ipa-cp.c (ipcp_cloning_candidate_p): Use opt_for_fn.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "hashtab.h"
49 #include "hash-set.h"
50 #include "vec.h"
51 #include "machmode.h"
52 #include "input.h"
53 #include "function.h"
54 #include "predict.h"
55 #include "dominance.h"
56 #include "cfg.h"
57 #include "cfgrtl.h"
58 #include "basic-block.h"
59 #include "expr.h"
60 #include "except.h"
61 #include "diagnostic-core.h"
62 #include "reload.h"
63 #include "tree-pass.h"
64 #include "target.h"
65 #include "rtl-iter.h"
66
67 /* Optimize jump y; x: ... y: jumpif... x?
68 Don't know if it is worth bothering with. */
69 /* Optimize two cases of conditional jump to conditional jump?
70 This can never delete any instruction or make anything dead,
71 or even change what is live at any point.
72 So perhaps let combiner do it. */
73
74 static void init_label_info (rtx_insn *);
75 static void mark_all_labels (rtx_insn *);
76 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
77 static void mark_jump_label_asm (rtx, rtx_insn *);
78 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
79 static int invert_exp_1 (rtx, rtx);
80 \f
81 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
82 static void
83 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
84 {
85 rtx_insn_list *insn;
86
87 timevar_push (TV_REBUILD_JUMP);
88 init_label_info (f);
89 mark_all_labels (f);
90
91 /* Keep track of labels used from static data; we don't track them
92 closely enough to delete them here, so make sure their reference
93 count doesn't drop to zero. */
94
95 if (count_forced)
96 for (insn = forced_labels; insn; insn = insn->next ())
97 if (LABEL_P (insn->insn ()))
98 LABEL_NUSES (insn->insn ())++;
99 timevar_pop (TV_REBUILD_JUMP);
100 }
101
102 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
103 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
104 instructions and jumping insns that have labels as operands
105 (e.g. cbranchsi4). */
106 void
107 rebuild_jump_labels (rtx_insn *f)
108 {
109 rebuild_jump_labels_1 (f, true);
110 }
111
112 /* This function is like rebuild_jump_labels, but doesn't run over
113 forced_labels. It can be used on insn chains that aren't the
114 main function chain. */
115 void
116 rebuild_jump_labels_chain (rtx_insn *chain)
117 {
118 rebuild_jump_labels_1 (chain, false);
119 }
120 \f
121 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
122 non-fallthru insn. This is not generally true, as multiple barriers
123 may have crept in, or the BARRIER may be separated from the last
124 real insn by one or more NOTEs.
125
126 This simple pass moves barriers and removes duplicates so that the
127 old code is happy.
128 */
129 static unsigned int
130 cleanup_barriers (void)
131 {
132 rtx_insn *insn;
133 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
134 {
135 if (BARRIER_P (insn))
136 {
137 rtx_insn *prev = prev_nonnote_insn (insn);
138 if (!prev)
139 continue;
140
141 if (CALL_P (prev))
142 {
143 /* Make sure we do not split a call and its corresponding
144 CALL_ARG_LOCATION note. */
145 rtx_insn *next = NEXT_INSN (prev);
146
147 if (NOTE_P (next)
148 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
149 prev = next;
150 }
151
152 if (BARRIER_P (prev))
153 delete_insn (insn);
154 else if (prev != PREV_INSN (insn))
155 reorder_insns_nobb (insn, insn, prev);
156 }
157 }
158 return 0;
159 }
160
161 namespace {
162
163 const pass_data pass_data_cleanup_barriers =
164 {
165 RTL_PASS, /* type */
166 "barriers", /* name */
167 OPTGROUP_NONE, /* optinfo_flags */
168 TV_NONE, /* tv_id */
169 0, /* properties_required */
170 0, /* properties_provided */
171 0, /* properties_destroyed */
172 0, /* todo_flags_start */
173 0, /* todo_flags_finish */
174 };
175
176 class pass_cleanup_barriers : public rtl_opt_pass
177 {
178 public:
179 pass_cleanup_barriers (gcc::context *ctxt)
180 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
181 {}
182
183 /* opt_pass methods: */
184 virtual unsigned int execute (function *) { return cleanup_barriers (); }
185
186 }; // class pass_cleanup_barriers
187
188 } // anon namespace
189
190 rtl_opt_pass *
191 make_pass_cleanup_barriers (gcc::context *ctxt)
192 {
193 return new pass_cleanup_barriers (ctxt);
194 }
195
196 \f
197 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
198 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
199 notes whose labels don't occur in the insn any more. */
200
201 static void
202 init_label_info (rtx_insn *f)
203 {
204 rtx_insn *insn;
205
206 for (insn = f; insn; insn = NEXT_INSN (insn))
207 {
208 if (LABEL_P (insn))
209 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
210
211 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
212 sticky and not reset here; that way we won't lose association
213 with a label when e.g. the source for a target register
214 disappears out of reach for targets that may use jump-target
215 registers. Jump transformations are supposed to transform
216 any REG_LABEL_TARGET notes. The target label reference in a
217 branch may disappear from the branch (and from the
218 instruction before it) for other reasons, like register
219 allocation. */
220
221 if (INSN_P (insn))
222 {
223 rtx note, next;
224
225 for (note = REG_NOTES (insn); note; note = next)
226 {
227 next = XEXP (note, 1);
228 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
229 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
230 remove_note (insn, note);
231 }
232 }
233 }
234 }
235
236 /* A subroutine of mark_all_labels. Trivially propagate a simple label
237 load into a jump_insn that uses it. */
238
239 static void
240 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
241 {
242 rtx label_note, pc, pc_src;
243
244 pc = pc_set (jump_insn);
245 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
246 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
247
248 /* If the previous non-jump insn sets something to a label,
249 something that this jump insn uses, make that label the primary
250 target of this insn if we don't yet have any. That previous
251 insn must be a single_set and not refer to more than one label.
252 The jump insn must not refer to other labels as jump targets
253 and must be a plain (set (pc) ...), maybe in a parallel, and
254 may refer to the item being set only directly or as one of the
255 arms in an IF_THEN_ELSE. */
256
257 if (label_note != NULL && pc_src != NULL)
258 {
259 rtx label_set = single_set (prev_nonjump_insn);
260 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
261
262 if (label_set != NULL
263 /* The source must be the direct LABEL_REF, not a
264 PLUS, UNSPEC, IF_THEN_ELSE etc. */
265 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
266 && (rtx_equal_p (label_dest, pc_src)
267 || (GET_CODE (pc_src) == IF_THEN_ELSE
268 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
269 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
270 {
271 /* The CODE_LABEL referred to in the note must be the
272 CODE_LABEL in the LABEL_REF of the "set". We can
273 conveniently use it for the marker function, which
274 requires a LABEL_REF wrapping. */
275 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
276
277 mark_jump_label_1 (label_set, jump_insn, false, true);
278
279 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
280 }
281 }
282 }
283
284 /* Mark the label each jump jumps to.
285 Combine consecutive labels, and count uses of labels. */
286
287 static void
288 mark_all_labels (rtx_insn *f)
289 {
290 rtx_insn *insn;
291
292 if (current_ir_type () == IR_RTL_CFGLAYOUT)
293 {
294 basic_block bb;
295 FOR_EACH_BB_FN (bb, cfun)
296 {
297 /* In cfglayout mode, we don't bother with trivial next-insn
298 propagation of LABEL_REFs into JUMP_LABEL. This will be
299 handled by other optimizers using better algorithms. */
300 FOR_BB_INSNS (bb, insn)
301 {
302 gcc_assert (! insn->deleted ());
303 if (NONDEBUG_INSN_P (insn))
304 mark_jump_label (PATTERN (insn), insn, 0);
305 }
306
307 /* In cfglayout mode, there may be non-insns between the
308 basic blocks. If those non-insns represent tablejump data,
309 they contain label references that we must record. */
310 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
311 if (JUMP_TABLE_DATA_P (insn))
312 mark_jump_label (PATTERN (insn), insn, 0);
313 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
314 if (JUMP_TABLE_DATA_P (insn))
315 mark_jump_label (PATTERN (insn), insn, 0);
316 }
317 }
318 else
319 {
320 rtx_insn *prev_nonjump_insn = NULL;
321 for (insn = f; insn; insn = NEXT_INSN (insn))
322 {
323 if (insn->deleted ())
324 ;
325 else if (LABEL_P (insn))
326 prev_nonjump_insn = NULL;
327 else if (JUMP_TABLE_DATA_P (insn))
328 mark_jump_label (PATTERN (insn), insn, 0);
329 else if (NONDEBUG_INSN_P (insn))
330 {
331 mark_jump_label (PATTERN (insn), insn, 0);
332 if (JUMP_P (insn))
333 {
334 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
335 maybe_propagate_label_ref (insn, prev_nonjump_insn);
336 }
337 else
338 prev_nonjump_insn = insn;
339 }
340 }
341 }
342 }
343 \f
344 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
345 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
346 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
347 know whether it's source is floating point or integer comparison. Machine
348 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
349 to help this function avoid overhead in these cases. */
350 enum rtx_code
351 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
352 const_rtx arg1, const_rtx insn)
353 {
354 machine_mode mode;
355
356 /* If this is not actually a comparison, we can't reverse it. */
357 if (GET_RTX_CLASS (code) != RTX_COMPARE
358 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
359 return UNKNOWN;
360
361 mode = GET_MODE (arg0);
362 if (mode == VOIDmode)
363 mode = GET_MODE (arg1);
364
365 /* First see if machine description supplies us way to reverse the
366 comparison. Give it priority over everything else to allow
367 machine description to do tricks. */
368 if (GET_MODE_CLASS (mode) == MODE_CC
369 && REVERSIBLE_CC_MODE (mode))
370 {
371 #ifdef REVERSE_CONDITION
372 return REVERSE_CONDITION (code, mode);
373 #else
374 return reverse_condition (code);
375 #endif
376 }
377
378 /* Try a few special cases based on the comparison code. */
379 switch (code)
380 {
381 case GEU:
382 case GTU:
383 case LEU:
384 case LTU:
385 case NE:
386 case EQ:
387 /* It is always safe to reverse EQ and NE, even for the floating
388 point. Similarly the unsigned comparisons are never used for
389 floating point so we can reverse them in the default way. */
390 return reverse_condition (code);
391 case ORDERED:
392 case UNORDERED:
393 case LTGT:
394 case UNEQ:
395 /* In case we already see unordered comparison, we can be sure to
396 be dealing with floating point so we don't need any more tests. */
397 return reverse_condition_maybe_unordered (code);
398 case UNLT:
399 case UNLE:
400 case UNGT:
401 case UNGE:
402 /* We don't have safe way to reverse these yet. */
403 return UNKNOWN;
404 default:
405 break;
406 }
407
408 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
409 {
410 const_rtx prev;
411 /* Try to search for the comparison to determine the real mode.
412 This code is expensive, but with sane machine description it
413 will be never used, since REVERSIBLE_CC_MODE will return true
414 in all cases. */
415 if (! insn)
416 return UNKNOWN;
417
418 /* These CONST_CAST's are okay because prev_nonnote_insn just
419 returns its argument and we assign it to a const_rtx
420 variable. */
421 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
422 prev != 0 && !LABEL_P (prev);
423 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
424 {
425 const_rtx set = set_of (arg0, prev);
426 if (set && GET_CODE (set) == SET
427 && rtx_equal_p (SET_DEST (set), arg0))
428 {
429 rtx src = SET_SRC (set);
430
431 if (GET_CODE (src) == COMPARE)
432 {
433 rtx comparison = src;
434 arg0 = XEXP (src, 0);
435 mode = GET_MODE (arg0);
436 if (mode == VOIDmode)
437 mode = GET_MODE (XEXP (comparison, 1));
438 break;
439 }
440 /* We can get past reg-reg moves. This may be useful for model
441 of i387 comparisons that first move flag registers around. */
442 if (REG_P (src))
443 {
444 arg0 = src;
445 continue;
446 }
447 }
448 /* If register is clobbered in some ununderstandable way,
449 give up. */
450 if (set)
451 return UNKNOWN;
452 }
453 }
454
455 /* Test for an integer condition, or a floating-point comparison
456 in which NaNs can be ignored. */
457 if (CONST_INT_P (arg0)
458 || (GET_MODE (arg0) != VOIDmode
459 && GET_MODE_CLASS (mode) != MODE_CC
460 && !HONOR_NANS (mode)))
461 return reverse_condition (code);
462
463 return UNKNOWN;
464 }
465
466 /* A wrapper around the previous function to take COMPARISON as rtx
467 expression. This simplifies many callers. */
468 enum rtx_code
469 reversed_comparison_code (const_rtx comparison, const_rtx insn)
470 {
471 if (!COMPARISON_P (comparison))
472 return UNKNOWN;
473 return reversed_comparison_code_parts (GET_CODE (comparison),
474 XEXP (comparison, 0),
475 XEXP (comparison, 1), insn);
476 }
477
478 /* Return comparison with reversed code of EXP.
479 Return NULL_RTX in case we fail to do the reversal. */
480 rtx
481 reversed_comparison (const_rtx exp, machine_mode mode)
482 {
483 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
484 if (reversed_code == UNKNOWN)
485 return NULL_RTX;
486 else
487 return simplify_gen_relational (reversed_code, mode, VOIDmode,
488 XEXP (exp, 0), XEXP (exp, 1));
489 }
490
491 \f
492 /* Given an rtx-code for a comparison, return the code for the negated
493 comparison. If no such code exists, return UNKNOWN.
494
495 WATCH OUT! reverse_condition is not safe to use on a jump that might
496 be acting on the results of an IEEE floating point comparison, because
497 of the special treatment of non-signaling nans in comparisons.
498 Use reversed_comparison_code instead. */
499
500 enum rtx_code
501 reverse_condition (enum rtx_code code)
502 {
503 switch (code)
504 {
505 case EQ:
506 return NE;
507 case NE:
508 return EQ;
509 case GT:
510 return LE;
511 case GE:
512 return LT;
513 case LT:
514 return GE;
515 case LE:
516 return GT;
517 case GTU:
518 return LEU;
519 case GEU:
520 return LTU;
521 case LTU:
522 return GEU;
523 case LEU:
524 return GTU;
525 case UNORDERED:
526 return ORDERED;
527 case ORDERED:
528 return UNORDERED;
529
530 case UNLT:
531 case UNLE:
532 case UNGT:
533 case UNGE:
534 case UNEQ:
535 case LTGT:
536 return UNKNOWN;
537
538 default:
539 gcc_unreachable ();
540 }
541 }
542
543 /* Similar, but we're allowed to generate unordered comparisons, which
544 makes it safe for IEEE floating-point. Of course, we have to recognize
545 that the target will support them too... */
546
547 enum rtx_code
548 reverse_condition_maybe_unordered (enum rtx_code code)
549 {
550 switch (code)
551 {
552 case EQ:
553 return NE;
554 case NE:
555 return EQ;
556 case GT:
557 return UNLE;
558 case GE:
559 return UNLT;
560 case LT:
561 return UNGE;
562 case LE:
563 return UNGT;
564 case LTGT:
565 return UNEQ;
566 case UNORDERED:
567 return ORDERED;
568 case ORDERED:
569 return UNORDERED;
570 case UNLT:
571 return GE;
572 case UNLE:
573 return GT;
574 case UNGT:
575 return LE;
576 case UNGE:
577 return LT;
578 case UNEQ:
579 return LTGT;
580
581 default:
582 gcc_unreachable ();
583 }
584 }
585
586 /* Similar, but return the code when two operands of a comparison are swapped.
587 This IS safe for IEEE floating-point. */
588
589 enum rtx_code
590 swap_condition (enum rtx_code code)
591 {
592 switch (code)
593 {
594 case EQ:
595 case NE:
596 case UNORDERED:
597 case ORDERED:
598 case UNEQ:
599 case LTGT:
600 return code;
601
602 case GT:
603 return LT;
604 case GE:
605 return LE;
606 case LT:
607 return GT;
608 case LE:
609 return GE;
610 case GTU:
611 return LTU;
612 case GEU:
613 return LEU;
614 case LTU:
615 return GTU;
616 case LEU:
617 return GEU;
618 case UNLT:
619 return UNGT;
620 case UNLE:
621 return UNGE;
622 case UNGT:
623 return UNLT;
624 case UNGE:
625 return UNLE;
626
627 default:
628 gcc_unreachable ();
629 }
630 }
631
632 /* Given a comparison CODE, return the corresponding unsigned comparison.
633 If CODE is an equality comparison or already an unsigned comparison,
634 CODE is returned. */
635
636 enum rtx_code
637 unsigned_condition (enum rtx_code code)
638 {
639 switch (code)
640 {
641 case EQ:
642 case NE:
643 case GTU:
644 case GEU:
645 case LTU:
646 case LEU:
647 return code;
648
649 case GT:
650 return GTU;
651 case GE:
652 return GEU;
653 case LT:
654 return LTU;
655 case LE:
656 return LEU;
657
658 default:
659 gcc_unreachable ();
660 }
661 }
662
663 /* Similarly, return the signed version of a comparison. */
664
665 enum rtx_code
666 signed_condition (enum rtx_code code)
667 {
668 switch (code)
669 {
670 case EQ:
671 case NE:
672 case GT:
673 case GE:
674 case LT:
675 case LE:
676 return code;
677
678 case GTU:
679 return GT;
680 case GEU:
681 return GE;
682 case LTU:
683 return LT;
684 case LEU:
685 return LE;
686
687 default:
688 gcc_unreachable ();
689 }
690 }
691 \f
692 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
693 truth of CODE1 implies the truth of CODE2. */
694
695 int
696 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
697 {
698 /* UNKNOWN comparison codes can happen as a result of trying to revert
699 comparison codes.
700 They can't match anything, so we have to reject them here. */
701 if (code1 == UNKNOWN || code2 == UNKNOWN)
702 return 0;
703
704 if (code1 == code2)
705 return 1;
706
707 switch (code1)
708 {
709 case UNEQ:
710 if (code2 == UNLE || code2 == UNGE)
711 return 1;
712 break;
713
714 case EQ:
715 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
716 || code2 == ORDERED)
717 return 1;
718 break;
719
720 case UNLT:
721 if (code2 == UNLE || code2 == NE)
722 return 1;
723 break;
724
725 case LT:
726 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
727 return 1;
728 break;
729
730 case UNGT:
731 if (code2 == UNGE || code2 == NE)
732 return 1;
733 break;
734
735 case GT:
736 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
737 return 1;
738 break;
739
740 case GE:
741 case LE:
742 if (code2 == ORDERED)
743 return 1;
744 break;
745
746 case LTGT:
747 if (code2 == NE || code2 == ORDERED)
748 return 1;
749 break;
750
751 case LTU:
752 if (code2 == LEU || code2 == NE)
753 return 1;
754 break;
755
756 case GTU:
757 if (code2 == GEU || code2 == NE)
758 return 1;
759 break;
760
761 case UNORDERED:
762 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
763 || code2 == UNGE || code2 == UNGT)
764 return 1;
765 break;
766
767 default:
768 break;
769 }
770
771 return 0;
772 }
773 \f
774 /* Return 1 if INSN is an unconditional jump and nothing else. */
775
776 int
777 simplejump_p (const rtx_insn *insn)
778 {
779 return (JUMP_P (insn)
780 && GET_CODE (PATTERN (insn)) == SET
781 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
782 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
783 }
784
785 /* Return nonzero if INSN is a (possibly) conditional jump
786 and nothing more.
787
788 Use of this function is deprecated, since we need to support combined
789 branch and compare insns. Use any_condjump_p instead whenever possible. */
790
791 int
792 condjump_p (const rtx_insn *insn)
793 {
794 const_rtx x = PATTERN (insn);
795
796 if (GET_CODE (x) != SET
797 || GET_CODE (SET_DEST (x)) != PC)
798 return 0;
799
800 x = SET_SRC (x);
801 if (GET_CODE (x) == LABEL_REF)
802 return 1;
803 else
804 return (GET_CODE (x) == IF_THEN_ELSE
805 && ((GET_CODE (XEXP (x, 2)) == PC
806 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
807 || ANY_RETURN_P (XEXP (x, 1))))
808 || (GET_CODE (XEXP (x, 1)) == PC
809 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
810 || ANY_RETURN_P (XEXP (x, 2))))));
811 }
812
813 /* Return nonzero if INSN is a (possibly) conditional jump inside a
814 PARALLEL.
815
816 Use this function is deprecated, since we need to support combined
817 branch and compare insns. Use any_condjump_p instead whenever possible. */
818
819 int
820 condjump_in_parallel_p (const rtx_insn *insn)
821 {
822 const_rtx x = PATTERN (insn);
823
824 if (GET_CODE (x) != PARALLEL)
825 return 0;
826 else
827 x = XVECEXP (x, 0, 0);
828
829 if (GET_CODE (x) != SET)
830 return 0;
831 if (GET_CODE (SET_DEST (x)) != PC)
832 return 0;
833 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
834 return 1;
835 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
836 return 0;
837 if (XEXP (SET_SRC (x), 2) == pc_rtx
838 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
839 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
840 return 1;
841 if (XEXP (SET_SRC (x), 1) == pc_rtx
842 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
843 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
844 return 1;
845 return 0;
846 }
847
848 /* Return set of PC, otherwise NULL. */
849
850 rtx
851 pc_set (const rtx_insn *insn)
852 {
853 rtx pat;
854 if (!JUMP_P (insn))
855 return NULL_RTX;
856 pat = PATTERN (insn);
857
858 /* The set is allowed to appear either as the insn pattern or
859 the first set in a PARALLEL. */
860 if (GET_CODE (pat) == PARALLEL)
861 pat = XVECEXP (pat, 0, 0);
862 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
863 return pat;
864
865 return NULL_RTX;
866 }
867
868 /* Return true when insn is an unconditional direct jump,
869 possibly bundled inside a PARALLEL. */
870
871 int
872 any_uncondjump_p (const rtx_insn *insn)
873 {
874 const_rtx x = pc_set (insn);
875 if (!x)
876 return 0;
877 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
878 return 0;
879 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
880 return 0;
881 return 1;
882 }
883
884 /* Return true when insn is a conditional jump. This function works for
885 instructions containing PC sets in PARALLELs. The instruction may have
886 various other effects so before removing the jump you must verify
887 onlyjump_p.
888
889 Note that unlike condjump_p it returns false for unconditional jumps. */
890
891 int
892 any_condjump_p (const rtx_insn *insn)
893 {
894 const_rtx x = pc_set (insn);
895 enum rtx_code a, b;
896
897 if (!x)
898 return 0;
899 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
900 return 0;
901
902 a = GET_CODE (XEXP (SET_SRC (x), 1));
903 b = GET_CODE (XEXP (SET_SRC (x), 2));
904
905 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
906 || (a == PC
907 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
908 }
909
910 /* Return the label of a conditional jump. */
911
912 rtx
913 condjump_label (const rtx_insn *insn)
914 {
915 rtx x = pc_set (insn);
916
917 if (!x)
918 return NULL_RTX;
919 x = SET_SRC (x);
920 if (GET_CODE (x) == LABEL_REF)
921 return x;
922 if (GET_CODE (x) != IF_THEN_ELSE)
923 return NULL_RTX;
924 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
925 return XEXP (x, 1);
926 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
927 return XEXP (x, 2);
928 return NULL_RTX;
929 }
930
931 /* Return TRUE if INSN is a return jump. */
932
933 int
934 returnjump_p (const rtx_insn *insn)
935 {
936 if (JUMP_P (insn))
937 {
938 subrtx_iterator::array_type array;
939 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
940 {
941 const_rtx x = *iter;
942 switch (GET_CODE (x))
943 {
944 case RETURN:
945 case SIMPLE_RETURN:
946 case EH_RETURN:
947 return true;
948
949 case SET:
950 if (SET_IS_RETURN_P (x))
951 return true;
952 break;
953
954 default:
955 break;
956 }
957 }
958 }
959 return false;
960 }
961
962 /* Return true if INSN is a (possibly conditional) return insn. */
963
964 int
965 eh_returnjump_p (rtx_insn *insn)
966 {
967 if (JUMP_P (insn))
968 {
969 subrtx_iterator::array_type array;
970 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
971 if (GET_CODE (*iter) == EH_RETURN)
972 return true;
973 }
974 return false;
975 }
976
977 /* Return true if INSN is a jump that only transfers control and
978 nothing more. */
979
980 int
981 onlyjump_p (const rtx_insn *insn)
982 {
983 rtx set;
984
985 if (!JUMP_P (insn))
986 return 0;
987
988 set = single_set (insn);
989 if (set == NULL)
990 return 0;
991 if (GET_CODE (SET_DEST (set)) != PC)
992 return 0;
993 if (side_effects_p (SET_SRC (set)))
994 return 0;
995
996 return 1;
997 }
998
999 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1000 NULL or a return. */
1001 bool
1002 jump_to_label_p (const rtx_insn *insn)
1003 {
1004 return (JUMP_P (insn)
1005 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1006 }
1007
1008 #ifdef HAVE_cc0
1009
1010 /* Return nonzero if X is an RTX that only sets the condition codes
1011 and has no side effects. */
1012
1013 int
1014 only_sets_cc0_p (const_rtx x)
1015 {
1016 if (! x)
1017 return 0;
1018
1019 if (INSN_P (x))
1020 x = PATTERN (x);
1021
1022 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1023 }
1024
1025 /* Return 1 if X is an RTX that does nothing but set the condition codes
1026 and CLOBBER or USE registers.
1027 Return -1 if X does explicitly set the condition codes,
1028 but also does other things. */
1029
1030 int
1031 sets_cc0_p (const_rtx x)
1032 {
1033 if (! x)
1034 return 0;
1035
1036 if (INSN_P (x))
1037 x = PATTERN (x);
1038
1039 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1040 return 1;
1041 if (GET_CODE (x) == PARALLEL)
1042 {
1043 int i;
1044 int sets_cc0 = 0;
1045 int other_things = 0;
1046 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1047 {
1048 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1049 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1050 sets_cc0 = 1;
1051 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1052 other_things = 1;
1053 }
1054 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1055 }
1056 return 0;
1057 }
1058 #endif
1059 \f
1060 /* Find all CODE_LABELs referred to in X, and increment their use
1061 counts. If INSN is a JUMP_INSN and there is at least one
1062 CODE_LABEL referenced in INSN as a jump target, then store the last
1063 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1064 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1065 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1066 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1067 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1068 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1069
1070 Note that two labels separated by a loop-beginning note
1071 must be kept distinct if we have not yet done loop-optimization,
1072 because the gap between them is where loop-optimize
1073 will want to move invariant code to. CROSS_JUMP tells us
1074 that loop-optimization is done with. */
1075
1076 void
1077 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1078 {
1079 rtx asmop = extract_asm_operands (x);
1080 if (asmop)
1081 mark_jump_label_asm (asmop, insn);
1082 else
1083 mark_jump_label_1 (x, insn, in_mem != 0,
1084 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1085 }
1086
1087 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1088 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1089 jump-target; when the JUMP_LABEL field of INSN should be set or a
1090 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1091 note. */
1092
1093 static void
1094 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1095 {
1096 RTX_CODE code = GET_CODE (x);
1097 int i;
1098 const char *fmt;
1099
1100 switch (code)
1101 {
1102 case PC:
1103 case CC0:
1104 case REG:
1105 case CLOBBER:
1106 case CALL:
1107 return;
1108
1109 case RETURN:
1110 case SIMPLE_RETURN:
1111 if (is_target)
1112 {
1113 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1114 JUMP_LABEL (insn) = x;
1115 }
1116 return;
1117
1118 case MEM:
1119 in_mem = true;
1120 break;
1121
1122 case SEQUENCE:
1123 {
1124 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1125 for (i = 0; i < seq->len (); i++)
1126 mark_jump_label (PATTERN (seq->insn (i)),
1127 seq->insn (i), 0);
1128 }
1129 return;
1130
1131 case SYMBOL_REF:
1132 if (!in_mem)
1133 return;
1134
1135 /* If this is a constant-pool reference, see if it is a label. */
1136 if (CONSTANT_POOL_ADDRESS_P (x))
1137 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1138 break;
1139
1140 /* Handle operands in the condition of an if-then-else as for a
1141 non-jump insn. */
1142 case IF_THEN_ELSE:
1143 if (!is_target)
1144 break;
1145 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1146 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1147 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1148 return;
1149
1150 case LABEL_REF:
1151 {
1152 rtx label = LABEL_REF_LABEL (x);
1153
1154 /* Ignore remaining references to unreachable labels that
1155 have been deleted. */
1156 if (NOTE_P (label)
1157 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1158 break;
1159
1160 gcc_assert (LABEL_P (label));
1161
1162 /* Ignore references to labels of containing functions. */
1163 if (LABEL_REF_NONLOCAL_P (x))
1164 break;
1165
1166 LABEL_REF_LABEL (x) = label;
1167 if (! insn || ! insn->deleted ())
1168 ++LABEL_NUSES (label);
1169
1170 if (insn)
1171 {
1172 if (is_target
1173 /* Do not change a previous setting of JUMP_LABEL. If the
1174 JUMP_LABEL slot is occupied by a different label,
1175 create a note for this label. */
1176 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1177 JUMP_LABEL (insn) = label;
1178 else
1179 {
1180 enum reg_note kind
1181 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1182
1183 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1184 for LABEL unless there already is one. All uses of
1185 a label, except for the primary target of a jump,
1186 must have such a note. */
1187 if (! find_reg_note (insn, kind, label))
1188 add_reg_note (insn, kind, label);
1189 }
1190 }
1191 return;
1192 }
1193
1194 /* Do walk the labels in a vector, but not the first operand of an
1195 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1196 case ADDR_VEC:
1197 case ADDR_DIFF_VEC:
1198 if (! insn->deleted ())
1199 {
1200 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1201
1202 for (i = 0; i < XVECLEN (x, eltnum); i++)
1203 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1204 is_target);
1205 }
1206 return;
1207
1208 default:
1209 break;
1210 }
1211
1212 fmt = GET_RTX_FORMAT (code);
1213
1214 /* The primary target of a tablejump is the label of the ADDR_VEC,
1215 which is canonically mentioned *last* in the insn. To get it
1216 marked as JUMP_LABEL, we iterate over items in reverse order. */
1217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1218 {
1219 if (fmt[i] == 'e')
1220 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1221 else if (fmt[i] == 'E')
1222 {
1223 int j;
1224
1225 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1226 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1227 is_target);
1228 }
1229 }
1230 }
1231
1232 /* Worker function for mark_jump_label. Handle asm insns specially.
1233 In particular, output operands need not be considered so we can
1234 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1235 need to be considered targets. */
1236
1237 static void
1238 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1239 {
1240 int i;
1241
1242 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1243 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1244
1245 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1246 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1247 }
1248 \f
1249 /* Delete insn INSN from the chain of insns and update label ref counts
1250 and delete insns now unreachable.
1251
1252 Returns the first insn after INSN that was not deleted.
1253
1254 Usage of this instruction is deprecated. Use delete_insn instead and
1255 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1256
1257 rtx_insn *
1258 delete_related_insns (rtx uncast_insn)
1259 {
1260 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1261 int was_code_label = (LABEL_P (insn));
1262 rtx note;
1263 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1264
1265 while (next && next->deleted ())
1266 next = NEXT_INSN (next);
1267
1268 /* This insn is already deleted => return first following nondeleted. */
1269 if (insn->deleted ())
1270 return next;
1271
1272 delete_insn (insn);
1273
1274 /* If instruction is followed by a barrier,
1275 delete the barrier too. */
1276
1277 if (next != 0 && BARRIER_P (next))
1278 delete_insn (next);
1279
1280 /* If this is a call, then we have to remove the var tracking note
1281 for the call arguments. */
1282
1283 if (CALL_P (insn)
1284 || (NONJUMP_INSN_P (insn)
1285 && GET_CODE (PATTERN (insn)) == SEQUENCE
1286 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1287 {
1288 rtx_insn *p;
1289
1290 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1291 p && NOTE_P (p);
1292 p = NEXT_INSN (p))
1293 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1294 {
1295 remove_insn (p);
1296 break;
1297 }
1298 }
1299
1300 /* If deleting a jump, decrement the count of the label,
1301 and delete the label if it is now unused. */
1302
1303 if (jump_to_label_p (insn))
1304 {
1305 rtx lab = JUMP_LABEL (insn);
1306 rtx_jump_table_data *lab_next;
1307
1308 if (LABEL_NUSES (lab) == 0)
1309 /* This can delete NEXT or PREV,
1310 either directly if NEXT is JUMP_LABEL (INSN),
1311 or indirectly through more levels of jumps. */
1312 delete_related_insns (lab);
1313 else if (tablejump_p (insn, NULL, &lab_next))
1314 {
1315 /* If we're deleting the tablejump, delete the dispatch table.
1316 We may not be able to kill the label immediately preceding
1317 just yet, as it might be referenced in code leading up to
1318 the tablejump. */
1319 delete_related_insns (lab_next);
1320 }
1321 }
1322
1323 /* Likewise if we're deleting a dispatch table. */
1324
1325 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1326 {
1327 rtvec labels = table->get_labels ();
1328 int i;
1329 int len = GET_NUM_ELEM (labels);
1330
1331 for (i = 0; i < len; i++)
1332 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1333 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1334 while (next && next->deleted ())
1335 next = NEXT_INSN (next);
1336 return next;
1337 }
1338
1339 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1340 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1341 if (INSN_P (insn))
1342 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1343 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1344 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1345 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1346 && LABEL_P (XEXP (note, 0)))
1347 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1348 delete_related_insns (XEXP (note, 0));
1349
1350 while (prev && (prev->deleted () || NOTE_P (prev)))
1351 prev = PREV_INSN (prev);
1352
1353 /* If INSN was a label and a dispatch table follows it,
1354 delete the dispatch table. The tablejump must have gone already.
1355 It isn't useful to fall through into a table. */
1356
1357 if (was_code_label
1358 && NEXT_INSN (insn) != 0
1359 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1360 next = delete_related_insns (NEXT_INSN (insn));
1361
1362 /* If INSN was a label, delete insns following it if now unreachable. */
1363
1364 if (was_code_label && prev && BARRIER_P (prev))
1365 {
1366 enum rtx_code code;
1367 while (next)
1368 {
1369 code = GET_CODE (next);
1370 if (code == NOTE)
1371 next = NEXT_INSN (next);
1372 /* Keep going past other deleted labels to delete what follows. */
1373 else if (code == CODE_LABEL && next->deleted ())
1374 next = NEXT_INSN (next);
1375 /* Keep the (use (insn))s created by dbr_schedule, which needs
1376 them in order to track liveness relative to a previous
1377 barrier. */
1378 else if (INSN_P (next)
1379 && GET_CODE (PATTERN (next)) == USE
1380 && INSN_P (XEXP (PATTERN (next), 0)))
1381 next = NEXT_INSN (next);
1382 else if (code == BARRIER || INSN_P (next))
1383 /* Note: if this deletes a jump, it can cause more
1384 deletion of unreachable code, after a different label.
1385 As long as the value from this recursive call is correct,
1386 this invocation functions correctly. */
1387 next = delete_related_insns (next);
1388 else
1389 break;
1390 }
1391 }
1392
1393 /* I feel a little doubtful about this loop,
1394 but I see no clean and sure alternative way
1395 to find the first insn after INSN that is not now deleted.
1396 I hope this works. */
1397 while (next && next->deleted ())
1398 next = NEXT_INSN (next);
1399 return next;
1400 }
1401 \f
1402 /* Delete a range of insns from FROM to TO, inclusive.
1403 This is for the sake of peephole optimization, so assume
1404 that whatever these insns do will still be done by a new
1405 peephole insn that will replace them. */
1406
1407 void
1408 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1409 {
1410 rtx_insn *insn = from;
1411
1412 while (1)
1413 {
1414 rtx_insn *next = NEXT_INSN (insn);
1415 rtx_insn *prev = PREV_INSN (insn);
1416
1417 if (!NOTE_P (insn))
1418 {
1419 insn->set_deleted();
1420
1421 /* Patch this insn out of the chain. */
1422 /* We don't do this all at once, because we
1423 must preserve all NOTEs. */
1424 if (prev)
1425 SET_NEXT_INSN (prev) = next;
1426
1427 if (next)
1428 SET_PREV_INSN (next) = prev;
1429 }
1430
1431 if (insn == to)
1432 break;
1433 insn = next;
1434 }
1435
1436 /* Note that if TO is an unconditional jump
1437 we *do not* delete the BARRIER that follows,
1438 since the peephole that replaces this sequence
1439 is also an unconditional jump in that case. */
1440 }
1441 \f
1442 /* A helper function for redirect_exp_1; examines its input X and returns
1443 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1444 static rtx
1445 redirect_target (rtx x)
1446 {
1447 if (x == NULL_RTX)
1448 return ret_rtx;
1449 if (!ANY_RETURN_P (x))
1450 return gen_rtx_LABEL_REF (Pmode, x);
1451 return x;
1452 }
1453
1454 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1455 NLABEL as a return. Accrue modifications into the change group. */
1456
1457 static void
1458 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1459 {
1460 rtx x = *loc;
1461 RTX_CODE code = GET_CODE (x);
1462 int i;
1463 const char *fmt;
1464
1465 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1466 || x == olabel)
1467 {
1468 x = redirect_target (nlabel);
1469 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1470 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1471 validate_change (insn, loc, x, 1);
1472 return;
1473 }
1474
1475 if (code == SET && SET_DEST (x) == pc_rtx
1476 && ANY_RETURN_P (nlabel)
1477 && GET_CODE (SET_SRC (x)) == LABEL_REF
1478 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1479 {
1480 validate_change (insn, loc, nlabel, 1);
1481 return;
1482 }
1483
1484 if (code == IF_THEN_ELSE)
1485 {
1486 /* Skip the condition of an IF_THEN_ELSE. We only want to
1487 change jump destinations, not eventual label comparisons. */
1488 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1489 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1490 return;
1491 }
1492
1493 fmt = GET_RTX_FORMAT (code);
1494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1495 {
1496 if (fmt[i] == 'e')
1497 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1498 else if (fmt[i] == 'E')
1499 {
1500 int j;
1501 for (j = 0; j < XVECLEN (x, i); j++)
1502 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1503 }
1504 }
1505 }
1506
1507 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1508 the modifications into the change group. Return false if we did
1509 not see how to do that. */
1510
1511 int
1512 redirect_jump_1 (rtx jump, rtx nlabel)
1513 {
1514 int ochanges = num_validated_changes ();
1515 rtx *loc, asmop;
1516
1517 gcc_assert (nlabel != NULL_RTX);
1518 asmop = extract_asm_operands (PATTERN (jump));
1519 if (asmop)
1520 {
1521 if (nlabel == NULL)
1522 return 0;
1523 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1524 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1525 }
1526 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1527 loc = &XVECEXP (PATTERN (jump), 0, 0);
1528 else
1529 loc = &PATTERN (jump);
1530
1531 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1532 return num_validated_changes () > ochanges;
1533 }
1534
1535 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1536 jump target label is unused as a result, it and the code following
1537 it may be deleted.
1538
1539 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1540 in that case we are to turn the jump into a (possibly conditional)
1541 return insn.
1542
1543 The return value will be 1 if the change was made, 0 if it wasn't
1544 (this can only occur when trying to produce return insns). */
1545
1546 int
1547 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1548 {
1549 rtx olabel = JUMP_LABEL (jump);
1550
1551 if (!nlabel)
1552 {
1553 /* If there is no label, we are asked to redirect to the EXIT block.
1554 When before the epilogue is emitted, return/simple_return cannot be
1555 created so we return 0 immediately. After the epilogue is emitted,
1556 we always expect a label, either a non-null label, or a
1557 return/simple_return RTX. */
1558
1559 if (!epilogue_completed)
1560 return 0;
1561 gcc_unreachable ();
1562 }
1563
1564 if (nlabel == olabel)
1565 return 1;
1566
1567 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1568 return 0;
1569
1570 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1571 return 1;
1572 }
1573
1574 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1575 NLABEL in JUMP.
1576 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1577 count has dropped to zero. */
1578 void
1579 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1580 int invert)
1581 {
1582 rtx note;
1583
1584 gcc_assert (JUMP_LABEL (jump) == olabel);
1585
1586 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1587 moving FUNCTION_END note. Just sanity check that no user still worry
1588 about this. */
1589 gcc_assert (delete_unused >= 0);
1590 JUMP_LABEL (jump) = nlabel;
1591 if (!ANY_RETURN_P (nlabel))
1592 ++LABEL_NUSES (nlabel);
1593
1594 /* Update labels in any REG_EQUAL note. */
1595 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1596 {
1597 if (ANY_RETURN_P (nlabel)
1598 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1599 remove_note (jump, note);
1600 else
1601 {
1602 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1603 confirm_change_group ();
1604 }
1605 }
1606
1607 /* Handle the case where we had a conditional crossing jump to a return
1608 label and are now changing it into a direct conditional return.
1609 The jump is no longer crossing in that case. */
1610 if (ANY_RETURN_P (nlabel))
1611 CROSSING_JUMP_P (jump) = 0;
1612
1613 if (!ANY_RETURN_P (olabel)
1614 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1615 /* Undefined labels will remain outside the insn stream. */
1616 && INSN_UID (olabel))
1617 delete_related_insns (olabel);
1618 if (invert)
1619 invert_br_probabilities (jump);
1620 }
1621
1622 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1623 modifications into the change group. Return nonzero for success. */
1624 static int
1625 invert_exp_1 (rtx x, rtx insn)
1626 {
1627 RTX_CODE code = GET_CODE (x);
1628
1629 if (code == IF_THEN_ELSE)
1630 {
1631 rtx comp = XEXP (x, 0);
1632 rtx tem;
1633 enum rtx_code reversed_code;
1634
1635 /* We can do this in two ways: The preferable way, which can only
1636 be done if this is not an integer comparison, is to reverse
1637 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1638 of the IF_THEN_ELSE. If we can't do either, fail. */
1639
1640 reversed_code = reversed_comparison_code (comp, insn);
1641
1642 if (reversed_code != UNKNOWN)
1643 {
1644 validate_change (insn, &XEXP (x, 0),
1645 gen_rtx_fmt_ee (reversed_code,
1646 GET_MODE (comp), XEXP (comp, 0),
1647 XEXP (comp, 1)),
1648 1);
1649 return 1;
1650 }
1651
1652 tem = XEXP (x, 1);
1653 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1654 validate_change (insn, &XEXP (x, 2), tem, 1);
1655 return 1;
1656 }
1657 else
1658 return 0;
1659 }
1660
1661 /* Invert the condition of the jump JUMP, and make it jump to label
1662 NLABEL instead of where it jumps now. Accrue changes into the
1663 change group. Return false if we didn't see how to perform the
1664 inversion and redirection. */
1665
1666 int
1667 invert_jump_1 (rtx_insn *jump, rtx nlabel)
1668 {
1669 rtx x = pc_set (jump);
1670 int ochanges;
1671 int ok;
1672
1673 ochanges = num_validated_changes ();
1674 if (x == NULL)
1675 return 0;
1676 ok = invert_exp_1 (SET_SRC (x), jump);
1677 gcc_assert (ok);
1678
1679 if (num_validated_changes () == ochanges)
1680 return 0;
1681
1682 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1683 in Pmode, so checking this is not merely an optimization. */
1684 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1685 }
1686
1687 /* Invert the condition of the jump JUMP, and make it jump to label
1688 NLABEL instead of where it jumps now. Return true if successful. */
1689
1690 int
1691 invert_jump (rtx_insn *jump, rtx nlabel, int delete_unused)
1692 {
1693 rtx olabel = JUMP_LABEL (jump);
1694
1695 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1696 {
1697 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1698 return 1;
1699 }
1700 cancel_changes (0);
1701 return 0;
1702 }
1703
1704 \f
1705 /* Like rtx_equal_p except that it considers two REGs as equal
1706 if they renumber to the same value and considers two commutative
1707 operations to be the same if the order of the operands has been
1708 reversed. */
1709
1710 int
1711 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1712 {
1713 int i;
1714 const enum rtx_code code = GET_CODE (x);
1715 const char *fmt;
1716
1717 if (x == y)
1718 return 1;
1719
1720 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1721 && (REG_P (y) || (GET_CODE (y) == SUBREG
1722 && REG_P (SUBREG_REG (y)))))
1723 {
1724 int reg_x = -1, reg_y = -1;
1725 int byte_x = 0, byte_y = 0;
1726 struct subreg_info info;
1727
1728 if (GET_MODE (x) != GET_MODE (y))
1729 return 0;
1730
1731 /* If we haven't done any renumbering, don't
1732 make any assumptions. */
1733 if (reg_renumber == 0)
1734 return rtx_equal_p (x, y);
1735
1736 if (code == SUBREG)
1737 {
1738 reg_x = REGNO (SUBREG_REG (x));
1739 byte_x = SUBREG_BYTE (x);
1740
1741 if (reg_renumber[reg_x] >= 0)
1742 {
1743 subreg_get_info (reg_renumber[reg_x],
1744 GET_MODE (SUBREG_REG (x)), byte_x,
1745 GET_MODE (x), &info);
1746 if (!info.representable_p)
1747 return 0;
1748 reg_x = info.offset;
1749 byte_x = 0;
1750 }
1751 }
1752 else
1753 {
1754 reg_x = REGNO (x);
1755 if (reg_renumber[reg_x] >= 0)
1756 reg_x = reg_renumber[reg_x];
1757 }
1758
1759 if (GET_CODE (y) == SUBREG)
1760 {
1761 reg_y = REGNO (SUBREG_REG (y));
1762 byte_y = SUBREG_BYTE (y);
1763
1764 if (reg_renumber[reg_y] >= 0)
1765 {
1766 subreg_get_info (reg_renumber[reg_y],
1767 GET_MODE (SUBREG_REG (y)), byte_y,
1768 GET_MODE (y), &info);
1769 if (!info.representable_p)
1770 return 0;
1771 reg_y = info.offset;
1772 byte_y = 0;
1773 }
1774 }
1775 else
1776 {
1777 reg_y = REGNO (y);
1778 if (reg_renumber[reg_y] >= 0)
1779 reg_y = reg_renumber[reg_y];
1780 }
1781
1782 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1783 }
1784
1785 /* Now we have disposed of all the cases
1786 in which different rtx codes can match. */
1787 if (code != GET_CODE (y))
1788 return 0;
1789
1790 switch (code)
1791 {
1792 case PC:
1793 case CC0:
1794 case ADDR_VEC:
1795 case ADDR_DIFF_VEC:
1796 CASE_CONST_UNIQUE:
1797 return 0;
1798
1799 case LABEL_REF:
1800 /* We can't assume nonlocal labels have their following insns yet. */
1801 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1802 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1803
1804 /* Two label-refs are equivalent if they point at labels
1805 in the same position in the instruction stream. */
1806 return (next_real_insn (LABEL_REF_LABEL (x))
1807 == next_real_insn (LABEL_REF_LABEL (y)));
1808
1809 case SYMBOL_REF:
1810 return XSTR (x, 0) == XSTR (y, 0);
1811
1812 case CODE_LABEL:
1813 /* If we didn't match EQ equality above, they aren't the same. */
1814 return 0;
1815
1816 default:
1817 break;
1818 }
1819
1820 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1821
1822 if (GET_MODE (x) != GET_MODE (y))
1823 return 0;
1824
1825 /* MEMs referring to different address space are not equivalent. */
1826 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1827 return 0;
1828
1829 /* For commutative operations, the RTX match if the operand match in any
1830 order. Also handle the simple binary and unary cases without a loop. */
1831 if (targetm.commutative_p (x, UNKNOWN))
1832 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1833 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1834 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1835 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1836 else if (NON_COMMUTATIVE_P (x))
1837 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1838 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1839 else if (UNARY_P (x))
1840 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1841
1842 /* Compare the elements. If any pair of corresponding elements
1843 fail to match, return 0 for the whole things. */
1844
1845 fmt = GET_RTX_FORMAT (code);
1846 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1847 {
1848 int j;
1849 switch (fmt[i])
1850 {
1851 case 'w':
1852 if (XWINT (x, i) != XWINT (y, i))
1853 return 0;
1854 break;
1855
1856 case 'i':
1857 if (XINT (x, i) != XINT (y, i))
1858 {
1859 if (((code == ASM_OPERANDS && i == 6)
1860 || (code == ASM_INPUT && i == 1)))
1861 break;
1862 return 0;
1863 }
1864 break;
1865
1866 case 't':
1867 if (XTREE (x, i) != XTREE (y, i))
1868 return 0;
1869 break;
1870
1871 case 's':
1872 if (strcmp (XSTR (x, i), XSTR (y, i)))
1873 return 0;
1874 break;
1875
1876 case 'e':
1877 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1878 return 0;
1879 break;
1880
1881 case 'u':
1882 if (XEXP (x, i) != XEXP (y, i))
1883 return 0;
1884 /* Fall through. */
1885 case '0':
1886 break;
1887
1888 case 'E':
1889 if (XVECLEN (x, i) != XVECLEN (y, i))
1890 return 0;
1891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1892 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1893 return 0;
1894 break;
1895
1896 default:
1897 gcc_unreachable ();
1898 }
1899 }
1900 return 1;
1901 }
1902 \f
1903 /* If X is a hard register or equivalent to one or a subregister of one,
1904 return the hard register number. If X is a pseudo register that was not
1905 assigned a hard register, return the pseudo register number. Otherwise,
1906 return -1. Any rtx is valid for X. */
1907
1908 int
1909 true_regnum (const_rtx x)
1910 {
1911 if (REG_P (x))
1912 {
1913 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1914 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1915 return reg_renumber[REGNO (x)];
1916 return REGNO (x);
1917 }
1918 if (GET_CODE (x) == SUBREG)
1919 {
1920 int base = true_regnum (SUBREG_REG (x));
1921 if (base >= 0
1922 && base < FIRST_PSEUDO_REGISTER)
1923 {
1924 struct subreg_info info;
1925
1926 subreg_get_info (lra_in_progress
1927 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1928 GET_MODE (SUBREG_REG (x)),
1929 SUBREG_BYTE (x), GET_MODE (x), &info);
1930
1931 if (info.representable_p)
1932 return base + info.offset;
1933 }
1934 }
1935 return -1;
1936 }
1937
1938 /* Return regno of the register REG and handle subregs too. */
1939 unsigned int
1940 reg_or_subregno (const_rtx reg)
1941 {
1942 if (GET_CODE (reg) == SUBREG)
1943 reg = SUBREG_REG (reg);
1944 gcc_assert (REG_P (reg));
1945 return REGNO (reg);
1946 }