lto-cgraph.c (output_profile_summary, [...]): Use gcov streaming; stream hot bb thres...
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "function.h"
49 #include "basic-block.h"
50 #include "expr.h"
51 #include "except.h"
52 #include "diagnostic-core.h"
53 #include "reload.h"
54 #include "predict.h"
55 #include "tree-pass.h"
56 #include "target.h"
57
58 /* Optimize jump y; x: ... y: jumpif... x?
59 Don't know if it is worth bothering with. */
60 /* Optimize two cases of conditional jump to conditional jump?
61 This can never delete any instruction or make anything dead,
62 or even change what is live at any point.
63 So perhaps let combiner do it. */
64
65 static void init_label_info (rtx);
66 static void mark_all_labels (rtx);
67 static void mark_jump_label_1 (rtx, rtx, bool, bool);
68 static void mark_jump_label_asm (rtx, rtx);
69 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
70 static int invert_exp_1 (rtx, rtx);
71 static int returnjump_p_1 (rtx *, void *);
72 \f
73 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
74 static void
75 rebuild_jump_labels_1 (rtx f, bool count_forced)
76 {
77 rtx insn;
78
79 timevar_push (TV_REBUILD_JUMP);
80 init_label_info (f);
81 mark_all_labels (f);
82
83 /* Keep track of labels used from static data; we don't track them
84 closely enough to delete them here, so make sure their reference
85 count doesn't drop to zero. */
86
87 if (count_forced)
88 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
89 if (LABEL_P (XEXP (insn, 0)))
90 LABEL_NUSES (XEXP (insn, 0))++;
91 timevar_pop (TV_REBUILD_JUMP);
92 }
93
94 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
95 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
96 instructions and jumping insns that have labels as operands
97 (e.g. cbranchsi4). */
98 void
99 rebuild_jump_labels (rtx f)
100 {
101 rebuild_jump_labels_1 (f, true);
102 }
103
104 /* This function is like rebuild_jump_labels, but doesn't run over
105 forced_labels. It can be used on insn chains that aren't the
106 main function chain. */
107 void
108 rebuild_jump_labels_chain (rtx chain)
109 {
110 rebuild_jump_labels_1 (chain, false);
111 }
112 \f
113 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
114 non-fallthru insn. This is not generally true, as multiple barriers
115 may have crept in, or the BARRIER may be separated from the last
116 real insn by one or more NOTEs.
117
118 This simple pass moves barriers and removes duplicates so that the
119 old code is happy.
120 */
121 unsigned int
122 cleanup_barriers (void)
123 {
124 rtx insn, next, prev;
125 for (insn = get_insns (); insn; insn = next)
126 {
127 next = NEXT_INSN (insn);
128 if (BARRIER_P (insn))
129 {
130 prev = prev_nonnote_insn (insn);
131 if (!prev)
132 continue;
133 if (BARRIER_P (prev))
134 delete_insn (insn);
135 else if (prev != PREV_INSN (insn))
136 reorder_insns (insn, insn, prev);
137 }
138 }
139 return 0;
140 }
141
142 struct rtl_opt_pass pass_cleanup_barriers =
143 {
144 {
145 RTL_PASS,
146 "barriers", /* name */
147 OPTGROUP_NONE, /* optinfo_flags */
148 NULL, /* gate */
149 cleanup_barriers, /* execute */
150 NULL, /* sub */
151 NULL, /* next */
152 0, /* static_pass_number */
153 TV_NONE, /* tv_id */
154 0, /* properties_required */
155 0, /* properties_provided */
156 0, /* properties_destroyed */
157 0, /* todo_flags_start */
158 0 /* todo_flags_finish */
159 }
160 };
161
162 \f
163 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
164 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
165 notes whose labels don't occur in the insn any more. */
166
167 static void
168 init_label_info (rtx f)
169 {
170 rtx insn;
171
172 for (insn = f; insn; insn = NEXT_INSN (insn))
173 {
174 if (LABEL_P (insn))
175 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
176
177 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
178 sticky and not reset here; that way we won't lose association
179 with a label when e.g. the source for a target register
180 disappears out of reach for targets that may use jump-target
181 registers. Jump transformations are supposed to transform
182 any REG_LABEL_TARGET notes. The target label reference in a
183 branch may disappear from the branch (and from the
184 instruction before it) for other reasons, like register
185 allocation. */
186
187 if (INSN_P (insn))
188 {
189 rtx note, next;
190
191 for (note = REG_NOTES (insn); note; note = next)
192 {
193 next = XEXP (note, 1);
194 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
195 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
196 remove_note (insn, note);
197 }
198 }
199 }
200 }
201
202 /* A subroutine of mark_all_labels. Trivially propagate a simple label
203 load into a jump_insn that uses it. */
204
205 static void
206 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
207 {
208 rtx label_note, pc, pc_src;
209
210 pc = pc_set (jump_insn);
211 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
212 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
213
214 /* If the previous non-jump insn sets something to a label,
215 something that this jump insn uses, make that label the primary
216 target of this insn if we don't yet have any. That previous
217 insn must be a single_set and not refer to more than one label.
218 The jump insn must not refer to other labels as jump targets
219 and must be a plain (set (pc) ...), maybe in a parallel, and
220 may refer to the item being set only directly or as one of the
221 arms in an IF_THEN_ELSE. */
222
223 if (label_note != NULL && pc_src != NULL)
224 {
225 rtx label_set = single_set (prev_nonjump_insn);
226 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
227
228 if (label_set != NULL
229 /* The source must be the direct LABEL_REF, not a
230 PLUS, UNSPEC, IF_THEN_ELSE etc. */
231 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
232 && (rtx_equal_p (label_dest, pc_src)
233 || (GET_CODE (pc_src) == IF_THEN_ELSE
234 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
235 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
236 {
237 /* The CODE_LABEL referred to in the note must be the
238 CODE_LABEL in the LABEL_REF of the "set". We can
239 conveniently use it for the marker function, which
240 requires a LABEL_REF wrapping. */
241 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
242
243 mark_jump_label_1 (label_set, jump_insn, false, true);
244
245 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
246 }
247 }
248 }
249
250 /* Mark the label each jump jumps to.
251 Combine consecutive labels, and count uses of labels. */
252
253 static void
254 mark_all_labels (rtx f)
255 {
256 rtx insn;
257
258 if (current_ir_type () == IR_RTL_CFGLAYOUT)
259 {
260 basic_block bb;
261 FOR_EACH_BB (bb)
262 {
263 /* In cfglayout mode, we don't bother with trivial next-insn
264 propagation of LABEL_REFs into JUMP_LABEL. This will be
265 handled by other optimizers using better algorithms. */
266 FOR_BB_INSNS (bb, insn)
267 {
268 gcc_assert (! INSN_DELETED_P (insn));
269 if (NONDEBUG_INSN_P (insn))
270 mark_jump_label (PATTERN (insn), insn, 0);
271 }
272
273 /* In cfglayout mode, there may be non-insns between the
274 basic blocks. If those non-insns represent tablejump data,
275 they contain label references that we must record. */
276 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
277 if (INSN_P (insn))
278 {
279 gcc_assert (JUMP_TABLE_DATA_P (insn));
280 mark_jump_label (PATTERN (insn), insn, 0);
281 }
282 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
283 if (INSN_P (insn))
284 {
285 gcc_assert (JUMP_TABLE_DATA_P (insn));
286 mark_jump_label (PATTERN (insn), insn, 0);
287 }
288 }
289 }
290 else
291 {
292 rtx prev_nonjump_insn = NULL;
293 for (insn = f; insn; insn = NEXT_INSN (insn))
294 {
295 if (INSN_DELETED_P (insn))
296 ;
297 else if (LABEL_P (insn))
298 prev_nonjump_insn = NULL;
299 else if (NONDEBUG_INSN_P (insn))
300 {
301 mark_jump_label (PATTERN (insn), insn, 0);
302 if (JUMP_P (insn))
303 {
304 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
305 maybe_propagate_label_ref (insn, prev_nonjump_insn);
306 }
307 else
308 prev_nonjump_insn = insn;
309 }
310 }
311 }
312 }
313 \f
314 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
315 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
316 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
317 know whether it's source is floating point or integer comparison. Machine
318 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
319 to help this function avoid overhead in these cases. */
320 enum rtx_code
321 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
322 const_rtx arg1, const_rtx insn)
323 {
324 enum machine_mode mode;
325
326 /* If this is not actually a comparison, we can't reverse it. */
327 if (GET_RTX_CLASS (code) != RTX_COMPARE
328 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
329 return UNKNOWN;
330
331 mode = GET_MODE (arg0);
332 if (mode == VOIDmode)
333 mode = GET_MODE (arg1);
334
335 /* First see if machine description supplies us way to reverse the
336 comparison. Give it priority over everything else to allow
337 machine description to do tricks. */
338 if (GET_MODE_CLASS (mode) == MODE_CC
339 && REVERSIBLE_CC_MODE (mode))
340 {
341 #ifdef REVERSE_CONDITION
342 return REVERSE_CONDITION (code, mode);
343 #else
344 return reverse_condition (code);
345 #endif
346 }
347
348 /* Try a few special cases based on the comparison code. */
349 switch (code)
350 {
351 case GEU:
352 case GTU:
353 case LEU:
354 case LTU:
355 case NE:
356 case EQ:
357 /* It is always safe to reverse EQ and NE, even for the floating
358 point. Similarly the unsigned comparisons are never used for
359 floating point so we can reverse them in the default way. */
360 return reverse_condition (code);
361 case ORDERED:
362 case UNORDERED:
363 case LTGT:
364 case UNEQ:
365 /* In case we already see unordered comparison, we can be sure to
366 be dealing with floating point so we don't need any more tests. */
367 return reverse_condition_maybe_unordered (code);
368 case UNLT:
369 case UNLE:
370 case UNGT:
371 case UNGE:
372 /* We don't have safe way to reverse these yet. */
373 return UNKNOWN;
374 default:
375 break;
376 }
377
378 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
379 {
380 const_rtx prev;
381 /* Try to search for the comparison to determine the real mode.
382 This code is expensive, but with sane machine description it
383 will be never used, since REVERSIBLE_CC_MODE will return true
384 in all cases. */
385 if (! insn)
386 return UNKNOWN;
387
388 /* These CONST_CAST's are okay because prev_nonnote_insn just
389 returns its argument and we assign it to a const_rtx
390 variable. */
391 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
392 prev != 0 && !LABEL_P (prev);
393 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
394 {
395 const_rtx set = set_of (arg0, prev);
396 if (set && GET_CODE (set) == SET
397 && rtx_equal_p (SET_DEST (set), arg0))
398 {
399 rtx src = SET_SRC (set);
400
401 if (GET_CODE (src) == COMPARE)
402 {
403 rtx comparison = src;
404 arg0 = XEXP (src, 0);
405 mode = GET_MODE (arg0);
406 if (mode == VOIDmode)
407 mode = GET_MODE (XEXP (comparison, 1));
408 break;
409 }
410 /* We can get past reg-reg moves. This may be useful for model
411 of i387 comparisons that first move flag registers around. */
412 if (REG_P (src))
413 {
414 arg0 = src;
415 continue;
416 }
417 }
418 /* If register is clobbered in some ununderstandable way,
419 give up. */
420 if (set)
421 return UNKNOWN;
422 }
423 }
424
425 /* Test for an integer condition, or a floating-point comparison
426 in which NaNs can be ignored. */
427 if (CONST_INT_P (arg0)
428 || (GET_MODE (arg0) != VOIDmode
429 && GET_MODE_CLASS (mode) != MODE_CC
430 && !HONOR_NANS (mode)))
431 return reverse_condition (code);
432
433 return UNKNOWN;
434 }
435
436 /* A wrapper around the previous function to take COMPARISON as rtx
437 expression. This simplifies many callers. */
438 enum rtx_code
439 reversed_comparison_code (const_rtx comparison, const_rtx insn)
440 {
441 if (!COMPARISON_P (comparison))
442 return UNKNOWN;
443 return reversed_comparison_code_parts (GET_CODE (comparison),
444 XEXP (comparison, 0),
445 XEXP (comparison, 1), insn);
446 }
447
448 /* Return comparison with reversed code of EXP.
449 Return NULL_RTX in case we fail to do the reversal. */
450 rtx
451 reversed_comparison (const_rtx exp, enum machine_mode mode)
452 {
453 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
454 if (reversed_code == UNKNOWN)
455 return NULL_RTX;
456 else
457 return simplify_gen_relational (reversed_code, mode, VOIDmode,
458 XEXP (exp, 0), XEXP (exp, 1));
459 }
460
461 \f
462 /* Given an rtx-code for a comparison, return the code for the negated
463 comparison. If no such code exists, return UNKNOWN.
464
465 WATCH OUT! reverse_condition is not safe to use on a jump that might
466 be acting on the results of an IEEE floating point comparison, because
467 of the special treatment of non-signaling nans in comparisons.
468 Use reversed_comparison_code instead. */
469
470 enum rtx_code
471 reverse_condition (enum rtx_code code)
472 {
473 switch (code)
474 {
475 case EQ:
476 return NE;
477 case NE:
478 return EQ;
479 case GT:
480 return LE;
481 case GE:
482 return LT;
483 case LT:
484 return GE;
485 case LE:
486 return GT;
487 case GTU:
488 return LEU;
489 case GEU:
490 return LTU;
491 case LTU:
492 return GEU;
493 case LEU:
494 return GTU;
495 case UNORDERED:
496 return ORDERED;
497 case ORDERED:
498 return UNORDERED;
499
500 case UNLT:
501 case UNLE:
502 case UNGT:
503 case UNGE:
504 case UNEQ:
505 case LTGT:
506 return UNKNOWN;
507
508 default:
509 gcc_unreachable ();
510 }
511 }
512
513 /* Similar, but we're allowed to generate unordered comparisons, which
514 makes it safe for IEEE floating-point. Of course, we have to recognize
515 that the target will support them too... */
516
517 enum rtx_code
518 reverse_condition_maybe_unordered (enum rtx_code code)
519 {
520 switch (code)
521 {
522 case EQ:
523 return NE;
524 case NE:
525 return EQ;
526 case GT:
527 return UNLE;
528 case GE:
529 return UNLT;
530 case LT:
531 return UNGE;
532 case LE:
533 return UNGT;
534 case LTGT:
535 return UNEQ;
536 case UNORDERED:
537 return ORDERED;
538 case ORDERED:
539 return UNORDERED;
540 case UNLT:
541 return GE;
542 case UNLE:
543 return GT;
544 case UNGT:
545 return LE;
546 case UNGE:
547 return LT;
548 case UNEQ:
549 return LTGT;
550
551 default:
552 gcc_unreachable ();
553 }
554 }
555
556 /* Similar, but return the code when two operands of a comparison are swapped.
557 This IS safe for IEEE floating-point. */
558
559 enum rtx_code
560 swap_condition (enum rtx_code code)
561 {
562 switch (code)
563 {
564 case EQ:
565 case NE:
566 case UNORDERED:
567 case ORDERED:
568 case UNEQ:
569 case LTGT:
570 return code;
571
572 case GT:
573 return LT;
574 case GE:
575 return LE;
576 case LT:
577 return GT;
578 case LE:
579 return GE;
580 case GTU:
581 return LTU;
582 case GEU:
583 return LEU;
584 case LTU:
585 return GTU;
586 case LEU:
587 return GEU;
588 case UNLT:
589 return UNGT;
590 case UNLE:
591 return UNGE;
592 case UNGT:
593 return UNLT;
594 case UNGE:
595 return UNLE;
596
597 default:
598 gcc_unreachable ();
599 }
600 }
601
602 /* Given a comparison CODE, return the corresponding unsigned comparison.
603 If CODE is an equality comparison or already an unsigned comparison,
604 CODE is returned. */
605
606 enum rtx_code
607 unsigned_condition (enum rtx_code code)
608 {
609 switch (code)
610 {
611 case EQ:
612 case NE:
613 case GTU:
614 case GEU:
615 case LTU:
616 case LEU:
617 return code;
618
619 case GT:
620 return GTU;
621 case GE:
622 return GEU;
623 case LT:
624 return LTU;
625 case LE:
626 return LEU;
627
628 default:
629 gcc_unreachable ();
630 }
631 }
632
633 /* Similarly, return the signed version of a comparison. */
634
635 enum rtx_code
636 signed_condition (enum rtx_code code)
637 {
638 switch (code)
639 {
640 case EQ:
641 case NE:
642 case GT:
643 case GE:
644 case LT:
645 case LE:
646 return code;
647
648 case GTU:
649 return GT;
650 case GEU:
651 return GE;
652 case LTU:
653 return LT;
654 case LEU:
655 return LE;
656
657 default:
658 gcc_unreachable ();
659 }
660 }
661 \f
662 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
663 truth of CODE1 implies the truth of CODE2. */
664
665 int
666 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
667 {
668 /* UNKNOWN comparison codes can happen as a result of trying to revert
669 comparison codes.
670 They can't match anything, so we have to reject them here. */
671 if (code1 == UNKNOWN || code2 == UNKNOWN)
672 return 0;
673
674 if (code1 == code2)
675 return 1;
676
677 switch (code1)
678 {
679 case UNEQ:
680 if (code2 == UNLE || code2 == UNGE)
681 return 1;
682 break;
683
684 case EQ:
685 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
686 || code2 == ORDERED)
687 return 1;
688 break;
689
690 case UNLT:
691 if (code2 == UNLE || code2 == NE)
692 return 1;
693 break;
694
695 case LT:
696 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
697 return 1;
698 break;
699
700 case UNGT:
701 if (code2 == UNGE || code2 == NE)
702 return 1;
703 break;
704
705 case GT:
706 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
707 return 1;
708 break;
709
710 case GE:
711 case LE:
712 if (code2 == ORDERED)
713 return 1;
714 break;
715
716 case LTGT:
717 if (code2 == NE || code2 == ORDERED)
718 return 1;
719 break;
720
721 case LTU:
722 if (code2 == LEU || code2 == NE)
723 return 1;
724 break;
725
726 case GTU:
727 if (code2 == GEU || code2 == NE)
728 return 1;
729 break;
730
731 case UNORDERED:
732 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
733 || code2 == UNGE || code2 == UNGT)
734 return 1;
735 break;
736
737 default:
738 break;
739 }
740
741 return 0;
742 }
743 \f
744 /* Return 1 if INSN is an unconditional jump and nothing else. */
745
746 int
747 simplejump_p (const_rtx insn)
748 {
749 return (JUMP_P (insn)
750 && GET_CODE (PATTERN (insn)) == SET
751 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
752 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
753 }
754
755 /* Return nonzero if INSN is a (possibly) conditional jump
756 and nothing more.
757
758 Use of this function is deprecated, since we need to support combined
759 branch and compare insns. Use any_condjump_p instead whenever possible. */
760
761 int
762 condjump_p (const_rtx insn)
763 {
764 const_rtx x = PATTERN (insn);
765
766 if (GET_CODE (x) != SET
767 || GET_CODE (SET_DEST (x)) != PC)
768 return 0;
769
770 x = SET_SRC (x);
771 if (GET_CODE (x) == LABEL_REF)
772 return 1;
773 else
774 return (GET_CODE (x) == IF_THEN_ELSE
775 && ((GET_CODE (XEXP (x, 2)) == PC
776 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
777 || ANY_RETURN_P (XEXP (x, 1))))
778 || (GET_CODE (XEXP (x, 1)) == PC
779 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
780 || ANY_RETURN_P (XEXP (x, 2))))));
781 }
782
783 /* Return nonzero if INSN is a (possibly) conditional jump inside a
784 PARALLEL.
785
786 Use this function is deprecated, since we need to support combined
787 branch and compare insns. Use any_condjump_p instead whenever possible. */
788
789 int
790 condjump_in_parallel_p (const_rtx insn)
791 {
792 const_rtx x = PATTERN (insn);
793
794 if (GET_CODE (x) != PARALLEL)
795 return 0;
796 else
797 x = XVECEXP (x, 0, 0);
798
799 if (GET_CODE (x) != SET)
800 return 0;
801 if (GET_CODE (SET_DEST (x)) != PC)
802 return 0;
803 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
804 return 1;
805 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
806 return 0;
807 if (XEXP (SET_SRC (x), 2) == pc_rtx
808 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
809 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
810 return 1;
811 if (XEXP (SET_SRC (x), 1) == pc_rtx
812 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
813 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
814 return 1;
815 return 0;
816 }
817
818 /* Return set of PC, otherwise NULL. */
819
820 rtx
821 pc_set (const_rtx insn)
822 {
823 rtx pat;
824 if (!JUMP_P (insn))
825 return NULL_RTX;
826 pat = PATTERN (insn);
827
828 /* The set is allowed to appear either as the insn pattern or
829 the first set in a PARALLEL. */
830 if (GET_CODE (pat) == PARALLEL)
831 pat = XVECEXP (pat, 0, 0);
832 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
833 return pat;
834
835 return NULL_RTX;
836 }
837
838 /* Return true when insn is an unconditional direct jump,
839 possibly bundled inside a PARALLEL. */
840
841 int
842 any_uncondjump_p (const_rtx insn)
843 {
844 const_rtx x = pc_set (insn);
845 if (!x)
846 return 0;
847 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
848 return 0;
849 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
850 return 0;
851 return 1;
852 }
853
854 /* Return true when insn is a conditional jump. This function works for
855 instructions containing PC sets in PARALLELs. The instruction may have
856 various other effects so before removing the jump you must verify
857 onlyjump_p.
858
859 Note that unlike condjump_p it returns false for unconditional jumps. */
860
861 int
862 any_condjump_p (const_rtx insn)
863 {
864 const_rtx x = pc_set (insn);
865 enum rtx_code a, b;
866
867 if (!x)
868 return 0;
869 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
870 return 0;
871
872 a = GET_CODE (XEXP (SET_SRC (x), 1));
873 b = GET_CODE (XEXP (SET_SRC (x), 2));
874
875 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
876 || (a == PC
877 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
878 }
879
880 /* Return the label of a conditional jump. */
881
882 rtx
883 condjump_label (const_rtx insn)
884 {
885 rtx x = pc_set (insn);
886
887 if (!x)
888 return NULL_RTX;
889 x = SET_SRC (x);
890 if (GET_CODE (x) == LABEL_REF)
891 return x;
892 if (GET_CODE (x) != IF_THEN_ELSE)
893 return NULL_RTX;
894 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
895 return XEXP (x, 1);
896 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
897 return XEXP (x, 2);
898 return NULL_RTX;
899 }
900
901 /* Return true if INSN is a (possibly conditional) return insn. */
902
903 static int
904 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
905 {
906 rtx x = *loc;
907
908 if (x == NULL)
909 return false;
910
911 switch (GET_CODE (x))
912 {
913 case RETURN:
914 case SIMPLE_RETURN:
915 case EH_RETURN:
916 return true;
917
918 case SET:
919 return SET_IS_RETURN_P (x);
920
921 default:
922 return false;
923 }
924 }
925
926 /* Return TRUE if INSN is a return jump. */
927
928 int
929 returnjump_p (rtx insn)
930 {
931 if (!JUMP_P (insn))
932 return 0;
933 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
934 }
935
936 /* Return true if INSN is a (possibly conditional) return insn. */
937
938 static int
939 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
940 {
941 return *loc && GET_CODE (*loc) == EH_RETURN;
942 }
943
944 int
945 eh_returnjump_p (rtx insn)
946 {
947 if (!JUMP_P (insn))
948 return 0;
949 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
950 }
951
952 /* Return true if INSN is a jump that only transfers control and
953 nothing more. */
954
955 int
956 onlyjump_p (const_rtx insn)
957 {
958 rtx set;
959
960 if (!JUMP_P (insn))
961 return 0;
962
963 set = single_set (insn);
964 if (set == NULL)
965 return 0;
966 if (GET_CODE (SET_DEST (set)) != PC)
967 return 0;
968 if (side_effects_p (SET_SRC (set)))
969 return 0;
970
971 return 1;
972 }
973
974 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
975 NULL or a return. */
976 bool
977 jump_to_label_p (rtx insn)
978 {
979 return (JUMP_P (insn)
980 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
981 }
982
983 #ifdef HAVE_cc0
984
985 /* Return nonzero if X is an RTX that only sets the condition codes
986 and has no side effects. */
987
988 int
989 only_sets_cc0_p (const_rtx x)
990 {
991 if (! x)
992 return 0;
993
994 if (INSN_P (x))
995 x = PATTERN (x);
996
997 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
998 }
999
1000 /* Return 1 if X is an RTX that does nothing but set the condition codes
1001 and CLOBBER or USE registers.
1002 Return -1 if X does explicitly set the condition codes,
1003 but also does other things. */
1004
1005 int
1006 sets_cc0_p (const_rtx x)
1007 {
1008 if (! x)
1009 return 0;
1010
1011 if (INSN_P (x))
1012 x = PATTERN (x);
1013
1014 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1015 return 1;
1016 if (GET_CODE (x) == PARALLEL)
1017 {
1018 int i;
1019 int sets_cc0 = 0;
1020 int other_things = 0;
1021 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1022 {
1023 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1024 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1025 sets_cc0 = 1;
1026 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1027 other_things = 1;
1028 }
1029 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1030 }
1031 return 0;
1032 }
1033 #endif
1034 \f
1035 /* Find all CODE_LABELs referred to in X, and increment their use
1036 counts. If INSN is a JUMP_INSN and there is at least one
1037 CODE_LABEL referenced in INSN as a jump target, then store the last
1038 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1039 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1040 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1041 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1042 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1043 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1044
1045 Note that two labels separated by a loop-beginning note
1046 must be kept distinct if we have not yet done loop-optimization,
1047 because the gap between them is where loop-optimize
1048 will want to move invariant code to. CROSS_JUMP tells us
1049 that loop-optimization is done with. */
1050
1051 void
1052 mark_jump_label (rtx x, rtx insn, int in_mem)
1053 {
1054 rtx asmop = extract_asm_operands (x);
1055 if (asmop)
1056 mark_jump_label_asm (asmop, insn);
1057 else
1058 mark_jump_label_1 (x, insn, in_mem != 0,
1059 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1060 }
1061
1062 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1063 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1064 jump-target; when the JUMP_LABEL field of INSN should be set or a
1065 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1066 note. */
1067
1068 static void
1069 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1070 {
1071 RTX_CODE code = GET_CODE (x);
1072 int i;
1073 const char *fmt;
1074
1075 switch (code)
1076 {
1077 case PC:
1078 case CC0:
1079 case REG:
1080 case CLOBBER:
1081 case CALL:
1082 return;
1083
1084 case RETURN:
1085 case SIMPLE_RETURN:
1086 if (is_target)
1087 {
1088 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1089 JUMP_LABEL (insn) = x;
1090 }
1091 return;
1092
1093 case MEM:
1094 in_mem = true;
1095 break;
1096
1097 case SEQUENCE:
1098 for (i = 0; i < XVECLEN (x, 0); i++)
1099 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1100 XVECEXP (x, 0, i), 0);
1101 return;
1102
1103 case SYMBOL_REF:
1104 if (!in_mem)
1105 return;
1106
1107 /* If this is a constant-pool reference, see if it is a label. */
1108 if (CONSTANT_POOL_ADDRESS_P (x))
1109 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1110 break;
1111
1112 /* Handle operands in the condition of an if-then-else as for a
1113 non-jump insn. */
1114 case IF_THEN_ELSE:
1115 if (!is_target)
1116 break;
1117 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1118 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1119 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1120 return;
1121
1122 case LABEL_REF:
1123 {
1124 rtx label = XEXP (x, 0);
1125
1126 /* Ignore remaining references to unreachable labels that
1127 have been deleted. */
1128 if (NOTE_P (label)
1129 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1130 break;
1131
1132 gcc_assert (LABEL_P (label));
1133
1134 /* Ignore references to labels of containing functions. */
1135 if (LABEL_REF_NONLOCAL_P (x))
1136 break;
1137
1138 XEXP (x, 0) = label;
1139 if (! insn || ! INSN_DELETED_P (insn))
1140 ++LABEL_NUSES (label);
1141
1142 if (insn)
1143 {
1144 if (is_target
1145 /* Do not change a previous setting of JUMP_LABEL. If the
1146 JUMP_LABEL slot is occupied by a different label,
1147 create a note for this label. */
1148 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1149 JUMP_LABEL (insn) = label;
1150 else
1151 {
1152 enum reg_note kind
1153 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1154
1155 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1156 for LABEL unless there already is one. All uses of
1157 a label, except for the primary target of a jump,
1158 must have such a note. */
1159 if (! find_reg_note (insn, kind, label))
1160 add_reg_note (insn, kind, label);
1161 }
1162 }
1163 return;
1164 }
1165
1166 /* Do walk the labels in a vector, but not the first operand of an
1167 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1168 case ADDR_VEC:
1169 case ADDR_DIFF_VEC:
1170 if (! INSN_DELETED_P (insn))
1171 {
1172 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1173
1174 for (i = 0; i < XVECLEN (x, eltnum); i++)
1175 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1176 is_target);
1177 }
1178 return;
1179
1180 default:
1181 break;
1182 }
1183
1184 fmt = GET_RTX_FORMAT (code);
1185
1186 /* The primary target of a tablejump is the label of the ADDR_VEC,
1187 which is canonically mentioned *last* in the insn. To get it
1188 marked as JUMP_LABEL, we iterate over items in reverse order. */
1189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1190 {
1191 if (fmt[i] == 'e')
1192 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1193 else if (fmt[i] == 'E')
1194 {
1195 int j;
1196
1197 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1198 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1199 is_target);
1200 }
1201 }
1202 }
1203
1204 /* Worker function for mark_jump_label. Handle asm insns specially.
1205 In particular, output operands need not be considered so we can
1206 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1207 need to be considered targets. */
1208
1209 static void
1210 mark_jump_label_asm (rtx asmop, rtx insn)
1211 {
1212 int i;
1213
1214 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1215 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1216
1217 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1218 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1219 }
1220 \f
1221 /* Delete insn INSN from the chain of insns and update label ref counts
1222 and delete insns now unreachable.
1223
1224 Returns the first insn after INSN that was not deleted.
1225
1226 Usage of this instruction is deprecated. Use delete_insn instead and
1227 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1228
1229 rtx
1230 delete_related_insns (rtx insn)
1231 {
1232 int was_code_label = (LABEL_P (insn));
1233 rtx note;
1234 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1235
1236 while (next && INSN_DELETED_P (next))
1237 next = NEXT_INSN (next);
1238
1239 /* This insn is already deleted => return first following nondeleted. */
1240 if (INSN_DELETED_P (insn))
1241 return next;
1242
1243 delete_insn (insn);
1244
1245 /* If instruction is followed by a barrier,
1246 delete the barrier too. */
1247
1248 if (next != 0 && BARRIER_P (next))
1249 delete_insn (next);
1250
1251 /* If this is a call, then we have to remove the var tracking note
1252 for the call arguments. */
1253
1254 if (CALL_P (insn)
1255 || (NONJUMP_INSN_P (insn)
1256 && GET_CODE (PATTERN (insn)) == SEQUENCE
1257 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1258 {
1259 rtx p;
1260
1261 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1262 p && NOTE_P (p);
1263 p = NEXT_INSN (p))
1264 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1265 {
1266 remove_insn (p);
1267 break;
1268 }
1269 }
1270
1271 /* If deleting a jump, decrement the count of the label,
1272 and delete the label if it is now unused. */
1273
1274 if (jump_to_label_p (insn))
1275 {
1276 rtx lab = JUMP_LABEL (insn), lab_next;
1277
1278 if (LABEL_NUSES (lab) == 0)
1279 /* This can delete NEXT or PREV,
1280 either directly if NEXT is JUMP_LABEL (INSN),
1281 or indirectly through more levels of jumps. */
1282 delete_related_insns (lab);
1283 else if (tablejump_p (insn, NULL, &lab_next))
1284 {
1285 /* If we're deleting the tablejump, delete the dispatch table.
1286 We may not be able to kill the label immediately preceding
1287 just yet, as it might be referenced in code leading up to
1288 the tablejump. */
1289 delete_related_insns (lab_next);
1290 }
1291 }
1292
1293 /* Likewise if we're deleting a dispatch table. */
1294
1295 if (JUMP_TABLE_DATA_P (insn))
1296 {
1297 rtx pat = PATTERN (insn);
1298 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1299 int len = XVECLEN (pat, diff_vec_p);
1300
1301 for (i = 0; i < len; i++)
1302 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1303 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1304 while (next && INSN_DELETED_P (next))
1305 next = NEXT_INSN (next);
1306 return next;
1307 }
1308
1309 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1310 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1311 if (INSN_P (insn))
1312 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1313 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1314 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1315 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1316 && LABEL_P (XEXP (note, 0)))
1317 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1318 delete_related_insns (XEXP (note, 0));
1319
1320 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1321 prev = PREV_INSN (prev);
1322
1323 /* If INSN was a label and a dispatch table follows it,
1324 delete the dispatch table. The tablejump must have gone already.
1325 It isn't useful to fall through into a table. */
1326
1327 if (was_code_label
1328 && NEXT_INSN (insn) != 0
1329 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1330 next = delete_related_insns (NEXT_INSN (insn));
1331
1332 /* If INSN was a label, delete insns following it if now unreachable. */
1333
1334 if (was_code_label && prev && BARRIER_P (prev))
1335 {
1336 enum rtx_code code;
1337 while (next)
1338 {
1339 code = GET_CODE (next);
1340 if (code == NOTE)
1341 next = NEXT_INSN (next);
1342 /* Keep going past other deleted labels to delete what follows. */
1343 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1344 next = NEXT_INSN (next);
1345 else if (code == BARRIER || INSN_P (next))
1346 /* Note: if this deletes a jump, it can cause more
1347 deletion of unreachable code, after a different label.
1348 As long as the value from this recursive call is correct,
1349 this invocation functions correctly. */
1350 next = delete_related_insns (next);
1351 else
1352 break;
1353 }
1354 }
1355
1356 /* I feel a little doubtful about this loop,
1357 but I see no clean and sure alternative way
1358 to find the first insn after INSN that is not now deleted.
1359 I hope this works. */
1360 while (next && INSN_DELETED_P (next))
1361 next = NEXT_INSN (next);
1362 return next;
1363 }
1364 \f
1365 /* Delete a range of insns from FROM to TO, inclusive.
1366 This is for the sake of peephole optimization, so assume
1367 that whatever these insns do will still be done by a new
1368 peephole insn that will replace them. */
1369
1370 void
1371 delete_for_peephole (rtx from, rtx to)
1372 {
1373 rtx insn = from;
1374
1375 while (1)
1376 {
1377 rtx next = NEXT_INSN (insn);
1378 rtx prev = PREV_INSN (insn);
1379
1380 if (!NOTE_P (insn))
1381 {
1382 INSN_DELETED_P (insn) = 1;
1383
1384 /* Patch this insn out of the chain. */
1385 /* We don't do this all at once, because we
1386 must preserve all NOTEs. */
1387 if (prev)
1388 NEXT_INSN (prev) = next;
1389
1390 if (next)
1391 PREV_INSN (next) = prev;
1392 }
1393
1394 if (insn == to)
1395 break;
1396 insn = next;
1397 }
1398
1399 /* Note that if TO is an unconditional jump
1400 we *do not* delete the BARRIER that follows,
1401 since the peephole that replaces this sequence
1402 is also an unconditional jump in that case. */
1403 }
1404 \f
1405 /* A helper function for redirect_exp_1; examines its input X and returns
1406 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1407 static rtx
1408 redirect_target (rtx x)
1409 {
1410 if (x == NULL_RTX)
1411 return ret_rtx;
1412 if (!ANY_RETURN_P (x))
1413 return gen_rtx_LABEL_REF (Pmode, x);
1414 return x;
1415 }
1416
1417 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1418 NLABEL as a return. Accrue modifications into the change group. */
1419
1420 static void
1421 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1422 {
1423 rtx x = *loc;
1424 RTX_CODE code = GET_CODE (x);
1425 int i;
1426 const char *fmt;
1427
1428 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1429 || x == olabel)
1430 {
1431 x = redirect_target (nlabel);
1432 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1433 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1434 validate_change (insn, loc, x, 1);
1435 return;
1436 }
1437
1438 if (code == SET && SET_DEST (x) == pc_rtx
1439 && ANY_RETURN_P (nlabel)
1440 && GET_CODE (SET_SRC (x)) == LABEL_REF
1441 && XEXP (SET_SRC (x), 0) == olabel)
1442 {
1443 validate_change (insn, loc, nlabel, 1);
1444 return;
1445 }
1446
1447 if (code == IF_THEN_ELSE)
1448 {
1449 /* Skip the condition of an IF_THEN_ELSE. We only want to
1450 change jump destinations, not eventual label comparisons. */
1451 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1452 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1453 return;
1454 }
1455
1456 fmt = GET_RTX_FORMAT (code);
1457 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1458 {
1459 if (fmt[i] == 'e')
1460 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1461 else if (fmt[i] == 'E')
1462 {
1463 int j;
1464 for (j = 0; j < XVECLEN (x, i); j++)
1465 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1466 }
1467 }
1468 }
1469
1470 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1471 the modifications into the change group. Return false if we did
1472 not see how to do that. */
1473
1474 int
1475 redirect_jump_1 (rtx jump, rtx nlabel)
1476 {
1477 int ochanges = num_validated_changes ();
1478 rtx *loc, asmop;
1479
1480 gcc_assert (nlabel != NULL_RTX);
1481 asmop = extract_asm_operands (PATTERN (jump));
1482 if (asmop)
1483 {
1484 if (nlabel == NULL)
1485 return 0;
1486 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1487 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1488 }
1489 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1490 loc = &XVECEXP (PATTERN (jump), 0, 0);
1491 else
1492 loc = &PATTERN (jump);
1493
1494 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1495 return num_validated_changes () > ochanges;
1496 }
1497
1498 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1499 jump target label is unused as a result, it and the code following
1500 it may be deleted.
1501
1502 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1503 in that case we are to turn the jump into a (possibly conditional)
1504 return insn.
1505
1506 The return value will be 1 if the change was made, 0 if it wasn't
1507 (this can only occur when trying to produce return insns). */
1508
1509 int
1510 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1511 {
1512 rtx olabel = JUMP_LABEL (jump);
1513
1514 if (!nlabel)
1515 {
1516 /* If there is no label, we are asked to redirect to the EXIT block.
1517 When before the epilogue is emitted, return/simple_return cannot be
1518 created so we return 0 immediately. After the epilogue is emitted,
1519 we always expect a label, either a non-null label, or a
1520 return/simple_return RTX. */
1521
1522 if (!epilogue_completed)
1523 return 0;
1524 gcc_unreachable ();
1525 }
1526
1527 if (nlabel == olabel)
1528 return 1;
1529
1530 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1531 return 0;
1532
1533 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1534 return 1;
1535 }
1536
1537 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1538 NLABEL in JUMP.
1539 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1540 count has dropped to zero. */
1541 void
1542 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1543 int invert)
1544 {
1545 rtx note;
1546
1547 gcc_assert (JUMP_LABEL (jump) == olabel);
1548
1549 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1550 moving FUNCTION_END note. Just sanity check that no user still worry
1551 about this. */
1552 gcc_assert (delete_unused >= 0);
1553 JUMP_LABEL (jump) = nlabel;
1554 if (!ANY_RETURN_P (nlabel))
1555 ++LABEL_NUSES (nlabel);
1556
1557 /* Update labels in any REG_EQUAL note. */
1558 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1559 {
1560 if (ANY_RETURN_P (nlabel)
1561 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1562 remove_note (jump, note);
1563 else
1564 {
1565 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1566 confirm_change_group ();
1567 }
1568 }
1569
1570 if (!ANY_RETURN_P (olabel)
1571 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1572 /* Undefined labels will remain outside the insn stream. */
1573 && INSN_UID (olabel))
1574 delete_related_insns (olabel);
1575 if (invert)
1576 invert_br_probabilities (jump);
1577 }
1578
1579 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1580 modifications into the change group. Return nonzero for success. */
1581 static int
1582 invert_exp_1 (rtx x, rtx insn)
1583 {
1584 RTX_CODE code = GET_CODE (x);
1585
1586 if (code == IF_THEN_ELSE)
1587 {
1588 rtx comp = XEXP (x, 0);
1589 rtx tem;
1590 enum rtx_code reversed_code;
1591
1592 /* We can do this in two ways: The preferable way, which can only
1593 be done if this is not an integer comparison, is to reverse
1594 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1595 of the IF_THEN_ELSE. If we can't do either, fail. */
1596
1597 reversed_code = reversed_comparison_code (comp, insn);
1598
1599 if (reversed_code != UNKNOWN)
1600 {
1601 validate_change (insn, &XEXP (x, 0),
1602 gen_rtx_fmt_ee (reversed_code,
1603 GET_MODE (comp), XEXP (comp, 0),
1604 XEXP (comp, 1)),
1605 1);
1606 return 1;
1607 }
1608
1609 tem = XEXP (x, 1);
1610 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1611 validate_change (insn, &XEXP (x, 2), tem, 1);
1612 return 1;
1613 }
1614 else
1615 return 0;
1616 }
1617
1618 /* Invert the condition of the jump JUMP, and make it jump to label
1619 NLABEL instead of where it jumps now. Accrue changes into the
1620 change group. Return false if we didn't see how to perform the
1621 inversion and redirection. */
1622
1623 int
1624 invert_jump_1 (rtx jump, rtx nlabel)
1625 {
1626 rtx x = pc_set (jump);
1627 int ochanges;
1628 int ok;
1629
1630 ochanges = num_validated_changes ();
1631 if (x == NULL)
1632 return 0;
1633 ok = invert_exp_1 (SET_SRC (x), jump);
1634 gcc_assert (ok);
1635
1636 if (num_validated_changes () == ochanges)
1637 return 0;
1638
1639 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1640 in Pmode, so checking this is not merely an optimization. */
1641 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1642 }
1643
1644 /* Invert the condition of the jump JUMP, and make it jump to label
1645 NLABEL instead of where it jumps now. Return true if successful. */
1646
1647 int
1648 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1649 {
1650 rtx olabel = JUMP_LABEL (jump);
1651
1652 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1653 {
1654 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1655 return 1;
1656 }
1657 cancel_changes (0);
1658 return 0;
1659 }
1660
1661 \f
1662 /* Like rtx_equal_p except that it considers two REGs as equal
1663 if they renumber to the same value and considers two commutative
1664 operations to be the same if the order of the operands has been
1665 reversed. */
1666
1667 int
1668 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1669 {
1670 int i;
1671 const enum rtx_code code = GET_CODE (x);
1672 const char *fmt;
1673
1674 if (x == y)
1675 return 1;
1676
1677 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1678 && (REG_P (y) || (GET_CODE (y) == SUBREG
1679 && REG_P (SUBREG_REG (y)))))
1680 {
1681 int reg_x = -1, reg_y = -1;
1682 int byte_x = 0, byte_y = 0;
1683 struct subreg_info info;
1684
1685 if (GET_MODE (x) != GET_MODE (y))
1686 return 0;
1687
1688 /* If we haven't done any renumbering, don't
1689 make any assumptions. */
1690 if (reg_renumber == 0)
1691 return rtx_equal_p (x, y);
1692
1693 if (code == SUBREG)
1694 {
1695 reg_x = REGNO (SUBREG_REG (x));
1696 byte_x = SUBREG_BYTE (x);
1697
1698 if (reg_renumber[reg_x] >= 0)
1699 {
1700 subreg_get_info (reg_renumber[reg_x],
1701 GET_MODE (SUBREG_REG (x)), byte_x,
1702 GET_MODE (x), &info);
1703 if (!info.representable_p)
1704 return 0;
1705 reg_x = info.offset;
1706 byte_x = 0;
1707 }
1708 }
1709 else
1710 {
1711 reg_x = REGNO (x);
1712 if (reg_renumber[reg_x] >= 0)
1713 reg_x = reg_renumber[reg_x];
1714 }
1715
1716 if (GET_CODE (y) == SUBREG)
1717 {
1718 reg_y = REGNO (SUBREG_REG (y));
1719 byte_y = SUBREG_BYTE (y);
1720
1721 if (reg_renumber[reg_y] >= 0)
1722 {
1723 subreg_get_info (reg_renumber[reg_y],
1724 GET_MODE (SUBREG_REG (y)), byte_y,
1725 GET_MODE (y), &info);
1726 if (!info.representable_p)
1727 return 0;
1728 reg_y = info.offset;
1729 byte_y = 0;
1730 }
1731 }
1732 else
1733 {
1734 reg_y = REGNO (y);
1735 if (reg_renumber[reg_y] >= 0)
1736 reg_y = reg_renumber[reg_y];
1737 }
1738
1739 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1740 }
1741
1742 /* Now we have disposed of all the cases
1743 in which different rtx codes can match. */
1744 if (code != GET_CODE (y))
1745 return 0;
1746
1747 switch (code)
1748 {
1749 case PC:
1750 case CC0:
1751 case ADDR_VEC:
1752 case ADDR_DIFF_VEC:
1753 CASE_CONST_UNIQUE:
1754 return 0;
1755
1756 case LABEL_REF:
1757 /* We can't assume nonlocal labels have their following insns yet. */
1758 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1759 return XEXP (x, 0) == XEXP (y, 0);
1760
1761 /* Two label-refs are equivalent if they point at labels
1762 in the same position in the instruction stream. */
1763 return (next_real_insn (XEXP (x, 0))
1764 == next_real_insn (XEXP (y, 0)));
1765
1766 case SYMBOL_REF:
1767 return XSTR (x, 0) == XSTR (y, 0);
1768
1769 case CODE_LABEL:
1770 /* If we didn't match EQ equality above, they aren't the same. */
1771 return 0;
1772
1773 default:
1774 break;
1775 }
1776
1777 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1778
1779 if (GET_MODE (x) != GET_MODE (y))
1780 return 0;
1781
1782 /* MEMs referring to different address space are not equivalent. */
1783 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1784 return 0;
1785
1786 /* For commutative operations, the RTX match if the operand match in any
1787 order. Also handle the simple binary and unary cases without a loop. */
1788 if (targetm.commutative_p (x, UNKNOWN))
1789 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1790 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1791 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1792 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1793 else if (NON_COMMUTATIVE_P (x))
1794 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1795 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1796 else if (UNARY_P (x))
1797 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1798
1799 /* Compare the elements. If any pair of corresponding elements
1800 fail to match, return 0 for the whole things. */
1801
1802 fmt = GET_RTX_FORMAT (code);
1803 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1804 {
1805 int j;
1806 switch (fmt[i])
1807 {
1808 case 'w':
1809 if (XWINT (x, i) != XWINT (y, i))
1810 return 0;
1811 break;
1812
1813 case 'i':
1814 if (XINT (x, i) != XINT (y, i))
1815 {
1816 if (((code == ASM_OPERANDS && i == 6)
1817 || (code == ASM_INPUT && i == 1)))
1818 break;
1819 return 0;
1820 }
1821 break;
1822
1823 case 't':
1824 if (XTREE (x, i) != XTREE (y, i))
1825 return 0;
1826 break;
1827
1828 case 's':
1829 if (strcmp (XSTR (x, i), XSTR (y, i)))
1830 return 0;
1831 break;
1832
1833 case 'e':
1834 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1835 return 0;
1836 break;
1837
1838 case 'u':
1839 if (XEXP (x, i) != XEXP (y, i))
1840 return 0;
1841 /* Fall through. */
1842 case '0':
1843 break;
1844
1845 case 'E':
1846 if (XVECLEN (x, i) != XVECLEN (y, i))
1847 return 0;
1848 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1849 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1850 return 0;
1851 break;
1852
1853 default:
1854 gcc_unreachable ();
1855 }
1856 }
1857 return 1;
1858 }
1859 \f
1860 /* If X is a hard register or equivalent to one or a subregister of one,
1861 return the hard register number. If X is a pseudo register that was not
1862 assigned a hard register, return the pseudo register number. Otherwise,
1863 return -1. Any rtx is valid for X. */
1864
1865 int
1866 true_regnum (const_rtx x)
1867 {
1868 if (REG_P (x))
1869 {
1870 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1871 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1872 return reg_renumber[REGNO (x)];
1873 return REGNO (x);
1874 }
1875 if (GET_CODE (x) == SUBREG)
1876 {
1877 int base = true_regnum (SUBREG_REG (x));
1878 if (base >= 0
1879 && base < FIRST_PSEUDO_REGISTER)
1880 {
1881 struct subreg_info info;
1882
1883 subreg_get_info (lra_in_progress
1884 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1885 GET_MODE (SUBREG_REG (x)),
1886 SUBREG_BYTE (x), GET_MODE (x), &info);
1887
1888 if (info.representable_p)
1889 return base + info.offset;
1890 }
1891 }
1892 return -1;
1893 }
1894
1895 /* Return regno of the register REG and handle subregs too. */
1896 unsigned int
1897 reg_or_subregno (const_rtx reg)
1898 {
1899 if (GET_CODE (reg) == SUBREG)
1900 reg = SUBREG_REG (reg);
1901 gcc_assert (REG_P (reg));
1902 return REGNO (reg);
1903 }