* g++.dg/cpp0x/nullptr21.c: Remove printfs, make self-checking.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes. For return insns, it contains either a
33 RETURN or a SIMPLE_RETURN rtx.
34
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
49 #include "recog.h"
50 #include "function.h"
51 #include "basic-block.h"
52 #include "expr.h"
53 #include "except.h"
54 #include "diagnostic-core.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "tree-pass.h"
58 #include "target.h"
59
60 /* Optimize jump y; x: ... y: jumpif... x?
61 Don't know if it is worth bothering with. */
62 /* Optimize two cases of conditional jump to conditional jump?
63 This can never delete any instruction or make anything dead,
64 or even change what is live at any point.
65 So perhaps let combiner do it. */
66
67 static void init_label_info (rtx);
68 static void mark_all_labels (rtx);
69 static void mark_jump_label_1 (rtx, rtx, bool, bool);
70 static void mark_jump_label_asm (rtx, rtx);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
74 \f
75 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
76 static void
77 rebuild_jump_labels_1 (rtx f, bool count_forced)
78 {
79 rtx insn;
80
81 timevar_push (TV_REBUILD_JUMP);
82 init_label_info (f);
83 mark_all_labels (f);
84
85 /* Keep track of labels used from static data; we don't track them
86 closely enough to delete them here, so make sure their reference
87 count doesn't drop to zero. */
88
89 if (count_forced)
90 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
91 if (LABEL_P (XEXP (insn, 0)))
92 LABEL_NUSES (XEXP (insn, 0))++;
93 timevar_pop (TV_REBUILD_JUMP);
94 }
95
96 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
97 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
98 instructions and jumping insns that have labels as operands
99 (e.g. cbranchsi4). */
100 void
101 rebuild_jump_labels (rtx f)
102 {
103 rebuild_jump_labels_1 (f, true);
104 }
105
106 /* This function is like rebuild_jump_labels, but doesn't run over
107 forced_labels. It can be used on insn chains that aren't the
108 main function chain. */
109 void
110 rebuild_jump_labels_chain (rtx chain)
111 {
112 rebuild_jump_labels_1 (chain, false);
113 }
114 \f
115 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
116 non-fallthru insn. This is not generally true, as multiple barriers
117 may have crept in, or the BARRIER may be separated from the last
118 real insn by one or more NOTEs.
119
120 This simple pass moves barriers and removes duplicates so that the
121 old code is happy.
122 */
123 unsigned int
124 cleanup_barriers (void)
125 {
126 rtx insn, next, prev;
127 for (insn = get_insns (); insn; insn = next)
128 {
129 next = NEXT_INSN (insn);
130 if (BARRIER_P (insn))
131 {
132 prev = prev_nonnote_insn (insn);
133 if (!prev)
134 continue;
135 if (BARRIER_P (prev))
136 delete_insn (insn);
137 else if (prev != PREV_INSN (insn))
138 reorder_insns (insn, insn, prev);
139 }
140 }
141 return 0;
142 }
143
144 struct rtl_opt_pass pass_cleanup_barriers =
145 {
146 {
147 RTL_PASS,
148 "barriers", /* name */
149 NULL, /* gate */
150 cleanup_barriers, /* execute */
151 NULL, /* sub */
152 NULL, /* next */
153 0, /* static_pass_number */
154 TV_NONE, /* tv_id */
155 0, /* properties_required */
156 0, /* properties_provided */
157 0, /* properties_destroyed */
158 0, /* todo_flags_start */
159 0 /* todo_flags_finish */
160 }
161 };
162
163 \f
164 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
165 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
166 notes whose labels don't occur in the insn any more. */
167
168 static void
169 init_label_info (rtx f)
170 {
171 rtx insn;
172
173 for (insn = f; insn; insn = NEXT_INSN (insn))
174 {
175 if (LABEL_P (insn))
176 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
177
178 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
179 sticky and not reset here; that way we won't lose association
180 with a label when e.g. the source for a target register
181 disappears out of reach for targets that may use jump-target
182 registers. Jump transformations are supposed to transform
183 any REG_LABEL_TARGET notes. The target label reference in a
184 branch may disappear from the branch (and from the
185 instruction before it) for other reasons, like register
186 allocation. */
187
188 if (INSN_P (insn))
189 {
190 rtx note, next;
191
192 for (note = REG_NOTES (insn); note; note = next)
193 {
194 next = XEXP (note, 1);
195 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
196 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
197 remove_note (insn, note);
198 }
199 }
200 }
201 }
202
203 /* A subroutine of mark_all_labels. Trivially propagate a simple label
204 load into a jump_insn that uses it. */
205
206 static void
207 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
208 {
209 rtx label_note, pc, pc_src;
210
211 pc = pc_set (jump_insn);
212 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
213 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
214
215 /* If the previous non-jump insn sets something to a label,
216 something that this jump insn uses, make that label the primary
217 target of this insn if we don't yet have any. That previous
218 insn must be a single_set and not refer to more than one label.
219 The jump insn must not refer to other labels as jump targets
220 and must be a plain (set (pc) ...), maybe in a parallel, and
221 may refer to the item being set only directly or as one of the
222 arms in an IF_THEN_ELSE. */
223
224 if (label_note != NULL && pc_src != NULL)
225 {
226 rtx label_set = single_set (prev_nonjump_insn);
227 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
228
229 if (label_set != NULL
230 /* The source must be the direct LABEL_REF, not a
231 PLUS, UNSPEC, IF_THEN_ELSE etc. */
232 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
233 && (rtx_equal_p (label_dest, pc_src)
234 || (GET_CODE (pc_src) == IF_THEN_ELSE
235 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
236 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
237 {
238 /* The CODE_LABEL referred to in the note must be the
239 CODE_LABEL in the LABEL_REF of the "set". We can
240 conveniently use it for the marker function, which
241 requires a LABEL_REF wrapping. */
242 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
243
244 mark_jump_label_1 (label_set, jump_insn, false, true);
245
246 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
247 }
248 }
249 }
250
251 /* Mark the label each jump jumps to.
252 Combine consecutive labels, and count uses of labels. */
253
254 static void
255 mark_all_labels (rtx f)
256 {
257 rtx insn;
258
259 if (current_ir_type () == IR_RTL_CFGLAYOUT)
260 {
261 basic_block bb;
262 FOR_EACH_BB (bb)
263 {
264 /* In cfglayout mode, we don't bother with trivial next-insn
265 propagation of LABEL_REFs into JUMP_LABEL. This will be
266 handled by other optimizers using better algorithms. */
267 FOR_BB_INSNS (bb, insn)
268 {
269 gcc_assert (! INSN_DELETED_P (insn));
270 if (NONDEBUG_INSN_P (insn))
271 mark_jump_label (PATTERN (insn), insn, 0);
272 }
273
274 /* In cfglayout mode, there may be non-insns between the
275 basic blocks. If those non-insns represent tablejump data,
276 they contain label references that we must record. */
277 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
278 if (INSN_P (insn))
279 {
280 gcc_assert (JUMP_TABLE_DATA_P (insn));
281 mark_jump_label (PATTERN (insn), insn, 0);
282 }
283 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
284 if (INSN_P (insn))
285 {
286 gcc_assert (JUMP_TABLE_DATA_P (insn));
287 mark_jump_label (PATTERN (insn), insn, 0);
288 }
289 }
290 }
291 else
292 {
293 rtx prev_nonjump_insn = NULL;
294 for (insn = f; insn; insn = NEXT_INSN (insn))
295 {
296 if (INSN_DELETED_P (insn))
297 ;
298 else if (LABEL_P (insn))
299 prev_nonjump_insn = NULL;
300 else if (NONDEBUG_INSN_P (insn))
301 {
302 mark_jump_label (PATTERN (insn), insn, 0);
303 if (JUMP_P (insn))
304 {
305 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
306 maybe_propagate_label_ref (insn, prev_nonjump_insn);
307 }
308 else
309 prev_nonjump_insn = insn;
310 }
311 }
312 }
313 }
314 \f
315 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
316 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
317 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
318 know whether it's source is floating point or integer comparison. Machine
319 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
320 to help this function avoid overhead in these cases. */
321 enum rtx_code
322 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
323 const_rtx arg1, const_rtx insn)
324 {
325 enum machine_mode mode;
326
327 /* If this is not actually a comparison, we can't reverse it. */
328 if (GET_RTX_CLASS (code) != RTX_COMPARE
329 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
330 return UNKNOWN;
331
332 mode = GET_MODE (arg0);
333 if (mode == VOIDmode)
334 mode = GET_MODE (arg1);
335
336 /* First see if machine description supplies us way to reverse the
337 comparison. Give it priority over everything else to allow
338 machine description to do tricks. */
339 if (GET_MODE_CLASS (mode) == MODE_CC
340 && REVERSIBLE_CC_MODE (mode))
341 {
342 #ifdef REVERSE_CONDITION
343 return REVERSE_CONDITION (code, mode);
344 #else
345 return reverse_condition (code);
346 #endif
347 }
348
349 /* Try a few special cases based on the comparison code. */
350 switch (code)
351 {
352 case GEU:
353 case GTU:
354 case LEU:
355 case LTU:
356 case NE:
357 case EQ:
358 /* It is always safe to reverse EQ and NE, even for the floating
359 point. Similarly the unsigned comparisons are never used for
360 floating point so we can reverse them in the default way. */
361 return reverse_condition (code);
362 case ORDERED:
363 case UNORDERED:
364 case LTGT:
365 case UNEQ:
366 /* In case we already see unordered comparison, we can be sure to
367 be dealing with floating point so we don't need any more tests. */
368 return reverse_condition_maybe_unordered (code);
369 case UNLT:
370 case UNLE:
371 case UNGT:
372 case UNGE:
373 /* We don't have safe way to reverse these yet. */
374 return UNKNOWN;
375 default:
376 break;
377 }
378
379 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
380 {
381 const_rtx prev;
382 /* Try to search for the comparison to determine the real mode.
383 This code is expensive, but with sane machine description it
384 will be never used, since REVERSIBLE_CC_MODE will return true
385 in all cases. */
386 if (! insn)
387 return UNKNOWN;
388
389 /* These CONST_CAST's are okay because prev_nonnote_insn just
390 returns its argument and we assign it to a const_rtx
391 variable. */
392 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
393 prev != 0 && !LABEL_P (prev);
394 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
395 {
396 const_rtx set = set_of (arg0, prev);
397 if (set && GET_CODE (set) == SET
398 && rtx_equal_p (SET_DEST (set), arg0))
399 {
400 rtx src = SET_SRC (set);
401
402 if (GET_CODE (src) == COMPARE)
403 {
404 rtx comparison = src;
405 arg0 = XEXP (src, 0);
406 mode = GET_MODE (arg0);
407 if (mode == VOIDmode)
408 mode = GET_MODE (XEXP (comparison, 1));
409 break;
410 }
411 /* We can get past reg-reg moves. This may be useful for model
412 of i387 comparisons that first move flag registers around. */
413 if (REG_P (src))
414 {
415 arg0 = src;
416 continue;
417 }
418 }
419 /* If register is clobbered in some ununderstandable way,
420 give up. */
421 if (set)
422 return UNKNOWN;
423 }
424 }
425
426 /* Test for an integer condition, or a floating-point comparison
427 in which NaNs can be ignored. */
428 if (CONST_INT_P (arg0)
429 || (GET_MODE (arg0) != VOIDmode
430 && GET_MODE_CLASS (mode) != MODE_CC
431 && !HONOR_NANS (mode)))
432 return reverse_condition (code);
433
434 return UNKNOWN;
435 }
436
437 /* A wrapper around the previous function to take COMPARISON as rtx
438 expression. This simplifies many callers. */
439 enum rtx_code
440 reversed_comparison_code (const_rtx comparison, const_rtx insn)
441 {
442 if (!COMPARISON_P (comparison))
443 return UNKNOWN;
444 return reversed_comparison_code_parts (GET_CODE (comparison),
445 XEXP (comparison, 0),
446 XEXP (comparison, 1), insn);
447 }
448
449 /* Return comparison with reversed code of EXP.
450 Return NULL_RTX in case we fail to do the reversal. */
451 rtx
452 reversed_comparison (const_rtx exp, enum machine_mode mode)
453 {
454 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
455 if (reversed_code == UNKNOWN)
456 return NULL_RTX;
457 else
458 return simplify_gen_relational (reversed_code, mode, VOIDmode,
459 XEXP (exp, 0), XEXP (exp, 1));
460 }
461
462 \f
463 /* Given an rtx-code for a comparison, return the code for the negated
464 comparison. If no such code exists, return UNKNOWN.
465
466 WATCH OUT! reverse_condition is not safe to use on a jump that might
467 be acting on the results of an IEEE floating point comparison, because
468 of the special treatment of non-signaling nans in comparisons.
469 Use reversed_comparison_code instead. */
470
471 enum rtx_code
472 reverse_condition (enum rtx_code code)
473 {
474 switch (code)
475 {
476 case EQ:
477 return NE;
478 case NE:
479 return EQ;
480 case GT:
481 return LE;
482 case GE:
483 return LT;
484 case LT:
485 return GE;
486 case LE:
487 return GT;
488 case GTU:
489 return LEU;
490 case GEU:
491 return LTU;
492 case LTU:
493 return GEU;
494 case LEU:
495 return GTU;
496 case UNORDERED:
497 return ORDERED;
498 case ORDERED:
499 return UNORDERED;
500
501 case UNLT:
502 case UNLE:
503 case UNGT:
504 case UNGE:
505 case UNEQ:
506 case LTGT:
507 return UNKNOWN;
508
509 default:
510 gcc_unreachable ();
511 }
512 }
513
514 /* Similar, but we're allowed to generate unordered comparisons, which
515 makes it safe for IEEE floating-point. Of course, we have to recognize
516 that the target will support them too... */
517
518 enum rtx_code
519 reverse_condition_maybe_unordered (enum rtx_code code)
520 {
521 switch (code)
522 {
523 case EQ:
524 return NE;
525 case NE:
526 return EQ;
527 case GT:
528 return UNLE;
529 case GE:
530 return UNLT;
531 case LT:
532 return UNGE;
533 case LE:
534 return UNGT;
535 case LTGT:
536 return UNEQ;
537 case UNORDERED:
538 return ORDERED;
539 case ORDERED:
540 return UNORDERED;
541 case UNLT:
542 return GE;
543 case UNLE:
544 return GT;
545 case UNGT:
546 return LE;
547 case UNGE:
548 return LT;
549 case UNEQ:
550 return LTGT;
551
552 default:
553 gcc_unreachable ();
554 }
555 }
556
557 /* Similar, but return the code when two operands of a comparison are swapped.
558 This IS safe for IEEE floating-point. */
559
560 enum rtx_code
561 swap_condition (enum rtx_code code)
562 {
563 switch (code)
564 {
565 case EQ:
566 case NE:
567 case UNORDERED:
568 case ORDERED:
569 case UNEQ:
570 case LTGT:
571 return code;
572
573 case GT:
574 return LT;
575 case GE:
576 return LE;
577 case LT:
578 return GT;
579 case LE:
580 return GE;
581 case GTU:
582 return LTU;
583 case GEU:
584 return LEU;
585 case LTU:
586 return GTU;
587 case LEU:
588 return GEU;
589 case UNLT:
590 return UNGT;
591 case UNLE:
592 return UNGE;
593 case UNGT:
594 return UNLT;
595 case UNGE:
596 return UNLE;
597
598 default:
599 gcc_unreachable ();
600 }
601 }
602
603 /* Given a comparison CODE, return the corresponding unsigned comparison.
604 If CODE is an equality comparison or already an unsigned comparison,
605 CODE is returned. */
606
607 enum rtx_code
608 unsigned_condition (enum rtx_code code)
609 {
610 switch (code)
611 {
612 case EQ:
613 case NE:
614 case GTU:
615 case GEU:
616 case LTU:
617 case LEU:
618 return code;
619
620 case GT:
621 return GTU;
622 case GE:
623 return GEU;
624 case LT:
625 return LTU;
626 case LE:
627 return LEU;
628
629 default:
630 gcc_unreachable ();
631 }
632 }
633
634 /* Similarly, return the signed version of a comparison. */
635
636 enum rtx_code
637 signed_condition (enum rtx_code code)
638 {
639 switch (code)
640 {
641 case EQ:
642 case NE:
643 case GT:
644 case GE:
645 case LT:
646 case LE:
647 return code;
648
649 case GTU:
650 return GT;
651 case GEU:
652 return GE;
653 case LTU:
654 return LT;
655 case LEU:
656 return LE;
657
658 default:
659 gcc_unreachable ();
660 }
661 }
662 \f
663 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
664 truth of CODE1 implies the truth of CODE2. */
665
666 int
667 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
668 {
669 /* UNKNOWN comparison codes can happen as a result of trying to revert
670 comparison codes.
671 They can't match anything, so we have to reject them here. */
672 if (code1 == UNKNOWN || code2 == UNKNOWN)
673 return 0;
674
675 if (code1 == code2)
676 return 1;
677
678 switch (code1)
679 {
680 case UNEQ:
681 if (code2 == UNLE || code2 == UNGE)
682 return 1;
683 break;
684
685 case EQ:
686 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
687 || code2 == ORDERED)
688 return 1;
689 break;
690
691 case UNLT:
692 if (code2 == UNLE || code2 == NE)
693 return 1;
694 break;
695
696 case LT:
697 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
698 return 1;
699 break;
700
701 case UNGT:
702 if (code2 == UNGE || code2 == NE)
703 return 1;
704 break;
705
706 case GT:
707 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
708 return 1;
709 break;
710
711 case GE:
712 case LE:
713 if (code2 == ORDERED)
714 return 1;
715 break;
716
717 case LTGT:
718 if (code2 == NE || code2 == ORDERED)
719 return 1;
720 break;
721
722 case LTU:
723 if (code2 == LEU || code2 == NE)
724 return 1;
725 break;
726
727 case GTU:
728 if (code2 == GEU || code2 == NE)
729 return 1;
730 break;
731
732 case UNORDERED:
733 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
734 || code2 == UNGE || code2 == UNGT)
735 return 1;
736 break;
737
738 default:
739 break;
740 }
741
742 return 0;
743 }
744 \f
745 /* Return 1 if INSN is an unconditional jump and nothing else. */
746
747 int
748 simplejump_p (const_rtx insn)
749 {
750 return (JUMP_P (insn)
751 && GET_CODE (PATTERN (insn)) == SET
752 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
753 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
754 }
755
756 /* Return nonzero if INSN is a (possibly) conditional jump
757 and nothing more.
758
759 Use of this function is deprecated, since we need to support combined
760 branch and compare insns. Use any_condjump_p instead whenever possible. */
761
762 int
763 condjump_p (const_rtx insn)
764 {
765 const_rtx x = PATTERN (insn);
766
767 if (GET_CODE (x) != SET
768 || GET_CODE (SET_DEST (x)) != PC)
769 return 0;
770
771 x = SET_SRC (x);
772 if (GET_CODE (x) == LABEL_REF)
773 return 1;
774 else
775 return (GET_CODE (x) == IF_THEN_ELSE
776 && ((GET_CODE (XEXP (x, 2)) == PC
777 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
778 || ANY_RETURN_P (XEXP (x, 1))))
779 || (GET_CODE (XEXP (x, 1)) == PC
780 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
781 || ANY_RETURN_P (XEXP (x, 2))))));
782 }
783
784 /* Return nonzero if INSN is a (possibly) conditional jump inside a
785 PARALLEL.
786
787 Use this function is deprecated, since we need to support combined
788 branch and compare insns. Use any_condjump_p instead whenever possible. */
789
790 int
791 condjump_in_parallel_p (const_rtx insn)
792 {
793 const_rtx x = PATTERN (insn);
794
795 if (GET_CODE (x) != PARALLEL)
796 return 0;
797 else
798 x = XVECEXP (x, 0, 0);
799
800 if (GET_CODE (x) != SET)
801 return 0;
802 if (GET_CODE (SET_DEST (x)) != PC)
803 return 0;
804 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
805 return 1;
806 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
807 return 0;
808 if (XEXP (SET_SRC (x), 2) == pc_rtx
809 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
810 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
811 return 1;
812 if (XEXP (SET_SRC (x), 1) == pc_rtx
813 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
814 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
815 return 1;
816 return 0;
817 }
818
819 /* Return set of PC, otherwise NULL. */
820
821 rtx
822 pc_set (const_rtx insn)
823 {
824 rtx pat;
825 if (!JUMP_P (insn))
826 return NULL_RTX;
827 pat = PATTERN (insn);
828
829 /* The set is allowed to appear either as the insn pattern or
830 the first set in a PARALLEL. */
831 if (GET_CODE (pat) == PARALLEL)
832 pat = XVECEXP (pat, 0, 0);
833 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
834 return pat;
835
836 return NULL_RTX;
837 }
838
839 /* Return true when insn is an unconditional direct jump,
840 possibly bundled inside a PARALLEL. */
841
842 int
843 any_uncondjump_p (const_rtx insn)
844 {
845 const_rtx x = pc_set (insn);
846 if (!x)
847 return 0;
848 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
849 return 0;
850 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
851 return 0;
852 return 1;
853 }
854
855 /* Return true when insn is a conditional jump. This function works for
856 instructions containing PC sets in PARALLELs. The instruction may have
857 various other effects so before removing the jump you must verify
858 onlyjump_p.
859
860 Note that unlike condjump_p it returns false for unconditional jumps. */
861
862 int
863 any_condjump_p (const_rtx insn)
864 {
865 const_rtx x = pc_set (insn);
866 enum rtx_code a, b;
867
868 if (!x)
869 return 0;
870 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
871 return 0;
872
873 a = GET_CODE (XEXP (SET_SRC (x), 1));
874 b = GET_CODE (XEXP (SET_SRC (x), 2));
875
876 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
877 || (a == PC
878 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
879 }
880
881 /* Return the label of a conditional jump. */
882
883 rtx
884 condjump_label (const_rtx insn)
885 {
886 rtx x = pc_set (insn);
887
888 if (!x)
889 return NULL_RTX;
890 x = SET_SRC (x);
891 if (GET_CODE (x) == LABEL_REF)
892 return x;
893 if (GET_CODE (x) != IF_THEN_ELSE)
894 return NULL_RTX;
895 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
896 return XEXP (x, 1);
897 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
898 return XEXP (x, 2);
899 return NULL_RTX;
900 }
901
902 /* Return true if INSN is a (possibly conditional) return insn. */
903
904 static int
905 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
906 {
907 rtx x = *loc;
908
909 if (x == NULL)
910 return false;
911
912 switch (GET_CODE (x))
913 {
914 case RETURN:
915 case SIMPLE_RETURN:
916 case EH_RETURN:
917 return true;
918
919 case SET:
920 return SET_IS_RETURN_P (x);
921
922 default:
923 return false;
924 }
925 }
926
927 /* Return TRUE if INSN is a return jump. */
928
929 int
930 returnjump_p (rtx insn)
931 {
932 if (!JUMP_P (insn))
933 return 0;
934 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
935 }
936
937 /* Return true if INSN is a (possibly conditional) return insn. */
938
939 static int
940 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
941 {
942 return *loc && GET_CODE (*loc) == EH_RETURN;
943 }
944
945 int
946 eh_returnjump_p (rtx insn)
947 {
948 if (!JUMP_P (insn))
949 return 0;
950 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
951 }
952
953 /* Return true if INSN is a jump that only transfers control and
954 nothing more. */
955
956 int
957 onlyjump_p (const_rtx insn)
958 {
959 rtx set;
960
961 if (!JUMP_P (insn))
962 return 0;
963
964 set = single_set (insn);
965 if (set == NULL)
966 return 0;
967 if (GET_CODE (SET_DEST (set)) != PC)
968 return 0;
969 if (side_effects_p (SET_SRC (set)))
970 return 0;
971
972 return 1;
973 }
974
975 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
976 NULL or a return. */
977 bool
978 jump_to_label_p (rtx insn)
979 {
980 return (JUMP_P (insn)
981 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
982 }
983
984 #ifdef HAVE_cc0
985
986 /* Return nonzero if X is an RTX that only sets the condition codes
987 and has no side effects. */
988
989 int
990 only_sets_cc0_p (const_rtx x)
991 {
992 if (! x)
993 return 0;
994
995 if (INSN_P (x))
996 x = PATTERN (x);
997
998 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
999 }
1000
1001 /* Return 1 if X is an RTX that does nothing but set the condition codes
1002 and CLOBBER or USE registers.
1003 Return -1 if X does explicitly set the condition codes,
1004 but also does other things. */
1005
1006 int
1007 sets_cc0_p (const_rtx x)
1008 {
1009 if (! x)
1010 return 0;
1011
1012 if (INSN_P (x))
1013 x = PATTERN (x);
1014
1015 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1016 return 1;
1017 if (GET_CODE (x) == PARALLEL)
1018 {
1019 int i;
1020 int sets_cc0 = 0;
1021 int other_things = 0;
1022 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1023 {
1024 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1025 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1026 sets_cc0 = 1;
1027 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1028 other_things = 1;
1029 }
1030 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1031 }
1032 return 0;
1033 }
1034 #endif
1035 \f
1036 /* Find all CODE_LABELs referred to in X, and increment their use
1037 counts. If INSN is a JUMP_INSN and there is at least one
1038 CODE_LABEL referenced in INSN as a jump target, then store the last
1039 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1040 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1041 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1042 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1043 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1044 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1045
1046 Note that two labels separated by a loop-beginning note
1047 must be kept distinct if we have not yet done loop-optimization,
1048 because the gap between them is where loop-optimize
1049 will want to move invariant code to. CROSS_JUMP tells us
1050 that loop-optimization is done with. */
1051
1052 void
1053 mark_jump_label (rtx x, rtx insn, int in_mem)
1054 {
1055 rtx asmop = extract_asm_operands (x);
1056 if (asmop)
1057 mark_jump_label_asm (asmop, insn);
1058 else
1059 mark_jump_label_1 (x, insn, in_mem != 0,
1060 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1061 }
1062
1063 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1064 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1065 jump-target; when the JUMP_LABEL field of INSN should be set or a
1066 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1067 note. */
1068
1069 static void
1070 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1071 {
1072 RTX_CODE code = GET_CODE (x);
1073 int i;
1074 const char *fmt;
1075
1076 switch (code)
1077 {
1078 case PC:
1079 case CC0:
1080 case REG:
1081 case CONST_INT:
1082 case CONST_DOUBLE:
1083 case CLOBBER:
1084 case CALL:
1085 return;
1086
1087 case RETURN:
1088 case SIMPLE_RETURN:
1089 if (is_target)
1090 {
1091 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1092 JUMP_LABEL (insn) = x;
1093 }
1094 return;
1095
1096 case MEM:
1097 in_mem = true;
1098 break;
1099
1100 case SEQUENCE:
1101 for (i = 0; i < XVECLEN (x, 0); i++)
1102 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1103 XVECEXP (x, 0, i), 0);
1104 return;
1105
1106 case SYMBOL_REF:
1107 if (!in_mem)
1108 return;
1109
1110 /* If this is a constant-pool reference, see if it is a label. */
1111 if (CONSTANT_POOL_ADDRESS_P (x))
1112 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1113 break;
1114
1115 /* Handle operands in the condition of an if-then-else as for a
1116 non-jump insn. */
1117 case IF_THEN_ELSE:
1118 if (!is_target)
1119 break;
1120 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1121 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1122 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1123 return;
1124
1125 case LABEL_REF:
1126 {
1127 rtx label = XEXP (x, 0);
1128
1129 /* Ignore remaining references to unreachable labels that
1130 have been deleted. */
1131 if (NOTE_P (label)
1132 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1133 break;
1134
1135 gcc_assert (LABEL_P (label));
1136
1137 /* Ignore references to labels of containing functions. */
1138 if (LABEL_REF_NONLOCAL_P (x))
1139 break;
1140
1141 XEXP (x, 0) = label;
1142 if (! insn || ! INSN_DELETED_P (insn))
1143 ++LABEL_NUSES (label);
1144
1145 if (insn)
1146 {
1147 if (is_target
1148 /* Do not change a previous setting of JUMP_LABEL. If the
1149 JUMP_LABEL slot is occupied by a different label,
1150 create a note for this label. */
1151 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1152 JUMP_LABEL (insn) = label;
1153 else
1154 {
1155 enum reg_note kind
1156 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1157
1158 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1159 for LABEL unless there already is one. All uses of
1160 a label, except for the primary target of a jump,
1161 must have such a note. */
1162 if (! find_reg_note (insn, kind, label))
1163 add_reg_note (insn, kind, label);
1164 }
1165 }
1166 return;
1167 }
1168
1169 /* Do walk the labels in a vector, but not the first operand of an
1170 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1171 case ADDR_VEC:
1172 case ADDR_DIFF_VEC:
1173 if (! INSN_DELETED_P (insn))
1174 {
1175 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1176
1177 for (i = 0; i < XVECLEN (x, eltnum); i++)
1178 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1179 is_target);
1180 }
1181 return;
1182
1183 default:
1184 break;
1185 }
1186
1187 fmt = GET_RTX_FORMAT (code);
1188
1189 /* The primary target of a tablejump is the label of the ADDR_VEC,
1190 which is canonically mentioned *last* in the insn. To get it
1191 marked as JUMP_LABEL, we iterate over items in reverse order. */
1192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1193 {
1194 if (fmt[i] == 'e')
1195 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1196 else if (fmt[i] == 'E')
1197 {
1198 int j;
1199
1200 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1201 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1202 is_target);
1203 }
1204 }
1205 }
1206
1207 /* Worker function for mark_jump_label. Handle asm insns specially.
1208 In particular, output operands need not be considered so we can
1209 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1210 need to be considered targets. */
1211
1212 static void
1213 mark_jump_label_asm (rtx asmop, rtx insn)
1214 {
1215 int i;
1216
1217 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1218 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1219
1220 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1221 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1222 }
1223 \f
1224 /* Delete insn INSN from the chain of insns and update label ref counts
1225 and delete insns now unreachable.
1226
1227 Returns the first insn after INSN that was not deleted.
1228
1229 Usage of this instruction is deprecated. Use delete_insn instead and
1230 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1231
1232 rtx
1233 delete_related_insns (rtx insn)
1234 {
1235 int was_code_label = (LABEL_P (insn));
1236 rtx note;
1237 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1238
1239 while (next && INSN_DELETED_P (next))
1240 next = NEXT_INSN (next);
1241
1242 /* This insn is already deleted => return first following nondeleted. */
1243 if (INSN_DELETED_P (insn))
1244 return next;
1245
1246 delete_insn (insn);
1247
1248 /* If instruction is followed by a barrier,
1249 delete the barrier too. */
1250
1251 if (next != 0 && BARRIER_P (next))
1252 delete_insn (next);
1253
1254 /* If this is a call, then we have to remove the var tracking note
1255 for the call arguments. */
1256
1257 if (CALL_P (insn)
1258 || (NONJUMP_INSN_P (insn)
1259 && GET_CODE (PATTERN (insn)) == SEQUENCE
1260 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1261 {
1262 rtx p = insn;
1263
1264 for (p = NEXT_INSN (p);
1265 p && NOTE_P (p);
1266 p = NEXT_INSN (p))
1267 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1268 {
1269 remove_insn (p);
1270 break;
1271 }
1272 }
1273
1274 /* If deleting a jump, decrement the count of the label,
1275 and delete the label if it is now unused. */
1276
1277 if (jump_to_label_p (insn))
1278 {
1279 rtx lab = JUMP_LABEL (insn), lab_next;
1280
1281 if (LABEL_NUSES (lab) == 0)
1282 /* This can delete NEXT or PREV,
1283 either directly if NEXT is JUMP_LABEL (INSN),
1284 or indirectly through more levels of jumps. */
1285 delete_related_insns (lab);
1286 else if (tablejump_p (insn, NULL, &lab_next))
1287 {
1288 /* If we're deleting the tablejump, delete the dispatch table.
1289 We may not be able to kill the label immediately preceding
1290 just yet, as it might be referenced in code leading up to
1291 the tablejump. */
1292 delete_related_insns (lab_next);
1293 }
1294 }
1295
1296 /* Likewise if we're deleting a dispatch table. */
1297
1298 if (JUMP_TABLE_DATA_P (insn))
1299 {
1300 rtx pat = PATTERN (insn);
1301 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1302 int len = XVECLEN (pat, diff_vec_p);
1303
1304 for (i = 0; i < len; i++)
1305 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1306 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1307 while (next && INSN_DELETED_P (next))
1308 next = NEXT_INSN (next);
1309 return next;
1310 }
1311
1312 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1313 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1314 if (INSN_P (insn))
1315 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1316 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1317 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1318 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1319 && LABEL_P (XEXP (note, 0)))
1320 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1321 delete_related_insns (XEXP (note, 0));
1322
1323 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1324 prev = PREV_INSN (prev);
1325
1326 /* If INSN was a label and a dispatch table follows it,
1327 delete the dispatch table. The tablejump must have gone already.
1328 It isn't useful to fall through into a table. */
1329
1330 if (was_code_label
1331 && NEXT_INSN (insn) != 0
1332 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1333 next = delete_related_insns (NEXT_INSN (insn));
1334
1335 /* If INSN was a label, delete insns following it if now unreachable. */
1336
1337 if (was_code_label && prev && BARRIER_P (prev))
1338 {
1339 enum rtx_code code;
1340 while (next)
1341 {
1342 code = GET_CODE (next);
1343 if (code == NOTE)
1344 next = NEXT_INSN (next);
1345 /* Keep going past other deleted labels to delete what follows. */
1346 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1347 next = NEXT_INSN (next);
1348 else if (code == BARRIER || INSN_P (next))
1349 /* Note: if this deletes a jump, it can cause more
1350 deletion of unreachable code, after a different label.
1351 As long as the value from this recursive call is correct,
1352 this invocation functions correctly. */
1353 next = delete_related_insns (next);
1354 else
1355 break;
1356 }
1357 }
1358
1359 /* I feel a little doubtful about this loop,
1360 but I see no clean and sure alternative way
1361 to find the first insn after INSN that is not now deleted.
1362 I hope this works. */
1363 while (next && INSN_DELETED_P (next))
1364 next = NEXT_INSN (next);
1365 return next;
1366 }
1367 \f
1368 /* Delete a range of insns from FROM to TO, inclusive.
1369 This is for the sake of peephole optimization, so assume
1370 that whatever these insns do will still be done by a new
1371 peephole insn that will replace them. */
1372
1373 void
1374 delete_for_peephole (rtx from, rtx to)
1375 {
1376 rtx insn = from;
1377
1378 while (1)
1379 {
1380 rtx next = NEXT_INSN (insn);
1381 rtx prev = PREV_INSN (insn);
1382
1383 if (!NOTE_P (insn))
1384 {
1385 INSN_DELETED_P (insn) = 1;
1386
1387 /* Patch this insn out of the chain. */
1388 /* We don't do this all at once, because we
1389 must preserve all NOTEs. */
1390 if (prev)
1391 NEXT_INSN (prev) = next;
1392
1393 if (next)
1394 PREV_INSN (next) = prev;
1395 }
1396
1397 if (insn == to)
1398 break;
1399 insn = next;
1400 }
1401
1402 /* Note that if TO is an unconditional jump
1403 we *do not* delete the BARRIER that follows,
1404 since the peephole that replaces this sequence
1405 is also an unconditional jump in that case. */
1406 }
1407 \f
1408 /* A helper function for redirect_exp_1; examines its input X and returns
1409 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1410 static rtx
1411 redirect_target (rtx x)
1412 {
1413 if (x == NULL_RTX)
1414 return ret_rtx;
1415 if (!ANY_RETURN_P (x))
1416 return gen_rtx_LABEL_REF (Pmode, x);
1417 return x;
1418 }
1419
1420 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1421 NLABEL as a return. Accrue modifications into the change group. */
1422
1423 static void
1424 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1425 {
1426 rtx x = *loc;
1427 RTX_CODE code = GET_CODE (x);
1428 int i;
1429 const char *fmt;
1430
1431 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1432 || x == olabel)
1433 {
1434 x = redirect_target (nlabel);
1435 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1436 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1437 validate_change (insn, loc, x, 1);
1438 return;
1439 }
1440
1441 if (code == SET && SET_DEST (x) == pc_rtx
1442 && ANY_RETURN_P (nlabel)
1443 && GET_CODE (SET_SRC (x)) == LABEL_REF
1444 && XEXP (SET_SRC (x), 0) == olabel)
1445 {
1446 validate_change (insn, loc, nlabel, 1);
1447 return;
1448 }
1449
1450 if (code == IF_THEN_ELSE)
1451 {
1452 /* Skip the condition of an IF_THEN_ELSE. We only want to
1453 change jump destinations, not eventual label comparisons. */
1454 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1455 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1456 return;
1457 }
1458
1459 fmt = GET_RTX_FORMAT (code);
1460 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1461 {
1462 if (fmt[i] == 'e')
1463 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1464 else if (fmt[i] == 'E')
1465 {
1466 int j;
1467 for (j = 0; j < XVECLEN (x, i); j++)
1468 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1469 }
1470 }
1471 }
1472
1473 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1474 the modifications into the change group. Return false if we did
1475 not see how to do that. */
1476
1477 int
1478 redirect_jump_1 (rtx jump, rtx nlabel)
1479 {
1480 int ochanges = num_validated_changes ();
1481 rtx *loc, asmop;
1482
1483 gcc_assert (nlabel != NULL_RTX);
1484 asmop = extract_asm_operands (PATTERN (jump));
1485 if (asmop)
1486 {
1487 if (nlabel == NULL)
1488 return 0;
1489 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1490 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1491 }
1492 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1493 loc = &XVECEXP (PATTERN (jump), 0, 0);
1494 else
1495 loc = &PATTERN (jump);
1496
1497 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1498 return num_validated_changes () > ochanges;
1499 }
1500
1501 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1502 jump target label is unused as a result, it and the code following
1503 it may be deleted.
1504
1505 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1506 in that case we are to turn the jump into a (possibly conditional)
1507 return insn.
1508
1509 The return value will be 1 if the change was made, 0 if it wasn't
1510 (this can only occur when trying to produce return insns). */
1511
1512 int
1513 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1514 {
1515 rtx olabel = JUMP_LABEL (jump);
1516
1517 if (!nlabel)
1518 {
1519 /* If there is no label, we are asked to redirect to the EXIT block.
1520 When before the epilogue is emitted, return/simple_return cannot be
1521 created so we return 0 immediately. After the epilogue is emitted,
1522 we always expect a label, either a non-null label, or a
1523 return/simple_return RTX. */
1524
1525 if (!epilogue_completed)
1526 return 0;
1527 gcc_unreachable ();
1528 }
1529
1530 if (nlabel == olabel)
1531 return 1;
1532
1533 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1534 return 0;
1535
1536 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1537 return 1;
1538 }
1539
1540 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1541 NLABEL in JUMP.
1542 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1543 count has dropped to zero. */
1544 void
1545 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1546 int invert)
1547 {
1548 rtx note;
1549
1550 gcc_assert (JUMP_LABEL (jump) == olabel);
1551
1552 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1553 moving FUNCTION_END note. Just sanity check that no user still worry
1554 about this. */
1555 gcc_assert (delete_unused >= 0);
1556 JUMP_LABEL (jump) = nlabel;
1557 if (!ANY_RETURN_P (nlabel))
1558 ++LABEL_NUSES (nlabel);
1559
1560 /* Update labels in any REG_EQUAL note. */
1561 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1562 {
1563 if (ANY_RETURN_P (nlabel)
1564 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1565 remove_note (jump, note);
1566 else
1567 {
1568 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1569 confirm_change_group ();
1570 }
1571 }
1572
1573 if (!ANY_RETURN_P (olabel)
1574 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1575 /* Undefined labels will remain outside the insn stream. */
1576 && INSN_UID (olabel))
1577 delete_related_insns (olabel);
1578 if (invert)
1579 invert_br_probabilities (jump);
1580 }
1581
1582 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1583 modifications into the change group. Return nonzero for success. */
1584 static int
1585 invert_exp_1 (rtx x, rtx insn)
1586 {
1587 RTX_CODE code = GET_CODE (x);
1588
1589 if (code == IF_THEN_ELSE)
1590 {
1591 rtx comp = XEXP (x, 0);
1592 rtx tem;
1593 enum rtx_code reversed_code;
1594
1595 /* We can do this in two ways: The preferable way, which can only
1596 be done if this is not an integer comparison, is to reverse
1597 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1598 of the IF_THEN_ELSE. If we can't do either, fail. */
1599
1600 reversed_code = reversed_comparison_code (comp, insn);
1601
1602 if (reversed_code != UNKNOWN)
1603 {
1604 validate_change (insn, &XEXP (x, 0),
1605 gen_rtx_fmt_ee (reversed_code,
1606 GET_MODE (comp), XEXP (comp, 0),
1607 XEXP (comp, 1)),
1608 1);
1609 return 1;
1610 }
1611
1612 tem = XEXP (x, 1);
1613 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1614 validate_change (insn, &XEXP (x, 2), tem, 1);
1615 return 1;
1616 }
1617 else
1618 return 0;
1619 }
1620
1621 /* Invert the condition of the jump JUMP, and make it jump to label
1622 NLABEL instead of where it jumps now. Accrue changes into the
1623 change group. Return false if we didn't see how to perform the
1624 inversion and redirection. */
1625
1626 int
1627 invert_jump_1 (rtx jump, rtx nlabel)
1628 {
1629 rtx x = pc_set (jump);
1630 int ochanges;
1631 int ok;
1632
1633 ochanges = num_validated_changes ();
1634 if (x == NULL)
1635 return 0;
1636 ok = invert_exp_1 (SET_SRC (x), jump);
1637 gcc_assert (ok);
1638
1639 if (num_validated_changes () == ochanges)
1640 return 0;
1641
1642 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1643 in Pmode, so checking this is not merely an optimization. */
1644 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1645 }
1646
1647 /* Invert the condition of the jump JUMP, and make it jump to label
1648 NLABEL instead of where it jumps now. Return true if successful. */
1649
1650 int
1651 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1652 {
1653 rtx olabel = JUMP_LABEL (jump);
1654
1655 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1656 {
1657 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1658 return 1;
1659 }
1660 cancel_changes (0);
1661 return 0;
1662 }
1663
1664 \f
1665 /* Like rtx_equal_p except that it considers two REGs as equal
1666 if they renumber to the same value and considers two commutative
1667 operations to be the same if the order of the operands has been
1668 reversed. */
1669
1670 int
1671 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1672 {
1673 int i;
1674 const enum rtx_code code = GET_CODE (x);
1675 const char *fmt;
1676
1677 if (x == y)
1678 return 1;
1679
1680 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1681 && (REG_P (y) || (GET_CODE (y) == SUBREG
1682 && REG_P (SUBREG_REG (y)))))
1683 {
1684 int reg_x = -1, reg_y = -1;
1685 int byte_x = 0, byte_y = 0;
1686 struct subreg_info info;
1687
1688 if (GET_MODE (x) != GET_MODE (y))
1689 return 0;
1690
1691 /* If we haven't done any renumbering, don't
1692 make any assumptions. */
1693 if (reg_renumber == 0)
1694 return rtx_equal_p (x, y);
1695
1696 if (code == SUBREG)
1697 {
1698 reg_x = REGNO (SUBREG_REG (x));
1699 byte_x = SUBREG_BYTE (x);
1700
1701 if (reg_renumber[reg_x] >= 0)
1702 {
1703 subreg_get_info (reg_renumber[reg_x],
1704 GET_MODE (SUBREG_REG (x)), byte_x,
1705 GET_MODE (x), &info);
1706 if (!info.representable_p)
1707 return 0;
1708 reg_x = info.offset;
1709 byte_x = 0;
1710 }
1711 }
1712 else
1713 {
1714 reg_x = REGNO (x);
1715 if (reg_renumber[reg_x] >= 0)
1716 reg_x = reg_renumber[reg_x];
1717 }
1718
1719 if (GET_CODE (y) == SUBREG)
1720 {
1721 reg_y = REGNO (SUBREG_REG (y));
1722 byte_y = SUBREG_BYTE (y);
1723
1724 if (reg_renumber[reg_y] >= 0)
1725 {
1726 subreg_get_info (reg_renumber[reg_y],
1727 GET_MODE (SUBREG_REG (y)), byte_y,
1728 GET_MODE (y), &info);
1729 if (!info.representable_p)
1730 return 0;
1731 reg_y = info.offset;
1732 byte_y = 0;
1733 }
1734 }
1735 else
1736 {
1737 reg_y = REGNO (y);
1738 if (reg_renumber[reg_y] >= 0)
1739 reg_y = reg_renumber[reg_y];
1740 }
1741
1742 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1743 }
1744
1745 /* Now we have disposed of all the cases
1746 in which different rtx codes can match. */
1747 if (code != GET_CODE (y))
1748 return 0;
1749
1750 switch (code)
1751 {
1752 case PC:
1753 case CC0:
1754 case ADDR_VEC:
1755 case ADDR_DIFF_VEC:
1756 case CONST_INT:
1757 case CONST_DOUBLE:
1758 return 0;
1759
1760 case LABEL_REF:
1761 /* We can't assume nonlocal labels have their following insns yet. */
1762 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1763 return XEXP (x, 0) == XEXP (y, 0);
1764
1765 /* Two label-refs are equivalent if they point at labels
1766 in the same position in the instruction stream. */
1767 return (next_real_insn (XEXP (x, 0))
1768 == next_real_insn (XEXP (y, 0)));
1769
1770 case SYMBOL_REF:
1771 return XSTR (x, 0) == XSTR (y, 0);
1772
1773 case CODE_LABEL:
1774 /* If we didn't match EQ equality above, they aren't the same. */
1775 return 0;
1776
1777 default:
1778 break;
1779 }
1780
1781 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1782
1783 if (GET_MODE (x) != GET_MODE (y))
1784 return 0;
1785
1786 /* MEMs referring to different address space are not equivalent. */
1787 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1788 return 0;
1789
1790 /* For commutative operations, the RTX match if the operand match in any
1791 order. Also handle the simple binary and unary cases without a loop. */
1792 if (targetm.commutative_p (x, UNKNOWN))
1793 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1794 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1795 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1796 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1797 else if (NON_COMMUTATIVE_P (x))
1798 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1799 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1800 else if (UNARY_P (x))
1801 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1802
1803 /* Compare the elements. If any pair of corresponding elements
1804 fail to match, return 0 for the whole things. */
1805
1806 fmt = GET_RTX_FORMAT (code);
1807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1808 {
1809 int j;
1810 switch (fmt[i])
1811 {
1812 case 'w':
1813 if (XWINT (x, i) != XWINT (y, i))
1814 return 0;
1815 break;
1816
1817 case 'i':
1818 if (XINT (x, i) != XINT (y, i))
1819 {
1820 if (((code == ASM_OPERANDS && i == 6)
1821 || (code == ASM_INPUT && i == 1))
1822 && locator_eq (XINT (x, i), XINT (y, i)))
1823 break;
1824 return 0;
1825 }
1826 break;
1827
1828 case 't':
1829 if (XTREE (x, i) != XTREE (y, i))
1830 return 0;
1831 break;
1832
1833 case 's':
1834 if (strcmp (XSTR (x, i), XSTR (y, i)))
1835 return 0;
1836 break;
1837
1838 case 'e':
1839 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1840 return 0;
1841 break;
1842
1843 case 'u':
1844 if (XEXP (x, i) != XEXP (y, i))
1845 return 0;
1846 /* Fall through. */
1847 case '0':
1848 break;
1849
1850 case 'E':
1851 if (XVECLEN (x, i) != XVECLEN (y, i))
1852 return 0;
1853 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1854 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1855 return 0;
1856 break;
1857
1858 default:
1859 gcc_unreachable ();
1860 }
1861 }
1862 return 1;
1863 }
1864 \f
1865 /* If X is a hard register or equivalent to one or a subregister of one,
1866 return the hard register number. If X is a pseudo register that was not
1867 assigned a hard register, return the pseudo register number. Otherwise,
1868 return -1. Any rtx is valid for X. */
1869
1870 int
1871 true_regnum (const_rtx x)
1872 {
1873 if (REG_P (x))
1874 {
1875 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1876 return reg_renumber[REGNO (x)];
1877 return REGNO (x);
1878 }
1879 if (GET_CODE (x) == SUBREG)
1880 {
1881 int base = true_regnum (SUBREG_REG (x));
1882 if (base >= 0
1883 && base < FIRST_PSEUDO_REGISTER)
1884 {
1885 struct subreg_info info;
1886
1887 subreg_get_info (REGNO (SUBREG_REG (x)),
1888 GET_MODE (SUBREG_REG (x)),
1889 SUBREG_BYTE (x), GET_MODE (x), &info);
1890
1891 if (info.representable_p)
1892 return base + info.offset;
1893 }
1894 }
1895 return -1;
1896 }
1897
1898 /* Return regno of the register REG and handle subregs too. */
1899 unsigned int
1900 reg_or_subregno (const_rtx reg)
1901 {
1902 if (GET_CODE (reg) == SUBREG)
1903 reg = SUBREG_REG (reg);
1904 gcc_assert (REG_P (reg));
1905 return REGNO (reg);
1906 }