Give the anonymous namespace a null DECL_NAME.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically set of utility function to
24 operate with jumps.
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
33
34 The subroutines delete_insn, redirect_jump, and invert_jump are used
35 from other passes as well. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "real.h"
52 #include "except.h"
53 #include "diagnostic.h"
54 #include "toplev.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58
59 /* Optimize jump y; x: ... y: jumpif... x?
60 Don't know if it is worth bothering with. */
61 /* Optimize two cases of conditional jump to conditional jump?
62 This can never delete any instruction or make anything dead,
63 or even change what is live at any point.
64 So perhaps let combiner do it. */
65
66 static rtx next_nonnote_insn_in_loop (rtx);
67 static void init_label_info (rtx);
68 static void mark_all_labels (rtx);
69 static int duplicate_loop_exit_test (rtx);
70 static void delete_computation (rtx);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int redirect_exp (rtx, rtx, rtx);
73 static void invert_exp_1 (rtx);
74 static int invert_exp (rtx);
75 static int returnjump_p_1 (rtx *, void *);
76 static void delete_prior_computation (rtx, rtx);
77 \f
78 /* Alternate entry into the jump optimizer. This entry point only rebuilds
79 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
80 instructions. */
81 void
82 rebuild_jump_labels (rtx f)
83 {
84 rtx insn;
85
86 timevar_push (TV_REBUILD_JUMP);
87 init_label_info (f);
88 mark_all_labels (f);
89
90 /* Keep track of labels used from static data; we don't track them
91 closely enough to delete them here, so make sure their reference
92 count doesn't drop to zero. */
93
94 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
95 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
96 LABEL_NUSES (XEXP (insn, 0))++;
97 timevar_pop (TV_REBUILD_JUMP);
98 }
99 \f
100 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
101 non-fallthru insn. This is not generally true, as multiple barriers
102 may have crept in, or the BARRIER may be separated from the last
103 real insn by one or more NOTEs.
104
105 This simple pass moves barriers and removes duplicates so that the
106 old code is happy.
107 */
108 void
109 cleanup_barriers (void)
110 {
111 rtx insn, next, prev;
112 for (insn = get_insns (); insn; insn = next)
113 {
114 next = NEXT_INSN (insn);
115 if (GET_CODE (insn) == BARRIER)
116 {
117 prev = prev_nonnote_insn (insn);
118 if (GET_CODE (prev) == BARRIER)
119 delete_barrier (insn);
120 else if (prev != PREV_INSN (insn))
121 reorder_insns (insn, insn, prev);
122 }
123 }
124 }
125 \f
126 /* Return the next insn after INSN that is not a NOTE and is in the loop,
127 i.e. when there is no such INSN before NOTE_INSN_LOOP_END return NULL_RTX.
128 This routine does not look inside SEQUENCEs. */
129
130 static rtx
131 next_nonnote_insn_in_loop (rtx insn)
132 {
133 while (insn)
134 {
135 insn = NEXT_INSN (insn);
136 if (insn == 0 || GET_CODE (insn) != NOTE)
137 break;
138 if (GET_CODE (insn) == NOTE
139 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
140 return NULL_RTX;
141 }
142
143 return insn;
144 }
145
146 void
147 copy_loop_headers (rtx f)
148 {
149 rtx insn, next;
150 /* Now iterate optimizing jumps until nothing changes over one pass. */
151 for (insn = f; insn; insn = next)
152 {
153 rtx temp, temp1;
154
155 next = NEXT_INSN (insn);
156
157 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
158 jump. Try to optimize by duplicating the loop exit test if so.
159 This is only safe immediately after regscan, because it uses
160 the values of regno_first_uid and regno_last_uid. */
161 if (GET_CODE (insn) == NOTE
162 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
163 && (temp1 = next_nonnote_insn_in_loop (insn)) != 0
164 && any_uncondjump_p (temp1) && onlyjump_p (temp1))
165 {
166 temp = PREV_INSN (insn);
167 if (duplicate_loop_exit_test (insn))
168 {
169 next = NEXT_INSN (temp);
170 }
171 }
172 }
173 }
174
175 void
176 purge_line_number_notes (rtx f)
177 {
178 rtx last_note = 0;
179 rtx insn;
180 /* Delete extraneous line number notes.
181 Note that two consecutive notes for different lines are not really
182 extraneous. There should be some indication where that line belonged,
183 even if it became empty. */
184
185 for (insn = f; insn; insn = NEXT_INSN (insn))
186 if (GET_CODE (insn) == NOTE)
187 {
188 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
189 /* Any previous line note was for the prologue; gdb wants a new
190 note after the prologue even if it is for the same line. */
191 last_note = NULL_RTX;
192 else if (NOTE_LINE_NUMBER (insn) >= 0)
193 {
194 /* Delete this note if it is identical to previous note. */
195 if (last_note
196 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
197 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
198 {
199 delete_related_insns (insn);
200 continue;
201 }
202
203 last_note = insn;
204 }
205 }
206 }
207 \f
208 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
209 notes whose labels don't occur in the insn any more. Returns the
210 largest INSN_UID found. */
211 static void
212 init_label_info (rtx f)
213 {
214 rtx insn;
215
216 for (insn = f; insn; insn = NEXT_INSN (insn))
217 if (GET_CODE (insn) == CODE_LABEL)
218 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
219 else if (GET_CODE (insn) == JUMP_INSN)
220 JUMP_LABEL (insn) = 0;
221 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
222 {
223 rtx note, next;
224
225 for (note = REG_NOTES (insn); note; note = next)
226 {
227 next = XEXP (note, 1);
228 if (REG_NOTE_KIND (note) == REG_LABEL
229 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
230 remove_note (insn, note);
231 }
232 }
233 }
234
235 /* Mark the label each jump jumps to.
236 Combine consecutive labels, and count uses of labels. */
237
238 static void
239 mark_all_labels (rtx f)
240 {
241 rtx insn;
242
243 for (insn = f; insn; insn = NEXT_INSN (insn))
244 if (INSN_P (insn))
245 {
246 if (GET_CODE (insn) == CALL_INSN
247 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
248 {
249 mark_all_labels (XEXP (PATTERN (insn), 0));
250 mark_all_labels (XEXP (PATTERN (insn), 1));
251 mark_all_labels (XEXP (PATTERN (insn), 2));
252
253 /* Canonicalize the tail recursion label attached to the
254 CALL_PLACEHOLDER insn. */
255 if (XEXP (PATTERN (insn), 3))
256 {
257 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
258 XEXP (PATTERN (insn), 3));
259 mark_jump_label (label_ref, insn, 0);
260 XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
261 }
262
263 continue;
264 }
265
266 mark_jump_label (PATTERN (insn), insn, 0);
267 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
268 {
269 /* When we know the LABEL_REF contained in a REG used in
270 an indirect jump, we'll have a REG_LABEL note so that
271 flow can tell where it's going. */
272 if (JUMP_LABEL (insn) == 0)
273 {
274 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
275 if (label_note)
276 {
277 /* But a LABEL_REF around the REG_LABEL note, so
278 that we can canonicalize it. */
279 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
280 XEXP (label_note, 0));
281
282 mark_jump_label (label_ref, insn, 0);
283 XEXP (label_note, 0) = XEXP (label_ref, 0);
284 JUMP_LABEL (insn) = XEXP (label_note, 0);
285 }
286 }
287 }
288 }
289 }
290
291 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
292 jump. Assume that this unconditional jump is to the exit test code. If
293 the code is sufficiently simple, make a copy of it before INSN,
294 followed by a jump to the exit of the loop. Then delete the unconditional
295 jump after INSN.
296
297 Return 1 if we made the change, else 0.
298
299 This is only safe immediately after a regscan pass because it uses the
300 values of regno_first_uid and regno_last_uid. */
301
302 static int
303 duplicate_loop_exit_test (rtx loop_start)
304 {
305 rtx insn, set, reg, p, link;
306 rtx copy = 0, first_copy = 0;
307 int num_insns = 0;
308 rtx exitcode
309 = NEXT_INSN (JUMP_LABEL (next_nonnote_insn_in_loop (loop_start)));
310 rtx lastexit;
311 int max_reg = max_reg_num ();
312 rtx *reg_map = 0;
313 rtx loop_pre_header_label;
314
315 /* Scan the exit code. We do not perform this optimization if any insn:
316
317 is a CALL_INSN
318 is a CODE_LABEL
319 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
320 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
321
322 We also do not do this if we find an insn with ASM_OPERANDS. While
323 this restriction should not be necessary, copying an insn with
324 ASM_OPERANDS can confuse asm_noperands in some cases.
325
326 Also, don't do this if the exit code is more than 20 insns. */
327
328 for (insn = exitcode;
329 insn
330 && ! (GET_CODE (insn) == NOTE
331 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
332 insn = NEXT_INSN (insn))
333 {
334 switch (GET_CODE (insn))
335 {
336 case CODE_LABEL:
337 case CALL_INSN:
338 return 0;
339 case NOTE:
340
341 if (optimize < 2
342 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
343 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
344 /* If we were to duplicate this code, we would not move
345 the BLOCK notes, and so debugging the moved code would
346 be difficult. Thus, we only move the code with -O2 or
347 higher. */
348 return 0;
349
350 break;
351 case JUMP_INSN:
352 case INSN:
353 if (++num_insns > 20
354 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
355 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
356 return 0;
357 break;
358 default:
359 break;
360 }
361 }
362
363 /* Unless INSN is zero, we can do the optimization. */
364 if (insn == 0)
365 return 0;
366
367 lastexit = insn;
368
369 /* See if any insn sets a register only used in the loop exit code and
370 not a user variable. If so, replace it with a new register. */
371 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
372 if (GET_CODE (insn) == INSN
373 && (set = single_set (insn)) != 0
374 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
375 || (GET_CODE (reg) == SUBREG
376 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
377 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
378 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
379 {
380 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
381 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
382 break;
383
384 if (p != lastexit)
385 {
386 /* We can do the replacement. Allocate reg_map if this is the
387 first replacement we found. */
388 if (reg_map == 0)
389 reg_map = xcalloc (max_reg, sizeof (rtx));
390
391 REG_LOOP_TEST_P (reg) = 1;
392
393 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
394 }
395 }
396 loop_pre_header_label = gen_label_rtx ();
397
398 /* Now copy each insn. */
399 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
400 {
401 switch (GET_CODE (insn))
402 {
403 case BARRIER:
404 copy = emit_barrier_before (loop_start);
405 break;
406 case NOTE:
407 /* Only copy line-number notes. */
408 if (NOTE_LINE_NUMBER (insn) >= 0)
409 {
410 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
411 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
412 }
413 break;
414
415 case INSN:
416 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
417 if (reg_map)
418 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
419
420 mark_jump_label (PATTERN (copy), copy, 0);
421 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
422
423 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
424 make them. */
425 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
426 if (REG_NOTE_KIND (link) != REG_LABEL)
427 {
428 if (GET_CODE (link) == EXPR_LIST)
429 REG_NOTES (copy)
430 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
431 XEXP (link, 0),
432 REG_NOTES (copy)));
433 else
434 REG_NOTES (copy)
435 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
436 XEXP (link, 0),
437 REG_NOTES (copy)));
438 }
439
440 if (reg_map && REG_NOTES (copy))
441 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
442 break;
443
444 case JUMP_INSN:
445 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
446 loop_start);
447 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
448 if (reg_map)
449 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
450 mark_jump_label (PATTERN (copy), copy, 0);
451 if (REG_NOTES (insn))
452 {
453 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
454 if (reg_map)
455 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
456 }
457
458 /* Predict conditional jump that do make loop looping as taken.
459 Other jumps are probably exit conditions, so predict
460 them as untaken. */
461 if (any_condjump_p (copy))
462 {
463 rtx label = JUMP_LABEL (copy);
464 if (label)
465 {
466 /* The jump_insn after loop_start should be followed
467 by barrier and loopback label. */
468 if (prev_nonnote_insn (label)
469 && (prev_nonnote_insn (prev_nonnote_insn (label))
470 == next_nonnote_insn (loop_start)))
471 {
472 predict_insn_def (copy, PRED_LOOP_HEADER, TAKEN);
473 /* To keep pre-header, we need to redirect all loop
474 entrances before the LOOP_BEG note. */
475 redirect_jump (copy, loop_pre_header_label, 0);
476 }
477 else
478 predict_insn_def (copy, PRED_LOOP_HEADER, NOT_TAKEN);
479 }
480 }
481 break;
482
483 default:
484 abort ();
485 }
486
487 /* Record the first insn we copied. We need it so that we can
488 scan the copied insns for new pseudo registers. */
489 if (! first_copy)
490 first_copy = copy;
491 }
492
493 /* Now clean up by emitting a jump to the end label and deleting the jump
494 at the start of the loop. */
495 if (! copy || GET_CODE (copy) != BARRIER)
496 {
497 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
498 loop_start);
499
500 /* Record the first insn we copied. We need it so that we can
501 scan the copied insns for new pseudo registers. This may not
502 be strictly necessary since we should have copied at least one
503 insn above. But I am going to be safe. */
504 if (! first_copy)
505 first_copy = copy;
506
507 mark_jump_label (PATTERN (copy), copy, 0);
508 emit_barrier_before (loop_start);
509 }
510
511 emit_label_before (loop_pre_header_label, loop_start);
512
513 /* Now scan from the first insn we copied to the last insn we copied
514 (copy) for new pseudo registers. Do this after the code to jump to
515 the end label since that might create a new pseudo too. */
516 reg_scan_update (first_copy, copy, max_reg);
517
518 /* Mark the exit code as the virtual top of the converted loop. */
519 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
520
521 delete_related_insns (next_nonnote_insn (loop_start));
522
523 /* Clean up. */
524 if (reg_map)
525 free (reg_map);
526
527 return 1;
528 }
529 \f
530 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
531 notes between START and END out before START. START and END may be such
532 notes. Returns the values of the new starting and ending insns, which
533 may be different if the original ones were such notes.
534 Return true if there were only such notes and no real instructions. */
535
536 bool
537 squeeze_notes (rtx* startp, rtx* endp)
538 {
539 rtx start = *startp;
540 rtx end = *endp;
541
542 rtx insn;
543 rtx next;
544 rtx last = NULL;
545 rtx past_end = NEXT_INSN (end);
546
547 for (insn = start; insn != past_end; insn = next)
548 {
549 next = NEXT_INSN (insn);
550 if (GET_CODE (insn) == NOTE
551 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
552 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
553 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
554 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
555 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
556 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
557 {
558 if (insn == start)
559 start = next;
560 else
561 {
562 rtx prev = PREV_INSN (insn);
563 PREV_INSN (insn) = PREV_INSN (start);
564 NEXT_INSN (insn) = start;
565 NEXT_INSN (PREV_INSN (insn)) = insn;
566 PREV_INSN (NEXT_INSN (insn)) = insn;
567 NEXT_INSN (prev) = next;
568 PREV_INSN (next) = prev;
569 }
570 }
571 else
572 last = insn;
573 }
574
575 /* There were no real instructions. */
576 if (start == past_end)
577 return true;
578
579 end = last;
580
581 *startp = start;
582 *endp = end;
583 return false;
584 }
585 \f
586 /* Return the label before INSN, or put a new label there. */
587
588 rtx
589 get_label_before (rtx insn)
590 {
591 rtx label;
592
593 /* Find an existing label at this point
594 or make a new one if there is none. */
595 label = prev_nonnote_insn (insn);
596
597 if (label == 0 || GET_CODE (label) != CODE_LABEL)
598 {
599 rtx prev = PREV_INSN (insn);
600
601 label = gen_label_rtx ();
602 emit_label_after (label, prev);
603 LABEL_NUSES (label) = 0;
604 }
605 return label;
606 }
607
608 /* Return the label after INSN, or put a new label there. */
609
610 rtx
611 get_label_after (rtx insn)
612 {
613 rtx label;
614
615 /* Find an existing label at this point
616 or make a new one if there is none. */
617 label = next_nonnote_insn (insn);
618
619 if (label == 0 || GET_CODE (label) != CODE_LABEL)
620 {
621 label = gen_label_rtx ();
622 emit_label_after (label, insn);
623 LABEL_NUSES (label) = 0;
624 }
625 return label;
626 }
627 \f
628 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
629 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
630 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
631 know whether it's source is floating point or integer comparison. Machine
632 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
633 to help this function avoid overhead in these cases. */
634 enum rtx_code
635 reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn)
636 {
637 enum machine_mode mode;
638
639 /* If this is not actually a comparison, we can't reverse it. */
640 if (GET_RTX_CLASS (code) != '<')
641 return UNKNOWN;
642
643 mode = GET_MODE (arg0);
644 if (mode == VOIDmode)
645 mode = GET_MODE (arg1);
646
647 /* First see if machine description supply us way to reverse the comparison.
648 Give it priority over everything else to allow machine description to do
649 tricks. */
650 #ifdef REVERSIBLE_CC_MODE
651 if (GET_MODE_CLASS (mode) == MODE_CC
652 && REVERSIBLE_CC_MODE (mode))
653 {
654 #ifdef REVERSE_CONDITION
655 return REVERSE_CONDITION (code, mode);
656 #endif
657 return reverse_condition (code);
658 }
659 #endif
660
661 /* Try a few special cases based on the comparison code. */
662 switch (code)
663 {
664 case GEU:
665 case GTU:
666 case LEU:
667 case LTU:
668 case NE:
669 case EQ:
670 /* It is always safe to reverse EQ and NE, even for the floating
671 point. Similarly the unsigned comparisons are never used for
672 floating point so we can reverse them in the default way. */
673 return reverse_condition (code);
674 case ORDERED:
675 case UNORDERED:
676 case LTGT:
677 case UNEQ:
678 /* In case we already see unordered comparison, we can be sure to
679 be dealing with floating point so we don't need any more tests. */
680 return reverse_condition_maybe_unordered (code);
681 case UNLT:
682 case UNLE:
683 case UNGT:
684 case UNGE:
685 /* We don't have safe way to reverse these yet. */
686 return UNKNOWN;
687 default:
688 break;
689 }
690
691 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
692 {
693 rtx prev;
694 /* Try to search for the comparison to determine the real mode.
695 This code is expensive, but with sane machine description it
696 will be never used, since REVERSIBLE_CC_MODE will return true
697 in all cases. */
698 if (! insn)
699 return UNKNOWN;
700
701 for (prev = prev_nonnote_insn (insn);
702 prev != 0 && GET_CODE (prev) != CODE_LABEL;
703 prev = prev_nonnote_insn (prev))
704 {
705 rtx set = set_of (arg0, prev);
706 if (set && GET_CODE (set) == SET
707 && rtx_equal_p (SET_DEST (set), arg0))
708 {
709 rtx src = SET_SRC (set);
710
711 if (GET_CODE (src) == COMPARE)
712 {
713 rtx comparison = src;
714 arg0 = XEXP (src, 0);
715 mode = GET_MODE (arg0);
716 if (mode == VOIDmode)
717 mode = GET_MODE (XEXP (comparison, 1));
718 break;
719 }
720 /* We can get past reg-reg moves. This may be useful for model
721 of i387 comparisons that first move flag registers around. */
722 if (REG_P (src))
723 {
724 arg0 = src;
725 continue;
726 }
727 }
728 /* If register is clobbered in some ununderstandable way,
729 give up. */
730 if (set)
731 return UNKNOWN;
732 }
733 }
734
735 /* Test for an integer condition, or a floating-point comparison
736 in which NaNs can be ignored. */
737 if (GET_CODE (arg0) == CONST_INT
738 || (GET_MODE (arg0) != VOIDmode
739 && GET_MODE_CLASS (mode) != MODE_CC
740 && !HONOR_NANS (mode)))
741 return reverse_condition (code);
742
743 return UNKNOWN;
744 }
745
746 /* A wrapper around the previous function to take COMPARISON as rtx
747 expression. This simplifies many callers. */
748 enum rtx_code
749 reversed_comparison_code (rtx comparison, rtx insn)
750 {
751 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
752 return UNKNOWN;
753 return reversed_comparison_code_parts (GET_CODE (comparison),
754 XEXP (comparison, 0),
755 XEXP (comparison, 1), insn);
756 }
757 \f
758 /* Given an rtx-code for a comparison, return the code for the negated
759 comparison. If no such code exists, return UNKNOWN.
760
761 WATCH OUT! reverse_condition is not safe to use on a jump that might
762 be acting on the results of an IEEE floating point comparison, because
763 of the special treatment of non-signaling nans in comparisons.
764 Use reversed_comparison_code instead. */
765
766 enum rtx_code
767 reverse_condition (enum rtx_code code)
768 {
769 switch (code)
770 {
771 case EQ:
772 return NE;
773 case NE:
774 return EQ;
775 case GT:
776 return LE;
777 case GE:
778 return LT;
779 case LT:
780 return GE;
781 case LE:
782 return GT;
783 case GTU:
784 return LEU;
785 case GEU:
786 return LTU;
787 case LTU:
788 return GEU;
789 case LEU:
790 return GTU;
791 case UNORDERED:
792 return ORDERED;
793 case ORDERED:
794 return UNORDERED;
795
796 case UNLT:
797 case UNLE:
798 case UNGT:
799 case UNGE:
800 case UNEQ:
801 case LTGT:
802 return UNKNOWN;
803
804 default:
805 abort ();
806 }
807 }
808
809 /* Similar, but we're allowed to generate unordered comparisons, which
810 makes it safe for IEEE floating-point. Of course, we have to recognize
811 that the target will support them too... */
812
813 enum rtx_code
814 reverse_condition_maybe_unordered (enum rtx_code code)
815 {
816 switch (code)
817 {
818 case EQ:
819 return NE;
820 case NE:
821 return EQ;
822 case GT:
823 return UNLE;
824 case GE:
825 return UNLT;
826 case LT:
827 return UNGE;
828 case LE:
829 return UNGT;
830 case LTGT:
831 return UNEQ;
832 case UNORDERED:
833 return ORDERED;
834 case ORDERED:
835 return UNORDERED;
836 case UNLT:
837 return GE;
838 case UNLE:
839 return GT;
840 case UNGT:
841 return LE;
842 case UNGE:
843 return LT;
844 case UNEQ:
845 return LTGT;
846
847 default:
848 abort ();
849 }
850 }
851
852 /* Similar, but return the code when two operands of a comparison are swapped.
853 This IS safe for IEEE floating-point. */
854
855 enum rtx_code
856 swap_condition (enum rtx_code code)
857 {
858 switch (code)
859 {
860 case EQ:
861 case NE:
862 case UNORDERED:
863 case ORDERED:
864 case UNEQ:
865 case LTGT:
866 return code;
867
868 case GT:
869 return LT;
870 case GE:
871 return LE;
872 case LT:
873 return GT;
874 case LE:
875 return GE;
876 case GTU:
877 return LTU;
878 case GEU:
879 return LEU;
880 case LTU:
881 return GTU;
882 case LEU:
883 return GEU;
884 case UNLT:
885 return UNGT;
886 case UNLE:
887 return UNGE;
888 case UNGT:
889 return UNLT;
890 case UNGE:
891 return UNLE;
892
893 default:
894 abort ();
895 }
896 }
897
898 /* Given a comparison CODE, return the corresponding unsigned comparison.
899 If CODE is an equality comparison or already an unsigned comparison,
900 CODE is returned. */
901
902 enum rtx_code
903 unsigned_condition (enum rtx_code code)
904 {
905 switch (code)
906 {
907 case EQ:
908 case NE:
909 case GTU:
910 case GEU:
911 case LTU:
912 case LEU:
913 return code;
914
915 case GT:
916 return GTU;
917 case GE:
918 return GEU;
919 case LT:
920 return LTU;
921 case LE:
922 return LEU;
923
924 default:
925 abort ();
926 }
927 }
928
929 /* Similarly, return the signed version of a comparison. */
930
931 enum rtx_code
932 signed_condition (enum rtx_code code)
933 {
934 switch (code)
935 {
936 case EQ:
937 case NE:
938 case GT:
939 case GE:
940 case LT:
941 case LE:
942 return code;
943
944 case GTU:
945 return GT;
946 case GEU:
947 return GE;
948 case LTU:
949 return LT;
950 case LEU:
951 return LE;
952
953 default:
954 abort ();
955 }
956 }
957 \f
958 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
959 truth of CODE1 implies the truth of CODE2. */
960
961 int
962 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
963 {
964 /* UNKNOWN comparison codes can happen as a result of trying to revert
965 comparison codes.
966 They can't match anything, so we have to reject them here. */
967 if (code1 == UNKNOWN || code2 == UNKNOWN)
968 return 0;
969
970 if (code1 == code2)
971 return 1;
972
973 switch (code1)
974 {
975 case UNEQ:
976 if (code2 == UNLE || code2 == UNGE)
977 return 1;
978 break;
979
980 case EQ:
981 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
982 || code2 == ORDERED)
983 return 1;
984 break;
985
986 case UNLT:
987 if (code2 == UNLE || code2 == NE)
988 return 1;
989 break;
990
991 case LT:
992 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
993 return 1;
994 break;
995
996 case UNGT:
997 if (code2 == UNGE || code2 == NE)
998 return 1;
999 break;
1000
1001 case GT:
1002 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
1003 return 1;
1004 break;
1005
1006 case GE:
1007 case LE:
1008 if (code2 == ORDERED)
1009 return 1;
1010 break;
1011
1012 case LTGT:
1013 if (code2 == NE || code2 == ORDERED)
1014 return 1;
1015 break;
1016
1017 case LTU:
1018 if (code2 == LEU || code2 == NE)
1019 return 1;
1020 break;
1021
1022 case GTU:
1023 if (code2 == GEU || code2 == NE)
1024 return 1;
1025 break;
1026
1027 case UNORDERED:
1028 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
1029 || code2 == UNGE || code2 == UNGT)
1030 return 1;
1031 break;
1032
1033 default:
1034 break;
1035 }
1036
1037 return 0;
1038 }
1039 \f
1040 /* Return 1 if INSN is an unconditional jump and nothing else. */
1041
1042 int
1043 simplejump_p (rtx insn)
1044 {
1045 return (GET_CODE (insn) == JUMP_INSN
1046 && GET_CODE (PATTERN (insn)) == SET
1047 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
1048 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
1049 }
1050
1051 /* Return nonzero if INSN is a (possibly) conditional jump
1052 and nothing more.
1053
1054 Use this function is deprecated, since we need to support combined
1055 branch and compare insns. Use any_condjump_p instead whenever possible. */
1056
1057 int
1058 condjump_p (rtx insn)
1059 {
1060 rtx x = PATTERN (insn);
1061
1062 if (GET_CODE (x) != SET
1063 || GET_CODE (SET_DEST (x)) != PC)
1064 return 0;
1065
1066 x = SET_SRC (x);
1067 if (GET_CODE (x) == LABEL_REF)
1068 return 1;
1069 else
1070 return (GET_CODE (x) == IF_THEN_ELSE
1071 && ((GET_CODE (XEXP (x, 2)) == PC
1072 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
1073 || GET_CODE (XEXP (x, 1)) == RETURN))
1074 || (GET_CODE (XEXP (x, 1)) == PC
1075 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
1076 || GET_CODE (XEXP (x, 2)) == RETURN))));
1077
1078 return 0;
1079 }
1080
1081 /* Return nonzero if INSN is a (possibly) conditional jump inside a
1082 PARALLEL.
1083
1084 Use this function is deprecated, since we need to support combined
1085 branch and compare insns. Use any_condjump_p instead whenever possible. */
1086
1087 int
1088 condjump_in_parallel_p (rtx insn)
1089 {
1090 rtx x = PATTERN (insn);
1091
1092 if (GET_CODE (x) != PARALLEL)
1093 return 0;
1094 else
1095 x = XVECEXP (x, 0, 0);
1096
1097 if (GET_CODE (x) != SET)
1098 return 0;
1099 if (GET_CODE (SET_DEST (x)) != PC)
1100 return 0;
1101 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
1102 return 1;
1103 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
1104 return 0;
1105 if (XEXP (SET_SRC (x), 2) == pc_rtx
1106 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
1107 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
1108 return 1;
1109 if (XEXP (SET_SRC (x), 1) == pc_rtx
1110 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
1111 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
1112 return 1;
1113 return 0;
1114 }
1115
1116 /* Return set of PC, otherwise NULL. */
1117
1118 rtx
1119 pc_set (rtx insn)
1120 {
1121 rtx pat;
1122 if (GET_CODE (insn) != JUMP_INSN)
1123 return NULL_RTX;
1124 pat = PATTERN (insn);
1125
1126 /* The set is allowed to appear either as the insn pattern or
1127 the first set in a PARALLEL. */
1128 if (GET_CODE (pat) == PARALLEL)
1129 pat = XVECEXP (pat, 0, 0);
1130 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
1131 return pat;
1132
1133 return NULL_RTX;
1134 }
1135
1136 /* Return true when insn is an unconditional direct jump,
1137 possibly bundled inside a PARALLEL. */
1138
1139 int
1140 any_uncondjump_p (rtx insn)
1141 {
1142 rtx x = pc_set (insn);
1143 if (!x)
1144 return 0;
1145 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
1146 return 0;
1147 return 1;
1148 }
1149
1150 /* Return true when insn is a conditional jump. This function works for
1151 instructions containing PC sets in PARALLELs. The instruction may have
1152 various other effects so before removing the jump you must verify
1153 onlyjump_p.
1154
1155 Note that unlike condjump_p it returns false for unconditional jumps. */
1156
1157 int
1158 any_condjump_p (rtx insn)
1159 {
1160 rtx x = pc_set (insn);
1161 enum rtx_code a, b;
1162
1163 if (!x)
1164 return 0;
1165 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
1166 return 0;
1167
1168 a = GET_CODE (XEXP (SET_SRC (x), 1));
1169 b = GET_CODE (XEXP (SET_SRC (x), 2));
1170
1171 return ((b == PC && (a == LABEL_REF || a == RETURN))
1172 || (a == PC && (b == LABEL_REF || b == RETURN)));
1173 }
1174
1175 /* Return the label of a conditional jump. */
1176
1177 rtx
1178 condjump_label (rtx insn)
1179 {
1180 rtx x = pc_set (insn);
1181
1182 if (!x)
1183 return NULL_RTX;
1184 x = SET_SRC (x);
1185 if (GET_CODE (x) == LABEL_REF)
1186 return x;
1187 if (GET_CODE (x) != IF_THEN_ELSE)
1188 return NULL_RTX;
1189 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
1190 return XEXP (x, 1);
1191 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
1192 return XEXP (x, 2);
1193 return NULL_RTX;
1194 }
1195
1196 /* Return true if INSN is a (possibly conditional) return insn. */
1197
1198 static int
1199 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1200 {
1201 rtx x = *loc;
1202
1203 return x && (GET_CODE (x) == RETURN
1204 || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
1205 }
1206
1207 int
1208 returnjump_p (rtx insn)
1209 {
1210 if (GET_CODE (insn) != JUMP_INSN)
1211 return 0;
1212 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
1213 }
1214
1215 /* Return true if INSN is a jump that only transfers control and
1216 nothing more. */
1217
1218 int
1219 onlyjump_p (rtx insn)
1220 {
1221 rtx set;
1222
1223 if (GET_CODE (insn) != JUMP_INSN)
1224 return 0;
1225
1226 set = single_set (insn);
1227 if (set == NULL)
1228 return 0;
1229 if (GET_CODE (SET_DEST (set)) != PC)
1230 return 0;
1231 if (side_effects_p (SET_SRC (set)))
1232 return 0;
1233
1234 return 1;
1235 }
1236
1237 #ifdef HAVE_cc0
1238
1239 /* Return nonzero if X is an RTX that only sets the condition codes
1240 and has no side effects. */
1241
1242 int
1243 only_sets_cc0_p (rtx x)
1244 {
1245 if (! x)
1246 return 0;
1247
1248 if (INSN_P (x))
1249 x = PATTERN (x);
1250
1251 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1252 }
1253
1254 /* Return 1 if X is an RTX that does nothing but set the condition codes
1255 and CLOBBER or USE registers.
1256 Return -1 if X does explicitly set the condition codes,
1257 but also does other things. */
1258
1259 int
1260 sets_cc0_p (rtx x)
1261 {
1262 if (! x)
1263 return 0;
1264
1265 if (INSN_P (x))
1266 x = PATTERN (x);
1267
1268 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1269 return 1;
1270 if (GET_CODE (x) == PARALLEL)
1271 {
1272 int i;
1273 int sets_cc0 = 0;
1274 int other_things = 0;
1275 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1276 {
1277 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1278 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1279 sets_cc0 = 1;
1280 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1281 other_things = 1;
1282 }
1283 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1284 }
1285 return 0;
1286 }
1287 #endif
1288 \f
1289 /* Follow any unconditional jump at LABEL;
1290 return the ultimate label reached by any such chain of jumps.
1291 If LABEL is not followed by a jump, return LABEL.
1292 If the chain loops or we can't find end, return LABEL,
1293 since that tells caller to avoid changing the insn.
1294
1295 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
1296 a USE or CLOBBER. */
1297
1298 rtx
1299 follow_jumps (rtx label)
1300 {
1301 rtx insn;
1302 rtx next;
1303 rtx value = label;
1304 int depth;
1305
1306 for (depth = 0;
1307 (depth < 10
1308 && (insn = next_active_insn (value)) != 0
1309 && GET_CODE (insn) == JUMP_INSN
1310 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
1311 && onlyjump_p (insn))
1312 || GET_CODE (PATTERN (insn)) == RETURN)
1313 && (next = NEXT_INSN (insn))
1314 && GET_CODE (next) == BARRIER);
1315 depth++)
1316 {
1317 /* Don't chain through the insn that jumps into a loop
1318 from outside the loop,
1319 since that would create multiple loop entry jumps
1320 and prevent loop optimization. */
1321 rtx tem;
1322 if (!reload_completed)
1323 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
1324 if (GET_CODE (tem) == NOTE
1325 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
1326 /* ??? Optional. Disables some optimizations, but makes
1327 gcov output more accurate with -O. */
1328 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
1329 return value;
1330
1331 /* If we have found a cycle, make the insn jump to itself. */
1332 if (JUMP_LABEL (insn) == label)
1333 return label;
1334
1335 tem = next_active_insn (JUMP_LABEL (insn));
1336 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
1337 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
1338 break;
1339
1340 value = JUMP_LABEL (insn);
1341 }
1342 if (depth == 10)
1343 return label;
1344 return value;
1345 }
1346
1347 \f
1348 /* Find all CODE_LABELs referred to in X, and increment their use counts.
1349 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
1350 in INSN, then store one of them in JUMP_LABEL (INSN).
1351 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
1352 referenced in INSN, add a REG_LABEL note containing that label to INSN.
1353 Also, when there are consecutive labels, canonicalize on the last of them.
1354
1355 Note that two labels separated by a loop-beginning note
1356 must be kept distinct if we have not yet done loop-optimization,
1357 because the gap between them is where loop-optimize
1358 will want to move invariant code to. CROSS_JUMP tells us
1359 that loop-optimization is done with. */
1360
1361 void
1362 mark_jump_label (rtx x, rtx insn, int in_mem)
1363 {
1364 RTX_CODE code = GET_CODE (x);
1365 int i;
1366 const char *fmt;
1367
1368 switch (code)
1369 {
1370 case PC:
1371 case CC0:
1372 case REG:
1373 case CONST_INT:
1374 case CONST_DOUBLE:
1375 case CLOBBER:
1376 case CALL:
1377 return;
1378
1379 case MEM:
1380 in_mem = 1;
1381 break;
1382
1383 case SYMBOL_REF:
1384 if (!in_mem)
1385 return;
1386
1387 /* If this is a constant-pool reference, see if it is a label. */
1388 if (CONSTANT_POOL_ADDRESS_P (x))
1389 mark_jump_label (get_pool_constant (x), insn, in_mem);
1390 break;
1391
1392 case LABEL_REF:
1393 {
1394 rtx label = XEXP (x, 0);
1395
1396 /* Ignore remaining references to unreachable labels that
1397 have been deleted. */
1398 if (GET_CODE (label) == NOTE
1399 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
1400 break;
1401
1402 if (GET_CODE (label) != CODE_LABEL)
1403 abort ();
1404
1405 /* Ignore references to labels of containing functions. */
1406 if (LABEL_REF_NONLOCAL_P (x))
1407 break;
1408
1409 XEXP (x, 0) = label;
1410 if (! insn || ! INSN_DELETED_P (insn))
1411 ++LABEL_NUSES (label);
1412
1413 if (insn)
1414 {
1415 if (GET_CODE (insn) == JUMP_INSN)
1416 JUMP_LABEL (insn) = label;
1417 else
1418 {
1419 /* Add a REG_LABEL note for LABEL unless there already
1420 is one. All uses of a label, except for labels
1421 that are the targets of jumps, must have a
1422 REG_LABEL note. */
1423 if (! find_reg_note (insn, REG_LABEL, label))
1424 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
1425 REG_NOTES (insn));
1426 }
1427 }
1428 return;
1429 }
1430
1431 /* Do walk the labels in a vector, but not the first operand of an
1432 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1433 case ADDR_VEC:
1434 case ADDR_DIFF_VEC:
1435 if (! INSN_DELETED_P (insn))
1436 {
1437 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1438
1439 for (i = 0; i < XVECLEN (x, eltnum); i++)
1440 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
1441 }
1442 return;
1443
1444 default:
1445 break;
1446 }
1447
1448 fmt = GET_RTX_FORMAT (code);
1449 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1450 {
1451 if (fmt[i] == 'e')
1452 mark_jump_label (XEXP (x, i), insn, in_mem);
1453 else if (fmt[i] == 'E')
1454 {
1455 int j;
1456 for (j = 0; j < XVECLEN (x, i); j++)
1457 mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
1458 }
1459 }
1460 }
1461
1462 /* If all INSN does is set the pc, delete it,
1463 and delete the insn that set the condition codes for it
1464 if that's what the previous thing was. */
1465
1466 void
1467 delete_jump (rtx insn)
1468 {
1469 rtx set = single_set (insn);
1470
1471 if (set && GET_CODE (SET_DEST (set)) == PC)
1472 delete_computation (insn);
1473 }
1474
1475 /* Verify INSN is a BARRIER and delete it. */
1476
1477 void
1478 delete_barrier (rtx insn)
1479 {
1480 if (GET_CODE (insn) != BARRIER)
1481 abort ();
1482
1483 delete_insn (insn);
1484 }
1485
1486 /* Recursively delete prior insns that compute the value (used only by INSN
1487 which the caller is deleting) stored in the register mentioned by NOTE
1488 which is a REG_DEAD note associated with INSN. */
1489
1490 static void
1491 delete_prior_computation (rtx note, rtx insn)
1492 {
1493 rtx our_prev;
1494 rtx reg = XEXP (note, 0);
1495
1496 for (our_prev = prev_nonnote_insn (insn);
1497 our_prev && (GET_CODE (our_prev) == INSN
1498 || GET_CODE (our_prev) == CALL_INSN);
1499 our_prev = prev_nonnote_insn (our_prev))
1500 {
1501 rtx pat = PATTERN (our_prev);
1502
1503 /* If we reach a CALL which is not calling a const function
1504 or the callee pops the arguments, then give up. */
1505 if (GET_CODE (our_prev) == CALL_INSN
1506 && (! CONST_OR_PURE_CALL_P (our_prev)
1507 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
1508 break;
1509
1510 /* If we reach a SEQUENCE, it is too complex to try to
1511 do anything with it, so give up. We can be run during
1512 and after reorg, so SEQUENCE rtl can legitimately show
1513 up here. */
1514 if (GET_CODE (pat) == SEQUENCE)
1515 break;
1516
1517 if (GET_CODE (pat) == USE
1518 && GET_CODE (XEXP (pat, 0)) == INSN)
1519 /* reorg creates USEs that look like this. We leave them
1520 alone because reorg needs them for its own purposes. */
1521 break;
1522
1523 if (reg_set_p (reg, pat))
1524 {
1525 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
1526 break;
1527
1528 if (GET_CODE (pat) == PARALLEL)
1529 {
1530 /* If we find a SET of something else, we can't
1531 delete the insn. */
1532
1533 int i;
1534
1535 for (i = 0; i < XVECLEN (pat, 0); i++)
1536 {
1537 rtx part = XVECEXP (pat, 0, i);
1538
1539 if (GET_CODE (part) == SET
1540 && SET_DEST (part) != reg)
1541 break;
1542 }
1543
1544 if (i == XVECLEN (pat, 0))
1545 delete_computation (our_prev);
1546 }
1547 else if (GET_CODE (pat) == SET
1548 && GET_CODE (SET_DEST (pat)) == REG)
1549 {
1550 int dest_regno = REGNO (SET_DEST (pat));
1551 int dest_endregno
1552 = (dest_regno
1553 + (dest_regno < FIRST_PSEUDO_REGISTER
1554 ? HARD_REGNO_NREGS (dest_regno,
1555 GET_MODE (SET_DEST (pat))) : 1));
1556 int regno = REGNO (reg);
1557 int endregno
1558 = (regno
1559 + (regno < FIRST_PSEUDO_REGISTER
1560 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
1561
1562 if (dest_regno >= regno
1563 && dest_endregno <= endregno)
1564 delete_computation (our_prev);
1565
1566 /* We may have a multi-word hard register and some, but not
1567 all, of the words of the register are needed in subsequent
1568 insns. Write REG_UNUSED notes for those parts that were not
1569 needed. */
1570 else if (dest_regno <= regno
1571 && dest_endregno >= endregno)
1572 {
1573 int i;
1574
1575 REG_NOTES (our_prev)
1576 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
1577 REG_NOTES (our_prev));
1578
1579 for (i = dest_regno; i < dest_endregno; i++)
1580 if (! find_regno_note (our_prev, REG_UNUSED, i))
1581 break;
1582
1583 if (i == dest_endregno)
1584 delete_computation (our_prev);
1585 }
1586 }
1587
1588 break;
1589 }
1590
1591 /* If PAT references the register that dies here, it is an
1592 additional use. Hence any prior SET isn't dead. However, this
1593 insn becomes the new place for the REG_DEAD note. */
1594 if (reg_overlap_mentioned_p (reg, pat))
1595 {
1596 XEXP (note, 1) = REG_NOTES (our_prev);
1597 REG_NOTES (our_prev) = note;
1598 break;
1599 }
1600 }
1601 }
1602
1603 /* Delete INSN and recursively delete insns that compute values used only
1604 by INSN. This uses the REG_DEAD notes computed during flow analysis.
1605 If we are running before flow.c, we need do nothing since flow.c will
1606 delete dead code. We also can't know if the registers being used are
1607 dead or not at this point.
1608
1609 Otherwise, look at all our REG_DEAD notes. If a previous insn does
1610 nothing other than set a register that dies in this insn, we can delete
1611 that insn as well.
1612
1613 On machines with CC0, if CC0 is used in this insn, we may be able to
1614 delete the insn that set it. */
1615
1616 static void
1617 delete_computation (rtx insn)
1618 {
1619 rtx note, next;
1620
1621 #ifdef HAVE_cc0
1622 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
1623 {
1624 rtx prev = prev_nonnote_insn (insn);
1625 /* We assume that at this stage
1626 CC's are always set explicitly
1627 and always immediately before the jump that
1628 will use them. So if the previous insn
1629 exists to set the CC's, delete it
1630 (unless it performs auto-increments, etc.). */
1631 if (prev && GET_CODE (prev) == INSN
1632 && sets_cc0_p (PATTERN (prev)))
1633 {
1634 if (sets_cc0_p (PATTERN (prev)) > 0
1635 && ! side_effects_p (PATTERN (prev)))
1636 delete_computation (prev);
1637 else
1638 /* Otherwise, show that cc0 won't be used. */
1639 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
1640 cc0_rtx, REG_NOTES (prev));
1641 }
1642 }
1643 #endif
1644
1645 for (note = REG_NOTES (insn); note; note = next)
1646 {
1647 next = XEXP (note, 1);
1648
1649 if (REG_NOTE_KIND (note) != REG_DEAD
1650 /* Verify that the REG_NOTE is legitimate. */
1651 || GET_CODE (XEXP (note, 0)) != REG)
1652 continue;
1653
1654 delete_prior_computation (note, insn);
1655 }
1656
1657 delete_related_insns (insn);
1658 }
1659 \f
1660 /* Delete insn INSN from the chain of insns and update label ref counts
1661 and delete insns now unreachable.
1662
1663 Returns the first insn after INSN that was not deleted.
1664
1665 Usage of this instruction is deprecated. Use delete_insn instead and
1666 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1667
1668 rtx
1669 delete_related_insns (rtx insn)
1670 {
1671 int was_code_label = (GET_CODE (insn) == CODE_LABEL);
1672 rtx note;
1673 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1674
1675 while (next && INSN_DELETED_P (next))
1676 next = NEXT_INSN (next);
1677
1678 /* This insn is already deleted => return first following nondeleted. */
1679 if (INSN_DELETED_P (insn))
1680 return next;
1681
1682 delete_insn (insn);
1683
1684 /* If instruction is followed by a barrier,
1685 delete the barrier too. */
1686
1687 if (next != 0 && GET_CODE (next) == BARRIER)
1688 delete_insn (next);
1689
1690 /* If deleting a jump, decrement the count of the label,
1691 and delete the label if it is now unused. */
1692
1693 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
1694 {
1695 rtx lab = JUMP_LABEL (insn), lab_next;
1696
1697 if (LABEL_NUSES (lab) == 0)
1698 {
1699 /* This can delete NEXT or PREV,
1700 either directly if NEXT is JUMP_LABEL (INSN),
1701 or indirectly through more levels of jumps. */
1702 delete_related_insns (lab);
1703
1704 /* I feel a little doubtful about this loop,
1705 but I see no clean and sure alternative way
1706 to find the first insn after INSN that is not now deleted.
1707 I hope this works. */
1708 while (next && INSN_DELETED_P (next))
1709 next = NEXT_INSN (next);
1710 return next;
1711 }
1712 else if (tablejump_p (insn, NULL, &lab_next))
1713 {
1714 /* If we're deleting the tablejump, delete the dispatch table.
1715 We may not be able to kill the label immediately preceding
1716 just yet, as it might be referenced in code leading up to
1717 the tablejump. */
1718 delete_related_insns (lab_next);
1719 }
1720 }
1721
1722 /* Likewise if we're deleting a dispatch table. */
1723
1724 if (GET_CODE (insn) == JUMP_INSN
1725 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1726 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1727 {
1728 rtx pat = PATTERN (insn);
1729 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1730 int len = XVECLEN (pat, diff_vec_p);
1731
1732 for (i = 0; i < len; i++)
1733 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1734 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1735 while (next && INSN_DELETED_P (next))
1736 next = NEXT_INSN (next);
1737 return next;
1738 }
1739
1740 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
1741 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
1742 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1743 if (REG_NOTE_KIND (note) == REG_LABEL
1744 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1745 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
1746 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1747 delete_related_insns (XEXP (note, 0));
1748
1749 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
1750 prev = PREV_INSN (prev);
1751
1752 /* If INSN was a label and a dispatch table follows it,
1753 delete the dispatch table. The tablejump must have gone already.
1754 It isn't useful to fall through into a table. */
1755
1756 if (was_code_label
1757 && NEXT_INSN (insn) != 0
1758 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
1759 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1760 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1761 next = delete_related_insns (NEXT_INSN (insn));
1762
1763 /* If INSN was a label, delete insns following it if now unreachable. */
1764
1765 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
1766 {
1767 RTX_CODE code;
1768 while (next != 0
1769 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
1770 || code == NOTE || code == BARRIER
1771 || (code == CODE_LABEL && INSN_DELETED_P (next))))
1772 {
1773 if (code == NOTE
1774 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
1775 next = NEXT_INSN (next);
1776 /* Keep going past other deleted labels to delete what follows. */
1777 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1778 next = NEXT_INSN (next);
1779 else
1780 /* Note: if this deletes a jump, it can cause more
1781 deletion of unreachable code, after a different label.
1782 As long as the value from this recursive call is correct,
1783 this invocation functions correctly. */
1784 next = delete_related_insns (next);
1785 }
1786 }
1787
1788 return next;
1789 }
1790 \f
1791 /* Delete a range of insns from FROM to TO, inclusive.
1792 This is for the sake of peephole optimization, so assume
1793 that whatever these insns do will still be done by a new
1794 peephole insn that will replace them. */
1795
1796 void
1797 delete_for_peephole (rtx from, rtx to)
1798 {
1799 rtx insn = from;
1800
1801 while (1)
1802 {
1803 rtx next = NEXT_INSN (insn);
1804 rtx prev = PREV_INSN (insn);
1805
1806 if (GET_CODE (insn) != NOTE)
1807 {
1808 INSN_DELETED_P (insn) = 1;
1809
1810 /* Patch this insn out of the chain. */
1811 /* We don't do this all at once, because we
1812 must preserve all NOTEs. */
1813 if (prev)
1814 NEXT_INSN (prev) = next;
1815
1816 if (next)
1817 PREV_INSN (next) = prev;
1818 }
1819
1820 if (insn == to)
1821 break;
1822 insn = next;
1823 }
1824
1825 /* Note that if TO is an unconditional jump
1826 we *do not* delete the BARRIER that follows,
1827 since the peephole that replaces this sequence
1828 is also an unconditional jump in that case. */
1829 }
1830 \f
1831 /* We have determined that AVOIDED_INSN is never reached, and are
1832 about to delete it. If the insn chain between AVOIDED_INSN and
1833 FINISH contains more than one line from the current function, and
1834 contains at least one operation, print a warning if the user asked
1835 for it. If FINISH is NULL, look between AVOIDED_INSN and a LABEL.
1836
1837 CSE and inlining can duplicate insns, so it's possible to get
1838 spurious warnings from this. */
1839
1840 void
1841 never_reached_warning (rtx avoided_insn, rtx finish)
1842 {
1843 rtx insn;
1844 rtx a_line_note = NULL;
1845 int two_avoided_lines = 0, contains_insn = 0, reached_end = 0;
1846
1847 if (!warn_notreached)
1848 return;
1849
1850 /* Back up to the first of any NOTEs preceding avoided_insn; flow passes
1851 us the head of a block, a NOTE_INSN_BASIC_BLOCK, which often follows
1852 the line note. */
1853 insn = avoided_insn;
1854 while (1)
1855 {
1856 rtx prev = PREV_INSN (insn);
1857 if (prev == NULL_RTX
1858 || GET_CODE (prev) != NOTE)
1859 break;
1860 insn = prev;
1861 }
1862
1863 /* Scan forwards, looking at LINE_NUMBER notes, until we hit a LABEL
1864 in case FINISH is NULL, otherwise until we run out of insns. */
1865
1866 for (; insn != NULL; insn = NEXT_INSN (insn))
1867 {
1868 if ((finish == NULL && GET_CODE (insn) == CODE_LABEL)
1869 || GET_CODE (insn) == BARRIER)
1870 break;
1871
1872 if (GET_CODE (insn) == NOTE /* A line number note? */
1873 && NOTE_LINE_NUMBER (insn) >= 0)
1874 {
1875 if (a_line_note == NULL)
1876 a_line_note = insn;
1877 else
1878 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
1879 != NOTE_LINE_NUMBER (insn));
1880 }
1881 else if (INSN_P (insn))
1882 {
1883 if (reached_end)
1884 break;
1885 contains_insn = 1;
1886 }
1887
1888 if (insn == finish)
1889 reached_end = 1;
1890 }
1891 if (two_avoided_lines && contains_insn)
1892 {
1893 location_t locus;
1894 locus.file = NOTE_SOURCE_FILE (a_line_note);
1895 locus.line = NOTE_LINE_NUMBER (a_line_note);
1896 warning ("%Hwill never be executed", &locus);
1897 }
1898 }
1899 \f
1900 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1901 NLABEL as a return. Accrue modifications into the change group. */
1902
1903 static void
1904 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1905 {
1906 rtx x = *loc;
1907 RTX_CODE code = GET_CODE (x);
1908 int i;
1909 const char *fmt;
1910
1911 if (code == LABEL_REF)
1912 {
1913 if (XEXP (x, 0) == olabel)
1914 {
1915 rtx n;
1916 if (nlabel)
1917 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
1918 else
1919 n = gen_rtx_RETURN (VOIDmode);
1920
1921 validate_change (insn, loc, n, 1);
1922 return;
1923 }
1924 }
1925 else if (code == RETURN && olabel == 0)
1926 {
1927 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
1928 if (loc == &PATTERN (insn))
1929 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1930 validate_change (insn, loc, x, 1);
1931 return;
1932 }
1933
1934 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1935 && GET_CODE (SET_SRC (x)) == LABEL_REF
1936 && XEXP (SET_SRC (x), 0) == olabel)
1937 {
1938 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1939 return;
1940 }
1941
1942 fmt = GET_RTX_FORMAT (code);
1943 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1944 {
1945 if (fmt[i] == 'e')
1946 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1947 else if (fmt[i] == 'E')
1948 {
1949 int j;
1950 for (j = 0; j < XVECLEN (x, i); j++)
1951 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1952 }
1953 }
1954 }
1955
1956 /* Similar, but apply the change group and report success or failure. */
1957
1958 static int
1959 redirect_exp (rtx olabel, rtx nlabel, rtx insn)
1960 {
1961 rtx *loc;
1962
1963 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1964 loc = &XVECEXP (PATTERN (insn), 0, 0);
1965 else
1966 loc = &PATTERN (insn);
1967
1968 redirect_exp_1 (loc, olabel, nlabel, insn);
1969 if (num_validated_changes () == 0)
1970 return 0;
1971
1972 return apply_change_group ();
1973 }
1974
1975 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1976 the modifications into the change group. Return false if we did
1977 not see how to do that. */
1978
1979 int
1980 redirect_jump_1 (rtx jump, rtx nlabel)
1981 {
1982 int ochanges = num_validated_changes ();
1983 rtx *loc;
1984
1985 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1986 loc = &XVECEXP (PATTERN (jump), 0, 0);
1987 else
1988 loc = &PATTERN (jump);
1989
1990 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1991 return num_validated_changes () > ochanges;
1992 }
1993
1994 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1995 jump target label is unused as a result, it and the code following
1996 it may be deleted.
1997
1998 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1999 RETURN insn.
2000
2001 The return value will be 1 if the change was made, 0 if it wasn't
2002 (this can only occur for NLABEL == 0). */
2003
2004 int
2005 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
2006 {
2007 rtx olabel = JUMP_LABEL (jump);
2008 rtx note;
2009
2010 if (nlabel == olabel)
2011 return 1;
2012
2013 if (! redirect_exp (olabel, nlabel, jump))
2014 return 0;
2015
2016 JUMP_LABEL (jump) = nlabel;
2017 if (nlabel)
2018 ++LABEL_NUSES (nlabel);
2019
2020 /* Update labels in any REG_EQUAL note. */
2021 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
2022 {
2023 if (nlabel && olabel)
2024 {
2025 rtx dest = XEXP (note, 0);
2026
2027 if (GET_CODE (dest) == IF_THEN_ELSE)
2028 {
2029 if (GET_CODE (XEXP (dest, 1)) == LABEL_REF
2030 && XEXP (XEXP (dest, 1), 0) == olabel)
2031 XEXP (XEXP (dest, 1), 0) = nlabel;
2032 if (GET_CODE (XEXP (dest, 2)) == LABEL_REF
2033 && XEXP (XEXP (dest, 2), 0) == olabel)
2034 XEXP (XEXP (dest, 2), 0) = nlabel;
2035 }
2036 else
2037 remove_note (jump, note);
2038 }
2039 else
2040 remove_note (jump, note);
2041 }
2042
2043 /* If we're eliding the jump over exception cleanups at the end of a
2044 function, move the function end note so that -Wreturn-type works. */
2045 if (olabel && nlabel
2046 && NEXT_INSN (olabel)
2047 && GET_CODE (NEXT_INSN (olabel)) == NOTE
2048 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
2049 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
2050
2051 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused
2052 /* Undefined labels will remain outside the insn stream. */
2053 && INSN_UID (olabel))
2054 delete_related_insns (olabel);
2055
2056 return 1;
2057 }
2058
2059 /* Invert the jump condition of rtx X contained in jump insn, INSN.
2060 Accrue the modifications into the change group. */
2061
2062 static void
2063 invert_exp_1 (rtx insn)
2064 {
2065 RTX_CODE code;
2066 rtx x = pc_set (insn);
2067
2068 if (!x)
2069 abort ();
2070 x = SET_SRC (x);
2071
2072 code = GET_CODE (x);
2073
2074 if (code == IF_THEN_ELSE)
2075 {
2076 rtx comp = XEXP (x, 0);
2077 rtx tem;
2078 enum rtx_code reversed_code;
2079
2080 /* We can do this in two ways: The preferable way, which can only
2081 be done if this is not an integer comparison, is to reverse
2082 the comparison code. Otherwise, swap the THEN-part and ELSE-part
2083 of the IF_THEN_ELSE. If we can't do either, fail. */
2084
2085 reversed_code = reversed_comparison_code (comp, insn);
2086
2087 if (reversed_code != UNKNOWN)
2088 {
2089 validate_change (insn, &XEXP (x, 0),
2090 gen_rtx_fmt_ee (reversed_code,
2091 GET_MODE (comp), XEXP (comp, 0),
2092 XEXP (comp, 1)),
2093 1);
2094 return;
2095 }
2096
2097 tem = XEXP (x, 1);
2098 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
2099 validate_change (insn, &XEXP (x, 2), tem, 1);
2100 }
2101 else
2102 abort ();
2103 }
2104
2105 /* Invert the jump condition of conditional jump insn, INSN.
2106
2107 Return 1 if we can do so, 0 if we cannot find a way to do so that
2108 matches a pattern. */
2109
2110 static int
2111 invert_exp (rtx insn)
2112 {
2113 invert_exp_1 (insn);
2114 if (num_validated_changes () == 0)
2115 return 0;
2116
2117 return apply_change_group ();
2118 }
2119
2120 /* Invert the condition of the jump JUMP, and make it jump to label
2121 NLABEL instead of where it jumps now. Accrue changes into the
2122 change group. Return false if we didn't see how to perform the
2123 inversion and redirection. */
2124
2125 int
2126 invert_jump_1 (rtx jump, rtx nlabel)
2127 {
2128 int ochanges;
2129
2130 ochanges = num_validated_changes ();
2131 invert_exp_1 (jump);
2132 if (num_validated_changes () == ochanges)
2133 return 0;
2134
2135 return redirect_jump_1 (jump, nlabel);
2136 }
2137
2138 /* Invert the condition of the jump JUMP, and make it jump to label
2139 NLABEL instead of where it jumps now. Return true if successful. */
2140
2141 int
2142 invert_jump (rtx jump, rtx nlabel, int delete_unused)
2143 {
2144 /* We have to either invert the condition and change the label or
2145 do neither. Either operation could fail. We first try to invert
2146 the jump. If that succeeds, we try changing the label. If that fails,
2147 we invert the jump back to what it was. */
2148
2149 if (! invert_exp (jump))
2150 return 0;
2151
2152 if (redirect_jump (jump, nlabel, delete_unused))
2153 {
2154 /* Remove REG_EQUAL note if we have one. */
2155 rtx note = find_reg_note (jump, REG_EQUAL, NULL_RTX);
2156 if (note)
2157 remove_note (jump, note);
2158
2159 invert_br_probabilities (jump);
2160
2161 return 1;
2162 }
2163
2164 if (! invert_exp (jump))
2165 /* This should just be putting it back the way it was. */
2166 abort ();
2167
2168 return 0;
2169 }
2170
2171 \f
2172 /* Like rtx_equal_p except that it considers two REGs as equal
2173 if they renumber to the same value and considers two commutative
2174 operations to be the same if the order of the operands has been
2175 reversed.
2176
2177 ??? Addition is not commutative on the PA due to the weird implicit
2178 space register selection rules for memory addresses. Therefore, we
2179 don't consider a + b == b + a.
2180
2181 We could/should make this test a little tighter. Possibly only
2182 disabling it on the PA via some backend macro or only disabling this
2183 case when the PLUS is inside a MEM. */
2184
2185 int
2186 rtx_renumbered_equal_p (rtx x, rtx y)
2187 {
2188 int i;
2189 RTX_CODE code = GET_CODE (x);
2190 const char *fmt;
2191
2192 if (x == y)
2193 return 1;
2194
2195 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2196 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2197 && GET_CODE (SUBREG_REG (y)) == REG)))
2198 {
2199 int reg_x = -1, reg_y = -1;
2200 int byte_x = 0, byte_y = 0;
2201
2202 if (GET_MODE (x) != GET_MODE (y))
2203 return 0;
2204
2205 /* If we haven't done any renumbering, don't
2206 make any assumptions. */
2207 if (reg_renumber == 0)
2208 return rtx_equal_p (x, y);
2209
2210 if (code == SUBREG)
2211 {
2212 reg_x = REGNO (SUBREG_REG (x));
2213 byte_x = SUBREG_BYTE (x);
2214
2215 if (reg_renumber[reg_x] >= 0)
2216 {
2217 reg_x = subreg_regno_offset (reg_renumber[reg_x],
2218 GET_MODE (SUBREG_REG (x)),
2219 byte_x,
2220 GET_MODE (x));
2221 byte_x = 0;
2222 }
2223 }
2224 else
2225 {
2226 reg_x = REGNO (x);
2227 if (reg_renumber[reg_x] >= 0)
2228 reg_x = reg_renumber[reg_x];
2229 }
2230
2231 if (GET_CODE (y) == SUBREG)
2232 {
2233 reg_y = REGNO (SUBREG_REG (y));
2234 byte_y = SUBREG_BYTE (y);
2235
2236 if (reg_renumber[reg_y] >= 0)
2237 {
2238 reg_y = subreg_regno_offset (reg_renumber[reg_y],
2239 GET_MODE (SUBREG_REG (y)),
2240 byte_y,
2241 GET_MODE (y));
2242 byte_y = 0;
2243 }
2244 }
2245 else
2246 {
2247 reg_y = REGNO (y);
2248 if (reg_renumber[reg_y] >= 0)
2249 reg_y = reg_renumber[reg_y];
2250 }
2251
2252 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
2253 }
2254
2255 /* Now we have disposed of all the cases
2256 in which different rtx codes can match. */
2257 if (code != GET_CODE (y))
2258 return 0;
2259
2260 switch (code)
2261 {
2262 case PC:
2263 case CC0:
2264 case ADDR_VEC:
2265 case ADDR_DIFF_VEC:
2266 case CONST_INT:
2267 return 0;
2268
2269 case LABEL_REF:
2270 /* We can't assume nonlocal labels have their following insns yet. */
2271 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
2272 return XEXP (x, 0) == XEXP (y, 0);
2273
2274 /* Two label-refs are equivalent if they point at labels
2275 in the same position in the instruction stream. */
2276 return (next_real_insn (XEXP (x, 0))
2277 == next_real_insn (XEXP (y, 0)));
2278
2279 case SYMBOL_REF:
2280 return XSTR (x, 0) == XSTR (y, 0);
2281
2282 case CODE_LABEL:
2283 /* If we didn't match EQ equality above, they aren't the same. */
2284 return 0;
2285
2286 default:
2287 break;
2288 }
2289
2290 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2291
2292 if (GET_MODE (x) != GET_MODE (y))
2293 return 0;
2294
2295 /* For commutative operations, the RTX match if the operand match in any
2296 order. Also handle the simple binary and unary cases without a loop.
2297
2298 ??? Don't consider PLUS a commutative operator; see comments above. */
2299 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
2300 && code != PLUS)
2301 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
2302 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
2303 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
2304 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
2305 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
2306 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
2307 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
2308 else if (GET_RTX_CLASS (code) == '1')
2309 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
2310
2311 /* Compare the elements. If any pair of corresponding elements
2312 fail to match, return 0 for the whole things. */
2313
2314 fmt = GET_RTX_FORMAT (code);
2315 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2316 {
2317 int j;
2318 switch (fmt[i])
2319 {
2320 case 'w':
2321 if (XWINT (x, i) != XWINT (y, i))
2322 return 0;
2323 break;
2324
2325 case 'i':
2326 if (XINT (x, i) != XINT (y, i))
2327 return 0;
2328 break;
2329
2330 case 't':
2331 if (XTREE (x, i) != XTREE (y, i))
2332 return 0;
2333 break;
2334
2335 case 's':
2336 if (strcmp (XSTR (x, i), XSTR (y, i)))
2337 return 0;
2338 break;
2339
2340 case 'e':
2341 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
2342 return 0;
2343 break;
2344
2345 case 'u':
2346 if (XEXP (x, i) != XEXP (y, i))
2347 return 0;
2348 /* Fall through. */
2349 case '0':
2350 break;
2351
2352 case 'E':
2353 if (XVECLEN (x, i) != XVECLEN (y, i))
2354 return 0;
2355 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2356 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
2357 return 0;
2358 break;
2359
2360 default:
2361 abort ();
2362 }
2363 }
2364 return 1;
2365 }
2366 \f
2367 /* If X is a hard register or equivalent to one or a subregister of one,
2368 return the hard register number. If X is a pseudo register that was not
2369 assigned a hard register, return the pseudo register number. Otherwise,
2370 return -1. Any rtx is valid for X. */
2371
2372 int
2373 true_regnum (rtx x)
2374 {
2375 if (GET_CODE (x) == REG)
2376 {
2377 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
2378 return reg_renumber[REGNO (x)];
2379 return REGNO (x);
2380 }
2381 if (GET_CODE (x) == SUBREG)
2382 {
2383 int base = true_regnum (SUBREG_REG (x));
2384 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
2385 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
2386 GET_MODE (SUBREG_REG (x)),
2387 SUBREG_BYTE (x), GET_MODE (x));
2388 }
2389 return -1;
2390 }
2391
2392 /* Return regno of the register REG and handle subregs too. */
2393 unsigned int
2394 reg_or_subregno (rtx reg)
2395 {
2396 if (REG_P (reg))
2397 return REGNO (reg);
2398 if (GET_CODE (reg) == SUBREG)
2399 return REGNO (SUBREG_REG (reg));
2400 abort ();
2401 }