4907 basic_block bb;
4908 int new_regno;
4909
4910 gcc_assert (REG_P (x));
4911 new_regno = REGNO (x);
4912 reg_renumber[regno] = new_regno;
4913 /* Poke the regno right into regno_reg_rtx so that even
4914 fixed regs are accepted. */
4915 SET_REGNO (preg, new_regno);
4916 /* Update global register liveness information. */
4917 FOR_EACH_BB (bb)
4918 {
4919 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
4920 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
4921 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
4922 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
4923 }
4924 }
4925 }
4926 }
4927
4928 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
4929 &hreg, &preg));
4930 }
4931 }
4932 \f
4933
4934 /* True when we use LRA instead of reload pass for the current
4935 function. */
4936 bool ira_use_lra_p;
4937
4938 /* True if we have allocno conflicts. It is false for non-optimized
4939 mode or when the conflict table is too big. */
4940 bool ira_conflicts_p;
4941
4942 /* Saved between IRA and reload. */
4943 static int saved_flag_ira_share_spill_slots;
4944
4945 /* This is the main entry of IRA. */
4946 static void
4947 ira (FILE *f)
4948 {
4949 bool loops_p;
4950 int ira_max_point_before_emit;
4951 int rebuild_p;
4952 bool saved_flag_caller_saves = flag_caller_saves;
4953 enum ira_region saved_flag_ira_region = flag_ira_region;
4954
4955 ira_conflicts_p = optimize > 0;
4956
4957 ira_use_lra_p = targetm.lra_p ();
4958 /* If there are too many pseudos and/or basic blocks (e.g. 10K
4959 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
4960 use simplified and faster algorithms in LRA. */
4961 lra_simple_p
4962 = (ira_use_lra_p && max_reg_num () >= (1 << 26) / last_basic_block);
4963 if (lra_simple_p)
4964 {
4965 /* It permits to skip live range splitting in LRA. */
4966 flag_caller_saves = false;
4967 /* There is no sense to do regional allocation when we use
4968 simplified LRA. */
4969 flag_ira_region = IRA_REGION_ONE;
4970 ira_conflicts_p = false;
4971 }
4972
4973 #ifndef IRA_NO_OBSTACK
4974 gcc_obstack_init (&ira_obstack);
4975 #endif
4976 bitmap_obstack_initialize (&ira_bitmap_obstack);
4977
4978 if (flag_caller_saves)
4979 init_caller_save ();
4980
4981 if (flag_ira_verbose < 10)
4982 {
4983 internal_flag_ira_verbose = flag_ira_verbose;
4984 ira_dump_file = f;
4985 }
4986 else
4987 {
4988 internal_flag_ira_verbose = flag_ira_verbose - 10;
4989 ira_dump_file = stderr;
4990 }
4991
4992 setup_prohibited_mode_move_regs ();
4993 decrease_live_ranges_number ();
4994 df_note_add_problem ();
4995
4996 /* DF_LIVE can't be used in the register allocator, too many other
4997 parts of the compiler depend on using the "classic" liveness
4998 interpretation of the DF_LR problem. See PR38711.
4999 Remove the problem, so that we don't spend time updating it in
5000 any of the df_analyze() calls during IRA/LRA. */
5001 if (optimize > 1)
5002 df_remove_problem (df_live);
5003 gcc_checking_assert (df_live == NULL);
5004
5005 #ifdef ENABLE_CHECKING
5006 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5007 #endif
5008 df_analyze ();
5009
5010 df_clear_flags (DF_NO_INSN_RESCAN);
5011 regstat_init_n_sets_and_refs ();
5012 regstat_compute_ri ();
5013
5014 /* If we are not optimizing, then this is the only place before
5015 register allocation where dataflow is done. And that is needed
5016 to generate these warnings. */
5017 if (warn_clobbered)
5018 generate_setjmp_warnings ();
5019
5020 /* Determine if the current function is a leaf before running IRA
5021 since this can impact optimizations done by the prologue and
5022 epilogue thus changing register elimination offsets. */
5023 crtl->is_leaf = leaf_function_p ();
5024
5025 if (resize_reg_info () && flag_ira_loop_pressure)
5026 ira_set_pseudo_classes (true, ira_dump_file);
5027
5028 init_reg_equiv ();
5029 rebuild_p = update_equiv_regs ();
5030 setup_reg_equiv ();
5031 setup_reg_equiv_init ();
5032
5033 if (optimize && rebuild_p)
5034 {
5035 timevar_push (TV_JUMP);
5036 rebuild_jump_labels (get_insns ());
5037 if (purge_all_dead_edges ())
5038 delete_unreachable_blocks ();
5039 timevar_pop (TV_JUMP);
5040 }
5041
5042 allocated_reg_info_size = max_reg_num ();
5043
5044 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5045 df_analyze ();
5046
5047 /* It is not worth to do such improvement when we use a simple
5048 allocation because of -O0 usage or because the function is too
5049 big. */
5050 if (ira_conflicts_p)
5051 find_moveable_pseudos ();
5052
5053 max_regno_before_ira = max_reg_num ();
5054 ira_setup_eliminable_regset (true);
5055
5056 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5057 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5058 ira_move_loops_num = ira_additional_jumps_num = 0;
5059
5060 ira_assert (current_loops == NULL);
5061 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5062 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5063
5064 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5065 fprintf (ira_dump_file, "Building IRA IR\n");
5066 loops_p = ira_build ();
5067
5068 ira_assert (ira_conflicts_p || !loops_p);
5069
5070 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5071 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5072 /* It is just wasting compiler's time to pack spilled pseudos into
5073 stack slots in this case -- prohibit it. We also do this if
5074 there is setjmp call because a variable not modified between
5075 setjmp and longjmp the compiler is required to preserve its
5076 value and sharing slots does not guarantee it. */
5077 flag_ira_share_spill_slots = FALSE;
5078
5079 ira_color ();
5080
5081 ira_max_point_before_emit = ira_max_point;
5082
5083 ira_initiate_emit_data ();
5084
5085 ira_emit (loops_p);
5086
5087 max_regno = max_reg_num ();
5088 if (ira_conflicts_p)
5089 {
5090 if (! loops_p)
5091 {
5092 if (! ira_use_lra_p)
5093 ira_initiate_assign ();
5094 }
5095 else
5096 {
5097 expand_reg_info ();
5098
5099 if (ira_use_lra_p)
5100 {
5101 ira_allocno_t a;
5102 ira_allocno_iterator ai;
5103
5104 FOR_EACH_ALLOCNO (a, ai)
5105 ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5106 }
5107 else
5108 {
5109 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5110 fprintf (ira_dump_file, "Flattening IR\n");
5111 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5112 }
5113 /* New insns were generated: add notes and recalculate live
5114 info. */
5115 df_analyze ();
5116
5117 /* ??? Rebuild the loop tree, but why? Does the loop tree
5118 change if new insns were generated? Can that be handled
5119 by updating the loop tree incrementally? */
5120 loop_optimizer_finalize ();
5121 free_dominance_info (CDI_DOMINATORS);
5122 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5123 | LOOPS_HAVE_RECORDED_EXITS);
5124
5125 if (! ira_use_lra_p)
5126 {
5127 setup_allocno_assignment_flags ();
5128 ira_initiate_assign ();
5129 ira_reassign_conflict_allocnos (max_regno);
5130 }
5131 }
5132 }
5133
5134 ira_finish_emit_data ();
5135
5136 setup_reg_renumber ();
5137
5138 calculate_allocation_cost ();
5139
5140 #ifdef ENABLE_IRA_CHECKING
5141 if (ira_conflicts_p)
5142 check_allocation ();
5143 #endif
5144
5145 if (max_regno != max_regno_before_ira)
5146 {
5147 regstat_free_n_sets_and_refs ();
5148 regstat_free_ri ();
5149 regstat_init_n_sets_and_refs ();
5150 regstat_compute_ri ();
5151 }
5152
5153 overall_cost_before = ira_overall_cost;
5154 if (! ira_conflicts_p)
5155 grow_reg_equivs ();
5156 else
5157 {
5158 fix_reg_equiv_init ();
5159
5160 #ifdef ENABLE_IRA_CHECKING
5161 print_redundant_copies ();
5162 #endif
5163
5164 ira_spilled_reg_stack_slots_num = 0;
5165 ira_spilled_reg_stack_slots
5166 = ((struct ira_spilled_reg_stack_slot *)
5167 ira_allocate (max_regno
5168 * sizeof (struct ira_spilled_reg_stack_slot)));
5169 memset (ira_spilled_reg_stack_slots, 0,
5170 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5171 }
5172 allocate_initial_values ();
5173
5174 /* See comment for find_moveable_pseudos call. */
5175 if (ira_conflicts_p)
5176 move_unallocated_pseudos ();
5177
5178 /* Restore original values. */
5179 if (lra_simple_p)
5180 {
5181 flag_caller_saves = saved_flag_caller_saves;
5182 flag_ira_region = saved_flag_ira_region;
5183 }
5184 }
5185
5186 static void
5187 do_reload (void)
5188 {
5189 basic_block bb;
5190 bool need_dce;
5191
5192 if (flag_ira_verbose < 10)
5193 ira_dump_file = dump_file;
5194
5195 timevar_push (TV_RELOAD);
5196 if (ira_use_lra_p)
5197 {
5198 if (current_loops != NULL)
5199 {
5200 loop_optimizer_finalize ();
5201 free_dominance_info (CDI_DOMINATORS);
5202 }
5203 FOR_ALL_BB (bb)
5204 bb->loop_father = NULL;
5205 current_loops = NULL;
5206
5207 if (ira_conflicts_p)
5208 ira_free (ira_spilled_reg_stack_slots);
5209
5210 ira_destroy ();
5211
5212 lra (ira_dump_file);
5213 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5214 LRA. */
5215 vec_free (reg_equivs);
5216 reg_equivs = NULL;
5217 need_dce = false;
5218 }
5219 else
5220 {
5221 df_set_flags (DF_NO_INSN_RESCAN);
5222 build_insn_chain ();
5223
5224 need_dce = reload (get_insns (), ira_conflicts_p);
5225
5226 }
5227
5228 timevar_pop (TV_RELOAD);
5229
5230 timevar_push (TV_IRA);
5231
5232 if (ira_conflicts_p && ! ira_use_lra_p)
5233 {
5234 ira_free (ira_spilled_reg_stack_slots);
5235 ira_finish_assign ();
5236 }
5237
5238 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5239 && overall_cost_before != ira_overall_cost)
5240 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
5241
5242 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5243
5244 if (! ira_use_lra_p)
5245 {
5246 ira_destroy ();
5247 if (current_loops != NULL)
5248 {
5249 loop_optimizer_finalize ();
5250 free_dominance_info (CDI_DOMINATORS);
5251 }
5252 FOR_ALL_BB (bb)
5253 bb->loop_father = NULL;
5254 current_loops = NULL;
5255
5256 regstat_free_ri ();
5257 regstat_free_n_sets_and_refs ();
5258 }
5259
5260 if (optimize)
5261 cleanup_cfg (CLEANUP_EXPENSIVE);
5262
5263 finish_reg_equiv ();
5264
5265 bitmap_obstack_release (&ira_bitmap_obstack);
5266 #ifndef IRA_NO_OBSTACK
5267 obstack_free (&ira_obstack, NULL);
5268 #endif
5269
5270 /* The code after the reload has changed so much that at this point
5271 we might as well just rescan everything. Note that
5272 df_rescan_all_insns is not going to help here because it does not
5273 touch the artificial uses and defs. */
5274 df_finish_pass (true);
5275 df_scan_alloc (NULL);
5276 df_scan_blocks ();
5277
5278 if (optimize > 1)
5279 {
5280 df_live_add_problem ();
5281 df_live_set_all_dirty ();
5282 }
5283
5284 if (optimize)
5285 df_analyze ();
5286
5287 if (need_dce && optimize)
5288 run_fast_dce ();
5289
5290 timevar_pop (TV_IRA);
5291 }
5292 \f
5293 /* Run the integrated register allocator. */
5294 static unsigned int
5295 rest_of_handle_ira (void)
5296 {
5297 ira (dump_file);
5298 return 0;
5299 }
5300
5301 namespace {
5302
5303 const pass_data pass_data_ira =
5304 {
5305 RTL_PASS, /* type */
5306 "ira", /* name */
5307 OPTGROUP_NONE, /* optinfo_flags */
5308 false, /* has_gate */
5309 true, /* has_execute */
5310 TV_IRA, /* tv_id */
5311 0, /* properties_required */
5312 0, /* properties_provided */
5313 0, /* properties_destroyed */
5314 0, /* todo_flags_start */
5315 TODO_do_not_ggc_collect, /* todo_flags_finish */
5316 };
5317
5318 class pass_ira : public rtl_opt_pass
5319 {
5320 public:
5321 pass_ira (gcc::context *ctxt)
5322 : rtl_opt_pass (pass_data_ira, ctxt)
5323 {}
5324
5325 /* opt_pass methods: */
5326 unsigned int execute () { return rest_of_handle_ira (); }
5327
5328 }; // class pass_ira
5329
5330 } // anon namespace
5331
5332 rtl_opt_pass *
5333 make_pass_ira (gcc::context *ctxt)
5334 {
5335 return new pass_ira (ctxt);
5336 }
5337
5338 static unsigned int
5339 rest_of_handle_reload (void)
5340 {
5341 do_reload ();
5342 return 0;
5343 }
5344
5345 namespace {
5346
5347 const pass_data pass_data_reload =
5348 {
5349 RTL_PASS, /* type */
5350 "reload", /* name */
5351 OPTGROUP_NONE, /* optinfo_flags */
5352 false, /* has_gate */
5353 true, /* has_execute */
5354 TV_RELOAD, /* tv_id */
5355 0, /* properties_required */
5356 0, /* properties_provided */
5357 0, /* properties_destroyed */
5358 0, /* todo_flags_start */
5359 0, /* todo_flags_finish */
5360 };
5361
5362 class pass_reload : public rtl_opt_pass
5363 {
5364 public:
5365 pass_reload (gcc::context *ctxt)
5366 : rtl_opt_pass (pass_data_reload, ctxt)
5367 {}
5368
5369 /* opt_pass methods: */
5370 unsigned int execute () { return rest_of_handle_reload (); }
5371
5372 }; // class pass_reload
5373
5374 } // anon namespace
5375
5376 rtl_opt_pass *
5377 make_pass_reload (gcc::context *ctxt)
5378 {
5379 return new pass_reload (ctxt);
5380 }