re PR target/69274 (435.gromacs performance regression after r231814 on x86 Haswell...
[gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363 */
364
365
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
394
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
401
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
404
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
407
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
410
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
414
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
424
425 /* All registers that can be eliminated. */
426
427 HARD_REG_SET eliminable_regset;
428
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
433
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
436
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
439 \f
440
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
444 {
445 int i, m, hard_regno;
446
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
449 {
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
455 }
456 }
457
458 \f
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
461
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
465 {
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
468
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
471 {
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
476 {
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
479 }
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
481 {
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
493 {
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
496 }
497 }
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
503 }
504 }
505
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
511 {
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
519 }
520
521 \f
522
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
525
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
529 {
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
532
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
536
537 for (i = 0; i < N_REG_CLASSES; i++)
538 {
539 if (i == (int) NO_REGS)
540 continue;
541
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
548 {
549 enum reg_class *p;
550
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
559 }
560 }
561 }
562
563 \f
564
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
568 {
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
571
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 {
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 {
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
601 }
602 }
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605 {
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
616 {
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
623 }
624 }
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
627 {
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
632 }
633 setup_reg_subclasses ();
634 }
635
636 \f
637
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
641
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
647
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
650
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
654 {
655 void *res;
656
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
663 }
664
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
668 {
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
674 }
675
676
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
680 {
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
682 }
683
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
687 {
688 /* do nothing */
689 }
690
691 \f
692
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
697 {
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
701
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
708 {
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
721 }
722 fprintf (f, "\n");
723 }
724
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
729 {
730 ira_print_disposition (stderr);
731 }
732
733 \f
734
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
743 {
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
746 {
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
750
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
756 {
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
762 {
763 best = size;
764 ira_stack_reg_pressure_class = cl;
765 }
766 }
767 }
768 #endif
769 }
770
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
775
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
786 {
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
793
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
796 {
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
805 {
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
812 {
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
824 }
825 if (m >= NUM_MACHINE_MODES)
826 continue;
827 }
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
840 {
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
847 {
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
851 }
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
859 }
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
866 }
867 #ifdef ENABLE_IRA_CHECKING
868 {
869 HARD_REG_SET ignore_hard_regs;
870
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
878 {
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
886 {
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
889 }
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
896 }
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
905 }
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
909 {
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
913 }
914 setup_stack_reg_pressure_class ();
915 }
916
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
923 {
924 int i, cl, cl2, m;
925
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
927 {
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
937 {
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
942 {
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
947 }
948 if (m < NUM_MACHINE_MODES)
949 break;
950 }
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
953 }
954 }
955
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
958
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
966
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
983 {
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
988
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
994 {
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
998 {
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1006 }
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1015 }
1016 classes[n] = LIM_REG_CLASSES;
1017
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1030 {
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1035 {
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1044 }
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1048 }
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1054 {
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1057 }
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1062 }
1063
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1071
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1082 {
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1086
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1089
1090 for (i = 0; i < classes_num; i++)
1091 {
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1099 }
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1104 {
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1110 {
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1117 {
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1120 {
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1125 }
1126 if (best_class == NO_REGS || best_cost > min_cost)
1127 {
1128 best_class = aclass;
1129 best_cost = min_cost;
1130 }
1131 }
1132 }
1133 class_translate[cl] = best_class;
1134 }
1135 }
1136
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1141 {
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1146 }
1147
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1151
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1155 {
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1160
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1167 }
1168
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1175
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1182 {
1183 int i;
1184
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1193 }
1194
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1201 {
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1205
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1210 {
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1213 {
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1223 {
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1228 {
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1235 }
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1239 }
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1244 {
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1249
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1255 }
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1265 {
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1269 {
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1274 {
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1295 }
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1309 }
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1312 {
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1322
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1335 }
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1337 {
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1347
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1360 }
1361 }
1362 }
1363 }
1364 }
1365
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1369 {
1370 int i, cl;
1371
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1380 }
1381
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1386 {
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1395
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1403 }
1404
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1409 {
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1413 }
1414
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1419 {
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1424 }
1425
1426 \f
1427
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1431 {
1432 int i;
1433
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1435 {
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1446 {
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1449 {
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1452 }
1453 }
1454 #endif
1455 }
1456 }
1457
1458 \f
1459
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1463 {
1464 int i, cl, cl2, m;
1465
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1467 {
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1479 }
1480 }
1481
1482 \f
1483
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1488 {
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1490
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1492 {
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1496 {
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1501 {
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1508 {
1509 last_hard_regno = hard_regno;
1510 count++;
1511 }
1512 }
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1514 }
1515 }
1516 }
1517
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1523 {
1524 int j, k, hard_regno, cl, pclass, nregs;
1525
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1528 {
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1531 {
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1537 {
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1541 }
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1547 {
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1551 }
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1556 }
1557 }
1558 }
1559 \f
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1564 {
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1568
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1575 {
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1579 {
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1588 }
1589 else
1590 {
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1594 }
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1597 }
1598 if (all_match && last_mode_for_init_move_cost != -1)
1599 {
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1607 }
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1614 {
1615 int cost;
1616 enum reg_class *p1, *p2;
1617
1618 if (last_move_cost[cl1][cl2] == 65535)
1619 {
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1623 }
1624 else
1625 {
1626 cost = last_move_cost[cl1][cl2];
1627
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1634
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1641
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1644
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1649
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1654 }
1655 }
1656 }
1657
1658 \f
1659
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1665 {
1666 ira_init_costs_once ();
1667 lra_init_once ();
1668 }
1669
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1674 {
1675 int mode, i;
1676
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1681 {
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1686 ;
1687 if (i == mode)
1688 {
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1692 }
1693 }
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1698 }
1699
1700 target_ira_int::~target_ira_int ()
1701 {
1702 free_ira_costs ();
1703 free_register_move_costs ();
1704 }
1705
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1710 {
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1721 }
1722
1723 \f
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1726
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1730 {
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1734
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1743 {
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1746 {
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1761 }
1762 }
1763 }
1764
1765 \f
1766
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1770 {
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1778
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1792 {
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1796 {
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1800 {
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1803 {
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1809 }
1810 if (*p)
1811 p++;
1812 }
1813 }
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1815 {
1816 if (!TEST_BIT (preferred, nalt)
1817 || TEST_HARD_REG_BIT (alts, nalt))
1818 continue;
1819
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1821 {
1822 int c, len;
1823
1824 rtx op = recog_data.operand[nop];
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1828
1829 do
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1831 {
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 case '\0':
1836 len = 0;
1837 break;
1838
1839 case '%':
1840 /* The commutative modifier is handled above. */
1841 break;
1842
1843 case '0': case '1': case '2': case '3': case '4':
1844 case '5': case '6': case '7': case '8': case '9':
1845 goto op_success;
1846 break;
1847
1848 case 'g':
1849 goto op_success;
1850 break;
1851
1852 default:
1853 {
1854 enum constraint_num cn = lookup_constraint (p);
1855 switch (get_constraint_type (cn))
1856 {
1857 case CT_REGISTER:
1858 if (reg_class_for_constraint (cn) != NO_REGS)
1859 goto op_success;
1860 break;
1861
1862 case CT_CONST_INT:
1863 if (CONST_INT_P (op)
1864 && (insn_const_int_ok_for_constraint
1865 (INTVAL (op), cn)))
1866 goto op_success;
1867 break;
1868
1869 case CT_ADDRESS:
1870 case CT_MEMORY:
1871 case CT_SPECIAL_MEMORY:
1872 goto op_success;
1873
1874 case CT_FIXED_FORM:
1875 if (constraint_satisfied_p (op, cn))
1876 goto op_success;
1877 break;
1878 }
1879 break;
1880 }
1881 }
1882 while (p += len, c);
1883 break;
1884 op_success:
1885 ;
1886 }
1887 if (nop >= recog_data.n_operands)
1888 SET_HARD_REG_BIT (alts, nalt);
1889 }
1890 if (commutative < 0)
1891 break;
1892 /* Swap forth and back to avoid changing recog_data. */
1893 std::swap (recog_data.operand[commutative],
1894 recog_data.operand[commutative + 1]);
1895 if (curr_swapped)
1896 break;
1897 }
1898 }
1899
1900 /* Return the number of the output non-early clobber operand which
1901 should be the same in any case as operand with number OP_NUM (or
1902 negative value if there is no such operand). The function takes
1903 only really possible alternatives into consideration. */
1904 int
1905 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1906 {
1907 int curr_alt, c, original, dup;
1908 bool ignore_p, use_commut_op_p;
1909 const char *str;
1910
1911 if (op_num < 0 || recog_data.n_alternatives == 0)
1912 return -1;
1913 /* We should find duplications only for input operands. */
1914 if (recog_data.operand_type[op_num] != OP_IN)
1915 return -1;
1916 str = recog_data.constraints[op_num];
1917 use_commut_op_p = false;
1918 for (;;)
1919 {
1920 rtx op = recog_data.operand[op_num];
1921
1922 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1923 original = -1;;)
1924 {
1925 c = *str;
1926 if (c == '\0')
1927 break;
1928 if (c == '#')
1929 ignore_p = true;
1930 else if (c == ',')
1931 {
1932 curr_alt++;
1933 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1934 }
1935 else if (! ignore_p)
1936 switch (c)
1937 {
1938 case 'g':
1939 goto fail;
1940 default:
1941 {
1942 enum constraint_num cn = lookup_constraint (str);
1943 enum reg_class cl = reg_class_for_constraint (cn);
1944 if (cl != NO_REGS
1945 && !targetm.class_likely_spilled_p (cl))
1946 goto fail;
1947 if (constraint_satisfied_p (op, cn))
1948 goto fail;
1949 break;
1950 }
1951
1952 case '0': case '1': case '2': case '3': case '4':
1953 case '5': case '6': case '7': case '8': case '9':
1954 if (original != -1 && original != c)
1955 goto fail;
1956 original = c;
1957 break;
1958 }
1959 str += CONSTRAINT_LEN (c, str);
1960 }
1961 if (original == -1)
1962 goto fail;
1963 dup = -1;
1964 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1965 *str != 0;
1966 str++)
1967 if (ignore_p)
1968 {
1969 if (*str == ',')
1970 ignore_p = false;
1971 }
1972 else if (*str == '#')
1973 ignore_p = true;
1974 else if (! ignore_p)
1975 {
1976 if (*str == '=')
1977 dup = original - '0';
1978 /* It is better ignore an alternative with early clobber. */
1979 else if (*str == '&')
1980 goto fail;
1981 }
1982 if (dup >= 0)
1983 return dup;
1984 fail:
1985 if (use_commut_op_p)
1986 break;
1987 use_commut_op_p = true;
1988 if (recog_data.constraints[op_num][0] == '%')
1989 str = recog_data.constraints[op_num + 1];
1990 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1991 str = recog_data.constraints[op_num - 1];
1992 else
1993 break;
1994 }
1995 return -1;
1996 }
1997
1998 \f
1999
2000 /* Search forward to see if the source register of a copy insn dies
2001 before either it or the destination register is modified, but don't
2002 scan past the end of the basic block. If so, we can replace the
2003 source with the destination and let the source die in the copy
2004 insn.
2005
2006 This will reduce the number of registers live in that range and may
2007 enable the destination and the source coalescing, thus often saving
2008 one register in addition to a register-register copy. */
2009
2010 static void
2011 decrease_live_ranges_number (void)
2012 {
2013 basic_block bb;
2014 rtx_insn *insn;
2015 rtx set, src, dest, dest_death, note;
2016 rtx_insn *p, *q;
2017 int sregno, dregno;
2018
2019 if (! flag_expensive_optimizations)
2020 return;
2021
2022 if (ira_dump_file)
2023 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2024
2025 FOR_EACH_BB_FN (bb, cfun)
2026 FOR_BB_INSNS (bb, insn)
2027 {
2028 set = single_set (insn);
2029 if (! set)
2030 continue;
2031 src = SET_SRC (set);
2032 dest = SET_DEST (set);
2033 if (! REG_P (src) || ! REG_P (dest)
2034 || find_reg_note (insn, REG_DEAD, src))
2035 continue;
2036 sregno = REGNO (src);
2037 dregno = REGNO (dest);
2038
2039 /* We don't want to mess with hard regs if register classes
2040 are small. */
2041 if (sregno == dregno
2042 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2043 && (sregno < FIRST_PSEUDO_REGISTER
2044 || dregno < FIRST_PSEUDO_REGISTER))
2045 /* We don't see all updates to SP if they are in an
2046 auto-inc memory reference, so we must disallow this
2047 optimization on them. */
2048 || sregno == STACK_POINTER_REGNUM
2049 || dregno == STACK_POINTER_REGNUM)
2050 continue;
2051
2052 dest_death = NULL_RTX;
2053
2054 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2055 {
2056 if (! INSN_P (p))
2057 continue;
2058 if (BLOCK_FOR_INSN (p) != bb)
2059 break;
2060
2061 if (reg_set_p (src, p) || reg_set_p (dest, p)
2062 /* If SRC is an asm-declared register, it must not be
2063 replaced in any asm. Unfortunately, the REG_EXPR
2064 tree for the asm variable may be absent in the SRC
2065 rtx, so we can't check the actual register
2066 declaration easily (the asm operand will have it,
2067 though). To avoid complicating the test for a rare
2068 case, we just don't perform register replacement
2069 for a hard reg mentioned in an asm. */
2070 || (sregno < FIRST_PSEUDO_REGISTER
2071 && asm_noperands (PATTERN (p)) >= 0
2072 && reg_overlap_mentioned_p (src, PATTERN (p)))
2073 /* Don't change hard registers used by a call. */
2074 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2075 && find_reg_fusage (p, USE, src))
2076 /* Don't change a USE of a register. */
2077 || (GET_CODE (PATTERN (p)) == USE
2078 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2079 break;
2080
2081 /* See if all of SRC dies in P. This test is slightly
2082 more conservative than it needs to be. */
2083 if ((note = find_regno_note (p, REG_DEAD, sregno))
2084 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2085 {
2086 int failed = 0;
2087
2088 /* We can do the optimization. Scan forward from INSN
2089 again, replacing regs as we go. Set FAILED if a
2090 replacement can't be done. In that case, we can't
2091 move the death note for SRC. This should be
2092 rare. */
2093
2094 /* Set to stop at next insn. */
2095 for (q = next_real_insn (insn);
2096 q != next_real_insn (p);
2097 q = next_real_insn (q))
2098 {
2099 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2100 {
2101 /* If SRC is a hard register, we might miss
2102 some overlapping registers with
2103 validate_replace_rtx, so we would have to
2104 undo it. We can't if DEST is present in
2105 the insn, so fail in that combination of
2106 cases. */
2107 if (sregno < FIRST_PSEUDO_REGISTER
2108 && reg_mentioned_p (dest, PATTERN (q)))
2109 failed = 1;
2110
2111 /* Attempt to replace all uses. */
2112 else if (!validate_replace_rtx (src, dest, q))
2113 failed = 1;
2114
2115 /* If this succeeded, but some part of the
2116 register is still present, undo the
2117 replacement. */
2118 else if (sregno < FIRST_PSEUDO_REGISTER
2119 && reg_overlap_mentioned_p (src, PATTERN (q)))
2120 {
2121 validate_replace_rtx (dest, src, q);
2122 failed = 1;
2123 }
2124 }
2125
2126 /* If DEST dies here, remove the death note and
2127 save it for later. Make sure ALL of DEST dies
2128 here; again, this is overly conservative. */
2129 if (! dest_death
2130 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2131 {
2132 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2133 remove_note (q, dest_death);
2134 else
2135 {
2136 failed = 1;
2137 dest_death = 0;
2138 }
2139 }
2140 }
2141
2142 if (! failed)
2143 {
2144 /* Move death note of SRC from P to INSN. */
2145 remove_note (p, note);
2146 XEXP (note, 1) = REG_NOTES (insn);
2147 REG_NOTES (insn) = note;
2148 }
2149
2150 /* DEST is also dead if INSN has a REG_UNUSED note for
2151 DEST. */
2152 if (! dest_death
2153 && (dest_death
2154 = find_regno_note (insn, REG_UNUSED, dregno)))
2155 {
2156 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2157 remove_note (insn, dest_death);
2158 }
2159
2160 /* Put death note of DEST on P if we saw it die. */
2161 if (dest_death)
2162 {
2163 XEXP (dest_death, 1) = REG_NOTES (p);
2164 REG_NOTES (p) = dest_death;
2165 }
2166 break;
2167 }
2168
2169 /* If SRC is a hard register which is set or killed in
2170 some other way, we can't do this optimization. */
2171 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2172 break;
2173 }
2174 }
2175 }
2176
2177 \f
2178
2179 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2180 static bool
2181 ira_bad_reload_regno_1 (int regno, rtx x)
2182 {
2183 int x_regno, n, i;
2184 ira_allocno_t a;
2185 enum reg_class pref;
2186
2187 /* We only deal with pseudo regs. */
2188 if (! x || GET_CODE (x) != REG)
2189 return false;
2190
2191 x_regno = REGNO (x);
2192 if (x_regno < FIRST_PSEUDO_REGISTER)
2193 return false;
2194
2195 /* If the pseudo prefers REGNO explicitly, then do not consider
2196 REGNO a bad spill choice. */
2197 pref = reg_preferred_class (x_regno);
2198 if (reg_class_size[pref] == 1)
2199 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2200
2201 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2202 poor choice for a reload regno. */
2203 a = ira_regno_allocno_map[x_regno];
2204 n = ALLOCNO_NUM_OBJECTS (a);
2205 for (i = 0; i < n; i++)
2206 {
2207 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2208 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2209 return true;
2210 }
2211 return false;
2212 }
2213
2214 /* Return nonzero if REGNO is a particularly bad choice for reloading
2215 IN or OUT. */
2216 bool
2217 ira_bad_reload_regno (int regno, rtx in, rtx out)
2218 {
2219 return (ira_bad_reload_regno_1 (regno, in)
2220 || ira_bad_reload_regno_1 (regno, out));
2221 }
2222
2223 /* Add register clobbers from asm statements. */
2224 static void
2225 compute_regs_asm_clobbered (void)
2226 {
2227 basic_block bb;
2228
2229 FOR_EACH_BB_FN (bb, cfun)
2230 {
2231 rtx_insn *insn;
2232 FOR_BB_INSNS_REVERSE (bb, insn)
2233 {
2234 df_ref def;
2235
2236 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2237 FOR_EACH_INSN_DEF (def, insn)
2238 {
2239 unsigned int dregno = DF_REF_REGNO (def);
2240 if (HARD_REGISTER_NUM_P (dregno))
2241 add_to_hard_reg_set (&crtl->asm_clobbers,
2242 GET_MODE (DF_REF_REAL_REG (def)),
2243 dregno);
2244 }
2245 }
2246 }
2247 }
2248
2249
2250 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2251 REGS_EVER_LIVE. */
2252 void
2253 ira_setup_eliminable_regset (void)
2254 {
2255 #ifdef ELIMINABLE_REGS
2256 int i;
2257 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2258 #endif
2259 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2260 sp for alloca. So we can't eliminate the frame pointer in that
2261 case. At some point, we should improve this by emitting the
2262 sp-adjusting insns for this case. */
2263 frame_pointer_needed
2264 = (! flag_omit_frame_pointer
2265 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2266 /* We need the frame pointer to catch stack overflow exceptions if
2267 the stack pointer is moving (as for the alloca case just above). */
2268 || (STACK_CHECK_MOVING_SP
2269 && flag_stack_check
2270 && flag_exceptions
2271 && cfun->can_throw_non_call_exceptions)
2272 || crtl->accesses_prior_frames
2273 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2274 /* We need a frame pointer for all Cilk Plus functions that use
2275 Cilk keywords. */
2276 || (flag_cilkplus && cfun->is_cilk_function)
2277 || targetm.frame_pointer_required ());
2278
2279 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2280 RTL is very small. So if we use frame pointer for RA and RTL
2281 actually prevents this, we will spill pseudos assigned to the
2282 frame pointer in LRA. */
2283
2284 if (frame_pointer_needed)
2285 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2286
2287 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2288 CLEAR_HARD_REG_SET (eliminable_regset);
2289
2290 compute_regs_asm_clobbered ();
2291
2292 /* Build the regset of all eliminable registers and show we can't
2293 use those that we already know won't be eliminated. */
2294 #ifdef ELIMINABLE_REGS
2295 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2296 {
2297 bool cannot_elim
2298 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2299 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2300
2301 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2302 {
2303 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2304
2305 if (cannot_elim)
2306 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2307 }
2308 else if (cannot_elim)
2309 error ("%s cannot be used in asm here",
2310 reg_names[eliminables[i].from]);
2311 else
2312 df_set_regs_ever_live (eliminables[i].from, true);
2313 }
2314 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2315 {
2316 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2317 {
2318 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2319 if (frame_pointer_needed)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2321 }
2322 else if (frame_pointer_needed)
2323 error ("%s cannot be used in asm here",
2324 reg_names[HARD_FRAME_POINTER_REGNUM]);
2325 else
2326 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2327 }
2328
2329 #else
2330 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 {
2332 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2333 if (frame_pointer_needed)
2334 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2335 }
2336 else if (frame_pointer_needed)
2337 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2338 else
2339 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2340 #endif
2341 }
2342
2343 \f
2344
2345 /* Vector of substitutions of register numbers,
2346 used to map pseudo regs into hardware regs.
2347 This is set up as a result of register allocation.
2348 Element N is the hard reg assigned to pseudo reg N,
2349 or is -1 if no hard reg was assigned.
2350 If N is a hard reg number, element N is N. */
2351 short *reg_renumber;
2352
2353 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2354 the allocation found by IRA. */
2355 static void
2356 setup_reg_renumber (void)
2357 {
2358 int regno, hard_regno;
2359 ira_allocno_t a;
2360 ira_allocno_iterator ai;
2361
2362 caller_save_needed = 0;
2363 FOR_EACH_ALLOCNO (a, ai)
2364 {
2365 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2366 continue;
2367 /* There are no caps at this point. */
2368 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2369 if (! ALLOCNO_ASSIGNED_P (a))
2370 /* It can happen if A is not referenced but partially anticipated
2371 somewhere in a region. */
2372 ALLOCNO_ASSIGNED_P (a) = true;
2373 ira_free_allocno_updated_costs (a);
2374 hard_regno = ALLOCNO_HARD_REGNO (a);
2375 regno = ALLOCNO_REGNO (a);
2376 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2377 if (hard_regno >= 0)
2378 {
2379 int i, nwords;
2380 enum reg_class pclass;
2381 ira_object_t obj;
2382
2383 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2384 nwords = ALLOCNO_NUM_OBJECTS (a);
2385 for (i = 0; i < nwords; i++)
2386 {
2387 obj = ALLOCNO_OBJECT (a, i);
2388 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2389 reg_class_contents[pclass]);
2390 }
2391 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2392 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2393 call_used_reg_set))
2394 {
2395 ira_assert (!optimize || flag_caller_saves
2396 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2397 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2398 || regno >= ira_reg_equiv_len
2399 || ira_equiv_no_lvalue_p (regno));
2400 caller_save_needed = 1;
2401 }
2402 }
2403 }
2404 }
2405
2406 /* Set up allocno assignment flags for further allocation
2407 improvements. */
2408 static void
2409 setup_allocno_assignment_flags (void)
2410 {
2411 int hard_regno;
2412 ira_allocno_t a;
2413 ira_allocno_iterator ai;
2414
2415 FOR_EACH_ALLOCNO (a, ai)
2416 {
2417 if (! ALLOCNO_ASSIGNED_P (a))
2418 /* It can happen if A is not referenced but partially anticipated
2419 somewhere in a region. */
2420 ira_free_allocno_updated_costs (a);
2421 hard_regno = ALLOCNO_HARD_REGNO (a);
2422 /* Don't assign hard registers to allocnos which are destination
2423 of removed store at the end of loop. It has no sense to keep
2424 the same value in different hard registers. It is also
2425 impossible to assign hard registers correctly to such
2426 allocnos because the cost info and info about intersected
2427 calls are incorrect for them. */
2428 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2429 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2430 || (ALLOCNO_MEMORY_COST (a)
2431 - ALLOCNO_CLASS_COST (a)) < 0);
2432 ira_assert
2433 (hard_regno < 0
2434 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2435 reg_class_contents[ALLOCNO_CLASS (a)]));
2436 }
2437 }
2438
2439 /* Evaluate overall allocation cost and the costs for using hard
2440 registers and memory for allocnos. */
2441 static void
2442 calculate_allocation_cost (void)
2443 {
2444 int hard_regno, cost;
2445 ira_allocno_t a;
2446 ira_allocno_iterator ai;
2447
2448 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2449 FOR_EACH_ALLOCNO (a, ai)
2450 {
2451 hard_regno = ALLOCNO_HARD_REGNO (a);
2452 ira_assert (hard_regno < 0
2453 || (ira_hard_reg_in_set_p
2454 (hard_regno, ALLOCNO_MODE (a),
2455 reg_class_contents[ALLOCNO_CLASS (a)])));
2456 if (hard_regno < 0)
2457 {
2458 cost = ALLOCNO_MEMORY_COST (a);
2459 ira_mem_cost += cost;
2460 }
2461 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2462 {
2463 cost = (ALLOCNO_HARD_REG_COSTS (a)
2464 [ira_class_hard_reg_index
2465 [ALLOCNO_CLASS (a)][hard_regno]]);
2466 ira_reg_cost += cost;
2467 }
2468 else
2469 {
2470 cost = ALLOCNO_CLASS_COST (a);
2471 ira_reg_cost += cost;
2472 }
2473 ira_overall_cost += cost;
2474 }
2475
2476 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2477 {
2478 fprintf (ira_dump_file,
2479 "+++Costs: overall %" PRId64
2480 ", reg %" PRId64
2481 ", mem %" PRId64
2482 ", ld %" PRId64
2483 ", st %" PRId64
2484 ", move %" PRId64,
2485 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2486 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2487 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2488 ira_move_loops_num, ira_additional_jumps_num);
2489 }
2490
2491 }
2492
2493 #ifdef ENABLE_IRA_CHECKING
2494 /* Check the correctness of the allocation. We do need this because
2495 of complicated code to transform more one region internal
2496 representation into one region representation. */
2497 static void
2498 check_allocation (void)
2499 {
2500 ira_allocno_t a;
2501 int hard_regno, nregs, conflict_nregs;
2502 ira_allocno_iterator ai;
2503
2504 FOR_EACH_ALLOCNO (a, ai)
2505 {
2506 int n = ALLOCNO_NUM_OBJECTS (a);
2507 int i;
2508
2509 if (ALLOCNO_CAP_MEMBER (a) != NULL
2510 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2511 continue;
2512 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2513 if (nregs == 1)
2514 /* We allocated a single hard register. */
2515 n = 1;
2516 else if (n > 1)
2517 /* We allocated multiple hard registers, and we will test
2518 conflicts in a granularity of single hard regs. */
2519 nregs = 1;
2520
2521 for (i = 0; i < n; i++)
2522 {
2523 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2524 ira_object_t conflict_obj;
2525 ira_object_conflict_iterator oci;
2526 int this_regno = hard_regno;
2527 if (n > 1)
2528 {
2529 if (REG_WORDS_BIG_ENDIAN)
2530 this_regno += n - i - 1;
2531 else
2532 this_regno += i;
2533 }
2534 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2535 {
2536 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2537 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2538 if (conflict_hard_regno < 0)
2539 continue;
2540
2541 conflict_nregs
2542 = (hard_regno_nregs
2543 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2544
2545 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2547 {
2548 if (REG_WORDS_BIG_ENDIAN)
2549 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 - OBJECT_SUBWORD (conflict_obj) - 1);
2551 else
2552 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 conflict_nregs = 1;
2554 }
2555
2556 if ((conflict_hard_regno <= this_regno
2557 && this_regno < conflict_hard_regno + conflict_nregs)
2558 || (this_regno <= conflict_hard_regno
2559 && conflict_hard_regno < this_regno + nregs))
2560 {
2561 fprintf (stderr, "bad allocation for %d and %d\n",
2562 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 gcc_unreachable ();
2564 }
2565 }
2566 }
2567 }
2568 }
2569 #endif
2570
2571 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2572 be already calculated. */
2573 static void
2574 setup_reg_equiv_init (void)
2575 {
2576 int i;
2577 int max_regno = max_reg_num ();
2578
2579 for (i = 0; i < max_regno; i++)
2580 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2581 }
2582
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2584 are insns which were generated for such movement. It is assumed
2585 that FROM_REGNO and TO_REGNO always have the same value at the
2586 point of any move containing such registers. This function is used
2587 to update equiv info for register shuffles on the region borders
2588 and for caller save/restore insns. */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2591 {
2592 rtx_insn *insn;
2593 rtx x, note;
2594
2595 if (! ira_reg_equiv[from_regno].defined_p
2596 && (! ira_reg_equiv[to_regno].defined_p
2597 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 && ! MEM_READONLY_P (x))))
2599 return;
2600 insn = insns;
2601 if (NEXT_INSN (insn) != NULL_RTX)
2602 {
2603 if (! ira_reg_equiv[to_regno].defined_p)
2604 {
2605 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 return;
2607 }
2608 ira_reg_equiv[to_regno].defined_p = false;
2609 ira_reg_equiv[to_regno].memory
2610 = ira_reg_equiv[to_regno].constant
2611 = ira_reg_equiv[to_regno].invariant
2612 = ira_reg_equiv[to_regno].init_insns = NULL;
2613 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 fprintf (ira_dump_file,
2615 " Invalidating equiv info for reg %d\n", to_regno);
2616 return;
2617 }
2618 /* It is possible that FROM_REGNO still has no equivalence because
2619 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620 insn was not processed yet. */
2621 if (ira_reg_equiv[from_regno].defined_p)
2622 {
2623 ira_reg_equiv[to_regno].defined_p = true;
2624 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2625 {
2626 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 ira_reg_equiv[to_regno].memory = x;
2631 if (! MEM_READONLY_P (x))
2632 /* We don't add the insn to insn init list because memory
2633 equivalence is just to say what memory is better to use
2634 when the pseudo is spilled. */
2635 return;
2636 }
2637 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2638 {
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 ira_reg_equiv[to_regno].constant = x;
2643 }
2644 else
2645 {
2646 x = ira_reg_equiv[from_regno].invariant;
2647 ira_assert (x != NULL_RTX);
2648 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 ira_reg_equiv[to_regno].invariant = x;
2651 }
2652 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2653 {
2654 note = set_unique_reg_note (insn, REG_EQUIV, x);
2655 gcc_assert (note != NULL_RTX);
2656 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2657 {
2658 fprintf (ira_dump_file,
2659 " Adding equiv note to insn %u for reg %d ",
2660 INSN_UID (insn), to_regno);
2661 dump_value_slim (ira_dump_file, x, 1);
2662 fprintf (ira_dump_file, "\n");
2663 }
2664 }
2665 }
2666 ira_reg_equiv[to_regno].init_insns
2667 = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 ira_reg_equiv[to_regno].init_insns);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670 fprintf (ira_dump_file,
2671 " Adding equiv init move insn %u to reg %d\n",
2672 INSN_UID (insn), to_regno);
2673 }
2674
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676 by IRA. */
2677 static void
2678 fix_reg_equiv_init (void)
2679 {
2680 int max_regno = max_reg_num ();
2681 int i, new_regno, max;
2682 rtx set;
2683 rtx_insn_list *x, *next, *prev;
2684 rtx_insn *insn;
2685
2686 if (max_regno_before_ira < max_regno)
2687 {
2688 max = vec_safe_length (reg_equivs);
2689 grow_reg_equivs ();
2690 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 for (prev = NULL, x = reg_equiv_init (i);
2692 x != NULL_RTX;
2693 x = next)
2694 {
2695 next = x->next ();
2696 insn = x->insn ();
2697 set = single_set (insn);
2698 ira_assert (set != NULL_RTX
2699 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 if (REG_P (SET_DEST (set))
2701 && ((int) REGNO (SET_DEST (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 new_regno = REGNO (SET_DEST (set));
2704 else if (REG_P (SET_SRC (set))
2705 && ((int) REGNO (SET_SRC (set)) == i
2706 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 new_regno = REGNO (SET_SRC (set));
2708 else
2709 gcc_unreachable ();
2710 if (new_regno == i)
2711 prev = x;
2712 else
2713 {
2714 /* Remove the wrong list element. */
2715 if (prev == NULL_RTX)
2716 reg_equiv_init (i) = next;
2717 else
2718 XEXP (prev, 1) = next;
2719 XEXP (x, 1) = reg_equiv_init (new_regno);
2720 reg_equiv_init (new_regno) = x;
2721 }
2722 }
2723 }
2724 }
2725
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies. */
2728 static void
2729 print_redundant_copies (void)
2730 {
2731 int hard_regno;
2732 ira_allocno_t a;
2733 ira_copy_t cp, next_cp;
2734 ira_allocno_iterator ai;
2735
2736 FOR_EACH_ALLOCNO (a, ai)
2737 {
2738 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 /* It is a cap. */
2740 continue;
2741 hard_regno = ALLOCNO_HARD_REGNO (a);
2742 if (hard_regno >= 0)
2743 continue;
2744 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 if (cp->first == a)
2746 next_cp = cp->next_first_allocno_copy;
2747 else
2748 {
2749 next_cp = cp->next_second_allocno_copy;
2750 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 && cp->insn != NULL_RTX
2752 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 fprintf (ira_dump_file,
2754 " Redundant move from %d(freq %d):%d\n",
2755 INSN_UID (cp->insn), cp->freq, hard_regno);
2756 }
2757 }
2758 }
2759 #endif
2760
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762 created by IRA starting with START. */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2765 {
2766 int i, old_regno;
2767 int max_regno = max_reg_num ();
2768
2769 for (i = start; i < max_regno; i++)
2770 {
2771 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772 ira_assert (i != old_regno);
2773 setup_reg_classes (i, reg_preferred_class (old_regno),
2774 reg_alternate_class (old_regno),
2775 reg_allocno_class (old_regno));
2776 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 fprintf (ira_dump_file,
2778 " New r%d: setting preferred %s, alternative %s\n",
2779 i, reg_class_names[reg_preferred_class (old_regno)],
2780 reg_class_names[reg_alternate_class (old_regno)]);
2781 }
2782 }
2783
2784 \f
2785 /* The number of entries allocated in reg_info. */
2786 static int allocated_reg_info_size;
2787
2788 /* Regional allocation can create new pseudo-registers. This function
2789 expands some arrays for pseudo-registers. */
2790 static void
2791 expand_reg_info (void)
2792 {
2793 int i;
2794 int size = max_reg_num ();
2795
2796 resize_reg_info ();
2797 for (i = allocated_reg_info_size; i < size; i++)
2798 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800 allocated_reg_info_size = size;
2801 }
2802
2803 /* Return TRUE if there is too high register pressure in the function.
2804 It is used to decide when stack slot sharing is worth to do. */
2805 static bool
2806 too_high_register_pressure_p (void)
2807 {
2808 int i;
2809 enum reg_class pclass;
2810
2811 for (i = 0; i < ira_pressure_classes_num; i++)
2812 {
2813 pclass = ira_pressure_classes[i];
2814 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 return true;
2816 }
2817 return false;
2818 }
2819
2820 \f
2821
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823 an offset from hard register number TO. The status of hard registers live
2824 at the start of a basic block is updated by replacing a use of FROM with
2825 a use of TO. */
2826
2827 void
2828 mark_elimination (int from, int to)
2829 {
2830 basic_block bb;
2831 bitmap r;
2832
2833 FOR_EACH_BB_FN (bb, cfun)
2834 {
2835 r = DF_LR_IN (bb);
2836 if (bitmap_bit_p (r, from))
2837 {
2838 bitmap_clear_bit (r, from);
2839 bitmap_set_bit (r, to);
2840 }
2841 if (! df_live)
2842 continue;
2843 r = DF_LIVE_IN (bb);
2844 if (bitmap_bit_p (r, from))
2845 {
2846 bitmap_clear_bit (r, from);
2847 bitmap_set_bit (r, to);
2848 }
2849 }
2850 }
2851
2852 \f
2853
2854 /* The length of the following array. */
2855 int ira_reg_equiv_len;
2856
2857 /* Info about equiv. info for each register. */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2859
2860 /* Expand ira_reg_equiv if necessary. */
2861 void
2862 ira_expand_reg_equiv (void)
2863 {
2864 int old = ira_reg_equiv_len;
2865
2866 if (ira_reg_equiv_len > max_reg_num ())
2867 return;
2868 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869 ira_reg_equiv
2870 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 ira_reg_equiv_len
2872 * sizeof (struct ira_reg_equiv_s));
2873 gcc_assert (old < ira_reg_equiv_len);
2874 memset (ira_reg_equiv + old, 0,
2875 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2876 }
2877
2878 static void
2879 init_reg_equiv (void)
2880 {
2881 ira_reg_equiv_len = 0;
2882 ira_reg_equiv = NULL;
2883 ira_expand_reg_equiv ();
2884 }
2885
2886 static void
2887 finish_reg_equiv (void)
2888 {
2889 free (ira_reg_equiv);
2890 }
2891
2892 \f
2893
2894 struct equivalence
2895 {
2896 /* Set when a REG_EQUIV note is found or created. Use to
2897 keep track of what memory accesses might be created later,
2898 e.g. by reload. */
2899 rtx replacement;
2900 rtx *src_p;
2901
2902 /* The list of each instruction which initializes this register.
2903
2904 NULL indicates we know nothing about this register's equivalence
2905 properties.
2906
2907 An INSN_LIST with a NULL insn indicates this pseudo is already
2908 known to not have a valid equivalence. */
2909 rtx_insn_list *init_insns;
2910
2911 /* Loop depth is used to recognize equivalences which appear
2912 to be present within the same loop (or in an inner loop). */
2913 short loop_depth;
2914 /* Nonzero if this had a preexisting REG_EQUIV note. */
2915 unsigned char is_arg_equivalence : 1;
2916 /* Set when an attempt should be made to replace a register
2917 with the associated src_p entry. */
2918 unsigned char replace : 1;
2919 /* Set if this register has no known equivalence. */
2920 unsigned char no_equiv : 1;
2921 };
2922
2923 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2924 structure for that register. */
2925 static struct equivalence *reg_equiv;
2926
2927 /* Used for communication between the following two functions: contains
2928 a MEM that we wish to ensure remains unchanged. */
2929 static rtx equiv_mem;
2930
2931 /* Set nonzero if EQUIV_MEM is modified. */
2932 static int equiv_mem_modified;
2933
2934 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2935 Called via note_stores. */
2936 static void
2937 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2938 void *data ATTRIBUTE_UNUSED)
2939 {
2940 if ((REG_P (dest)
2941 && reg_overlap_mentioned_p (dest, equiv_mem))
2942 || (MEM_P (dest)
2943 && anti_dependence (equiv_mem, dest)))
2944 equiv_mem_modified = 1;
2945 }
2946
2947 /* Verify that no store between START and the death of REG invalidates
2948 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2949 by storing into an overlapping memory location, or with a non-const
2950 CALL_INSN.
2951
2952 Return 1 if MEMREF remains valid. */
2953 static int
2954 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2955 {
2956 rtx_insn *insn;
2957 rtx note;
2958
2959 equiv_mem = memref;
2960 equiv_mem_modified = 0;
2961
2962 /* If the memory reference has side effects or is volatile, it isn't a
2963 valid equivalence. */
2964 if (side_effects_p (memref))
2965 return 0;
2966
2967 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2968 {
2969 if (! INSN_P (insn))
2970 continue;
2971
2972 if (find_reg_note (insn, REG_DEAD, reg))
2973 return 1;
2974
2975 /* This used to ignore readonly memory and const/pure calls. The problem
2976 is the equivalent form may reference a pseudo which gets assigned a
2977 call clobbered hard reg. When we later replace REG with its
2978 equivalent form, the value in the call-clobbered reg has been
2979 changed and all hell breaks loose. */
2980 if (CALL_P (insn))
2981 return 0;
2982
2983 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2984
2985 /* If a register mentioned in MEMREF is modified via an
2986 auto-increment, we lose the equivalence. Do the same if one
2987 dies; although we could extend the life, it doesn't seem worth
2988 the trouble. */
2989
2990 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2991 if ((REG_NOTE_KIND (note) == REG_INC
2992 || REG_NOTE_KIND (note) == REG_DEAD)
2993 && REG_P (XEXP (note, 0))
2994 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2995 return 0;
2996 }
2997
2998 return 0;
2999 }
3000
3001 /* Returns zero if X is known to be invariant. */
3002 static int
3003 equiv_init_varies_p (rtx x)
3004 {
3005 RTX_CODE code = GET_CODE (x);
3006 int i;
3007 const char *fmt;
3008
3009 switch (code)
3010 {
3011 case MEM:
3012 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3013
3014 case CONST:
3015 CASE_CONST_ANY:
3016 case SYMBOL_REF:
3017 case LABEL_REF:
3018 return 0;
3019
3020 case REG:
3021 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3022
3023 case ASM_OPERANDS:
3024 if (MEM_VOLATILE_P (x))
3025 return 1;
3026
3027 /* Fall through. */
3028
3029 default:
3030 break;
3031 }
3032
3033 fmt = GET_RTX_FORMAT (code);
3034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3035 if (fmt[i] == 'e')
3036 {
3037 if (equiv_init_varies_p (XEXP (x, i)))
3038 return 1;
3039 }
3040 else if (fmt[i] == 'E')
3041 {
3042 int j;
3043 for (j = 0; j < XVECLEN (x, i); j++)
3044 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3045 return 1;
3046 }
3047
3048 return 0;
3049 }
3050
3051 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3052 X is only movable if the registers it uses have equivalent initializations
3053 which appear to be within the same loop (or in an inner loop) and movable
3054 or if they are not candidates for local_alloc and don't vary. */
3055 static int
3056 equiv_init_movable_p (rtx x, int regno)
3057 {
3058 int i, j;
3059 const char *fmt;
3060 enum rtx_code code = GET_CODE (x);
3061
3062 switch (code)
3063 {
3064 case SET:
3065 return equiv_init_movable_p (SET_SRC (x), regno);
3066
3067 case CC0:
3068 case CLOBBER:
3069 return 0;
3070
3071 case PRE_INC:
3072 case PRE_DEC:
3073 case POST_INC:
3074 case POST_DEC:
3075 case PRE_MODIFY:
3076 case POST_MODIFY:
3077 return 0;
3078
3079 case REG:
3080 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3081 && reg_equiv[REGNO (x)].replace)
3082 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3083 && ! rtx_varies_p (x, 0)));
3084
3085 case UNSPEC_VOLATILE:
3086 return 0;
3087
3088 case ASM_OPERANDS:
3089 if (MEM_VOLATILE_P (x))
3090 return 0;
3091
3092 /* Fall through. */
3093
3094 default:
3095 break;
3096 }
3097
3098 fmt = GET_RTX_FORMAT (code);
3099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3100 switch (fmt[i])
3101 {
3102 case 'e':
3103 if (! equiv_init_movable_p (XEXP (x, i), regno))
3104 return 0;
3105 break;
3106 case 'E':
3107 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3108 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3109 return 0;
3110 break;
3111 }
3112
3113 return 1;
3114 }
3115
3116 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3117 true. */
3118 static int
3119 contains_replace_regs (rtx x)
3120 {
3121 int i, j;
3122 const char *fmt;
3123 enum rtx_code code = GET_CODE (x);
3124
3125 switch (code)
3126 {
3127 case CONST:
3128 case LABEL_REF:
3129 case SYMBOL_REF:
3130 CASE_CONST_ANY:
3131 case PC:
3132 case CC0:
3133 case HIGH:
3134 return 0;
3135
3136 case REG:
3137 return reg_equiv[REGNO (x)].replace;
3138
3139 default:
3140 break;
3141 }
3142
3143 fmt = GET_RTX_FORMAT (code);
3144 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3145 switch (fmt[i])
3146 {
3147 case 'e':
3148 if (contains_replace_regs (XEXP (x, i)))
3149 return 1;
3150 break;
3151 case 'E':
3152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3153 if (contains_replace_regs (XVECEXP (x, i, j)))
3154 return 1;
3155 break;
3156 }
3157
3158 return 0;
3159 }
3160
3161 /* TRUE if X references a memory location that would be affected by a store
3162 to MEMREF. */
3163 static int
3164 memref_referenced_p (rtx memref, rtx x)
3165 {
3166 int i, j;
3167 const char *fmt;
3168 enum rtx_code code = GET_CODE (x);
3169
3170 switch (code)
3171 {
3172 case CONST:
3173 case LABEL_REF:
3174 case SYMBOL_REF:
3175 CASE_CONST_ANY:
3176 case PC:
3177 case CC0:
3178 case HIGH:
3179 case LO_SUM:
3180 return 0;
3181
3182 case REG:
3183 return (reg_equiv[REGNO (x)].replacement
3184 && memref_referenced_p (memref,
3185 reg_equiv[REGNO (x)].replacement));
3186
3187 case MEM:
3188 if (true_dependence (memref, VOIDmode, x))
3189 return 1;
3190 break;
3191
3192 case SET:
3193 /* If we are setting a MEM, it doesn't count (its address does), but any
3194 other SET_DEST that has a MEM in it is referencing the MEM. */
3195 if (MEM_P (SET_DEST (x)))
3196 {
3197 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3198 return 1;
3199 }
3200 else if (memref_referenced_p (memref, SET_DEST (x)))
3201 return 1;
3202
3203 return memref_referenced_p (memref, SET_SRC (x));
3204
3205 default:
3206 break;
3207 }
3208
3209 fmt = GET_RTX_FORMAT (code);
3210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3211 switch (fmt[i])
3212 {
3213 case 'e':
3214 if (memref_referenced_p (memref, XEXP (x, i)))
3215 return 1;
3216 break;
3217 case 'E':
3218 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3219 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3220 return 1;
3221 break;
3222 }
3223
3224 return 0;
3225 }
3226
3227 /* TRUE if some insn in the range (START, END] references a memory location
3228 that would be affected by a store to MEMREF. */
3229 static int
3230 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3231 {
3232 rtx_insn *insn;
3233
3234 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3235 insn = NEXT_INSN (insn))
3236 {
3237 if (!NONDEBUG_INSN_P (insn))
3238 continue;
3239
3240 if (memref_referenced_p (memref, PATTERN (insn)))
3241 return 1;
3242
3243 /* Nonconst functions may access memory. */
3244 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3245 return 1;
3246 }
3247
3248 return 0;
3249 }
3250
3251 /* Mark REG as having no known equivalence.
3252 Some instructions might have been processed before and furnished
3253 with REG_EQUIV notes for this register; these notes will have to be
3254 removed.
3255 STORE is the piece of RTL that does the non-constant / conflicting
3256 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3257 but needs to be there because this function is called from note_stores. */
3258 static void
3259 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3260 void *data ATTRIBUTE_UNUSED)
3261 {
3262 int regno;
3263 rtx_insn_list *list;
3264
3265 if (!REG_P (reg))
3266 return;
3267 regno = REGNO (reg);
3268 reg_equiv[regno].no_equiv = 1;
3269 list = reg_equiv[regno].init_insns;
3270 if (list && list->insn () == NULL)
3271 return;
3272 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3273 reg_equiv[regno].replacement = NULL_RTX;
3274 /* This doesn't matter for equivalences made for argument registers, we
3275 should keep their initialization insns. */
3276 if (reg_equiv[regno].is_arg_equivalence)
3277 return;
3278 ira_reg_equiv[regno].defined_p = false;
3279 ira_reg_equiv[regno].init_insns = NULL;
3280 for (; list; list = list->next ())
3281 {
3282 rtx_insn *insn = list->insn ();
3283 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3284 }
3285 }
3286
3287 /* Check whether the SUBREG is a paradoxical subreg and set the result
3288 in PDX_SUBREGS. */
3289
3290 static void
3291 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3292 {
3293 subrtx_iterator::array_type array;
3294 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3295 {
3296 const_rtx subreg = *iter;
3297 if (GET_CODE (subreg) == SUBREG)
3298 {
3299 const_rtx reg = SUBREG_REG (subreg);
3300 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3301 pdx_subregs[REGNO (reg)] = true;
3302 }
3303 }
3304 }
3305
3306 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3307 equivalent replacement. */
3308
3309 static rtx
3310 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3311 {
3312 if (REG_P (loc))
3313 {
3314 bitmap cleared_regs = (bitmap) data;
3315 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3316 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3317 NULL_RTX, adjust_cleared_regs, data);
3318 }
3319 return NULL_RTX;
3320 }
3321
3322 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3323 static int recorded_label_ref;
3324
3325 /* Find registers that are equivalent to a single value throughout the
3326 compilation (either because they can be referenced in memory or are
3327 set once from a single constant). Lower their priority for a
3328 register.
3329
3330 If such a register is only referenced once, try substituting its
3331 value into the using insn. If it succeeds, we can eliminate the
3332 register completely.
3333
3334 Initialize init_insns in ira_reg_equiv array.
3335
3336 Return non-zero if jump label rebuilding should be done. */
3337 static int
3338 update_equiv_regs (void)
3339 {
3340 rtx_insn *insn;
3341 basic_block bb;
3342 int loop_depth;
3343 bitmap cleared_regs;
3344 bool *pdx_subregs;
3345
3346 /* We need to keep track of whether or not we recorded a LABEL_REF so
3347 that we know if the jump optimizer needs to be rerun. */
3348 recorded_label_ref = 0;
3349
3350 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3351 subreg. */
3352 pdx_subregs = XCNEWVEC (bool, max_regno);
3353
3354 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3355 grow_reg_equivs ();
3356
3357 init_alias_analysis ();
3358
3359 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3360 paradoxical subreg. Don't set such reg equivalent to a mem,
3361 because lra will not substitute such equiv memory in order to
3362 prevent access beyond allocated memory for paradoxical memory subreg. */
3363 FOR_EACH_BB_FN (bb, cfun)
3364 FOR_BB_INSNS (bb, insn)
3365 if (NONDEBUG_INSN_P (insn))
3366 set_paradoxical_subreg (insn, pdx_subregs);
3367
3368 /* Scan the insns and find which registers have equivalences. Do this
3369 in a separate scan of the insns because (due to -fcse-follow-jumps)
3370 a register can be set below its use. */
3371 FOR_EACH_BB_FN (bb, cfun)
3372 {
3373 loop_depth = bb_loop_depth (bb);
3374
3375 for (insn = BB_HEAD (bb);
3376 insn != NEXT_INSN (BB_END (bb));
3377 insn = NEXT_INSN (insn))
3378 {
3379 rtx note;
3380 rtx set;
3381 rtx dest, src;
3382 int regno;
3383
3384 if (! INSN_P (insn))
3385 continue;
3386
3387 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3388 if (REG_NOTE_KIND (note) == REG_INC)
3389 no_equiv (XEXP (note, 0), note, NULL);
3390
3391 set = single_set (insn);
3392
3393 /* If this insn contains more (or less) than a single SET,
3394 only mark all destinations as having no known equivalence. */
3395 if (set == NULL_RTX)
3396 {
3397 note_stores (PATTERN (insn), no_equiv, NULL);
3398 continue;
3399 }
3400 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3401 {
3402 int i;
3403
3404 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3405 {
3406 rtx part = XVECEXP (PATTERN (insn), 0, i);
3407 if (part != set)
3408 note_stores (part, no_equiv, NULL);
3409 }
3410 }
3411
3412 dest = SET_DEST (set);
3413 src = SET_SRC (set);
3414
3415 /* See if this is setting up the equivalence between an argument
3416 register and its stack slot. */
3417 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3418 if (note)
3419 {
3420 gcc_assert (REG_P (dest));
3421 regno = REGNO (dest);
3422
3423 /* Note that we don't want to clear init_insns in
3424 ira_reg_equiv even if there are multiple sets of this
3425 register. */
3426 reg_equiv[regno].is_arg_equivalence = 1;
3427
3428 /* The insn result can have equivalence memory although
3429 the equivalence is not set up by the insn. We add
3430 this insn to init insns as it is a flag for now that
3431 regno has an equivalence. We will remove the insn
3432 from init insn list later. */
3433 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3434 ira_reg_equiv[regno].init_insns
3435 = gen_rtx_INSN_LIST (VOIDmode, insn,
3436 ira_reg_equiv[regno].init_insns);
3437
3438 /* Continue normally in case this is a candidate for
3439 replacements. */
3440 }
3441
3442 if (!optimize)
3443 continue;
3444
3445 /* We only handle the case of a pseudo register being set
3446 once, or always to the same value. */
3447 /* ??? The mn10200 port breaks if we add equivalences for
3448 values that need an ADDRESS_REGS register and set them equivalent
3449 to a MEM of a pseudo. The actual problem is in the over-conservative
3450 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3451 calculate_needs, but we traditionally work around this problem
3452 here by rejecting equivalences when the destination is in a register
3453 that's likely spilled. This is fragile, of course, since the
3454 preferred class of a pseudo depends on all instructions that set
3455 or use it. */
3456
3457 if (!REG_P (dest)
3458 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3459 || (reg_equiv[regno].init_insns
3460 && reg_equiv[regno].init_insns->insn () == NULL)
3461 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3462 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3463 {
3464 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3465 also set somewhere else to a constant. */
3466 note_stores (set, no_equiv, NULL);
3467 continue;
3468 }
3469
3470 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3471 if (MEM_P (src) && pdx_subregs[regno])
3472 {
3473 note_stores (set, no_equiv, NULL);
3474 continue;
3475 }
3476
3477 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3478
3479 /* cse sometimes generates function invariants, but doesn't put a
3480 REG_EQUAL note on the insn. Since this note would be redundant,
3481 there's no point creating it earlier than here. */
3482 if (! note && ! rtx_varies_p (src, 0))
3483 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3484
3485 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3486 since it represents a function call. */
3487 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3488 note = NULL_RTX;
3489
3490 if (DF_REG_DEF_COUNT (regno) != 1)
3491 {
3492 bool equal_p = true;
3493 rtx_insn_list *list;
3494
3495 /* If we have already processed this pseudo and determined it
3496 can not have an equivalence, then honor that decision. */
3497 if (reg_equiv[regno].no_equiv)
3498 continue;
3499
3500 if (! note
3501 || rtx_varies_p (XEXP (note, 0), 0)
3502 || (reg_equiv[regno].replacement
3503 && ! rtx_equal_p (XEXP (note, 0),
3504 reg_equiv[regno].replacement)))
3505 {
3506 no_equiv (dest, set, NULL);
3507 continue;
3508 }
3509
3510 list = reg_equiv[regno].init_insns;
3511 for (; list; list = list->next ())
3512 {
3513 rtx note_tmp;
3514 rtx_insn *insn_tmp;
3515
3516 insn_tmp = list->insn ();
3517 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3518 gcc_assert (note_tmp);
3519 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3520 {
3521 equal_p = false;
3522 break;
3523 }
3524 }
3525
3526 if (! equal_p)
3527 {
3528 no_equiv (dest, set, NULL);
3529 continue;
3530 }
3531 }
3532
3533 /* Record this insn as initializing this register. */
3534 reg_equiv[regno].init_insns
3535 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3536
3537 /* If this register is known to be equal to a constant, record that
3538 it is always equivalent to the constant. */
3539 if (DF_REG_DEF_COUNT (regno) == 1
3540 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3541 {
3542 rtx note_value = XEXP (note, 0);
3543 remove_note (insn, note);
3544 set_unique_reg_note (insn, REG_EQUIV, note_value);
3545 }
3546
3547 /* If this insn introduces a "constant" register, decrease the priority
3548 of that register. Record this insn if the register is only used once
3549 more and the equivalence value is the same as our source.
3550
3551 The latter condition is checked for two reasons: First, it is an
3552 indication that it may be more efficient to actually emit the insn
3553 as written (if no registers are available, reload will substitute
3554 the equivalence). Secondly, it avoids problems with any registers
3555 dying in this insn whose death notes would be missed.
3556
3557 If we don't have a REG_EQUIV note, see if this insn is loading
3558 a register used only in one basic block from a MEM. If so, and the
3559 MEM remains unchanged for the life of the register, add a REG_EQUIV
3560 note. */
3561 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3562
3563 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3564 && MEM_P (SET_SRC (set))
3565 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3566 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3567
3568 if (note)
3569 {
3570 int regno = REGNO (dest);
3571 rtx x = XEXP (note, 0);
3572
3573 /* If we haven't done so, record for reload that this is an
3574 equivalencing insn. */
3575 if (!reg_equiv[regno].is_arg_equivalence)
3576 ira_reg_equiv[regno].init_insns
3577 = gen_rtx_INSN_LIST (VOIDmode, insn,
3578 ira_reg_equiv[regno].init_insns);
3579
3580 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3581 We might end up substituting the LABEL_REF for uses of the
3582 pseudo here or later. That kind of transformation may turn an
3583 indirect jump into a direct jump, in which case we must rerun the
3584 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3585 if (GET_CODE (x) == LABEL_REF
3586 || (GET_CODE (x) == CONST
3587 && GET_CODE (XEXP (x, 0)) == PLUS
3588 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3589 recorded_label_ref = 1;
3590
3591 reg_equiv[regno].replacement = x;
3592 reg_equiv[regno].src_p = &SET_SRC (set);
3593 reg_equiv[regno].loop_depth = (short) loop_depth;
3594
3595 /* Don't mess with things live during setjmp. */
3596 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3597 {
3598 /* Note that the statement below does not affect the priority
3599 in local-alloc! */
3600 REG_LIVE_LENGTH (regno) *= 2;
3601
3602 /* If the register is referenced exactly twice, meaning it is
3603 set once and used once, indicate that the reference may be
3604 replaced by the equivalence we computed above. Do this
3605 even if the register is only used in one block so that
3606 dependencies can be handled where the last register is
3607 used in a different block (i.e. HIGH / LO_SUM sequences)
3608 and to reduce the number of registers alive across
3609 calls. */
3610
3611 if (REG_N_REFS (regno) == 2
3612 && (rtx_equal_p (x, src)
3613 || ! equiv_init_varies_p (src))
3614 && NONJUMP_INSN_P (insn)
3615 && equiv_init_movable_p (PATTERN (insn), regno))
3616 reg_equiv[regno].replace = 1;
3617 }
3618 }
3619 }
3620 }
3621
3622 if (!optimize)
3623 goto out;
3624
3625 /* A second pass, to gather additional equivalences with memory. This needs
3626 to be done after we know which registers we are going to replace. */
3627
3628 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3629 {
3630 rtx set, src, dest;
3631 unsigned regno;
3632
3633 if (! INSN_P (insn))
3634 continue;
3635
3636 set = single_set (insn);
3637 if (! set)
3638 continue;
3639
3640 dest = SET_DEST (set);
3641 src = SET_SRC (set);
3642
3643 /* If this sets a MEM to the contents of a REG that is only used
3644 in a single basic block, see if the register is always equivalent
3645 to that memory location and if moving the store from INSN to the
3646 insn that set REG is safe. If so, put a REG_EQUIV note on the
3647 initializing insn.
3648
3649 Don't add a REG_EQUIV note if the insn already has one. The existing
3650 REG_EQUIV is likely more useful than the one we are adding.
3651
3652 If one of the regs in the address has reg_equiv[REGNO].replace set,
3653 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3654 optimization may move the set of this register immediately before
3655 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3656 the mention in the REG_EQUIV note would be to an uninitialized
3657 pseudo. */
3658
3659 if (MEM_P (dest) && REG_P (src)
3660 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3661 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3662 && DF_REG_DEF_COUNT (regno) == 1
3663 && reg_equiv[regno].init_insns != NULL
3664 && reg_equiv[regno].init_insns->insn () != NULL
3665 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3666 REG_EQUIV, NULL_RTX)
3667 && ! contains_replace_regs (XEXP (dest, 0))
3668 && ! pdx_subregs[regno])
3669 {
3670 rtx_insn *init_insn =
3671 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3672 if (validate_equiv_mem (init_insn, src, dest)
3673 && ! memref_used_between_p (dest, init_insn, insn)
3674 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3675 multiple sets. */
3676 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3677 {
3678 /* This insn makes the equivalence, not the one initializing
3679 the register. */
3680 ira_reg_equiv[regno].init_insns
3681 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3682 df_notes_rescan (init_insn);
3683 }
3684 }
3685 }
3686
3687 cleared_regs = BITMAP_ALLOC (NULL);
3688 /* Now scan all regs killed in an insn to see if any of them are
3689 registers only used that once. If so, see if we can replace the
3690 reference with the equivalent form. If we can, delete the
3691 initializing reference and this register will go away. If we
3692 can't replace the reference, and the initializing reference is
3693 within the same loop (or in an inner loop), then move the register
3694 initialization just before the use, so that they are in the same
3695 basic block. */
3696 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3697 {
3698 loop_depth = bb_loop_depth (bb);
3699 for (insn = BB_END (bb);
3700 insn != PREV_INSN (BB_HEAD (bb));
3701 insn = PREV_INSN (insn))
3702 {
3703 rtx link;
3704
3705 if (! INSN_P (insn))
3706 continue;
3707
3708 /* Don't substitute into a non-local goto, this confuses CFG. */
3709 if (JUMP_P (insn)
3710 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3711 continue;
3712
3713 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3714 {
3715 if (REG_NOTE_KIND (link) == REG_DEAD
3716 /* Make sure this insn still refers to the register. */
3717 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3718 {
3719 int regno = REGNO (XEXP (link, 0));
3720 rtx equiv_insn;
3721
3722 if (! reg_equiv[regno].replace
3723 || reg_equiv[regno].loop_depth < (short) loop_depth
3724 /* There is no sense to move insns if live range
3725 shrinkage or register pressure-sensitive
3726 scheduling were done because it will not
3727 improve allocation but worsen insn schedule
3728 with a big probability. */
3729 || flag_live_range_shrinkage
3730 || (flag_sched_pressure && flag_schedule_insns))
3731 continue;
3732
3733 /* reg_equiv[REGNO].replace gets set only when
3734 REG_N_REFS[REGNO] is 2, i.e. the register is set
3735 once and used once. (If it were only set, but
3736 not used, flow would have deleted the setting
3737 insns.) Hence there can only be one insn in
3738 reg_equiv[REGNO].init_insns. */
3739 gcc_assert (reg_equiv[regno].init_insns
3740 && !XEXP (reg_equiv[regno].init_insns, 1));
3741 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3742
3743 /* We may not move instructions that can throw, since
3744 that changes basic block boundaries and we are not
3745 prepared to adjust the CFG to match. */
3746 if (can_throw_internal (equiv_insn))
3747 continue;
3748
3749 if (asm_noperands (PATTERN (equiv_insn)) < 0
3750 && validate_replace_rtx (regno_reg_rtx[regno],
3751 *(reg_equiv[regno].src_p), insn))
3752 {
3753 rtx equiv_link;
3754 rtx last_link;
3755 rtx note;
3756
3757 /* Find the last note. */
3758 for (last_link = link; XEXP (last_link, 1);
3759 last_link = XEXP (last_link, 1))
3760 ;
3761
3762 /* Append the REG_DEAD notes from equiv_insn. */
3763 equiv_link = REG_NOTES (equiv_insn);
3764 while (equiv_link)
3765 {
3766 note = equiv_link;
3767 equiv_link = XEXP (equiv_link, 1);
3768 if (REG_NOTE_KIND (note) == REG_DEAD)
3769 {
3770 remove_note (equiv_insn, note);
3771 XEXP (last_link, 1) = note;
3772 XEXP (note, 1) = NULL_RTX;
3773 last_link = note;
3774 }
3775 }
3776
3777 remove_death (regno, insn);
3778 SET_REG_N_REFS (regno, 0);
3779 REG_FREQ (regno) = 0;
3780 delete_insn (equiv_insn);
3781
3782 reg_equiv[regno].init_insns
3783 = reg_equiv[regno].init_insns->next ();
3784
3785 ira_reg_equiv[regno].init_insns = NULL;
3786 bitmap_set_bit (cleared_regs, regno);
3787 }
3788 /* Move the initialization of the register to just before
3789 INSN. Update the flow information. */
3790 else if (prev_nondebug_insn (insn) != equiv_insn)
3791 {
3792 rtx_insn *new_insn;
3793
3794 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3795 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3796 REG_NOTES (equiv_insn) = 0;
3797 /* Rescan it to process the notes. */
3798 df_insn_rescan (new_insn);
3799
3800 /* Make sure this insn is recognized before
3801 reload begins, otherwise
3802 eliminate_regs_in_insn will die. */
3803 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3804
3805 delete_insn (equiv_insn);
3806
3807 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3808
3809 REG_BASIC_BLOCK (regno) = bb->index;
3810 REG_N_CALLS_CROSSED (regno) = 0;
3811 REG_FREQ_CALLS_CROSSED (regno) = 0;
3812 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3813 REG_LIVE_LENGTH (regno) = 2;
3814
3815 if (insn == BB_HEAD (bb))
3816 BB_HEAD (bb) = PREV_INSN (insn);
3817
3818 ira_reg_equiv[regno].init_insns
3819 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3820 bitmap_set_bit (cleared_regs, regno);
3821 }
3822 }
3823 }
3824 }
3825 }
3826
3827 if (!bitmap_empty_p (cleared_regs))
3828 {
3829 FOR_EACH_BB_FN (bb, cfun)
3830 {
3831 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3832 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3833 if (! df_live)
3834 continue;
3835 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3836 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3837 }
3838
3839 /* Last pass - adjust debug insns referencing cleared regs. */
3840 if (MAY_HAVE_DEBUG_INSNS)
3841 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3842 if (DEBUG_INSN_P (insn))
3843 {
3844 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3845 INSN_VAR_LOCATION_LOC (insn)
3846 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3847 adjust_cleared_regs,
3848 (void *) cleared_regs);
3849 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3850 df_insn_rescan (insn);
3851 }
3852 }
3853
3854 BITMAP_FREE (cleared_regs);
3855
3856 out:
3857 /* Clean up. */
3858
3859 end_alias_analysis ();
3860 free (reg_equiv);
3861 free (pdx_subregs);
3862 return recorded_label_ref;
3863 }
3864
3865 \f
3866
3867 /* Set up fields memory, constant, and invariant from init_insns in
3868 the structures of array ira_reg_equiv. */
3869 static void
3870 setup_reg_equiv (void)
3871 {
3872 int i;
3873 rtx_insn_list *elem, *prev_elem, *next_elem;
3874 rtx_insn *insn;
3875 rtx set, x;
3876
3877 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3878 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3879 elem;
3880 prev_elem = elem, elem = next_elem)
3881 {
3882 next_elem = elem->next ();
3883 insn = elem->insn ();
3884 set = single_set (insn);
3885
3886 /* Init insns can set up equivalence when the reg is a destination or
3887 a source (in this case the destination is memory). */
3888 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3889 {
3890 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3891 {
3892 x = XEXP (x, 0);
3893 if (REG_P (SET_DEST (set))
3894 && REGNO (SET_DEST (set)) == (unsigned int) i
3895 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3896 {
3897 /* This insn reporting the equivalence but
3898 actually not setting it. Remove it from the
3899 list. */
3900 if (prev_elem == NULL)
3901 ira_reg_equiv[i].init_insns = next_elem;
3902 else
3903 XEXP (prev_elem, 1) = next_elem;
3904 elem = prev_elem;
3905 }
3906 }
3907 else if (REG_P (SET_DEST (set))
3908 && REGNO (SET_DEST (set)) == (unsigned int) i)
3909 x = SET_SRC (set);
3910 else
3911 {
3912 gcc_assert (REG_P (SET_SRC (set))
3913 && REGNO (SET_SRC (set)) == (unsigned int) i);
3914 x = SET_DEST (set);
3915 }
3916 if (! function_invariant_p (x)
3917 || ! flag_pic
3918 /* A function invariant is often CONSTANT_P but may
3919 include a register. We promise to only pass
3920 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3921 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3922 {
3923 /* It can happen that a REG_EQUIV note contains a MEM
3924 that is not a legitimate memory operand. As later
3925 stages of reload assume that all addresses found in
3926 the lra_regno_equiv_* arrays were originally
3927 legitimate, we ignore such REG_EQUIV notes. */
3928 if (memory_operand (x, VOIDmode))
3929 {
3930 ira_reg_equiv[i].defined_p = true;
3931 ira_reg_equiv[i].memory = x;
3932 continue;
3933 }
3934 else if (function_invariant_p (x))
3935 {
3936 machine_mode mode;
3937
3938 mode = GET_MODE (SET_DEST (set));
3939 if (GET_CODE (x) == PLUS
3940 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3941 /* This is PLUS of frame pointer and a constant,
3942 or fp, or argp. */
3943 ira_reg_equiv[i].invariant = x;
3944 else if (targetm.legitimate_constant_p (mode, x))
3945 ira_reg_equiv[i].constant = x;
3946 else
3947 {
3948 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3949 if (ira_reg_equiv[i].memory == NULL_RTX)
3950 {
3951 ira_reg_equiv[i].defined_p = false;
3952 ira_reg_equiv[i].init_insns = NULL;
3953 break;
3954 }
3955 }
3956 ira_reg_equiv[i].defined_p = true;
3957 continue;
3958 }
3959 }
3960 }
3961 ira_reg_equiv[i].defined_p = false;
3962 ira_reg_equiv[i].init_insns = NULL;
3963 break;
3964 }
3965 }
3966
3967 \f
3968
3969 /* Print chain C to FILE. */
3970 static void
3971 print_insn_chain (FILE *file, struct insn_chain *c)
3972 {
3973 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3974 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3975 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3976 }
3977
3978
3979 /* Print all reload_insn_chains to FILE. */
3980 static void
3981 print_insn_chains (FILE *file)
3982 {
3983 struct insn_chain *c;
3984 for (c = reload_insn_chain; c ; c = c->next)
3985 print_insn_chain (file, c);
3986 }
3987
3988 /* Return true if pseudo REGNO should be added to set live_throughout
3989 or dead_or_set of the insn chains for reload consideration. */
3990 static bool
3991 pseudo_for_reload_consideration_p (int regno)
3992 {
3993 /* Consider spilled pseudos too for IRA because they still have a
3994 chance to get hard-registers in the reload when IRA is used. */
3995 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3996 }
3997
3998 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3999 REG to the number of nregs, and INIT_VALUE to get the
4000 initialization. ALLOCNUM need not be the regno of REG. */
4001 static void
4002 init_live_subregs (bool init_value, sbitmap *live_subregs,
4003 bitmap live_subregs_used, int allocnum, rtx reg)
4004 {
4005 unsigned int regno = REGNO (SUBREG_REG (reg));
4006 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4007
4008 gcc_assert (size > 0);
4009
4010 /* Been there, done that. */
4011 if (bitmap_bit_p (live_subregs_used, allocnum))
4012 return;
4013
4014 /* Create a new one. */
4015 if (live_subregs[allocnum] == NULL)
4016 live_subregs[allocnum] = sbitmap_alloc (size);
4017
4018 /* If the entire reg was live before blasting into subregs, we need
4019 to init all of the subregs to ones else init to 0. */
4020 if (init_value)
4021 bitmap_ones (live_subregs[allocnum]);
4022 else
4023 bitmap_clear (live_subregs[allocnum]);
4024
4025 bitmap_set_bit (live_subregs_used, allocnum);
4026 }
4027
4028 /* Walk the insns of the current function and build reload_insn_chain,
4029 and record register life information. */
4030 static void
4031 build_insn_chain (void)
4032 {
4033 unsigned int i;
4034 struct insn_chain **p = &reload_insn_chain;
4035 basic_block bb;
4036 struct insn_chain *c = NULL;
4037 struct insn_chain *next = NULL;
4038 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4039 bitmap elim_regset = BITMAP_ALLOC (NULL);
4040 /* live_subregs is a vector used to keep accurate information about
4041 which hardregs are live in multiword pseudos. live_subregs and
4042 live_subregs_used are indexed by pseudo number. The live_subreg
4043 entry for a particular pseudo is only used if the corresponding
4044 element is non zero in live_subregs_used. The sbitmap size of
4045 live_subreg[allocno] is number of bytes that the pseudo can
4046 occupy. */
4047 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4048 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4049
4050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4051 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4052 bitmap_set_bit (elim_regset, i);
4053 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4054 {
4055 bitmap_iterator bi;
4056 rtx_insn *insn;
4057
4058 CLEAR_REG_SET (live_relevant_regs);
4059 bitmap_clear (live_subregs_used);
4060
4061 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4062 {
4063 if (i >= FIRST_PSEUDO_REGISTER)
4064 break;
4065 bitmap_set_bit (live_relevant_regs, i);
4066 }
4067
4068 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4069 FIRST_PSEUDO_REGISTER, i, bi)
4070 {
4071 if (pseudo_for_reload_consideration_p (i))
4072 bitmap_set_bit (live_relevant_regs, i);
4073 }
4074
4075 FOR_BB_INSNS_REVERSE (bb, insn)
4076 {
4077 if (!NOTE_P (insn) && !BARRIER_P (insn))
4078 {
4079 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4080 df_ref def, use;
4081
4082 c = new_insn_chain ();
4083 c->next = next;
4084 next = c;
4085 *p = c;
4086 p = &c->prev;
4087
4088 c->insn = insn;
4089 c->block = bb->index;
4090
4091 if (NONDEBUG_INSN_P (insn))
4092 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4093 {
4094 unsigned int regno = DF_REF_REGNO (def);
4095
4096 /* Ignore may clobbers because these are generated
4097 from calls. However, every other kind of def is
4098 added to dead_or_set. */
4099 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4100 {
4101 if (regno < FIRST_PSEUDO_REGISTER)
4102 {
4103 if (!fixed_regs[regno])
4104 bitmap_set_bit (&c->dead_or_set, regno);
4105 }
4106 else if (pseudo_for_reload_consideration_p (regno))
4107 bitmap_set_bit (&c->dead_or_set, regno);
4108 }
4109
4110 if ((regno < FIRST_PSEUDO_REGISTER
4111 || reg_renumber[regno] >= 0
4112 || ira_conflicts_p)
4113 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4114 {
4115 rtx reg = DF_REF_REG (def);
4116
4117 /* We can model subregs, but not if they are
4118 wrapped in ZERO_EXTRACTS. */
4119 if (GET_CODE (reg) == SUBREG
4120 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4121 {
4122 unsigned int start = SUBREG_BYTE (reg);
4123 unsigned int last = start
4124 + GET_MODE_SIZE (GET_MODE (reg));
4125
4126 init_live_subregs
4127 (bitmap_bit_p (live_relevant_regs, regno),
4128 live_subregs, live_subregs_used, regno, reg);
4129
4130 if (!DF_REF_FLAGS_IS_SET
4131 (def, DF_REF_STRICT_LOW_PART))
4132 {
4133 /* Expand the range to cover entire words.
4134 Bytes added here are "don't care". */
4135 start
4136 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4137 last = ((last + UNITS_PER_WORD - 1)
4138 / UNITS_PER_WORD * UNITS_PER_WORD);
4139 }
4140
4141 /* Ignore the paradoxical bits. */
4142 if (last > SBITMAP_SIZE (live_subregs[regno]))
4143 last = SBITMAP_SIZE (live_subregs[regno]);
4144
4145 while (start < last)
4146 {
4147 bitmap_clear_bit (live_subregs[regno], start);
4148 start++;
4149 }
4150
4151 if (bitmap_empty_p (live_subregs[regno]))
4152 {
4153 bitmap_clear_bit (live_subregs_used, regno);
4154 bitmap_clear_bit (live_relevant_regs, regno);
4155 }
4156 else
4157 /* Set live_relevant_regs here because
4158 that bit has to be true to get us to
4159 look at the live_subregs fields. */
4160 bitmap_set_bit (live_relevant_regs, regno);
4161 }
4162 else
4163 {
4164 /* DF_REF_PARTIAL is generated for
4165 subregs, STRICT_LOW_PART, and
4166 ZERO_EXTRACT. We handle the subreg
4167 case above so here we have to keep from
4168 modeling the def as a killing def. */
4169 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4170 {
4171 bitmap_clear_bit (live_subregs_used, regno);
4172 bitmap_clear_bit (live_relevant_regs, regno);
4173 }
4174 }
4175 }
4176 }
4177
4178 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4179 bitmap_copy (&c->live_throughout, live_relevant_regs);
4180
4181 if (NONDEBUG_INSN_P (insn))
4182 FOR_EACH_INSN_INFO_USE (use, insn_info)
4183 {
4184 unsigned int regno = DF_REF_REGNO (use);
4185 rtx reg = DF_REF_REG (use);
4186
4187 /* DF_REF_READ_WRITE on a use means that this use
4188 is fabricated from a def that is a partial set
4189 to a multiword reg. Here, we only model the
4190 subreg case that is not wrapped in ZERO_EXTRACT
4191 precisely so we do not need to look at the
4192 fabricated use. */
4193 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4194 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4195 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4196 continue;
4197
4198 /* Add the last use of each var to dead_or_set. */
4199 if (!bitmap_bit_p (live_relevant_regs, regno))
4200 {
4201 if (regno < FIRST_PSEUDO_REGISTER)
4202 {
4203 if (!fixed_regs[regno])
4204 bitmap_set_bit (&c->dead_or_set, regno);
4205 }
4206 else if (pseudo_for_reload_consideration_p (regno))
4207 bitmap_set_bit (&c->dead_or_set, regno);
4208 }
4209
4210 if (regno < FIRST_PSEUDO_REGISTER
4211 || pseudo_for_reload_consideration_p (regno))
4212 {
4213 if (GET_CODE (reg) == SUBREG
4214 && !DF_REF_FLAGS_IS_SET (use,
4215 DF_REF_SIGN_EXTRACT
4216 | DF_REF_ZERO_EXTRACT))
4217 {
4218 unsigned int start = SUBREG_BYTE (reg);
4219 unsigned int last = start
4220 + GET_MODE_SIZE (GET_MODE (reg));
4221
4222 init_live_subregs
4223 (bitmap_bit_p (live_relevant_regs, regno),
4224 live_subregs, live_subregs_used, regno, reg);
4225
4226 /* Ignore the paradoxical bits. */
4227 if (last > SBITMAP_SIZE (live_subregs[regno]))
4228 last = SBITMAP_SIZE (live_subregs[regno]);
4229
4230 while (start < last)
4231 {
4232 bitmap_set_bit (live_subregs[regno], start);
4233 start++;
4234 }
4235 }
4236 else
4237 /* Resetting the live_subregs_used is
4238 effectively saying do not use the subregs
4239 because we are reading the whole
4240 pseudo. */
4241 bitmap_clear_bit (live_subregs_used, regno);
4242 bitmap_set_bit (live_relevant_regs, regno);
4243 }
4244 }
4245 }
4246 }
4247
4248 /* FIXME!! The following code is a disaster. Reload needs to see the
4249 labels and jump tables that are just hanging out in between
4250 the basic blocks. See pr33676. */
4251 insn = BB_HEAD (bb);
4252
4253 /* Skip over the barriers and cruft. */
4254 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4255 || BLOCK_FOR_INSN (insn) == bb))
4256 insn = PREV_INSN (insn);
4257
4258 /* While we add anything except barriers and notes, the focus is
4259 to get the labels and jump tables into the
4260 reload_insn_chain. */
4261 while (insn)
4262 {
4263 if (!NOTE_P (insn) && !BARRIER_P (insn))
4264 {
4265 if (BLOCK_FOR_INSN (insn))
4266 break;
4267
4268 c = new_insn_chain ();
4269 c->next = next;
4270 next = c;
4271 *p = c;
4272 p = &c->prev;
4273
4274 /* The block makes no sense here, but it is what the old
4275 code did. */
4276 c->block = bb->index;
4277 c->insn = insn;
4278 bitmap_copy (&c->live_throughout, live_relevant_regs);
4279 }
4280 insn = PREV_INSN (insn);
4281 }
4282 }
4283
4284 reload_insn_chain = c;
4285 *p = NULL;
4286
4287 for (i = 0; i < (unsigned int) max_regno; i++)
4288 if (live_subregs[i] != NULL)
4289 sbitmap_free (live_subregs[i]);
4290 free (live_subregs);
4291 BITMAP_FREE (live_subregs_used);
4292 BITMAP_FREE (live_relevant_regs);
4293 BITMAP_FREE (elim_regset);
4294
4295 if (dump_file)
4296 print_insn_chains (dump_file);
4297 }
4298 \f
4299 /* Examine the rtx found in *LOC, which is read or written to as determined
4300 by TYPE. Return false if we find a reason why an insn containing this
4301 rtx should not be moved (such as accesses to non-constant memory), true
4302 otherwise. */
4303 static bool
4304 rtx_moveable_p (rtx *loc, enum op_type type)
4305 {
4306 const char *fmt;
4307 rtx x = *loc;
4308 enum rtx_code code = GET_CODE (x);
4309 int i, j;
4310
4311 code = GET_CODE (x);
4312 switch (code)
4313 {
4314 case CONST:
4315 CASE_CONST_ANY:
4316 case SYMBOL_REF:
4317 case LABEL_REF:
4318 return true;
4319
4320 case PC:
4321 return type == OP_IN;
4322
4323 case CC0:
4324 return false;
4325
4326 case REG:
4327 if (x == frame_pointer_rtx)
4328 return true;
4329 if (HARD_REGISTER_P (x))
4330 return false;
4331
4332 return true;
4333
4334 case MEM:
4335 if (type == OP_IN && MEM_READONLY_P (x))
4336 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4337 return false;
4338
4339 case SET:
4340 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4341 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4342
4343 case STRICT_LOW_PART:
4344 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4345
4346 case ZERO_EXTRACT:
4347 case SIGN_EXTRACT:
4348 return (rtx_moveable_p (&XEXP (x, 0), type)
4349 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4350 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4351
4352 case CLOBBER:
4353 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4354
4355 case UNSPEC_VOLATILE:
4356 /* It is a bad idea to consider insns with such rtl
4357 as moveable ones. The insn scheduler also considers them as barrier
4358 for a reason. */
4359 return false;
4360
4361 default:
4362 break;
4363 }
4364
4365 fmt = GET_RTX_FORMAT (code);
4366 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4367 {
4368 if (fmt[i] == 'e')
4369 {
4370 if (!rtx_moveable_p (&XEXP (x, i), type))
4371 return false;
4372 }
4373 else if (fmt[i] == 'E')
4374 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4375 {
4376 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4377 return false;
4378 }
4379 }
4380 return true;
4381 }
4382
4383 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4384 to give dominance relationships between two insns I1 and I2. */
4385 static bool
4386 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4387 {
4388 basic_block bb1 = BLOCK_FOR_INSN (i1);
4389 basic_block bb2 = BLOCK_FOR_INSN (i2);
4390
4391 if (bb1 == bb2)
4392 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4393 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4394 }
4395
4396 /* Record the range of register numbers added by find_moveable_pseudos. */
4397 int first_moveable_pseudo, last_moveable_pseudo;
4398
4399 /* These two vectors hold data for every register added by
4400 find_movable_pseudos, with index 0 holding data for the
4401 first_moveable_pseudo. */
4402 /* The original home register. */
4403 static vec<rtx> pseudo_replaced_reg;
4404
4405 /* Look for instances where we have an instruction that is known to increase
4406 register pressure, and whose result is not used immediately. If it is
4407 possible to move the instruction downwards to just before its first use,
4408 split its lifetime into two ranges. We create a new pseudo to compute the
4409 value, and emit a move instruction just before the first use. If, after
4410 register allocation, the new pseudo remains unallocated, the function
4411 move_unallocated_pseudos then deletes the move instruction and places
4412 the computation just before the first use.
4413
4414 Such a move is safe and profitable if all the input registers remain live
4415 and unchanged between the original computation and its first use. In such
4416 a situation, the computation is known to increase register pressure, and
4417 moving it is known to at least not worsen it.
4418
4419 We restrict moves to only those cases where a register remains unallocated,
4420 in order to avoid interfering too much with the instruction schedule. As
4421 an exception, we may move insns which only modify their input register
4422 (typically induction variables), as this increases the freedom for our
4423 intended transformation, and does not limit the second instruction
4424 scheduler pass. */
4425
4426 static void
4427 find_moveable_pseudos (void)
4428 {
4429 unsigned i;
4430 int max_regs = max_reg_num ();
4431 int max_uid = get_max_uid ();
4432 basic_block bb;
4433 int *uid_luid = XNEWVEC (int, max_uid);
4434 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4435 /* A set of registers which are live but not modified throughout a block. */
4436 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4437 last_basic_block_for_fn (cfun));
4438 /* A set of registers which only exist in a given basic block. */
4439 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4440 last_basic_block_for_fn (cfun));
4441 /* A set of registers which are set once, in an instruction that can be
4442 moved freely downwards, but are otherwise transparent to a block. */
4443 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4444 last_basic_block_for_fn (cfun));
4445 bitmap_head live, used, set, interesting, unusable_as_input;
4446 bitmap_iterator bi;
4447 bitmap_initialize (&interesting, 0);
4448
4449 first_moveable_pseudo = max_regs;
4450 pseudo_replaced_reg.release ();
4451 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4452
4453 df_analyze ();
4454 calculate_dominance_info (CDI_DOMINATORS);
4455
4456 i = 0;
4457 bitmap_initialize (&live, 0);
4458 bitmap_initialize (&used, 0);
4459 bitmap_initialize (&set, 0);
4460 bitmap_initialize (&unusable_as_input, 0);
4461 FOR_EACH_BB_FN (bb, cfun)
4462 {
4463 rtx_insn *insn;
4464 bitmap transp = bb_transp_live + bb->index;
4465 bitmap moveable = bb_moveable_reg_sets + bb->index;
4466 bitmap local = bb_local + bb->index;
4467
4468 bitmap_initialize (local, 0);
4469 bitmap_initialize (transp, 0);
4470 bitmap_initialize (moveable, 0);
4471 bitmap_copy (&live, df_get_live_out (bb));
4472 bitmap_and_into (&live, df_get_live_in (bb));
4473 bitmap_copy (transp, &live);
4474 bitmap_clear (moveable);
4475 bitmap_clear (&live);
4476 bitmap_clear (&used);
4477 bitmap_clear (&set);
4478 FOR_BB_INSNS (bb, insn)
4479 if (NONDEBUG_INSN_P (insn))
4480 {
4481 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4482 df_ref def, use;
4483
4484 uid_luid[INSN_UID (insn)] = i++;
4485
4486 def = df_single_def (insn_info);
4487 use = df_single_use (insn_info);
4488 if (use
4489 && def
4490 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4491 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4492 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4493 {
4494 unsigned regno = DF_REF_REGNO (use);
4495 bitmap_set_bit (moveable, regno);
4496 bitmap_set_bit (&set, regno);
4497 bitmap_set_bit (&used, regno);
4498 bitmap_clear_bit (transp, regno);
4499 continue;
4500 }
4501 FOR_EACH_INSN_INFO_USE (use, insn_info)
4502 {
4503 unsigned regno = DF_REF_REGNO (use);
4504 bitmap_set_bit (&used, regno);
4505 if (bitmap_clear_bit (moveable, regno))
4506 bitmap_clear_bit (transp, regno);
4507 }
4508
4509 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4510 {
4511 unsigned regno = DF_REF_REGNO (def);
4512 bitmap_set_bit (&set, regno);
4513 bitmap_clear_bit (transp, regno);
4514 bitmap_clear_bit (moveable, regno);
4515 }
4516 }
4517 }
4518
4519 bitmap_clear (&live);
4520 bitmap_clear (&used);
4521 bitmap_clear (&set);
4522
4523 FOR_EACH_BB_FN (bb, cfun)
4524 {
4525 bitmap local = bb_local + bb->index;
4526 rtx_insn *insn;
4527
4528 FOR_BB_INSNS (bb, insn)
4529 if (NONDEBUG_INSN_P (insn))
4530 {
4531 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4532 rtx_insn *def_insn;
4533 rtx closest_use, note;
4534 df_ref def, use;
4535 unsigned regno;
4536 bool all_dominated, all_local;
4537 machine_mode mode;
4538
4539 def = df_single_def (insn_info);
4540 /* There must be exactly one def in this insn. */
4541 if (!def || !single_set (insn))
4542 continue;
4543 /* This must be the only definition of the reg. We also limit
4544 which modes we deal with so that we can assume we can generate
4545 move instructions. */
4546 regno = DF_REF_REGNO (def);
4547 mode = GET_MODE (DF_REF_REG (def));
4548 if (DF_REG_DEF_COUNT (regno) != 1
4549 || !DF_REF_INSN_INFO (def)
4550 || HARD_REGISTER_NUM_P (regno)
4551 || DF_REG_EQ_USE_COUNT (regno) > 0
4552 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4553 continue;
4554 def_insn = DF_REF_INSN (def);
4555
4556 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4557 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4558 break;
4559
4560 if (note)
4561 {
4562 if (dump_file)
4563 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4564 regno);
4565 bitmap_set_bit (&unusable_as_input, regno);
4566 continue;
4567 }
4568
4569 use = DF_REG_USE_CHAIN (regno);
4570 all_dominated = true;
4571 all_local = true;
4572 closest_use = NULL_RTX;
4573 for (; use; use = DF_REF_NEXT_REG (use))
4574 {
4575 rtx_insn *insn;
4576 if (!DF_REF_INSN_INFO (use))
4577 {
4578 all_dominated = false;
4579 all_local = false;
4580 break;
4581 }
4582 insn = DF_REF_INSN (use);
4583 if (DEBUG_INSN_P (insn))
4584 continue;
4585 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4586 all_local = false;
4587 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4588 all_dominated = false;
4589 if (closest_use != insn && closest_use != const0_rtx)
4590 {
4591 if (closest_use == NULL_RTX)
4592 closest_use = insn;
4593 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4594 closest_use = insn;
4595 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4596 closest_use = const0_rtx;
4597 }
4598 }
4599 if (!all_dominated)
4600 {
4601 if (dump_file)
4602 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4603 regno);
4604 continue;
4605 }
4606 if (all_local)
4607 bitmap_set_bit (local, regno);
4608 if (closest_use == const0_rtx || closest_use == NULL
4609 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4610 {
4611 if (dump_file)
4612 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4613 closest_use == const0_rtx || closest_use == NULL
4614 ? " (no unique first use)" : "");
4615 continue;
4616 }
4617 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4618 {
4619 if (dump_file)
4620 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4621 regno);
4622 continue;
4623 }
4624
4625 bitmap_set_bit (&interesting, regno);
4626 /* If we get here, we know closest_use is a non-NULL insn
4627 (as opposed to const_0_rtx). */
4628 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4629
4630 if (dump_file && (all_local || all_dominated))
4631 {
4632 fprintf (dump_file, "Reg %u:", regno);
4633 if (all_local)
4634 fprintf (dump_file, " local to bb %d", bb->index);
4635 if (all_dominated)
4636 fprintf (dump_file, " def dominates all uses");
4637 if (closest_use != const0_rtx)
4638 fprintf (dump_file, " has unique first use");
4639 fputs ("\n", dump_file);
4640 }
4641 }
4642 }
4643
4644 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4645 {
4646 df_ref def = DF_REG_DEF_CHAIN (i);
4647 rtx_insn *def_insn = DF_REF_INSN (def);
4648 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4649 bitmap def_bb_local = bb_local + def_block->index;
4650 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4651 bitmap def_bb_transp = bb_transp_live + def_block->index;
4652 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4653 rtx_insn *use_insn = closest_uses[i];
4654 df_ref use;
4655 bool all_ok = true;
4656 bool all_transp = true;
4657
4658 if (!REG_P (DF_REF_REG (def)))
4659 continue;
4660
4661 if (!local_to_bb_p)
4662 {
4663 if (dump_file)
4664 fprintf (dump_file, "Reg %u not local to one basic block\n",
4665 i);
4666 continue;
4667 }
4668 if (reg_equiv_init (i) != NULL_RTX)
4669 {
4670 if (dump_file)
4671 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4672 i);
4673 continue;
4674 }
4675 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4676 {
4677 if (dump_file)
4678 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4679 INSN_UID (def_insn), i);
4680 continue;
4681 }
4682 if (dump_file)
4683 fprintf (dump_file, "Examining insn %d, def for %d\n",
4684 INSN_UID (def_insn), i);
4685 FOR_EACH_INSN_USE (use, def_insn)
4686 {
4687 unsigned regno = DF_REF_REGNO (use);
4688 if (bitmap_bit_p (&unusable_as_input, regno))
4689 {
4690 all_ok = false;
4691 if (dump_file)
4692 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4693 break;
4694 }
4695 if (!bitmap_bit_p (def_bb_transp, regno))
4696 {
4697 if (bitmap_bit_p (def_bb_moveable, regno)
4698 && !control_flow_insn_p (use_insn)
4699 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4700 {
4701 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4702 {
4703 rtx_insn *x = NEXT_INSN (def_insn);
4704 while (!modified_in_p (DF_REF_REG (use), x))
4705 {
4706 gcc_assert (x != use_insn);
4707 x = NEXT_INSN (x);
4708 }
4709 if (dump_file)
4710 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4711 regno, INSN_UID (x));
4712 emit_insn_after (PATTERN (x), use_insn);
4713 set_insn_deleted (x);
4714 }
4715 else
4716 {
4717 if (dump_file)
4718 fprintf (dump_file, " input reg %u modified between def and use\n",
4719 regno);
4720 all_transp = false;
4721 }
4722 }
4723 else
4724 all_transp = false;
4725 }
4726 }
4727 if (!all_ok)
4728 continue;
4729 if (!dbg_cnt (ira_move))
4730 break;
4731 if (dump_file)
4732 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4733
4734 if (all_transp)
4735 {
4736 rtx def_reg = DF_REF_REG (def);
4737 rtx newreg = ira_create_new_reg (def_reg);
4738 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4739 {
4740 unsigned nregno = REGNO (newreg);
4741 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4742 nregno -= max_regs;
4743 pseudo_replaced_reg[nregno] = def_reg;
4744 }
4745 }
4746 }
4747
4748 FOR_EACH_BB_FN (bb, cfun)
4749 {
4750 bitmap_clear (bb_local + bb->index);
4751 bitmap_clear (bb_transp_live + bb->index);
4752 bitmap_clear (bb_moveable_reg_sets + bb->index);
4753 }
4754 bitmap_clear (&interesting);
4755 bitmap_clear (&unusable_as_input);
4756 free (uid_luid);
4757 free (closest_uses);
4758 free (bb_local);
4759 free (bb_transp_live);
4760 free (bb_moveable_reg_sets);
4761
4762 last_moveable_pseudo = max_reg_num ();
4763
4764 fix_reg_equiv_init ();
4765 expand_reg_info ();
4766 regstat_free_n_sets_and_refs ();
4767 regstat_free_ri ();
4768 regstat_init_n_sets_and_refs ();
4769 regstat_compute_ri ();
4770 free_dominance_info (CDI_DOMINATORS);
4771 }
4772
4773 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4774 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4775 the destination. Otherwise return NULL. */
4776
4777 static rtx
4778 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4779 {
4780 rtx src = SET_SRC (set);
4781 rtx dest = SET_DEST (set);
4782 if (!REG_P (src) || !HARD_REGISTER_P (src)
4783 || !REG_P (dest) || HARD_REGISTER_P (dest)
4784 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4785 return NULL;
4786 return dest;
4787 }
4788
4789 /* If insn is interesting for parameter range-splitting shrink-wrapping
4790 preparation, i.e. it is a single set from a hard register to a pseudo, which
4791 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4792 parallel statement with only one such statement, return the destination.
4793 Otherwise return NULL. */
4794
4795 static rtx
4796 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4797 {
4798 if (!INSN_P (insn))
4799 return NULL;
4800 rtx pat = PATTERN (insn);
4801 if (GET_CODE (pat) == SET)
4802 return interesting_dest_for_shprep_1 (pat, call_dom);
4803
4804 if (GET_CODE (pat) != PARALLEL)
4805 return NULL;
4806 rtx ret = NULL;
4807 for (int i = 0; i < XVECLEN (pat, 0); i++)
4808 {
4809 rtx sub = XVECEXP (pat, 0, i);
4810 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4811 continue;
4812 if (GET_CODE (sub) != SET
4813 || side_effects_p (sub))
4814 return NULL;
4815 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4816 if (dest && ret)
4817 return NULL;
4818 if (dest)
4819 ret = dest;
4820 }
4821 return ret;
4822 }
4823
4824 /* Split live ranges of pseudos that are loaded from hard registers in the
4825 first BB in a BB that dominates all non-sibling call if such a BB can be
4826 found and is not in a loop. Return true if the function has made any
4827 changes. */
4828
4829 static bool
4830 split_live_ranges_for_shrink_wrap (void)
4831 {
4832 basic_block bb, call_dom = NULL;
4833 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4834 rtx_insn *insn, *last_interesting_insn = NULL;
4835 bitmap_head need_new, reachable;
4836 vec<basic_block> queue;
4837
4838 if (!SHRINK_WRAPPING_ENABLED)
4839 return false;
4840
4841 bitmap_initialize (&need_new, 0);
4842 bitmap_initialize (&reachable, 0);
4843 queue.create (n_basic_blocks_for_fn (cfun));
4844
4845 FOR_EACH_BB_FN (bb, cfun)
4846 FOR_BB_INSNS (bb, insn)
4847 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4848 {
4849 if (bb == first)
4850 {
4851 bitmap_clear (&need_new);
4852 bitmap_clear (&reachable);
4853 queue.release ();
4854 return false;
4855 }
4856
4857 bitmap_set_bit (&need_new, bb->index);
4858 bitmap_set_bit (&reachable, bb->index);
4859 queue.quick_push (bb);
4860 break;
4861 }
4862
4863 if (queue.is_empty ())
4864 {
4865 bitmap_clear (&need_new);
4866 bitmap_clear (&reachable);
4867 queue.release ();
4868 return false;
4869 }
4870
4871 while (!queue.is_empty ())
4872 {
4873 edge e;
4874 edge_iterator ei;
4875
4876 bb = queue.pop ();
4877 FOR_EACH_EDGE (e, ei, bb->succs)
4878 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4879 && bitmap_set_bit (&reachable, e->dest->index))
4880 queue.quick_push (e->dest);
4881 }
4882 queue.release ();
4883
4884 FOR_BB_INSNS (first, insn)
4885 {
4886 rtx dest = interesting_dest_for_shprep (insn, NULL);
4887 if (!dest)
4888 continue;
4889
4890 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4891 {
4892 bitmap_clear (&need_new);
4893 bitmap_clear (&reachable);
4894 return false;
4895 }
4896
4897 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4898 use;
4899 use = DF_REF_NEXT_REG (use))
4900 {
4901 int ubbi = DF_REF_BB (use)->index;
4902 if (bitmap_bit_p (&reachable, ubbi))
4903 bitmap_set_bit (&need_new, ubbi);
4904 }
4905 last_interesting_insn = insn;
4906 }
4907
4908 bitmap_clear (&reachable);
4909 if (!last_interesting_insn)
4910 {
4911 bitmap_clear (&need_new);
4912 return false;
4913 }
4914
4915 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4916 bitmap_clear (&need_new);
4917 if (call_dom == first)
4918 return false;
4919
4920 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4921 while (bb_loop_depth (call_dom) > 0)
4922 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4923 loop_optimizer_finalize ();
4924
4925 if (call_dom == first)
4926 return false;
4927
4928 calculate_dominance_info (CDI_POST_DOMINATORS);
4929 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4930 {
4931 free_dominance_info (CDI_POST_DOMINATORS);
4932 return false;
4933 }
4934 free_dominance_info (CDI_POST_DOMINATORS);
4935
4936 if (dump_file)
4937 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4938 call_dom->index);
4939
4940 bool ret = false;
4941 FOR_BB_INSNS (first, insn)
4942 {
4943 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4944 if (!dest || dest == pic_offset_table_rtx)
4945 continue;
4946
4947 rtx newreg = NULL_RTX;
4948 df_ref use, next;
4949 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4950 {
4951 rtx_insn *uin = DF_REF_INSN (use);
4952 next = DF_REF_NEXT_REG (use);
4953
4954 basic_block ubb = BLOCK_FOR_INSN (uin);
4955 if (ubb == call_dom
4956 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4957 {
4958 if (!newreg)
4959 newreg = ira_create_new_reg (dest);
4960 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4961 }
4962 }
4963
4964 if (newreg)
4965 {
4966 rtx_insn *new_move = gen_move_insn (newreg, dest);
4967 emit_insn_after (new_move, bb_note (call_dom));
4968 if (dump_file)
4969 {
4970 fprintf (dump_file, "Split live-range of register ");
4971 print_rtl_single (dump_file, dest);
4972 }
4973 ret = true;
4974 }
4975
4976 if (insn == last_interesting_insn)
4977 break;
4978 }
4979 apply_change_group ();
4980 return ret;
4981 }
4982
4983 /* Perform the second half of the transformation started in
4984 find_moveable_pseudos. We look for instances where the newly introduced
4985 pseudo remains unallocated, and remove it by moving the definition to
4986 just before its use, replacing the move instruction generated by
4987 find_moveable_pseudos. */
4988 static void
4989 move_unallocated_pseudos (void)
4990 {
4991 int i;
4992 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4993 if (reg_renumber[i] < 0)
4994 {
4995 int idx = i - first_moveable_pseudo;
4996 rtx other_reg = pseudo_replaced_reg[idx];
4997 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4998 /* The use must follow all definitions of OTHER_REG, so we can
4999 insert the new definition immediately after any of them. */
5000 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5001 rtx_insn *move_insn = DF_REF_INSN (other_def);
5002 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5003 rtx set;
5004 int success;
5005
5006 if (dump_file)
5007 fprintf (dump_file, "moving def of %d (insn %d now) ",
5008 REGNO (other_reg), INSN_UID (def_insn));
5009
5010 delete_insn (move_insn);
5011 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5012 delete_insn (DF_REF_INSN (other_def));
5013 delete_insn (def_insn);
5014
5015 set = single_set (newinsn);
5016 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5017 gcc_assert (success);
5018 if (dump_file)
5019 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5020 INSN_UID (newinsn), i);
5021 SET_REG_N_REFS (i, 0);
5022 }
5023 }
5024 \f
5025 /* If the backend knows where to allocate pseudos for hard
5026 register initial values, register these allocations now. */
5027 static void
5028 allocate_initial_values (void)
5029 {
5030 if (targetm.allocate_initial_value)
5031 {
5032 rtx hreg, preg, x;
5033 int i, regno;
5034
5035 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5036 {
5037 if (! initial_value_entry (i, &hreg, &preg))
5038 break;
5039
5040 x = targetm.allocate_initial_value (hreg);
5041 regno = REGNO (preg);
5042 if (x && REG_N_SETS (regno) <= 1)
5043 {
5044 if (MEM_P (x))
5045 reg_equiv_memory_loc (regno) = x;
5046 else
5047 {
5048 basic_block bb;
5049 int new_regno;
5050
5051 gcc_assert (REG_P (x));
5052 new_regno = REGNO (x);
5053 reg_renumber[regno] = new_regno;
5054 /* Poke the regno right into regno_reg_rtx so that even
5055 fixed regs are accepted. */
5056 SET_REGNO (preg, new_regno);
5057 /* Update global register liveness information. */
5058 FOR_EACH_BB_FN (bb, cfun)
5059 {
5060 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5061 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5062 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5063 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5064 }
5065 }
5066 }
5067 }
5068
5069 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5070 &hreg, &preg));
5071 }
5072 }
5073 \f
5074
5075 /* True when we use LRA instead of reload pass for the current
5076 function. */
5077 bool ira_use_lra_p;
5078
5079 /* True if we have allocno conflicts. It is false for non-optimized
5080 mode or when the conflict table is too big. */
5081 bool ira_conflicts_p;
5082
5083 /* Saved between IRA and reload. */
5084 static int saved_flag_ira_share_spill_slots;
5085
5086 /* This is the main entry of IRA. */
5087 static void
5088 ira (FILE *f)
5089 {
5090 bool loops_p;
5091 int ira_max_point_before_emit;
5092 int rebuild_p;
5093 bool saved_flag_caller_saves = flag_caller_saves;
5094 enum ira_region saved_flag_ira_region = flag_ira_region;
5095
5096 /* Perform target specific PIC register initialization. */
5097 targetm.init_pic_reg ();
5098
5099 ira_conflicts_p = optimize > 0;
5100
5101 ira_use_lra_p = targetm.lra_p ();
5102 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5103 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5104 use simplified and faster algorithms in LRA. */
5105 lra_simple_p
5106 = (ira_use_lra_p
5107 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5108 if (lra_simple_p)
5109 {
5110 /* It permits to skip live range splitting in LRA. */
5111 flag_caller_saves = false;
5112 /* There is no sense to do regional allocation when we use
5113 simplified LRA. */
5114 flag_ira_region = IRA_REGION_ONE;
5115 ira_conflicts_p = false;
5116 }
5117
5118 #ifndef IRA_NO_OBSTACK
5119 gcc_obstack_init (&ira_obstack);
5120 #endif
5121 bitmap_obstack_initialize (&ira_bitmap_obstack);
5122
5123 /* LRA uses its own infrastructure to handle caller save registers. */
5124 if (flag_caller_saves && !ira_use_lra_p)
5125 init_caller_save ();
5126
5127 if (flag_ira_verbose < 10)
5128 {
5129 internal_flag_ira_verbose = flag_ira_verbose;
5130 ira_dump_file = f;
5131 }
5132 else
5133 {
5134 internal_flag_ira_verbose = flag_ira_verbose - 10;
5135 ira_dump_file = stderr;
5136 }
5137
5138 setup_prohibited_mode_move_regs ();
5139 decrease_live_ranges_number ();
5140 df_note_add_problem ();
5141
5142 /* DF_LIVE can't be used in the register allocator, too many other
5143 parts of the compiler depend on using the "classic" liveness
5144 interpretation of the DF_LR problem. See PR38711.
5145 Remove the problem, so that we don't spend time updating it in
5146 any of the df_analyze() calls during IRA/LRA. */
5147 if (optimize > 1)
5148 df_remove_problem (df_live);
5149 gcc_checking_assert (df_live == NULL);
5150
5151 if (flag_checking)
5152 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5153
5154 df_analyze ();
5155
5156 init_reg_equiv ();
5157 if (ira_conflicts_p)
5158 {
5159 calculate_dominance_info (CDI_DOMINATORS);
5160
5161 if (split_live_ranges_for_shrink_wrap ())
5162 df_analyze ();
5163
5164 free_dominance_info (CDI_DOMINATORS);
5165 }
5166
5167 df_clear_flags (DF_NO_INSN_RESCAN);
5168
5169 regstat_init_n_sets_and_refs ();
5170 regstat_compute_ri ();
5171
5172 /* If we are not optimizing, then this is the only place before
5173 register allocation where dataflow is done. And that is needed
5174 to generate these warnings. */
5175 if (warn_clobbered)
5176 generate_setjmp_warnings ();
5177
5178 /* Determine if the current function is a leaf before running IRA
5179 since this can impact optimizations done by the prologue and
5180 epilogue thus changing register elimination offsets. */
5181 crtl->is_leaf = leaf_function_p ();
5182
5183 if (resize_reg_info () && flag_ira_loop_pressure)
5184 ira_set_pseudo_classes (true, ira_dump_file);
5185
5186 rebuild_p = update_equiv_regs ();
5187 setup_reg_equiv ();
5188 setup_reg_equiv_init ();
5189
5190 bool update_regstat = false;
5191
5192 if (optimize && rebuild_p)
5193 {
5194 timevar_push (TV_JUMP);
5195 rebuild_jump_labels (get_insns ());
5196 if (purge_all_dead_edges ())
5197 {
5198 delete_unreachable_blocks ();
5199 update_regstat = true;
5200 }
5201 timevar_pop (TV_JUMP);
5202 }
5203
5204 allocated_reg_info_size = max_reg_num ();
5205
5206 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5207 {
5208 df_analyze ();
5209 update_regstat = true;
5210 }
5211
5212 /* It is not worth to do such improvement when we use a simple
5213 allocation because of -O0 usage or because the function is too
5214 big. */
5215 if (ira_conflicts_p)
5216 find_moveable_pseudos ();
5217
5218 max_regno_before_ira = max_reg_num ();
5219 ira_setup_eliminable_regset ();
5220
5221 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5222 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5223 ira_move_loops_num = ira_additional_jumps_num = 0;
5224
5225 ira_assert (current_loops == NULL);
5226 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5227 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5228
5229 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5230 fprintf (ira_dump_file, "Building IRA IR\n");
5231 loops_p = ira_build ();
5232
5233 ira_assert (ira_conflicts_p || !loops_p);
5234
5235 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5236 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5237 /* It is just wasting compiler's time to pack spilled pseudos into
5238 stack slots in this case -- prohibit it. We also do this if
5239 there is setjmp call because a variable not modified between
5240 setjmp and longjmp the compiler is required to preserve its
5241 value and sharing slots does not guarantee it. */
5242 flag_ira_share_spill_slots = FALSE;
5243
5244 ira_color ();
5245
5246 ira_max_point_before_emit = ira_max_point;
5247
5248 ira_initiate_emit_data ();
5249
5250 ira_emit (loops_p);
5251
5252 max_regno = max_reg_num ();
5253 if (ira_conflicts_p)
5254 {
5255 if (! loops_p)
5256 {
5257 if (! ira_use_lra_p)
5258 ira_initiate_assign ();
5259 }
5260 else
5261 {
5262 expand_reg_info ();
5263
5264 if (ira_use_lra_p)
5265 {
5266 ira_allocno_t a;
5267 ira_allocno_iterator ai;
5268
5269 FOR_EACH_ALLOCNO (a, ai)
5270 {
5271 int old_regno = ALLOCNO_REGNO (a);
5272 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5273
5274 ALLOCNO_REGNO (a) = new_regno;
5275
5276 if (old_regno != new_regno)
5277 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5278 reg_alternate_class (old_regno),
5279 reg_allocno_class (old_regno));
5280 }
5281
5282 }
5283 else
5284 {
5285 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5286 fprintf (ira_dump_file, "Flattening IR\n");
5287 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5288 }
5289 /* New insns were generated: add notes and recalculate live
5290 info. */
5291 df_analyze ();
5292
5293 /* ??? Rebuild the loop tree, but why? Does the loop tree
5294 change if new insns were generated? Can that be handled
5295 by updating the loop tree incrementally? */
5296 loop_optimizer_finalize ();
5297 free_dominance_info (CDI_DOMINATORS);
5298 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5299 | LOOPS_HAVE_RECORDED_EXITS);
5300
5301 if (! ira_use_lra_p)
5302 {
5303 setup_allocno_assignment_flags ();
5304 ira_initiate_assign ();
5305 ira_reassign_conflict_allocnos (max_regno);
5306 }
5307 }
5308 }
5309
5310 ira_finish_emit_data ();
5311
5312 setup_reg_renumber ();
5313
5314 calculate_allocation_cost ();
5315
5316 #ifdef ENABLE_IRA_CHECKING
5317 if (ira_conflicts_p)
5318 check_allocation ();
5319 #endif
5320
5321 if (update_regstat || max_regno != max_regno_before_ira)
5322 {
5323 regstat_free_n_sets_and_refs ();
5324 regstat_free_ri ();
5325 regstat_init_n_sets_and_refs ();
5326 regstat_compute_ri ();
5327 }
5328
5329 overall_cost_before = ira_overall_cost;
5330 if (! ira_conflicts_p)
5331 grow_reg_equivs ();
5332 else
5333 {
5334 fix_reg_equiv_init ();
5335
5336 #ifdef ENABLE_IRA_CHECKING
5337 print_redundant_copies ();
5338 #endif
5339 if (! ira_use_lra_p)
5340 {
5341 ira_spilled_reg_stack_slots_num = 0;
5342 ira_spilled_reg_stack_slots
5343 = ((struct ira_spilled_reg_stack_slot *)
5344 ira_allocate (max_regno
5345 * sizeof (struct ira_spilled_reg_stack_slot)));
5346 memset (ira_spilled_reg_stack_slots, 0,
5347 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5348 }
5349 }
5350 allocate_initial_values ();
5351
5352 /* See comment for find_moveable_pseudos call. */
5353 if (ira_conflicts_p)
5354 move_unallocated_pseudos ();
5355
5356 /* Restore original values. */
5357 if (lra_simple_p)
5358 {
5359 flag_caller_saves = saved_flag_caller_saves;
5360 flag_ira_region = saved_flag_ira_region;
5361 }
5362 }
5363
5364 static void
5365 do_reload (void)
5366 {
5367 basic_block bb;
5368 bool need_dce;
5369 unsigned pic_offset_table_regno = INVALID_REGNUM;
5370
5371 if (flag_ira_verbose < 10)
5372 ira_dump_file = dump_file;
5373
5374 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5375 after reload to avoid possible wrong usages of hard reg assigned
5376 to it. */
5377 if (pic_offset_table_rtx
5378 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5379 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5380
5381 timevar_push (TV_RELOAD);
5382 if (ira_use_lra_p)
5383 {
5384 if (current_loops != NULL)
5385 {
5386 loop_optimizer_finalize ();
5387 free_dominance_info (CDI_DOMINATORS);
5388 }
5389 FOR_ALL_BB_FN (bb, cfun)
5390 bb->loop_father = NULL;
5391 current_loops = NULL;
5392
5393 ira_destroy ();
5394
5395 lra (ira_dump_file);
5396 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5397 LRA. */
5398 vec_free (reg_equivs);
5399 reg_equivs = NULL;
5400 need_dce = false;
5401 }
5402 else
5403 {
5404 df_set_flags (DF_NO_INSN_RESCAN);
5405 build_insn_chain ();
5406
5407 need_dce = reload (get_insns (), ira_conflicts_p);
5408
5409 }
5410
5411 timevar_pop (TV_RELOAD);
5412
5413 timevar_push (TV_IRA);
5414
5415 if (ira_conflicts_p && ! ira_use_lra_p)
5416 {
5417 ira_free (ira_spilled_reg_stack_slots);
5418 ira_finish_assign ();
5419 }
5420
5421 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5422 && overall_cost_before != ira_overall_cost)
5423 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5424 ira_overall_cost);
5425
5426 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5427
5428 if (! ira_use_lra_p)
5429 {
5430 ira_destroy ();
5431 if (current_loops != NULL)
5432 {
5433 loop_optimizer_finalize ();
5434 free_dominance_info (CDI_DOMINATORS);
5435 }
5436 FOR_ALL_BB_FN (bb, cfun)
5437 bb->loop_father = NULL;
5438 current_loops = NULL;
5439
5440 regstat_free_ri ();
5441 regstat_free_n_sets_and_refs ();
5442 }
5443
5444 if (optimize)
5445 cleanup_cfg (CLEANUP_EXPENSIVE);
5446
5447 finish_reg_equiv ();
5448
5449 bitmap_obstack_release (&ira_bitmap_obstack);
5450 #ifndef IRA_NO_OBSTACK
5451 obstack_free (&ira_obstack, NULL);
5452 #endif
5453
5454 /* The code after the reload has changed so much that at this point
5455 we might as well just rescan everything. Note that
5456 df_rescan_all_insns is not going to help here because it does not
5457 touch the artificial uses and defs. */
5458 df_finish_pass (true);
5459 df_scan_alloc (NULL);
5460 df_scan_blocks ();
5461
5462 if (optimize > 1)
5463 {
5464 df_live_add_problem ();
5465 df_live_set_all_dirty ();
5466 }
5467
5468 if (optimize)
5469 df_analyze ();
5470
5471 if (need_dce && optimize)
5472 run_fast_dce ();
5473
5474 /* Diagnose uses of the hard frame pointer when it is used as a global
5475 register. Often we can get away with letting the user appropriate
5476 the frame pointer, but we should let them know when code generation
5477 makes that impossible. */
5478 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5479 {
5480 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5481 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5482 "frame pointer required, but reserved");
5483 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5484 }
5485
5486 if (pic_offset_table_regno != INVALID_REGNUM)
5487 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5488
5489 timevar_pop (TV_IRA);
5490 }
5491 \f
5492 /* Run the integrated register allocator. */
5493
5494 namespace {
5495
5496 const pass_data pass_data_ira =
5497 {
5498 RTL_PASS, /* type */
5499 "ira", /* name */
5500 OPTGROUP_NONE, /* optinfo_flags */
5501 TV_IRA, /* tv_id */
5502 0, /* properties_required */
5503 0, /* properties_provided */
5504 0, /* properties_destroyed */
5505 0, /* todo_flags_start */
5506 TODO_do_not_ggc_collect, /* todo_flags_finish */
5507 };
5508
5509 class pass_ira : public rtl_opt_pass
5510 {
5511 public:
5512 pass_ira (gcc::context *ctxt)
5513 : rtl_opt_pass (pass_data_ira, ctxt)
5514 {}
5515
5516 /* opt_pass methods: */
5517 virtual bool gate (function *)
5518 {
5519 return !targetm.no_register_allocation;
5520 }
5521 virtual unsigned int execute (function *)
5522 {
5523 ira (dump_file);
5524 return 0;
5525 }
5526
5527 }; // class pass_ira
5528
5529 } // anon namespace
5530
5531 rtl_opt_pass *
5532 make_pass_ira (gcc::context *ctxt)
5533 {
5534 return new pass_ira (ctxt);
5535 }
5536
5537 namespace {
5538
5539 const pass_data pass_data_reload =
5540 {
5541 RTL_PASS, /* type */
5542 "reload", /* name */
5543 OPTGROUP_NONE, /* optinfo_flags */
5544 TV_RELOAD, /* tv_id */
5545 0, /* properties_required */
5546 0, /* properties_provided */
5547 0, /* properties_destroyed */
5548 0, /* todo_flags_start */
5549 0, /* todo_flags_finish */
5550 };
5551
5552 class pass_reload : public rtl_opt_pass
5553 {
5554 public:
5555 pass_reload (gcc::context *ctxt)
5556 : rtl_opt_pass (pass_data_reload, ctxt)
5557 {}
5558
5559 /* opt_pass methods: */
5560 virtual bool gate (function *)
5561 {
5562 return !targetm.no_register_allocation;
5563 }
5564 virtual unsigned int execute (function *)
5565 {
5566 do_reload ();
5567 return 0;
5568 }
5569
5570 }; // class pass_reload
5571
5572 } // anon namespace
5573
5574 rtl_opt_pass *
5575 make_pass_reload (gcc::context *ctxt)
5576 {
5577 return new pass_reload (ctxt);
5578 }