PR c++/80891 (#1)
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "memmodel.h"
46 #include "tm_p.h"
47 #include "insn-config.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "cfgrtl.h"
52 #include "rtl-iter.h"
53
54 /* Optimize jump y; x: ... y: jumpif... x?
55 Don't know if it is worth bothering with. */
56 /* Optimize two cases of conditional jump to conditional jump?
57 This can never delete any instruction or make anything dead,
58 or even change what is live at any point.
59 So perhaps let combiner do it. */
60
61 static void init_label_info (rtx_insn *);
62 static void mark_all_labels (rtx_insn *);
63 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64 static void mark_jump_label_asm (rtx, rtx_insn *);
65 static void redirect_exp_1 (rtx *, rtx, rtx, rtx_insn *);
66 static int invert_exp_1 (rtx, rtx_insn *);
67 \f
68 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
69 static void
70 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
71 {
72 timevar_push (TV_REBUILD_JUMP);
73 init_label_info (f);
74 mark_all_labels (f);
75
76 /* Keep track of labels used from static data; we don't track them
77 closely enough to delete them here, so make sure their reference
78 count doesn't drop to zero. */
79
80 if (count_forced)
81 {
82 rtx_insn *insn;
83 unsigned int i;
84 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 if (LABEL_P (insn))
86 LABEL_NUSES (insn)++;
87 }
88 timevar_pop (TV_REBUILD_JUMP);
89 }
90
91 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93 instructions and jumping insns that have labels as operands
94 (e.g. cbranchsi4). */
95 void
96 rebuild_jump_labels (rtx_insn *f)
97 {
98 rebuild_jump_labels_1 (f, true);
99 }
100
101 /* This function is like rebuild_jump_labels, but doesn't run over
102 forced_labels. It can be used on insn chains that aren't the
103 main function chain. */
104 void
105 rebuild_jump_labels_chain (rtx_insn *chain)
106 {
107 rebuild_jump_labels_1 (chain, false);
108 }
109 \f
110 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111 non-fallthru insn. This is not generally true, as multiple barriers
112 may have crept in, or the BARRIER may be separated from the last
113 real insn by one or more NOTEs.
114
115 This simple pass moves barriers and removes duplicates so that the
116 old code is happy.
117 */
118 static unsigned int
119 cleanup_barriers (void)
120 {
121 rtx_insn *insn;
122 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
123 {
124 if (BARRIER_P (insn))
125 {
126 rtx_insn *prev = prev_nonnote_insn (insn);
127 if (!prev)
128 continue;
129
130 if (CALL_P (prev))
131 {
132 /* Make sure we do not split a call and its corresponding
133 CALL_ARG_LOCATION note. */
134 rtx_insn *next = NEXT_INSN (prev);
135
136 if (NOTE_P (next)
137 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
138 prev = next;
139 }
140
141 if (BARRIER_P (prev))
142 delete_insn (insn);
143 else if (prev != PREV_INSN (insn))
144 {
145 basic_block bb = BLOCK_FOR_INSN (prev);
146 rtx_insn *end = PREV_INSN (insn);
147 reorder_insns_nobb (insn, insn, prev);
148 if (bb)
149 {
150 /* If the backend called in machine reorg compute_bb_for_insn
151 and didn't free_bb_for_insn again, preserve basic block
152 boundaries. Move the end of basic block to PREV since
153 it is followed by a barrier now, and clear BLOCK_FOR_INSN
154 on the following notes.
155 ??? Maybe the proper solution for the targets that have
156 cfg around after machine reorg is not to run cleanup_barriers
157 pass at all. */
158 BB_END (bb) = prev;
159 do
160 {
161 prev = NEXT_INSN (prev);
162 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
163 BLOCK_FOR_INSN (prev) = NULL;
164 }
165 while (prev != end);
166 }
167 }
168 }
169 }
170 return 0;
171 }
172
173 namespace {
174
175 const pass_data pass_data_cleanup_barriers =
176 {
177 RTL_PASS, /* type */
178 "barriers", /* name */
179 OPTGROUP_NONE, /* optinfo_flags */
180 TV_NONE, /* tv_id */
181 0, /* properties_required */
182 0, /* properties_provided */
183 0, /* properties_destroyed */
184 0, /* todo_flags_start */
185 0, /* todo_flags_finish */
186 };
187
188 class pass_cleanup_barriers : public rtl_opt_pass
189 {
190 public:
191 pass_cleanup_barriers (gcc::context *ctxt)
192 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
193 {}
194
195 /* opt_pass methods: */
196 virtual unsigned int execute (function *) { return cleanup_barriers (); }
197
198 }; // class pass_cleanup_barriers
199
200 } // anon namespace
201
202 rtl_opt_pass *
203 make_pass_cleanup_barriers (gcc::context *ctxt)
204 {
205 return new pass_cleanup_barriers (ctxt);
206 }
207
208 \f
209 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
210 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
211 notes whose labels don't occur in the insn any more. */
212
213 static void
214 init_label_info (rtx_insn *f)
215 {
216 rtx_insn *insn;
217
218 for (insn = f; insn; insn = NEXT_INSN (insn))
219 {
220 if (LABEL_P (insn))
221 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
222
223 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
224 sticky and not reset here; that way we won't lose association
225 with a label when e.g. the source for a target register
226 disappears out of reach for targets that may use jump-target
227 registers. Jump transformations are supposed to transform
228 any REG_LABEL_TARGET notes. The target label reference in a
229 branch may disappear from the branch (and from the
230 instruction before it) for other reasons, like register
231 allocation. */
232
233 if (INSN_P (insn))
234 {
235 rtx note, next;
236
237 for (note = REG_NOTES (insn); note; note = next)
238 {
239 next = XEXP (note, 1);
240 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
241 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
242 remove_note (insn, note);
243 }
244 }
245 }
246 }
247
248 /* A subroutine of mark_all_labels. Trivially propagate a simple label
249 load into a jump_insn that uses it. */
250
251 static void
252 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
253 {
254 rtx label_note, pc, pc_src;
255
256 pc = pc_set (jump_insn);
257 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
258 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
259
260 /* If the previous non-jump insn sets something to a label,
261 something that this jump insn uses, make that label the primary
262 target of this insn if we don't yet have any. That previous
263 insn must be a single_set and not refer to more than one label.
264 The jump insn must not refer to other labels as jump targets
265 and must be a plain (set (pc) ...), maybe in a parallel, and
266 may refer to the item being set only directly or as one of the
267 arms in an IF_THEN_ELSE. */
268
269 if (label_note != NULL && pc_src != NULL)
270 {
271 rtx label_set = single_set (prev_nonjump_insn);
272 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
273
274 if (label_set != NULL
275 /* The source must be the direct LABEL_REF, not a
276 PLUS, UNSPEC, IF_THEN_ELSE etc. */
277 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
278 && (rtx_equal_p (label_dest, pc_src)
279 || (GET_CODE (pc_src) == IF_THEN_ELSE
280 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
281 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
282 {
283 /* The CODE_LABEL referred to in the note must be the
284 CODE_LABEL in the LABEL_REF of the "set". We can
285 conveniently use it for the marker function, which
286 requires a LABEL_REF wrapping. */
287 gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
288
289 mark_jump_label_1 (label_set, jump_insn, false, true);
290
291 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
292 }
293 }
294 }
295
296 /* Mark the label each jump jumps to.
297 Combine consecutive labels, and count uses of labels. */
298
299 static void
300 mark_all_labels (rtx_insn *f)
301 {
302 rtx_insn *insn;
303
304 if (current_ir_type () == IR_RTL_CFGLAYOUT)
305 {
306 basic_block bb;
307 FOR_EACH_BB_FN (bb, cfun)
308 {
309 /* In cfglayout mode, we don't bother with trivial next-insn
310 propagation of LABEL_REFs into JUMP_LABEL. This will be
311 handled by other optimizers using better algorithms. */
312 FOR_BB_INSNS (bb, insn)
313 {
314 gcc_assert (! insn->deleted ());
315 if (NONDEBUG_INSN_P (insn))
316 mark_jump_label (PATTERN (insn), insn, 0);
317 }
318
319 /* In cfglayout mode, there may be non-insns between the
320 basic blocks. If those non-insns represent tablejump data,
321 they contain label references that we must record. */
322 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
323 if (JUMP_TABLE_DATA_P (insn))
324 mark_jump_label (PATTERN (insn), insn, 0);
325 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
326 if (JUMP_TABLE_DATA_P (insn))
327 mark_jump_label (PATTERN (insn), insn, 0);
328 }
329 }
330 else
331 {
332 rtx_insn *prev_nonjump_insn = NULL;
333 for (insn = f; insn; insn = NEXT_INSN (insn))
334 {
335 if (insn->deleted ())
336 ;
337 else if (LABEL_P (insn))
338 prev_nonjump_insn = NULL;
339 else if (JUMP_TABLE_DATA_P (insn))
340 mark_jump_label (PATTERN (insn), insn, 0);
341 else if (NONDEBUG_INSN_P (insn))
342 {
343 mark_jump_label (PATTERN (insn), insn, 0);
344 if (JUMP_P (insn))
345 {
346 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
347 maybe_propagate_label_ref (insn, prev_nonjump_insn);
348 }
349 else
350 prev_nonjump_insn = insn;
351 }
352 }
353 }
354 }
355 \f
356 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
357 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
358 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
359 know whether it's source is floating point or integer comparison. Machine
360 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
361 to help this function avoid overhead in these cases. */
362 enum rtx_code
363 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
364 const_rtx arg1, const rtx_insn *insn)
365 {
366 machine_mode mode;
367
368 /* If this is not actually a comparison, we can't reverse it. */
369 if (GET_RTX_CLASS (code) != RTX_COMPARE
370 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
371 return UNKNOWN;
372
373 mode = GET_MODE (arg0);
374 if (mode == VOIDmode)
375 mode = GET_MODE (arg1);
376
377 /* First see if machine description supplies us way to reverse the
378 comparison. Give it priority over everything else to allow
379 machine description to do tricks. */
380 if (GET_MODE_CLASS (mode) == MODE_CC
381 && REVERSIBLE_CC_MODE (mode))
382 return REVERSE_CONDITION (code, mode);
383
384 /* Try a few special cases based on the comparison code. */
385 switch (code)
386 {
387 case GEU:
388 case GTU:
389 case LEU:
390 case LTU:
391 case NE:
392 case EQ:
393 /* It is always safe to reverse EQ and NE, even for the floating
394 point. Similarly the unsigned comparisons are never used for
395 floating point so we can reverse them in the default way. */
396 return reverse_condition (code);
397 case ORDERED:
398 case UNORDERED:
399 case LTGT:
400 case UNEQ:
401 /* In case we already see unordered comparison, we can be sure to
402 be dealing with floating point so we don't need any more tests. */
403 return reverse_condition_maybe_unordered (code);
404 case UNLT:
405 case UNLE:
406 case UNGT:
407 case UNGE:
408 /* We don't have safe way to reverse these yet. */
409 return UNKNOWN;
410 default:
411 break;
412 }
413
414 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
415 {
416 /* Try to search for the comparison to determine the real mode.
417 This code is expensive, but with sane machine description it
418 will be never used, since REVERSIBLE_CC_MODE will return true
419 in all cases. */
420 if (! insn)
421 return UNKNOWN;
422
423 /* These CONST_CAST's are okay because prev_nonnote_insn just
424 returns its argument and we assign it to a const_rtx
425 variable. */
426 for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
427 prev != 0 && !LABEL_P (prev);
428 prev = prev_nonnote_insn (prev))
429 {
430 const_rtx set = set_of (arg0, prev);
431 if (set && GET_CODE (set) == SET
432 && rtx_equal_p (SET_DEST (set), arg0))
433 {
434 rtx src = SET_SRC (set);
435
436 if (GET_CODE (src) == COMPARE)
437 {
438 rtx comparison = src;
439 arg0 = XEXP (src, 0);
440 mode = GET_MODE (arg0);
441 if (mode == VOIDmode)
442 mode = GET_MODE (XEXP (comparison, 1));
443 break;
444 }
445 /* We can get past reg-reg moves. This may be useful for model
446 of i387 comparisons that first move flag registers around. */
447 if (REG_P (src))
448 {
449 arg0 = src;
450 continue;
451 }
452 }
453 /* If register is clobbered in some ununderstandable way,
454 give up. */
455 if (set)
456 return UNKNOWN;
457 }
458 }
459
460 /* Test for an integer condition, or a floating-point comparison
461 in which NaNs can be ignored. */
462 if (CONST_INT_P (arg0)
463 || (GET_MODE (arg0) != VOIDmode
464 && GET_MODE_CLASS (mode) != MODE_CC
465 && !HONOR_NANS (mode)))
466 return reverse_condition (code);
467
468 return UNKNOWN;
469 }
470
471 /* A wrapper around the previous function to take COMPARISON as rtx
472 expression. This simplifies many callers. */
473 enum rtx_code
474 reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
475 {
476 if (!COMPARISON_P (comparison))
477 return UNKNOWN;
478 return reversed_comparison_code_parts (GET_CODE (comparison),
479 XEXP (comparison, 0),
480 XEXP (comparison, 1), insn);
481 }
482
483 /* Return comparison with reversed code of EXP.
484 Return NULL_RTX in case we fail to do the reversal. */
485 rtx
486 reversed_comparison (const_rtx exp, machine_mode mode)
487 {
488 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
489 if (reversed_code == UNKNOWN)
490 return NULL_RTX;
491 else
492 return simplify_gen_relational (reversed_code, mode, VOIDmode,
493 XEXP (exp, 0), XEXP (exp, 1));
494 }
495
496 \f
497 /* Given an rtx-code for a comparison, return the code for the negated
498 comparison. If no such code exists, return UNKNOWN.
499
500 WATCH OUT! reverse_condition is not safe to use on a jump that might
501 be acting on the results of an IEEE floating point comparison, because
502 of the special treatment of non-signaling nans in comparisons.
503 Use reversed_comparison_code instead. */
504
505 enum rtx_code
506 reverse_condition (enum rtx_code code)
507 {
508 switch (code)
509 {
510 case EQ:
511 return NE;
512 case NE:
513 return EQ;
514 case GT:
515 return LE;
516 case GE:
517 return LT;
518 case LT:
519 return GE;
520 case LE:
521 return GT;
522 case GTU:
523 return LEU;
524 case GEU:
525 return LTU;
526 case LTU:
527 return GEU;
528 case LEU:
529 return GTU;
530 case UNORDERED:
531 return ORDERED;
532 case ORDERED:
533 return UNORDERED;
534
535 case UNLT:
536 case UNLE:
537 case UNGT:
538 case UNGE:
539 case UNEQ:
540 case LTGT:
541 return UNKNOWN;
542
543 default:
544 gcc_unreachable ();
545 }
546 }
547
548 /* Similar, but we're allowed to generate unordered comparisons, which
549 makes it safe for IEEE floating-point. Of course, we have to recognize
550 that the target will support them too... */
551
552 enum rtx_code
553 reverse_condition_maybe_unordered (enum rtx_code code)
554 {
555 switch (code)
556 {
557 case EQ:
558 return NE;
559 case NE:
560 return EQ;
561 case GT:
562 return UNLE;
563 case GE:
564 return UNLT;
565 case LT:
566 return UNGE;
567 case LE:
568 return UNGT;
569 case LTGT:
570 return UNEQ;
571 case UNORDERED:
572 return ORDERED;
573 case ORDERED:
574 return UNORDERED;
575 case UNLT:
576 return GE;
577 case UNLE:
578 return GT;
579 case UNGT:
580 return LE;
581 case UNGE:
582 return LT;
583 case UNEQ:
584 return LTGT;
585
586 default:
587 gcc_unreachable ();
588 }
589 }
590
591 /* Similar, but return the code when two operands of a comparison are swapped.
592 This IS safe for IEEE floating-point. */
593
594 enum rtx_code
595 swap_condition (enum rtx_code code)
596 {
597 switch (code)
598 {
599 case EQ:
600 case NE:
601 case UNORDERED:
602 case ORDERED:
603 case UNEQ:
604 case LTGT:
605 return code;
606
607 case GT:
608 return LT;
609 case GE:
610 return LE;
611 case LT:
612 return GT;
613 case LE:
614 return GE;
615 case GTU:
616 return LTU;
617 case GEU:
618 return LEU;
619 case LTU:
620 return GTU;
621 case LEU:
622 return GEU;
623 case UNLT:
624 return UNGT;
625 case UNLE:
626 return UNGE;
627 case UNGT:
628 return UNLT;
629 case UNGE:
630 return UNLE;
631
632 default:
633 gcc_unreachable ();
634 }
635 }
636
637 /* Given a comparison CODE, return the corresponding unsigned comparison.
638 If CODE is an equality comparison or already an unsigned comparison,
639 CODE is returned. */
640
641 enum rtx_code
642 unsigned_condition (enum rtx_code code)
643 {
644 switch (code)
645 {
646 case EQ:
647 case NE:
648 case GTU:
649 case GEU:
650 case LTU:
651 case LEU:
652 return code;
653
654 case GT:
655 return GTU;
656 case GE:
657 return GEU;
658 case LT:
659 return LTU;
660 case LE:
661 return LEU;
662
663 default:
664 gcc_unreachable ();
665 }
666 }
667
668 /* Similarly, return the signed version of a comparison. */
669
670 enum rtx_code
671 signed_condition (enum rtx_code code)
672 {
673 switch (code)
674 {
675 case EQ:
676 case NE:
677 case GT:
678 case GE:
679 case LT:
680 case LE:
681 return code;
682
683 case GTU:
684 return GT;
685 case GEU:
686 return GE;
687 case LTU:
688 return LT;
689 case LEU:
690 return LE;
691
692 default:
693 gcc_unreachable ();
694 }
695 }
696 \f
697 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
698 truth of CODE1 implies the truth of CODE2. */
699
700 int
701 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
702 {
703 /* UNKNOWN comparison codes can happen as a result of trying to revert
704 comparison codes.
705 They can't match anything, so we have to reject them here. */
706 if (code1 == UNKNOWN || code2 == UNKNOWN)
707 return 0;
708
709 if (code1 == code2)
710 return 1;
711
712 switch (code1)
713 {
714 case UNEQ:
715 if (code2 == UNLE || code2 == UNGE)
716 return 1;
717 break;
718
719 case EQ:
720 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
721 || code2 == ORDERED)
722 return 1;
723 break;
724
725 case UNLT:
726 if (code2 == UNLE || code2 == NE)
727 return 1;
728 break;
729
730 case LT:
731 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
732 return 1;
733 break;
734
735 case UNGT:
736 if (code2 == UNGE || code2 == NE)
737 return 1;
738 break;
739
740 case GT:
741 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
742 return 1;
743 break;
744
745 case GE:
746 case LE:
747 if (code2 == ORDERED)
748 return 1;
749 break;
750
751 case LTGT:
752 if (code2 == NE || code2 == ORDERED)
753 return 1;
754 break;
755
756 case LTU:
757 if (code2 == LEU || code2 == NE)
758 return 1;
759 break;
760
761 case GTU:
762 if (code2 == GEU || code2 == NE)
763 return 1;
764 break;
765
766 case UNORDERED:
767 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
768 || code2 == UNGE || code2 == UNGT)
769 return 1;
770 break;
771
772 default:
773 break;
774 }
775
776 return 0;
777 }
778 \f
779 /* Return 1 if INSN is an unconditional jump and nothing else. */
780
781 int
782 simplejump_p (const rtx_insn *insn)
783 {
784 return (JUMP_P (insn)
785 && GET_CODE (PATTERN (insn)) == SET
786 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
787 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
788 }
789
790 /* Return nonzero if INSN is a (possibly) conditional jump
791 and nothing more.
792
793 Use of this function is deprecated, since we need to support combined
794 branch and compare insns. Use any_condjump_p instead whenever possible. */
795
796 int
797 condjump_p (const rtx_insn *insn)
798 {
799 const_rtx x = PATTERN (insn);
800
801 if (GET_CODE (x) != SET
802 || GET_CODE (SET_DEST (x)) != PC)
803 return 0;
804
805 x = SET_SRC (x);
806 if (GET_CODE (x) == LABEL_REF)
807 return 1;
808 else
809 return (GET_CODE (x) == IF_THEN_ELSE
810 && ((GET_CODE (XEXP (x, 2)) == PC
811 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
812 || ANY_RETURN_P (XEXP (x, 1))))
813 || (GET_CODE (XEXP (x, 1)) == PC
814 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
815 || ANY_RETURN_P (XEXP (x, 2))))));
816 }
817
818 /* Return nonzero if INSN is a (possibly) conditional jump inside a
819 PARALLEL.
820
821 Use this function is deprecated, since we need to support combined
822 branch and compare insns. Use any_condjump_p instead whenever possible. */
823
824 int
825 condjump_in_parallel_p (const rtx_insn *insn)
826 {
827 const_rtx x = PATTERN (insn);
828
829 if (GET_CODE (x) != PARALLEL)
830 return 0;
831 else
832 x = XVECEXP (x, 0, 0);
833
834 if (GET_CODE (x) != SET)
835 return 0;
836 if (GET_CODE (SET_DEST (x)) != PC)
837 return 0;
838 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
839 return 1;
840 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
841 return 0;
842 if (XEXP (SET_SRC (x), 2) == pc_rtx
843 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
844 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
845 return 1;
846 if (XEXP (SET_SRC (x), 1) == pc_rtx
847 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
848 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
849 return 1;
850 return 0;
851 }
852
853 /* Return set of PC, otherwise NULL. */
854
855 rtx
856 pc_set (const rtx_insn *insn)
857 {
858 rtx pat;
859 if (!JUMP_P (insn))
860 return NULL_RTX;
861 pat = PATTERN (insn);
862
863 /* The set is allowed to appear either as the insn pattern or
864 the first set in a PARALLEL. */
865 if (GET_CODE (pat) == PARALLEL)
866 pat = XVECEXP (pat, 0, 0);
867 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
868 return pat;
869
870 return NULL_RTX;
871 }
872
873 /* Return true when insn is an unconditional direct jump,
874 possibly bundled inside a PARALLEL. */
875
876 int
877 any_uncondjump_p (const rtx_insn *insn)
878 {
879 const_rtx x = pc_set (insn);
880 if (!x)
881 return 0;
882 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
883 return 0;
884 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
885 return 0;
886 return 1;
887 }
888
889 /* Return true when insn is a conditional jump. This function works for
890 instructions containing PC sets in PARALLELs. The instruction may have
891 various other effects so before removing the jump you must verify
892 onlyjump_p.
893
894 Note that unlike condjump_p it returns false for unconditional jumps. */
895
896 int
897 any_condjump_p (const rtx_insn *insn)
898 {
899 const_rtx x = pc_set (insn);
900 enum rtx_code a, b;
901
902 if (!x)
903 return 0;
904 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
905 return 0;
906
907 a = GET_CODE (XEXP (SET_SRC (x), 1));
908 b = GET_CODE (XEXP (SET_SRC (x), 2));
909
910 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
911 || (a == PC
912 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
913 }
914
915 /* Return the label of a conditional jump. */
916
917 rtx
918 condjump_label (const rtx_insn *insn)
919 {
920 rtx x = pc_set (insn);
921
922 if (!x)
923 return NULL_RTX;
924 x = SET_SRC (x);
925 if (GET_CODE (x) == LABEL_REF)
926 return x;
927 if (GET_CODE (x) != IF_THEN_ELSE)
928 return NULL_RTX;
929 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
930 return XEXP (x, 1);
931 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
932 return XEXP (x, 2);
933 return NULL_RTX;
934 }
935
936 /* Return TRUE if INSN is a return jump. */
937
938 int
939 returnjump_p (const rtx_insn *insn)
940 {
941 if (JUMP_P (insn))
942 {
943 subrtx_iterator::array_type array;
944 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
945 {
946 const_rtx x = *iter;
947 switch (GET_CODE (x))
948 {
949 case RETURN:
950 case SIMPLE_RETURN:
951 case EH_RETURN:
952 return true;
953
954 case SET:
955 if (SET_IS_RETURN_P (x))
956 return true;
957 break;
958
959 default:
960 break;
961 }
962 }
963 }
964 return false;
965 }
966
967 /* Return true if INSN is a (possibly conditional) return insn. */
968
969 int
970 eh_returnjump_p (rtx_insn *insn)
971 {
972 if (JUMP_P (insn))
973 {
974 subrtx_iterator::array_type array;
975 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
976 if (GET_CODE (*iter) == EH_RETURN)
977 return true;
978 }
979 return false;
980 }
981
982 /* Return true if INSN is a jump that only transfers control and
983 nothing more. */
984
985 int
986 onlyjump_p (const rtx_insn *insn)
987 {
988 rtx set;
989
990 if (!JUMP_P (insn))
991 return 0;
992
993 set = single_set (insn);
994 if (set == NULL)
995 return 0;
996 if (GET_CODE (SET_DEST (set)) != PC)
997 return 0;
998 if (side_effects_p (SET_SRC (set)))
999 return 0;
1000
1001 return 1;
1002 }
1003
1004 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1005 NULL or a return. */
1006 bool
1007 jump_to_label_p (const rtx_insn *insn)
1008 {
1009 return (JUMP_P (insn)
1010 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1011 }
1012
1013 /* Return nonzero if X is an RTX that only sets the condition codes
1014 and has no side effects. */
1015
1016 int
1017 only_sets_cc0_p (const_rtx x)
1018 {
1019 if (! x)
1020 return 0;
1021
1022 if (INSN_P (x))
1023 x = PATTERN (x);
1024
1025 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1026 }
1027
1028 /* Return 1 if X is an RTX that does nothing but set the condition codes
1029 and CLOBBER or USE registers.
1030 Return -1 if X does explicitly set the condition codes,
1031 but also does other things. */
1032
1033 int
1034 sets_cc0_p (const_rtx x)
1035 {
1036 if (! x)
1037 return 0;
1038
1039 if (INSN_P (x))
1040 x = PATTERN (x);
1041
1042 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1043 return 1;
1044 if (GET_CODE (x) == PARALLEL)
1045 {
1046 int i;
1047 int sets_cc0 = 0;
1048 int other_things = 0;
1049 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1050 {
1051 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1052 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1053 sets_cc0 = 1;
1054 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1055 other_things = 1;
1056 }
1057 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1058 }
1059 return 0;
1060 }
1061 \f
1062 /* Find all CODE_LABELs referred to in X, and increment their use
1063 counts. If INSN is a JUMP_INSN and there is at least one
1064 CODE_LABEL referenced in INSN as a jump target, then store the last
1065 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1066 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1067 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1068 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1069 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1070 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1071
1072 Note that two labels separated by a loop-beginning note
1073 must be kept distinct if we have not yet done loop-optimization,
1074 because the gap between them is where loop-optimize
1075 will want to move invariant code to. CROSS_JUMP tells us
1076 that loop-optimization is done with. */
1077
1078 void
1079 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1080 {
1081 rtx asmop = extract_asm_operands (x);
1082 if (asmop)
1083 mark_jump_label_asm (asmop, insn);
1084 else
1085 mark_jump_label_1 (x, insn, in_mem != 0,
1086 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1087 }
1088
1089 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1090 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1091 jump-target; when the JUMP_LABEL field of INSN should be set or a
1092 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1093 note. */
1094
1095 static void
1096 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1097 {
1098 RTX_CODE code = GET_CODE (x);
1099 int i;
1100 const char *fmt;
1101
1102 switch (code)
1103 {
1104 case PC:
1105 case CC0:
1106 case REG:
1107 case CLOBBER:
1108 case CALL:
1109 return;
1110
1111 case RETURN:
1112 case SIMPLE_RETURN:
1113 if (is_target)
1114 {
1115 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1116 JUMP_LABEL (insn) = x;
1117 }
1118 return;
1119
1120 case MEM:
1121 in_mem = true;
1122 break;
1123
1124 case SEQUENCE:
1125 {
1126 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1127 for (i = 0; i < seq->len (); i++)
1128 mark_jump_label (PATTERN (seq->insn (i)),
1129 seq->insn (i), 0);
1130 }
1131 return;
1132
1133 case SYMBOL_REF:
1134 if (!in_mem)
1135 return;
1136
1137 /* If this is a constant-pool reference, see if it is a label. */
1138 if (CONSTANT_POOL_ADDRESS_P (x))
1139 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1140 break;
1141
1142 /* Handle operands in the condition of an if-then-else as for a
1143 non-jump insn. */
1144 case IF_THEN_ELSE:
1145 if (!is_target)
1146 break;
1147 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1148 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1149 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1150 return;
1151
1152 case LABEL_REF:
1153 {
1154 rtx_insn *label = label_ref_label (x);
1155
1156 /* Ignore remaining references to unreachable labels that
1157 have been deleted. */
1158 if (NOTE_P (label)
1159 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1160 break;
1161
1162 gcc_assert (LABEL_P (label));
1163
1164 /* Ignore references to labels of containing functions. */
1165 if (LABEL_REF_NONLOCAL_P (x))
1166 break;
1167
1168 set_label_ref_label (x, label);
1169 if (! insn || ! insn->deleted ())
1170 ++LABEL_NUSES (label);
1171
1172 if (insn)
1173 {
1174 if (is_target
1175 /* Do not change a previous setting of JUMP_LABEL. If the
1176 JUMP_LABEL slot is occupied by a different label,
1177 create a note for this label. */
1178 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1179 JUMP_LABEL (insn) = label;
1180 else
1181 {
1182 enum reg_note kind
1183 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1184
1185 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1186 for LABEL unless there already is one. All uses of
1187 a label, except for the primary target of a jump,
1188 must have such a note. */
1189 if (! find_reg_note (insn, kind, label))
1190 add_reg_note (insn, kind, label);
1191 }
1192 }
1193 return;
1194 }
1195
1196 /* Do walk the labels in a vector, but not the first operand of an
1197 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1198 case ADDR_VEC:
1199 case ADDR_DIFF_VEC:
1200 if (! insn->deleted ())
1201 {
1202 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1203
1204 for (i = 0; i < XVECLEN (x, eltnum); i++)
1205 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1206 is_target);
1207 }
1208 return;
1209
1210 default:
1211 break;
1212 }
1213
1214 fmt = GET_RTX_FORMAT (code);
1215
1216 /* The primary target of a tablejump is the label of the ADDR_VEC,
1217 which is canonically mentioned *last* in the insn. To get it
1218 marked as JUMP_LABEL, we iterate over items in reverse order. */
1219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1220 {
1221 if (fmt[i] == 'e')
1222 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1223 else if (fmt[i] == 'E')
1224 {
1225 int j;
1226
1227 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1228 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1229 is_target);
1230 }
1231 }
1232 }
1233
1234 /* Worker function for mark_jump_label. Handle asm insns specially.
1235 In particular, output operands need not be considered so we can
1236 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1237 need to be considered targets. */
1238
1239 static void
1240 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1241 {
1242 int i;
1243
1244 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1245 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1246
1247 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1248 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1249 }
1250 \f
1251 /* Delete insn INSN from the chain of insns and update label ref counts
1252 and delete insns now unreachable.
1253
1254 Returns the first insn after INSN that was not deleted.
1255
1256 Usage of this instruction is deprecated. Use delete_insn instead and
1257 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1258
1259 rtx_insn *
1260 delete_related_insns (rtx uncast_insn)
1261 {
1262 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1263 int was_code_label = (LABEL_P (insn));
1264 rtx note;
1265 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1266
1267 while (next && next->deleted ())
1268 next = NEXT_INSN (next);
1269
1270 /* This insn is already deleted => return first following nondeleted. */
1271 if (insn->deleted ())
1272 return next;
1273
1274 delete_insn (insn);
1275
1276 /* If instruction is followed by a barrier,
1277 delete the barrier too. */
1278
1279 if (next != 0 && BARRIER_P (next))
1280 delete_insn (next);
1281
1282 /* If this is a call, then we have to remove the var tracking note
1283 for the call arguments. */
1284
1285 if (CALL_P (insn)
1286 || (NONJUMP_INSN_P (insn)
1287 && GET_CODE (PATTERN (insn)) == SEQUENCE
1288 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1289 {
1290 rtx_insn *p;
1291
1292 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1293 p && NOTE_P (p);
1294 p = NEXT_INSN (p))
1295 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1296 {
1297 remove_insn (p);
1298 break;
1299 }
1300 }
1301
1302 /* If deleting a jump, decrement the count of the label,
1303 and delete the label if it is now unused. */
1304
1305 if (jump_to_label_p (insn))
1306 {
1307 rtx lab = JUMP_LABEL (insn);
1308 rtx_jump_table_data *lab_next;
1309
1310 if (LABEL_NUSES (lab) == 0)
1311 /* This can delete NEXT or PREV,
1312 either directly if NEXT is JUMP_LABEL (INSN),
1313 or indirectly through more levels of jumps. */
1314 delete_related_insns (lab);
1315 else if (tablejump_p (insn, NULL, &lab_next))
1316 {
1317 /* If we're deleting the tablejump, delete the dispatch table.
1318 We may not be able to kill the label immediately preceding
1319 just yet, as it might be referenced in code leading up to
1320 the tablejump. */
1321 delete_related_insns (lab_next);
1322 }
1323 }
1324
1325 /* Likewise if we're deleting a dispatch table. */
1326
1327 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1328 {
1329 rtvec labels = table->get_labels ();
1330 int i;
1331 int len = GET_NUM_ELEM (labels);
1332
1333 for (i = 0; i < len; i++)
1334 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1335 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1336 while (next && next->deleted ())
1337 next = NEXT_INSN (next);
1338 return next;
1339 }
1340
1341 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1342 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1343 if (INSN_P (insn))
1344 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1345 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1346 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1347 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1348 && LABEL_P (XEXP (note, 0)))
1349 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1350 delete_related_insns (XEXP (note, 0));
1351
1352 while (prev && (prev->deleted () || NOTE_P (prev)))
1353 prev = PREV_INSN (prev);
1354
1355 /* If INSN was a label and a dispatch table follows it,
1356 delete the dispatch table. The tablejump must have gone already.
1357 It isn't useful to fall through into a table. */
1358
1359 if (was_code_label
1360 && NEXT_INSN (insn) != 0
1361 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1362 next = delete_related_insns (NEXT_INSN (insn));
1363
1364 /* If INSN was a label, delete insns following it if now unreachable. */
1365
1366 if (was_code_label && prev && BARRIER_P (prev))
1367 {
1368 enum rtx_code code;
1369 while (next)
1370 {
1371 code = GET_CODE (next);
1372 if (code == NOTE)
1373 next = NEXT_INSN (next);
1374 /* Keep going past other deleted labels to delete what follows. */
1375 else if (code == CODE_LABEL && next->deleted ())
1376 next = NEXT_INSN (next);
1377 /* Keep the (use (insn))s created by dbr_schedule, which needs
1378 them in order to track liveness relative to a previous
1379 barrier. */
1380 else if (INSN_P (next)
1381 && GET_CODE (PATTERN (next)) == USE
1382 && INSN_P (XEXP (PATTERN (next), 0)))
1383 next = NEXT_INSN (next);
1384 else if (code == BARRIER || INSN_P (next))
1385 /* Note: if this deletes a jump, it can cause more
1386 deletion of unreachable code, after a different label.
1387 As long as the value from this recursive call is correct,
1388 this invocation functions correctly. */
1389 next = delete_related_insns (next);
1390 else
1391 break;
1392 }
1393 }
1394
1395 /* I feel a little doubtful about this loop,
1396 but I see no clean and sure alternative way
1397 to find the first insn after INSN that is not now deleted.
1398 I hope this works. */
1399 while (next && next->deleted ())
1400 next = NEXT_INSN (next);
1401 return next;
1402 }
1403 \f
1404 /* Delete a range of insns from FROM to TO, inclusive.
1405 This is for the sake of peephole optimization, so assume
1406 that whatever these insns do will still be done by a new
1407 peephole insn that will replace them. */
1408
1409 void
1410 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1411 {
1412 rtx_insn *insn = from;
1413
1414 while (1)
1415 {
1416 rtx_insn *next = NEXT_INSN (insn);
1417 rtx_insn *prev = PREV_INSN (insn);
1418
1419 if (!NOTE_P (insn))
1420 {
1421 insn->set_deleted();
1422
1423 /* Patch this insn out of the chain. */
1424 /* We don't do this all at once, because we
1425 must preserve all NOTEs. */
1426 if (prev)
1427 SET_NEXT_INSN (prev) = next;
1428
1429 if (next)
1430 SET_PREV_INSN (next) = prev;
1431 }
1432
1433 if (insn == to)
1434 break;
1435 insn = next;
1436 }
1437
1438 /* Note that if TO is an unconditional jump
1439 we *do not* delete the BARRIER that follows,
1440 since the peephole that replaces this sequence
1441 is also an unconditional jump in that case. */
1442 }
1443 \f
1444 /* A helper function for redirect_exp_1; examines its input X and returns
1445 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1446 static rtx
1447 redirect_target (rtx x)
1448 {
1449 if (x == NULL_RTX)
1450 return ret_rtx;
1451 if (!ANY_RETURN_P (x))
1452 return gen_rtx_LABEL_REF (Pmode, x);
1453 return x;
1454 }
1455
1456 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1457 NLABEL as a return. Accrue modifications into the change group. */
1458
1459 static void
1460 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx_insn *insn)
1461 {
1462 rtx x = *loc;
1463 RTX_CODE code = GET_CODE (x);
1464 int i;
1465 const char *fmt;
1466
1467 if ((code == LABEL_REF && label_ref_label (x) == olabel)
1468 || x == olabel)
1469 {
1470 x = redirect_target (nlabel);
1471 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1472 x = gen_rtx_SET (pc_rtx, x);
1473 validate_change (insn, loc, x, 1);
1474 return;
1475 }
1476
1477 if (code == SET && SET_DEST (x) == pc_rtx
1478 && ANY_RETURN_P (nlabel)
1479 && GET_CODE (SET_SRC (x)) == LABEL_REF
1480 && label_ref_label (SET_SRC (x)) == olabel)
1481 {
1482 validate_change (insn, loc, nlabel, 1);
1483 return;
1484 }
1485
1486 if (code == IF_THEN_ELSE)
1487 {
1488 /* Skip the condition of an IF_THEN_ELSE. We only want to
1489 change jump destinations, not eventual label comparisons. */
1490 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1491 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1492 return;
1493 }
1494
1495 fmt = GET_RTX_FORMAT (code);
1496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1497 {
1498 if (fmt[i] == 'e')
1499 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1500 else if (fmt[i] == 'E')
1501 {
1502 int j;
1503 for (j = 0; j < XVECLEN (x, i); j++)
1504 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1505 }
1506 }
1507 }
1508
1509 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1510 the modifications into the change group. Return false if we did
1511 not see how to do that. */
1512
1513 int
1514 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1515 {
1516 int ochanges = num_validated_changes ();
1517 rtx *loc, asmop;
1518
1519 gcc_assert (nlabel != NULL_RTX);
1520 asmop = extract_asm_operands (PATTERN (jump));
1521 if (asmop)
1522 {
1523 if (nlabel == NULL)
1524 return 0;
1525 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1526 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1527 }
1528 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1529 loc = &XVECEXP (PATTERN (jump), 0, 0);
1530 else
1531 loc = &PATTERN (jump);
1532
1533 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1534 return num_validated_changes () > ochanges;
1535 }
1536
1537 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1538 jump target label is unused as a result, it and the code following
1539 it may be deleted.
1540
1541 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1542 in that case we are to turn the jump into a (possibly conditional)
1543 return insn.
1544
1545 The return value will be 1 if the change was made, 0 if it wasn't
1546 (this can only occur when trying to produce return insns). */
1547
1548 int
1549 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1550 {
1551 rtx olabel = jump->jump_label ();
1552
1553 if (!nlabel)
1554 {
1555 /* If there is no label, we are asked to redirect to the EXIT block.
1556 When before the epilogue is emitted, return/simple_return cannot be
1557 created so we return 0 immediately. After the epilogue is emitted,
1558 we always expect a label, either a non-null label, or a
1559 return/simple_return RTX. */
1560
1561 if (!epilogue_completed)
1562 return 0;
1563 gcc_unreachable ();
1564 }
1565
1566 if (nlabel == olabel)
1567 return 1;
1568
1569 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1570 return 0;
1571
1572 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1573 return 1;
1574 }
1575
1576 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1577 NLABEL in JUMP.
1578 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1579 count has dropped to zero. */
1580 void
1581 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1582 int invert)
1583 {
1584 rtx note;
1585
1586 gcc_assert (JUMP_LABEL (jump) == olabel);
1587
1588 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1589 moving FUNCTION_END note. Just sanity check that no user still worry
1590 about this. */
1591 gcc_assert (delete_unused >= 0);
1592 JUMP_LABEL (jump) = nlabel;
1593 if (!ANY_RETURN_P (nlabel))
1594 ++LABEL_NUSES (nlabel);
1595
1596 /* Update labels in any REG_EQUAL note. */
1597 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1598 {
1599 if (ANY_RETURN_P (nlabel)
1600 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1601 remove_note (jump, note);
1602 else
1603 {
1604 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1605 confirm_change_group ();
1606 }
1607 }
1608
1609 /* Handle the case where we had a conditional crossing jump to a return
1610 label and are now changing it into a direct conditional return.
1611 The jump is no longer crossing in that case. */
1612 if (ANY_RETURN_P (nlabel))
1613 CROSSING_JUMP_P (jump) = 0;
1614
1615 if (!ANY_RETURN_P (olabel)
1616 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1617 /* Undefined labels will remain outside the insn stream. */
1618 && INSN_UID (olabel))
1619 delete_related_insns (olabel);
1620 if (invert)
1621 invert_br_probabilities (jump);
1622 }
1623
1624 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1625 modifications into the change group. Return nonzero for success. */
1626 static int
1627 invert_exp_1 (rtx x, rtx_insn *insn)
1628 {
1629 RTX_CODE code = GET_CODE (x);
1630
1631 if (code == IF_THEN_ELSE)
1632 {
1633 rtx comp = XEXP (x, 0);
1634 rtx tem;
1635 enum rtx_code reversed_code;
1636
1637 /* We can do this in two ways: The preferable way, which can only
1638 be done if this is not an integer comparison, is to reverse
1639 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1640 of the IF_THEN_ELSE. If we can't do either, fail. */
1641
1642 reversed_code = reversed_comparison_code (comp, insn);
1643
1644 if (reversed_code != UNKNOWN)
1645 {
1646 validate_change (insn, &XEXP (x, 0),
1647 gen_rtx_fmt_ee (reversed_code,
1648 GET_MODE (comp), XEXP (comp, 0),
1649 XEXP (comp, 1)),
1650 1);
1651 return 1;
1652 }
1653
1654 tem = XEXP (x, 1);
1655 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1656 validate_change (insn, &XEXP (x, 2), tem, 1);
1657 return 1;
1658 }
1659 else
1660 return 0;
1661 }
1662
1663 /* Invert the condition of the jump JUMP, and make it jump to label
1664 NLABEL instead of where it jumps now. Accrue changes into the
1665 change group. Return false if we didn't see how to perform the
1666 inversion and redirection. */
1667
1668 int
1669 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1670 {
1671 rtx x = pc_set (jump);
1672 int ochanges;
1673 int ok;
1674
1675 ochanges = num_validated_changes ();
1676 if (x == NULL)
1677 return 0;
1678 ok = invert_exp_1 (SET_SRC (x), jump);
1679 gcc_assert (ok);
1680
1681 if (num_validated_changes () == ochanges)
1682 return 0;
1683
1684 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1685 in Pmode, so checking this is not merely an optimization. */
1686 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1687 }
1688
1689 /* Invert the condition of the jump JUMP, and make it jump to label
1690 NLABEL instead of where it jumps now. Return true if successful. */
1691
1692 int
1693 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1694 {
1695 rtx olabel = JUMP_LABEL (jump);
1696
1697 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1698 {
1699 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1700 return 1;
1701 }
1702 cancel_changes (0);
1703 return 0;
1704 }
1705
1706 \f
1707 /* Like rtx_equal_p except that it considers two REGs as equal
1708 if they renumber to the same value and considers two commutative
1709 operations to be the same if the order of the operands has been
1710 reversed. */
1711
1712 int
1713 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1714 {
1715 int i;
1716 const enum rtx_code code = GET_CODE (x);
1717 const char *fmt;
1718
1719 if (x == y)
1720 return 1;
1721
1722 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1723 && (REG_P (y) || (GET_CODE (y) == SUBREG
1724 && REG_P (SUBREG_REG (y)))))
1725 {
1726 int reg_x = -1, reg_y = -1;
1727 int byte_x = 0, byte_y = 0;
1728 struct subreg_info info;
1729
1730 if (GET_MODE (x) != GET_MODE (y))
1731 return 0;
1732
1733 /* If we haven't done any renumbering, don't
1734 make any assumptions. */
1735 if (reg_renumber == 0)
1736 return rtx_equal_p (x, y);
1737
1738 if (code == SUBREG)
1739 {
1740 reg_x = REGNO (SUBREG_REG (x));
1741 byte_x = SUBREG_BYTE (x);
1742
1743 if (reg_renumber[reg_x] >= 0)
1744 {
1745 subreg_get_info (reg_renumber[reg_x],
1746 GET_MODE (SUBREG_REG (x)), byte_x,
1747 GET_MODE (x), &info);
1748 if (!info.representable_p)
1749 return 0;
1750 reg_x = info.offset;
1751 byte_x = 0;
1752 }
1753 }
1754 else
1755 {
1756 reg_x = REGNO (x);
1757 if (reg_renumber[reg_x] >= 0)
1758 reg_x = reg_renumber[reg_x];
1759 }
1760
1761 if (GET_CODE (y) == SUBREG)
1762 {
1763 reg_y = REGNO (SUBREG_REG (y));
1764 byte_y = SUBREG_BYTE (y);
1765
1766 if (reg_renumber[reg_y] >= 0)
1767 {
1768 subreg_get_info (reg_renumber[reg_y],
1769 GET_MODE (SUBREG_REG (y)), byte_y,
1770 GET_MODE (y), &info);
1771 if (!info.representable_p)
1772 return 0;
1773 reg_y = info.offset;
1774 byte_y = 0;
1775 }
1776 }
1777 else
1778 {
1779 reg_y = REGNO (y);
1780 if (reg_renumber[reg_y] >= 0)
1781 reg_y = reg_renumber[reg_y];
1782 }
1783
1784 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1785 }
1786
1787 /* Now we have disposed of all the cases
1788 in which different rtx codes can match. */
1789 if (code != GET_CODE (y))
1790 return 0;
1791
1792 switch (code)
1793 {
1794 case PC:
1795 case CC0:
1796 case ADDR_VEC:
1797 case ADDR_DIFF_VEC:
1798 CASE_CONST_UNIQUE:
1799 return 0;
1800
1801 case LABEL_REF:
1802 /* We can't assume nonlocal labels have their following insns yet. */
1803 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1804 return label_ref_label (x) == label_ref_label (y);
1805
1806 /* Two label-refs are equivalent if they point at labels
1807 in the same position in the instruction stream. */
1808 else
1809 {
1810 rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1811 rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
1812 while (xi && LABEL_P (xi))
1813 xi = next_nonnote_nondebug_insn (xi);
1814 while (yi && LABEL_P (yi))
1815 yi = next_nonnote_nondebug_insn (yi);
1816 return xi == yi;
1817 }
1818
1819 case SYMBOL_REF:
1820 return XSTR (x, 0) == XSTR (y, 0);
1821
1822 case CODE_LABEL:
1823 /* If we didn't match EQ equality above, they aren't the same. */
1824 return 0;
1825
1826 default:
1827 break;
1828 }
1829
1830 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1831
1832 if (GET_MODE (x) != GET_MODE (y))
1833 return 0;
1834
1835 /* MEMs referring to different address space are not equivalent. */
1836 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1837 return 0;
1838
1839 /* For commutative operations, the RTX match if the operand match in any
1840 order. Also handle the simple binary and unary cases without a loop. */
1841 if (targetm.commutative_p (x, UNKNOWN))
1842 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1843 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1844 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1845 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1846 else if (NON_COMMUTATIVE_P (x))
1847 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1848 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1849 else if (UNARY_P (x))
1850 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1851
1852 /* Compare the elements. If any pair of corresponding elements
1853 fail to match, return 0 for the whole things. */
1854
1855 fmt = GET_RTX_FORMAT (code);
1856 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1857 {
1858 int j;
1859 switch (fmt[i])
1860 {
1861 case 'w':
1862 if (XWINT (x, i) != XWINT (y, i))
1863 return 0;
1864 break;
1865
1866 case 'i':
1867 if (XINT (x, i) != XINT (y, i))
1868 {
1869 if (((code == ASM_OPERANDS && i == 6)
1870 || (code == ASM_INPUT && i == 1)))
1871 break;
1872 return 0;
1873 }
1874 break;
1875
1876 case 't':
1877 if (XTREE (x, i) != XTREE (y, i))
1878 return 0;
1879 break;
1880
1881 case 's':
1882 if (strcmp (XSTR (x, i), XSTR (y, i)))
1883 return 0;
1884 break;
1885
1886 case 'e':
1887 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1888 return 0;
1889 break;
1890
1891 case 'u':
1892 if (XEXP (x, i) != XEXP (y, i))
1893 return 0;
1894 /* Fall through. */
1895 case '0':
1896 break;
1897
1898 case 'E':
1899 if (XVECLEN (x, i) != XVECLEN (y, i))
1900 return 0;
1901 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1902 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1903 return 0;
1904 break;
1905
1906 default:
1907 gcc_unreachable ();
1908 }
1909 }
1910 return 1;
1911 }
1912 \f
1913 /* If X is a hard register or equivalent to one or a subregister of one,
1914 return the hard register number. If X is a pseudo register that was not
1915 assigned a hard register, return the pseudo register number. Otherwise,
1916 return -1. Any rtx is valid for X. */
1917
1918 int
1919 true_regnum (const_rtx x)
1920 {
1921 if (REG_P (x))
1922 {
1923 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1924 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1925 return reg_renumber[REGNO (x)];
1926 return REGNO (x);
1927 }
1928 if (GET_CODE (x) == SUBREG)
1929 {
1930 int base = true_regnum (SUBREG_REG (x));
1931 if (base >= 0
1932 && base < FIRST_PSEUDO_REGISTER)
1933 {
1934 struct subreg_info info;
1935
1936 subreg_get_info (lra_in_progress
1937 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1938 GET_MODE (SUBREG_REG (x)),
1939 SUBREG_BYTE (x), GET_MODE (x), &info);
1940
1941 if (info.representable_p)
1942 return base + info.offset;
1943 }
1944 }
1945 return -1;
1946 }
1947
1948 /* Return regno of the register REG and handle subregs too. */
1949 unsigned int
1950 reg_or_subregno (const_rtx reg)
1951 {
1952 if (GET_CODE (reg) == SUBREG)
1953 reg = SUBREG_REG (reg);
1954 gcc_assert (REG_P (reg));
1955 return REGNO (reg);
1956 }