re PR tree-optimization/55253 (Revision 193298 miscompiles sqlite with -Os)
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes. For return insns, it contains either a
33 RETURN or a SIMPLE_RETURN rtx.
34
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
49 #include "recog.h"
50 #include "function.h"
51 #include "basic-block.h"
52 #include "expr.h"
53 #include "except.h"
54 #include "diagnostic-core.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "tree-pass.h"
58 #include "target.h"
59
60 /* Optimize jump y; x: ... y: jumpif... x?
61 Don't know if it is worth bothering with. */
62 /* Optimize two cases of conditional jump to conditional jump?
63 This can never delete any instruction or make anything dead,
64 or even change what is live at any point.
65 So perhaps let combiner do it. */
66
67 static void init_label_info (rtx);
68 static void mark_all_labels (rtx);
69 static void mark_jump_label_1 (rtx, rtx, bool, bool);
70 static void mark_jump_label_asm (rtx, rtx);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
74 \f
75 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
76 static void
77 rebuild_jump_labels_1 (rtx f, bool count_forced)
78 {
79 rtx insn;
80
81 timevar_push (TV_REBUILD_JUMP);
82 init_label_info (f);
83 mark_all_labels (f);
84
85 /* Keep track of labels used from static data; we don't track them
86 closely enough to delete them here, so make sure their reference
87 count doesn't drop to zero. */
88
89 if (count_forced)
90 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
91 if (LABEL_P (XEXP (insn, 0)))
92 LABEL_NUSES (XEXP (insn, 0))++;
93 timevar_pop (TV_REBUILD_JUMP);
94 }
95
96 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
97 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
98 instructions and jumping insns that have labels as operands
99 (e.g. cbranchsi4). */
100 void
101 rebuild_jump_labels (rtx f)
102 {
103 rebuild_jump_labels_1 (f, true);
104 }
105
106 /* This function is like rebuild_jump_labels, but doesn't run over
107 forced_labels. It can be used on insn chains that aren't the
108 main function chain. */
109 void
110 rebuild_jump_labels_chain (rtx chain)
111 {
112 rebuild_jump_labels_1 (chain, false);
113 }
114 \f
115 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
116 non-fallthru insn. This is not generally true, as multiple barriers
117 may have crept in, or the BARRIER may be separated from the last
118 real insn by one or more NOTEs.
119
120 This simple pass moves barriers and removes duplicates so that the
121 old code is happy.
122 */
123 unsigned int
124 cleanup_barriers (void)
125 {
126 rtx insn, next, prev;
127 for (insn = get_insns (); insn; insn = next)
128 {
129 next = NEXT_INSN (insn);
130 if (BARRIER_P (insn))
131 {
132 prev = prev_nonnote_insn (insn);
133 if (!prev)
134 continue;
135 if (BARRIER_P (prev))
136 delete_insn (insn);
137 else if (prev != PREV_INSN (insn))
138 reorder_insns (insn, insn, prev);
139 }
140 }
141 return 0;
142 }
143
144 struct rtl_opt_pass pass_cleanup_barriers =
145 {
146 {
147 RTL_PASS,
148 "barriers", /* name */
149 OPTGROUP_NONE, /* optinfo_flags */
150 NULL, /* gate */
151 cleanup_barriers, /* execute */
152 NULL, /* sub */
153 NULL, /* next */
154 0, /* static_pass_number */
155 TV_NONE, /* tv_id */
156 0, /* properties_required */
157 0, /* properties_provided */
158 0, /* properties_destroyed */
159 0, /* todo_flags_start */
160 0 /* todo_flags_finish */
161 }
162 };
163
164 \f
165 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
166 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
167 notes whose labels don't occur in the insn any more. */
168
169 static void
170 init_label_info (rtx f)
171 {
172 rtx insn;
173
174 for (insn = f; insn; insn = NEXT_INSN (insn))
175 {
176 if (LABEL_P (insn))
177 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
178
179 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
180 sticky and not reset here; that way we won't lose association
181 with a label when e.g. the source for a target register
182 disappears out of reach for targets that may use jump-target
183 registers. Jump transformations are supposed to transform
184 any REG_LABEL_TARGET notes. The target label reference in a
185 branch may disappear from the branch (and from the
186 instruction before it) for other reasons, like register
187 allocation. */
188
189 if (INSN_P (insn))
190 {
191 rtx note, next;
192
193 for (note = REG_NOTES (insn); note; note = next)
194 {
195 next = XEXP (note, 1);
196 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
197 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
198 remove_note (insn, note);
199 }
200 }
201 }
202 }
203
204 /* A subroutine of mark_all_labels. Trivially propagate a simple label
205 load into a jump_insn that uses it. */
206
207 static void
208 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
209 {
210 rtx label_note, pc, pc_src;
211
212 pc = pc_set (jump_insn);
213 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
214 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
215
216 /* If the previous non-jump insn sets something to a label,
217 something that this jump insn uses, make that label the primary
218 target of this insn if we don't yet have any. That previous
219 insn must be a single_set and not refer to more than one label.
220 The jump insn must not refer to other labels as jump targets
221 and must be a plain (set (pc) ...), maybe in a parallel, and
222 may refer to the item being set only directly or as one of the
223 arms in an IF_THEN_ELSE. */
224
225 if (label_note != NULL && pc_src != NULL)
226 {
227 rtx label_set = single_set (prev_nonjump_insn);
228 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
229
230 if (label_set != NULL
231 /* The source must be the direct LABEL_REF, not a
232 PLUS, UNSPEC, IF_THEN_ELSE etc. */
233 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
234 && (rtx_equal_p (label_dest, pc_src)
235 || (GET_CODE (pc_src) == IF_THEN_ELSE
236 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
237 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
238 {
239 /* The CODE_LABEL referred to in the note must be the
240 CODE_LABEL in the LABEL_REF of the "set". We can
241 conveniently use it for the marker function, which
242 requires a LABEL_REF wrapping. */
243 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
244
245 mark_jump_label_1 (label_set, jump_insn, false, true);
246
247 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
248 }
249 }
250 }
251
252 /* Mark the label each jump jumps to.
253 Combine consecutive labels, and count uses of labels. */
254
255 static void
256 mark_all_labels (rtx f)
257 {
258 rtx insn;
259
260 if (current_ir_type () == IR_RTL_CFGLAYOUT)
261 {
262 basic_block bb;
263 FOR_EACH_BB (bb)
264 {
265 /* In cfglayout mode, we don't bother with trivial next-insn
266 propagation of LABEL_REFs into JUMP_LABEL. This will be
267 handled by other optimizers using better algorithms. */
268 FOR_BB_INSNS (bb, insn)
269 {
270 gcc_assert (! INSN_DELETED_P (insn));
271 if (NONDEBUG_INSN_P (insn))
272 mark_jump_label (PATTERN (insn), insn, 0);
273 }
274
275 /* In cfglayout mode, there may be non-insns between the
276 basic blocks. If those non-insns represent tablejump data,
277 they contain label references that we must record. */
278 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
279 if (INSN_P (insn))
280 {
281 gcc_assert (JUMP_TABLE_DATA_P (insn));
282 mark_jump_label (PATTERN (insn), insn, 0);
283 }
284 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
285 if (INSN_P (insn))
286 {
287 gcc_assert (JUMP_TABLE_DATA_P (insn));
288 mark_jump_label (PATTERN (insn), insn, 0);
289 }
290 }
291 }
292 else
293 {
294 rtx prev_nonjump_insn = NULL;
295 for (insn = f; insn; insn = NEXT_INSN (insn))
296 {
297 if (INSN_DELETED_P (insn))
298 ;
299 else if (LABEL_P (insn))
300 prev_nonjump_insn = NULL;
301 else if (NONDEBUG_INSN_P (insn))
302 {
303 mark_jump_label (PATTERN (insn), insn, 0);
304 if (JUMP_P (insn))
305 {
306 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
307 maybe_propagate_label_ref (insn, prev_nonjump_insn);
308 }
309 else
310 prev_nonjump_insn = insn;
311 }
312 }
313 }
314 }
315 \f
316 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
317 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
318 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
319 know whether it's source is floating point or integer comparison. Machine
320 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
321 to help this function avoid overhead in these cases. */
322 enum rtx_code
323 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
324 const_rtx arg1, const_rtx insn)
325 {
326 enum machine_mode mode;
327
328 /* If this is not actually a comparison, we can't reverse it. */
329 if (GET_RTX_CLASS (code) != RTX_COMPARE
330 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
331 return UNKNOWN;
332
333 mode = GET_MODE (arg0);
334 if (mode == VOIDmode)
335 mode = GET_MODE (arg1);
336
337 /* First see if machine description supplies us way to reverse the
338 comparison. Give it priority over everything else to allow
339 machine description to do tricks. */
340 if (GET_MODE_CLASS (mode) == MODE_CC
341 && REVERSIBLE_CC_MODE (mode))
342 {
343 #ifdef REVERSE_CONDITION
344 return REVERSE_CONDITION (code, mode);
345 #else
346 return reverse_condition (code);
347 #endif
348 }
349
350 /* Try a few special cases based on the comparison code. */
351 switch (code)
352 {
353 case GEU:
354 case GTU:
355 case LEU:
356 case LTU:
357 case NE:
358 case EQ:
359 /* It is always safe to reverse EQ and NE, even for the floating
360 point. Similarly the unsigned comparisons are never used for
361 floating point so we can reverse them in the default way. */
362 return reverse_condition (code);
363 case ORDERED:
364 case UNORDERED:
365 case LTGT:
366 case UNEQ:
367 /* In case we already see unordered comparison, we can be sure to
368 be dealing with floating point so we don't need any more tests. */
369 return reverse_condition_maybe_unordered (code);
370 case UNLT:
371 case UNLE:
372 case UNGT:
373 case UNGE:
374 /* We don't have safe way to reverse these yet. */
375 return UNKNOWN;
376 default:
377 break;
378 }
379
380 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
381 {
382 const_rtx prev;
383 /* Try to search for the comparison to determine the real mode.
384 This code is expensive, but with sane machine description it
385 will be never used, since REVERSIBLE_CC_MODE will return true
386 in all cases. */
387 if (! insn)
388 return UNKNOWN;
389
390 /* These CONST_CAST's are okay because prev_nonnote_insn just
391 returns its argument and we assign it to a const_rtx
392 variable. */
393 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
394 prev != 0 && !LABEL_P (prev);
395 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
396 {
397 const_rtx set = set_of (arg0, prev);
398 if (set && GET_CODE (set) == SET
399 && rtx_equal_p (SET_DEST (set), arg0))
400 {
401 rtx src = SET_SRC (set);
402
403 if (GET_CODE (src) == COMPARE)
404 {
405 rtx comparison = src;
406 arg0 = XEXP (src, 0);
407 mode = GET_MODE (arg0);
408 if (mode == VOIDmode)
409 mode = GET_MODE (XEXP (comparison, 1));
410 break;
411 }
412 /* We can get past reg-reg moves. This may be useful for model
413 of i387 comparisons that first move flag registers around. */
414 if (REG_P (src))
415 {
416 arg0 = src;
417 continue;
418 }
419 }
420 /* If register is clobbered in some ununderstandable way,
421 give up. */
422 if (set)
423 return UNKNOWN;
424 }
425 }
426
427 /* Test for an integer condition, or a floating-point comparison
428 in which NaNs can be ignored. */
429 if (CONST_INT_P (arg0)
430 || (GET_MODE (arg0) != VOIDmode
431 && GET_MODE_CLASS (mode) != MODE_CC
432 && !HONOR_NANS (mode)))
433 return reverse_condition (code);
434
435 return UNKNOWN;
436 }
437
438 /* A wrapper around the previous function to take COMPARISON as rtx
439 expression. This simplifies many callers. */
440 enum rtx_code
441 reversed_comparison_code (const_rtx comparison, const_rtx insn)
442 {
443 if (!COMPARISON_P (comparison))
444 return UNKNOWN;
445 return reversed_comparison_code_parts (GET_CODE (comparison),
446 XEXP (comparison, 0),
447 XEXP (comparison, 1), insn);
448 }
449
450 /* Return comparison with reversed code of EXP.
451 Return NULL_RTX in case we fail to do the reversal. */
452 rtx
453 reversed_comparison (const_rtx exp, enum machine_mode mode)
454 {
455 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
456 if (reversed_code == UNKNOWN)
457 return NULL_RTX;
458 else
459 return simplify_gen_relational (reversed_code, mode, VOIDmode,
460 XEXP (exp, 0), XEXP (exp, 1));
461 }
462
463 \f
464 /* Given an rtx-code for a comparison, return the code for the negated
465 comparison. If no such code exists, return UNKNOWN.
466
467 WATCH OUT! reverse_condition is not safe to use on a jump that might
468 be acting on the results of an IEEE floating point comparison, because
469 of the special treatment of non-signaling nans in comparisons.
470 Use reversed_comparison_code instead. */
471
472 enum rtx_code
473 reverse_condition (enum rtx_code code)
474 {
475 switch (code)
476 {
477 case EQ:
478 return NE;
479 case NE:
480 return EQ;
481 case GT:
482 return LE;
483 case GE:
484 return LT;
485 case LT:
486 return GE;
487 case LE:
488 return GT;
489 case GTU:
490 return LEU;
491 case GEU:
492 return LTU;
493 case LTU:
494 return GEU;
495 case LEU:
496 return GTU;
497 case UNORDERED:
498 return ORDERED;
499 case ORDERED:
500 return UNORDERED;
501
502 case UNLT:
503 case UNLE:
504 case UNGT:
505 case UNGE:
506 case UNEQ:
507 case LTGT:
508 return UNKNOWN;
509
510 default:
511 gcc_unreachable ();
512 }
513 }
514
515 /* Similar, but we're allowed to generate unordered comparisons, which
516 makes it safe for IEEE floating-point. Of course, we have to recognize
517 that the target will support them too... */
518
519 enum rtx_code
520 reverse_condition_maybe_unordered (enum rtx_code code)
521 {
522 switch (code)
523 {
524 case EQ:
525 return NE;
526 case NE:
527 return EQ;
528 case GT:
529 return UNLE;
530 case GE:
531 return UNLT;
532 case LT:
533 return UNGE;
534 case LE:
535 return UNGT;
536 case LTGT:
537 return UNEQ;
538 case UNORDERED:
539 return ORDERED;
540 case ORDERED:
541 return UNORDERED;
542 case UNLT:
543 return GE;
544 case UNLE:
545 return GT;
546 case UNGT:
547 return LE;
548 case UNGE:
549 return LT;
550 case UNEQ:
551 return LTGT;
552
553 default:
554 gcc_unreachable ();
555 }
556 }
557
558 /* Similar, but return the code when two operands of a comparison are swapped.
559 This IS safe for IEEE floating-point. */
560
561 enum rtx_code
562 swap_condition (enum rtx_code code)
563 {
564 switch (code)
565 {
566 case EQ:
567 case NE:
568 case UNORDERED:
569 case ORDERED:
570 case UNEQ:
571 case LTGT:
572 return code;
573
574 case GT:
575 return LT;
576 case GE:
577 return LE;
578 case LT:
579 return GT;
580 case LE:
581 return GE;
582 case GTU:
583 return LTU;
584 case GEU:
585 return LEU;
586 case LTU:
587 return GTU;
588 case LEU:
589 return GEU;
590 case UNLT:
591 return UNGT;
592 case UNLE:
593 return UNGE;
594 case UNGT:
595 return UNLT;
596 case UNGE:
597 return UNLE;
598
599 default:
600 gcc_unreachable ();
601 }
602 }
603
604 /* Given a comparison CODE, return the corresponding unsigned comparison.
605 If CODE is an equality comparison or already an unsigned comparison,
606 CODE is returned. */
607
608 enum rtx_code
609 unsigned_condition (enum rtx_code code)
610 {
611 switch (code)
612 {
613 case EQ:
614 case NE:
615 case GTU:
616 case GEU:
617 case LTU:
618 case LEU:
619 return code;
620
621 case GT:
622 return GTU;
623 case GE:
624 return GEU;
625 case LT:
626 return LTU;
627 case LE:
628 return LEU;
629
630 default:
631 gcc_unreachable ();
632 }
633 }
634
635 /* Similarly, return the signed version of a comparison. */
636
637 enum rtx_code
638 signed_condition (enum rtx_code code)
639 {
640 switch (code)
641 {
642 case EQ:
643 case NE:
644 case GT:
645 case GE:
646 case LT:
647 case LE:
648 return code;
649
650 case GTU:
651 return GT;
652 case GEU:
653 return GE;
654 case LTU:
655 return LT;
656 case LEU:
657 return LE;
658
659 default:
660 gcc_unreachable ();
661 }
662 }
663 \f
664 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
665 truth of CODE1 implies the truth of CODE2. */
666
667 int
668 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
669 {
670 /* UNKNOWN comparison codes can happen as a result of trying to revert
671 comparison codes.
672 They can't match anything, so we have to reject them here. */
673 if (code1 == UNKNOWN || code2 == UNKNOWN)
674 return 0;
675
676 if (code1 == code2)
677 return 1;
678
679 switch (code1)
680 {
681 case UNEQ:
682 if (code2 == UNLE || code2 == UNGE)
683 return 1;
684 break;
685
686 case EQ:
687 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
688 || code2 == ORDERED)
689 return 1;
690 break;
691
692 case UNLT:
693 if (code2 == UNLE || code2 == NE)
694 return 1;
695 break;
696
697 case LT:
698 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
699 return 1;
700 break;
701
702 case UNGT:
703 if (code2 == UNGE || code2 == NE)
704 return 1;
705 break;
706
707 case GT:
708 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
709 return 1;
710 break;
711
712 case GE:
713 case LE:
714 if (code2 == ORDERED)
715 return 1;
716 break;
717
718 case LTGT:
719 if (code2 == NE || code2 == ORDERED)
720 return 1;
721 break;
722
723 case LTU:
724 if (code2 == LEU || code2 == NE)
725 return 1;
726 break;
727
728 case GTU:
729 if (code2 == GEU || code2 == NE)
730 return 1;
731 break;
732
733 case UNORDERED:
734 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
735 || code2 == UNGE || code2 == UNGT)
736 return 1;
737 break;
738
739 default:
740 break;
741 }
742
743 return 0;
744 }
745 \f
746 /* Return 1 if INSN is an unconditional jump and nothing else. */
747
748 int
749 simplejump_p (const_rtx insn)
750 {
751 return (JUMP_P (insn)
752 && GET_CODE (PATTERN (insn)) == SET
753 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
754 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
755 }
756
757 /* Return nonzero if INSN is a (possibly) conditional jump
758 and nothing more.
759
760 Use of this function is deprecated, since we need to support combined
761 branch and compare insns. Use any_condjump_p instead whenever possible. */
762
763 int
764 condjump_p (const_rtx insn)
765 {
766 const_rtx x = PATTERN (insn);
767
768 if (GET_CODE (x) != SET
769 || GET_CODE (SET_DEST (x)) != PC)
770 return 0;
771
772 x = SET_SRC (x);
773 if (GET_CODE (x) == LABEL_REF)
774 return 1;
775 else
776 return (GET_CODE (x) == IF_THEN_ELSE
777 && ((GET_CODE (XEXP (x, 2)) == PC
778 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
779 || ANY_RETURN_P (XEXP (x, 1))))
780 || (GET_CODE (XEXP (x, 1)) == PC
781 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
782 || ANY_RETURN_P (XEXP (x, 2))))));
783 }
784
785 /* Return nonzero if INSN is a (possibly) conditional jump inside a
786 PARALLEL.
787
788 Use this function is deprecated, since we need to support combined
789 branch and compare insns. Use any_condjump_p instead whenever possible. */
790
791 int
792 condjump_in_parallel_p (const_rtx insn)
793 {
794 const_rtx x = PATTERN (insn);
795
796 if (GET_CODE (x) != PARALLEL)
797 return 0;
798 else
799 x = XVECEXP (x, 0, 0);
800
801 if (GET_CODE (x) != SET)
802 return 0;
803 if (GET_CODE (SET_DEST (x)) != PC)
804 return 0;
805 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
806 return 1;
807 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
808 return 0;
809 if (XEXP (SET_SRC (x), 2) == pc_rtx
810 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
811 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
812 return 1;
813 if (XEXP (SET_SRC (x), 1) == pc_rtx
814 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
815 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
816 return 1;
817 return 0;
818 }
819
820 /* Return set of PC, otherwise NULL. */
821
822 rtx
823 pc_set (const_rtx insn)
824 {
825 rtx pat;
826 if (!JUMP_P (insn))
827 return NULL_RTX;
828 pat = PATTERN (insn);
829
830 /* The set is allowed to appear either as the insn pattern or
831 the first set in a PARALLEL. */
832 if (GET_CODE (pat) == PARALLEL)
833 pat = XVECEXP (pat, 0, 0);
834 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
835 return pat;
836
837 return NULL_RTX;
838 }
839
840 /* Return true when insn is an unconditional direct jump,
841 possibly bundled inside a PARALLEL. */
842
843 int
844 any_uncondjump_p (const_rtx insn)
845 {
846 const_rtx x = pc_set (insn);
847 if (!x)
848 return 0;
849 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
850 return 0;
851 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
852 return 0;
853 return 1;
854 }
855
856 /* Return true when insn is a conditional jump. This function works for
857 instructions containing PC sets in PARALLELs. The instruction may have
858 various other effects so before removing the jump you must verify
859 onlyjump_p.
860
861 Note that unlike condjump_p it returns false for unconditional jumps. */
862
863 int
864 any_condjump_p (const_rtx insn)
865 {
866 const_rtx x = pc_set (insn);
867 enum rtx_code a, b;
868
869 if (!x)
870 return 0;
871 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
872 return 0;
873
874 a = GET_CODE (XEXP (SET_SRC (x), 1));
875 b = GET_CODE (XEXP (SET_SRC (x), 2));
876
877 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
878 || (a == PC
879 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
880 }
881
882 /* Return the label of a conditional jump. */
883
884 rtx
885 condjump_label (const_rtx insn)
886 {
887 rtx x = pc_set (insn);
888
889 if (!x)
890 return NULL_RTX;
891 x = SET_SRC (x);
892 if (GET_CODE (x) == LABEL_REF)
893 return x;
894 if (GET_CODE (x) != IF_THEN_ELSE)
895 return NULL_RTX;
896 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
897 return XEXP (x, 1);
898 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
899 return XEXP (x, 2);
900 return NULL_RTX;
901 }
902
903 /* Return true if INSN is a (possibly conditional) return insn. */
904
905 static int
906 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
907 {
908 rtx x = *loc;
909
910 if (x == NULL)
911 return false;
912
913 switch (GET_CODE (x))
914 {
915 case RETURN:
916 case SIMPLE_RETURN:
917 case EH_RETURN:
918 return true;
919
920 case SET:
921 return SET_IS_RETURN_P (x);
922
923 default:
924 return false;
925 }
926 }
927
928 /* Return TRUE if INSN is a return jump. */
929
930 int
931 returnjump_p (rtx insn)
932 {
933 if (!JUMP_P (insn))
934 return 0;
935 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
936 }
937
938 /* Return true if INSN is a (possibly conditional) return insn. */
939
940 static int
941 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
942 {
943 return *loc && GET_CODE (*loc) == EH_RETURN;
944 }
945
946 int
947 eh_returnjump_p (rtx insn)
948 {
949 if (!JUMP_P (insn))
950 return 0;
951 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
952 }
953
954 /* Return true if INSN is a jump that only transfers control and
955 nothing more. */
956
957 int
958 onlyjump_p (const_rtx insn)
959 {
960 rtx set;
961
962 if (!JUMP_P (insn))
963 return 0;
964
965 set = single_set (insn);
966 if (set == NULL)
967 return 0;
968 if (GET_CODE (SET_DEST (set)) != PC)
969 return 0;
970 if (side_effects_p (SET_SRC (set)))
971 return 0;
972
973 return 1;
974 }
975
976 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
977 NULL or a return. */
978 bool
979 jump_to_label_p (rtx insn)
980 {
981 return (JUMP_P (insn)
982 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
983 }
984
985 #ifdef HAVE_cc0
986
987 /* Return nonzero if X is an RTX that only sets the condition codes
988 and has no side effects. */
989
990 int
991 only_sets_cc0_p (const_rtx x)
992 {
993 if (! x)
994 return 0;
995
996 if (INSN_P (x))
997 x = PATTERN (x);
998
999 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1000 }
1001
1002 /* Return 1 if X is an RTX that does nothing but set the condition codes
1003 and CLOBBER or USE registers.
1004 Return -1 if X does explicitly set the condition codes,
1005 but also does other things. */
1006
1007 int
1008 sets_cc0_p (const_rtx x)
1009 {
1010 if (! x)
1011 return 0;
1012
1013 if (INSN_P (x))
1014 x = PATTERN (x);
1015
1016 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1017 return 1;
1018 if (GET_CODE (x) == PARALLEL)
1019 {
1020 int i;
1021 int sets_cc0 = 0;
1022 int other_things = 0;
1023 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1024 {
1025 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1026 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1027 sets_cc0 = 1;
1028 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1029 other_things = 1;
1030 }
1031 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1032 }
1033 return 0;
1034 }
1035 #endif
1036 \f
1037 /* Find all CODE_LABELs referred to in X, and increment their use
1038 counts. If INSN is a JUMP_INSN and there is at least one
1039 CODE_LABEL referenced in INSN as a jump target, then store the last
1040 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1041 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1042 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1043 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1044 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1045 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1046
1047 Note that two labels separated by a loop-beginning note
1048 must be kept distinct if we have not yet done loop-optimization,
1049 because the gap between them is where loop-optimize
1050 will want to move invariant code to. CROSS_JUMP tells us
1051 that loop-optimization is done with. */
1052
1053 void
1054 mark_jump_label (rtx x, rtx insn, int in_mem)
1055 {
1056 rtx asmop = extract_asm_operands (x);
1057 if (asmop)
1058 mark_jump_label_asm (asmop, insn);
1059 else
1060 mark_jump_label_1 (x, insn, in_mem != 0,
1061 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1062 }
1063
1064 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1065 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1066 jump-target; when the JUMP_LABEL field of INSN should be set or a
1067 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1068 note. */
1069
1070 static void
1071 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1072 {
1073 RTX_CODE code = GET_CODE (x);
1074 int i;
1075 const char *fmt;
1076
1077 switch (code)
1078 {
1079 case PC:
1080 case CC0:
1081 case REG:
1082 case CLOBBER:
1083 case CALL:
1084 return;
1085
1086 case RETURN:
1087 case SIMPLE_RETURN:
1088 if (is_target)
1089 {
1090 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1091 JUMP_LABEL (insn) = x;
1092 }
1093 return;
1094
1095 case MEM:
1096 in_mem = true;
1097 break;
1098
1099 case SEQUENCE:
1100 for (i = 0; i < XVECLEN (x, 0); i++)
1101 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1102 XVECEXP (x, 0, i), 0);
1103 return;
1104
1105 case SYMBOL_REF:
1106 if (!in_mem)
1107 return;
1108
1109 /* If this is a constant-pool reference, see if it is a label. */
1110 if (CONSTANT_POOL_ADDRESS_P (x))
1111 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1112 break;
1113
1114 /* Handle operands in the condition of an if-then-else as for a
1115 non-jump insn. */
1116 case IF_THEN_ELSE:
1117 if (!is_target)
1118 break;
1119 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1120 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1121 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1122 return;
1123
1124 case LABEL_REF:
1125 {
1126 rtx label = XEXP (x, 0);
1127
1128 /* Ignore remaining references to unreachable labels that
1129 have been deleted. */
1130 if (NOTE_P (label)
1131 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1132 break;
1133
1134 gcc_assert (LABEL_P (label));
1135
1136 /* Ignore references to labels of containing functions. */
1137 if (LABEL_REF_NONLOCAL_P (x))
1138 break;
1139
1140 XEXP (x, 0) = label;
1141 if (! insn || ! INSN_DELETED_P (insn))
1142 ++LABEL_NUSES (label);
1143
1144 if (insn)
1145 {
1146 if (is_target
1147 /* Do not change a previous setting of JUMP_LABEL. If the
1148 JUMP_LABEL slot is occupied by a different label,
1149 create a note for this label. */
1150 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1151 JUMP_LABEL (insn) = label;
1152 else
1153 {
1154 enum reg_note kind
1155 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1156
1157 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1158 for LABEL unless there already is one. All uses of
1159 a label, except for the primary target of a jump,
1160 must have such a note. */
1161 if (! find_reg_note (insn, kind, label))
1162 add_reg_note (insn, kind, label);
1163 }
1164 }
1165 return;
1166 }
1167
1168 /* Do walk the labels in a vector, but not the first operand of an
1169 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1170 case ADDR_VEC:
1171 case ADDR_DIFF_VEC:
1172 if (! INSN_DELETED_P (insn))
1173 {
1174 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1175
1176 for (i = 0; i < XVECLEN (x, eltnum); i++)
1177 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1178 is_target);
1179 }
1180 return;
1181
1182 default:
1183 break;
1184 }
1185
1186 fmt = GET_RTX_FORMAT (code);
1187
1188 /* The primary target of a tablejump is the label of the ADDR_VEC,
1189 which is canonically mentioned *last* in the insn. To get it
1190 marked as JUMP_LABEL, we iterate over items in reverse order. */
1191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1192 {
1193 if (fmt[i] == 'e')
1194 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1195 else if (fmt[i] == 'E')
1196 {
1197 int j;
1198
1199 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1200 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1201 is_target);
1202 }
1203 }
1204 }
1205
1206 /* Worker function for mark_jump_label. Handle asm insns specially.
1207 In particular, output operands need not be considered so we can
1208 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1209 need to be considered targets. */
1210
1211 static void
1212 mark_jump_label_asm (rtx asmop, rtx insn)
1213 {
1214 int i;
1215
1216 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1217 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1218
1219 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1220 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1221 }
1222 \f
1223 /* Delete insn INSN from the chain of insns and update label ref counts
1224 and delete insns now unreachable.
1225
1226 Returns the first insn after INSN that was not deleted.
1227
1228 Usage of this instruction is deprecated. Use delete_insn instead and
1229 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1230
1231 rtx
1232 delete_related_insns (rtx insn)
1233 {
1234 int was_code_label = (LABEL_P (insn));
1235 rtx note;
1236 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1237
1238 while (next && INSN_DELETED_P (next))
1239 next = NEXT_INSN (next);
1240
1241 /* This insn is already deleted => return first following nondeleted. */
1242 if (INSN_DELETED_P (insn))
1243 return next;
1244
1245 delete_insn (insn);
1246
1247 /* If instruction is followed by a barrier,
1248 delete the barrier too. */
1249
1250 if (next != 0 && BARRIER_P (next))
1251 delete_insn (next);
1252
1253 /* If this is a call, then we have to remove the var tracking note
1254 for the call arguments. */
1255
1256 if (CALL_P (insn)
1257 || (NONJUMP_INSN_P (insn)
1258 && GET_CODE (PATTERN (insn)) == SEQUENCE
1259 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1260 {
1261 rtx p;
1262
1263 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1264 p && NOTE_P (p);
1265 p = NEXT_INSN (p))
1266 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1267 {
1268 remove_insn (p);
1269 break;
1270 }
1271 }
1272
1273 /* If deleting a jump, decrement the count of the label,
1274 and delete the label if it is now unused. */
1275
1276 if (jump_to_label_p (insn))
1277 {
1278 rtx lab = JUMP_LABEL (insn), lab_next;
1279
1280 if (LABEL_NUSES (lab) == 0)
1281 /* This can delete NEXT or PREV,
1282 either directly if NEXT is JUMP_LABEL (INSN),
1283 or indirectly through more levels of jumps. */
1284 delete_related_insns (lab);
1285 else if (tablejump_p (insn, NULL, &lab_next))
1286 {
1287 /* If we're deleting the tablejump, delete the dispatch table.
1288 We may not be able to kill the label immediately preceding
1289 just yet, as it might be referenced in code leading up to
1290 the tablejump. */
1291 delete_related_insns (lab_next);
1292 }
1293 }
1294
1295 /* Likewise if we're deleting a dispatch table. */
1296
1297 if (JUMP_TABLE_DATA_P (insn))
1298 {
1299 rtx pat = PATTERN (insn);
1300 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1301 int len = XVECLEN (pat, diff_vec_p);
1302
1303 for (i = 0; i < len; i++)
1304 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1305 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1306 while (next && INSN_DELETED_P (next))
1307 next = NEXT_INSN (next);
1308 return next;
1309 }
1310
1311 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1312 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1313 if (INSN_P (insn))
1314 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1315 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1316 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1317 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1318 && LABEL_P (XEXP (note, 0)))
1319 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1320 delete_related_insns (XEXP (note, 0));
1321
1322 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1323 prev = PREV_INSN (prev);
1324
1325 /* If INSN was a label and a dispatch table follows it,
1326 delete the dispatch table. The tablejump must have gone already.
1327 It isn't useful to fall through into a table. */
1328
1329 if (was_code_label
1330 && NEXT_INSN (insn) != 0
1331 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1332 next = delete_related_insns (NEXT_INSN (insn));
1333
1334 /* If INSN was a label, delete insns following it if now unreachable. */
1335
1336 if (was_code_label && prev && BARRIER_P (prev))
1337 {
1338 enum rtx_code code;
1339 while (next)
1340 {
1341 code = GET_CODE (next);
1342 if (code == NOTE)
1343 next = NEXT_INSN (next);
1344 /* Keep going past other deleted labels to delete what follows. */
1345 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1346 next = NEXT_INSN (next);
1347 else if (code == BARRIER || INSN_P (next))
1348 /* Note: if this deletes a jump, it can cause more
1349 deletion of unreachable code, after a different label.
1350 As long as the value from this recursive call is correct,
1351 this invocation functions correctly. */
1352 next = delete_related_insns (next);
1353 else
1354 break;
1355 }
1356 }
1357
1358 /* I feel a little doubtful about this loop,
1359 but I see no clean and sure alternative way
1360 to find the first insn after INSN that is not now deleted.
1361 I hope this works. */
1362 while (next && INSN_DELETED_P (next))
1363 next = NEXT_INSN (next);
1364 return next;
1365 }
1366 \f
1367 /* Delete a range of insns from FROM to TO, inclusive.
1368 This is for the sake of peephole optimization, so assume
1369 that whatever these insns do will still be done by a new
1370 peephole insn that will replace them. */
1371
1372 void
1373 delete_for_peephole (rtx from, rtx to)
1374 {
1375 rtx insn = from;
1376
1377 while (1)
1378 {
1379 rtx next = NEXT_INSN (insn);
1380 rtx prev = PREV_INSN (insn);
1381
1382 if (!NOTE_P (insn))
1383 {
1384 INSN_DELETED_P (insn) = 1;
1385
1386 /* Patch this insn out of the chain. */
1387 /* We don't do this all at once, because we
1388 must preserve all NOTEs. */
1389 if (prev)
1390 NEXT_INSN (prev) = next;
1391
1392 if (next)
1393 PREV_INSN (next) = prev;
1394 }
1395
1396 if (insn == to)
1397 break;
1398 insn = next;
1399 }
1400
1401 /* Note that if TO is an unconditional jump
1402 we *do not* delete the BARRIER that follows,
1403 since the peephole that replaces this sequence
1404 is also an unconditional jump in that case. */
1405 }
1406 \f
1407 /* A helper function for redirect_exp_1; examines its input X and returns
1408 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1409 static rtx
1410 redirect_target (rtx x)
1411 {
1412 if (x == NULL_RTX)
1413 return ret_rtx;
1414 if (!ANY_RETURN_P (x))
1415 return gen_rtx_LABEL_REF (Pmode, x);
1416 return x;
1417 }
1418
1419 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1420 NLABEL as a return. Accrue modifications into the change group. */
1421
1422 static void
1423 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1424 {
1425 rtx x = *loc;
1426 RTX_CODE code = GET_CODE (x);
1427 int i;
1428 const char *fmt;
1429
1430 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1431 || x == olabel)
1432 {
1433 x = redirect_target (nlabel);
1434 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1435 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1436 validate_change (insn, loc, x, 1);
1437 return;
1438 }
1439
1440 if (code == SET && SET_DEST (x) == pc_rtx
1441 && ANY_RETURN_P (nlabel)
1442 && GET_CODE (SET_SRC (x)) == LABEL_REF
1443 && XEXP (SET_SRC (x), 0) == olabel)
1444 {
1445 validate_change (insn, loc, nlabel, 1);
1446 return;
1447 }
1448
1449 if (code == IF_THEN_ELSE)
1450 {
1451 /* Skip the condition of an IF_THEN_ELSE. We only want to
1452 change jump destinations, not eventual label comparisons. */
1453 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1454 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1455 return;
1456 }
1457
1458 fmt = GET_RTX_FORMAT (code);
1459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1460 {
1461 if (fmt[i] == 'e')
1462 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1463 else if (fmt[i] == 'E')
1464 {
1465 int j;
1466 for (j = 0; j < XVECLEN (x, i); j++)
1467 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1468 }
1469 }
1470 }
1471
1472 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1473 the modifications into the change group. Return false if we did
1474 not see how to do that. */
1475
1476 int
1477 redirect_jump_1 (rtx jump, rtx nlabel)
1478 {
1479 int ochanges = num_validated_changes ();
1480 rtx *loc, asmop;
1481
1482 gcc_assert (nlabel != NULL_RTX);
1483 asmop = extract_asm_operands (PATTERN (jump));
1484 if (asmop)
1485 {
1486 if (nlabel == NULL)
1487 return 0;
1488 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1489 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1490 }
1491 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1492 loc = &XVECEXP (PATTERN (jump), 0, 0);
1493 else
1494 loc = &PATTERN (jump);
1495
1496 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1497 return num_validated_changes () > ochanges;
1498 }
1499
1500 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1501 jump target label is unused as a result, it and the code following
1502 it may be deleted.
1503
1504 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1505 in that case we are to turn the jump into a (possibly conditional)
1506 return insn.
1507
1508 The return value will be 1 if the change was made, 0 if it wasn't
1509 (this can only occur when trying to produce return insns). */
1510
1511 int
1512 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1513 {
1514 rtx olabel = JUMP_LABEL (jump);
1515
1516 if (!nlabel)
1517 {
1518 /* If there is no label, we are asked to redirect to the EXIT block.
1519 When before the epilogue is emitted, return/simple_return cannot be
1520 created so we return 0 immediately. After the epilogue is emitted,
1521 we always expect a label, either a non-null label, or a
1522 return/simple_return RTX. */
1523
1524 if (!epilogue_completed)
1525 return 0;
1526 gcc_unreachable ();
1527 }
1528
1529 if (nlabel == olabel)
1530 return 1;
1531
1532 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1533 return 0;
1534
1535 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1536 return 1;
1537 }
1538
1539 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1540 NLABEL in JUMP.
1541 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1542 count has dropped to zero. */
1543 void
1544 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1545 int invert)
1546 {
1547 rtx note;
1548
1549 gcc_assert (JUMP_LABEL (jump) == olabel);
1550
1551 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1552 moving FUNCTION_END note. Just sanity check that no user still worry
1553 about this. */
1554 gcc_assert (delete_unused >= 0);
1555 JUMP_LABEL (jump) = nlabel;
1556 if (!ANY_RETURN_P (nlabel))
1557 ++LABEL_NUSES (nlabel);
1558
1559 /* Update labels in any REG_EQUAL note. */
1560 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1561 {
1562 if (ANY_RETURN_P (nlabel)
1563 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1564 remove_note (jump, note);
1565 else
1566 {
1567 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1568 confirm_change_group ();
1569 }
1570 }
1571
1572 if (!ANY_RETURN_P (olabel)
1573 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1574 /* Undefined labels will remain outside the insn stream. */
1575 && INSN_UID (olabel))
1576 delete_related_insns (olabel);
1577 if (invert)
1578 invert_br_probabilities (jump);
1579 }
1580
1581 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1582 modifications into the change group. Return nonzero for success. */
1583 static int
1584 invert_exp_1 (rtx x, rtx insn)
1585 {
1586 RTX_CODE code = GET_CODE (x);
1587
1588 if (code == IF_THEN_ELSE)
1589 {
1590 rtx comp = XEXP (x, 0);
1591 rtx tem;
1592 enum rtx_code reversed_code;
1593
1594 /* We can do this in two ways: The preferable way, which can only
1595 be done if this is not an integer comparison, is to reverse
1596 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1597 of the IF_THEN_ELSE. If we can't do either, fail. */
1598
1599 reversed_code = reversed_comparison_code (comp, insn);
1600
1601 if (reversed_code != UNKNOWN)
1602 {
1603 validate_change (insn, &XEXP (x, 0),
1604 gen_rtx_fmt_ee (reversed_code,
1605 GET_MODE (comp), XEXP (comp, 0),
1606 XEXP (comp, 1)),
1607 1);
1608 return 1;
1609 }
1610
1611 tem = XEXP (x, 1);
1612 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1613 validate_change (insn, &XEXP (x, 2), tem, 1);
1614 return 1;
1615 }
1616 else
1617 return 0;
1618 }
1619
1620 /* Invert the condition of the jump JUMP, and make it jump to label
1621 NLABEL instead of where it jumps now. Accrue changes into the
1622 change group. Return false if we didn't see how to perform the
1623 inversion and redirection. */
1624
1625 int
1626 invert_jump_1 (rtx jump, rtx nlabel)
1627 {
1628 rtx x = pc_set (jump);
1629 int ochanges;
1630 int ok;
1631
1632 ochanges = num_validated_changes ();
1633 if (x == NULL)
1634 return 0;
1635 ok = invert_exp_1 (SET_SRC (x), jump);
1636 gcc_assert (ok);
1637
1638 if (num_validated_changes () == ochanges)
1639 return 0;
1640
1641 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1642 in Pmode, so checking this is not merely an optimization. */
1643 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1644 }
1645
1646 /* Invert the condition of the jump JUMP, and make it jump to label
1647 NLABEL instead of where it jumps now. Return true if successful. */
1648
1649 int
1650 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1651 {
1652 rtx olabel = JUMP_LABEL (jump);
1653
1654 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1655 {
1656 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1657 return 1;
1658 }
1659 cancel_changes (0);
1660 return 0;
1661 }
1662
1663 \f
1664 /* Like rtx_equal_p except that it considers two REGs as equal
1665 if they renumber to the same value and considers two commutative
1666 operations to be the same if the order of the operands has been
1667 reversed. */
1668
1669 int
1670 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1671 {
1672 int i;
1673 const enum rtx_code code = GET_CODE (x);
1674 const char *fmt;
1675
1676 if (x == y)
1677 return 1;
1678
1679 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1680 && (REG_P (y) || (GET_CODE (y) == SUBREG
1681 && REG_P (SUBREG_REG (y)))))
1682 {
1683 int reg_x = -1, reg_y = -1;
1684 int byte_x = 0, byte_y = 0;
1685 struct subreg_info info;
1686
1687 if (GET_MODE (x) != GET_MODE (y))
1688 return 0;
1689
1690 /* If we haven't done any renumbering, don't
1691 make any assumptions. */
1692 if (reg_renumber == 0)
1693 return rtx_equal_p (x, y);
1694
1695 if (code == SUBREG)
1696 {
1697 reg_x = REGNO (SUBREG_REG (x));
1698 byte_x = SUBREG_BYTE (x);
1699
1700 if (reg_renumber[reg_x] >= 0)
1701 {
1702 subreg_get_info (reg_renumber[reg_x],
1703 GET_MODE (SUBREG_REG (x)), byte_x,
1704 GET_MODE (x), &info);
1705 if (!info.representable_p)
1706 return 0;
1707 reg_x = info.offset;
1708 byte_x = 0;
1709 }
1710 }
1711 else
1712 {
1713 reg_x = REGNO (x);
1714 if (reg_renumber[reg_x] >= 0)
1715 reg_x = reg_renumber[reg_x];
1716 }
1717
1718 if (GET_CODE (y) == SUBREG)
1719 {
1720 reg_y = REGNO (SUBREG_REG (y));
1721 byte_y = SUBREG_BYTE (y);
1722
1723 if (reg_renumber[reg_y] >= 0)
1724 {
1725 subreg_get_info (reg_renumber[reg_y],
1726 GET_MODE (SUBREG_REG (y)), byte_y,
1727 GET_MODE (y), &info);
1728 if (!info.representable_p)
1729 return 0;
1730 reg_y = info.offset;
1731 byte_y = 0;
1732 }
1733 }
1734 else
1735 {
1736 reg_y = REGNO (y);
1737 if (reg_renumber[reg_y] >= 0)
1738 reg_y = reg_renumber[reg_y];
1739 }
1740
1741 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1742 }
1743
1744 /* Now we have disposed of all the cases
1745 in which different rtx codes can match. */
1746 if (code != GET_CODE (y))
1747 return 0;
1748
1749 switch (code)
1750 {
1751 case PC:
1752 case CC0:
1753 case ADDR_VEC:
1754 case ADDR_DIFF_VEC:
1755 CASE_CONST_UNIQUE:
1756 return 0;
1757
1758 case LABEL_REF:
1759 /* We can't assume nonlocal labels have their following insns yet. */
1760 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1761 return XEXP (x, 0) == XEXP (y, 0);
1762
1763 /* Two label-refs are equivalent if they point at labels
1764 in the same position in the instruction stream. */
1765 return (next_real_insn (XEXP (x, 0))
1766 == next_real_insn (XEXP (y, 0)));
1767
1768 case SYMBOL_REF:
1769 return XSTR (x, 0) == XSTR (y, 0);
1770
1771 case CODE_LABEL:
1772 /* If we didn't match EQ equality above, they aren't the same. */
1773 return 0;
1774
1775 default:
1776 break;
1777 }
1778
1779 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1780
1781 if (GET_MODE (x) != GET_MODE (y))
1782 return 0;
1783
1784 /* MEMs referring to different address space are not equivalent. */
1785 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1786 return 0;
1787
1788 /* For commutative operations, the RTX match if the operand match in any
1789 order. Also handle the simple binary and unary cases without a loop. */
1790 if (targetm.commutative_p (x, UNKNOWN))
1791 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1792 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1793 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1794 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1795 else if (NON_COMMUTATIVE_P (x))
1796 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1797 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1798 else if (UNARY_P (x))
1799 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1800
1801 /* Compare the elements. If any pair of corresponding elements
1802 fail to match, return 0 for the whole things. */
1803
1804 fmt = GET_RTX_FORMAT (code);
1805 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1806 {
1807 int j;
1808 switch (fmt[i])
1809 {
1810 case 'w':
1811 if (XWINT (x, i) != XWINT (y, i))
1812 return 0;
1813 break;
1814
1815 case 'i':
1816 if (XINT (x, i) != XINT (y, i))
1817 {
1818 if (((code == ASM_OPERANDS && i == 6)
1819 || (code == ASM_INPUT && i == 1)))
1820 break;
1821 return 0;
1822 }
1823 break;
1824
1825 case 't':
1826 if (XTREE (x, i) != XTREE (y, i))
1827 return 0;
1828 break;
1829
1830 case 's':
1831 if (strcmp (XSTR (x, i), XSTR (y, i)))
1832 return 0;
1833 break;
1834
1835 case 'e':
1836 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1837 return 0;
1838 break;
1839
1840 case 'u':
1841 if (XEXP (x, i) != XEXP (y, i))
1842 return 0;
1843 /* Fall through. */
1844 case '0':
1845 break;
1846
1847 case 'E':
1848 if (XVECLEN (x, i) != XVECLEN (y, i))
1849 return 0;
1850 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1851 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1852 return 0;
1853 break;
1854
1855 default:
1856 gcc_unreachable ();
1857 }
1858 }
1859 return 1;
1860 }
1861 \f
1862 /* If X is a hard register or equivalent to one or a subregister of one,
1863 return the hard register number. If X is a pseudo register that was not
1864 assigned a hard register, return the pseudo register number. Otherwise,
1865 return -1. Any rtx is valid for X. */
1866
1867 int
1868 true_regnum (const_rtx x)
1869 {
1870 if (REG_P (x))
1871 {
1872 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1873 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1874 return reg_renumber[REGNO (x)];
1875 return REGNO (x);
1876 }
1877 if (GET_CODE (x) == SUBREG)
1878 {
1879 int base = true_regnum (SUBREG_REG (x));
1880 if (base >= 0
1881 && base < FIRST_PSEUDO_REGISTER)
1882 {
1883 struct subreg_info info;
1884
1885 subreg_get_info (lra_in_progress
1886 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1887 GET_MODE (SUBREG_REG (x)),
1888 SUBREG_BYTE (x), GET_MODE (x), &info);
1889
1890 if (info.representable_p)
1891 return base + info.offset;
1892 }
1893 }
1894 return -1;
1895 }
1896
1897 /* Return regno of the register REG and handle subregs too. */
1898 unsigned int
1899 reg_or_subregno (const_rtx reg)
1900 {
1901 if (GET_CODE (reg) == SUBREG)
1902 reg = SUBREG_REG (reg);
1903 gcc_assert (REG_P (reg));
1904 return REGNO (reg);
1905 }