[ARM/AArch64][testsuite] Add vmull tests.
[gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363 */
364
365
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "hash-set.h"
372 #include "machmode.h"
373 #include "vec.h"
374 #include "double-int.h"
375 #include "input.h"
376 #include "alias.h"
377 #include "symtab.h"
378 #include "wide-int.h"
379 #include "inchash.h"
380 #include "tree.h"
381 #include "rtl.h"
382 #include "tm_p.h"
383 #include "target.h"
384 #include "flags.h"
385 #include "obstack.h"
386 #include "bitmap.h"
387 #include "hard-reg-set.h"
388 #include "predict.h"
389 #include "function.h"
390 #include "dominance.h"
391 #include "cfg.h"
392 #include "cfgrtl.h"
393 #include "cfgbuild.h"
394 #include "cfgcleanup.h"
395 #include "basic-block.h"
396 #include "df.h"
397 #include "hashtab.h"
398 #include "statistics.h"
399 #include "real.h"
400 #include "fixed-value.h"
401 #include "insn-config.h"
402 #include "expmed.h"
403 #include "dojump.h"
404 #include "explow.h"
405 #include "calls.h"
406 #include "emit-rtl.h"
407 #include "varasm.h"
408 #include "stmt.h"
409 #include "expr.h"
410 #include "recog.h"
411 #include "params.h"
412 #include "tree-pass.h"
413 #include "output.h"
414 #include "except.h"
415 #include "reload.h"
416 #include "diagnostic-core.h"
417 #include "ggc.h"
418 #include "ira-int.h"
419 #include "lra.h"
420 #include "dce.h"
421 #include "dbgcnt.h"
422 #include "rtl-iter.h"
423 #include "shrink-wrap.h"
424
425 struct target_ira default_target_ira;
426 struct target_ira_int default_target_ira_int;
427 #if SWITCHABLE_TARGET
428 struct target_ira *this_target_ira = &default_target_ira;
429 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
430 #endif
431
432 /* A modified value of flag `-fira-verbose' used internally. */
433 int internal_flag_ira_verbose;
434
435 /* Dump file of the allocator if it is not NULL. */
436 FILE *ira_dump_file;
437
438 /* The number of elements in the following array. */
439 int ira_spilled_reg_stack_slots_num;
440
441 /* The following array contains info about spilled pseudo-registers
442 stack slots used in current function so far. */
443 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
444
445 /* Correspondingly overall cost of the allocation, overall cost before
446 reload, cost of the allocnos assigned to hard-registers, cost of
447 the allocnos assigned to memory, cost of loads, stores and register
448 move insns generated for pseudo-register live range splitting (see
449 ira-emit.c). */
450 int64_t ira_overall_cost, overall_cost_before;
451 int64_t ira_reg_cost, ira_mem_cost;
452 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
453 int ira_move_loops_num, ira_additional_jumps_num;
454
455 /* All registers that can be eliminated. */
456
457 HARD_REG_SET eliminable_regset;
458
459 /* Value of max_reg_num () before IRA work start. This value helps
460 us to recognize a situation when new pseudos were created during
461 IRA work. */
462 static int max_regno_before_ira;
463
464 /* Temporary hard reg set used for a different calculation. */
465 static HARD_REG_SET temp_hard_regset;
466
467 #define last_mode_for_init_move_cost \
468 (this_target_ira_int->x_last_mode_for_init_move_cost)
469 \f
470
471 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
472 static void
473 setup_reg_mode_hard_regset (void)
474 {
475 int i, m, hard_regno;
476
477 for (m = 0; m < NUM_MACHINE_MODES; m++)
478 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
479 {
480 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
481 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
482 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
483 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
484 hard_regno + i);
485 }
486 }
487
488 \f
489 #define no_unit_alloc_regs \
490 (this_target_ira_int->x_no_unit_alloc_regs)
491
492 /* The function sets up the three arrays declared above. */
493 static void
494 setup_class_hard_regs (void)
495 {
496 int cl, i, hard_regno, n;
497 HARD_REG_SET processed_hard_reg_set;
498
499 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
500 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
501 {
502 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
503 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
504 CLEAR_HARD_REG_SET (processed_hard_reg_set);
505 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
506 {
507 ira_non_ordered_class_hard_regs[cl][i] = -1;
508 ira_class_hard_reg_index[cl][i] = -1;
509 }
510 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
511 {
512 #ifdef REG_ALLOC_ORDER
513 hard_regno = reg_alloc_order[i];
514 #else
515 hard_regno = i;
516 #endif
517 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
518 continue;
519 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
520 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
521 ira_class_hard_reg_index[cl][hard_regno] = -1;
522 else
523 {
524 ira_class_hard_reg_index[cl][hard_regno] = n;
525 ira_class_hard_regs[cl][n++] = hard_regno;
526 }
527 }
528 ira_class_hard_regs_num[cl] = n;
529 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
530 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
531 ira_non_ordered_class_hard_regs[cl][n++] = i;
532 ira_assert (ira_class_hard_regs_num[cl] == n);
533 }
534 }
535
536 /* Set up global variables defining info about hard registers for the
537 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
538 that we can use the hard frame pointer for the allocation. */
539 static void
540 setup_alloc_regs (bool use_hard_frame_p)
541 {
542 #ifdef ADJUST_REG_ALLOC_ORDER
543 ADJUST_REG_ALLOC_ORDER;
544 #endif
545 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
546 if (! use_hard_frame_p)
547 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
548 setup_class_hard_regs ();
549 }
550
551 \f
552
553 #define alloc_reg_class_subclasses \
554 (this_target_ira_int->x_alloc_reg_class_subclasses)
555
556 /* Initialize the table of subclasses of each reg class. */
557 static void
558 setup_reg_subclasses (void)
559 {
560 int i, j;
561 HARD_REG_SET temp_hard_regset2;
562
563 for (i = 0; i < N_REG_CLASSES; i++)
564 for (j = 0; j < N_REG_CLASSES; j++)
565 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
566
567 for (i = 0; i < N_REG_CLASSES; i++)
568 {
569 if (i == (int) NO_REGS)
570 continue;
571
572 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
573 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
574 if (hard_reg_set_empty_p (temp_hard_regset))
575 continue;
576 for (j = 0; j < N_REG_CLASSES; j++)
577 if (i != j)
578 {
579 enum reg_class *p;
580
581 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
582 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
583 if (! hard_reg_set_subset_p (temp_hard_regset,
584 temp_hard_regset2))
585 continue;
586 p = &alloc_reg_class_subclasses[j][0];
587 while (*p != LIM_REG_CLASSES) p++;
588 *p = (enum reg_class) i;
589 }
590 }
591 }
592
593 \f
594
595 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
596 static void
597 setup_class_subset_and_memory_move_costs (void)
598 {
599 int cl, cl2, mode, cost;
600 HARD_REG_SET temp_hard_regset2;
601
602 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
603 ira_memory_move_cost[mode][NO_REGS][0]
604 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
605 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606 {
607 if (cl != (int) NO_REGS)
608 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
609 {
610 ira_max_memory_move_cost[mode][cl][0]
611 = ira_memory_move_cost[mode][cl][0]
612 = memory_move_cost ((machine_mode) mode,
613 (reg_class_t) cl, false);
614 ira_max_memory_move_cost[mode][cl][1]
615 = ira_memory_move_cost[mode][cl][1]
616 = memory_move_cost ((machine_mode) mode,
617 (reg_class_t) cl, true);
618 /* Costs for NO_REGS are used in cost calculation on the
619 1st pass when the preferred register classes are not
620 known yet. In this case we take the best scenario. */
621 if (ira_memory_move_cost[mode][NO_REGS][0]
622 > ira_memory_move_cost[mode][cl][0])
623 ira_max_memory_move_cost[mode][NO_REGS][0]
624 = ira_memory_move_cost[mode][NO_REGS][0]
625 = ira_memory_move_cost[mode][cl][0];
626 if (ira_memory_move_cost[mode][NO_REGS][1]
627 > ira_memory_move_cost[mode][cl][1])
628 ira_max_memory_move_cost[mode][NO_REGS][1]
629 = ira_memory_move_cost[mode][NO_REGS][1]
630 = ira_memory_move_cost[mode][cl][1];
631 }
632 }
633 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
634 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
635 {
636 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
637 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
638 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
639 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
640 ira_class_subset_p[cl][cl2]
641 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
642 if (! hard_reg_set_empty_p (temp_hard_regset2)
643 && hard_reg_set_subset_p (reg_class_contents[cl2],
644 reg_class_contents[cl]))
645 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
646 {
647 cost = ira_memory_move_cost[mode][cl2][0];
648 if (cost > ira_max_memory_move_cost[mode][cl][0])
649 ira_max_memory_move_cost[mode][cl][0] = cost;
650 cost = ira_memory_move_cost[mode][cl2][1];
651 if (cost > ira_max_memory_move_cost[mode][cl][1])
652 ira_max_memory_move_cost[mode][cl][1] = cost;
653 }
654 }
655 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
656 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
657 {
658 ira_memory_move_cost[mode][cl][0]
659 = ira_max_memory_move_cost[mode][cl][0];
660 ira_memory_move_cost[mode][cl][1]
661 = ira_max_memory_move_cost[mode][cl][1];
662 }
663 setup_reg_subclasses ();
664 }
665
666 \f
667
668 /* Define the following macro if allocation through malloc if
669 preferable. */
670 #define IRA_NO_OBSTACK
671
672 #ifndef IRA_NO_OBSTACK
673 /* Obstack used for storing all dynamic data (except bitmaps) of the
674 IRA. */
675 static struct obstack ira_obstack;
676 #endif
677
678 /* Obstack used for storing all bitmaps of the IRA. */
679 static struct bitmap_obstack ira_bitmap_obstack;
680
681 /* Allocate memory of size LEN for IRA data. */
682 void *
683 ira_allocate (size_t len)
684 {
685 void *res;
686
687 #ifndef IRA_NO_OBSTACK
688 res = obstack_alloc (&ira_obstack, len);
689 #else
690 res = xmalloc (len);
691 #endif
692 return res;
693 }
694
695 /* Free memory ADDR allocated for IRA data. */
696 void
697 ira_free (void *addr ATTRIBUTE_UNUSED)
698 {
699 #ifndef IRA_NO_OBSTACK
700 /* do nothing */
701 #else
702 free (addr);
703 #endif
704 }
705
706
707 /* Allocate and returns bitmap for IRA. */
708 bitmap
709 ira_allocate_bitmap (void)
710 {
711 return BITMAP_ALLOC (&ira_bitmap_obstack);
712 }
713
714 /* Free bitmap B allocated for IRA. */
715 void
716 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
717 {
718 /* do nothing */
719 }
720
721 \f
722
723 /* Output information about allocation of all allocnos (except for
724 caps) into file F. */
725 void
726 ira_print_disposition (FILE *f)
727 {
728 int i, n, max_regno;
729 ira_allocno_t a;
730 basic_block bb;
731
732 fprintf (f, "Disposition:");
733 max_regno = max_reg_num ();
734 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
735 for (a = ira_regno_allocno_map[i];
736 a != NULL;
737 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
738 {
739 if (n % 4 == 0)
740 fprintf (f, "\n");
741 n++;
742 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
743 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
744 fprintf (f, "b%-3d", bb->index);
745 else
746 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
747 if (ALLOCNO_HARD_REGNO (a) >= 0)
748 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
749 else
750 fprintf (f, " mem");
751 }
752 fprintf (f, "\n");
753 }
754
755 /* Outputs information about allocation of all allocnos into
756 stderr. */
757 void
758 ira_debug_disposition (void)
759 {
760 ira_print_disposition (stderr);
761 }
762
763 \f
764
765 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
766 register class containing stack registers or NO_REGS if there are
767 no stack registers. To find this class, we iterate through all
768 register pressure classes and choose the first register pressure
769 class containing all the stack registers and having the biggest
770 size. */
771 static void
772 setup_stack_reg_pressure_class (void)
773 {
774 ira_stack_reg_pressure_class = NO_REGS;
775 #ifdef STACK_REGS
776 {
777 int i, best, size;
778 enum reg_class cl;
779 HARD_REG_SET temp_hard_regset2;
780
781 CLEAR_HARD_REG_SET (temp_hard_regset);
782 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
783 SET_HARD_REG_BIT (temp_hard_regset, i);
784 best = 0;
785 for (i = 0; i < ira_pressure_classes_num; i++)
786 {
787 cl = ira_pressure_classes[i];
788 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
789 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
790 size = hard_reg_set_size (temp_hard_regset2);
791 if (best < size)
792 {
793 best = size;
794 ira_stack_reg_pressure_class = cl;
795 }
796 }
797 }
798 #endif
799 }
800
801 /* Find pressure classes which are register classes for which we
802 calculate register pressure in IRA, register pressure sensitive
803 insn scheduling, and register pressure sensitive loop invariant
804 motion.
805
806 To make register pressure calculation easy, we always use
807 non-intersected register pressure classes. A move of hard
808 registers from one register pressure class is not more expensive
809 than load and store of the hard registers. Most likely an allocno
810 class will be a subset of a register pressure class and in many
811 cases a register pressure class. That makes usage of register
812 pressure classes a good approximation to find a high register
813 pressure. */
814 static void
815 setup_pressure_classes (void)
816 {
817 int cost, i, n, curr;
818 int cl, cl2;
819 enum reg_class pressure_classes[N_REG_CLASSES];
820 int m;
821 HARD_REG_SET temp_hard_regset2;
822 bool insert_p;
823
824 n = 0;
825 for (cl = 0; cl < N_REG_CLASSES; cl++)
826 {
827 if (ira_class_hard_regs_num[cl] == 0)
828 continue;
829 if (ira_class_hard_regs_num[cl] != 1
830 /* A register class without subclasses may contain a few
831 hard registers and movement between them is costly
832 (e.g. SPARC FPCC registers). We still should consider it
833 as a candidate for a pressure class. */
834 && alloc_reg_class_subclasses[cl][0] < cl)
835 {
836 /* Check that the moves between any hard registers of the
837 current class are not more expensive for a legal mode
838 than load/store of the hard registers of the current
839 class. Such class is a potential candidate to be a
840 register pressure class. */
841 for (m = 0; m < NUM_MACHINE_MODES; m++)
842 {
843 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
844 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
845 AND_COMPL_HARD_REG_SET (temp_hard_regset,
846 ira_prohibited_class_mode_regs[cl][m]);
847 if (hard_reg_set_empty_p (temp_hard_regset))
848 continue;
849 ira_init_register_move_cost_if_necessary ((machine_mode) m);
850 cost = ira_register_move_cost[m][cl][cl];
851 if (cost <= ira_max_memory_move_cost[m][cl][1]
852 || cost <= ira_max_memory_move_cost[m][cl][0])
853 break;
854 }
855 if (m >= NUM_MACHINE_MODES)
856 continue;
857 }
858 curr = 0;
859 insert_p = true;
860 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
861 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
862 /* Remove so far added pressure classes which are subset of the
863 current candidate class. Prefer GENERAL_REGS as a pressure
864 register class to another class containing the same
865 allocatable hard registers. We do this because machine
866 dependent cost hooks might give wrong costs for the latter
867 class but always give the right cost for the former class
868 (GENERAL_REGS). */
869 for (i = 0; i < n; i++)
870 {
871 cl2 = pressure_classes[i];
872 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
873 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
874 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
875 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
876 || cl2 == (int) GENERAL_REGS))
877 {
878 pressure_classes[curr++] = (enum reg_class) cl2;
879 insert_p = false;
880 continue;
881 }
882 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
883 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
884 || cl == (int) GENERAL_REGS))
885 continue;
886 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
887 insert_p = false;
888 pressure_classes[curr++] = (enum reg_class) cl2;
889 }
890 /* If the current candidate is a subset of a so far added
891 pressure class, don't add it to the list of the pressure
892 classes. */
893 if (insert_p)
894 pressure_classes[curr++] = (enum reg_class) cl;
895 n = curr;
896 }
897 #ifdef ENABLE_IRA_CHECKING
898 {
899 HARD_REG_SET ignore_hard_regs;
900
901 /* Check pressure classes correctness: here we check that hard
902 registers from all register pressure classes contains all hard
903 registers available for the allocation. */
904 CLEAR_HARD_REG_SET (temp_hard_regset);
905 CLEAR_HARD_REG_SET (temp_hard_regset2);
906 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
907 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
908 {
909 /* For some targets (like MIPS with MD_REGS), there are some
910 classes with hard registers available for allocation but
911 not able to hold value of any mode. */
912 for (m = 0; m < NUM_MACHINE_MODES; m++)
913 if (contains_reg_of_mode[cl][m])
914 break;
915 if (m >= NUM_MACHINE_MODES)
916 {
917 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
918 continue;
919 }
920 for (i = 0; i < n; i++)
921 if ((int) pressure_classes[i] == cl)
922 break;
923 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
924 if (i < n)
925 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
926 }
927 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
928 /* Some targets (like SPARC with ICC reg) have allocatable regs
929 for which no reg class is defined. */
930 if (REGNO_REG_CLASS (i) == NO_REGS)
931 SET_HARD_REG_BIT (ignore_hard_regs, i);
932 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
933 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
934 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
935 }
936 #endif
937 ira_pressure_classes_num = 0;
938 for (i = 0; i < n; i++)
939 {
940 cl = (int) pressure_classes[i];
941 ira_reg_pressure_class_p[cl] = true;
942 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
943 }
944 setup_stack_reg_pressure_class ();
945 }
946
947 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
948 whose register move cost between any registers of the class is the
949 same as for all its subclasses. We use the data to speed up the
950 2nd pass of calculations of allocno costs. */
951 static void
952 setup_uniform_class_p (void)
953 {
954 int i, cl, cl2, m;
955
956 for (cl = 0; cl < N_REG_CLASSES; cl++)
957 {
958 ira_uniform_class_p[cl] = false;
959 if (ira_class_hard_regs_num[cl] == 0)
960 continue;
961 /* We can not use alloc_reg_class_subclasses here because move
962 cost hooks does not take into account that some registers are
963 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
964 is element of alloc_reg_class_subclasses for GENERAL_REGS
965 because SSE regs are unavailable. */
966 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
967 {
968 if (ira_class_hard_regs_num[cl2] == 0)
969 continue;
970 for (m = 0; m < NUM_MACHINE_MODES; m++)
971 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
972 {
973 ira_init_register_move_cost_if_necessary ((machine_mode) m);
974 if (ira_register_move_cost[m][cl][cl]
975 != ira_register_move_cost[m][cl2][cl2])
976 break;
977 }
978 if (m < NUM_MACHINE_MODES)
979 break;
980 }
981 if (cl2 == LIM_REG_CLASSES)
982 ira_uniform_class_p[cl] = true;
983 }
984 }
985
986 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
987 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
988
989 Target may have many subtargets and not all target hard registers can
990 be used for allocation, e.g. x86 port in 32-bit mode can not use
991 hard registers introduced in x86-64 like r8-r15). Some classes
992 might have the same allocatable hard registers, e.g. INDEX_REGS
993 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
994 calculations efforts we introduce allocno classes which contain
995 unique non-empty sets of allocatable hard-registers.
996
997 Pseudo class cost calculation in ira-costs.c is very expensive.
998 Therefore we are trying to decrease number of classes involved in
999 such calculation. Register classes used in the cost calculation
1000 are called important classes. They are allocno classes and other
1001 non-empty classes whose allocatable hard register sets are inside
1002 of an allocno class hard register set. From the first sight, it
1003 looks like that they are just allocno classes. It is not true. In
1004 example of x86-port in 32-bit mode, allocno classes will contain
1005 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
1006 registers are the same for the both classes). The important
1007 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
1008 because a machine description insn constraint may refers for
1009 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
1010 of the insn constraints. */
1011 static void
1012 setup_allocno_and_important_classes (void)
1013 {
1014 int i, j, n, cl;
1015 bool set_p;
1016 HARD_REG_SET temp_hard_regset2;
1017 static enum reg_class classes[LIM_REG_CLASSES + 1];
1018
1019 n = 0;
1020 /* Collect classes which contain unique sets of allocatable hard
1021 registers. Prefer GENERAL_REGS to other classes containing the
1022 same set of hard registers. */
1023 for (i = 0; i < LIM_REG_CLASSES; i++)
1024 {
1025 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1026 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1027 for (j = 0; j < n; j++)
1028 {
1029 cl = classes[j];
1030 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1031 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1032 no_unit_alloc_regs);
1033 if (hard_reg_set_equal_p (temp_hard_regset,
1034 temp_hard_regset2))
1035 break;
1036 }
1037 if (j >= n)
1038 classes[n++] = (enum reg_class) i;
1039 else if (i == GENERAL_REGS)
1040 /* Prefer general regs. For i386 example, it means that
1041 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1042 (all of them consists of the same available hard
1043 registers). */
1044 classes[j] = (enum reg_class) i;
1045 }
1046 classes[n] = LIM_REG_CLASSES;
1047
1048 /* Set up classes which can be used for allocnos as classes
1049 containing non-empty unique sets of allocatable hard
1050 registers. */
1051 ira_allocno_classes_num = 0;
1052 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1053 if (ira_class_hard_regs_num[cl] > 0)
1054 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1055 ira_important_classes_num = 0;
1056 /* Add non-allocno classes containing to non-empty set of
1057 allocatable hard regs. */
1058 for (cl = 0; cl < N_REG_CLASSES; cl++)
1059 if (ira_class_hard_regs_num[cl] > 0)
1060 {
1061 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1062 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1063 set_p = false;
1064 for (j = 0; j < ira_allocno_classes_num; j++)
1065 {
1066 COPY_HARD_REG_SET (temp_hard_regset2,
1067 reg_class_contents[ira_allocno_classes[j]]);
1068 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1069 if ((enum reg_class) cl == ira_allocno_classes[j])
1070 break;
1071 else if (hard_reg_set_subset_p (temp_hard_regset,
1072 temp_hard_regset2))
1073 set_p = true;
1074 }
1075 if (set_p && j >= ira_allocno_classes_num)
1076 ira_important_classes[ira_important_classes_num++]
1077 = (enum reg_class) cl;
1078 }
1079 /* Now add allocno classes to the important classes. */
1080 for (j = 0; j < ira_allocno_classes_num; j++)
1081 ira_important_classes[ira_important_classes_num++]
1082 = ira_allocno_classes[j];
1083 for (cl = 0; cl < N_REG_CLASSES; cl++)
1084 {
1085 ira_reg_allocno_class_p[cl] = false;
1086 ira_reg_pressure_class_p[cl] = false;
1087 }
1088 for (j = 0; j < ira_allocno_classes_num; j++)
1089 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1090 setup_pressure_classes ();
1091 setup_uniform_class_p ();
1092 }
1093
1094 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1095 given by array CLASSES of length CLASSES_NUM. The function is used
1096 make translation any reg class to an allocno class or to an
1097 pressure class. This translation is necessary for some
1098 calculations when we can use only allocno or pressure classes and
1099 such translation represents an approximate representation of all
1100 classes.
1101
1102 The translation in case when allocatable hard register set of a
1103 given class is subset of allocatable hard register set of a class
1104 in CLASSES is pretty simple. We use smallest classes from CLASSES
1105 containing a given class. If allocatable hard register set of a
1106 given class is not a subset of any corresponding set of a class
1107 from CLASSES, we use the cheapest (with load/store point of view)
1108 class from CLASSES whose set intersects with given class set. */
1109 static void
1110 setup_class_translate_array (enum reg_class *class_translate,
1111 int classes_num, enum reg_class *classes)
1112 {
1113 int cl, mode;
1114 enum reg_class aclass, best_class, *cl_ptr;
1115 int i, cost, min_cost, best_cost;
1116
1117 for (cl = 0; cl < N_REG_CLASSES; cl++)
1118 class_translate[cl] = NO_REGS;
1119
1120 for (i = 0; i < classes_num; i++)
1121 {
1122 aclass = classes[i];
1123 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1124 (cl = *cl_ptr) != LIM_REG_CLASSES;
1125 cl_ptr++)
1126 if (class_translate[cl] == NO_REGS)
1127 class_translate[cl] = aclass;
1128 class_translate[aclass] = aclass;
1129 }
1130 /* For classes which are not fully covered by one of given classes
1131 (in other words covered by more one given class), use the
1132 cheapest class. */
1133 for (cl = 0; cl < N_REG_CLASSES; cl++)
1134 {
1135 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1136 continue;
1137 best_class = NO_REGS;
1138 best_cost = INT_MAX;
1139 for (i = 0; i < classes_num; i++)
1140 {
1141 aclass = classes[i];
1142 COPY_HARD_REG_SET (temp_hard_regset,
1143 reg_class_contents[aclass]);
1144 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1145 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1146 if (! hard_reg_set_empty_p (temp_hard_regset))
1147 {
1148 min_cost = INT_MAX;
1149 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1150 {
1151 cost = (ira_memory_move_cost[mode][aclass][0]
1152 + ira_memory_move_cost[mode][aclass][1]);
1153 if (min_cost > cost)
1154 min_cost = cost;
1155 }
1156 if (best_class == NO_REGS || best_cost > min_cost)
1157 {
1158 best_class = aclass;
1159 best_cost = min_cost;
1160 }
1161 }
1162 }
1163 class_translate[cl] = best_class;
1164 }
1165 }
1166
1167 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1168 IRA_PRESSURE_CLASS_TRANSLATE. */
1169 static void
1170 setup_class_translate (void)
1171 {
1172 setup_class_translate_array (ira_allocno_class_translate,
1173 ira_allocno_classes_num, ira_allocno_classes);
1174 setup_class_translate_array (ira_pressure_class_translate,
1175 ira_pressure_classes_num, ira_pressure_classes);
1176 }
1177
1178 /* Order numbers of allocno classes in original target allocno class
1179 array, -1 for non-allocno classes. */
1180 static int allocno_class_order[N_REG_CLASSES];
1181
1182 /* The function used to sort the important classes. */
1183 static int
1184 comp_reg_classes_func (const void *v1p, const void *v2p)
1185 {
1186 enum reg_class cl1 = *(const enum reg_class *) v1p;
1187 enum reg_class cl2 = *(const enum reg_class *) v2p;
1188 enum reg_class tcl1, tcl2;
1189 int diff;
1190
1191 tcl1 = ira_allocno_class_translate[cl1];
1192 tcl2 = ira_allocno_class_translate[cl2];
1193 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1194 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1195 return diff;
1196 return (int) cl1 - (int) cl2;
1197 }
1198
1199 /* For correct work of function setup_reg_class_relation we need to
1200 reorder important classes according to the order of their allocno
1201 classes. It places important classes containing the same
1202 allocatable hard register set adjacent to each other and allocno
1203 class with the allocatable hard register set right after the other
1204 important classes with the same set.
1205
1206 In example from comments of function
1207 setup_allocno_and_important_classes, it places LEGACY_REGS and
1208 GENERAL_REGS close to each other and GENERAL_REGS is after
1209 LEGACY_REGS. */
1210 static void
1211 reorder_important_classes (void)
1212 {
1213 int i;
1214
1215 for (i = 0; i < N_REG_CLASSES; i++)
1216 allocno_class_order[i] = -1;
1217 for (i = 0; i < ira_allocno_classes_num; i++)
1218 allocno_class_order[ira_allocno_classes[i]] = i;
1219 qsort (ira_important_classes, ira_important_classes_num,
1220 sizeof (enum reg_class), comp_reg_classes_func);
1221 for (i = 0; i < ira_important_classes_num; i++)
1222 ira_important_class_nums[ira_important_classes[i]] = i;
1223 }
1224
1225 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1226 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1227 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1228 please see corresponding comments in ira-int.h. */
1229 static void
1230 setup_reg_class_relations (void)
1231 {
1232 int i, cl1, cl2, cl3;
1233 HARD_REG_SET intersection_set, union_set, temp_set2;
1234 bool important_class_p[N_REG_CLASSES];
1235
1236 memset (important_class_p, 0, sizeof (important_class_p));
1237 for (i = 0; i < ira_important_classes_num; i++)
1238 important_class_p[ira_important_classes[i]] = true;
1239 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1240 {
1241 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1242 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1243 {
1244 ira_reg_classes_intersect_p[cl1][cl2] = false;
1245 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1246 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1247 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1248 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1249 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1250 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1251 if (hard_reg_set_empty_p (temp_hard_regset)
1252 && hard_reg_set_empty_p (temp_set2))
1253 {
1254 /* The both classes have no allocatable hard registers
1255 -- take all class hard registers into account and use
1256 reg_class_subunion and reg_class_superunion. */
1257 for (i = 0;; i++)
1258 {
1259 cl3 = reg_class_subclasses[cl1][i];
1260 if (cl3 == LIM_REG_CLASSES)
1261 break;
1262 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1263 (enum reg_class) cl3))
1264 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1265 }
1266 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1267 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1268 continue;
1269 }
1270 ira_reg_classes_intersect_p[cl1][cl2]
1271 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1272 if (important_class_p[cl1] && important_class_p[cl2]
1273 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1274 {
1275 /* CL1 and CL2 are important classes and CL1 allocatable
1276 hard register set is inside of CL2 allocatable hard
1277 registers -- make CL1 a superset of CL2. */
1278 enum reg_class *p;
1279
1280 p = &ira_reg_class_super_classes[cl1][0];
1281 while (*p != LIM_REG_CLASSES)
1282 p++;
1283 *p++ = (enum reg_class) cl2;
1284 *p = LIM_REG_CLASSES;
1285 }
1286 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1287 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1288 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1289 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1290 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1291 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1292 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1293 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1294 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1295 {
1296 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1297 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1298 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1299 {
1300 /* CL3 allocatable hard register set is inside of
1301 intersection of allocatable hard register sets
1302 of CL1 and CL2. */
1303 if (important_class_p[cl3])
1304 {
1305 COPY_HARD_REG_SET
1306 (temp_set2,
1307 reg_class_contents
1308 [(int) ira_reg_class_intersect[cl1][cl2]]);
1309 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1310 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1311 /* If the allocatable hard register sets are
1312 the same, prefer GENERAL_REGS or the
1313 smallest class for debugging
1314 purposes. */
1315 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1316 && (cl3 == GENERAL_REGS
1317 || ((ira_reg_class_intersect[cl1][cl2]
1318 != GENERAL_REGS)
1319 && hard_reg_set_subset_p
1320 (reg_class_contents[cl3],
1321 reg_class_contents
1322 [(int)
1323 ira_reg_class_intersect[cl1][cl2]])))))
1324 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1325 }
1326 COPY_HARD_REG_SET
1327 (temp_set2,
1328 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1329 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1330 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1331 /* Ignore unavailable hard registers and prefer
1332 smallest class for debugging purposes. */
1333 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1334 && hard_reg_set_subset_p
1335 (reg_class_contents[cl3],
1336 reg_class_contents
1337 [(int) ira_reg_class_subset[cl1][cl2]])))
1338 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1339 }
1340 if (important_class_p[cl3]
1341 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1342 {
1343 /* CL3 allocatable hard register set is inside of
1344 union of allocatable hard register sets of CL1
1345 and CL2. */
1346 COPY_HARD_REG_SET
1347 (temp_set2,
1348 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1349 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1350 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1351 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1352
1353 && (! hard_reg_set_equal_p (temp_set2,
1354 temp_hard_regset)
1355 || cl3 == GENERAL_REGS
1356 /* If the allocatable hard register sets are the
1357 same, prefer GENERAL_REGS or the smallest
1358 class for debugging purposes. */
1359 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1360 && hard_reg_set_subset_p
1361 (reg_class_contents[cl3],
1362 reg_class_contents
1363 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1364 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1365 }
1366 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1367 {
1368 /* CL3 allocatable hard register set contains union
1369 of allocatable hard register sets of CL1 and
1370 CL2. */
1371 COPY_HARD_REG_SET
1372 (temp_set2,
1373 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1374 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1375 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1376 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1377
1378 && (! hard_reg_set_equal_p (temp_set2,
1379 temp_hard_regset)
1380 || cl3 == GENERAL_REGS
1381 /* If the allocatable hard register sets are the
1382 same, prefer GENERAL_REGS or the smallest
1383 class for debugging purposes. */
1384 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1385 && hard_reg_set_subset_p
1386 (reg_class_contents[cl3],
1387 reg_class_contents
1388 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1389 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1390 }
1391 }
1392 }
1393 }
1394 }
1395
1396 /* Output all uniform and important classes into file F. */
1397 static void
1398 print_unform_and_important_classes (FILE *f)
1399 {
1400 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1401 int i, cl;
1402
1403 fprintf (f, "Uniform classes:\n");
1404 for (cl = 0; cl < N_REG_CLASSES; cl++)
1405 if (ira_uniform_class_p[cl])
1406 fprintf (f, " %s", reg_class_names[cl]);
1407 fprintf (f, "\nImportant classes:\n");
1408 for (i = 0; i < ira_important_classes_num; i++)
1409 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1410 fprintf (f, "\n");
1411 }
1412
1413 /* Output all possible allocno or pressure classes and their
1414 translation map into file F. */
1415 static void
1416 print_translated_classes (FILE *f, bool pressure_p)
1417 {
1418 int classes_num = (pressure_p
1419 ? ira_pressure_classes_num : ira_allocno_classes_num);
1420 enum reg_class *classes = (pressure_p
1421 ? ira_pressure_classes : ira_allocno_classes);
1422 enum reg_class *class_translate = (pressure_p
1423 ? ira_pressure_class_translate
1424 : ira_allocno_class_translate);
1425 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1426 int i;
1427
1428 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1429 for (i = 0; i < classes_num; i++)
1430 fprintf (f, " %s", reg_class_names[classes[i]]);
1431 fprintf (f, "\nClass translation:\n");
1432 for (i = 0; i < N_REG_CLASSES; i++)
1433 fprintf (f, " %s -> %s\n", reg_class_names[i],
1434 reg_class_names[class_translate[i]]);
1435 }
1436
1437 /* Output all possible allocno and translation classes and the
1438 translation maps into stderr. */
1439 void
1440 ira_debug_allocno_classes (void)
1441 {
1442 print_unform_and_important_classes (stderr);
1443 print_translated_classes (stderr, false);
1444 print_translated_classes (stderr, true);
1445 }
1446
1447 /* Set up different arrays concerning class subsets, allocno and
1448 important classes. */
1449 static void
1450 find_reg_classes (void)
1451 {
1452 setup_allocno_and_important_classes ();
1453 setup_class_translate ();
1454 reorder_important_classes ();
1455 setup_reg_class_relations ();
1456 }
1457
1458 \f
1459
1460 /* Set up the array above. */
1461 static void
1462 setup_hard_regno_aclass (void)
1463 {
1464 int i;
1465
1466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1467 {
1468 #if 1
1469 ira_hard_regno_allocno_class[i]
1470 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1471 ? NO_REGS
1472 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1473 #else
1474 int j;
1475 enum reg_class cl;
1476 ira_hard_regno_allocno_class[i] = NO_REGS;
1477 for (j = 0; j < ira_allocno_classes_num; j++)
1478 {
1479 cl = ira_allocno_classes[j];
1480 if (ira_class_hard_reg_index[cl][i] >= 0)
1481 {
1482 ira_hard_regno_allocno_class[i] = cl;
1483 break;
1484 }
1485 }
1486 #endif
1487 }
1488 }
1489
1490 \f
1491
1492 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1493 static void
1494 setup_reg_class_nregs (void)
1495 {
1496 int i, cl, cl2, m;
1497
1498 for (m = 0; m < MAX_MACHINE_MODE; m++)
1499 {
1500 for (cl = 0; cl < N_REG_CLASSES; cl++)
1501 ira_reg_class_max_nregs[cl][m]
1502 = ira_reg_class_min_nregs[cl][m]
1503 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1504 for (cl = 0; cl < N_REG_CLASSES; cl++)
1505 for (i = 0;
1506 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1507 i++)
1508 if (ira_reg_class_min_nregs[cl2][m]
1509 < ira_reg_class_min_nregs[cl][m])
1510 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1511 }
1512 }
1513
1514 \f
1515
1516 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1517 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1518 static void
1519 setup_prohibited_class_mode_regs (void)
1520 {
1521 int j, k, hard_regno, cl, last_hard_regno, count;
1522
1523 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1524 {
1525 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1526 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1528 {
1529 count = 0;
1530 last_hard_regno = -1;
1531 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1532 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1533 {
1534 hard_regno = ira_class_hard_regs[cl][k];
1535 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1536 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1537 hard_regno);
1538 else if (in_hard_reg_set_p (temp_hard_regset,
1539 (machine_mode) j, hard_regno))
1540 {
1541 last_hard_regno = hard_regno;
1542 count++;
1543 }
1544 }
1545 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1546 }
1547 }
1548 }
1549
1550 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1551 spanning from one register pressure class to another one. It is
1552 called after defining the pressure classes. */
1553 static void
1554 clarify_prohibited_class_mode_regs (void)
1555 {
1556 int j, k, hard_regno, cl, pclass, nregs;
1557
1558 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1559 for (j = 0; j < NUM_MACHINE_MODES; j++)
1560 {
1561 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1562 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1563 {
1564 hard_regno = ira_class_hard_regs[cl][k];
1565 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1566 continue;
1567 nregs = hard_regno_nregs[hard_regno][j];
1568 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1569 {
1570 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1571 hard_regno);
1572 continue;
1573 }
1574 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1575 for (nregs-- ;nregs >= 0; nregs--)
1576 if (((enum reg_class) pclass
1577 != ira_pressure_class_translate[REGNO_REG_CLASS
1578 (hard_regno + nregs)]))
1579 {
1580 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1581 hard_regno);
1582 break;
1583 }
1584 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1585 hard_regno))
1586 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1587 (machine_mode) j, hard_regno);
1588 }
1589 }
1590 }
1591 \f
1592 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1593 and IRA_MAY_MOVE_OUT_COST for MODE. */
1594 void
1595 ira_init_register_move_cost (machine_mode mode)
1596 {
1597 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1598 bool all_match = true;
1599 unsigned int cl1, cl2;
1600
1601 ira_assert (ira_register_move_cost[mode] == NULL
1602 && ira_may_move_in_cost[mode] == NULL
1603 && ira_may_move_out_cost[mode] == NULL);
1604 ira_assert (have_regs_of_mode[mode]);
1605 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1606 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1607 {
1608 int cost;
1609 if (!contains_reg_of_mode[cl1][mode]
1610 || !contains_reg_of_mode[cl2][mode])
1611 {
1612 if ((ira_reg_class_max_nregs[cl1][mode]
1613 > ira_class_hard_regs_num[cl1])
1614 || (ira_reg_class_max_nregs[cl2][mode]
1615 > ira_class_hard_regs_num[cl2]))
1616 cost = 65535;
1617 else
1618 cost = (ira_memory_move_cost[mode][cl1][0]
1619 + ira_memory_move_cost[mode][cl2][1]) * 2;
1620 }
1621 else
1622 {
1623 cost = register_move_cost (mode, (enum reg_class) cl1,
1624 (enum reg_class) cl2);
1625 ira_assert (cost < 65535);
1626 }
1627 all_match &= (last_move_cost[cl1][cl2] == cost);
1628 last_move_cost[cl1][cl2] = cost;
1629 }
1630 if (all_match && last_mode_for_init_move_cost != -1)
1631 {
1632 ira_register_move_cost[mode]
1633 = ira_register_move_cost[last_mode_for_init_move_cost];
1634 ira_may_move_in_cost[mode]
1635 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1636 ira_may_move_out_cost[mode]
1637 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1638 return;
1639 }
1640 last_mode_for_init_move_cost = mode;
1641 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1642 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1643 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1644 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1645 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1646 {
1647 int cost;
1648 enum reg_class *p1, *p2;
1649
1650 if (last_move_cost[cl1][cl2] == 65535)
1651 {
1652 ira_register_move_cost[mode][cl1][cl2] = 65535;
1653 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1654 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1655 }
1656 else
1657 {
1658 cost = last_move_cost[cl1][cl2];
1659
1660 for (p2 = &reg_class_subclasses[cl2][0];
1661 *p2 != LIM_REG_CLASSES; p2++)
1662 if (ira_class_hard_regs_num[*p2] > 0
1663 && (ira_reg_class_max_nregs[*p2][mode]
1664 <= ira_class_hard_regs_num[*p2]))
1665 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1666
1667 for (p1 = &reg_class_subclasses[cl1][0];
1668 *p1 != LIM_REG_CLASSES; p1++)
1669 if (ira_class_hard_regs_num[*p1] > 0
1670 && (ira_reg_class_max_nregs[*p1][mode]
1671 <= ira_class_hard_regs_num[*p1]))
1672 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1673
1674 ira_assert (cost <= 65535);
1675 ira_register_move_cost[mode][cl1][cl2] = cost;
1676
1677 if (ira_class_subset_p[cl1][cl2])
1678 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1679 else
1680 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1681
1682 if (ira_class_subset_p[cl2][cl1])
1683 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1684 else
1685 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1686 }
1687 }
1688 }
1689
1690 \f
1691
1692 /* This is called once during compiler work. It sets up
1693 different arrays whose values don't depend on the compiled
1694 function. */
1695 void
1696 ira_init_once (void)
1697 {
1698 ira_init_costs_once ();
1699 lra_init_once ();
1700 }
1701
1702 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1703 ira_may_move_out_cost for each mode. */
1704 void
1705 target_ira_int::free_register_move_costs (void)
1706 {
1707 int mode, i;
1708
1709 /* Reset move_cost and friends, making sure we only free shared
1710 table entries once. */
1711 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1712 if (x_ira_register_move_cost[mode])
1713 {
1714 for (i = 0;
1715 i < mode && (x_ira_register_move_cost[i]
1716 != x_ira_register_move_cost[mode]);
1717 i++)
1718 ;
1719 if (i == mode)
1720 {
1721 free (x_ira_register_move_cost[mode]);
1722 free (x_ira_may_move_in_cost[mode]);
1723 free (x_ira_may_move_out_cost[mode]);
1724 }
1725 }
1726 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1727 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1728 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1729 last_mode_for_init_move_cost = -1;
1730 }
1731
1732 target_ira_int::~target_ira_int ()
1733 {
1734 free_ira_costs ();
1735 free_register_move_costs ();
1736 }
1737
1738 /* This is called every time when register related information is
1739 changed. */
1740 void
1741 ira_init (void)
1742 {
1743 this_target_ira_int->free_register_move_costs ();
1744 setup_reg_mode_hard_regset ();
1745 setup_alloc_regs (flag_omit_frame_pointer != 0);
1746 setup_class_subset_and_memory_move_costs ();
1747 setup_reg_class_nregs ();
1748 setup_prohibited_class_mode_regs ();
1749 find_reg_classes ();
1750 clarify_prohibited_class_mode_regs ();
1751 setup_hard_regno_aclass ();
1752 ira_init_costs ();
1753 }
1754
1755 \f
1756 #define ira_prohibited_mode_move_regs_initialized_p \
1757 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1758
1759 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1760 static void
1761 setup_prohibited_mode_move_regs (void)
1762 {
1763 int i, j;
1764 rtx test_reg1, test_reg2, move_pat;
1765 rtx_insn *move_insn;
1766
1767 if (ira_prohibited_mode_move_regs_initialized_p)
1768 return;
1769 ira_prohibited_mode_move_regs_initialized_p = true;
1770 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1771 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1772 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1773 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1774 for (i = 0; i < NUM_MACHINE_MODES; i++)
1775 {
1776 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1777 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1778 {
1779 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1780 continue;
1781 SET_REGNO_RAW (test_reg1, j);
1782 PUT_MODE (test_reg1, (machine_mode) i);
1783 SET_REGNO_RAW (test_reg2, j);
1784 PUT_MODE (test_reg2, (machine_mode) i);
1785 INSN_CODE (move_insn) = -1;
1786 recog_memoized (move_insn);
1787 if (INSN_CODE (move_insn) < 0)
1788 continue;
1789 extract_insn (move_insn);
1790 /* We don't know whether the move will be in code that is optimized
1791 for size or speed, so consider all enabled alternatives. */
1792 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1793 continue;
1794 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1795 }
1796 }
1797 }
1798
1799 \f
1800
1801 /* Setup possible alternatives in ALTS for INSN. */
1802 void
1803 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1804 {
1805 /* MAP nalt * nop -> start of constraints for given operand and
1806 alternative. */
1807 static vec<const char *> insn_constraints;
1808 int nop, nalt;
1809 bool curr_swapped;
1810 const char *p;
1811 rtx op;
1812 int commutative = -1;
1813
1814 extract_insn (insn);
1815 alternative_mask preferred = get_preferred_alternatives (insn);
1816 CLEAR_HARD_REG_SET (alts);
1817 insn_constraints.release ();
1818 insn_constraints.safe_grow_cleared (recog_data.n_operands
1819 * recog_data.n_alternatives + 1);
1820 /* Check that the hard reg set is enough for holding all
1821 alternatives. It is hard to imagine the situation when the
1822 assertion is wrong. */
1823 ira_assert (recog_data.n_alternatives
1824 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1825 FIRST_PSEUDO_REGISTER));
1826 for (curr_swapped = false;; curr_swapped = true)
1827 {
1828 /* Calculate some data common for all alternatives to speed up the
1829 function. */
1830 for (nop = 0; nop < recog_data.n_operands; nop++)
1831 {
1832 for (nalt = 0, p = recog_data.constraints[nop];
1833 nalt < recog_data.n_alternatives;
1834 nalt++)
1835 {
1836 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1837 while (*p && *p != ',')
1838 p++;
1839 if (*p)
1840 p++;
1841 }
1842 }
1843 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1844 {
1845 if (!TEST_BIT (preferred, nalt)
1846 || TEST_HARD_REG_BIT (alts, nalt))
1847 continue;
1848
1849 for (nop = 0; nop < recog_data.n_operands; nop++)
1850 {
1851 int c, len;
1852
1853 op = recog_data.operand[nop];
1854 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1855 if (*p == 0 || *p == ',')
1856 continue;
1857
1858 do
1859 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1860 {
1861 case '#':
1862 case ',':
1863 c = '\0';
1864 case '\0':
1865 len = 0;
1866 break;
1867
1868 case '%':
1869 /* We only support one commutative marker, the
1870 first one. We already set commutative
1871 above. */
1872 if (commutative < 0)
1873 commutative = nop;
1874 break;
1875
1876 case '0': case '1': case '2': case '3': case '4':
1877 case '5': case '6': case '7': case '8': case '9':
1878 goto op_success;
1879 break;
1880
1881 case 'g':
1882 goto op_success;
1883 break;
1884
1885 default:
1886 {
1887 enum constraint_num cn = lookup_constraint (p);
1888 switch (get_constraint_type (cn))
1889 {
1890 case CT_REGISTER:
1891 if (reg_class_for_constraint (cn) != NO_REGS)
1892 goto op_success;
1893 break;
1894
1895 case CT_CONST_INT:
1896 if (CONST_INT_P (op)
1897 && (insn_const_int_ok_for_constraint
1898 (INTVAL (op), cn)))
1899 goto op_success;
1900 break;
1901
1902 case CT_ADDRESS:
1903 case CT_MEMORY:
1904 goto op_success;
1905
1906 case CT_FIXED_FORM:
1907 if (constraint_satisfied_p (op, cn))
1908 goto op_success;
1909 break;
1910 }
1911 break;
1912 }
1913 }
1914 while (p += len, c);
1915 break;
1916 op_success:
1917 ;
1918 }
1919 if (nop >= recog_data.n_operands)
1920 SET_HARD_REG_BIT (alts, nalt);
1921 }
1922 if (commutative < 0)
1923 break;
1924 if (curr_swapped)
1925 break;
1926 op = recog_data.operand[commutative];
1927 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1928 recog_data.operand[commutative + 1] = op;
1929
1930 }
1931 }
1932
1933 /* Return the number of the output non-early clobber operand which
1934 should be the same in any case as operand with number OP_NUM (or
1935 negative value if there is no such operand). The function takes
1936 only really possible alternatives into consideration. */
1937 int
1938 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1939 {
1940 int curr_alt, c, original, dup;
1941 bool ignore_p, use_commut_op_p;
1942 const char *str;
1943
1944 if (op_num < 0 || recog_data.n_alternatives == 0)
1945 return -1;
1946 /* We should find duplications only for input operands. */
1947 if (recog_data.operand_type[op_num] != OP_IN)
1948 return -1;
1949 str = recog_data.constraints[op_num];
1950 use_commut_op_p = false;
1951 for (;;)
1952 {
1953 rtx op = recog_data.operand[op_num];
1954
1955 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1956 original = -1;;)
1957 {
1958 c = *str;
1959 if (c == '\0')
1960 break;
1961 if (c == '#')
1962 ignore_p = true;
1963 else if (c == ',')
1964 {
1965 curr_alt++;
1966 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1967 }
1968 else if (! ignore_p)
1969 switch (c)
1970 {
1971 case 'g':
1972 goto fail;
1973 default:
1974 {
1975 enum constraint_num cn = lookup_constraint (str);
1976 enum reg_class cl = reg_class_for_constraint (cn);
1977 if (cl != NO_REGS
1978 && !targetm.class_likely_spilled_p (cl))
1979 goto fail;
1980 if (constraint_satisfied_p (op, cn))
1981 goto fail;
1982 break;
1983 }
1984
1985 case '0': case '1': case '2': case '3': case '4':
1986 case '5': case '6': case '7': case '8': case '9':
1987 if (original != -1 && original != c)
1988 goto fail;
1989 original = c;
1990 break;
1991 }
1992 str += CONSTRAINT_LEN (c, str);
1993 }
1994 if (original == -1)
1995 goto fail;
1996 dup = -1;
1997 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1998 *str != 0;
1999 str++)
2000 if (ignore_p)
2001 {
2002 if (*str == ',')
2003 ignore_p = false;
2004 }
2005 else if (*str == '#')
2006 ignore_p = true;
2007 else if (! ignore_p)
2008 {
2009 if (*str == '=')
2010 dup = original - '0';
2011 /* It is better ignore an alternative with early clobber. */
2012 else if (*str == '&')
2013 goto fail;
2014 }
2015 if (dup >= 0)
2016 return dup;
2017 fail:
2018 if (use_commut_op_p)
2019 break;
2020 use_commut_op_p = true;
2021 if (recog_data.constraints[op_num][0] == '%')
2022 str = recog_data.constraints[op_num + 1];
2023 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2024 str = recog_data.constraints[op_num - 1];
2025 else
2026 break;
2027 }
2028 return -1;
2029 }
2030
2031 \f
2032
2033 /* Search forward to see if the source register of a copy insn dies
2034 before either it or the destination register is modified, but don't
2035 scan past the end of the basic block. If so, we can replace the
2036 source with the destination and let the source die in the copy
2037 insn.
2038
2039 This will reduce the number of registers live in that range and may
2040 enable the destination and the source coalescing, thus often saving
2041 one register in addition to a register-register copy. */
2042
2043 static void
2044 decrease_live_ranges_number (void)
2045 {
2046 basic_block bb;
2047 rtx_insn *insn;
2048 rtx set, src, dest, dest_death, q, note;
2049 rtx_insn *p;
2050 int sregno, dregno;
2051
2052 if (! flag_expensive_optimizations)
2053 return;
2054
2055 if (ira_dump_file)
2056 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2057
2058 FOR_EACH_BB_FN (bb, cfun)
2059 FOR_BB_INSNS (bb, insn)
2060 {
2061 set = single_set (insn);
2062 if (! set)
2063 continue;
2064 src = SET_SRC (set);
2065 dest = SET_DEST (set);
2066 if (! REG_P (src) || ! REG_P (dest)
2067 || find_reg_note (insn, REG_DEAD, src))
2068 continue;
2069 sregno = REGNO (src);
2070 dregno = REGNO (dest);
2071
2072 /* We don't want to mess with hard regs if register classes
2073 are small. */
2074 if (sregno == dregno
2075 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2076 && (sregno < FIRST_PSEUDO_REGISTER
2077 || dregno < FIRST_PSEUDO_REGISTER))
2078 /* We don't see all updates to SP if they are in an
2079 auto-inc memory reference, so we must disallow this
2080 optimization on them. */
2081 || sregno == STACK_POINTER_REGNUM
2082 || dregno == STACK_POINTER_REGNUM)
2083 continue;
2084
2085 dest_death = NULL_RTX;
2086
2087 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2088 {
2089 if (! INSN_P (p))
2090 continue;
2091 if (BLOCK_FOR_INSN (p) != bb)
2092 break;
2093
2094 if (reg_set_p (src, p) || reg_set_p (dest, p)
2095 /* If SRC is an asm-declared register, it must not be
2096 replaced in any asm. Unfortunately, the REG_EXPR
2097 tree for the asm variable may be absent in the SRC
2098 rtx, so we can't check the actual register
2099 declaration easily (the asm operand will have it,
2100 though). To avoid complicating the test for a rare
2101 case, we just don't perform register replacement
2102 for a hard reg mentioned in an asm. */
2103 || (sregno < FIRST_PSEUDO_REGISTER
2104 && asm_noperands (PATTERN (p)) >= 0
2105 && reg_overlap_mentioned_p (src, PATTERN (p)))
2106 /* Don't change hard registers used by a call. */
2107 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2108 && find_reg_fusage (p, USE, src))
2109 /* Don't change a USE of a register. */
2110 || (GET_CODE (PATTERN (p)) == USE
2111 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2112 break;
2113
2114 /* See if all of SRC dies in P. This test is slightly
2115 more conservative than it needs to be. */
2116 if ((note = find_regno_note (p, REG_DEAD, sregno))
2117 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2118 {
2119 int failed = 0;
2120
2121 /* We can do the optimization. Scan forward from INSN
2122 again, replacing regs as we go. Set FAILED if a
2123 replacement can't be done. In that case, we can't
2124 move the death note for SRC. This should be
2125 rare. */
2126
2127 /* Set to stop at next insn. */
2128 for (q = next_real_insn (insn);
2129 q != next_real_insn (p);
2130 q = next_real_insn (q))
2131 {
2132 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2133 {
2134 /* If SRC is a hard register, we might miss
2135 some overlapping registers with
2136 validate_replace_rtx, so we would have to
2137 undo it. We can't if DEST is present in
2138 the insn, so fail in that combination of
2139 cases. */
2140 if (sregno < FIRST_PSEUDO_REGISTER
2141 && reg_mentioned_p (dest, PATTERN (q)))
2142 failed = 1;
2143
2144 /* Attempt to replace all uses. */
2145 else if (!validate_replace_rtx (src, dest, q))
2146 failed = 1;
2147
2148 /* If this succeeded, but some part of the
2149 register is still present, undo the
2150 replacement. */
2151 else if (sregno < FIRST_PSEUDO_REGISTER
2152 && reg_overlap_mentioned_p (src, PATTERN (q)))
2153 {
2154 validate_replace_rtx (dest, src, q);
2155 failed = 1;
2156 }
2157 }
2158
2159 /* If DEST dies here, remove the death note and
2160 save it for later. Make sure ALL of DEST dies
2161 here; again, this is overly conservative. */
2162 if (! dest_death
2163 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2164 {
2165 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2166 remove_note (q, dest_death);
2167 else
2168 {
2169 failed = 1;
2170 dest_death = 0;
2171 }
2172 }
2173 }
2174
2175 if (! failed)
2176 {
2177 /* Move death note of SRC from P to INSN. */
2178 remove_note (p, note);
2179 XEXP (note, 1) = REG_NOTES (insn);
2180 REG_NOTES (insn) = note;
2181 }
2182
2183 /* DEST is also dead if INSN has a REG_UNUSED note for
2184 DEST. */
2185 if (! dest_death
2186 && (dest_death
2187 = find_regno_note (insn, REG_UNUSED, dregno)))
2188 {
2189 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2190 remove_note (insn, dest_death);
2191 }
2192
2193 /* Put death note of DEST on P if we saw it die. */
2194 if (dest_death)
2195 {
2196 XEXP (dest_death, 1) = REG_NOTES (p);
2197 REG_NOTES (p) = dest_death;
2198 }
2199 break;
2200 }
2201
2202 /* If SRC is a hard register which is set or killed in
2203 some other way, we can't do this optimization. */
2204 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2205 break;
2206 }
2207 }
2208 }
2209
2210 \f
2211
2212 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2213 static bool
2214 ira_bad_reload_regno_1 (int regno, rtx x)
2215 {
2216 int x_regno, n, i;
2217 ira_allocno_t a;
2218 enum reg_class pref;
2219
2220 /* We only deal with pseudo regs. */
2221 if (! x || GET_CODE (x) != REG)
2222 return false;
2223
2224 x_regno = REGNO (x);
2225 if (x_regno < FIRST_PSEUDO_REGISTER)
2226 return false;
2227
2228 /* If the pseudo prefers REGNO explicitly, then do not consider
2229 REGNO a bad spill choice. */
2230 pref = reg_preferred_class (x_regno);
2231 if (reg_class_size[pref] == 1)
2232 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2233
2234 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2235 poor choice for a reload regno. */
2236 a = ira_regno_allocno_map[x_regno];
2237 n = ALLOCNO_NUM_OBJECTS (a);
2238 for (i = 0; i < n; i++)
2239 {
2240 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2241 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2242 return true;
2243 }
2244 return false;
2245 }
2246
2247 /* Return nonzero if REGNO is a particularly bad choice for reloading
2248 IN or OUT. */
2249 bool
2250 ira_bad_reload_regno (int regno, rtx in, rtx out)
2251 {
2252 return (ira_bad_reload_regno_1 (regno, in)
2253 || ira_bad_reload_regno_1 (regno, out));
2254 }
2255
2256 /* Add register clobbers from asm statements. */
2257 static void
2258 compute_regs_asm_clobbered (void)
2259 {
2260 basic_block bb;
2261
2262 FOR_EACH_BB_FN (bb, cfun)
2263 {
2264 rtx_insn *insn;
2265 FOR_BB_INSNS_REVERSE (bb, insn)
2266 {
2267 df_ref def;
2268
2269 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2270 FOR_EACH_INSN_DEF (def, insn)
2271 {
2272 unsigned int dregno = DF_REF_REGNO (def);
2273 if (HARD_REGISTER_NUM_P (dregno))
2274 add_to_hard_reg_set (&crtl->asm_clobbers,
2275 GET_MODE (DF_REF_REAL_REG (def)),
2276 dregno);
2277 }
2278 }
2279 }
2280 }
2281
2282
2283 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2284 REGS_EVER_LIVE. */
2285 void
2286 ira_setup_eliminable_regset (void)
2287 {
2288 #ifdef ELIMINABLE_REGS
2289 int i;
2290 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2291 #endif
2292 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2293 sp for alloca. So we can't eliminate the frame pointer in that
2294 case. At some point, we should improve this by emitting the
2295 sp-adjusting insns for this case. */
2296 frame_pointer_needed
2297 = (! flag_omit_frame_pointer
2298 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2299 /* We need the frame pointer to catch stack overflow exceptions
2300 if the stack pointer is moving. */
2301 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2302 || crtl->accesses_prior_frames
2303 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2304 /* We need a frame pointer for all Cilk Plus functions that use
2305 Cilk keywords. */
2306 || (flag_cilkplus && cfun->is_cilk_function)
2307 || targetm.frame_pointer_required ());
2308
2309 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2310 RTL is very small. So if we use frame pointer for RA and RTL
2311 actually prevents this, we will spill pseudos assigned to the
2312 frame pointer in LRA. */
2313
2314 if (frame_pointer_needed)
2315 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2316
2317 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2318 CLEAR_HARD_REG_SET (eliminable_regset);
2319
2320 compute_regs_asm_clobbered ();
2321
2322 /* Build the regset of all eliminable registers and show we can't
2323 use those that we already know won't be eliminated. */
2324 #ifdef ELIMINABLE_REGS
2325 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2326 {
2327 bool cannot_elim
2328 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2329 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2330
2331 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2332 {
2333 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2334
2335 if (cannot_elim)
2336 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2337 }
2338 else if (cannot_elim)
2339 error ("%s cannot be used in asm here",
2340 reg_names[eliminables[i].from]);
2341 else
2342 df_set_regs_ever_live (eliminables[i].from, true);
2343 }
2344 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2345 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2346 {
2347 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2348 if (frame_pointer_needed)
2349 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2350 }
2351 else if (frame_pointer_needed)
2352 error ("%s cannot be used in asm here",
2353 reg_names[HARD_FRAME_POINTER_REGNUM]);
2354 else
2355 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2356 #endif
2357
2358 #else
2359 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2360 {
2361 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2362 if (frame_pointer_needed)
2363 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2364 }
2365 else if (frame_pointer_needed)
2366 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2367 else
2368 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2369 #endif
2370 }
2371
2372 \f
2373
2374 /* Vector of substitutions of register numbers,
2375 used to map pseudo regs into hardware regs.
2376 This is set up as a result of register allocation.
2377 Element N is the hard reg assigned to pseudo reg N,
2378 or is -1 if no hard reg was assigned.
2379 If N is a hard reg number, element N is N. */
2380 short *reg_renumber;
2381
2382 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2383 the allocation found by IRA. */
2384 static void
2385 setup_reg_renumber (void)
2386 {
2387 int regno, hard_regno;
2388 ira_allocno_t a;
2389 ira_allocno_iterator ai;
2390
2391 caller_save_needed = 0;
2392 FOR_EACH_ALLOCNO (a, ai)
2393 {
2394 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2395 continue;
2396 /* There are no caps at this point. */
2397 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2398 if (! ALLOCNO_ASSIGNED_P (a))
2399 /* It can happen if A is not referenced but partially anticipated
2400 somewhere in a region. */
2401 ALLOCNO_ASSIGNED_P (a) = true;
2402 ira_free_allocno_updated_costs (a);
2403 hard_regno = ALLOCNO_HARD_REGNO (a);
2404 regno = ALLOCNO_REGNO (a);
2405 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2406 if (hard_regno >= 0)
2407 {
2408 int i, nwords;
2409 enum reg_class pclass;
2410 ira_object_t obj;
2411
2412 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2413 nwords = ALLOCNO_NUM_OBJECTS (a);
2414 for (i = 0; i < nwords; i++)
2415 {
2416 obj = ALLOCNO_OBJECT (a, i);
2417 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2418 reg_class_contents[pclass]);
2419 }
2420 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2421 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2422 call_used_reg_set))
2423 {
2424 ira_assert (!optimize || flag_caller_saves
2425 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2426 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2427 || regno >= ira_reg_equiv_len
2428 || ira_equiv_no_lvalue_p (regno));
2429 caller_save_needed = 1;
2430 }
2431 }
2432 }
2433 }
2434
2435 /* Set up allocno assignment flags for further allocation
2436 improvements. */
2437 static void
2438 setup_allocno_assignment_flags (void)
2439 {
2440 int hard_regno;
2441 ira_allocno_t a;
2442 ira_allocno_iterator ai;
2443
2444 FOR_EACH_ALLOCNO (a, ai)
2445 {
2446 if (! ALLOCNO_ASSIGNED_P (a))
2447 /* It can happen if A is not referenced but partially anticipated
2448 somewhere in a region. */
2449 ira_free_allocno_updated_costs (a);
2450 hard_regno = ALLOCNO_HARD_REGNO (a);
2451 /* Don't assign hard registers to allocnos which are destination
2452 of removed store at the end of loop. It has no sense to keep
2453 the same value in different hard registers. It is also
2454 impossible to assign hard registers correctly to such
2455 allocnos because the cost info and info about intersected
2456 calls are incorrect for them. */
2457 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2458 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2459 || (ALLOCNO_MEMORY_COST (a)
2460 - ALLOCNO_CLASS_COST (a)) < 0);
2461 ira_assert
2462 (hard_regno < 0
2463 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2464 reg_class_contents[ALLOCNO_CLASS (a)]));
2465 }
2466 }
2467
2468 /* Evaluate overall allocation cost and the costs for using hard
2469 registers and memory for allocnos. */
2470 static void
2471 calculate_allocation_cost (void)
2472 {
2473 int hard_regno, cost;
2474 ira_allocno_t a;
2475 ira_allocno_iterator ai;
2476
2477 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2478 FOR_EACH_ALLOCNO (a, ai)
2479 {
2480 hard_regno = ALLOCNO_HARD_REGNO (a);
2481 ira_assert (hard_regno < 0
2482 || (ira_hard_reg_in_set_p
2483 (hard_regno, ALLOCNO_MODE (a),
2484 reg_class_contents[ALLOCNO_CLASS (a)])));
2485 if (hard_regno < 0)
2486 {
2487 cost = ALLOCNO_MEMORY_COST (a);
2488 ira_mem_cost += cost;
2489 }
2490 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2491 {
2492 cost = (ALLOCNO_HARD_REG_COSTS (a)
2493 [ira_class_hard_reg_index
2494 [ALLOCNO_CLASS (a)][hard_regno]]);
2495 ira_reg_cost += cost;
2496 }
2497 else
2498 {
2499 cost = ALLOCNO_CLASS_COST (a);
2500 ira_reg_cost += cost;
2501 }
2502 ira_overall_cost += cost;
2503 }
2504
2505 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2506 {
2507 fprintf (ira_dump_file,
2508 "+++Costs: overall %"PRId64
2509 ", reg %"PRId64
2510 ", mem %"PRId64
2511 ", ld %"PRId64
2512 ", st %"PRId64
2513 ", move %"PRId64,
2514 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2515 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2516 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2517 ira_move_loops_num, ira_additional_jumps_num);
2518 }
2519
2520 }
2521
2522 #ifdef ENABLE_IRA_CHECKING
2523 /* Check the correctness of the allocation. We do need this because
2524 of complicated code to transform more one region internal
2525 representation into one region representation. */
2526 static void
2527 check_allocation (void)
2528 {
2529 ira_allocno_t a;
2530 int hard_regno, nregs, conflict_nregs;
2531 ira_allocno_iterator ai;
2532
2533 FOR_EACH_ALLOCNO (a, ai)
2534 {
2535 int n = ALLOCNO_NUM_OBJECTS (a);
2536 int i;
2537
2538 if (ALLOCNO_CAP_MEMBER (a) != NULL
2539 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2540 continue;
2541 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2542 if (nregs == 1)
2543 /* We allocated a single hard register. */
2544 n = 1;
2545 else if (n > 1)
2546 /* We allocated multiple hard registers, and we will test
2547 conflicts in a granularity of single hard regs. */
2548 nregs = 1;
2549
2550 for (i = 0; i < n; i++)
2551 {
2552 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2553 ira_object_t conflict_obj;
2554 ira_object_conflict_iterator oci;
2555 int this_regno = hard_regno;
2556 if (n > 1)
2557 {
2558 if (REG_WORDS_BIG_ENDIAN)
2559 this_regno += n - i - 1;
2560 else
2561 this_regno += i;
2562 }
2563 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2564 {
2565 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2566 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2567 if (conflict_hard_regno < 0)
2568 continue;
2569
2570 conflict_nregs
2571 = (hard_regno_nregs
2572 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2573
2574 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2575 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2576 {
2577 if (REG_WORDS_BIG_ENDIAN)
2578 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2579 - OBJECT_SUBWORD (conflict_obj) - 1);
2580 else
2581 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2582 conflict_nregs = 1;
2583 }
2584
2585 if ((conflict_hard_regno <= this_regno
2586 && this_regno < conflict_hard_regno + conflict_nregs)
2587 || (this_regno <= conflict_hard_regno
2588 && conflict_hard_regno < this_regno + nregs))
2589 {
2590 fprintf (stderr, "bad allocation for %d and %d\n",
2591 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2592 gcc_unreachable ();
2593 }
2594 }
2595 }
2596 }
2597 }
2598 #endif
2599
2600 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2601 be already calculated. */
2602 static void
2603 setup_reg_equiv_init (void)
2604 {
2605 int i;
2606 int max_regno = max_reg_num ();
2607
2608 for (i = 0; i < max_regno; i++)
2609 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2610 }
2611
2612 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2613 are insns which were generated for such movement. It is assumed
2614 that FROM_REGNO and TO_REGNO always have the same value at the
2615 point of any move containing such registers. This function is used
2616 to update equiv info for register shuffles on the region borders
2617 and for caller save/restore insns. */
2618 void
2619 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2620 {
2621 rtx_insn *insn;
2622 rtx x, note;
2623
2624 if (! ira_reg_equiv[from_regno].defined_p
2625 && (! ira_reg_equiv[to_regno].defined_p
2626 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2627 && ! MEM_READONLY_P (x))))
2628 return;
2629 insn = insns;
2630 if (NEXT_INSN (insn) != NULL_RTX)
2631 {
2632 if (! ira_reg_equiv[to_regno].defined_p)
2633 {
2634 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2635 return;
2636 }
2637 ira_reg_equiv[to_regno].defined_p = false;
2638 ira_reg_equiv[to_regno].memory
2639 = ira_reg_equiv[to_regno].constant
2640 = ira_reg_equiv[to_regno].invariant
2641 = ira_reg_equiv[to_regno].init_insns = NULL;
2642 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2643 fprintf (ira_dump_file,
2644 " Invalidating equiv info for reg %d\n", to_regno);
2645 return;
2646 }
2647 /* It is possible that FROM_REGNO still has no equivalence because
2648 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2649 insn was not processed yet. */
2650 if (ira_reg_equiv[from_regno].defined_p)
2651 {
2652 ira_reg_equiv[to_regno].defined_p = true;
2653 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2654 {
2655 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2656 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2657 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2658 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2659 ira_reg_equiv[to_regno].memory = x;
2660 if (! MEM_READONLY_P (x))
2661 /* We don't add the insn to insn init list because memory
2662 equivalence is just to say what memory is better to use
2663 when the pseudo is spilled. */
2664 return;
2665 }
2666 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2667 {
2668 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2669 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2670 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2671 ira_reg_equiv[to_regno].constant = x;
2672 }
2673 else
2674 {
2675 x = ira_reg_equiv[from_regno].invariant;
2676 ira_assert (x != NULL_RTX);
2677 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2678 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2679 ira_reg_equiv[to_regno].invariant = x;
2680 }
2681 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2682 {
2683 note = set_unique_reg_note (insn, REG_EQUIV, x);
2684 gcc_assert (note != NULL_RTX);
2685 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2686 {
2687 fprintf (ira_dump_file,
2688 " Adding equiv note to insn %u for reg %d ",
2689 INSN_UID (insn), to_regno);
2690 dump_value_slim (ira_dump_file, x, 1);
2691 fprintf (ira_dump_file, "\n");
2692 }
2693 }
2694 }
2695 ira_reg_equiv[to_regno].init_insns
2696 = gen_rtx_INSN_LIST (VOIDmode, insn,
2697 ira_reg_equiv[to_regno].init_insns);
2698 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2699 fprintf (ira_dump_file,
2700 " Adding equiv init move insn %u to reg %d\n",
2701 INSN_UID (insn), to_regno);
2702 }
2703
2704 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2705 by IRA. */
2706 static void
2707 fix_reg_equiv_init (void)
2708 {
2709 int max_regno = max_reg_num ();
2710 int i, new_regno, max;
2711 rtx x, prev, next, insn, set;
2712
2713 if (max_regno_before_ira < max_regno)
2714 {
2715 max = vec_safe_length (reg_equivs);
2716 grow_reg_equivs ();
2717 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2718 for (prev = NULL_RTX, x = reg_equiv_init (i);
2719 x != NULL_RTX;
2720 x = next)
2721 {
2722 next = XEXP (x, 1);
2723 insn = XEXP (x, 0);
2724 set = single_set (as_a <rtx_insn *> (insn));
2725 ira_assert (set != NULL_RTX
2726 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2727 if (REG_P (SET_DEST (set))
2728 && ((int) REGNO (SET_DEST (set)) == i
2729 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2730 new_regno = REGNO (SET_DEST (set));
2731 else if (REG_P (SET_SRC (set))
2732 && ((int) REGNO (SET_SRC (set)) == i
2733 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2734 new_regno = REGNO (SET_SRC (set));
2735 else
2736 gcc_unreachable ();
2737 if (new_regno == i)
2738 prev = x;
2739 else
2740 {
2741 /* Remove the wrong list element. */
2742 if (prev == NULL_RTX)
2743 reg_equiv_init (i) = next;
2744 else
2745 XEXP (prev, 1) = next;
2746 XEXP (x, 1) = reg_equiv_init (new_regno);
2747 reg_equiv_init (new_regno) = x;
2748 }
2749 }
2750 }
2751 }
2752
2753 #ifdef ENABLE_IRA_CHECKING
2754 /* Print redundant memory-memory copies. */
2755 static void
2756 print_redundant_copies (void)
2757 {
2758 int hard_regno;
2759 ira_allocno_t a;
2760 ira_copy_t cp, next_cp;
2761 ira_allocno_iterator ai;
2762
2763 FOR_EACH_ALLOCNO (a, ai)
2764 {
2765 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2766 /* It is a cap. */
2767 continue;
2768 hard_regno = ALLOCNO_HARD_REGNO (a);
2769 if (hard_regno >= 0)
2770 continue;
2771 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2772 if (cp->first == a)
2773 next_cp = cp->next_first_allocno_copy;
2774 else
2775 {
2776 next_cp = cp->next_second_allocno_copy;
2777 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2778 && cp->insn != NULL_RTX
2779 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2780 fprintf (ira_dump_file,
2781 " Redundant move from %d(freq %d):%d\n",
2782 INSN_UID (cp->insn), cp->freq, hard_regno);
2783 }
2784 }
2785 }
2786 #endif
2787
2788 /* Setup preferred and alternative classes for new pseudo-registers
2789 created by IRA starting with START. */
2790 static void
2791 setup_preferred_alternate_classes_for_new_pseudos (int start)
2792 {
2793 int i, old_regno;
2794 int max_regno = max_reg_num ();
2795
2796 for (i = start; i < max_regno; i++)
2797 {
2798 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2799 ira_assert (i != old_regno);
2800 setup_reg_classes (i, reg_preferred_class (old_regno),
2801 reg_alternate_class (old_regno),
2802 reg_allocno_class (old_regno));
2803 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2804 fprintf (ira_dump_file,
2805 " New r%d: setting preferred %s, alternative %s\n",
2806 i, reg_class_names[reg_preferred_class (old_regno)],
2807 reg_class_names[reg_alternate_class (old_regno)]);
2808 }
2809 }
2810
2811 \f
2812 /* The number of entries allocated in reg_info. */
2813 static int allocated_reg_info_size;
2814
2815 /* Regional allocation can create new pseudo-registers. This function
2816 expands some arrays for pseudo-registers. */
2817 static void
2818 expand_reg_info (void)
2819 {
2820 int i;
2821 int size = max_reg_num ();
2822
2823 resize_reg_info ();
2824 for (i = allocated_reg_info_size; i < size; i++)
2825 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2826 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2827 allocated_reg_info_size = size;
2828 }
2829
2830 /* Return TRUE if there is too high register pressure in the function.
2831 It is used to decide when stack slot sharing is worth to do. */
2832 static bool
2833 too_high_register_pressure_p (void)
2834 {
2835 int i;
2836 enum reg_class pclass;
2837
2838 for (i = 0; i < ira_pressure_classes_num; i++)
2839 {
2840 pclass = ira_pressure_classes[i];
2841 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2842 return true;
2843 }
2844 return false;
2845 }
2846
2847 \f
2848
2849 /* Indicate that hard register number FROM was eliminated and replaced with
2850 an offset from hard register number TO. The status of hard registers live
2851 at the start of a basic block is updated by replacing a use of FROM with
2852 a use of TO. */
2853
2854 void
2855 mark_elimination (int from, int to)
2856 {
2857 basic_block bb;
2858 bitmap r;
2859
2860 FOR_EACH_BB_FN (bb, cfun)
2861 {
2862 r = DF_LR_IN (bb);
2863 if (bitmap_bit_p (r, from))
2864 {
2865 bitmap_clear_bit (r, from);
2866 bitmap_set_bit (r, to);
2867 }
2868 if (! df_live)
2869 continue;
2870 r = DF_LIVE_IN (bb);
2871 if (bitmap_bit_p (r, from))
2872 {
2873 bitmap_clear_bit (r, from);
2874 bitmap_set_bit (r, to);
2875 }
2876 }
2877 }
2878
2879 \f
2880
2881 /* The length of the following array. */
2882 int ira_reg_equiv_len;
2883
2884 /* Info about equiv. info for each register. */
2885 struct ira_reg_equiv_s *ira_reg_equiv;
2886
2887 /* Expand ira_reg_equiv if necessary. */
2888 void
2889 ira_expand_reg_equiv (void)
2890 {
2891 int old = ira_reg_equiv_len;
2892
2893 if (ira_reg_equiv_len > max_reg_num ())
2894 return;
2895 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2896 ira_reg_equiv
2897 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2898 ira_reg_equiv_len
2899 * sizeof (struct ira_reg_equiv_s));
2900 gcc_assert (old < ira_reg_equiv_len);
2901 memset (ira_reg_equiv + old, 0,
2902 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2903 }
2904
2905 static void
2906 init_reg_equiv (void)
2907 {
2908 ira_reg_equiv_len = 0;
2909 ira_reg_equiv = NULL;
2910 ira_expand_reg_equiv ();
2911 }
2912
2913 static void
2914 finish_reg_equiv (void)
2915 {
2916 free (ira_reg_equiv);
2917 }
2918
2919 \f
2920
2921 struct equivalence
2922 {
2923 /* Set when a REG_EQUIV note is found or created. Use to
2924 keep track of what memory accesses might be created later,
2925 e.g. by reload. */
2926 rtx replacement;
2927 rtx *src_p;
2928
2929 /* The list of each instruction which initializes this register.
2930
2931 NULL indicates we know nothing about this register's equivalence
2932 properties.
2933
2934 An INSN_LIST with a NULL insn indicates this pseudo is already
2935 known to not have a valid equivalence. */
2936 rtx_insn_list *init_insns;
2937
2938 /* Loop depth is used to recognize equivalences which appear
2939 to be present within the same loop (or in an inner loop). */
2940 short loop_depth;
2941 /* Nonzero if this had a preexisting REG_EQUIV note. */
2942 unsigned char is_arg_equivalence : 1;
2943 /* Set when an attempt should be made to replace a register
2944 with the associated src_p entry. */
2945 unsigned char replace : 1;
2946 /* Set if this register has no known equivalence. */
2947 unsigned char no_equiv : 1;
2948 };
2949
2950 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2951 structure for that register. */
2952 static struct equivalence *reg_equiv;
2953
2954 /* Used for communication between the following two functions: contains
2955 a MEM that we wish to ensure remains unchanged. */
2956 static rtx equiv_mem;
2957
2958 /* Set nonzero if EQUIV_MEM is modified. */
2959 static int equiv_mem_modified;
2960
2961 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2962 Called via note_stores. */
2963 static void
2964 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2965 void *data ATTRIBUTE_UNUSED)
2966 {
2967 if ((REG_P (dest)
2968 && reg_overlap_mentioned_p (dest, equiv_mem))
2969 || (MEM_P (dest)
2970 && anti_dependence (equiv_mem, dest)))
2971 equiv_mem_modified = 1;
2972 }
2973
2974 /* Verify that no store between START and the death of REG invalidates
2975 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2976 by storing into an overlapping memory location, or with a non-const
2977 CALL_INSN.
2978
2979 Return 1 if MEMREF remains valid. */
2980 static int
2981 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2982 {
2983 rtx_insn *insn;
2984 rtx note;
2985
2986 equiv_mem = memref;
2987 equiv_mem_modified = 0;
2988
2989 /* If the memory reference has side effects or is volatile, it isn't a
2990 valid equivalence. */
2991 if (side_effects_p (memref))
2992 return 0;
2993
2994 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2995 {
2996 if (! INSN_P (insn))
2997 continue;
2998
2999 if (find_reg_note (insn, REG_DEAD, reg))
3000 return 1;
3001
3002 /* This used to ignore readonly memory and const/pure calls. The problem
3003 is the equivalent form may reference a pseudo which gets assigned a
3004 call clobbered hard reg. When we later replace REG with its
3005 equivalent form, the value in the call-clobbered reg has been
3006 changed and all hell breaks loose. */
3007 if (CALL_P (insn))
3008 return 0;
3009
3010 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
3011
3012 /* If a register mentioned in MEMREF is modified via an
3013 auto-increment, we lose the equivalence. Do the same if one
3014 dies; although we could extend the life, it doesn't seem worth
3015 the trouble. */
3016
3017 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3018 if ((REG_NOTE_KIND (note) == REG_INC
3019 || REG_NOTE_KIND (note) == REG_DEAD)
3020 && REG_P (XEXP (note, 0))
3021 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3022 return 0;
3023 }
3024
3025 return 0;
3026 }
3027
3028 /* Returns zero if X is known to be invariant. */
3029 static int
3030 equiv_init_varies_p (rtx x)
3031 {
3032 RTX_CODE code = GET_CODE (x);
3033 int i;
3034 const char *fmt;
3035
3036 switch (code)
3037 {
3038 case MEM:
3039 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3040
3041 case CONST:
3042 CASE_CONST_ANY:
3043 case SYMBOL_REF:
3044 case LABEL_REF:
3045 return 0;
3046
3047 case REG:
3048 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3049
3050 case ASM_OPERANDS:
3051 if (MEM_VOLATILE_P (x))
3052 return 1;
3053
3054 /* Fall through. */
3055
3056 default:
3057 break;
3058 }
3059
3060 fmt = GET_RTX_FORMAT (code);
3061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3062 if (fmt[i] == 'e')
3063 {
3064 if (equiv_init_varies_p (XEXP (x, i)))
3065 return 1;
3066 }
3067 else if (fmt[i] == 'E')
3068 {
3069 int j;
3070 for (j = 0; j < XVECLEN (x, i); j++)
3071 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3072 return 1;
3073 }
3074
3075 return 0;
3076 }
3077
3078 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3079 X is only movable if the registers it uses have equivalent initializations
3080 which appear to be within the same loop (or in an inner loop) and movable
3081 or if they are not candidates for local_alloc and don't vary. */
3082 static int
3083 equiv_init_movable_p (rtx x, int regno)
3084 {
3085 int i, j;
3086 const char *fmt;
3087 enum rtx_code code = GET_CODE (x);
3088
3089 switch (code)
3090 {
3091 case SET:
3092 return equiv_init_movable_p (SET_SRC (x), regno);
3093
3094 case CC0:
3095 case CLOBBER:
3096 return 0;
3097
3098 case PRE_INC:
3099 case PRE_DEC:
3100 case POST_INC:
3101 case POST_DEC:
3102 case PRE_MODIFY:
3103 case POST_MODIFY:
3104 return 0;
3105
3106 case REG:
3107 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3108 && reg_equiv[REGNO (x)].replace)
3109 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3110 && ! rtx_varies_p (x, 0)));
3111
3112 case UNSPEC_VOLATILE:
3113 return 0;
3114
3115 case ASM_OPERANDS:
3116 if (MEM_VOLATILE_P (x))
3117 return 0;
3118
3119 /* Fall through. */
3120
3121 default:
3122 break;
3123 }
3124
3125 fmt = GET_RTX_FORMAT (code);
3126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3127 switch (fmt[i])
3128 {
3129 case 'e':
3130 if (! equiv_init_movable_p (XEXP (x, i), regno))
3131 return 0;
3132 break;
3133 case 'E':
3134 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3135 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3136 return 0;
3137 break;
3138 }
3139
3140 return 1;
3141 }
3142
3143 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3144 true. */
3145 static int
3146 contains_replace_regs (rtx x)
3147 {
3148 int i, j;
3149 const char *fmt;
3150 enum rtx_code code = GET_CODE (x);
3151
3152 switch (code)
3153 {
3154 case CONST:
3155 case LABEL_REF:
3156 case SYMBOL_REF:
3157 CASE_CONST_ANY:
3158 case PC:
3159 case CC0:
3160 case HIGH:
3161 return 0;
3162
3163 case REG:
3164 return reg_equiv[REGNO (x)].replace;
3165
3166 default:
3167 break;
3168 }
3169
3170 fmt = GET_RTX_FORMAT (code);
3171 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3172 switch (fmt[i])
3173 {
3174 case 'e':
3175 if (contains_replace_regs (XEXP (x, i)))
3176 return 1;
3177 break;
3178 case 'E':
3179 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3180 if (contains_replace_regs (XVECEXP (x, i, j)))
3181 return 1;
3182 break;
3183 }
3184
3185 return 0;
3186 }
3187
3188 /* TRUE if X references a memory location that would be affected by a store
3189 to MEMREF. */
3190 static int
3191 memref_referenced_p (rtx memref, rtx x)
3192 {
3193 int i, j;
3194 const char *fmt;
3195 enum rtx_code code = GET_CODE (x);
3196
3197 switch (code)
3198 {
3199 case CONST:
3200 case LABEL_REF:
3201 case SYMBOL_REF:
3202 CASE_CONST_ANY:
3203 case PC:
3204 case CC0:
3205 case HIGH:
3206 case LO_SUM:
3207 return 0;
3208
3209 case REG:
3210 return (reg_equiv[REGNO (x)].replacement
3211 && memref_referenced_p (memref,
3212 reg_equiv[REGNO (x)].replacement));
3213
3214 case MEM:
3215 if (true_dependence (memref, VOIDmode, x))
3216 return 1;
3217 break;
3218
3219 case SET:
3220 /* If we are setting a MEM, it doesn't count (its address does), but any
3221 other SET_DEST that has a MEM in it is referencing the MEM. */
3222 if (MEM_P (SET_DEST (x)))
3223 {
3224 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3225 return 1;
3226 }
3227 else if (memref_referenced_p (memref, SET_DEST (x)))
3228 return 1;
3229
3230 return memref_referenced_p (memref, SET_SRC (x));
3231
3232 default:
3233 break;
3234 }
3235
3236 fmt = GET_RTX_FORMAT (code);
3237 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3238 switch (fmt[i])
3239 {
3240 case 'e':
3241 if (memref_referenced_p (memref, XEXP (x, i)))
3242 return 1;
3243 break;
3244 case 'E':
3245 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3246 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3247 return 1;
3248 break;
3249 }
3250
3251 return 0;
3252 }
3253
3254 /* TRUE if some insn in the range (START, END] references a memory location
3255 that would be affected by a store to MEMREF. */
3256 static int
3257 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3258 {
3259 rtx_insn *insn;
3260
3261 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3262 insn = NEXT_INSN (insn))
3263 {
3264 if (!NONDEBUG_INSN_P (insn))
3265 continue;
3266
3267 if (memref_referenced_p (memref, PATTERN (insn)))
3268 return 1;
3269
3270 /* Nonconst functions may access memory. */
3271 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3272 return 1;
3273 }
3274
3275 return 0;
3276 }
3277
3278 /* Mark REG as having no known equivalence.
3279 Some instructions might have been processed before and furnished
3280 with REG_EQUIV notes for this register; these notes will have to be
3281 removed.
3282 STORE is the piece of RTL that does the non-constant / conflicting
3283 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3284 but needs to be there because this function is called from note_stores. */
3285 static void
3286 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3287 void *data ATTRIBUTE_UNUSED)
3288 {
3289 int regno;
3290 rtx_insn_list *list;
3291
3292 if (!REG_P (reg))
3293 return;
3294 regno = REGNO (reg);
3295 reg_equiv[regno].no_equiv = 1;
3296 list = reg_equiv[regno].init_insns;
3297 if (list && list->insn () == NULL)
3298 return;
3299 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3300 reg_equiv[regno].replacement = NULL_RTX;
3301 /* This doesn't matter for equivalences made for argument registers, we
3302 should keep their initialization insns. */
3303 if (reg_equiv[regno].is_arg_equivalence)
3304 return;
3305 ira_reg_equiv[regno].defined_p = false;
3306 ira_reg_equiv[regno].init_insns = NULL;
3307 for (; list; list = list->next ())
3308 {
3309 rtx_insn *insn = list->insn ();
3310 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3311 }
3312 }
3313
3314 /* Check whether the SUBREG is a paradoxical subreg and set the result
3315 in PDX_SUBREGS. */
3316
3317 static void
3318 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3319 {
3320 subrtx_iterator::array_type array;
3321 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3322 {
3323 const_rtx subreg = *iter;
3324 if (GET_CODE (subreg) == SUBREG)
3325 {
3326 const_rtx reg = SUBREG_REG (subreg);
3327 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3328 pdx_subregs[REGNO (reg)] = true;
3329 }
3330 }
3331 }
3332
3333 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3334 equivalent replacement. */
3335
3336 static rtx
3337 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3338 {
3339 if (REG_P (loc))
3340 {
3341 bitmap cleared_regs = (bitmap) data;
3342 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3343 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3344 NULL_RTX, adjust_cleared_regs, data);
3345 }
3346 return NULL_RTX;
3347 }
3348
3349 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3350 static int recorded_label_ref;
3351
3352 /* Find registers that are equivalent to a single value throughout the
3353 compilation (either because they can be referenced in memory or are
3354 set once from a single constant). Lower their priority for a
3355 register.
3356
3357 If such a register is only referenced once, try substituting its
3358 value into the using insn. If it succeeds, we can eliminate the
3359 register completely.
3360
3361 Initialize init_insns in ira_reg_equiv array.
3362
3363 Return non-zero if jump label rebuilding should be done. */
3364 static int
3365 update_equiv_regs (void)
3366 {
3367 rtx_insn *insn;
3368 basic_block bb;
3369 int loop_depth;
3370 bitmap cleared_regs;
3371 bool *pdx_subregs;
3372
3373 /* We need to keep track of whether or not we recorded a LABEL_REF so
3374 that we know if the jump optimizer needs to be rerun. */
3375 recorded_label_ref = 0;
3376
3377 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3378 subreg. */
3379 pdx_subregs = XCNEWVEC (bool, max_regno);
3380
3381 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3382 grow_reg_equivs ();
3383
3384 init_alias_analysis ();
3385
3386 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3387 paradoxical subreg. Don't set such reg equivalent to a mem,
3388 because lra will not substitute such equiv memory in order to
3389 prevent access beyond allocated memory for paradoxical memory subreg. */
3390 FOR_EACH_BB_FN (bb, cfun)
3391 FOR_BB_INSNS (bb, insn)
3392 if (NONDEBUG_INSN_P (insn))
3393 set_paradoxical_subreg (insn, pdx_subregs);
3394
3395 /* Scan the insns and find which registers have equivalences. Do this
3396 in a separate scan of the insns because (due to -fcse-follow-jumps)
3397 a register can be set below its use. */
3398 FOR_EACH_BB_FN (bb, cfun)
3399 {
3400 loop_depth = bb_loop_depth (bb);
3401
3402 for (insn = BB_HEAD (bb);
3403 insn != NEXT_INSN (BB_END (bb));
3404 insn = NEXT_INSN (insn))
3405 {
3406 rtx note;
3407 rtx set;
3408 rtx dest, src;
3409 int regno;
3410
3411 if (! INSN_P (insn))
3412 continue;
3413
3414 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3415 if (REG_NOTE_KIND (note) == REG_INC)
3416 no_equiv (XEXP (note, 0), note, NULL);
3417
3418 set = single_set (insn);
3419
3420 /* If this insn contains more (or less) than a single SET,
3421 only mark all destinations as having no known equivalence. */
3422 if (set == NULL_RTX)
3423 {
3424 note_stores (PATTERN (insn), no_equiv, NULL);
3425 continue;
3426 }
3427 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3428 {
3429 int i;
3430
3431 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3432 {
3433 rtx part = XVECEXP (PATTERN (insn), 0, i);
3434 if (part != set)
3435 note_stores (part, no_equiv, NULL);
3436 }
3437 }
3438
3439 dest = SET_DEST (set);
3440 src = SET_SRC (set);
3441
3442 /* See if this is setting up the equivalence between an argument
3443 register and its stack slot. */
3444 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3445 if (note)
3446 {
3447 gcc_assert (REG_P (dest));
3448 regno = REGNO (dest);
3449
3450 /* Note that we don't want to clear init_insns in
3451 ira_reg_equiv even if there are multiple sets of this
3452 register. */
3453 reg_equiv[regno].is_arg_equivalence = 1;
3454
3455 /* The insn result can have equivalence memory although
3456 the equivalence is not set up by the insn. We add
3457 this insn to init insns as it is a flag for now that
3458 regno has an equivalence. We will remove the insn
3459 from init insn list later. */
3460 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3461 ira_reg_equiv[regno].init_insns
3462 = gen_rtx_INSN_LIST (VOIDmode, insn,
3463 ira_reg_equiv[regno].init_insns);
3464
3465 /* Continue normally in case this is a candidate for
3466 replacements. */
3467 }
3468
3469 if (!optimize)
3470 continue;
3471
3472 /* We only handle the case of a pseudo register being set
3473 once, or always to the same value. */
3474 /* ??? The mn10200 port breaks if we add equivalences for
3475 values that need an ADDRESS_REGS register and set them equivalent
3476 to a MEM of a pseudo. The actual problem is in the over-conservative
3477 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3478 calculate_needs, but we traditionally work around this problem
3479 here by rejecting equivalences when the destination is in a register
3480 that's likely spilled. This is fragile, of course, since the
3481 preferred class of a pseudo depends on all instructions that set
3482 or use it. */
3483
3484 if (!REG_P (dest)
3485 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3486 || (reg_equiv[regno].init_insns
3487 && reg_equiv[regno].init_insns->insn () == NULL)
3488 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3489 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3490 {
3491 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3492 also set somewhere else to a constant. */
3493 note_stores (set, no_equiv, NULL);
3494 continue;
3495 }
3496
3497 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3498 if (MEM_P (src) && pdx_subregs[regno])
3499 {
3500 note_stores (set, no_equiv, NULL);
3501 continue;
3502 }
3503
3504 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3505
3506 /* cse sometimes generates function invariants, but doesn't put a
3507 REG_EQUAL note on the insn. Since this note would be redundant,
3508 there's no point creating it earlier than here. */
3509 if (! note && ! rtx_varies_p (src, 0))
3510 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3511
3512 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3513 since it represents a function call. */
3514 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3515 note = NULL_RTX;
3516
3517 if (DF_REG_DEF_COUNT (regno) != 1)
3518 {
3519 bool equal_p = true;
3520 rtx_insn_list *list;
3521
3522 /* If we have already processed this pseudo and determined it
3523 can not have an equivalence, then honor that decision. */
3524 if (reg_equiv[regno].no_equiv)
3525 continue;
3526
3527 if (! note
3528 || rtx_varies_p (XEXP (note, 0), 0)
3529 || (reg_equiv[regno].replacement
3530 && ! rtx_equal_p (XEXP (note, 0),
3531 reg_equiv[regno].replacement)))
3532 {
3533 no_equiv (dest, set, NULL);
3534 continue;
3535 }
3536
3537 list = reg_equiv[regno].init_insns;
3538 for (; list; list = list->next ())
3539 {
3540 rtx note_tmp;
3541 rtx_insn *insn_tmp;
3542
3543 insn_tmp = list->insn ();
3544 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3545 gcc_assert (note_tmp);
3546 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3547 {
3548 equal_p = false;
3549 break;
3550 }
3551 }
3552
3553 if (! equal_p)
3554 {
3555 no_equiv (dest, set, NULL);
3556 continue;
3557 }
3558 }
3559
3560 /* Record this insn as initializing this register. */
3561 reg_equiv[regno].init_insns
3562 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3563
3564 /* If this register is known to be equal to a constant, record that
3565 it is always equivalent to the constant. */
3566 if (DF_REG_DEF_COUNT (regno) == 1
3567 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3568 {
3569 rtx note_value = XEXP (note, 0);
3570 remove_note (insn, note);
3571 set_unique_reg_note (insn, REG_EQUIV, note_value);
3572 }
3573
3574 /* If this insn introduces a "constant" register, decrease the priority
3575 of that register. Record this insn if the register is only used once
3576 more and the equivalence value is the same as our source.
3577
3578 The latter condition is checked for two reasons: First, it is an
3579 indication that it may be more efficient to actually emit the insn
3580 as written (if no registers are available, reload will substitute
3581 the equivalence). Secondly, it avoids problems with any registers
3582 dying in this insn whose death notes would be missed.
3583
3584 If we don't have a REG_EQUIV note, see if this insn is loading
3585 a register used only in one basic block from a MEM. If so, and the
3586 MEM remains unchanged for the life of the register, add a REG_EQUIV
3587 note. */
3588 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3589
3590 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3591 && MEM_P (SET_SRC (set))
3592 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3593 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3594
3595 if (note)
3596 {
3597 int regno = REGNO (dest);
3598 rtx x = XEXP (note, 0);
3599
3600 /* If we haven't done so, record for reload that this is an
3601 equivalencing insn. */
3602 if (!reg_equiv[regno].is_arg_equivalence)
3603 ira_reg_equiv[regno].init_insns
3604 = gen_rtx_INSN_LIST (VOIDmode, insn,
3605 ira_reg_equiv[regno].init_insns);
3606
3607 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3608 We might end up substituting the LABEL_REF for uses of the
3609 pseudo here or later. That kind of transformation may turn an
3610 indirect jump into a direct jump, in which case we must rerun the
3611 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3612 if (GET_CODE (x) == LABEL_REF
3613 || (GET_CODE (x) == CONST
3614 && GET_CODE (XEXP (x, 0)) == PLUS
3615 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3616 recorded_label_ref = 1;
3617
3618 reg_equiv[regno].replacement = x;
3619 reg_equiv[regno].src_p = &SET_SRC (set);
3620 reg_equiv[regno].loop_depth = (short) loop_depth;
3621
3622 /* Don't mess with things live during setjmp. */
3623 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3624 {
3625 /* Note that the statement below does not affect the priority
3626 in local-alloc! */
3627 REG_LIVE_LENGTH (regno) *= 2;
3628
3629 /* If the register is referenced exactly twice, meaning it is
3630 set once and used once, indicate that the reference may be
3631 replaced by the equivalence we computed above. Do this
3632 even if the register is only used in one block so that
3633 dependencies can be handled where the last register is
3634 used in a different block (i.e. HIGH / LO_SUM sequences)
3635 and to reduce the number of registers alive across
3636 calls. */
3637
3638 if (REG_N_REFS (regno) == 2
3639 && (rtx_equal_p (x, src)
3640 || ! equiv_init_varies_p (src))
3641 && NONJUMP_INSN_P (insn)
3642 && equiv_init_movable_p (PATTERN (insn), regno))
3643 reg_equiv[regno].replace = 1;
3644 }
3645 }
3646 }
3647 }
3648
3649 if (!optimize)
3650 goto out;
3651
3652 /* A second pass, to gather additional equivalences with memory. This needs
3653 to be done after we know which registers we are going to replace. */
3654
3655 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3656 {
3657 rtx set, src, dest;
3658 unsigned regno;
3659
3660 if (! INSN_P (insn))
3661 continue;
3662
3663 set = single_set (insn);
3664 if (! set)
3665 continue;
3666
3667 dest = SET_DEST (set);
3668 src = SET_SRC (set);
3669
3670 /* If this sets a MEM to the contents of a REG that is only used
3671 in a single basic block, see if the register is always equivalent
3672 to that memory location and if moving the store from INSN to the
3673 insn that set REG is safe. If so, put a REG_EQUIV note on the
3674 initializing insn.
3675
3676 Don't add a REG_EQUIV note if the insn already has one. The existing
3677 REG_EQUIV is likely more useful than the one we are adding.
3678
3679 If one of the regs in the address has reg_equiv[REGNO].replace set,
3680 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3681 optimization may move the set of this register immediately before
3682 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3683 the mention in the REG_EQUIV note would be to an uninitialized
3684 pseudo. */
3685
3686 if (MEM_P (dest) && REG_P (src)
3687 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3688 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3689 && DF_REG_DEF_COUNT (regno) == 1
3690 && reg_equiv[regno].init_insns != NULL
3691 && reg_equiv[regno].init_insns->insn () != NULL
3692 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3693 REG_EQUIV, NULL_RTX)
3694 && ! contains_replace_regs (XEXP (dest, 0))
3695 && ! pdx_subregs[regno])
3696 {
3697 rtx_insn *init_insn =
3698 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3699 if (validate_equiv_mem (init_insn, src, dest)
3700 && ! memref_used_between_p (dest, init_insn, insn)
3701 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3702 multiple sets. */
3703 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3704 {
3705 /* This insn makes the equivalence, not the one initializing
3706 the register. */
3707 ira_reg_equiv[regno].init_insns
3708 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3709 df_notes_rescan (init_insn);
3710 }
3711 }
3712 }
3713
3714 cleared_regs = BITMAP_ALLOC (NULL);
3715 /* Now scan all regs killed in an insn to see if any of them are
3716 registers only used that once. If so, see if we can replace the
3717 reference with the equivalent form. If we can, delete the
3718 initializing reference and this register will go away. If we
3719 can't replace the reference, and the initializing reference is
3720 within the same loop (or in an inner loop), then move the register
3721 initialization just before the use, so that they are in the same
3722 basic block. */
3723 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3724 {
3725 loop_depth = bb_loop_depth (bb);
3726 for (insn = BB_END (bb);
3727 insn != PREV_INSN (BB_HEAD (bb));
3728 insn = PREV_INSN (insn))
3729 {
3730 rtx link;
3731
3732 if (! INSN_P (insn))
3733 continue;
3734
3735 /* Don't substitute into a non-local goto, this confuses CFG. */
3736 if (JUMP_P (insn)
3737 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3738 continue;
3739
3740 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3741 {
3742 if (REG_NOTE_KIND (link) == REG_DEAD
3743 /* Make sure this insn still refers to the register. */
3744 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3745 {
3746 int regno = REGNO (XEXP (link, 0));
3747 rtx equiv_insn;
3748
3749 if (! reg_equiv[regno].replace
3750 || reg_equiv[regno].loop_depth < (short) loop_depth
3751 /* There is no sense to move insns if live range
3752 shrinkage or register pressure-sensitive
3753 scheduling were done because it will not
3754 improve allocation but worsen insn schedule
3755 with a big probability. */
3756 || flag_live_range_shrinkage
3757 || (flag_sched_pressure && flag_schedule_insns))
3758 continue;
3759
3760 /* reg_equiv[REGNO].replace gets set only when
3761 REG_N_REFS[REGNO] is 2, i.e. the register is set
3762 once and used once. (If it were only set, but
3763 not used, flow would have deleted the setting
3764 insns.) Hence there can only be one insn in
3765 reg_equiv[REGNO].init_insns. */
3766 gcc_assert (reg_equiv[regno].init_insns
3767 && !XEXP (reg_equiv[regno].init_insns, 1));
3768 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3769
3770 /* We may not move instructions that can throw, since
3771 that changes basic block boundaries and we are not
3772 prepared to adjust the CFG to match. */
3773 if (can_throw_internal (equiv_insn))
3774 continue;
3775
3776 if (asm_noperands (PATTERN (equiv_insn)) < 0
3777 && validate_replace_rtx (regno_reg_rtx[regno],
3778 *(reg_equiv[regno].src_p), insn))
3779 {
3780 rtx equiv_link;
3781 rtx last_link;
3782 rtx note;
3783
3784 /* Find the last note. */
3785 for (last_link = link; XEXP (last_link, 1);
3786 last_link = XEXP (last_link, 1))
3787 ;
3788
3789 /* Append the REG_DEAD notes from equiv_insn. */
3790 equiv_link = REG_NOTES (equiv_insn);
3791 while (equiv_link)
3792 {
3793 note = equiv_link;
3794 equiv_link = XEXP (equiv_link, 1);
3795 if (REG_NOTE_KIND (note) == REG_DEAD)
3796 {
3797 remove_note (equiv_insn, note);
3798 XEXP (last_link, 1) = note;
3799 XEXP (note, 1) = NULL_RTX;
3800 last_link = note;
3801 }
3802 }
3803
3804 remove_death (regno, insn);
3805 SET_REG_N_REFS (regno, 0);
3806 REG_FREQ (regno) = 0;
3807 delete_insn (equiv_insn);
3808
3809 reg_equiv[regno].init_insns
3810 = reg_equiv[regno].init_insns->next ();
3811
3812 ira_reg_equiv[regno].init_insns = NULL;
3813 bitmap_set_bit (cleared_regs, regno);
3814 }
3815 /* Move the initialization of the register to just before
3816 INSN. Update the flow information. */
3817 else if (prev_nondebug_insn (insn) != equiv_insn)
3818 {
3819 rtx_insn *new_insn;
3820
3821 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3822 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3823 REG_NOTES (equiv_insn) = 0;
3824 /* Rescan it to process the notes. */
3825 df_insn_rescan (new_insn);
3826
3827 /* Make sure this insn is recognized before
3828 reload begins, otherwise
3829 eliminate_regs_in_insn will die. */
3830 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3831
3832 delete_insn (equiv_insn);
3833
3834 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3835
3836 REG_BASIC_BLOCK (regno) = bb->index;
3837 REG_N_CALLS_CROSSED (regno) = 0;
3838 REG_FREQ_CALLS_CROSSED (regno) = 0;
3839 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3840 REG_LIVE_LENGTH (regno) = 2;
3841
3842 if (insn == BB_HEAD (bb))
3843 BB_HEAD (bb) = PREV_INSN (insn);
3844
3845 ira_reg_equiv[regno].init_insns
3846 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3847 bitmap_set_bit (cleared_regs, regno);
3848 }
3849 }
3850 }
3851 }
3852 }
3853
3854 if (!bitmap_empty_p (cleared_regs))
3855 {
3856 FOR_EACH_BB_FN (bb, cfun)
3857 {
3858 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3859 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3860 if (! df_live)
3861 continue;
3862 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3863 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3864 }
3865
3866 /* Last pass - adjust debug insns referencing cleared regs. */
3867 if (MAY_HAVE_DEBUG_INSNS)
3868 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3869 if (DEBUG_INSN_P (insn))
3870 {
3871 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3872 INSN_VAR_LOCATION_LOC (insn)
3873 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3874 adjust_cleared_regs,
3875 (void *) cleared_regs);
3876 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3877 df_insn_rescan (insn);
3878 }
3879 }
3880
3881 BITMAP_FREE (cleared_regs);
3882
3883 out:
3884 /* Clean up. */
3885
3886 end_alias_analysis ();
3887 free (reg_equiv);
3888 free (pdx_subregs);
3889 return recorded_label_ref;
3890 }
3891
3892 \f
3893
3894 /* Set up fields memory, constant, and invariant from init_insns in
3895 the structures of array ira_reg_equiv. */
3896 static void
3897 setup_reg_equiv (void)
3898 {
3899 int i;
3900 rtx_insn_list *elem, *prev_elem, *next_elem;
3901 rtx_insn *insn;
3902 rtx set, x;
3903
3904 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3905 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3906 elem;
3907 prev_elem = elem, elem = next_elem)
3908 {
3909 next_elem = elem->next ();
3910 insn = elem->insn ();
3911 set = single_set (insn);
3912
3913 /* Init insns can set up equivalence when the reg is a destination or
3914 a source (in this case the destination is memory). */
3915 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3916 {
3917 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3918 {
3919 x = XEXP (x, 0);
3920 if (REG_P (SET_DEST (set))
3921 && REGNO (SET_DEST (set)) == (unsigned int) i
3922 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3923 {
3924 /* This insn reporting the equivalence but
3925 actually not setting it. Remove it from the
3926 list. */
3927 if (prev_elem == NULL)
3928 ira_reg_equiv[i].init_insns = next_elem;
3929 else
3930 XEXP (prev_elem, 1) = next_elem;
3931 elem = prev_elem;
3932 }
3933 }
3934 else if (REG_P (SET_DEST (set))
3935 && REGNO (SET_DEST (set)) == (unsigned int) i)
3936 x = SET_SRC (set);
3937 else
3938 {
3939 gcc_assert (REG_P (SET_SRC (set))
3940 && REGNO (SET_SRC (set)) == (unsigned int) i);
3941 x = SET_DEST (set);
3942 }
3943 if (! function_invariant_p (x)
3944 || ! flag_pic
3945 /* A function invariant is often CONSTANT_P but may
3946 include a register. We promise to only pass
3947 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3948 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3949 {
3950 /* It can happen that a REG_EQUIV note contains a MEM
3951 that is not a legitimate memory operand. As later
3952 stages of reload assume that all addresses found in
3953 the lra_regno_equiv_* arrays were originally
3954 legitimate, we ignore such REG_EQUIV notes. */
3955 if (memory_operand (x, VOIDmode))
3956 {
3957 ira_reg_equiv[i].defined_p = true;
3958 ira_reg_equiv[i].memory = x;
3959 continue;
3960 }
3961 else if (function_invariant_p (x))
3962 {
3963 machine_mode mode;
3964
3965 mode = GET_MODE (SET_DEST (set));
3966 if (GET_CODE (x) == PLUS
3967 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3968 /* This is PLUS of frame pointer and a constant,
3969 or fp, or argp. */
3970 ira_reg_equiv[i].invariant = x;
3971 else if (targetm.legitimate_constant_p (mode, x))
3972 ira_reg_equiv[i].constant = x;
3973 else
3974 {
3975 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3976 if (ira_reg_equiv[i].memory == NULL_RTX)
3977 {
3978 ira_reg_equiv[i].defined_p = false;
3979 ira_reg_equiv[i].init_insns = NULL;
3980 break;
3981 }
3982 }
3983 ira_reg_equiv[i].defined_p = true;
3984 continue;
3985 }
3986 }
3987 }
3988 ira_reg_equiv[i].defined_p = false;
3989 ira_reg_equiv[i].init_insns = NULL;
3990 break;
3991 }
3992 }
3993
3994 \f
3995
3996 /* Print chain C to FILE. */
3997 static void
3998 print_insn_chain (FILE *file, struct insn_chain *c)
3999 {
4000 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4001 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4002 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4003 }
4004
4005
4006 /* Print all reload_insn_chains to FILE. */
4007 static void
4008 print_insn_chains (FILE *file)
4009 {
4010 struct insn_chain *c;
4011 for (c = reload_insn_chain; c ; c = c->next)
4012 print_insn_chain (file, c);
4013 }
4014
4015 /* Return true if pseudo REGNO should be added to set live_throughout
4016 or dead_or_set of the insn chains for reload consideration. */
4017 static bool
4018 pseudo_for_reload_consideration_p (int regno)
4019 {
4020 /* Consider spilled pseudos too for IRA because they still have a
4021 chance to get hard-registers in the reload when IRA is used. */
4022 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4023 }
4024
4025 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4026 REG to the number of nregs, and INIT_VALUE to get the
4027 initialization. ALLOCNUM need not be the regno of REG. */
4028 static void
4029 init_live_subregs (bool init_value, sbitmap *live_subregs,
4030 bitmap live_subregs_used, int allocnum, rtx reg)
4031 {
4032 unsigned int regno = REGNO (SUBREG_REG (reg));
4033 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4034
4035 gcc_assert (size > 0);
4036
4037 /* Been there, done that. */
4038 if (bitmap_bit_p (live_subregs_used, allocnum))
4039 return;
4040
4041 /* Create a new one. */
4042 if (live_subregs[allocnum] == NULL)
4043 live_subregs[allocnum] = sbitmap_alloc (size);
4044
4045 /* If the entire reg was live before blasting into subregs, we need
4046 to init all of the subregs to ones else init to 0. */
4047 if (init_value)
4048 bitmap_ones (live_subregs[allocnum]);
4049 else
4050 bitmap_clear (live_subregs[allocnum]);
4051
4052 bitmap_set_bit (live_subregs_used, allocnum);
4053 }
4054
4055 /* Walk the insns of the current function and build reload_insn_chain,
4056 and record register life information. */
4057 static void
4058 build_insn_chain (void)
4059 {
4060 unsigned int i;
4061 struct insn_chain **p = &reload_insn_chain;
4062 basic_block bb;
4063 struct insn_chain *c = NULL;
4064 struct insn_chain *next = NULL;
4065 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4066 bitmap elim_regset = BITMAP_ALLOC (NULL);
4067 /* live_subregs is a vector used to keep accurate information about
4068 which hardregs are live in multiword pseudos. live_subregs and
4069 live_subregs_used are indexed by pseudo number. The live_subreg
4070 entry for a particular pseudo is only used if the corresponding
4071 element is non zero in live_subregs_used. The sbitmap size of
4072 live_subreg[allocno] is number of bytes that the pseudo can
4073 occupy. */
4074 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4075 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4076
4077 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4078 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4079 bitmap_set_bit (elim_regset, i);
4080 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4081 {
4082 bitmap_iterator bi;
4083 rtx_insn *insn;
4084
4085 CLEAR_REG_SET (live_relevant_regs);
4086 bitmap_clear (live_subregs_used);
4087
4088 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4089 {
4090 if (i >= FIRST_PSEUDO_REGISTER)
4091 break;
4092 bitmap_set_bit (live_relevant_regs, i);
4093 }
4094
4095 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4096 FIRST_PSEUDO_REGISTER, i, bi)
4097 {
4098 if (pseudo_for_reload_consideration_p (i))
4099 bitmap_set_bit (live_relevant_regs, i);
4100 }
4101
4102 FOR_BB_INSNS_REVERSE (bb, insn)
4103 {
4104 if (!NOTE_P (insn) && !BARRIER_P (insn))
4105 {
4106 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4107 df_ref def, use;
4108
4109 c = new_insn_chain ();
4110 c->next = next;
4111 next = c;
4112 *p = c;
4113 p = &c->prev;
4114
4115 c->insn = insn;
4116 c->block = bb->index;
4117
4118 if (NONDEBUG_INSN_P (insn))
4119 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4120 {
4121 unsigned int regno = DF_REF_REGNO (def);
4122
4123 /* Ignore may clobbers because these are generated
4124 from calls. However, every other kind of def is
4125 added to dead_or_set. */
4126 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4127 {
4128 if (regno < FIRST_PSEUDO_REGISTER)
4129 {
4130 if (!fixed_regs[regno])
4131 bitmap_set_bit (&c->dead_or_set, regno);
4132 }
4133 else if (pseudo_for_reload_consideration_p (regno))
4134 bitmap_set_bit (&c->dead_or_set, regno);
4135 }
4136
4137 if ((regno < FIRST_PSEUDO_REGISTER
4138 || reg_renumber[regno] >= 0
4139 || ira_conflicts_p)
4140 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4141 {
4142 rtx reg = DF_REF_REG (def);
4143
4144 /* We can model subregs, but not if they are
4145 wrapped in ZERO_EXTRACTS. */
4146 if (GET_CODE (reg) == SUBREG
4147 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4148 {
4149 unsigned int start = SUBREG_BYTE (reg);
4150 unsigned int last = start
4151 + GET_MODE_SIZE (GET_MODE (reg));
4152
4153 init_live_subregs
4154 (bitmap_bit_p (live_relevant_regs, regno),
4155 live_subregs, live_subregs_used, regno, reg);
4156
4157 if (!DF_REF_FLAGS_IS_SET
4158 (def, DF_REF_STRICT_LOW_PART))
4159 {
4160 /* Expand the range to cover entire words.
4161 Bytes added here are "don't care". */
4162 start
4163 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4164 last = ((last + UNITS_PER_WORD - 1)
4165 / UNITS_PER_WORD * UNITS_PER_WORD);
4166 }
4167
4168 /* Ignore the paradoxical bits. */
4169 if (last > SBITMAP_SIZE (live_subregs[regno]))
4170 last = SBITMAP_SIZE (live_subregs[regno]);
4171
4172 while (start < last)
4173 {
4174 bitmap_clear_bit (live_subregs[regno], start);
4175 start++;
4176 }
4177
4178 if (bitmap_empty_p (live_subregs[regno]))
4179 {
4180 bitmap_clear_bit (live_subregs_used, regno);
4181 bitmap_clear_bit (live_relevant_regs, regno);
4182 }
4183 else
4184 /* Set live_relevant_regs here because
4185 that bit has to be true to get us to
4186 look at the live_subregs fields. */
4187 bitmap_set_bit (live_relevant_regs, regno);
4188 }
4189 else
4190 {
4191 /* DF_REF_PARTIAL is generated for
4192 subregs, STRICT_LOW_PART, and
4193 ZERO_EXTRACT. We handle the subreg
4194 case above so here we have to keep from
4195 modeling the def as a killing def. */
4196 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4197 {
4198 bitmap_clear_bit (live_subregs_used, regno);
4199 bitmap_clear_bit (live_relevant_regs, regno);
4200 }
4201 }
4202 }
4203 }
4204
4205 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4206 bitmap_copy (&c->live_throughout, live_relevant_regs);
4207
4208 if (NONDEBUG_INSN_P (insn))
4209 FOR_EACH_INSN_INFO_USE (use, insn_info)
4210 {
4211 unsigned int regno = DF_REF_REGNO (use);
4212 rtx reg = DF_REF_REG (use);
4213
4214 /* DF_REF_READ_WRITE on a use means that this use
4215 is fabricated from a def that is a partial set
4216 to a multiword reg. Here, we only model the
4217 subreg case that is not wrapped in ZERO_EXTRACT
4218 precisely so we do not need to look at the
4219 fabricated use. */
4220 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4221 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4222 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4223 continue;
4224
4225 /* Add the last use of each var to dead_or_set. */
4226 if (!bitmap_bit_p (live_relevant_regs, regno))
4227 {
4228 if (regno < FIRST_PSEUDO_REGISTER)
4229 {
4230 if (!fixed_regs[regno])
4231 bitmap_set_bit (&c->dead_or_set, regno);
4232 }
4233 else if (pseudo_for_reload_consideration_p (regno))
4234 bitmap_set_bit (&c->dead_or_set, regno);
4235 }
4236
4237 if (regno < FIRST_PSEUDO_REGISTER
4238 || pseudo_for_reload_consideration_p (regno))
4239 {
4240 if (GET_CODE (reg) == SUBREG
4241 && !DF_REF_FLAGS_IS_SET (use,
4242 DF_REF_SIGN_EXTRACT
4243 | DF_REF_ZERO_EXTRACT))
4244 {
4245 unsigned int start = SUBREG_BYTE (reg);
4246 unsigned int last = start
4247 + GET_MODE_SIZE (GET_MODE (reg));
4248
4249 init_live_subregs
4250 (bitmap_bit_p (live_relevant_regs, regno),
4251 live_subregs, live_subregs_used, regno, reg);
4252
4253 /* Ignore the paradoxical bits. */
4254 if (last > SBITMAP_SIZE (live_subregs[regno]))
4255 last = SBITMAP_SIZE (live_subregs[regno]);
4256
4257 while (start < last)
4258 {
4259 bitmap_set_bit (live_subregs[regno], start);
4260 start++;
4261 }
4262 }
4263 else
4264 /* Resetting the live_subregs_used is
4265 effectively saying do not use the subregs
4266 because we are reading the whole
4267 pseudo. */
4268 bitmap_clear_bit (live_subregs_used, regno);
4269 bitmap_set_bit (live_relevant_regs, regno);
4270 }
4271 }
4272 }
4273 }
4274
4275 /* FIXME!! The following code is a disaster. Reload needs to see the
4276 labels and jump tables that are just hanging out in between
4277 the basic blocks. See pr33676. */
4278 insn = BB_HEAD (bb);
4279
4280 /* Skip over the barriers and cruft. */
4281 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4282 || BLOCK_FOR_INSN (insn) == bb))
4283 insn = PREV_INSN (insn);
4284
4285 /* While we add anything except barriers and notes, the focus is
4286 to get the labels and jump tables into the
4287 reload_insn_chain. */
4288 while (insn)
4289 {
4290 if (!NOTE_P (insn) && !BARRIER_P (insn))
4291 {
4292 if (BLOCK_FOR_INSN (insn))
4293 break;
4294
4295 c = new_insn_chain ();
4296 c->next = next;
4297 next = c;
4298 *p = c;
4299 p = &c->prev;
4300
4301 /* The block makes no sense here, but it is what the old
4302 code did. */
4303 c->block = bb->index;
4304 c->insn = insn;
4305 bitmap_copy (&c->live_throughout, live_relevant_regs);
4306 }
4307 insn = PREV_INSN (insn);
4308 }
4309 }
4310
4311 reload_insn_chain = c;
4312 *p = NULL;
4313
4314 for (i = 0; i < (unsigned int) max_regno; i++)
4315 if (live_subregs[i] != NULL)
4316 sbitmap_free (live_subregs[i]);
4317 free (live_subregs);
4318 BITMAP_FREE (live_subregs_used);
4319 BITMAP_FREE (live_relevant_regs);
4320 BITMAP_FREE (elim_regset);
4321
4322 if (dump_file)
4323 print_insn_chains (dump_file);
4324 }
4325 \f
4326 /* Examine the rtx found in *LOC, which is read or written to as determined
4327 by TYPE. Return false if we find a reason why an insn containing this
4328 rtx should not be moved (such as accesses to non-constant memory), true
4329 otherwise. */
4330 static bool
4331 rtx_moveable_p (rtx *loc, enum op_type type)
4332 {
4333 const char *fmt;
4334 rtx x = *loc;
4335 enum rtx_code code = GET_CODE (x);
4336 int i, j;
4337
4338 code = GET_CODE (x);
4339 switch (code)
4340 {
4341 case CONST:
4342 CASE_CONST_ANY:
4343 case SYMBOL_REF:
4344 case LABEL_REF:
4345 return true;
4346
4347 case PC:
4348 return type == OP_IN;
4349
4350 case CC0:
4351 return false;
4352
4353 case REG:
4354 if (x == frame_pointer_rtx)
4355 return true;
4356 if (HARD_REGISTER_P (x))
4357 return false;
4358
4359 return true;
4360
4361 case MEM:
4362 if (type == OP_IN && MEM_READONLY_P (x))
4363 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4364 return false;
4365
4366 case SET:
4367 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4368 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4369
4370 case STRICT_LOW_PART:
4371 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4372
4373 case ZERO_EXTRACT:
4374 case SIGN_EXTRACT:
4375 return (rtx_moveable_p (&XEXP (x, 0), type)
4376 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4377 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4378
4379 case CLOBBER:
4380 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4381
4382 case UNSPEC_VOLATILE:
4383 /* It is a bad idea to consider insns with with such rtl
4384 as moveable ones. The insn scheduler also considers them as barrier
4385 for a reason. */
4386 return false;
4387
4388 default:
4389 break;
4390 }
4391
4392 fmt = GET_RTX_FORMAT (code);
4393 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4394 {
4395 if (fmt[i] == 'e')
4396 {
4397 if (!rtx_moveable_p (&XEXP (x, i), type))
4398 return false;
4399 }
4400 else if (fmt[i] == 'E')
4401 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4402 {
4403 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4404 return false;
4405 }
4406 }
4407 return true;
4408 }
4409
4410 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4411 to give dominance relationships between two insns I1 and I2. */
4412 static bool
4413 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4414 {
4415 basic_block bb1 = BLOCK_FOR_INSN (i1);
4416 basic_block bb2 = BLOCK_FOR_INSN (i2);
4417
4418 if (bb1 == bb2)
4419 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4420 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4421 }
4422
4423 /* Record the range of register numbers added by find_moveable_pseudos. */
4424 int first_moveable_pseudo, last_moveable_pseudo;
4425
4426 /* These two vectors hold data for every register added by
4427 find_movable_pseudos, with index 0 holding data for the
4428 first_moveable_pseudo. */
4429 /* The original home register. */
4430 static vec<rtx> pseudo_replaced_reg;
4431
4432 /* Look for instances where we have an instruction that is known to increase
4433 register pressure, and whose result is not used immediately. If it is
4434 possible to move the instruction downwards to just before its first use,
4435 split its lifetime into two ranges. We create a new pseudo to compute the
4436 value, and emit a move instruction just before the first use. If, after
4437 register allocation, the new pseudo remains unallocated, the function
4438 move_unallocated_pseudos then deletes the move instruction and places
4439 the computation just before the first use.
4440
4441 Such a move is safe and profitable if all the input registers remain live
4442 and unchanged between the original computation and its first use. In such
4443 a situation, the computation is known to increase register pressure, and
4444 moving it is known to at least not worsen it.
4445
4446 We restrict moves to only those cases where a register remains unallocated,
4447 in order to avoid interfering too much with the instruction schedule. As
4448 an exception, we may move insns which only modify their input register
4449 (typically induction variables), as this increases the freedom for our
4450 intended transformation, and does not limit the second instruction
4451 scheduler pass. */
4452
4453 static void
4454 find_moveable_pseudos (void)
4455 {
4456 unsigned i;
4457 int max_regs = max_reg_num ();
4458 int max_uid = get_max_uid ();
4459 basic_block bb;
4460 int *uid_luid = XNEWVEC (int, max_uid);
4461 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4462 /* A set of registers which are live but not modified throughout a block. */
4463 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4464 last_basic_block_for_fn (cfun));
4465 /* A set of registers which only exist in a given basic block. */
4466 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4467 last_basic_block_for_fn (cfun));
4468 /* A set of registers which are set once, in an instruction that can be
4469 moved freely downwards, but are otherwise transparent to a block. */
4470 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4471 last_basic_block_for_fn (cfun));
4472 bitmap_head live, used, set, interesting, unusable_as_input;
4473 bitmap_iterator bi;
4474 bitmap_initialize (&interesting, 0);
4475
4476 first_moveable_pseudo = max_regs;
4477 pseudo_replaced_reg.release ();
4478 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4479
4480 df_analyze ();
4481 calculate_dominance_info (CDI_DOMINATORS);
4482
4483 i = 0;
4484 bitmap_initialize (&live, 0);
4485 bitmap_initialize (&used, 0);
4486 bitmap_initialize (&set, 0);
4487 bitmap_initialize (&unusable_as_input, 0);
4488 FOR_EACH_BB_FN (bb, cfun)
4489 {
4490 rtx_insn *insn;
4491 bitmap transp = bb_transp_live + bb->index;
4492 bitmap moveable = bb_moveable_reg_sets + bb->index;
4493 bitmap local = bb_local + bb->index;
4494
4495 bitmap_initialize (local, 0);
4496 bitmap_initialize (transp, 0);
4497 bitmap_initialize (moveable, 0);
4498 bitmap_copy (&live, df_get_live_out (bb));
4499 bitmap_and_into (&live, df_get_live_in (bb));
4500 bitmap_copy (transp, &live);
4501 bitmap_clear (moveable);
4502 bitmap_clear (&live);
4503 bitmap_clear (&used);
4504 bitmap_clear (&set);
4505 FOR_BB_INSNS (bb, insn)
4506 if (NONDEBUG_INSN_P (insn))
4507 {
4508 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4509 df_ref def, use;
4510
4511 uid_luid[INSN_UID (insn)] = i++;
4512
4513 def = df_single_def (insn_info);
4514 use = df_single_use (insn_info);
4515 if (use
4516 && def
4517 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4518 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4519 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4520 {
4521 unsigned regno = DF_REF_REGNO (use);
4522 bitmap_set_bit (moveable, regno);
4523 bitmap_set_bit (&set, regno);
4524 bitmap_set_bit (&used, regno);
4525 bitmap_clear_bit (transp, regno);
4526 continue;
4527 }
4528 FOR_EACH_INSN_INFO_USE (use, insn_info)
4529 {
4530 unsigned regno = DF_REF_REGNO (use);
4531 bitmap_set_bit (&used, regno);
4532 if (bitmap_clear_bit (moveable, regno))
4533 bitmap_clear_bit (transp, regno);
4534 }
4535
4536 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4537 {
4538 unsigned regno = DF_REF_REGNO (def);
4539 bitmap_set_bit (&set, regno);
4540 bitmap_clear_bit (transp, regno);
4541 bitmap_clear_bit (moveable, regno);
4542 }
4543 }
4544 }
4545
4546 bitmap_clear (&live);
4547 bitmap_clear (&used);
4548 bitmap_clear (&set);
4549
4550 FOR_EACH_BB_FN (bb, cfun)
4551 {
4552 bitmap local = bb_local + bb->index;
4553 rtx_insn *insn;
4554
4555 FOR_BB_INSNS (bb, insn)
4556 if (NONDEBUG_INSN_P (insn))
4557 {
4558 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4559 rtx_insn *def_insn;
4560 rtx closest_use, note;
4561 df_ref def, use;
4562 unsigned regno;
4563 bool all_dominated, all_local;
4564 machine_mode mode;
4565
4566 def = df_single_def (insn_info);
4567 /* There must be exactly one def in this insn. */
4568 if (!def || !single_set (insn))
4569 continue;
4570 /* This must be the only definition of the reg. We also limit
4571 which modes we deal with so that we can assume we can generate
4572 move instructions. */
4573 regno = DF_REF_REGNO (def);
4574 mode = GET_MODE (DF_REF_REG (def));
4575 if (DF_REG_DEF_COUNT (regno) != 1
4576 || !DF_REF_INSN_INFO (def)
4577 || HARD_REGISTER_NUM_P (regno)
4578 || DF_REG_EQ_USE_COUNT (regno) > 0
4579 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4580 continue;
4581 def_insn = DF_REF_INSN (def);
4582
4583 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4584 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4585 break;
4586
4587 if (note)
4588 {
4589 if (dump_file)
4590 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4591 regno);
4592 bitmap_set_bit (&unusable_as_input, regno);
4593 continue;
4594 }
4595
4596 use = DF_REG_USE_CHAIN (regno);
4597 all_dominated = true;
4598 all_local = true;
4599 closest_use = NULL_RTX;
4600 for (; use; use = DF_REF_NEXT_REG (use))
4601 {
4602 rtx_insn *insn;
4603 if (!DF_REF_INSN_INFO (use))
4604 {
4605 all_dominated = false;
4606 all_local = false;
4607 break;
4608 }
4609 insn = DF_REF_INSN (use);
4610 if (DEBUG_INSN_P (insn))
4611 continue;
4612 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4613 all_local = false;
4614 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4615 all_dominated = false;
4616 if (closest_use != insn && closest_use != const0_rtx)
4617 {
4618 if (closest_use == NULL_RTX)
4619 closest_use = insn;
4620 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4621 closest_use = insn;
4622 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4623 closest_use = const0_rtx;
4624 }
4625 }
4626 if (!all_dominated)
4627 {
4628 if (dump_file)
4629 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4630 regno);
4631 continue;
4632 }
4633 if (all_local)
4634 bitmap_set_bit (local, regno);
4635 if (closest_use == const0_rtx || closest_use == NULL
4636 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4637 {
4638 if (dump_file)
4639 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4640 closest_use == const0_rtx || closest_use == NULL
4641 ? " (no unique first use)" : "");
4642 continue;
4643 }
4644 #ifdef HAVE_cc0
4645 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4646 {
4647 if (dump_file)
4648 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4649 regno);
4650 continue;
4651 }
4652 #endif
4653 bitmap_set_bit (&interesting, regno);
4654 /* If we get here, we know closest_use is a non-NULL insn
4655 (as opposed to const_0_rtx). */
4656 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4657
4658 if (dump_file && (all_local || all_dominated))
4659 {
4660 fprintf (dump_file, "Reg %u:", regno);
4661 if (all_local)
4662 fprintf (dump_file, " local to bb %d", bb->index);
4663 if (all_dominated)
4664 fprintf (dump_file, " def dominates all uses");
4665 if (closest_use != const0_rtx)
4666 fprintf (dump_file, " has unique first use");
4667 fputs ("\n", dump_file);
4668 }
4669 }
4670 }
4671
4672 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4673 {
4674 df_ref def = DF_REG_DEF_CHAIN (i);
4675 rtx_insn *def_insn = DF_REF_INSN (def);
4676 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4677 bitmap def_bb_local = bb_local + def_block->index;
4678 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4679 bitmap def_bb_transp = bb_transp_live + def_block->index;
4680 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4681 rtx_insn *use_insn = closest_uses[i];
4682 df_ref use;
4683 bool all_ok = true;
4684 bool all_transp = true;
4685
4686 if (!REG_P (DF_REF_REG (def)))
4687 continue;
4688
4689 if (!local_to_bb_p)
4690 {
4691 if (dump_file)
4692 fprintf (dump_file, "Reg %u not local to one basic block\n",
4693 i);
4694 continue;
4695 }
4696 if (reg_equiv_init (i) != NULL_RTX)
4697 {
4698 if (dump_file)
4699 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4700 i);
4701 continue;
4702 }
4703 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4704 {
4705 if (dump_file)
4706 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4707 INSN_UID (def_insn), i);
4708 continue;
4709 }
4710 if (dump_file)
4711 fprintf (dump_file, "Examining insn %d, def for %d\n",
4712 INSN_UID (def_insn), i);
4713 FOR_EACH_INSN_USE (use, def_insn)
4714 {
4715 unsigned regno = DF_REF_REGNO (use);
4716 if (bitmap_bit_p (&unusable_as_input, regno))
4717 {
4718 all_ok = false;
4719 if (dump_file)
4720 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4721 break;
4722 }
4723 if (!bitmap_bit_p (def_bb_transp, regno))
4724 {
4725 if (bitmap_bit_p (def_bb_moveable, regno)
4726 && !control_flow_insn_p (use_insn)
4727 #ifdef HAVE_cc0
4728 && !sets_cc0_p (use_insn)
4729 #endif
4730 )
4731 {
4732 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4733 {
4734 rtx_insn *x = NEXT_INSN (def_insn);
4735 while (!modified_in_p (DF_REF_REG (use), x))
4736 {
4737 gcc_assert (x != use_insn);
4738 x = NEXT_INSN (x);
4739 }
4740 if (dump_file)
4741 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4742 regno, INSN_UID (x));
4743 emit_insn_after (PATTERN (x), use_insn);
4744 set_insn_deleted (x);
4745 }
4746 else
4747 {
4748 if (dump_file)
4749 fprintf (dump_file, " input reg %u modified between def and use\n",
4750 regno);
4751 all_transp = false;
4752 }
4753 }
4754 else
4755 all_transp = false;
4756 }
4757 }
4758 if (!all_ok)
4759 continue;
4760 if (!dbg_cnt (ira_move))
4761 break;
4762 if (dump_file)
4763 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4764
4765 if (all_transp)
4766 {
4767 rtx def_reg = DF_REF_REG (def);
4768 rtx newreg = ira_create_new_reg (def_reg);
4769 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4770 {
4771 unsigned nregno = REGNO (newreg);
4772 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4773 nregno -= max_regs;
4774 pseudo_replaced_reg[nregno] = def_reg;
4775 }
4776 }
4777 }
4778
4779 FOR_EACH_BB_FN (bb, cfun)
4780 {
4781 bitmap_clear (bb_local + bb->index);
4782 bitmap_clear (bb_transp_live + bb->index);
4783 bitmap_clear (bb_moveable_reg_sets + bb->index);
4784 }
4785 bitmap_clear (&interesting);
4786 bitmap_clear (&unusable_as_input);
4787 free (uid_luid);
4788 free (closest_uses);
4789 free (bb_local);
4790 free (bb_transp_live);
4791 free (bb_moveable_reg_sets);
4792
4793 last_moveable_pseudo = max_reg_num ();
4794
4795 fix_reg_equiv_init ();
4796 expand_reg_info ();
4797 regstat_free_n_sets_and_refs ();
4798 regstat_free_ri ();
4799 regstat_init_n_sets_and_refs ();
4800 regstat_compute_ri ();
4801 free_dominance_info (CDI_DOMINATORS);
4802 }
4803
4804 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4805 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4806 the destination. Otherwise return NULL. */
4807
4808 static rtx
4809 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4810 {
4811 rtx src = SET_SRC (set);
4812 rtx dest = SET_DEST (set);
4813 if (!REG_P (src) || !HARD_REGISTER_P (src)
4814 || !REG_P (dest) || HARD_REGISTER_P (dest)
4815 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4816 return NULL;
4817 return dest;
4818 }
4819
4820 /* If insn is interesting for parameter range-splitting shrink-wrapping
4821 preparation, i.e. it is a single set from a hard register to a pseudo, which
4822 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4823 parallel statement with only one such statement, return the destination.
4824 Otherwise return NULL. */
4825
4826 static rtx
4827 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4828 {
4829 if (!INSN_P (insn))
4830 return NULL;
4831 rtx pat = PATTERN (insn);
4832 if (GET_CODE (pat) == SET)
4833 return interesting_dest_for_shprep_1 (pat, call_dom);
4834
4835 if (GET_CODE (pat) != PARALLEL)
4836 return NULL;
4837 rtx ret = NULL;
4838 for (int i = 0; i < XVECLEN (pat, 0); i++)
4839 {
4840 rtx sub = XVECEXP (pat, 0, i);
4841 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4842 continue;
4843 if (GET_CODE (sub) != SET
4844 || side_effects_p (sub))
4845 return NULL;
4846 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4847 if (dest && ret)
4848 return NULL;
4849 if (dest)
4850 ret = dest;
4851 }
4852 return ret;
4853 }
4854
4855 /* Split live ranges of pseudos that are loaded from hard registers in the
4856 first BB in a BB that dominates all non-sibling call if such a BB can be
4857 found and is not in a loop. Return true if the function has made any
4858 changes. */
4859
4860 static bool
4861 split_live_ranges_for_shrink_wrap (void)
4862 {
4863 basic_block bb, call_dom = NULL;
4864 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4865 rtx_insn *insn, *last_interesting_insn = NULL;
4866 bitmap_head need_new, reachable;
4867 vec<basic_block> queue;
4868
4869 if (!SHRINK_WRAPPING_ENABLED)
4870 return false;
4871
4872 bitmap_initialize (&need_new, 0);
4873 bitmap_initialize (&reachable, 0);
4874 queue.create (n_basic_blocks_for_fn (cfun));
4875
4876 FOR_EACH_BB_FN (bb, cfun)
4877 FOR_BB_INSNS (bb, insn)
4878 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4879 {
4880 if (bb == first)
4881 {
4882 bitmap_clear (&need_new);
4883 bitmap_clear (&reachable);
4884 queue.release ();
4885 return false;
4886 }
4887
4888 bitmap_set_bit (&need_new, bb->index);
4889 bitmap_set_bit (&reachable, bb->index);
4890 queue.quick_push (bb);
4891 break;
4892 }
4893
4894 if (queue.is_empty ())
4895 {
4896 bitmap_clear (&need_new);
4897 bitmap_clear (&reachable);
4898 queue.release ();
4899 return false;
4900 }
4901
4902 while (!queue.is_empty ())
4903 {
4904 edge e;
4905 edge_iterator ei;
4906
4907 bb = queue.pop ();
4908 FOR_EACH_EDGE (e, ei, bb->succs)
4909 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4910 && bitmap_set_bit (&reachable, e->dest->index))
4911 queue.quick_push (e->dest);
4912 }
4913 queue.release ();
4914
4915 FOR_BB_INSNS (first, insn)
4916 {
4917 rtx dest = interesting_dest_for_shprep (insn, NULL);
4918 if (!dest)
4919 continue;
4920
4921 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4922 {
4923 bitmap_clear (&need_new);
4924 bitmap_clear (&reachable);
4925 return false;
4926 }
4927
4928 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4929 use;
4930 use = DF_REF_NEXT_REG (use))
4931 {
4932 int ubbi = DF_REF_BB (use)->index;
4933 if (bitmap_bit_p (&reachable, ubbi))
4934 bitmap_set_bit (&need_new, ubbi);
4935 }
4936 last_interesting_insn = insn;
4937 }
4938
4939 bitmap_clear (&reachable);
4940 if (!last_interesting_insn)
4941 {
4942 bitmap_clear (&need_new);
4943 return false;
4944 }
4945
4946 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4947 bitmap_clear (&need_new);
4948 if (call_dom == first)
4949 return false;
4950
4951 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4952 while (bb_loop_depth (call_dom) > 0)
4953 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4954 loop_optimizer_finalize ();
4955
4956 if (call_dom == first)
4957 return false;
4958
4959 calculate_dominance_info (CDI_POST_DOMINATORS);
4960 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4961 {
4962 free_dominance_info (CDI_POST_DOMINATORS);
4963 return false;
4964 }
4965 free_dominance_info (CDI_POST_DOMINATORS);
4966
4967 if (dump_file)
4968 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4969 call_dom->index);
4970
4971 bool ret = false;
4972 FOR_BB_INSNS (first, insn)
4973 {
4974 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4975 if (!dest || dest == pic_offset_table_rtx)
4976 continue;
4977
4978 rtx newreg = NULL_RTX;
4979 df_ref use, next;
4980 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4981 {
4982 rtx_insn *uin = DF_REF_INSN (use);
4983 next = DF_REF_NEXT_REG (use);
4984
4985 basic_block ubb = BLOCK_FOR_INSN (uin);
4986 if (ubb == call_dom
4987 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4988 {
4989 if (!newreg)
4990 newreg = ira_create_new_reg (dest);
4991 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4992 }
4993 }
4994
4995 if (newreg)
4996 {
4997 rtx new_move = gen_move_insn (newreg, dest);
4998 emit_insn_after (new_move, bb_note (call_dom));
4999 if (dump_file)
5000 {
5001 fprintf (dump_file, "Split live-range of register ");
5002 print_rtl_single (dump_file, dest);
5003 }
5004 ret = true;
5005 }
5006
5007 if (insn == last_interesting_insn)
5008 break;
5009 }
5010 apply_change_group ();
5011 return ret;
5012 }
5013
5014 /* Perform the second half of the transformation started in
5015 find_moveable_pseudos. We look for instances where the newly introduced
5016 pseudo remains unallocated, and remove it by moving the definition to
5017 just before its use, replacing the move instruction generated by
5018 find_moveable_pseudos. */
5019 static void
5020 move_unallocated_pseudos (void)
5021 {
5022 int i;
5023 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5024 if (reg_renumber[i] < 0)
5025 {
5026 int idx = i - first_moveable_pseudo;
5027 rtx other_reg = pseudo_replaced_reg[idx];
5028 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5029 /* The use must follow all definitions of OTHER_REG, so we can
5030 insert the new definition immediately after any of them. */
5031 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5032 rtx_insn *move_insn = DF_REF_INSN (other_def);
5033 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5034 rtx set;
5035 int success;
5036
5037 if (dump_file)
5038 fprintf (dump_file, "moving def of %d (insn %d now) ",
5039 REGNO (other_reg), INSN_UID (def_insn));
5040
5041 delete_insn (move_insn);
5042 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5043 delete_insn (DF_REF_INSN (other_def));
5044 delete_insn (def_insn);
5045
5046 set = single_set (newinsn);
5047 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5048 gcc_assert (success);
5049 if (dump_file)
5050 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5051 INSN_UID (newinsn), i);
5052 SET_REG_N_REFS (i, 0);
5053 }
5054 }
5055 \f
5056 /* If the backend knows where to allocate pseudos for hard
5057 register initial values, register these allocations now. */
5058 static void
5059 allocate_initial_values (void)
5060 {
5061 if (targetm.allocate_initial_value)
5062 {
5063 rtx hreg, preg, x;
5064 int i, regno;
5065
5066 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5067 {
5068 if (! initial_value_entry (i, &hreg, &preg))
5069 break;
5070
5071 x = targetm.allocate_initial_value (hreg);
5072 regno = REGNO (preg);
5073 if (x && REG_N_SETS (regno) <= 1)
5074 {
5075 if (MEM_P (x))
5076 reg_equiv_memory_loc (regno) = x;
5077 else
5078 {
5079 basic_block bb;
5080 int new_regno;
5081
5082 gcc_assert (REG_P (x));
5083 new_regno = REGNO (x);
5084 reg_renumber[regno] = new_regno;
5085 /* Poke the regno right into regno_reg_rtx so that even
5086 fixed regs are accepted. */
5087 SET_REGNO (preg, new_regno);
5088 /* Update global register liveness information. */
5089 FOR_EACH_BB_FN (bb, cfun)
5090 {
5091 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5092 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5093 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5094 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5095 }
5096 }
5097 }
5098 }
5099
5100 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5101 &hreg, &preg));
5102 }
5103 }
5104 \f
5105
5106 /* True when we use LRA instead of reload pass for the current
5107 function. */
5108 bool ira_use_lra_p;
5109
5110 /* True if we have allocno conflicts. It is false for non-optimized
5111 mode or when the conflict table is too big. */
5112 bool ira_conflicts_p;
5113
5114 /* Saved between IRA and reload. */
5115 static int saved_flag_ira_share_spill_slots;
5116
5117 /* This is the main entry of IRA. */
5118 static void
5119 ira (FILE *f)
5120 {
5121 bool loops_p;
5122 int ira_max_point_before_emit;
5123 int rebuild_p;
5124 bool saved_flag_caller_saves = flag_caller_saves;
5125 enum ira_region saved_flag_ira_region = flag_ira_region;
5126
5127 /* Perform target specific PIC register initialization. */
5128 targetm.init_pic_reg ();
5129
5130 ira_conflicts_p = optimize > 0;
5131
5132 ira_use_lra_p = targetm.lra_p ();
5133 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5134 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5135 use simplified and faster algorithms in LRA. */
5136 lra_simple_p
5137 = (ira_use_lra_p
5138 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5139 if (lra_simple_p)
5140 {
5141 /* It permits to skip live range splitting in LRA. */
5142 flag_caller_saves = false;
5143 /* There is no sense to do regional allocation when we use
5144 simplified LRA. */
5145 flag_ira_region = IRA_REGION_ONE;
5146 ira_conflicts_p = false;
5147 }
5148
5149 #ifndef IRA_NO_OBSTACK
5150 gcc_obstack_init (&ira_obstack);
5151 #endif
5152 bitmap_obstack_initialize (&ira_bitmap_obstack);
5153
5154 /* LRA uses its own infrastructure to handle caller save registers. */
5155 if (flag_caller_saves && !ira_use_lra_p)
5156 init_caller_save ();
5157
5158 if (flag_ira_verbose < 10)
5159 {
5160 internal_flag_ira_verbose = flag_ira_verbose;
5161 ira_dump_file = f;
5162 }
5163 else
5164 {
5165 internal_flag_ira_verbose = flag_ira_verbose - 10;
5166 ira_dump_file = stderr;
5167 }
5168
5169 setup_prohibited_mode_move_regs ();
5170 decrease_live_ranges_number ();
5171 df_note_add_problem ();
5172
5173 /* DF_LIVE can't be used in the register allocator, too many other
5174 parts of the compiler depend on using the "classic" liveness
5175 interpretation of the DF_LR problem. See PR38711.
5176 Remove the problem, so that we don't spend time updating it in
5177 any of the df_analyze() calls during IRA/LRA. */
5178 if (optimize > 1)
5179 df_remove_problem (df_live);
5180 gcc_checking_assert (df_live == NULL);
5181
5182 #ifdef ENABLE_CHECKING
5183 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5184 #endif
5185 df_analyze ();
5186
5187 init_reg_equiv ();
5188 if (ira_conflicts_p)
5189 {
5190 calculate_dominance_info (CDI_DOMINATORS);
5191
5192 if (split_live_ranges_for_shrink_wrap ())
5193 df_analyze ();
5194
5195 free_dominance_info (CDI_DOMINATORS);
5196 }
5197
5198 df_clear_flags (DF_NO_INSN_RESCAN);
5199
5200 regstat_init_n_sets_and_refs ();
5201 regstat_compute_ri ();
5202
5203 /* If we are not optimizing, then this is the only place before
5204 register allocation where dataflow is done. And that is needed
5205 to generate these warnings. */
5206 if (warn_clobbered)
5207 generate_setjmp_warnings ();
5208
5209 /* Determine if the current function is a leaf before running IRA
5210 since this can impact optimizations done by the prologue and
5211 epilogue thus changing register elimination offsets. */
5212 crtl->is_leaf = leaf_function_p ();
5213
5214 if (resize_reg_info () && flag_ira_loop_pressure)
5215 ira_set_pseudo_classes (true, ira_dump_file);
5216
5217 rebuild_p = update_equiv_regs ();
5218 setup_reg_equiv ();
5219 setup_reg_equiv_init ();
5220
5221 if (optimize && rebuild_p)
5222 {
5223 timevar_push (TV_JUMP);
5224 rebuild_jump_labels (get_insns ());
5225 if (purge_all_dead_edges ())
5226 delete_unreachable_blocks ();
5227 timevar_pop (TV_JUMP);
5228 }
5229
5230 allocated_reg_info_size = max_reg_num ();
5231
5232 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5233 df_analyze ();
5234
5235 /* It is not worth to do such improvement when we use a simple
5236 allocation because of -O0 usage or because the function is too
5237 big. */
5238 if (ira_conflicts_p)
5239 find_moveable_pseudos ();
5240
5241 max_regno_before_ira = max_reg_num ();
5242 ira_setup_eliminable_regset ();
5243
5244 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5245 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5246 ira_move_loops_num = ira_additional_jumps_num = 0;
5247
5248 ira_assert (current_loops == NULL);
5249 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5250 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5251
5252 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5253 fprintf (ira_dump_file, "Building IRA IR\n");
5254 loops_p = ira_build ();
5255
5256 ira_assert (ira_conflicts_p || !loops_p);
5257
5258 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5259 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5260 /* It is just wasting compiler's time to pack spilled pseudos into
5261 stack slots in this case -- prohibit it. We also do this if
5262 there is setjmp call because a variable not modified between
5263 setjmp and longjmp the compiler is required to preserve its
5264 value and sharing slots does not guarantee it. */
5265 flag_ira_share_spill_slots = FALSE;
5266
5267 ira_color ();
5268
5269 ira_max_point_before_emit = ira_max_point;
5270
5271 ira_initiate_emit_data ();
5272
5273 ira_emit (loops_p);
5274
5275 max_regno = max_reg_num ();
5276 if (ira_conflicts_p)
5277 {
5278 if (! loops_p)
5279 {
5280 if (! ira_use_lra_p)
5281 ira_initiate_assign ();
5282 }
5283 else
5284 {
5285 expand_reg_info ();
5286
5287 if (ira_use_lra_p)
5288 {
5289 ira_allocno_t a;
5290 ira_allocno_iterator ai;
5291
5292 FOR_EACH_ALLOCNO (a, ai)
5293 {
5294 int old_regno = ALLOCNO_REGNO (a);
5295 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5296
5297 ALLOCNO_REGNO (a) = new_regno;
5298
5299 if (old_regno != new_regno)
5300 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5301 reg_alternate_class (old_regno),
5302 reg_allocno_class (old_regno));
5303 }
5304
5305 }
5306 else
5307 {
5308 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5309 fprintf (ira_dump_file, "Flattening IR\n");
5310 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5311 }
5312 /* New insns were generated: add notes and recalculate live
5313 info. */
5314 df_analyze ();
5315
5316 /* ??? Rebuild the loop tree, but why? Does the loop tree
5317 change if new insns were generated? Can that be handled
5318 by updating the loop tree incrementally? */
5319 loop_optimizer_finalize ();
5320 free_dominance_info (CDI_DOMINATORS);
5321 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5322 | LOOPS_HAVE_RECORDED_EXITS);
5323
5324 if (! ira_use_lra_p)
5325 {
5326 setup_allocno_assignment_flags ();
5327 ira_initiate_assign ();
5328 ira_reassign_conflict_allocnos (max_regno);
5329 }
5330 }
5331 }
5332
5333 ira_finish_emit_data ();
5334
5335 setup_reg_renumber ();
5336
5337 calculate_allocation_cost ();
5338
5339 #ifdef ENABLE_IRA_CHECKING
5340 if (ira_conflicts_p)
5341 check_allocation ();
5342 #endif
5343
5344 if (max_regno != max_regno_before_ira)
5345 {
5346 regstat_free_n_sets_and_refs ();
5347 regstat_free_ri ();
5348 regstat_init_n_sets_and_refs ();
5349 regstat_compute_ri ();
5350 }
5351
5352 overall_cost_before = ira_overall_cost;
5353 if (! ira_conflicts_p)
5354 grow_reg_equivs ();
5355 else
5356 {
5357 fix_reg_equiv_init ();
5358
5359 #ifdef ENABLE_IRA_CHECKING
5360 print_redundant_copies ();
5361 #endif
5362 if (! ira_use_lra_p)
5363 {
5364 ira_spilled_reg_stack_slots_num = 0;
5365 ira_spilled_reg_stack_slots
5366 = ((struct ira_spilled_reg_stack_slot *)
5367 ira_allocate (max_regno
5368 * sizeof (struct ira_spilled_reg_stack_slot)));
5369 memset (ira_spilled_reg_stack_slots, 0,
5370 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5371 }
5372 }
5373 allocate_initial_values ();
5374
5375 /* See comment for find_moveable_pseudos call. */
5376 if (ira_conflicts_p)
5377 move_unallocated_pseudos ();
5378
5379 /* Restore original values. */
5380 if (lra_simple_p)
5381 {
5382 flag_caller_saves = saved_flag_caller_saves;
5383 flag_ira_region = saved_flag_ira_region;
5384 }
5385 }
5386
5387 static void
5388 do_reload (void)
5389 {
5390 basic_block bb;
5391 bool need_dce;
5392 unsigned pic_offset_table_regno = INVALID_REGNUM;
5393
5394 if (flag_ira_verbose < 10)
5395 ira_dump_file = dump_file;
5396
5397 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5398 after reload to avoid possible wrong usages of hard reg assigned
5399 to it. */
5400 if (pic_offset_table_rtx
5401 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5402 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5403
5404 timevar_push (TV_RELOAD);
5405 if (ira_use_lra_p)
5406 {
5407 if (current_loops != NULL)
5408 {
5409 loop_optimizer_finalize ();
5410 free_dominance_info (CDI_DOMINATORS);
5411 }
5412 FOR_ALL_BB_FN (bb, cfun)
5413 bb->loop_father = NULL;
5414 current_loops = NULL;
5415
5416 ira_destroy ();
5417
5418 lra (ira_dump_file);
5419 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5420 LRA. */
5421 vec_free (reg_equivs);
5422 reg_equivs = NULL;
5423 need_dce = false;
5424 }
5425 else
5426 {
5427 df_set_flags (DF_NO_INSN_RESCAN);
5428 build_insn_chain ();
5429
5430 need_dce = reload (get_insns (), ira_conflicts_p);
5431
5432 }
5433
5434 timevar_pop (TV_RELOAD);
5435
5436 timevar_push (TV_IRA);
5437
5438 if (ira_conflicts_p && ! ira_use_lra_p)
5439 {
5440 ira_free (ira_spilled_reg_stack_slots);
5441 ira_finish_assign ();
5442 }
5443
5444 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5445 && overall_cost_before != ira_overall_cost)
5446 fprintf (ira_dump_file, "+++Overall after reload %"PRId64 "\n",
5447 ira_overall_cost);
5448
5449 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5450
5451 if (! ira_use_lra_p)
5452 {
5453 ira_destroy ();
5454 if (current_loops != NULL)
5455 {
5456 loop_optimizer_finalize ();
5457 free_dominance_info (CDI_DOMINATORS);
5458 }
5459 FOR_ALL_BB_FN (bb, cfun)
5460 bb->loop_father = NULL;
5461 current_loops = NULL;
5462
5463 regstat_free_ri ();
5464 regstat_free_n_sets_and_refs ();
5465 }
5466
5467 if (optimize)
5468 cleanup_cfg (CLEANUP_EXPENSIVE);
5469
5470 finish_reg_equiv ();
5471
5472 bitmap_obstack_release (&ira_bitmap_obstack);
5473 #ifndef IRA_NO_OBSTACK
5474 obstack_free (&ira_obstack, NULL);
5475 #endif
5476
5477 /* The code after the reload has changed so much that at this point
5478 we might as well just rescan everything. Note that
5479 df_rescan_all_insns is not going to help here because it does not
5480 touch the artificial uses and defs. */
5481 df_finish_pass (true);
5482 df_scan_alloc (NULL);
5483 df_scan_blocks ();
5484
5485 if (optimize > 1)
5486 {
5487 df_live_add_problem ();
5488 df_live_set_all_dirty ();
5489 }
5490
5491 if (optimize)
5492 df_analyze ();
5493
5494 if (need_dce && optimize)
5495 run_fast_dce ();
5496
5497 /* Diagnose uses of the hard frame pointer when it is used as a global
5498 register. Often we can get away with letting the user appropriate
5499 the frame pointer, but we should let them know when code generation
5500 makes that impossible. */
5501 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5502 {
5503 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5504 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5505 "frame pointer required, but reserved");
5506 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5507 }
5508
5509 if (pic_offset_table_regno != INVALID_REGNUM)
5510 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5511
5512 timevar_pop (TV_IRA);
5513 }
5514 \f
5515 /* Run the integrated register allocator. */
5516
5517 namespace {
5518
5519 const pass_data pass_data_ira =
5520 {
5521 RTL_PASS, /* type */
5522 "ira", /* name */
5523 OPTGROUP_NONE, /* optinfo_flags */
5524 TV_IRA, /* tv_id */
5525 0, /* properties_required */
5526 0, /* properties_provided */
5527 0, /* properties_destroyed */
5528 0, /* todo_flags_start */
5529 TODO_do_not_ggc_collect, /* todo_flags_finish */
5530 };
5531
5532 class pass_ira : public rtl_opt_pass
5533 {
5534 public:
5535 pass_ira (gcc::context *ctxt)
5536 : rtl_opt_pass (pass_data_ira, ctxt)
5537 {}
5538
5539 /* opt_pass methods: */
5540 virtual bool gate (function *)
5541 {
5542 return !targetm.no_register_allocation;
5543 }
5544 virtual unsigned int execute (function *)
5545 {
5546 ira (dump_file);
5547 return 0;
5548 }
5549
5550 }; // class pass_ira
5551
5552 } // anon namespace
5553
5554 rtl_opt_pass *
5555 make_pass_ira (gcc::context *ctxt)
5556 {
5557 return new pass_ira (ctxt);
5558 }
5559
5560 namespace {
5561
5562 const pass_data pass_data_reload =
5563 {
5564 RTL_PASS, /* type */
5565 "reload", /* name */
5566 OPTGROUP_NONE, /* optinfo_flags */
5567 TV_RELOAD, /* tv_id */
5568 0, /* properties_required */
5569 0, /* properties_provided */
5570 0, /* properties_destroyed */
5571 0, /* todo_flags_start */
5572 0, /* todo_flags_finish */
5573 };
5574
5575 class pass_reload : public rtl_opt_pass
5576 {
5577 public:
5578 pass_reload (gcc::context *ctxt)
5579 : rtl_opt_pass (pass_data_reload, ctxt)
5580 {}
5581
5582 /* opt_pass methods: */
5583 virtual bool gate (function *)
5584 {
5585 return !targetm.no_register_allocation;
5586 }
5587 virtual unsigned int execute (function *)
5588 {
5589 do_reload ();
5590 return 0;
5591 }
5592
5593 }; // class pass_reload
5594
5595 } // anon namespace
5596
5597 rtl_opt_pass *
5598 make_pass_reload (gcc::context *ctxt)
5599 {
5600 return new pass_reload (ctxt);
5601 }