PR c/71171: Fix uninitialized source_range in c_parser_postfix_expression
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "tm_p.h"
46 #include "insn-config.h"
47 #include "regs.h"
48 #include "emit-rtl.h"
49 #include "recog.h"
50 #include "cfgrtl.h"
51 #include "rtl-iter.h"
52
53 /* Optimize jump y; x: ... y: jumpif... x?
54 Don't know if it is worth bothering with. */
55 /* Optimize two cases of conditional jump to conditional jump?
56 This can never delete any instruction or make anything dead,
57 or even change what is live at any point.
58 So perhaps let combiner do it. */
59
60 static void init_label_info (rtx_insn *);
61 static void mark_all_labels (rtx_insn *);
62 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
63 static void mark_jump_label_asm (rtx, rtx_insn *);
64 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
65 static int invert_exp_1 (rtx, rtx);
66 \f
67 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
68 static void
69 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
70 {
71 rtx_insn_list *insn;
72
73 timevar_push (TV_REBUILD_JUMP);
74 init_label_info (f);
75 mark_all_labels (f);
76
77 /* Keep track of labels used from static data; we don't track them
78 closely enough to delete them here, so make sure their reference
79 count doesn't drop to zero. */
80
81 if (count_forced)
82 for (insn = forced_labels; insn; insn = insn->next ())
83 if (LABEL_P (insn->insn ()))
84 LABEL_NUSES (insn->insn ())++;
85 timevar_pop (TV_REBUILD_JUMP);
86 }
87
88 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
89 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
90 instructions and jumping insns that have labels as operands
91 (e.g. cbranchsi4). */
92 void
93 rebuild_jump_labels (rtx_insn *f)
94 {
95 rebuild_jump_labels_1 (f, true);
96 }
97
98 /* This function is like rebuild_jump_labels, but doesn't run over
99 forced_labels. It can be used on insn chains that aren't the
100 main function chain. */
101 void
102 rebuild_jump_labels_chain (rtx_insn *chain)
103 {
104 rebuild_jump_labels_1 (chain, false);
105 }
106 \f
107 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
108 non-fallthru insn. This is not generally true, as multiple barriers
109 may have crept in, or the BARRIER may be separated from the last
110 real insn by one or more NOTEs.
111
112 This simple pass moves barriers and removes duplicates so that the
113 old code is happy.
114 */
115 static unsigned int
116 cleanup_barriers (void)
117 {
118 rtx_insn *insn;
119 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
120 {
121 if (BARRIER_P (insn))
122 {
123 rtx_insn *prev = prev_nonnote_insn (insn);
124 if (!prev)
125 continue;
126
127 if (CALL_P (prev))
128 {
129 /* Make sure we do not split a call and its corresponding
130 CALL_ARG_LOCATION note. */
131 rtx_insn *next = NEXT_INSN (prev);
132
133 if (NOTE_P (next)
134 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
135 prev = next;
136 }
137
138 if (BARRIER_P (prev))
139 delete_insn (insn);
140 else if (prev != PREV_INSN (insn))
141 {
142 basic_block bb = BLOCK_FOR_INSN (prev);
143 rtx_insn *end = PREV_INSN (insn);
144 reorder_insns_nobb (insn, insn, prev);
145 if (bb)
146 {
147 /* If the backend called in machine reorg compute_bb_for_insn
148 and didn't free_bb_for_insn again, preserve basic block
149 boundaries. Move the end of basic block to PREV since
150 it is followed by a barrier now, and clear BLOCK_FOR_INSN
151 on the following notes.
152 ??? Maybe the proper solution for the targets that have
153 cfg around after machine reorg is not to run cleanup_barriers
154 pass at all. */
155 BB_END (bb) = prev;
156 do
157 {
158 prev = NEXT_INSN (prev);
159 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
160 BLOCK_FOR_INSN (prev) = NULL;
161 }
162 while (prev != end);
163 }
164 }
165 }
166 }
167 return 0;
168 }
169
170 namespace {
171
172 const pass_data pass_data_cleanup_barriers =
173 {
174 RTL_PASS, /* type */
175 "barriers", /* name */
176 OPTGROUP_NONE, /* optinfo_flags */
177 TV_NONE, /* tv_id */
178 0, /* properties_required */
179 0, /* properties_provided */
180 0, /* properties_destroyed */
181 0, /* todo_flags_start */
182 0, /* todo_flags_finish */
183 };
184
185 class pass_cleanup_barriers : public rtl_opt_pass
186 {
187 public:
188 pass_cleanup_barriers (gcc::context *ctxt)
189 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
190 {}
191
192 /* opt_pass methods: */
193 virtual unsigned int execute (function *) { return cleanup_barriers (); }
194
195 }; // class pass_cleanup_barriers
196
197 } // anon namespace
198
199 rtl_opt_pass *
200 make_pass_cleanup_barriers (gcc::context *ctxt)
201 {
202 return new pass_cleanup_barriers (ctxt);
203 }
204
205 \f
206 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
207 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
208 notes whose labels don't occur in the insn any more. */
209
210 static void
211 init_label_info (rtx_insn *f)
212 {
213 rtx_insn *insn;
214
215 for (insn = f; insn; insn = NEXT_INSN (insn))
216 {
217 if (LABEL_P (insn))
218 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
219
220 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
221 sticky and not reset here; that way we won't lose association
222 with a label when e.g. the source for a target register
223 disappears out of reach for targets that may use jump-target
224 registers. Jump transformations are supposed to transform
225 any REG_LABEL_TARGET notes. The target label reference in a
226 branch may disappear from the branch (and from the
227 instruction before it) for other reasons, like register
228 allocation. */
229
230 if (INSN_P (insn))
231 {
232 rtx note, next;
233
234 for (note = REG_NOTES (insn); note; note = next)
235 {
236 next = XEXP (note, 1);
237 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
238 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
239 remove_note (insn, note);
240 }
241 }
242 }
243 }
244
245 /* A subroutine of mark_all_labels. Trivially propagate a simple label
246 load into a jump_insn that uses it. */
247
248 static void
249 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
250 {
251 rtx label_note, pc, pc_src;
252
253 pc = pc_set (jump_insn);
254 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
255 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
256
257 /* If the previous non-jump insn sets something to a label,
258 something that this jump insn uses, make that label the primary
259 target of this insn if we don't yet have any. That previous
260 insn must be a single_set and not refer to more than one label.
261 The jump insn must not refer to other labels as jump targets
262 and must be a plain (set (pc) ...), maybe in a parallel, and
263 may refer to the item being set only directly or as one of the
264 arms in an IF_THEN_ELSE. */
265
266 if (label_note != NULL && pc_src != NULL)
267 {
268 rtx label_set = single_set (prev_nonjump_insn);
269 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
270
271 if (label_set != NULL
272 /* The source must be the direct LABEL_REF, not a
273 PLUS, UNSPEC, IF_THEN_ELSE etc. */
274 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
275 && (rtx_equal_p (label_dest, pc_src)
276 || (GET_CODE (pc_src) == IF_THEN_ELSE
277 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
278 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
279 {
280 /* The CODE_LABEL referred to in the note must be the
281 CODE_LABEL in the LABEL_REF of the "set". We can
282 conveniently use it for the marker function, which
283 requires a LABEL_REF wrapping. */
284 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
285
286 mark_jump_label_1 (label_set, jump_insn, false, true);
287
288 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
289 }
290 }
291 }
292
293 /* Mark the label each jump jumps to.
294 Combine consecutive labels, and count uses of labels. */
295
296 static void
297 mark_all_labels (rtx_insn *f)
298 {
299 rtx_insn *insn;
300
301 if (current_ir_type () == IR_RTL_CFGLAYOUT)
302 {
303 basic_block bb;
304 FOR_EACH_BB_FN (bb, cfun)
305 {
306 /* In cfglayout mode, we don't bother with trivial next-insn
307 propagation of LABEL_REFs into JUMP_LABEL. This will be
308 handled by other optimizers using better algorithms. */
309 FOR_BB_INSNS (bb, insn)
310 {
311 gcc_assert (! insn->deleted ());
312 if (NONDEBUG_INSN_P (insn))
313 mark_jump_label (PATTERN (insn), insn, 0);
314 }
315
316 /* In cfglayout mode, there may be non-insns between the
317 basic blocks. If those non-insns represent tablejump data,
318 they contain label references that we must record. */
319 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
320 if (JUMP_TABLE_DATA_P (insn))
321 mark_jump_label (PATTERN (insn), insn, 0);
322 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
323 if (JUMP_TABLE_DATA_P (insn))
324 mark_jump_label (PATTERN (insn), insn, 0);
325 }
326 }
327 else
328 {
329 rtx_insn *prev_nonjump_insn = NULL;
330 for (insn = f; insn; insn = NEXT_INSN (insn))
331 {
332 if (insn->deleted ())
333 ;
334 else if (LABEL_P (insn))
335 prev_nonjump_insn = NULL;
336 else if (JUMP_TABLE_DATA_P (insn))
337 mark_jump_label (PATTERN (insn), insn, 0);
338 else if (NONDEBUG_INSN_P (insn))
339 {
340 mark_jump_label (PATTERN (insn), insn, 0);
341 if (JUMP_P (insn))
342 {
343 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
344 maybe_propagate_label_ref (insn, prev_nonjump_insn);
345 }
346 else
347 prev_nonjump_insn = insn;
348 }
349 }
350 }
351 }
352 \f
353 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
354 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
355 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
356 know whether it's source is floating point or integer comparison. Machine
357 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
358 to help this function avoid overhead in these cases. */
359 enum rtx_code
360 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
361 const_rtx arg1, const_rtx insn)
362 {
363 machine_mode mode;
364
365 /* If this is not actually a comparison, we can't reverse it. */
366 if (GET_RTX_CLASS (code) != RTX_COMPARE
367 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
368 return UNKNOWN;
369
370 mode = GET_MODE (arg0);
371 if (mode == VOIDmode)
372 mode = GET_MODE (arg1);
373
374 /* First see if machine description supplies us way to reverse the
375 comparison. Give it priority over everything else to allow
376 machine description to do tricks. */
377 if (GET_MODE_CLASS (mode) == MODE_CC
378 && REVERSIBLE_CC_MODE (mode))
379 return REVERSE_CONDITION (code, mode);
380
381 /* Try a few special cases based on the comparison code. */
382 switch (code)
383 {
384 case GEU:
385 case GTU:
386 case LEU:
387 case LTU:
388 case NE:
389 case EQ:
390 /* It is always safe to reverse EQ and NE, even for the floating
391 point. Similarly the unsigned comparisons are never used for
392 floating point so we can reverse them in the default way. */
393 return reverse_condition (code);
394 case ORDERED:
395 case UNORDERED:
396 case LTGT:
397 case UNEQ:
398 /* In case we already see unordered comparison, we can be sure to
399 be dealing with floating point so we don't need any more tests. */
400 return reverse_condition_maybe_unordered (code);
401 case UNLT:
402 case UNLE:
403 case UNGT:
404 case UNGE:
405 /* We don't have safe way to reverse these yet. */
406 return UNKNOWN;
407 default:
408 break;
409 }
410
411 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
412 {
413 /* Try to search for the comparison to determine the real mode.
414 This code is expensive, but with sane machine description it
415 will be never used, since REVERSIBLE_CC_MODE will return true
416 in all cases. */
417 if (! insn)
418 return UNKNOWN;
419
420 /* These CONST_CAST's are okay because prev_nonnote_insn just
421 returns its argument and we assign it to a const_rtx
422 variable. */
423 for (rtx_insn *prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
424 prev != 0 && !LABEL_P (prev);
425 prev = prev_nonnote_insn (prev))
426 {
427 const_rtx set = set_of (arg0, prev);
428 if (set && GET_CODE (set) == SET
429 && rtx_equal_p (SET_DEST (set), arg0))
430 {
431 rtx src = SET_SRC (set);
432
433 if (GET_CODE (src) == COMPARE)
434 {
435 rtx comparison = src;
436 arg0 = XEXP (src, 0);
437 mode = GET_MODE (arg0);
438 if (mode == VOIDmode)
439 mode = GET_MODE (XEXP (comparison, 1));
440 break;
441 }
442 /* We can get past reg-reg moves. This may be useful for model
443 of i387 comparisons that first move flag registers around. */
444 if (REG_P (src))
445 {
446 arg0 = src;
447 continue;
448 }
449 }
450 /* If register is clobbered in some ununderstandable way,
451 give up. */
452 if (set)
453 return UNKNOWN;
454 }
455 }
456
457 /* Test for an integer condition, or a floating-point comparison
458 in which NaNs can be ignored. */
459 if (CONST_INT_P (arg0)
460 || (GET_MODE (arg0) != VOIDmode
461 && GET_MODE_CLASS (mode) != MODE_CC
462 && !HONOR_NANS (mode)))
463 return reverse_condition (code);
464
465 return UNKNOWN;
466 }
467
468 /* A wrapper around the previous function to take COMPARISON as rtx
469 expression. This simplifies many callers. */
470 enum rtx_code
471 reversed_comparison_code (const_rtx comparison, const_rtx insn)
472 {
473 if (!COMPARISON_P (comparison))
474 return UNKNOWN;
475 return reversed_comparison_code_parts (GET_CODE (comparison),
476 XEXP (comparison, 0),
477 XEXP (comparison, 1), insn);
478 }
479
480 /* Return comparison with reversed code of EXP.
481 Return NULL_RTX in case we fail to do the reversal. */
482 rtx
483 reversed_comparison (const_rtx exp, machine_mode mode)
484 {
485 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
486 if (reversed_code == UNKNOWN)
487 return NULL_RTX;
488 else
489 return simplify_gen_relational (reversed_code, mode, VOIDmode,
490 XEXP (exp, 0), XEXP (exp, 1));
491 }
492
493 \f
494 /* Given an rtx-code for a comparison, return the code for the negated
495 comparison. If no such code exists, return UNKNOWN.
496
497 WATCH OUT! reverse_condition is not safe to use on a jump that might
498 be acting on the results of an IEEE floating point comparison, because
499 of the special treatment of non-signaling nans in comparisons.
500 Use reversed_comparison_code instead. */
501
502 enum rtx_code
503 reverse_condition (enum rtx_code code)
504 {
505 switch (code)
506 {
507 case EQ:
508 return NE;
509 case NE:
510 return EQ;
511 case GT:
512 return LE;
513 case GE:
514 return LT;
515 case LT:
516 return GE;
517 case LE:
518 return GT;
519 case GTU:
520 return LEU;
521 case GEU:
522 return LTU;
523 case LTU:
524 return GEU;
525 case LEU:
526 return GTU;
527 case UNORDERED:
528 return ORDERED;
529 case ORDERED:
530 return UNORDERED;
531
532 case UNLT:
533 case UNLE:
534 case UNGT:
535 case UNGE:
536 case UNEQ:
537 case LTGT:
538 return UNKNOWN;
539
540 default:
541 gcc_unreachable ();
542 }
543 }
544
545 /* Similar, but we're allowed to generate unordered comparisons, which
546 makes it safe for IEEE floating-point. Of course, we have to recognize
547 that the target will support them too... */
548
549 enum rtx_code
550 reverse_condition_maybe_unordered (enum rtx_code code)
551 {
552 switch (code)
553 {
554 case EQ:
555 return NE;
556 case NE:
557 return EQ;
558 case GT:
559 return UNLE;
560 case GE:
561 return UNLT;
562 case LT:
563 return UNGE;
564 case LE:
565 return UNGT;
566 case LTGT:
567 return UNEQ;
568 case UNORDERED:
569 return ORDERED;
570 case ORDERED:
571 return UNORDERED;
572 case UNLT:
573 return GE;
574 case UNLE:
575 return GT;
576 case UNGT:
577 return LE;
578 case UNGE:
579 return LT;
580 case UNEQ:
581 return LTGT;
582
583 default:
584 gcc_unreachable ();
585 }
586 }
587
588 /* Similar, but return the code when two operands of a comparison are swapped.
589 This IS safe for IEEE floating-point. */
590
591 enum rtx_code
592 swap_condition (enum rtx_code code)
593 {
594 switch (code)
595 {
596 case EQ:
597 case NE:
598 case UNORDERED:
599 case ORDERED:
600 case UNEQ:
601 case LTGT:
602 return code;
603
604 case GT:
605 return LT;
606 case GE:
607 return LE;
608 case LT:
609 return GT;
610 case LE:
611 return GE;
612 case GTU:
613 return LTU;
614 case GEU:
615 return LEU;
616 case LTU:
617 return GTU;
618 case LEU:
619 return GEU;
620 case UNLT:
621 return UNGT;
622 case UNLE:
623 return UNGE;
624 case UNGT:
625 return UNLT;
626 case UNGE:
627 return UNLE;
628
629 default:
630 gcc_unreachable ();
631 }
632 }
633
634 /* Given a comparison CODE, return the corresponding unsigned comparison.
635 If CODE is an equality comparison or already an unsigned comparison,
636 CODE is returned. */
637
638 enum rtx_code
639 unsigned_condition (enum rtx_code code)
640 {
641 switch (code)
642 {
643 case EQ:
644 case NE:
645 case GTU:
646 case GEU:
647 case LTU:
648 case LEU:
649 return code;
650
651 case GT:
652 return GTU;
653 case GE:
654 return GEU;
655 case LT:
656 return LTU;
657 case LE:
658 return LEU;
659
660 default:
661 gcc_unreachable ();
662 }
663 }
664
665 /* Similarly, return the signed version of a comparison. */
666
667 enum rtx_code
668 signed_condition (enum rtx_code code)
669 {
670 switch (code)
671 {
672 case EQ:
673 case NE:
674 case GT:
675 case GE:
676 case LT:
677 case LE:
678 return code;
679
680 case GTU:
681 return GT;
682 case GEU:
683 return GE;
684 case LTU:
685 return LT;
686 case LEU:
687 return LE;
688
689 default:
690 gcc_unreachable ();
691 }
692 }
693 \f
694 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
695 truth of CODE1 implies the truth of CODE2. */
696
697 int
698 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
699 {
700 /* UNKNOWN comparison codes can happen as a result of trying to revert
701 comparison codes.
702 They can't match anything, so we have to reject them here. */
703 if (code1 == UNKNOWN || code2 == UNKNOWN)
704 return 0;
705
706 if (code1 == code2)
707 return 1;
708
709 switch (code1)
710 {
711 case UNEQ:
712 if (code2 == UNLE || code2 == UNGE)
713 return 1;
714 break;
715
716 case EQ:
717 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
718 || code2 == ORDERED)
719 return 1;
720 break;
721
722 case UNLT:
723 if (code2 == UNLE || code2 == NE)
724 return 1;
725 break;
726
727 case LT:
728 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
729 return 1;
730 break;
731
732 case UNGT:
733 if (code2 == UNGE || code2 == NE)
734 return 1;
735 break;
736
737 case GT:
738 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
739 return 1;
740 break;
741
742 case GE:
743 case LE:
744 if (code2 == ORDERED)
745 return 1;
746 break;
747
748 case LTGT:
749 if (code2 == NE || code2 == ORDERED)
750 return 1;
751 break;
752
753 case LTU:
754 if (code2 == LEU || code2 == NE)
755 return 1;
756 break;
757
758 case GTU:
759 if (code2 == GEU || code2 == NE)
760 return 1;
761 break;
762
763 case UNORDERED:
764 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
765 || code2 == UNGE || code2 == UNGT)
766 return 1;
767 break;
768
769 default:
770 break;
771 }
772
773 return 0;
774 }
775 \f
776 /* Return 1 if INSN is an unconditional jump and nothing else. */
777
778 int
779 simplejump_p (const rtx_insn *insn)
780 {
781 return (JUMP_P (insn)
782 && GET_CODE (PATTERN (insn)) == SET
783 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
784 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
785 }
786
787 /* Return nonzero if INSN is a (possibly) conditional jump
788 and nothing more.
789
790 Use of this function is deprecated, since we need to support combined
791 branch and compare insns. Use any_condjump_p instead whenever possible. */
792
793 int
794 condjump_p (const rtx_insn *insn)
795 {
796 const_rtx x = PATTERN (insn);
797
798 if (GET_CODE (x) != SET
799 || GET_CODE (SET_DEST (x)) != PC)
800 return 0;
801
802 x = SET_SRC (x);
803 if (GET_CODE (x) == LABEL_REF)
804 return 1;
805 else
806 return (GET_CODE (x) == IF_THEN_ELSE
807 && ((GET_CODE (XEXP (x, 2)) == PC
808 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
809 || ANY_RETURN_P (XEXP (x, 1))))
810 || (GET_CODE (XEXP (x, 1)) == PC
811 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
812 || ANY_RETURN_P (XEXP (x, 2))))));
813 }
814
815 /* Return nonzero if INSN is a (possibly) conditional jump inside a
816 PARALLEL.
817
818 Use this function is deprecated, since we need to support combined
819 branch and compare insns. Use any_condjump_p instead whenever possible. */
820
821 int
822 condjump_in_parallel_p (const rtx_insn *insn)
823 {
824 const_rtx x = PATTERN (insn);
825
826 if (GET_CODE (x) != PARALLEL)
827 return 0;
828 else
829 x = XVECEXP (x, 0, 0);
830
831 if (GET_CODE (x) != SET)
832 return 0;
833 if (GET_CODE (SET_DEST (x)) != PC)
834 return 0;
835 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
836 return 1;
837 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
838 return 0;
839 if (XEXP (SET_SRC (x), 2) == pc_rtx
840 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
841 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
842 return 1;
843 if (XEXP (SET_SRC (x), 1) == pc_rtx
844 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
845 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
846 return 1;
847 return 0;
848 }
849
850 /* Return set of PC, otherwise NULL. */
851
852 rtx
853 pc_set (const rtx_insn *insn)
854 {
855 rtx pat;
856 if (!JUMP_P (insn))
857 return NULL_RTX;
858 pat = PATTERN (insn);
859
860 /* The set is allowed to appear either as the insn pattern or
861 the first set in a PARALLEL. */
862 if (GET_CODE (pat) == PARALLEL)
863 pat = XVECEXP (pat, 0, 0);
864 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
865 return pat;
866
867 return NULL_RTX;
868 }
869
870 /* Return true when insn is an unconditional direct jump,
871 possibly bundled inside a PARALLEL. */
872
873 int
874 any_uncondjump_p (const rtx_insn *insn)
875 {
876 const_rtx x = pc_set (insn);
877 if (!x)
878 return 0;
879 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
880 return 0;
881 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
882 return 0;
883 return 1;
884 }
885
886 /* Return true when insn is a conditional jump. This function works for
887 instructions containing PC sets in PARALLELs. The instruction may have
888 various other effects so before removing the jump you must verify
889 onlyjump_p.
890
891 Note that unlike condjump_p it returns false for unconditional jumps. */
892
893 int
894 any_condjump_p (const rtx_insn *insn)
895 {
896 const_rtx x = pc_set (insn);
897 enum rtx_code a, b;
898
899 if (!x)
900 return 0;
901 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
902 return 0;
903
904 a = GET_CODE (XEXP (SET_SRC (x), 1));
905 b = GET_CODE (XEXP (SET_SRC (x), 2));
906
907 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
908 || (a == PC
909 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
910 }
911
912 /* Return the label of a conditional jump. */
913
914 rtx
915 condjump_label (const rtx_insn *insn)
916 {
917 rtx x = pc_set (insn);
918
919 if (!x)
920 return NULL_RTX;
921 x = SET_SRC (x);
922 if (GET_CODE (x) == LABEL_REF)
923 return x;
924 if (GET_CODE (x) != IF_THEN_ELSE)
925 return NULL_RTX;
926 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
927 return XEXP (x, 1);
928 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
929 return XEXP (x, 2);
930 return NULL_RTX;
931 }
932
933 /* Return TRUE if INSN is a return jump. */
934
935 int
936 returnjump_p (const rtx_insn *insn)
937 {
938 if (JUMP_P (insn))
939 {
940 subrtx_iterator::array_type array;
941 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
942 {
943 const_rtx x = *iter;
944 switch (GET_CODE (x))
945 {
946 case RETURN:
947 case SIMPLE_RETURN:
948 case EH_RETURN:
949 return true;
950
951 case SET:
952 if (SET_IS_RETURN_P (x))
953 return true;
954 break;
955
956 default:
957 break;
958 }
959 }
960 }
961 return false;
962 }
963
964 /* Return true if INSN is a (possibly conditional) return insn. */
965
966 int
967 eh_returnjump_p (rtx_insn *insn)
968 {
969 if (JUMP_P (insn))
970 {
971 subrtx_iterator::array_type array;
972 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
973 if (GET_CODE (*iter) == EH_RETURN)
974 return true;
975 }
976 return false;
977 }
978
979 /* Return true if INSN is a jump that only transfers control and
980 nothing more. */
981
982 int
983 onlyjump_p (const rtx_insn *insn)
984 {
985 rtx set;
986
987 if (!JUMP_P (insn))
988 return 0;
989
990 set = single_set (insn);
991 if (set == NULL)
992 return 0;
993 if (GET_CODE (SET_DEST (set)) != PC)
994 return 0;
995 if (side_effects_p (SET_SRC (set)))
996 return 0;
997
998 return 1;
999 }
1000
1001 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1002 NULL or a return. */
1003 bool
1004 jump_to_label_p (const rtx_insn *insn)
1005 {
1006 return (JUMP_P (insn)
1007 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1008 }
1009
1010 /* Return nonzero if X is an RTX that only sets the condition codes
1011 and has no side effects. */
1012
1013 int
1014 only_sets_cc0_p (const_rtx x)
1015 {
1016 if (! x)
1017 return 0;
1018
1019 if (INSN_P (x))
1020 x = PATTERN (x);
1021
1022 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1023 }
1024
1025 /* Return 1 if X is an RTX that does nothing but set the condition codes
1026 and CLOBBER or USE registers.
1027 Return -1 if X does explicitly set the condition codes,
1028 but also does other things. */
1029
1030 int
1031 sets_cc0_p (const_rtx x)
1032 {
1033 if (! x)
1034 return 0;
1035
1036 if (INSN_P (x))
1037 x = PATTERN (x);
1038
1039 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1040 return 1;
1041 if (GET_CODE (x) == PARALLEL)
1042 {
1043 int i;
1044 int sets_cc0 = 0;
1045 int other_things = 0;
1046 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1047 {
1048 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1049 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1050 sets_cc0 = 1;
1051 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1052 other_things = 1;
1053 }
1054 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1055 }
1056 return 0;
1057 }
1058 \f
1059 /* Find all CODE_LABELs referred to in X, and increment their use
1060 counts. If INSN is a JUMP_INSN and there is at least one
1061 CODE_LABEL referenced in INSN as a jump target, then store the last
1062 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1063 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1064 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1065 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1066 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1067 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1068
1069 Note that two labels separated by a loop-beginning note
1070 must be kept distinct if we have not yet done loop-optimization,
1071 because the gap between them is where loop-optimize
1072 will want to move invariant code to. CROSS_JUMP tells us
1073 that loop-optimization is done with. */
1074
1075 void
1076 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1077 {
1078 rtx asmop = extract_asm_operands (x);
1079 if (asmop)
1080 mark_jump_label_asm (asmop, insn);
1081 else
1082 mark_jump_label_1 (x, insn, in_mem != 0,
1083 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1084 }
1085
1086 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1087 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1088 jump-target; when the JUMP_LABEL field of INSN should be set or a
1089 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1090 note. */
1091
1092 static void
1093 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1094 {
1095 RTX_CODE code = GET_CODE (x);
1096 int i;
1097 const char *fmt;
1098
1099 switch (code)
1100 {
1101 case PC:
1102 case CC0:
1103 case REG:
1104 case CLOBBER:
1105 case CALL:
1106 return;
1107
1108 case RETURN:
1109 case SIMPLE_RETURN:
1110 if (is_target)
1111 {
1112 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1113 JUMP_LABEL (insn) = x;
1114 }
1115 return;
1116
1117 case MEM:
1118 in_mem = true;
1119 break;
1120
1121 case SEQUENCE:
1122 {
1123 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1124 for (i = 0; i < seq->len (); i++)
1125 mark_jump_label (PATTERN (seq->insn (i)),
1126 seq->insn (i), 0);
1127 }
1128 return;
1129
1130 case SYMBOL_REF:
1131 if (!in_mem)
1132 return;
1133
1134 /* If this is a constant-pool reference, see if it is a label. */
1135 if (CONSTANT_POOL_ADDRESS_P (x))
1136 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1137 break;
1138
1139 /* Handle operands in the condition of an if-then-else as for a
1140 non-jump insn. */
1141 case IF_THEN_ELSE:
1142 if (!is_target)
1143 break;
1144 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1145 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1146 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1147 return;
1148
1149 case LABEL_REF:
1150 {
1151 rtx label = LABEL_REF_LABEL (x);
1152
1153 /* Ignore remaining references to unreachable labels that
1154 have been deleted. */
1155 if (NOTE_P (label)
1156 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1157 break;
1158
1159 gcc_assert (LABEL_P (label));
1160
1161 /* Ignore references to labels of containing functions. */
1162 if (LABEL_REF_NONLOCAL_P (x))
1163 break;
1164
1165 LABEL_REF_LABEL (x) = label;
1166 if (! insn || ! insn->deleted ())
1167 ++LABEL_NUSES (label);
1168
1169 if (insn)
1170 {
1171 if (is_target
1172 /* Do not change a previous setting of JUMP_LABEL. If the
1173 JUMP_LABEL slot is occupied by a different label,
1174 create a note for this label. */
1175 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1176 JUMP_LABEL (insn) = label;
1177 else
1178 {
1179 enum reg_note kind
1180 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1181
1182 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1183 for LABEL unless there already is one. All uses of
1184 a label, except for the primary target of a jump,
1185 must have such a note. */
1186 if (! find_reg_note (insn, kind, label))
1187 add_reg_note (insn, kind, label);
1188 }
1189 }
1190 return;
1191 }
1192
1193 /* Do walk the labels in a vector, but not the first operand of an
1194 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1195 case ADDR_VEC:
1196 case ADDR_DIFF_VEC:
1197 if (! insn->deleted ())
1198 {
1199 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1200
1201 for (i = 0; i < XVECLEN (x, eltnum); i++)
1202 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1203 is_target);
1204 }
1205 return;
1206
1207 default:
1208 break;
1209 }
1210
1211 fmt = GET_RTX_FORMAT (code);
1212
1213 /* The primary target of a tablejump is the label of the ADDR_VEC,
1214 which is canonically mentioned *last* in the insn. To get it
1215 marked as JUMP_LABEL, we iterate over items in reverse order. */
1216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1217 {
1218 if (fmt[i] == 'e')
1219 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1220 else if (fmt[i] == 'E')
1221 {
1222 int j;
1223
1224 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1225 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1226 is_target);
1227 }
1228 }
1229 }
1230
1231 /* Worker function for mark_jump_label. Handle asm insns specially.
1232 In particular, output operands need not be considered so we can
1233 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1234 need to be considered targets. */
1235
1236 static void
1237 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1238 {
1239 int i;
1240
1241 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1242 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1243
1244 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1245 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1246 }
1247 \f
1248 /* Delete insn INSN from the chain of insns and update label ref counts
1249 and delete insns now unreachable.
1250
1251 Returns the first insn after INSN that was not deleted.
1252
1253 Usage of this instruction is deprecated. Use delete_insn instead and
1254 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1255
1256 rtx_insn *
1257 delete_related_insns (rtx uncast_insn)
1258 {
1259 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1260 int was_code_label = (LABEL_P (insn));
1261 rtx note;
1262 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1263
1264 while (next && next->deleted ())
1265 next = NEXT_INSN (next);
1266
1267 /* This insn is already deleted => return first following nondeleted. */
1268 if (insn->deleted ())
1269 return next;
1270
1271 delete_insn (insn);
1272
1273 /* If instruction is followed by a barrier,
1274 delete the barrier too. */
1275
1276 if (next != 0 && BARRIER_P (next))
1277 delete_insn (next);
1278
1279 /* If this is a call, then we have to remove the var tracking note
1280 for the call arguments. */
1281
1282 if (CALL_P (insn)
1283 || (NONJUMP_INSN_P (insn)
1284 && GET_CODE (PATTERN (insn)) == SEQUENCE
1285 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1286 {
1287 rtx_insn *p;
1288
1289 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1290 p && NOTE_P (p);
1291 p = NEXT_INSN (p))
1292 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1293 {
1294 remove_insn (p);
1295 break;
1296 }
1297 }
1298
1299 /* If deleting a jump, decrement the count of the label,
1300 and delete the label if it is now unused. */
1301
1302 if (jump_to_label_p (insn))
1303 {
1304 rtx lab = JUMP_LABEL (insn);
1305 rtx_jump_table_data *lab_next;
1306
1307 if (LABEL_NUSES (lab) == 0)
1308 /* This can delete NEXT or PREV,
1309 either directly if NEXT is JUMP_LABEL (INSN),
1310 or indirectly through more levels of jumps. */
1311 delete_related_insns (lab);
1312 else if (tablejump_p (insn, NULL, &lab_next))
1313 {
1314 /* If we're deleting the tablejump, delete the dispatch table.
1315 We may not be able to kill the label immediately preceding
1316 just yet, as it might be referenced in code leading up to
1317 the tablejump. */
1318 delete_related_insns (lab_next);
1319 }
1320 }
1321
1322 /* Likewise if we're deleting a dispatch table. */
1323
1324 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1325 {
1326 rtvec labels = table->get_labels ();
1327 int i;
1328 int len = GET_NUM_ELEM (labels);
1329
1330 for (i = 0; i < len; i++)
1331 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1332 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1333 while (next && next->deleted ())
1334 next = NEXT_INSN (next);
1335 return next;
1336 }
1337
1338 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1339 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1340 if (INSN_P (insn))
1341 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1342 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1343 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1344 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1345 && LABEL_P (XEXP (note, 0)))
1346 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1347 delete_related_insns (XEXP (note, 0));
1348
1349 while (prev && (prev->deleted () || NOTE_P (prev)))
1350 prev = PREV_INSN (prev);
1351
1352 /* If INSN was a label and a dispatch table follows it,
1353 delete the dispatch table. The tablejump must have gone already.
1354 It isn't useful to fall through into a table. */
1355
1356 if (was_code_label
1357 && NEXT_INSN (insn) != 0
1358 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1359 next = delete_related_insns (NEXT_INSN (insn));
1360
1361 /* If INSN was a label, delete insns following it if now unreachable. */
1362
1363 if (was_code_label && prev && BARRIER_P (prev))
1364 {
1365 enum rtx_code code;
1366 while (next)
1367 {
1368 code = GET_CODE (next);
1369 if (code == NOTE)
1370 next = NEXT_INSN (next);
1371 /* Keep going past other deleted labels to delete what follows. */
1372 else if (code == CODE_LABEL && next->deleted ())
1373 next = NEXT_INSN (next);
1374 /* Keep the (use (insn))s created by dbr_schedule, which needs
1375 them in order to track liveness relative to a previous
1376 barrier. */
1377 else if (INSN_P (next)
1378 && GET_CODE (PATTERN (next)) == USE
1379 && INSN_P (XEXP (PATTERN (next), 0)))
1380 next = NEXT_INSN (next);
1381 else if (code == BARRIER || INSN_P (next))
1382 /* Note: if this deletes a jump, it can cause more
1383 deletion of unreachable code, after a different label.
1384 As long as the value from this recursive call is correct,
1385 this invocation functions correctly. */
1386 next = delete_related_insns (next);
1387 else
1388 break;
1389 }
1390 }
1391
1392 /* I feel a little doubtful about this loop,
1393 but I see no clean and sure alternative way
1394 to find the first insn after INSN that is not now deleted.
1395 I hope this works. */
1396 while (next && next->deleted ())
1397 next = NEXT_INSN (next);
1398 return next;
1399 }
1400 \f
1401 /* Delete a range of insns from FROM to TO, inclusive.
1402 This is for the sake of peephole optimization, so assume
1403 that whatever these insns do will still be done by a new
1404 peephole insn that will replace them. */
1405
1406 void
1407 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1408 {
1409 rtx_insn *insn = from;
1410
1411 while (1)
1412 {
1413 rtx_insn *next = NEXT_INSN (insn);
1414 rtx_insn *prev = PREV_INSN (insn);
1415
1416 if (!NOTE_P (insn))
1417 {
1418 insn->set_deleted();
1419
1420 /* Patch this insn out of the chain. */
1421 /* We don't do this all at once, because we
1422 must preserve all NOTEs. */
1423 if (prev)
1424 SET_NEXT_INSN (prev) = next;
1425
1426 if (next)
1427 SET_PREV_INSN (next) = prev;
1428 }
1429
1430 if (insn == to)
1431 break;
1432 insn = next;
1433 }
1434
1435 /* Note that if TO is an unconditional jump
1436 we *do not* delete the BARRIER that follows,
1437 since the peephole that replaces this sequence
1438 is also an unconditional jump in that case. */
1439 }
1440 \f
1441 /* A helper function for redirect_exp_1; examines its input X and returns
1442 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1443 static rtx
1444 redirect_target (rtx x)
1445 {
1446 if (x == NULL_RTX)
1447 return ret_rtx;
1448 if (!ANY_RETURN_P (x))
1449 return gen_rtx_LABEL_REF (Pmode, x);
1450 return x;
1451 }
1452
1453 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1454 NLABEL as a return. Accrue modifications into the change group. */
1455
1456 static void
1457 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1458 {
1459 rtx x = *loc;
1460 RTX_CODE code = GET_CODE (x);
1461 int i;
1462 const char *fmt;
1463
1464 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1465 || x == olabel)
1466 {
1467 x = redirect_target (nlabel);
1468 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1469 x = gen_rtx_SET (pc_rtx, x);
1470 validate_change (insn, loc, x, 1);
1471 return;
1472 }
1473
1474 if (code == SET && SET_DEST (x) == pc_rtx
1475 && ANY_RETURN_P (nlabel)
1476 && GET_CODE (SET_SRC (x)) == LABEL_REF
1477 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1478 {
1479 validate_change (insn, loc, nlabel, 1);
1480 return;
1481 }
1482
1483 if (code == IF_THEN_ELSE)
1484 {
1485 /* Skip the condition of an IF_THEN_ELSE. We only want to
1486 change jump destinations, not eventual label comparisons. */
1487 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1488 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1489 return;
1490 }
1491
1492 fmt = GET_RTX_FORMAT (code);
1493 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1494 {
1495 if (fmt[i] == 'e')
1496 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1497 else if (fmt[i] == 'E')
1498 {
1499 int j;
1500 for (j = 0; j < XVECLEN (x, i); j++)
1501 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1502 }
1503 }
1504 }
1505
1506 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1507 the modifications into the change group. Return false if we did
1508 not see how to do that. */
1509
1510 int
1511 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1512 {
1513 int ochanges = num_validated_changes ();
1514 rtx *loc, asmop;
1515
1516 gcc_assert (nlabel != NULL_RTX);
1517 asmop = extract_asm_operands (PATTERN (jump));
1518 if (asmop)
1519 {
1520 if (nlabel == NULL)
1521 return 0;
1522 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1523 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1524 }
1525 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1526 loc = &XVECEXP (PATTERN (jump), 0, 0);
1527 else
1528 loc = &PATTERN (jump);
1529
1530 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1531 return num_validated_changes () > ochanges;
1532 }
1533
1534 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1535 jump target label is unused as a result, it and the code following
1536 it may be deleted.
1537
1538 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1539 in that case we are to turn the jump into a (possibly conditional)
1540 return insn.
1541
1542 The return value will be 1 if the change was made, 0 if it wasn't
1543 (this can only occur when trying to produce return insns). */
1544
1545 int
1546 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1547 {
1548 rtx olabel = jump->jump_label ();
1549
1550 if (!nlabel)
1551 {
1552 /* If there is no label, we are asked to redirect to the EXIT block.
1553 When before the epilogue is emitted, return/simple_return cannot be
1554 created so we return 0 immediately. After the epilogue is emitted,
1555 we always expect a label, either a non-null label, or a
1556 return/simple_return RTX. */
1557
1558 if (!epilogue_completed)
1559 return 0;
1560 gcc_unreachable ();
1561 }
1562
1563 if (nlabel == olabel)
1564 return 1;
1565
1566 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1567 return 0;
1568
1569 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1570 return 1;
1571 }
1572
1573 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1574 NLABEL in JUMP.
1575 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1576 count has dropped to zero. */
1577 void
1578 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1579 int invert)
1580 {
1581 rtx note;
1582
1583 gcc_assert (JUMP_LABEL (jump) == olabel);
1584
1585 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1586 moving FUNCTION_END note. Just sanity check that no user still worry
1587 about this. */
1588 gcc_assert (delete_unused >= 0);
1589 JUMP_LABEL (jump) = nlabel;
1590 if (!ANY_RETURN_P (nlabel))
1591 ++LABEL_NUSES (nlabel);
1592
1593 /* Update labels in any REG_EQUAL note. */
1594 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1595 {
1596 if (ANY_RETURN_P (nlabel)
1597 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1598 remove_note (jump, note);
1599 else
1600 {
1601 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1602 confirm_change_group ();
1603 }
1604 }
1605
1606 /* Handle the case where we had a conditional crossing jump to a return
1607 label and are now changing it into a direct conditional return.
1608 The jump is no longer crossing in that case. */
1609 if (ANY_RETURN_P (nlabel))
1610 CROSSING_JUMP_P (jump) = 0;
1611
1612 if (!ANY_RETURN_P (olabel)
1613 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1614 /* Undefined labels will remain outside the insn stream. */
1615 && INSN_UID (olabel))
1616 delete_related_insns (olabel);
1617 if (invert)
1618 invert_br_probabilities (jump);
1619 }
1620
1621 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1622 modifications into the change group. Return nonzero for success. */
1623 static int
1624 invert_exp_1 (rtx x, rtx insn)
1625 {
1626 RTX_CODE code = GET_CODE (x);
1627
1628 if (code == IF_THEN_ELSE)
1629 {
1630 rtx comp = XEXP (x, 0);
1631 rtx tem;
1632 enum rtx_code reversed_code;
1633
1634 /* We can do this in two ways: The preferable way, which can only
1635 be done if this is not an integer comparison, is to reverse
1636 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1637 of the IF_THEN_ELSE. If we can't do either, fail. */
1638
1639 reversed_code = reversed_comparison_code (comp, insn);
1640
1641 if (reversed_code != UNKNOWN)
1642 {
1643 validate_change (insn, &XEXP (x, 0),
1644 gen_rtx_fmt_ee (reversed_code,
1645 GET_MODE (comp), XEXP (comp, 0),
1646 XEXP (comp, 1)),
1647 1);
1648 return 1;
1649 }
1650
1651 tem = XEXP (x, 1);
1652 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1653 validate_change (insn, &XEXP (x, 2), tem, 1);
1654 return 1;
1655 }
1656 else
1657 return 0;
1658 }
1659
1660 /* Invert the condition of the jump JUMP, and make it jump to label
1661 NLABEL instead of where it jumps now. Accrue changes into the
1662 change group. Return false if we didn't see how to perform the
1663 inversion and redirection. */
1664
1665 int
1666 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1667 {
1668 rtx x = pc_set (jump);
1669 int ochanges;
1670 int ok;
1671
1672 ochanges = num_validated_changes ();
1673 if (x == NULL)
1674 return 0;
1675 ok = invert_exp_1 (SET_SRC (x), jump);
1676 gcc_assert (ok);
1677
1678 if (num_validated_changes () == ochanges)
1679 return 0;
1680
1681 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1682 in Pmode, so checking this is not merely an optimization. */
1683 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1684 }
1685
1686 /* Invert the condition of the jump JUMP, and make it jump to label
1687 NLABEL instead of where it jumps now. Return true if successful. */
1688
1689 int
1690 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1691 {
1692 rtx olabel = JUMP_LABEL (jump);
1693
1694 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1695 {
1696 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1697 return 1;
1698 }
1699 cancel_changes (0);
1700 return 0;
1701 }
1702
1703 \f
1704 /* Like rtx_equal_p except that it considers two REGs as equal
1705 if they renumber to the same value and considers two commutative
1706 operations to be the same if the order of the operands has been
1707 reversed. */
1708
1709 int
1710 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1711 {
1712 int i;
1713 const enum rtx_code code = GET_CODE (x);
1714 const char *fmt;
1715
1716 if (x == y)
1717 return 1;
1718
1719 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1720 && (REG_P (y) || (GET_CODE (y) == SUBREG
1721 && REG_P (SUBREG_REG (y)))))
1722 {
1723 int reg_x = -1, reg_y = -1;
1724 int byte_x = 0, byte_y = 0;
1725 struct subreg_info info;
1726
1727 if (GET_MODE (x) != GET_MODE (y))
1728 return 0;
1729
1730 /* If we haven't done any renumbering, don't
1731 make any assumptions. */
1732 if (reg_renumber == 0)
1733 return rtx_equal_p (x, y);
1734
1735 if (code == SUBREG)
1736 {
1737 reg_x = REGNO (SUBREG_REG (x));
1738 byte_x = SUBREG_BYTE (x);
1739
1740 if (reg_renumber[reg_x] >= 0)
1741 {
1742 subreg_get_info (reg_renumber[reg_x],
1743 GET_MODE (SUBREG_REG (x)), byte_x,
1744 GET_MODE (x), &info);
1745 if (!info.representable_p)
1746 return 0;
1747 reg_x = info.offset;
1748 byte_x = 0;
1749 }
1750 }
1751 else
1752 {
1753 reg_x = REGNO (x);
1754 if (reg_renumber[reg_x] >= 0)
1755 reg_x = reg_renumber[reg_x];
1756 }
1757
1758 if (GET_CODE (y) == SUBREG)
1759 {
1760 reg_y = REGNO (SUBREG_REG (y));
1761 byte_y = SUBREG_BYTE (y);
1762
1763 if (reg_renumber[reg_y] >= 0)
1764 {
1765 subreg_get_info (reg_renumber[reg_y],
1766 GET_MODE (SUBREG_REG (y)), byte_y,
1767 GET_MODE (y), &info);
1768 if (!info.representable_p)
1769 return 0;
1770 reg_y = info.offset;
1771 byte_y = 0;
1772 }
1773 }
1774 else
1775 {
1776 reg_y = REGNO (y);
1777 if (reg_renumber[reg_y] >= 0)
1778 reg_y = reg_renumber[reg_y];
1779 }
1780
1781 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1782 }
1783
1784 /* Now we have disposed of all the cases
1785 in which different rtx codes can match. */
1786 if (code != GET_CODE (y))
1787 return 0;
1788
1789 switch (code)
1790 {
1791 case PC:
1792 case CC0:
1793 case ADDR_VEC:
1794 case ADDR_DIFF_VEC:
1795 CASE_CONST_UNIQUE:
1796 return 0;
1797
1798 case LABEL_REF:
1799 /* We can't assume nonlocal labels have their following insns yet. */
1800 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1801 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1802
1803 /* Two label-refs are equivalent if they point at labels
1804 in the same position in the instruction stream. */
1805 else
1806 {
1807 rtx_insn *xi = next_nonnote_nondebug_insn (LABEL_REF_LABEL (x));
1808 rtx_insn *yi = next_nonnote_nondebug_insn (LABEL_REF_LABEL (y));
1809 while (xi && LABEL_P (xi))
1810 xi = next_nonnote_nondebug_insn (xi);
1811 while (yi && LABEL_P (yi))
1812 yi = next_nonnote_nondebug_insn (yi);
1813 return xi == yi;
1814 }
1815
1816 case SYMBOL_REF:
1817 return XSTR (x, 0) == XSTR (y, 0);
1818
1819 case CODE_LABEL:
1820 /* If we didn't match EQ equality above, they aren't the same. */
1821 return 0;
1822
1823 default:
1824 break;
1825 }
1826
1827 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1828
1829 if (GET_MODE (x) != GET_MODE (y))
1830 return 0;
1831
1832 /* MEMs referring to different address space are not equivalent. */
1833 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1834 return 0;
1835
1836 /* For commutative operations, the RTX match if the operand match in any
1837 order. Also handle the simple binary and unary cases without a loop. */
1838 if (targetm.commutative_p (x, UNKNOWN))
1839 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1840 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1841 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1842 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1843 else if (NON_COMMUTATIVE_P (x))
1844 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1845 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1846 else if (UNARY_P (x))
1847 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1848
1849 /* Compare the elements. If any pair of corresponding elements
1850 fail to match, return 0 for the whole things. */
1851
1852 fmt = GET_RTX_FORMAT (code);
1853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1854 {
1855 int j;
1856 switch (fmt[i])
1857 {
1858 case 'w':
1859 if (XWINT (x, i) != XWINT (y, i))
1860 return 0;
1861 break;
1862
1863 case 'i':
1864 if (XINT (x, i) != XINT (y, i))
1865 {
1866 if (((code == ASM_OPERANDS && i == 6)
1867 || (code == ASM_INPUT && i == 1)))
1868 break;
1869 return 0;
1870 }
1871 break;
1872
1873 case 't':
1874 if (XTREE (x, i) != XTREE (y, i))
1875 return 0;
1876 break;
1877
1878 case 's':
1879 if (strcmp (XSTR (x, i), XSTR (y, i)))
1880 return 0;
1881 break;
1882
1883 case 'e':
1884 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1885 return 0;
1886 break;
1887
1888 case 'u':
1889 if (XEXP (x, i) != XEXP (y, i))
1890 return 0;
1891 /* Fall through. */
1892 case '0':
1893 break;
1894
1895 case 'E':
1896 if (XVECLEN (x, i) != XVECLEN (y, i))
1897 return 0;
1898 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1899 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1900 return 0;
1901 break;
1902
1903 default:
1904 gcc_unreachable ();
1905 }
1906 }
1907 return 1;
1908 }
1909 \f
1910 /* If X is a hard register or equivalent to one or a subregister of one,
1911 return the hard register number. If X is a pseudo register that was not
1912 assigned a hard register, return the pseudo register number. Otherwise,
1913 return -1. Any rtx is valid for X. */
1914
1915 int
1916 true_regnum (const_rtx x)
1917 {
1918 if (REG_P (x))
1919 {
1920 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1921 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1922 return reg_renumber[REGNO (x)];
1923 return REGNO (x);
1924 }
1925 if (GET_CODE (x) == SUBREG)
1926 {
1927 int base = true_regnum (SUBREG_REG (x));
1928 if (base >= 0
1929 && base < FIRST_PSEUDO_REGISTER)
1930 {
1931 struct subreg_info info;
1932
1933 subreg_get_info (lra_in_progress
1934 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1935 GET_MODE (SUBREG_REG (x)),
1936 SUBREG_BYTE (x), GET_MODE (x), &info);
1937
1938 if (info.representable_p)
1939 return base + info.offset;
1940 }
1941 }
1942 return -1;
1943 }
1944
1945 /* Return regno of the register REG and handle subregs too. */
1946 unsigned int
1947 reg_or_subregno (const_rtx reg)
1948 {
1949 if (GET_CODE (reg) == SUBREG)
1950 reg = SUBREG_REG (reg);
1951 gcc_assert (REG_P (reg));
1952 return REGNO (reg);
1953 }