openmp: Implement OpenMP 5.0 base-pointer attachement and clause ordering
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "memmodel.h"
46 #include "tm_p.h"
47 #include "insn-config.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "cfgrtl.h"
52 #include "rtl-iter.h"
53
54 /* Optimize jump y; x: ... y: jumpif... x?
55 Don't know if it is worth bothering with. */
56 /* Optimize two cases of conditional jump to conditional jump?
57 This can never delete any instruction or make anything dead,
58 or even change what is live at any point.
59 So perhaps let combiner do it. */
60
61 static void init_label_info (rtx_insn *);
62 static void mark_all_labels (rtx_insn *);
63 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64 static void mark_jump_label_asm (rtx, rtx_insn *);
65 static void redirect_exp_1 (rtx *, rtx, rtx, rtx_insn *);
66 static int invert_exp_1 (rtx, rtx_insn *);
67 \f
68 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
69 static void
70 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
71 {
72 timevar_push (TV_REBUILD_JUMP);
73 init_label_info (f);
74 mark_all_labels (f);
75
76 /* Keep track of labels used from static data; we don't track them
77 closely enough to delete them here, so make sure their reference
78 count doesn't drop to zero. */
79
80 if (count_forced)
81 {
82 rtx_insn *insn;
83 unsigned int i;
84 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 if (LABEL_P (insn))
86 LABEL_NUSES (insn)++;
87 }
88 timevar_pop (TV_REBUILD_JUMP);
89 }
90
91 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93 instructions and jumping insns that have labels as operands
94 (e.g. cbranchsi4). */
95 void
96 rebuild_jump_labels (rtx_insn *f)
97 {
98 rebuild_jump_labels_1 (f, true);
99 }
100
101 /* This function is like rebuild_jump_labels, but doesn't run over
102 forced_labels. It can be used on insn chains that aren't the
103 main function chain. */
104 void
105 rebuild_jump_labels_chain (rtx_insn *chain)
106 {
107 rebuild_jump_labels_1 (chain, false);
108 }
109 \f
110 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111 non-fallthru insn. This is not generally true, as multiple barriers
112 may have crept in, or the BARRIER may be separated from the last
113 real insn by one or more NOTEs.
114
115 This simple pass moves barriers and removes duplicates so that the
116 old code is happy.
117 */
118 static unsigned int
119 cleanup_barriers (void)
120 {
121 rtx_insn *insn;
122 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
123 {
124 if (BARRIER_P (insn))
125 {
126 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
127 if (!prev)
128 continue;
129
130 if (BARRIER_P (prev))
131 delete_insn (insn);
132 else if (prev != PREV_INSN (insn))
133 {
134 basic_block bb = BLOCK_FOR_INSN (prev);
135 rtx_insn *end = PREV_INSN (insn);
136 reorder_insns_nobb (insn, insn, prev);
137 if (bb)
138 {
139 /* If the backend called in machine reorg compute_bb_for_insn
140 and didn't free_bb_for_insn again, preserve basic block
141 boundaries. Move the end of basic block to PREV since
142 it is followed by a barrier now, and clear BLOCK_FOR_INSN
143 on the following notes.
144 ??? Maybe the proper solution for the targets that have
145 cfg around after machine reorg is not to run cleanup_barriers
146 pass at all. */
147 BB_END (bb) = prev;
148 do
149 {
150 prev = NEXT_INSN (prev);
151 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
152 BLOCK_FOR_INSN (prev) = NULL;
153 }
154 while (prev != end);
155 }
156 }
157 }
158 }
159 return 0;
160 }
161
162 namespace {
163
164 const pass_data pass_data_cleanup_barriers =
165 {
166 RTL_PASS, /* type */
167 "barriers", /* name */
168 OPTGROUP_NONE, /* optinfo_flags */
169 TV_NONE, /* tv_id */
170 0, /* properties_required */
171 0, /* properties_provided */
172 0, /* properties_destroyed */
173 0, /* todo_flags_start */
174 0, /* todo_flags_finish */
175 };
176
177 class pass_cleanup_barriers : public rtl_opt_pass
178 {
179 public:
180 pass_cleanup_barriers (gcc::context *ctxt)
181 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
182 {}
183
184 /* opt_pass methods: */
185 virtual unsigned int execute (function *) { return cleanup_barriers (); }
186
187 }; // class pass_cleanup_barriers
188
189 } // anon namespace
190
191 rtl_opt_pass *
192 make_pass_cleanup_barriers (gcc::context *ctxt)
193 {
194 return new pass_cleanup_barriers (ctxt);
195 }
196
197 \f
198 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
199 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
200 notes whose labels don't occur in the insn any more. */
201
202 static void
203 init_label_info (rtx_insn *f)
204 {
205 rtx_insn *insn;
206
207 for (insn = f; insn; insn = NEXT_INSN (insn))
208 {
209 if (LABEL_P (insn))
210 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
211
212 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
213 sticky and not reset here; that way we won't lose association
214 with a label when e.g. the source for a target register
215 disappears out of reach for targets that may use jump-target
216 registers. Jump transformations are supposed to transform
217 any REG_LABEL_TARGET notes. The target label reference in a
218 branch may disappear from the branch (and from the
219 instruction before it) for other reasons, like register
220 allocation. */
221
222 if (INSN_P (insn))
223 {
224 rtx note, next;
225
226 for (note = REG_NOTES (insn); note; note = next)
227 {
228 next = XEXP (note, 1);
229 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
230 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
231 remove_note (insn, note);
232 }
233 }
234 }
235 }
236
237 /* A subroutine of mark_all_labels. Trivially propagate a simple label
238 load into a jump_insn that uses it. */
239
240 static void
241 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
242 {
243 rtx label_note, pc, pc_src;
244
245 pc = pc_set (jump_insn);
246 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
247 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
248
249 /* If the previous non-jump insn sets something to a label,
250 something that this jump insn uses, make that label the primary
251 target of this insn if we don't yet have any. That previous
252 insn must be a single_set and not refer to more than one label.
253 The jump insn must not refer to other labels as jump targets
254 and must be a plain (set (pc) ...), maybe in a parallel, and
255 may refer to the item being set only directly or as one of the
256 arms in an IF_THEN_ELSE. */
257
258 if (label_note != NULL && pc_src != NULL)
259 {
260 rtx label_set = single_set (prev_nonjump_insn);
261 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
262
263 if (label_set != NULL
264 /* The source must be the direct LABEL_REF, not a
265 PLUS, UNSPEC, IF_THEN_ELSE etc. */
266 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
267 && (rtx_equal_p (label_dest, pc_src)
268 || (GET_CODE (pc_src) == IF_THEN_ELSE
269 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
270 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
271 {
272 /* The CODE_LABEL referred to in the note must be the
273 CODE_LABEL in the LABEL_REF of the "set". We can
274 conveniently use it for the marker function, which
275 requires a LABEL_REF wrapping. */
276 gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
277
278 mark_jump_label_1 (label_set, jump_insn, false, true);
279
280 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
281 }
282 }
283 }
284
285 /* Mark the label each jump jumps to.
286 Combine consecutive labels, and count uses of labels. */
287
288 static void
289 mark_all_labels (rtx_insn *f)
290 {
291 rtx_insn *insn;
292
293 if (current_ir_type () == IR_RTL_CFGLAYOUT)
294 {
295 basic_block bb;
296 FOR_EACH_BB_FN (bb, cfun)
297 {
298 /* In cfglayout mode, we don't bother with trivial next-insn
299 propagation of LABEL_REFs into JUMP_LABEL. This will be
300 handled by other optimizers using better algorithms. */
301 FOR_BB_INSNS (bb, insn)
302 {
303 gcc_assert (! insn->deleted ());
304 if (NONDEBUG_INSN_P (insn))
305 mark_jump_label (PATTERN (insn), insn, 0);
306 }
307
308 /* In cfglayout mode, there may be non-insns between the
309 basic blocks. If those non-insns represent tablejump data,
310 they contain label references that we must record. */
311 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
312 if (JUMP_TABLE_DATA_P (insn))
313 mark_jump_label (PATTERN (insn), insn, 0);
314 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
315 if (JUMP_TABLE_DATA_P (insn))
316 mark_jump_label (PATTERN (insn), insn, 0);
317 }
318 }
319 else
320 {
321 rtx_insn *prev_nonjump_insn = NULL;
322 for (insn = f; insn; insn = NEXT_INSN (insn))
323 {
324 if (insn->deleted ())
325 ;
326 else if (LABEL_P (insn))
327 prev_nonjump_insn = NULL;
328 else if (JUMP_TABLE_DATA_P (insn))
329 mark_jump_label (PATTERN (insn), insn, 0);
330 else if (NONDEBUG_INSN_P (insn))
331 {
332 mark_jump_label (PATTERN (insn), insn, 0);
333 if (JUMP_P (insn))
334 {
335 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
336 maybe_propagate_label_ref (insn, prev_nonjump_insn);
337 }
338 else
339 prev_nonjump_insn = insn;
340 }
341 }
342 }
343 }
344 \f
345 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
346 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
347 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
348 know whether it's source is floating point or integer comparison. Machine
349 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
350 to help this function avoid overhead in these cases. */
351 enum rtx_code
352 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
353 const_rtx arg1, const rtx_insn *insn)
354 {
355 machine_mode mode;
356
357 /* If this is not actually a comparison, we can't reverse it. */
358 if (GET_RTX_CLASS (code) != RTX_COMPARE
359 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
360 return UNKNOWN;
361
362 mode = GET_MODE (arg0);
363 if (mode == VOIDmode)
364 mode = GET_MODE (arg1);
365
366 /* First see if machine description supplies us way to reverse the
367 comparison. Give it priority over everything else to allow
368 machine description to do tricks. */
369 if (GET_MODE_CLASS (mode) == MODE_CC
370 && REVERSIBLE_CC_MODE (mode))
371 return REVERSE_CONDITION (code, mode);
372
373 /* Try a few special cases based on the comparison code. */
374 switch (code)
375 {
376 case GEU:
377 case GTU:
378 case LEU:
379 case LTU:
380 case NE:
381 case EQ:
382 /* It is always safe to reverse EQ and NE, even for the floating
383 point. Similarly the unsigned comparisons are never used for
384 floating point so we can reverse them in the default way. */
385 return reverse_condition (code);
386 case ORDERED:
387 case UNORDERED:
388 case LTGT:
389 case UNEQ:
390 /* In case we already see unordered comparison, we can be sure to
391 be dealing with floating point so we don't need any more tests. */
392 return reverse_condition_maybe_unordered (code);
393 case UNLT:
394 case UNLE:
395 case UNGT:
396 case UNGE:
397 /* We don't have safe way to reverse these yet. */
398 return UNKNOWN;
399 default:
400 break;
401 }
402
403 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
404 {
405 /* Try to search for the comparison to determine the real mode.
406 This code is expensive, but with sane machine description it
407 will be never used, since REVERSIBLE_CC_MODE will return true
408 in all cases. */
409 if (! insn)
410 return UNKNOWN;
411
412 /* These CONST_CAST's are okay because prev_nonnote_insn just
413 returns its argument and we assign it to a const_rtx
414 variable. */
415 for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
416 prev != 0 && !LABEL_P (prev);
417 prev = prev_nonnote_insn (prev))
418 {
419 const_rtx set = set_of (arg0, prev);
420 if (set && GET_CODE (set) == SET
421 && rtx_equal_p (SET_DEST (set), arg0))
422 {
423 rtx src = SET_SRC (set);
424
425 if (GET_CODE (src) == COMPARE)
426 {
427 rtx comparison = src;
428 arg0 = XEXP (src, 0);
429 mode = GET_MODE (arg0);
430 if (mode == VOIDmode)
431 mode = GET_MODE (XEXP (comparison, 1));
432 break;
433 }
434 /* We can get past reg-reg moves. This may be useful for model
435 of i387 comparisons that first move flag registers around. */
436 if (REG_P (src))
437 {
438 arg0 = src;
439 continue;
440 }
441 }
442 /* If register is clobbered in some ununderstandable way,
443 give up. */
444 if (set)
445 return UNKNOWN;
446 }
447 }
448
449 /* Test for an integer condition, or a floating-point comparison
450 in which NaNs can be ignored. */
451 if (CONST_INT_P (arg0)
452 || (GET_MODE (arg0) != VOIDmode
453 && GET_MODE_CLASS (mode) != MODE_CC
454 && !HONOR_NANS (mode)))
455 return reverse_condition (code);
456
457 return UNKNOWN;
458 }
459
460 /* A wrapper around the previous function to take COMPARISON as rtx
461 expression. This simplifies many callers. */
462 enum rtx_code
463 reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
464 {
465 if (!COMPARISON_P (comparison))
466 return UNKNOWN;
467 return reversed_comparison_code_parts (GET_CODE (comparison),
468 XEXP (comparison, 0),
469 XEXP (comparison, 1), insn);
470 }
471
472 /* Return comparison with reversed code of EXP.
473 Return NULL_RTX in case we fail to do the reversal. */
474 rtx
475 reversed_comparison (const_rtx exp, machine_mode mode)
476 {
477 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
478 if (reversed_code == UNKNOWN)
479 return NULL_RTX;
480 else
481 return simplify_gen_relational (reversed_code, mode, VOIDmode,
482 XEXP (exp, 0), XEXP (exp, 1));
483 }
484
485 \f
486 /* Given an rtx-code for a comparison, return the code for the negated
487 comparison. If no such code exists, return UNKNOWN.
488
489 WATCH OUT! reverse_condition is not safe to use on a jump that might
490 be acting on the results of an IEEE floating point comparison, because
491 of the special treatment of non-signaling nans in comparisons.
492 Use reversed_comparison_code instead. */
493
494 enum rtx_code
495 reverse_condition (enum rtx_code code)
496 {
497 switch (code)
498 {
499 case EQ:
500 return NE;
501 case NE:
502 return EQ;
503 case GT:
504 return LE;
505 case GE:
506 return LT;
507 case LT:
508 return GE;
509 case LE:
510 return GT;
511 case GTU:
512 return LEU;
513 case GEU:
514 return LTU;
515 case LTU:
516 return GEU;
517 case LEU:
518 return GTU;
519 case UNORDERED:
520 return ORDERED;
521 case ORDERED:
522 return UNORDERED;
523
524 case UNLT:
525 case UNLE:
526 case UNGT:
527 case UNGE:
528 case UNEQ:
529 case LTGT:
530 return UNKNOWN;
531
532 default:
533 gcc_unreachable ();
534 }
535 }
536
537 /* Similar, but we're allowed to generate unordered comparisons, which
538 makes it safe for IEEE floating-point. Of course, we have to recognize
539 that the target will support them too... */
540
541 enum rtx_code
542 reverse_condition_maybe_unordered (enum rtx_code code)
543 {
544 switch (code)
545 {
546 case EQ:
547 return NE;
548 case NE:
549 return EQ;
550 case GT:
551 return UNLE;
552 case GE:
553 return UNLT;
554 case LT:
555 return UNGE;
556 case LE:
557 return UNGT;
558 case LTGT:
559 return UNEQ;
560 case UNORDERED:
561 return ORDERED;
562 case ORDERED:
563 return UNORDERED;
564 case UNLT:
565 return GE;
566 case UNLE:
567 return GT;
568 case UNGT:
569 return LE;
570 case UNGE:
571 return LT;
572 case UNEQ:
573 return LTGT;
574
575 default:
576 gcc_unreachable ();
577 }
578 }
579
580 /* Similar, but return the code when two operands of a comparison are swapped.
581 This IS safe for IEEE floating-point. */
582
583 enum rtx_code
584 swap_condition (enum rtx_code code)
585 {
586 switch (code)
587 {
588 case EQ:
589 case NE:
590 case UNORDERED:
591 case ORDERED:
592 case UNEQ:
593 case LTGT:
594 return code;
595
596 case GT:
597 return LT;
598 case GE:
599 return LE;
600 case LT:
601 return GT;
602 case LE:
603 return GE;
604 case GTU:
605 return LTU;
606 case GEU:
607 return LEU;
608 case LTU:
609 return GTU;
610 case LEU:
611 return GEU;
612 case UNLT:
613 return UNGT;
614 case UNLE:
615 return UNGE;
616 case UNGT:
617 return UNLT;
618 case UNGE:
619 return UNLE;
620
621 default:
622 gcc_unreachable ();
623 }
624 }
625
626 /* Given a comparison CODE, return the corresponding unsigned comparison.
627 If CODE is an equality comparison or already an unsigned comparison,
628 CODE is returned. */
629
630 enum rtx_code
631 unsigned_condition (enum rtx_code code)
632 {
633 switch (code)
634 {
635 case EQ:
636 case NE:
637 case GTU:
638 case GEU:
639 case LTU:
640 case LEU:
641 return code;
642
643 case GT:
644 return GTU;
645 case GE:
646 return GEU;
647 case LT:
648 return LTU;
649 case LE:
650 return LEU;
651
652 default:
653 gcc_unreachable ();
654 }
655 }
656
657 /* Similarly, return the signed version of a comparison. */
658
659 enum rtx_code
660 signed_condition (enum rtx_code code)
661 {
662 switch (code)
663 {
664 case EQ:
665 case NE:
666 case GT:
667 case GE:
668 case LT:
669 case LE:
670 return code;
671
672 case GTU:
673 return GT;
674 case GEU:
675 return GE;
676 case LTU:
677 return LT;
678 case LEU:
679 return LE;
680
681 default:
682 gcc_unreachable ();
683 }
684 }
685 \f
686 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
687 truth of CODE1 implies the truth of CODE2. */
688
689 int
690 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
691 {
692 /* UNKNOWN comparison codes can happen as a result of trying to revert
693 comparison codes.
694 They can't match anything, so we have to reject them here. */
695 if (code1 == UNKNOWN || code2 == UNKNOWN)
696 return 0;
697
698 if (code1 == code2)
699 return 1;
700
701 switch (code1)
702 {
703 case UNEQ:
704 if (code2 == UNLE || code2 == UNGE)
705 return 1;
706 break;
707
708 case EQ:
709 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
710 || code2 == ORDERED)
711 return 1;
712 break;
713
714 case UNLT:
715 if (code2 == UNLE || code2 == NE)
716 return 1;
717 break;
718
719 case LT:
720 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
721 return 1;
722 break;
723
724 case UNGT:
725 if (code2 == UNGE || code2 == NE)
726 return 1;
727 break;
728
729 case GT:
730 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
731 return 1;
732 break;
733
734 case GE:
735 case LE:
736 if (code2 == ORDERED)
737 return 1;
738 break;
739
740 case LTGT:
741 if (code2 == NE || code2 == ORDERED)
742 return 1;
743 break;
744
745 case LTU:
746 if (code2 == LEU || code2 == NE)
747 return 1;
748 break;
749
750 case GTU:
751 if (code2 == GEU || code2 == NE)
752 return 1;
753 break;
754
755 case UNORDERED:
756 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
757 || code2 == UNGE || code2 == UNGT)
758 return 1;
759 break;
760
761 default:
762 break;
763 }
764
765 return 0;
766 }
767 \f
768 /* Return 1 if INSN is an unconditional jump and nothing else. */
769
770 int
771 simplejump_p (const rtx_insn *insn)
772 {
773 return (JUMP_P (insn)
774 && GET_CODE (PATTERN (insn)) == SET
775 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
776 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
777 }
778
779 /* Return nonzero if INSN is a (possibly) conditional jump
780 and nothing more.
781
782 Use of this function is deprecated, since we need to support combined
783 branch and compare insns. Use any_condjump_p instead whenever possible. */
784
785 int
786 condjump_p (const rtx_insn *insn)
787 {
788 const_rtx x = PATTERN (insn);
789
790 if (GET_CODE (x) != SET
791 || GET_CODE (SET_DEST (x)) != PC)
792 return 0;
793
794 x = SET_SRC (x);
795 if (GET_CODE (x) == LABEL_REF)
796 return 1;
797 else
798 return (GET_CODE (x) == IF_THEN_ELSE
799 && ((GET_CODE (XEXP (x, 2)) == PC
800 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
801 || ANY_RETURN_P (XEXP (x, 1))))
802 || (GET_CODE (XEXP (x, 1)) == PC
803 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
804 || ANY_RETURN_P (XEXP (x, 2))))));
805 }
806
807 /* Return nonzero if INSN is a (possibly) conditional jump inside a
808 PARALLEL.
809
810 Use this function is deprecated, since we need to support combined
811 branch and compare insns. Use any_condjump_p instead whenever possible. */
812
813 int
814 condjump_in_parallel_p (const rtx_insn *insn)
815 {
816 const_rtx x = PATTERN (insn);
817
818 if (GET_CODE (x) != PARALLEL)
819 return 0;
820 else
821 x = XVECEXP (x, 0, 0);
822
823 if (GET_CODE (x) != SET)
824 return 0;
825 if (GET_CODE (SET_DEST (x)) != PC)
826 return 0;
827 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
828 return 1;
829 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
830 return 0;
831 if (XEXP (SET_SRC (x), 2) == pc_rtx
832 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
833 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
834 return 1;
835 if (XEXP (SET_SRC (x), 1) == pc_rtx
836 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
837 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
838 return 1;
839 return 0;
840 }
841
842 /* Return set of PC, otherwise NULL. */
843
844 rtx
845 pc_set (const rtx_insn *insn)
846 {
847 rtx pat;
848 if (!JUMP_P (insn))
849 return NULL_RTX;
850 pat = PATTERN (insn);
851
852 /* The set is allowed to appear either as the insn pattern or
853 the first set in a PARALLEL. */
854 if (GET_CODE (pat) == PARALLEL)
855 pat = XVECEXP (pat, 0, 0);
856 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
857 return pat;
858
859 return NULL_RTX;
860 }
861
862 /* Return true when insn is an unconditional direct jump,
863 possibly bundled inside a PARALLEL. */
864
865 int
866 any_uncondjump_p (const rtx_insn *insn)
867 {
868 const_rtx x = pc_set (insn);
869 if (!x)
870 return 0;
871 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
872 return 0;
873 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
874 return 0;
875 return 1;
876 }
877
878 /* Return true when insn is a conditional jump. This function works for
879 instructions containing PC sets in PARALLELs. The instruction may have
880 various other effects so before removing the jump you must verify
881 onlyjump_p.
882
883 Note that unlike condjump_p it returns false for unconditional jumps. */
884
885 int
886 any_condjump_p (const rtx_insn *insn)
887 {
888 const_rtx x = pc_set (insn);
889 enum rtx_code a, b;
890
891 if (!x)
892 return 0;
893 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
894 return 0;
895
896 a = GET_CODE (XEXP (SET_SRC (x), 1));
897 b = GET_CODE (XEXP (SET_SRC (x), 2));
898
899 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
900 || (a == PC
901 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
902 }
903
904 /* Return the label of a conditional jump. */
905
906 rtx
907 condjump_label (const rtx_insn *insn)
908 {
909 rtx x = pc_set (insn);
910
911 if (!x)
912 return NULL_RTX;
913 x = SET_SRC (x);
914 if (GET_CODE (x) == LABEL_REF)
915 return x;
916 if (GET_CODE (x) != IF_THEN_ELSE)
917 return NULL_RTX;
918 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
919 return XEXP (x, 1);
920 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
921 return XEXP (x, 2);
922 return NULL_RTX;
923 }
924
925 /* Return TRUE if INSN is a return jump. */
926
927 int
928 returnjump_p (const rtx_insn *insn)
929 {
930 if (JUMP_P (insn))
931 {
932 subrtx_iterator::array_type array;
933 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
934 {
935 const_rtx x = *iter;
936 switch (GET_CODE (x))
937 {
938 case RETURN:
939 case SIMPLE_RETURN:
940 case EH_RETURN:
941 return true;
942
943 case SET:
944 if (SET_IS_RETURN_P (x))
945 return true;
946 break;
947
948 default:
949 break;
950 }
951 }
952 }
953 return false;
954 }
955
956 /* Return true if INSN is a (possibly conditional) return insn. */
957
958 int
959 eh_returnjump_p (rtx_insn *insn)
960 {
961 if (JUMP_P (insn))
962 {
963 subrtx_iterator::array_type array;
964 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
965 if (GET_CODE (*iter) == EH_RETURN)
966 return true;
967 }
968 return false;
969 }
970
971 /* Return true if INSN is a jump that only transfers control and
972 nothing more. */
973
974 int
975 onlyjump_p (const rtx_insn *insn)
976 {
977 rtx set;
978
979 if (!JUMP_P (insn))
980 return 0;
981
982 set = single_set (insn);
983 if (set == NULL)
984 return 0;
985 if (GET_CODE (SET_DEST (set)) != PC)
986 return 0;
987 if (side_effects_p (SET_SRC (set)))
988 return 0;
989
990 return 1;
991 }
992
993 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
994 NULL or a return. */
995 bool
996 jump_to_label_p (const rtx_insn *insn)
997 {
998 return (JUMP_P (insn)
999 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1000 }
1001
1002 /* Return nonzero if X is an RTX that only sets the condition codes
1003 and has no side effects. */
1004
1005 int
1006 only_sets_cc0_p (const_rtx x)
1007 {
1008 if (! x)
1009 return 0;
1010
1011 if (INSN_P (x))
1012 x = PATTERN (x);
1013
1014 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1015 }
1016
1017 /* Return 1 if X is an RTX that does nothing but set the condition codes
1018 and CLOBBER or USE registers.
1019 Return -1 if X does explicitly set the condition codes,
1020 but also does other things. */
1021
1022 int
1023 sets_cc0_p (const_rtx x)
1024 {
1025 if (! x)
1026 return 0;
1027
1028 if (INSN_P (x))
1029 x = PATTERN (x);
1030
1031 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1032 return 1;
1033 if (GET_CODE (x) == PARALLEL)
1034 {
1035 int i;
1036 int sets_cc0 = 0;
1037 int other_things = 0;
1038 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1039 {
1040 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1041 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1042 sets_cc0 = 1;
1043 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1044 other_things = 1;
1045 }
1046 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1047 }
1048 return 0;
1049 }
1050 \f
1051 /* Find all CODE_LABELs referred to in X, and increment their use
1052 counts. If INSN is a JUMP_INSN and there is at least one
1053 CODE_LABEL referenced in INSN as a jump target, then store the last
1054 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1055 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1056 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1057 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1058 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1059 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1060
1061 Note that two labels separated by a loop-beginning note
1062 must be kept distinct if we have not yet done loop-optimization,
1063 because the gap between them is where loop-optimize
1064 will want to move invariant code to. CROSS_JUMP tells us
1065 that loop-optimization is done with. */
1066
1067 void
1068 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1069 {
1070 rtx asmop = extract_asm_operands (x);
1071 if (asmop)
1072 mark_jump_label_asm (asmop, insn);
1073 else
1074 mark_jump_label_1 (x, insn, in_mem != 0,
1075 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1076 }
1077
1078 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1079 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1080 jump-target; when the JUMP_LABEL field of INSN should be set or a
1081 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1082 note. */
1083
1084 static void
1085 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1086 {
1087 RTX_CODE code = GET_CODE (x);
1088 int i;
1089 const char *fmt;
1090
1091 switch (code)
1092 {
1093 case PC:
1094 case CC0:
1095 case REG:
1096 case CLOBBER:
1097 case CALL:
1098 return;
1099
1100 case RETURN:
1101 case SIMPLE_RETURN:
1102 if (is_target)
1103 {
1104 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1105 JUMP_LABEL (insn) = x;
1106 }
1107 return;
1108
1109 case MEM:
1110 in_mem = true;
1111 break;
1112
1113 case SEQUENCE:
1114 {
1115 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1116 for (i = 0; i < seq->len (); i++)
1117 mark_jump_label (PATTERN (seq->insn (i)),
1118 seq->insn (i), 0);
1119 }
1120 return;
1121
1122 case SYMBOL_REF:
1123 if (!in_mem)
1124 return;
1125
1126 /* If this is a constant-pool reference, see if it is a label. */
1127 if (CONSTANT_POOL_ADDRESS_P (x))
1128 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1129 break;
1130
1131 /* Handle operands in the condition of an if-then-else as for a
1132 non-jump insn. */
1133 case IF_THEN_ELSE:
1134 if (!is_target)
1135 break;
1136 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1137 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1138 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1139 return;
1140
1141 case LABEL_REF:
1142 {
1143 rtx_insn *label = label_ref_label (x);
1144
1145 /* Ignore remaining references to unreachable labels that
1146 have been deleted. */
1147 if (NOTE_P (label)
1148 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1149 break;
1150
1151 gcc_assert (LABEL_P (label));
1152
1153 /* Ignore references to labels of containing functions. */
1154 if (LABEL_REF_NONLOCAL_P (x))
1155 break;
1156
1157 set_label_ref_label (x, label);
1158 if (! insn || ! insn->deleted ())
1159 ++LABEL_NUSES (label);
1160
1161 if (insn)
1162 {
1163 if (is_target
1164 /* Do not change a previous setting of JUMP_LABEL. If the
1165 JUMP_LABEL slot is occupied by a different label,
1166 create a note for this label. */
1167 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1168 JUMP_LABEL (insn) = label;
1169 else
1170 {
1171 enum reg_note kind
1172 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1173
1174 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1175 for LABEL unless there already is one. All uses of
1176 a label, except for the primary target of a jump,
1177 must have such a note. */
1178 if (! find_reg_note (insn, kind, label))
1179 add_reg_note (insn, kind, label);
1180 }
1181 }
1182 return;
1183 }
1184
1185 /* Do walk the labels in a vector, but not the first operand of an
1186 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1187 case ADDR_VEC:
1188 case ADDR_DIFF_VEC:
1189 if (! insn->deleted ())
1190 {
1191 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1192
1193 for (i = 0; i < XVECLEN (x, eltnum); i++)
1194 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1195 is_target);
1196 }
1197 return;
1198
1199 default:
1200 break;
1201 }
1202
1203 fmt = GET_RTX_FORMAT (code);
1204
1205 /* The primary target of a tablejump is the label of the ADDR_VEC,
1206 which is canonically mentioned *last* in the insn. To get it
1207 marked as JUMP_LABEL, we iterate over items in reverse order. */
1208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1209 {
1210 if (fmt[i] == 'e')
1211 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1212 else if (fmt[i] == 'E')
1213 {
1214 int j;
1215
1216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1217 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1218 is_target);
1219 }
1220 }
1221 }
1222
1223 /* Worker function for mark_jump_label. Handle asm insns specially.
1224 In particular, output operands need not be considered so we can
1225 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1226 need to be considered targets. */
1227
1228 static void
1229 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1230 {
1231 int i;
1232
1233 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1234 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1235
1236 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1237 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1238 }
1239 \f
1240 /* Delete insn INSN from the chain of insns and update label ref counts
1241 and delete insns now unreachable.
1242
1243 Returns the first insn after INSN that was not deleted.
1244
1245 Usage of this instruction is deprecated. Use delete_insn instead and
1246 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1247
1248 rtx_insn *
1249 delete_related_insns (rtx uncast_insn)
1250 {
1251 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1252 int was_code_label = (LABEL_P (insn));
1253 rtx note;
1254 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1255
1256 while (next && next->deleted ())
1257 next = NEXT_INSN (next);
1258
1259 /* This insn is already deleted => return first following nondeleted. */
1260 if (insn->deleted ())
1261 return next;
1262
1263 delete_insn (insn);
1264
1265 /* If instruction is followed by a barrier,
1266 delete the barrier too. */
1267
1268 if (next != 0 && BARRIER_P (next))
1269 delete_insn (next);
1270
1271 /* If deleting a jump, decrement the count of the label,
1272 and delete the label if it is now unused. */
1273
1274 if (jump_to_label_p (insn))
1275 {
1276 rtx lab = JUMP_LABEL (insn);
1277 rtx_jump_table_data *lab_next;
1278
1279 if (LABEL_NUSES (lab) == 0)
1280 /* This can delete NEXT or PREV,
1281 either directly if NEXT is JUMP_LABEL (INSN),
1282 or indirectly through more levels of jumps. */
1283 delete_related_insns (lab);
1284 else if (tablejump_p (insn, NULL, &lab_next))
1285 {
1286 /* If we're deleting the tablejump, delete the dispatch table.
1287 We may not be able to kill the label immediately preceding
1288 just yet, as it might be referenced in code leading up to
1289 the tablejump. */
1290 delete_related_insns (lab_next);
1291 }
1292 }
1293
1294 /* Likewise if we're deleting a dispatch table. */
1295
1296 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1297 {
1298 rtvec labels = table->get_labels ();
1299 int i;
1300 int len = GET_NUM_ELEM (labels);
1301
1302 for (i = 0; i < len; i++)
1303 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1304 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1305 while (next && next->deleted ())
1306 next = NEXT_INSN (next);
1307 return next;
1308 }
1309
1310 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1311 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1312 if (INSN_P (insn))
1313 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1314 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1315 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1316 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1317 && LABEL_P (XEXP (note, 0)))
1318 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1319 delete_related_insns (XEXP (note, 0));
1320
1321 while (prev && (prev->deleted () || NOTE_P (prev)))
1322 prev = PREV_INSN (prev);
1323
1324 /* If INSN was a label and a dispatch table follows it,
1325 delete the dispatch table. The tablejump must have gone already.
1326 It isn't useful to fall through into a table. */
1327
1328 if (was_code_label
1329 && NEXT_INSN (insn) != 0
1330 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1331 next = delete_related_insns (NEXT_INSN (insn));
1332
1333 /* If INSN was a label, delete insns following it if now unreachable. */
1334
1335 if (was_code_label && prev && BARRIER_P (prev))
1336 {
1337 enum rtx_code code;
1338 while (next)
1339 {
1340 code = GET_CODE (next);
1341 if (code == NOTE)
1342 next = NEXT_INSN (next);
1343 /* Keep going past other deleted labels to delete what follows. */
1344 else if (code == CODE_LABEL && next->deleted ())
1345 next = NEXT_INSN (next);
1346 /* Keep the (use (insn))s created by dbr_schedule, which needs
1347 them in order to track liveness relative to a previous
1348 barrier. */
1349 else if (INSN_P (next)
1350 && GET_CODE (PATTERN (next)) == USE
1351 && INSN_P (XEXP (PATTERN (next), 0)))
1352 next = NEXT_INSN (next);
1353 else if (code == BARRIER || INSN_P (next))
1354 /* Note: if this deletes a jump, it can cause more
1355 deletion of unreachable code, after a different label.
1356 As long as the value from this recursive call is correct,
1357 this invocation functions correctly. */
1358 next = delete_related_insns (next);
1359 else
1360 break;
1361 }
1362 }
1363
1364 /* I feel a little doubtful about this loop,
1365 but I see no clean and sure alternative way
1366 to find the first insn after INSN that is not now deleted.
1367 I hope this works. */
1368 while (next && next->deleted ())
1369 next = NEXT_INSN (next);
1370 return next;
1371 }
1372 \f
1373 /* Delete a range of insns from FROM to TO, inclusive.
1374 This is for the sake of peephole optimization, so assume
1375 that whatever these insns do will still be done by a new
1376 peephole insn that will replace them. */
1377
1378 void
1379 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1380 {
1381 rtx_insn *insn = from;
1382
1383 while (1)
1384 {
1385 rtx_insn *next = NEXT_INSN (insn);
1386 rtx_insn *prev = PREV_INSN (insn);
1387
1388 if (!NOTE_P (insn))
1389 {
1390 insn->set_deleted();
1391
1392 /* Patch this insn out of the chain. */
1393 /* We don't do this all at once, because we
1394 must preserve all NOTEs. */
1395 if (prev)
1396 SET_NEXT_INSN (prev) = next;
1397
1398 if (next)
1399 SET_PREV_INSN (next) = prev;
1400 }
1401
1402 if (insn == to)
1403 break;
1404 insn = next;
1405 }
1406
1407 /* Note that if TO is an unconditional jump
1408 we *do not* delete the BARRIER that follows,
1409 since the peephole that replaces this sequence
1410 is also an unconditional jump in that case. */
1411 }
1412 \f
1413 /* A helper function for redirect_exp_1; examines its input X and returns
1414 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1415 static rtx
1416 redirect_target (rtx x)
1417 {
1418 if (x == NULL_RTX)
1419 return ret_rtx;
1420 if (!ANY_RETURN_P (x))
1421 return gen_rtx_LABEL_REF (Pmode, x);
1422 return x;
1423 }
1424
1425 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1426 NLABEL as a return. Accrue modifications into the change group. */
1427
1428 static void
1429 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx_insn *insn)
1430 {
1431 rtx x = *loc;
1432 RTX_CODE code = GET_CODE (x);
1433 int i;
1434 const char *fmt;
1435
1436 if ((code == LABEL_REF && label_ref_label (x) == olabel)
1437 || x == olabel)
1438 {
1439 x = redirect_target (nlabel);
1440 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1441 x = gen_rtx_SET (pc_rtx, x);
1442 validate_change (insn, loc, x, 1);
1443 return;
1444 }
1445
1446 if (code == SET && SET_DEST (x) == pc_rtx
1447 && ANY_RETURN_P (nlabel)
1448 && GET_CODE (SET_SRC (x)) == LABEL_REF
1449 && label_ref_label (SET_SRC (x)) == olabel)
1450 {
1451 validate_change (insn, loc, nlabel, 1);
1452 return;
1453 }
1454
1455 if (code == IF_THEN_ELSE)
1456 {
1457 /* Skip the condition of an IF_THEN_ELSE. We only want to
1458 change jump destinations, not eventual label comparisons. */
1459 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1460 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1461 return;
1462 }
1463
1464 fmt = GET_RTX_FORMAT (code);
1465 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1466 {
1467 if (fmt[i] == 'e')
1468 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1469 else if (fmt[i] == 'E')
1470 {
1471 int j;
1472 for (j = 0; j < XVECLEN (x, i); j++)
1473 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1474 }
1475 }
1476 }
1477
1478 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1479 the modifications into the change group. Return false if we did
1480 not see how to do that. */
1481
1482 int
1483 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1484 {
1485 int ochanges = num_validated_changes ();
1486 rtx *loc, asmop;
1487
1488 gcc_assert (nlabel != NULL_RTX);
1489 asmop = extract_asm_operands (PATTERN (jump));
1490 if (asmop)
1491 {
1492 if (nlabel == NULL)
1493 return 0;
1494 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1495 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1496 }
1497 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1498 loc = &XVECEXP (PATTERN (jump), 0, 0);
1499 else
1500 loc = &PATTERN (jump);
1501
1502 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1503 return num_validated_changes () > ochanges;
1504 }
1505
1506 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1507 jump target label is unused as a result, it and the code following
1508 it may be deleted.
1509
1510 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1511 in that case we are to turn the jump into a (possibly conditional)
1512 return insn.
1513
1514 The return value will be 1 if the change was made, 0 if it wasn't
1515 (this can only occur when trying to produce return insns). */
1516
1517 int
1518 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1519 {
1520 rtx olabel = jump->jump_label ();
1521
1522 if (!nlabel)
1523 {
1524 /* If there is no label, we are asked to redirect to the EXIT block.
1525 When before the epilogue is emitted, return/simple_return cannot be
1526 created so we return 0 immediately. After the epilogue is emitted,
1527 we always expect a label, either a non-null label, or a
1528 return/simple_return RTX. */
1529
1530 if (!epilogue_completed)
1531 return 0;
1532 gcc_unreachable ();
1533 }
1534
1535 if (nlabel == olabel)
1536 return 1;
1537
1538 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1539 return 0;
1540
1541 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1542 return 1;
1543 }
1544
1545 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1546 NLABEL in JUMP.
1547 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1548 count has dropped to zero. */
1549 void
1550 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1551 int invert)
1552 {
1553 rtx note;
1554
1555 gcc_assert (JUMP_LABEL (jump) == olabel);
1556
1557 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1558 moving FUNCTION_END note. Just sanity check that no user still worry
1559 about this. */
1560 gcc_assert (delete_unused >= 0);
1561 JUMP_LABEL (jump) = nlabel;
1562 if (!ANY_RETURN_P (nlabel))
1563 ++LABEL_NUSES (nlabel);
1564
1565 /* Update labels in any REG_EQUAL note. */
1566 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1567 {
1568 if (ANY_RETURN_P (nlabel)
1569 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1570 remove_note (jump, note);
1571 else
1572 {
1573 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1574 confirm_change_group ();
1575 }
1576 }
1577
1578 /* Handle the case where we had a conditional crossing jump to a return
1579 label and are now changing it into a direct conditional return.
1580 The jump is no longer crossing in that case. */
1581 if (ANY_RETURN_P (nlabel))
1582 CROSSING_JUMP_P (jump) = 0;
1583
1584 if (!ANY_RETURN_P (olabel)
1585 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1586 /* Undefined labels will remain outside the insn stream. */
1587 && INSN_UID (olabel))
1588 delete_related_insns (olabel);
1589 if (invert)
1590 invert_br_probabilities (jump);
1591 }
1592
1593 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1594 modifications into the change group. Return nonzero for success. */
1595 static int
1596 invert_exp_1 (rtx x, rtx_insn *insn)
1597 {
1598 RTX_CODE code = GET_CODE (x);
1599
1600 if (code == IF_THEN_ELSE)
1601 {
1602 rtx comp = XEXP (x, 0);
1603 rtx tem;
1604 enum rtx_code reversed_code;
1605
1606 /* We can do this in two ways: The preferable way, which can only
1607 be done if this is not an integer comparison, is to reverse
1608 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1609 of the IF_THEN_ELSE. If we can't do either, fail. */
1610
1611 reversed_code = reversed_comparison_code (comp, insn);
1612
1613 if (reversed_code != UNKNOWN)
1614 {
1615 validate_change (insn, &XEXP (x, 0),
1616 gen_rtx_fmt_ee (reversed_code,
1617 GET_MODE (comp), XEXP (comp, 0),
1618 XEXP (comp, 1)),
1619 1);
1620 return 1;
1621 }
1622
1623 tem = XEXP (x, 1);
1624 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1625 validate_change (insn, &XEXP (x, 2), tem, 1);
1626 return 1;
1627 }
1628 else
1629 return 0;
1630 }
1631
1632 /* Invert the condition of the jump JUMP, and make it jump to label
1633 NLABEL instead of where it jumps now. Accrue changes into the
1634 change group. Return false if we didn't see how to perform the
1635 inversion and redirection. */
1636
1637 int
1638 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1639 {
1640 rtx x = pc_set (jump);
1641 int ochanges;
1642 int ok;
1643
1644 ochanges = num_validated_changes ();
1645 if (x == NULL)
1646 return 0;
1647 ok = invert_exp_1 (SET_SRC (x), jump);
1648 gcc_assert (ok);
1649
1650 if (num_validated_changes () == ochanges)
1651 return 0;
1652
1653 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1654 in Pmode, so checking this is not merely an optimization. */
1655 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1656 }
1657
1658 /* Invert the condition of the jump JUMP, and make it jump to label
1659 NLABEL instead of where it jumps now. Return true if successful. */
1660
1661 int
1662 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1663 {
1664 rtx olabel = JUMP_LABEL (jump);
1665
1666 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1667 {
1668 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1669 return 1;
1670 }
1671 cancel_changes (0);
1672 return 0;
1673 }
1674
1675 \f
1676 /* Like rtx_equal_p except that it considers two REGs as equal
1677 if they renumber to the same value and considers two commutative
1678 operations to be the same if the order of the operands has been
1679 reversed. */
1680
1681 int
1682 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1683 {
1684 int i;
1685 const enum rtx_code code = GET_CODE (x);
1686 const char *fmt;
1687
1688 if (x == y)
1689 return 1;
1690
1691 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1692 && (REG_P (y) || (GET_CODE (y) == SUBREG
1693 && REG_P (SUBREG_REG (y)))))
1694 {
1695 int reg_x = -1, reg_y = -1;
1696 poly_int64 byte_x = 0, byte_y = 0;
1697 struct subreg_info info;
1698
1699 if (GET_MODE (x) != GET_MODE (y))
1700 return 0;
1701
1702 /* If we haven't done any renumbering, don't
1703 make any assumptions. */
1704 if (reg_renumber == 0)
1705 return rtx_equal_p (x, y);
1706
1707 if (code == SUBREG)
1708 {
1709 reg_x = REGNO (SUBREG_REG (x));
1710 byte_x = SUBREG_BYTE (x);
1711
1712 if (reg_renumber[reg_x] >= 0)
1713 {
1714 subreg_get_info (reg_renumber[reg_x],
1715 GET_MODE (SUBREG_REG (x)), byte_x,
1716 GET_MODE (x), &info);
1717 if (!info.representable_p)
1718 return 0;
1719 reg_x = info.offset;
1720 byte_x = 0;
1721 }
1722 }
1723 else
1724 {
1725 reg_x = REGNO (x);
1726 if (reg_renumber[reg_x] >= 0)
1727 reg_x = reg_renumber[reg_x];
1728 }
1729
1730 if (GET_CODE (y) == SUBREG)
1731 {
1732 reg_y = REGNO (SUBREG_REG (y));
1733 byte_y = SUBREG_BYTE (y);
1734
1735 if (reg_renumber[reg_y] >= 0)
1736 {
1737 subreg_get_info (reg_renumber[reg_y],
1738 GET_MODE (SUBREG_REG (y)), byte_y,
1739 GET_MODE (y), &info);
1740 if (!info.representable_p)
1741 return 0;
1742 reg_y = info.offset;
1743 byte_y = 0;
1744 }
1745 }
1746 else
1747 {
1748 reg_y = REGNO (y);
1749 if (reg_renumber[reg_y] >= 0)
1750 reg_y = reg_renumber[reg_y];
1751 }
1752
1753 return reg_x >= 0 && reg_x == reg_y && known_eq (byte_x, byte_y);
1754 }
1755
1756 /* Now we have disposed of all the cases
1757 in which different rtx codes can match. */
1758 if (code != GET_CODE (y))
1759 return 0;
1760
1761 switch (code)
1762 {
1763 case PC:
1764 case CC0:
1765 case ADDR_VEC:
1766 case ADDR_DIFF_VEC:
1767 CASE_CONST_UNIQUE:
1768 return 0;
1769
1770 case LABEL_REF:
1771 /* We can't assume nonlocal labels have their following insns yet. */
1772 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1773 return label_ref_label (x) == label_ref_label (y);
1774
1775 /* Two label-refs are equivalent if they point at labels
1776 in the same position in the instruction stream. */
1777 else
1778 {
1779 rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1780 rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
1781 while (xi && LABEL_P (xi))
1782 xi = next_nonnote_nondebug_insn (xi);
1783 while (yi && LABEL_P (yi))
1784 yi = next_nonnote_nondebug_insn (yi);
1785 return xi == yi;
1786 }
1787
1788 case SYMBOL_REF:
1789 return XSTR (x, 0) == XSTR (y, 0);
1790
1791 case CODE_LABEL:
1792 /* If we didn't match EQ equality above, they aren't the same. */
1793 return 0;
1794
1795 default:
1796 break;
1797 }
1798
1799 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1800
1801 if (GET_MODE (x) != GET_MODE (y))
1802 return 0;
1803
1804 /* MEMs referring to different address space are not equivalent. */
1805 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1806 return 0;
1807
1808 /* For commutative operations, the RTX match if the operand match in any
1809 order. Also handle the simple binary and unary cases without a loop. */
1810 if (targetm.commutative_p (x, UNKNOWN))
1811 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1812 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1813 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1814 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1815 else if (NON_COMMUTATIVE_P (x))
1816 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1817 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1818 else if (UNARY_P (x))
1819 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1820
1821 /* Compare the elements. If any pair of corresponding elements
1822 fail to match, return 0 for the whole things. */
1823
1824 fmt = GET_RTX_FORMAT (code);
1825 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1826 {
1827 int j;
1828 switch (fmt[i])
1829 {
1830 case 'w':
1831 if (XWINT (x, i) != XWINT (y, i))
1832 return 0;
1833 break;
1834
1835 case 'i':
1836 if (XINT (x, i) != XINT (y, i))
1837 {
1838 if (((code == ASM_OPERANDS && i == 6)
1839 || (code == ASM_INPUT && i == 1)))
1840 break;
1841 return 0;
1842 }
1843 break;
1844
1845 case 'p':
1846 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1847 return 0;
1848 break;
1849
1850 case 't':
1851 if (XTREE (x, i) != XTREE (y, i))
1852 return 0;
1853 break;
1854
1855 case 's':
1856 if (strcmp (XSTR (x, i), XSTR (y, i)))
1857 return 0;
1858 break;
1859
1860 case 'e':
1861 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1862 return 0;
1863 break;
1864
1865 case 'u':
1866 if (XEXP (x, i) != XEXP (y, i))
1867 return 0;
1868 /* Fall through. */
1869 case '0':
1870 break;
1871
1872 case 'E':
1873 if (XVECLEN (x, i) != XVECLEN (y, i))
1874 return 0;
1875 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1876 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1877 return 0;
1878 break;
1879
1880 default:
1881 gcc_unreachable ();
1882 }
1883 }
1884 return 1;
1885 }
1886 \f
1887 /* If X is a hard register or equivalent to one or a subregister of one,
1888 return the hard register number. If X is a pseudo register that was not
1889 assigned a hard register, return the pseudo register number. Otherwise,
1890 return -1. Any rtx is valid for X. */
1891
1892 int
1893 true_regnum (const_rtx x)
1894 {
1895 if (REG_P (x))
1896 {
1897 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1898 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1899 return reg_renumber[REGNO (x)];
1900 return REGNO (x);
1901 }
1902 if (GET_CODE (x) == SUBREG)
1903 {
1904 int base = true_regnum (SUBREG_REG (x));
1905 if (base >= 0
1906 && base < FIRST_PSEUDO_REGISTER)
1907 {
1908 struct subreg_info info;
1909
1910 subreg_get_info (lra_in_progress
1911 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1912 GET_MODE (SUBREG_REG (x)),
1913 SUBREG_BYTE (x), GET_MODE (x), &info);
1914
1915 if (info.representable_p)
1916 return base + info.offset;
1917 }
1918 }
1919 return -1;
1920 }
1921
1922 /* Return regno of the register REG and handle subregs too. */
1923 unsigned int
1924 reg_or_subregno (const_rtx reg)
1925 {
1926 if (GET_CODE (reg) == SUBREG)
1927 reg = SUBREG_REG (reg);
1928 gcc_assert (REG_P (reg));
1929 return REGNO (reg);
1930 }