utils.c (max_size): Add special code to deal with the subtraction of a "negative...
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "hashtab.h"
49 #include "hash-set.h"
50 #include "vec.h"
51 #include "machmode.h"
52 #include "input.h"
53 #include "function.h"
54 #include "predict.h"
55 #include "dominance.h"
56 #include "cfg.h"
57 #include "cfgrtl.h"
58 #include "basic-block.h"
59 #include "symtab.h"
60 #include "statistics.h"
61 #include "double-int.h"
62 #include "real.h"
63 #include "fixed-value.h"
64 #include "alias.h"
65 #include "wide-int.h"
66 #include "inchash.h"
67 #include "tree.h"
68 #include "expmed.h"
69 #include "dojump.h"
70 #include "explow.h"
71 #include "calls.h"
72 #include "emit-rtl.h"
73 #include "varasm.h"
74 #include "stmt.h"
75 #include "expr.h"
76 #include "except.h"
77 #include "diagnostic-core.h"
78 #include "reload.h"
79 #include "tree-pass.h"
80 #include "target.h"
81 #include "rtl-iter.h"
82
83 /* Optimize jump y; x: ... y: jumpif... x?
84 Don't know if it is worth bothering with. */
85 /* Optimize two cases of conditional jump to conditional jump?
86 This can never delete any instruction or make anything dead,
87 or even change what is live at any point.
88 So perhaps let combiner do it. */
89
90 static void init_label_info (rtx_insn *);
91 static void mark_all_labels (rtx_insn *);
92 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
93 static void mark_jump_label_asm (rtx, rtx_insn *);
94 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
95 static int invert_exp_1 (rtx, rtx);
96 \f
97 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
98 static void
99 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
100 {
101 rtx_insn_list *insn;
102
103 timevar_push (TV_REBUILD_JUMP);
104 init_label_info (f);
105 mark_all_labels (f);
106
107 /* Keep track of labels used from static data; we don't track them
108 closely enough to delete them here, so make sure their reference
109 count doesn't drop to zero. */
110
111 if (count_forced)
112 for (insn = forced_labels; insn; insn = insn->next ())
113 if (LABEL_P (insn->insn ()))
114 LABEL_NUSES (insn->insn ())++;
115 timevar_pop (TV_REBUILD_JUMP);
116 }
117
118 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
119 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
120 instructions and jumping insns that have labels as operands
121 (e.g. cbranchsi4). */
122 void
123 rebuild_jump_labels (rtx_insn *f)
124 {
125 rebuild_jump_labels_1 (f, true);
126 }
127
128 /* This function is like rebuild_jump_labels, but doesn't run over
129 forced_labels. It can be used on insn chains that aren't the
130 main function chain. */
131 void
132 rebuild_jump_labels_chain (rtx_insn *chain)
133 {
134 rebuild_jump_labels_1 (chain, false);
135 }
136 \f
137 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
138 non-fallthru insn. This is not generally true, as multiple barriers
139 may have crept in, or the BARRIER may be separated from the last
140 real insn by one or more NOTEs.
141
142 This simple pass moves barriers and removes duplicates so that the
143 old code is happy.
144 */
145 static unsigned int
146 cleanup_barriers (void)
147 {
148 rtx_insn *insn;
149 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
150 {
151 if (BARRIER_P (insn))
152 {
153 rtx_insn *prev = prev_nonnote_insn (insn);
154 if (!prev)
155 continue;
156
157 if (CALL_P (prev))
158 {
159 /* Make sure we do not split a call and its corresponding
160 CALL_ARG_LOCATION note. */
161 rtx_insn *next = NEXT_INSN (prev);
162
163 if (NOTE_P (next)
164 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
165 prev = next;
166 }
167
168 if (BARRIER_P (prev))
169 delete_insn (insn);
170 else if (prev != PREV_INSN (insn))
171 {
172 basic_block bb = BLOCK_FOR_INSN (prev);
173 rtx_insn *end = PREV_INSN (insn);
174 reorder_insns_nobb (insn, insn, prev);
175 if (bb)
176 {
177 /* If the backend called in machine reorg compute_bb_for_insn
178 and didn't free_bb_for_insn again, preserve basic block
179 boundaries. Move the end of basic block to PREV since
180 it is followed by a barrier now, and clear BLOCK_FOR_INSN
181 on the following notes.
182 ??? Maybe the proper solution for the targets that have
183 cfg around after machine reorg is not to run cleanup_barriers
184 pass at all. */
185 BB_END (bb) = prev;
186 do
187 {
188 prev = NEXT_INSN (prev);
189 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
190 BLOCK_FOR_INSN (prev) = NULL;
191 }
192 while (prev != end);
193 }
194 }
195 }
196 }
197 return 0;
198 }
199
200 namespace {
201
202 const pass_data pass_data_cleanup_barriers =
203 {
204 RTL_PASS, /* type */
205 "barriers", /* name */
206 OPTGROUP_NONE, /* optinfo_flags */
207 TV_NONE, /* tv_id */
208 0, /* properties_required */
209 0, /* properties_provided */
210 0, /* properties_destroyed */
211 0, /* todo_flags_start */
212 0, /* todo_flags_finish */
213 };
214
215 class pass_cleanup_barriers : public rtl_opt_pass
216 {
217 public:
218 pass_cleanup_barriers (gcc::context *ctxt)
219 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
220 {}
221
222 /* opt_pass methods: */
223 virtual unsigned int execute (function *) { return cleanup_barriers (); }
224
225 }; // class pass_cleanup_barriers
226
227 } // anon namespace
228
229 rtl_opt_pass *
230 make_pass_cleanup_barriers (gcc::context *ctxt)
231 {
232 return new pass_cleanup_barriers (ctxt);
233 }
234
235 \f
236 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
237 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
238 notes whose labels don't occur in the insn any more. */
239
240 static void
241 init_label_info (rtx_insn *f)
242 {
243 rtx_insn *insn;
244
245 for (insn = f; insn; insn = NEXT_INSN (insn))
246 {
247 if (LABEL_P (insn))
248 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
249
250 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
251 sticky and not reset here; that way we won't lose association
252 with a label when e.g. the source for a target register
253 disappears out of reach for targets that may use jump-target
254 registers. Jump transformations are supposed to transform
255 any REG_LABEL_TARGET notes. The target label reference in a
256 branch may disappear from the branch (and from the
257 instruction before it) for other reasons, like register
258 allocation. */
259
260 if (INSN_P (insn))
261 {
262 rtx note, next;
263
264 for (note = REG_NOTES (insn); note; note = next)
265 {
266 next = XEXP (note, 1);
267 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
268 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
269 remove_note (insn, note);
270 }
271 }
272 }
273 }
274
275 /* A subroutine of mark_all_labels. Trivially propagate a simple label
276 load into a jump_insn that uses it. */
277
278 static void
279 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
280 {
281 rtx label_note, pc, pc_src;
282
283 pc = pc_set (jump_insn);
284 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
285 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
286
287 /* If the previous non-jump insn sets something to a label,
288 something that this jump insn uses, make that label the primary
289 target of this insn if we don't yet have any. That previous
290 insn must be a single_set and not refer to more than one label.
291 The jump insn must not refer to other labels as jump targets
292 and must be a plain (set (pc) ...), maybe in a parallel, and
293 may refer to the item being set only directly or as one of the
294 arms in an IF_THEN_ELSE. */
295
296 if (label_note != NULL && pc_src != NULL)
297 {
298 rtx label_set = single_set (prev_nonjump_insn);
299 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
300
301 if (label_set != NULL
302 /* The source must be the direct LABEL_REF, not a
303 PLUS, UNSPEC, IF_THEN_ELSE etc. */
304 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
305 && (rtx_equal_p (label_dest, pc_src)
306 || (GET_CODE (pc_src) == IF_THEN_ELSE
307 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
308 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
309 {
310 /* The CODE_LABEL referred to in the note must be the
311 CODE_LABEL in the LABEL_REF of the "set". We can
312 conveniently use it for the marker function, which
313 requires a LABEL_REF wrapping. */
314 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
315
316 mark_jump_label_1 (label_set, jump_insn, false, true);
317
318 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
319 }
320 }
321 }
322
323 /* Mark the label each jump jumps to.
324 Combine consecutive labels, and count uses of labels. */
325
326 static void
327 mark_all_labels (rtx_insn *f)
328 {
329 rtx_insn *insn;
330
331 if (current_ir_type () == IR_RTL_CFGLAYOUT)
332 {
333 basic_block bb;
334 FOR_EACH_BB_FN (bb, cfun)
335 {
336 /* In cfglayout mode, we don't bother with trivial next-insn
337 propagation of LABEL_REFs into JUMP_LABEL. This will be
338 handled by other optimizers using better algorithms. */
339 FOR_BB_INSNS (bb, insn)
340 {
341 gcc_assert (! insn->deleted ());
342 if (NONDEBUG_INSN_P (insn))
343 mark_jump_label (PATTERN (insn), insn, 0);
344 }
345
346 /* In cfglayout mode, there may be non-insns between the
347 basic blocks. If those non-insns represent tablejump data,
348 they contain label references that we must record. */
349 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
350 if (JUMP_TABLE_DATA_P (insn))
351 mark_jump_label (PATTERN (insn), insn, 0);
352 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
353 if (JUMP_TABLE_DATA_P (insn))
354 mark_jump_label (PATTERN (insn), insn, 0);
355 }
356 }
357 else
358 {
359 rtx_insn *prev_nonjump_insn = NULL;
360 for (insn = f; insn; insn = NEXT_INSN (insn))
361 {
362 if (insn->deleted ())
363 ;
364 else if (LABEL_P (insn))
365 prev_nonjump_insn = NULL;
366 else if (JUMP_TABLE_DATA_P (insn))
367 mark_jump_label (PATTERN (insn), insn, 0);
368 else if (NONDEBUG_INSN_P (insn))
369 {
370 mark_jump_label (PATTERN (insn), insn, 0);
371 if (JUMP_P (insn))
372 {
373 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
374 maybe_propagate_label_ref (insn, prev_nonjump_insn);
375 }
376 else
377 prev_nonjump_insn = insn;
378 }
379 }
380 }
381 }
382 \f
383 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
384 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
385 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
386 know whether it's source is floating point or integer comparison. Machine
387 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
388 to help this function avoid overhead in these cases. */
389 enum rtx_code
390 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
391 const_rtx arg1, const_rtx insn)
392 {
393 machine_mode mode;
394
395 /* If this is not actually a comparison, we can't reverse it. */
396 if (GET_RTX_CLASS (code) != RTX_COMPARE
397 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
398 return UNKNOWN;
399
400 mode = GET_MODE (arg0);
401 if (mode == VOIDmode)
402 mode = GET_MODE (arg1);
403
404 /* First see if machine description supplies us way to reverse the
405 comparison. Give it priority over everything else to allow
406 machine description to do tricks. */
407 if (GET_MODE_CLASS (mode) == MODE_CC
408 && REVERSIBLE_CC_MODE (mode))
409 {
410 #ifdef REVERSE_CONDITION
411 return REVERSE_CONDITION (code, mode);
412 #else
413 return reverse_condition (code);
414 #endif
415 }
416
417 /* Try a few special cases based on the comparison code. */
418 switch (code)
419 {
420 case GEU:
421 case GTU:
422 case LEU:
423 case LTU:
424 case NE:
425 case EQ:
426 /* It is always safe to reverse EQ and NE, even for the floating
427 point. Similarly the unsigned comparisons are never used for
428 floating point so we can reverse them in the default way. */
429 return reverse_condition (code);
430 case ORDERED:
431 case UNORDERED:
432 case LTGT:
433 case UNEQ:
434 /* In case we already see unordered comparison, we can be sure to
435 be dealing with floating point so we don't need any more tests. */
436 return reverse_condition_maybe_unordered (code);
437 case UNLT:
438 case UNLE:
439 case UNGT:
440 case UNGE:
441 /* We don't have safe way to reverse these yet. */
442 return UNKNOWN;
443 default:
444 break;
445 }
446
447 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
448 {
449 const_rtx prev;
450 /* Try to search for the comparison to determine the real mode.
451 This code is expensive, but with sane machine description it
452 will be never used, since REVERSIBLE_CC_MODE will return true
453 in all cases. */
454 if (! insn)
455 return UNKNOWN;
456
457 /* These CONST_CAST's are okay because prev_nonnote_insn just
458 returns its argument and we assign it to a const_rtx
459 variable. */
460 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
461 prev != 0 && !LABEL_P (prev);
462 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
463 {
464 const_rtx set = set_of (arg0, prev);
465 if (set && GET_CODE (set) == SET
466 && rtx_equal_p (SET_DEST (set), arg0))
467 {
468 rtx src = SET_SRC (set);
469
470 if (GET_CODE (src) == COMPARE)
471 {
472 rtx comparison = src;
473 arg0 = XEXP (src, 0);
474 mode = GET_MODE (arg0);
475 if (mode == VOIDmode)
476 mode = GET_MODE (XEXP (comparison, 1));
477 break;
478 }
479 /* We can get past reg-reg moves. This may be useful for model
480 of i387 comparisons that first move flag registers around. */
481 if (REG_P (src))
482 {
483 arg0 = src;
484 continue;
485 }
486 }
487 /* If register is clobbered in some ununderstandable way,
488 give up. */
489 if (set)
490 return UNKNOWN;
491 }
492 }
493
494 /* Test for an integer condition, or a floating-point comparison
495 in which NaNs can be ignored. */
496 if (CONST_INT_P (arg0)
497 || (GET_MODE (arg0) != VOIDmode
498 && GET_MODE_CLASS (mode) != MODE_CC
499 && !HONOR_NANS (mode)))
500 return reverse_condition (code);
501
502 return UNKNOWN;
503 }
504
505 /* A wrapper around the previous function to take COMPARISON as rtx
506 expression. This simplifies many callers. */
507 enum rtx_code
508 reversed_comparison_code (const_rtx comparison, const_rtx insn)
509 {
510 if (!COMPARISON_P (comparison))
511 return UNKNOWN;
512 return reversed_comparison_code_parts (GET_CODE (comparison),
513 XEXP (comparison, 0),
514 XEXP (comparison, 1), insn);
515 }
516
517 /* Return comparison with reversed code of EXP.
518 Return NULL_RTX in case we fail to do the reversal. */
519 rtx
520 reversed_comparison (const_rtx exp, machine_mode mode)
521 {
522 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
523 if (reversed_code == UNKNOWN)
524 return NULL_RTX;
525 else
526 return simplify_gen_relational (reversed_code, mode, VOIDmode,
527 XEXP (exp, 0), XEXP (exp, 1));
528 }
529
530 \f
531 /* Given an rtx-code for a comparison, return the code for the negated
532 comparison. If no such code exists, return UNKNOWN.
533
534 WATCH OUT! reverse_condition is not safe to use on a jump that might
535 be acting on the results of an IEEE floating point comparison, because
536 of the special treatment of non-signaling nans in comparisons.
537 Use reversed_comparison_code instead. */
538
539 enum rtx_code
540 reverse_condition (enum rtx_code code)
541 {
542 switch (code)
543 {
544 case EQ:
545 return NE;
546 case NE:
547 return EQ;
548 case GT:
549 return LE;
550 case GE:
551 return LT;
552 case LT:
553 return GE;
554 case LE:
555 return GT;
556 case GTU:
557 return LEU;
558 case GEU:
559 return LTU;
560 case LTU:
561 return GEU;
562 case LEU:
563 return GTU;
564 case UNORDERED:
565 return ORDERED;
566 case ORDERED:
567 return UNORDERED;
568
569 case UNLT:
570 case UNLE:
571 case UNGT:
572 case UNGE:
573 case UNEQ:
574 case LTGT:
575 return UNKNOWN;
576
577 default:
578 gcc_unreachable ();
579 }
580 }
581
582 /* Similar, but we're allowed to generate unordered comparisons, which
583 makes it safe for IEEE floating-point. Of course, we have to recognize
584 that the target will support them too... */
585
586 enum rtx_code
587 reverse_condition_maybe_unordered (enum rtx_code code)
588 {
589 switch (code)
590 {
591 case EQ:
592 return NE;
593 case NE:
594 return EQ;
595 case GT:
596 return UNLE;
597 case GE:
598 return UNLT;
599 case LT:
600 return UNGE;
601 case LE:
602 return UNGT;
603 case LTGT:
604 return UNEQ;
605 case UNORDERED:
606 return ORDERED;
607 case ORDERED:
608 return UNORDERED;
609 case UNLT:
610 return GE;
611 case UNLE:
612 return GT;
613 case UNGT:
614 return LE;
615 case UNGE:
616 return LT;
617 case UNEQ:
618 return LTGT;
619
620 default:
621 gcc_unreachable ();
622 }
623 }
624
625 /* Similar, but return the code when two operands of a comparison are swapped.
626 This IS safe for IEEE floating-point. */
627
628 enum rtx_code
629 swap_condition (enum rtx_code code)
630 {
631 switch (code)
632 {
633 case EQ:
634 case NE:
635 case UNORDERED:
636 case ORDERED:
637 case UNEQ:
638 case LTGT:
639 return code;
640
641 case GT:
642 return LT;
643 case GE:
644 return LE;
645 case LT:
646 return GT;
647 case LE:
648 return GE;
649 case GTU:
650 return LTU;
651 case GEU:
652 return LEU;
653 case LTU:
654 return GTU;
655 case LEU:
656 return GEU;
657 case UNLT:
658 return UNGT;
659 case UNLE:
660 return UNGE;
661 case UNGT:
662 return UNLT;
663 case UNGE:
664 return UNLE;
665
666 default:
667 gcc_unreachable ();
668 }
669 }
670
671 /* Given a comparison CODE, return the corresponding unsigned comparison.
672 If CODE is an equality comparison or already an unsigned comparison,
673 CODE is returned. */
674
675 enum rtx_code
676 unsigned_condition (enum rtx_code code)
677 {
678 switch (code)
679 {
680 case EQ:
681 case NE:
682 case GTU:
683 case GEU:
684 case LTU:
685 case LEU:
686 return code;
687
688 case GT:
689 return GTU;
690 case GE:
691 return GEU;
692 case LT:
693 return LTU;
694 case LE:
695 return LEU;
696
697 default:
698 gcc_unreachable ();
699 }
700 }
701
702 /* Similarly, return the signed version of a comparison. */
703
704 enum rtx_code
705 signed_condition (enum rtx_code code)
706 {
707 switch (code)
708 {
709 case EQ:
710 case NE:
711 case GT:
712 case GE:
713 case LT:
714 case LE:
715 return code;
716
717 case GTU:
718 return GT;
719 case GEU:
720 return GE;
721 case LTU:
722 return LT;
723 case LEU:
724 return LE;
725
726 default:
727 gcc_unreachable ();
728 }
729 }
730 \f
731 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
732 truth of CODE1 implies the truth of CODE2. */
733
734 int
735 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
736 {
737 /* UNKNOWN comparison codes can happen as a result of trying to revert
738 comparison codes.
739 They can't match anything, so we have to reject them here. */
740 if (code1 == UNKNOWN || code2 == UNKNOWN)
741 return 0;
742
743 if (code1 == code2)
744 return 1;
745
746 switch (code1)
747 {
748 case UNEQ:
749 if (code2 == UNLE || code2 == UNGE)
750 return 1;
751 break;
752
753 case EQ:
754 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
755 || code2 == ORDERED)
756 return 1;
757 break;
758
759 case UNLT:
760 if (code2 == UNLE || code2 == NE)
761 return 1;
762 break;
763
764 case LT:
765 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
766 return 1;
767 break;
768
769 case UNGT:
770 if (code2 == UNGE || code2 == NE)
771 return 1;
772 break;
773
774 case GT:
775 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
776 return 1;
777 break;
778
779 case GE:
780 case LE:
781 if (code2 == ORDERED)
782 return 1;
783 break;
784
785 case LTGT:
786 if (code2 == NE || code2 == ORDERED)
787 return 1;
788 break;
789
790 case LTU:
791 if (code2 == LEU || code2 == NE)
792 return 1;
793 break;
794
795 case GTU:
796 if (code2 == GEU || code2 == NE)
797 return 1;
798 break;
799
800 case UNORDERED:
801 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
802 || code2 == UNGE || code2 == UNGT)
803 return 1;
804 break;
805
806 default:
807 break;
808 }
809
810 return 0;
811 }
812 \f
813 /* Return 1 if INSN is an unconditional jump and nothing else. */
814
815 int
816 simplejump_p (const rtx_insn *insn)
817 {
818 return (JUMP_P (insn)
819 && GET_CODE (PATTERN (insn)) == SET
820 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
821 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
822 }
823
824 /* Return nonzero if INSN is a (possibly) conditional jump
825 and nothing more.
826
827 Use of this function is deprecated, since we need to support combined
828 branch and compare insns. Use any_condjump_p instead whenever possible. */
829
830 int
831 condjump_p (const rtx_insn *insn)
832 {
833 const_rtx x = PATTERN (insn);
834
835 if (GET_CODE (x) != SET
836 || GET_CODE (SET_DEST (x)) != PC)
837 return 0;
838
839 x = SET_SRC (x);
840 if (GET_CODE (x) == LABEL_REF)
841 return 1;
842 else
843 return (GET_CODE (x) == IF_THEN_ELSE
844 && ((GET_CODE (XEXP (x, 2)) == PC
845 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
846 || ANY_RETURN_P (XEXP (x, 1))))
847 || (GET_CODE (XEXP (x, 1)) == PC
848 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
849 || ANY_RETURN_P (XEXP (x, 2))))));
850 }
851
852 /* Return nonzero if INSN is a (possibly) conditional jump inside a
853 PARALLEL.
854
855 Use this function is deprecated, since we need to support combined
856 branch and compare insns. Use any_condjump_p instead whenever possible. */
857
858 int
859 condjump_in_parallel_p (const rtx_insn *insn)
860 {
861 const_rtx x = PATTERN (insn);
862
863 if (GET_CODE (x) != PARALLEL)
864 return 0;
865 else
866 x = XVECEXP (x, 0, 0);
867
868 if (GET_CODE (x) != SET)
869 return 0;
870 if (GET_CODE (SET_DEST (x)) != PC)
871 return 0;
872 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
873 return 1;
874 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
875 return 0;
876 if (XEXP (SET_SRC (x), 2) == pc_rtx
877 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
878 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
879 return 1;
880 if (XEXP (SET_SRC (x), 1) == pc_rtx
881 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
882 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
883 return 1;
884 return 0;
885 }
886
887 /* Return set of PC, otherwise NULL. */
888
889 rtx
890 pc_set (const rtx_insn *insn)
891 {
892 rtx pat;
893 if (!JUMP_P (insn))
894 return NULL_RTX;
895 pat = PATTERN (insn);
896
897 /* The set is allowed to appear either as the insn pattern or
898 the first set in a PARALLEL. */
899 if (GET_CODE (pat) == PARALLEL)
900 pat = XVECEXP (pat, 0, 0);
901 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
902 return pat;
903
904 return NULL_RTX;
905 }
906
907 /* Return true when insn is an unconditional direct jump,
908 possibly bundled inside a PARALLEL. */
909
910 int
911 any_uncondjump_p (const rtx_insn *insn)
912 {
913 const_rtx x = pc_set (insn);
914 if (!x)
915 return 0;
916 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
917 return 0;
918 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
919 return 0;
920 return 1;
921 }
922
923 /* Return true when insn is a conditional jump. This function works for
924 instructions containing PC sets in PARALLELs. The instruction may have
925 various other effects so before removing the jump you must verify
926 onlyjump_p.
927
928 Note that unlike condjump_p it returns false for unconditional jumps. */
929
930 int
931 any_condjump_p (const rtx_insn *insn)
932 {
933 const_rtx x = pc_set (insn);
934 enum rtx_code a, b;
935
936 if (!x)
937 return 0;
938 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
939 return 0;
940
941 a = GET_CODE (XEXP (SET_SRC (x), 1));
942 b = GET_CODE (XEXP (SET_SRC (x), 2));
943
944 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
945 || (a == PC
946 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
947 }
948
949 /* Return the label of a conditional jump. */
950
951 rtx
952 condjump_label (const rtx_insn *insn)
953 {
954 rtx x = pc_set (insn);
955
956 if (!x)
957 return NULL_RTX;
958 x = SET_SRC (x);
959 if (GET_CODE (x) == LABEL_REF)
960 return x;
961 if (GET_CODE (x) != IF_THEN_ELSE)
962 return NULL_RTX;
963 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
964 return XEXP (x, 1);
965 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
966 return XEXP (x, 2);
967 return NULL_RTX;
968 }
969
970 /* Return TRUE if INSN is a return jump. */
971
972 int
973 returnjump_p (const rtx_insn *insn)
974 {
975 if (JUMP_P (insn))
976 {
977 subrtx_iterator::array_type array;
978 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
979 {
980 const_rtx x = *iter;
981 switch (GET_CODE (x))
982 {
983 case RETURN:
984 case SIMPLE_RETURN:
985 case EH_RETURN:
986 return true;
987
988 case SET:
989 if (SET_IS_RETURN_P (x))
990 return true;
991 break;
992
993 default:
994 break;
995 }
996 }
997 }
998 return false;
999 }
1000
1001 /* Return true if INSN is a (possibly conditional) return insn. */
1002
1003 int
1004 eh_returnjump_p (rtx_insn *insn)
1005 {
1006 if (JUMP_P (insn))
1007 {
1008 subrtx_iterator::array_type array;
1009 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
1010 if (GET_CODE (*iter) == EH_RETURN)
1011 return true;
1012 }
1013 return false;
1014 }
1015
1016 /* Return true if INSN is a jump that only transfers control and
1017 nothing more. */
1018
1019 int
1020 onlyjump_p (const rtx_insn *insn)
1021 {
1022 rtx set;
1023
1024 if (!JUMP_P (insn))
1025 return 0;
1026
1027 set = single_set (insn);
1028 if (set == NULL)
1029 return 0;
1030 if (GET_CODE (SET_DEST (set)) != PC)
1031 return 0;
1032 if (side_effects_p (SET_SRC (set)))
1033 return 0;
1034
1035 return 1;
1036 }
1037
1038 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1039 NULL or a return. */
1040 bool
1041 jump_to_label_p (const rtx_insn *insn)
1042 {
1043 return (JUMP_P (insn)
1044 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1045 }
1046
1047 /* Return nonzero if X is an RTX that only sets the condition codes
1048 and has no side effects. */
1049
1050 int
1051 only_sets_cc0_p (const_rtx x)
1052 {
1053 if (! x)
1054 return 0;
1055
1056 if (INSN_P (x))
1057 x = PATTERN (x);
1058
1059 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1060 }
1061
1062 /* Return 1 if X is an RTX that does nothing but set the condition codes
1063 and CLOBBER or USE registers.
1064 Return -1 if X does explicitly set the condition codes,
1065 but also does other things. */
1066
1067 int
1068 sets_cc0_p (const_rtx x)
1069 {
1070 if (! x)
1071 return 0;
1072
1073 if (INSN_P (x))
1074 x = PATTERN (x);
1075
1076 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1077 return 1;
1078 if (GET_CODE (x) == PARALLEL)
1079 {
1080 int i;
1081 int sets_cc0 = 0;
1082 int other_things = 0;
1083 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1084 {
1085 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1086 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1087 sets_cc0 = 1;
1088 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1089 other_things = 1;
1090 }
1091 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1092 }
1093 return 0;
1094 }
1095 \f
1096 /* Find all CODE_LABELs referred to in X, and increment their use
1097 counts. If INSN is a JUMP_INSN and there is at least one
1098 CODE_LABEL referenced in INSN as a jump target, then store the last
1099 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1100 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1101 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1102 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1103 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1104 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1105
1106 Note that two labels separated by a loop-beginning note
1107 must be kept distinct if we have not yet done loop-optimization,
1108 because the gap between them is where loop-optimize
1109 will want to move invariant code to. CROSS_JUMP tells us
1110 that loop-optimization is done with. */
1111
1112 void
1113 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1114 {
1115 rtx asmop = extract_asm_operands (x);
1116 if (asmop)
1117 mark_jump_label_asm (asmop, insn);
1118 else
1119 mark_jump_label_1 (x, insn, in_mem != 0,
1120 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1121 }
1122
1123 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1124 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1125 jump-target; when the JUMP_LABEL field of INSN should be set or a
1126 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1127 note. */
1128
1129 static void
1130 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1131 {
1132 RTX_CODE code = GET_CODE (x);
1133 int i;
1134 const char *fmt;
1135
1136 switch (code)
1137 {
1138 case PC:
1139 case CC0:
1140 case REG:
1141 case CLOBBER:
1142 case CALL:
1143 return;
1144
1145 case RETURN:
1146 case SIMPLE_RETURN:
1147 if (is_target)
1148 {
1149 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1150 JUMP_LABEL (insn) = x;
1151 }
1152 return;
1153
1154 case MEM:
1155 in_mem = true;
1156 break;
1157
1158 case SEQUENCE:
1159 {
1160 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1161 for (i = 0; i < seq->len (); i++)
1162 mark_jump_label (PATTERN (seq->insn (i)),
1163 seq->insn (i), 0);
1164 }
1165 return;
1166
1167 case SYMBOL_REF:
1168 if (!in_mem)
1169 return;
1170
1171 /* If this is a constant-pool reference, see if it is a label. */
1172 if (CONSTANT_POOL_ADDRESS_P (x))
1173 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1174 break;
1175
1176 /* Handle operands in the condition of an if-then-else as for a
1177 non-jump insn. */
1178 case IF_THEN_ELSE:
1179 if (!is_target)
1180 break;
1181 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1182 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1183 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1184 return;
1185
1186 case LABEL_REF:
1187 {
1188 rtx label = LABEL_REF_LABEL (x);
1189
1190 /* Ignore remaining references to unreachable labels that
1191 have been deleted. */
1192 if (NOTE_P (label)
1193 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1194 break;
1195
1196 gcc_assert (LABEL_P (label));
1197
1198 /* Ignore references to labels of containing functions. */
1199 if (LABEL_REF_NONLOCAL_P (x))
1200 break;
1201
1202 LABEL_REF_LABEL (x) = label;
1203 if (! insn || ! insn->deleted ())
1204 ++LABEL_NUSES (label);
1205
1206 if (insn)
1207 {
1208 if (is_target
1209 /* Do not change a previous setting of JUMP_LABEL. If the
1210 JUMP_LABEL slot is occupied by a different label,
1211 create a note for this label. */
1212 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1213 JUMP_LABEL (insn) = label;
1214 else
1215 {
1216 enum reg_note kind
1217 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1218
1219 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1220 for LABEL unless there already is one. All uses of
1221 a label, except for the primary target of a jump,
1222 must have such a note. */
1223 if (! find_reg_note (insn, kind, label))
1224 add_reg_note (insn, kind, label);
1225 }
1226 }
1227 return;
1228 }
1229
1230 /* Do walk the labels in a vector, but not the first operand of an
1231 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1232 case ADDR_VEC:
1233 case ADDR_DIFF_VEC:
1234 if (! insn->deleted ())
1235 {
1236 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1237
1238 for (i = 0; i < XVECLEN (x, eltnum); i++)
1239 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1240 is_target);
1241 }
1242 return;
1243
1244 default:
1245 break;
1246 }
1247
1248 fmt = GET_RTX_FORMAT (code);
1249
1250 /* The primary target of a tablejump is the label of the ADDR_VEC,
1251 which is canonically mentioned *last* in the insn. To get it
1252 marked as JUMP_LABEL, we iterate over items in reverse order. */
1253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1254 {
1255 if (fmt[i] == 'e')
1256 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1257 else if (fmt[i] == 'E')
1258 {
1259 int j;
1260
1261 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1262 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1263 is_target);
1264 }
1265 }
1266 }
1267
1268 /* Worker function for mark_jump_label. Handle asm insns specially.
1269 In particular, output operands need not be considered so we can
1270 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1271 need to be considered targets. */
1272
1273 static void
1274 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1275 {
1276 int i;
1277
1278 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1279 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1280
1281 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1282 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1283 }
1284 \f
1285 /* Delete insn INSN from the chain of insns and update label ref counts
1286 and delete insns now unreachable.
1287
1288 Returns the first insn after INSN that was not deleted.
1289
1290 Usage of this instruction is deprecated. Use delete_insn instead and
1291 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1292
1293 rtx_insn *
1294 delete_related_insns (rtx uncast_insn)
1295 {
1296 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1297 int was_code_label = (LABEL_P (insn));
1298 rtx note;
1299 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1300
1301 while (next && next->deleted ())
1302 next = NEXT_INSN (next);
1303
1304 /* This insn is already deleted => return first following nondeleted. */
1305 if (insn->deleted ())
1306 return next;
1307
1308 delete_insn (insn);
1309
1310 /* If instruction is followed by a barrier,
1311 delete the barrier too. */
1312
1313 if (next != 0 && BARRIER_P (next))
1314 delete_insn (next);
1315
1316 /* If this is a call, then we have to remove the var tracking note
1317 for the call arguments. */
1318
1319 if (CALL_P (insn)
1320 || (NONJUMP_INSN_P (insn)
1321 && GET_CODE (PATTERN (insn)) == SEQUENCE
1322 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1323 {
1324 rtx_insn *p;
1325
1326 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1327 p && NOTE_P (p);
1328 p = NEXT_INSN (p))
1329 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1330 {
1331 remove_insn (p);
1332 break;
1333 }
1334 }
1335
1336 /* If deleting a jump, decrement the count of the label,
1337 and delete the label if it is now unused. */
1338
1339 if (jump_to_label_p (insn))
1340 {
1341 rtx lab = JUMP_LABEL (insn);
1342 rtx_jump_table_data *lab_next;
1343
1344 if (LABEL_NUSES (lab) == 0)
1345 /* This can delete NEXT or PREV,
1346 either directly if NEXT is JUMP_LABEL (INSN),
1347 or indirectly through more levels of jumps. */
1348 delete_related_insns (lab);
1349 else if (tablejump_p (insn, NULL, &lab_next))
1350 {
1351 /* If we're deleting the tablejump, delete the dispatch table.
1352 We may not be able to kill the label immediately preceding
1353 just yet, as it might be referenced in code leading up to
1354 the tablejump. */
1355 delete_related_insns (lab_next);
1356 }
1357 }
1358
1359 /* Likewise if we're deleting a dispatch table. */
1360
1361 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1362 {
1363 rtvec labels = table->get_labels ();
1364 int i;
1365 int len = GET_NUM_ELEM (labels);
1366
1367 for (i = 0; i < len; i++)
1368 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1369 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1370 while (next && next->deleted ())
1371 next = NEXT_INSN (next);
1372 return next;
1373 }
1374
1375 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1376 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1377 if (INSN_P (insn))
1378 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1379 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1380 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1381 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1382 && LABEL_P (XEXP (note, 0)))
1383 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1384 delete_related_insns (XEXP (note, 0));
1385
1386 while (prev && (prev->deleted () || NOTE_P (prev)))
1387 prev = PREV_INSN (prev);
1388
1389 /* If INSN was a label and a dispatch table follows it,
1390 delete the dispatch table. The tablejump must have gone already.
1391 It isn't useful to fall through into a table. */
1392
1393 if (was_code_label
1394 && NEXT_INSN (insn) != 0
1395 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1396 next = delete_related_insns (NEXT_INSN (insn));
1397
1398 /* If INSN was a label, delete insns following it if now unreachable. */
1399
1400 if (was_code_label && prev && BARRIER_P (prev))
1401 {
1402 enum rtx_code code;
1403 while (next)
1404 {
1405 code = GET_CODE (next);
1406 if (code == NOTE)
1407 next = NEXT_INSN (next);
1408 /* Keep going past other deleted labels to delete what follows. */
1409 else if (code == CODE_LABEL && next->deleted ())
1410 next = NEXT_INSN (next);
1411 /* Keep the (use (insn))s created by dbr_schedule, which needs
1412 them in order to track liveness relative to a previous
1413 barrier. */
1414 else if (INSN_P (next)
1415 && GET_CODE (PATTERN (next)) == USE
1416 && INSN_P (XEXP (PATTERN (next), 0)))
1417 next = NEXT_INSN (next);
1418 else if (code == BARRIER || INSN_P (next))
1419 /* Note: if this deletes a jump, it can cause more
1420 deletion of unreachable code, after a different label.
1421 As long as the value from this recursive call is correct,
1422 this invocation functions correctly. */
1423 next = delete_related_insns (next);
1424 else
1425 break;
1426 }
1427 }
1428
1429 /* I feel a little doubtful about this loop,
1430 but I see no clean and sure alternative way
1431 to find the first insn after INSN that is not now deleted.
1432 I hope this works. */
1433 while (next && next->deleted ())
1434 next = NEXT_INSN (next);
1435 return next;
1436 }
1437 \f
1438 /* Delete a range of insns from FROM to TO, inclusive.
1439 This is for the sake of peephole optimization, so assume
1440 that whatever these insns do will still be done by a new
1441 peephole insn that will replace them. */
1442
1443 void
1444 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1445 {
1446 rtx_insn *insn = from;
1447
1448 while (1)
1449 {
1450 rtx_insn *next = NEXT_INSN (insn);
1451 rtx_insn *prev = PREV_INSN (insn);
1452
1453 if (!NOTE_P (insn))
1454 {
1455 insn->set_deleted();
1456
1457 /* Patch this insn out of the chain. */
1458 /* We don't do this all at once, because we
1459 must preserve all NOTEs. */
1460 if (prev)
1461 SET_NEXT_INSN (prev) = next;
1462
1463 if (next)
1464 SET_PREV_INSN (next) = prev;
1465 }
1466
1467 if (insn == to)
1468 break;
1469 insn = next;
1470 }
1471
1472 /* Note that if TO is an unconditional jump
1473 we *do not* delete the BARRIER that follows,
1474 since the peephole that replaces this sequence
1475 is also an unconditional jump in that case. */
1476 }
1477 \f
1478 /* A helper function for redirect_exp_1; examines its input X and returns
1479 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1480 static rtx
1481 redirect_target (rtx x)
1482 {
1483 if (x == NULL_RTX)
1484 return ret_rtx;
1485 if (!ANY_RETURN_P (x))
1486 return gen_rtx_LABEL_REF (Pmode, x);
1487 return x;
1488 }
1489
1490 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1491 NLABEL as a return. Accrue modifications into the change group. */
1492
1493 static void
1494 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1495 {
1496 rtx x = *loc;
1497 RTX_CODE code = GET_CODE (x);
1498 int i;
1499 const char *fmt;
1500
1501 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1502 || x == olabel)
1503 {
1504 x = redirect_target (nlabel);
1505 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1506 x = gen_rtx_SET (pc_rtx, x);
1507 validate_change (insn, loc, x, 1);
1508 return;
1509 }
1510
1511 if (code == SET && SET_DEST (x) == pc_rtx
1512 && ANY_RETURN_P (nlabel)
1513 && GET_CODE (SET_SRC (x)) == LABEL_REF
1514 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1515 {
1516 validate_change (insn, loc, nlabel, 1);
1517 return;
1518 }
1519
1520 if (code == IF_THEN_ELSE)
1521 {
1522 /* Skip the condition of an IF_THEN_ELSE. We only want to
1523 change jump destinations, not eventual label comparisons. */
1524 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1525 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1526 return;
1527 }
1528
1529 fmt = GET_RTX_FORMAT (code);
1530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1531 {
1532 if (fmt[i] == 'e')
1533 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1534 else if (fmt[i] == 'E')
1535 {
1536 int j;
1537 for (j = 0; j < XVECLEN (x, i); j++)
1538 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1539 }
1540 }
1541 }
1542
1543 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1544 the modifications into the change group. Return false if we did
1545 not see how to do that. */
1546
1547 int
1548 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1549 {
1550 int ochanges = num_validated_changes ();
1551 rtx *loc, asmop;
1552
1553 gcc_assert (nlabel != NULL_RTX);
1554 asmop = extract_asm_operands (PATTERN (jump));
1555 if (asmop)
1556 {
1557 if (nlabel == NULL)
1558 return 0;
1559 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1560 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1561 }
1562 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1563 loc = &XVECEXP (PATTERN (jump), 0, 0);
1564 else
1565 loc = &PATTERN (jump);
1566
1567 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1568 return num_validated_changes () > ochanges;
1569 }
1570
1571 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1572 jump target label is unused as a result, it and the code following
1573 it may be deleted.
1574
1575 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1576 in that case we are to turn the jump into a (possibly conditional)
1577 return insn.
1578
1579 The return value will be 1 if the change was made, 0 if it wasn't
1580 (this can only occur when trying to produce return insns). */
1581
1582 int
1583 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1584 {
1585 rtx olabel = jump->jump_label ();
1586
1587 if (!nlabel)
1588 {
1589 /* If there is no label, we are asked to redirect to the EXIT block.
1590 When before the epilogue is emitted, return/simple_return cannot be
1591 created so we return 0 immediately. After the epilogue is emitted,
1592 we always expect a label, either a non-null label, or a
1593 return/simple_return RTX. */
1594
1595 if (!epilogue_completed)
1596 return 0;
1597 gcc_unreachable ();
1598 }
1599
1600 if (nlabel == olabel)
1601 return 1;
1602
1603 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1604 return 0;
1605
1606 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1607 return 1;
1608 }
1609
1610 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1611 NLABEL in JUMP.
1612 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1613 count has dropped to zero. */
1614 void
1615 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1616 int invert)
1617 {
1618 rtx note;
1619
1620 gcc_assert (JUMP_LABEL (jump) == olabel);
1621
1622 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1623 moving FUNCTION_END note. Just sanity check that no user still worry
1624 about this. */
1625 gcc_assert (delete_unused >= 0);
1626 JUMP_LABEL (jump) = nlabel;
1627 if (!ANY_RETURN_P (nlabel))
1628 ++LABEL_NUSES (nlabel);
1629
1630 /* Update labels in any REG_EQUAL note. */
1631 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1632 {
1633 if (ANY_RETURN_P (nlabel)
1634 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1635 remove_note (jump, note);
1636 else
1637 {
1638 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1639 confirm_change_group ();
1640 }
1641 }
1642
1643 /* Handle the case where we had a conditional crossing jump to a return
1644 label and are now changing it into a direct conditional return.
1645 The jump is no longer crossing in that case. */
1646 if (ANY_RETURN_P (nlabel))
1647 CROSSING_JUMP_P (jump) = 0;
1648
1649 if (!ANY_RETURN_P (olabel)
1650 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1651 /* Undefined labels will remain outside the insn stream. */
1652 && INSN_UID (olabel))
1653 delete_related_insns (olabel);
1654 if (invert)
1655 invert_br_probabilities (jump);
1656 }
1657
1658 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1659 modifications into the change group. Return nonzero for success. */
1660 static int
1661 invert_exp_1 (rtx x, rtx insn)
1662 {
1663 RTX_CODE code = GET_CODE (x);
1664
1665 if (code == IF_THEN_ELSE)
1666 {
1667 rtx comp = XEXP (x, 0);
1668 rtx tem;
1669 enum rtx_code reversed_code;
1670
1671 /* We can do this in two ways: The preferable way, which can only
1672 be done if this is not an integer comparison, is to reverse
1673 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1674 of the IF_THEN_ELSE. If we can't do either, fail. */
1675
1676 reversed_code = reversed_comparison_code (comp, insn);
1677
1678 if (reversed_code != UNKNOWN)
1679 {
1680 validate_change (insn, &XEXP (x, 0),
1681 gen_rtx_fmt_ee (reversed_code,
1682 GET_MODE (comp), XEXP (comp, 0),
1683 XEXP (comp, 1)),
1684 1);
1685 return 1;
1686 }
1687
1688 tem = XEXP (x, 1);
1689 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1690 validate_change (insn, &XEXP (x, 2), tem, 1);
1691 return 1;
1692 }
1693 else
1694 return 0;
1695 }
1696
1697 /* Invert the condition of the jump JUMP, and make it jump to label
1698 NLABEL instead of where it jumps now. Accrue changes into the
1699 change group. Return false if we didn't see how to perform the
1700 inversion and redirection. */
1701
1702 int
1703 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1704 {
1705 rtx x = pc_set (jump);
1706 int ochanges;
1707 int ok;
1708
1709 ochanges = num_validated_changes ();
1710 if (x == NULL)
1711 return 0;
1712 ok = invert_exp_1 (SET_SRC (x), jump);
1713 gcc_assert (ok);
1714
1715 if (num_validated_changes () == ochanges)
1716 return 0;
1717
1718 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1719 in Pmode, so checking this is not merely an optimization. */
1720 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1721 }
1722
1723 /* Invert the condition of the jump JUMP, and make it jump to label
1724 NLABEL instead of where it jumps now. Return true if successful. */
1725
1726 int
1727 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1728 {
1729 rtx olabel = JUMP_LABEL (jump);
1730
1731 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1732 {
1733 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1734 return 1;
1735 }
1736 cancel_changes (0);
1737 return 0;
1738 }
1739
1740 \f
1741 /* Like rtx_equal_p except that it considers two REGs as equal
1742 if they renumber to the same value and considers two commutative
1743 operations to be the same if the order of the operands has been
1744 reversed. */
1745
1746 int
1747 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1748 {
1749 int i;
1750 const enum rtx_code code = GET_CODE (x);
1751 const char *fmt;
1752
1753 if (x == y)
1754 return 1;
1755
1756 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1757 && (REG_P (y) || (GET_CODE (y) == SUBREG
1758 && REG_P (SUBREG_REG (y)))))
1759 {
1760 int reg_x = -1, reg_y = -1;
1761 int byte_x = 0, byte_y = 0;
1762 struct subreg_info info;
1763
1764 if (GET_MODE (x) != GET_MODE (y))
1765 return 0;
1766
1767 /* If we haven't done any renumbering, don't
1768 make any assumptions. */
1769 if (reg_renumber == 0)
1770 return rtx_equal_p (x, y);
1771
1772 if (code == SUBREG)
1773 {
1774 reg_x = REGNO (SUBREG_REG (x));
1775 byte_x = SUBREG_BYTE (x);
1776
1777 if (reg_renumber[reg_x] >= 0)
1778 {
1779 subreg_get_info (reg_renumber[reg_x],
1780 GET_MODE (SUBREG_REG (x)), byte_x,
1781 GET_MODE (x), &info);
1782 if (!info.representable_p)
1783 return 0;
1784 reg_x = info.offset;
1785 byte_x = 0;
1786 }
1787 }
1788 else
1789 {
1790 reg_x = REGNO (x);
1791 if (reg_renumber[reg_x] >= 0)
1792 reg_x = reg_renumber[reg_x];
1793 }
1794
1795 if (GET_CODE (y) == SUBREG)
1796 {
1797 reg_y = REGNO (SUBREG_REG (y));
1798 byte_y = SUBREG_BYTE (y);
1799
1800 if (reg_renumber[reg_y] >= 0)
1801 {
1802 subreg_get_info (reg_renumber[reg_y],
1803 GET_MODE (SUBREG_REG (y)), byte_y,
1804 GET_MODE (y), &info);
1805 if (!info.representable_p)
1806 return 0;
1807 reg_y = info.offset;
1808 byte_y = 0;
1809 }
1810 }
1811 else
1812 {
1813 reg_y = REGNO (y);
1814 if (reg_renumber[reg_y] >= 0)
1815 reg_y = reg_renumber[reg_y];
1816 }
1817
1818 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1819 }
1820
1821 /* Now we have disposed of all the cases
1822 in which different rtx codes can match. */
1823 if (code != GET_CODE (y))
1824 return 0;
1825
1826 switch (code)
1827 {
1828 case PC:
1829 case CC0:
1830 case ADDR_VEC:
1831 case ADDR_DIFF_VEC:
1832 CASE_CONST_UNIQUE:
1833 return 0;
1834
1835 case LABEL_REF:
1836 /* We can't assume nonlocal labels have their following insns yet. */
1837 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1838 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1839
1840 /* Two label-refs are equivalent if they point at labels
1841 in the same position in the instruction stream. */
1842 return (next_real_insn (LABEL_REF_LABEL (x))
1843 == next_real_insn (LABEL_REF_LABEL (y)));
1844
1845 case SYMBOL_REF:
1846 return XSTR (x, 0) == XSTR (y, 0);
1847
1848 case CODE_LABEL:
1849 /* If we didn't match EQ equality above, they aren't the same. */
1850 return 0;
1851
1852 default:
1853 break;
1854 }
1855
1856 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1857
1858 if (GET_MODE (x) != GET_MODE (y))
1859 return 0;
1860
1861 /* MEMs referring to different address space are not equivalent. */
1862 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1863 return 0;
1864
1865 /* For commutative operations, the RTX match if the operand match in any
1866 order. Also handle the simple binary and unary cases without a loop. */
1867 if (targetm.commutative_p (x, UNKNOWN))
1868 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1869 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1870 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1871 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1872 else if (NON_COMMUTATIVE_P (x))
1873 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1874 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1875 else if (UNARY_P (x))
1876 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1877
1878 /* Compare the elements. If any pair of corresponding elements
1879 fail to match, return 0 for the whole things. */
1880
1881 fmt = GET_RTX_FORMAT (code);
1882 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1883 {
1884 int j;
1885 switch (fmt[i])
1886 {
1887 case 'w':
1888 if (XWINT (x, i) != XWINT (y, i))
1889 return 0;
1890 break;
1891
1892 case 'i':
1893 if (XINT (x, i) != XINT (y, i))
1894 {
1895 if (((code == ASM_OPERANDS && i == 6)
1896 || (code == ASM_INPUT && i == 1)))
1897 break;
1898 return 0;
1899 }
1900 break;
1901
1902 case 't':
1903 if (XTREE (x, i) != XTREE (y, i))
1904 return 0;
1905 break;
1906
1907 case 's':
1908 if (strcmp (XSTR (x, i), XSTR (y, i)))
1909 return 0;
1910 break;
1911
1912 case 'e':
1913 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1914 return 0;
1915 break;
1916
1917 case 'u':
1918 if (XEXP (x, i) != XEXP (y, i))
1919 return 0;
1920 /* Fall through. */
1921 case '0':
1922 break;
1923
1924 case 'E':
1925 if (XVECLEN (x, i) != XVECLEN (y, i))
1926 return 0;
1927 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1928 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1929 return 0;
1930 break;
1931
1932 default:
1933 gcc_unreachable ();
1934 }
1935 }
1936 return 1;
1937 }
1938 \f
1939 /* If X is a hard register or equivalent to one or a subregister of one,
1940 return the hard register number. If X is a pseudo register that was not
1941 assigned a hard register, return the pseudo register number. Otherwise,
1942 return -1. Any rtx is valid for X. */
1943
1944 int
1945 true_regnum (const_rtx x)
1946 {
1947 if (REG_P (x))
1948 {
1949 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1950 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1951 return reg_renumber[REGNO (x)];
1952 return REGNO (x);
1953 }
1954 if (GET_CODE (x) == SUBREG)
1955 {
1956 int base = true_regnum (SUBREG_REG (x));
1957 if (base >= 0
1958 && base < FIRST_PSEUDO_REGISTER)
1959 {
1960 struct subreg_info info;
1961
1962 subreg_get_info (lra_in_progress
1963 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1964 GET_MODE (SUBREG_REG (x)),
1965 SUBREG_BYTE (x), GET_MODE (x), &info);
1966
1967 if (info.representable_p)
1968 return base + info.offset;
1969 }
1970 }
1971 return -1;
1972 }
1973
1974 /* Return regno of the register REG and handle subregs too. */
1975 unsigned int
1976 reg_or_subregno (const_rtx reg)
1977 {
1978 if (GET_CODE (reg) == SUBREG)
1979 reg = SUBREG_REG (reg);
1980 gcc_assert (REG_P (reg));
1981 return REGNO (reg);
1982 }