rtl.texi (simple_return): Document.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes. For return insns, it contains either a
33 RETURN or a SIMPLE_RETURN rtx.
34
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
49 #include "recog.h"
50 #include "function.h"
51 #include "basic-block.h"
52 #include "expr.h"
53 #include "except.h"
54 #include "diagnostic-core.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58 #include "tree-pass.h"
59 #include "target.h"
60
61 /* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63 /* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
67
68 static void init_label_info (rtx);
69 static void mark_all_labels (rtx);
70 static void mark_jump_label_1 (rtx, rtx, bool, bool);
71 static void mark_jump_label_asm (rtx, rtx);
72 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
73 static int invert_exp_1 (rtx, rtx);
74 static int returnjump_p_1 (rtx *, void *);
75 \f
76 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
77 static void
78 rebuild_jump_labels_1 (rtx f, bool count_forced)
79 {
80 rtx insn;
81
82 timevar_push (TV_REBUILD_JUMP);
83 init_label_info (f);
84 mark_all_labels (f);
85
86 /* Keep track of labels used from static data; we don't track them
87 closely enough to delete them here, so make sure their reference
88 count doesn't drop to zero. */
89
90 if (count_forced)
91 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
92 if (LABEL_P (XEXP (insn, 0)))
93 LABEL_NUSES (XEXP (insn, 0))++;
94 timevar_pop (TV_REBUILD_JUMP);
95 }
96
97 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
98 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
99 instructions and jumping insns that have labels as operands
100 (e.g. cbranchsi4). */
101 void
102 rebuild_jump_labels (rtx f)
103 {
104 rebuild_jump_labels_1 (f, true);
105 }
106
107 /* This function is like rebuild_jump_labels, but doesn't run over
108 forced_labels. It can be used on insn chains that aren't the
109 main function chain. */
110 void
111 rebuild_jump_labels_chain (rtx chain)
112 {
113 rebuild_jump_labels_1 (chain, false);
114 }
115 \f
116 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
117 non-fallthru insn. This is not generally true, as multiple barriers
118 may have crept in, or the BARRIER may be separated from the last
119 real insn by one or more NOTEs.
120
121 This simple pass moves barriers and removes duplicates so that the
122 old code is happy.
123 */
124 unsigned int
125 cleanup_barriers (void)
126 {
127 rtx insn, next, prev;
128 for (insn = get_insns (); insn; insn = next)
129 {
130 next = NEXT_INSN (insn);
131 if (BARRIER_P (insn))
132 {
133 prev = prev_nonnote_insn (insn);
134 if (!prev)
135 continue;
136 if (BARRIER_P (prev))
137 delete_insn (insn);
138 else if (prev != PREV_INSN (insn))
139 reorder_insns (insn, insn, prev);
140 }
141 }
142 return 0;
143 }
144
145 struct rtl_opt_pass pass_cleanup_barriers =
146 {
147 {
148 RTL_PASS,
149 "barriers", /* name */
150 NULL, /* gate */
151 cleanup_barriers, /* execute */
152 NULL, /* sub */
153 NULL, /* next */
154 0, /* static_pass_number */
155 TV_NONE, /* tv_id */
156 0, /* properties_required */
157 0, /* properties_provided */
158 0, /* properties_destroyed */
159 0, /* todo_flags_start */
160 0 /* todo_flags_finish */
161 }
162 };
163
164 \f
165 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
166 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
167 notes whose labels don't occur in the insn any more. */
168
169 static void
170 init_label_info (rtx f)
171 {
172 rtx insn;
173
174 for (insn = f; insn; insn = NEXT_INSN (insn))
175 {
176 if (LABEL_P (insn))
177 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
178
179 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
180 sticky and not reset here; that way we won't lose association
181 with a label when e.g. the source for a target register
182 disappears out of reach for targets that may use jump-target
183 registers. Jump transformations are supposed to transform
184 any REG_LABEL_TARGET notes. The target label reference in a
185 branch may disappear from the branch (and from the
186 instruction before it) for other reasons, like register
187 allocation. */
188
189 if (INSN_P (insn))
190 {
191 rtx note, next;
192
193 for (note = REG_NOTES (insn); note; note = next)
194 {
195 next = XEXP (note, 1);
196 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
197 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
198 remove_note (insn, note);
199 }
200 }
201 }
202 }
203
204 /* A subroutine of mark_all_labels. Trivially propagate a simple label
205 load into a jump_insn that uses it. */
206
207 static void
208 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
209 {
210 rtx label_note, pc, pc_src;
211
212 pc = pc_set (jump_insn);
213 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
214 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
215
216 /* If the previous non-jump insn sets something to a label,
217 something that this jump insn uses, make that label the primary
218 target of this insn if we don't yet have any. That previous
219 insn must be a single_set and not refer to more than one label.
220 The jump insn must not refer to other labels as jump targets
221 and must be a plain (set (pc) ...), maybe in a parallel, and
222 may refer to the item being set only directly or as one of the
223 arms in an IF_THEN_ELSE. */
224
225 if (label_note != NULL && pc_src != NULL)
226 {
227 rtx label_set = single_set (prev_nonjump_insn);
228 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
229
230 if (label_set != NULL
231 /* The source must be the direct LABEL_REF, not a
232 PLUS, UNSPEC, IF_THEN_ELSE etc. */
233 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
234 && (rtx_equal_p (label_dest, pc_src)
235 || (GET_CODE (pc_src) == IF_THEN_ELSE
236 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
237 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
238 {
239 /* The CODE_LABEL referred to in the note must be the
240 CODE_LABEL in the LABEL_REF of the "set". We can
241 conveniently use it for the marker function, which
242 requires a LABEL_REF wrapping. */
243 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
244
245 mark_jump_label_1 (label_set, jump_insn, false, true);
246
247 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
248 }
249 }
250 }
251
252 /* Mark the label each jump jumps to.
253 Combine consecutive labels, and count uses of labels. */
254
255 static void
256 mark_all_labels (rtx f)
257 {
258 rtx insn;
259
260 if (current_ir_type () == IR_RTL_CFGLAYOUT)
261 {
262 basic_block bb;
263 FOR_EACH_BB (bb)
264 {
265 /* In cfglayout mode, we don't bother with trivial next-insn
266 propagation of LABEL_REFs into JUMP_LABEL. This will be
267 handled by other optimizers using better algorithms. */
268 FOR_BB_INSNS (bb, insn)
269 {
270 gcc_assert (! INSN_DELETED_P (insn));
271 if (NONDEBUG_INSN_P (insn))
272 mark_jump_label (PATTERN (insn), insn, 0);
273 }
274
275 /* In cfglayout mode, there may be non-insns between the
276 basic blocks. If those non-insns represent tablejump data,
277 they contain label references that we must record. */
278 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
279 if (INSN_P (insn))
280 {
281 gcc_assert (JUMP_TABLE_DATA_P (insn));
282 mark_jump_label (PATTERN (insn), insn, 0);
283 }
284 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
285 if (INSN_P (insn))
286 {
287 gcc_assert (JUMP_TABLE_DATA_P (insn));
288 mark_jump_label (PATTERN (insn), insn, 0);
289 }
290 }
291 }
292 else
293 {
294 rtx prev_nonjump_insn = NULL;
295 for (insn = f; insn; insn = NEXT_INSN (insn))
296 {
297 if (INSN_DELETED_P (insn))
298 ;
299 else if (LABEL_P (insn))
300 prev_nonjump_insn = NULL;
301 else if (NONDEBUG_INSN_P (insn))
302 {
303 mark_jump_label (PATTERN (insn), insn, 0);
304 if (JUMP_P (insn))
305 {
306 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
307 maybe_propagate_label_ref (insn, prev_nonjump_insn);
308 }
309 else
310 prev_nonjump_insn = insn;
311 }
312 }
313 }
314 }
315 \f
316 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
317 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
318 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
319 know whether it's source is floating point or integer comparison. Machine
320 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
321 to help this function avoid overhead in these cases. */
322 enum rtx_code
323 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
324 const_rtx arg1, const_rtx insn)
325 {
326 enum machine_mode mode;
327
328 /* If this is not actually a comparison, we can't reverse it. */
329 if (GET_RTX_CLASS (code) != RTX_COMPARE
330 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
331 return UNKNOWN;
332
333 mode = GET_MODE (arg0);
334 if (mode == VOIDmode)
335 mode = GET_MODE (arg1);
336
337 /* First see if machine description supplies us way to reverse the
338 comparison. Give it priority over everything else to allow
339 machine description to do tricks. */
340 if (GET_MODE_CLASS (mode) == MODE_CC
341 && REVERSIBLE_CC_MODE (mode))
342 {
343 #ifdef REVERSE_CONDITION
344 return REVERSE_CONDITION (code, mode);
345 #else
346 return reverse_condition (code);
347 #endif
348 }
349
350 /* Try a few special cases based on the comparison code. */
351 switch (code)
352 {
353 case GEU:
354 case GTU:
355 case LEU:
356 case LTU:
357 case NE:
358 case EQ:
359 /* It is always safe to reverse EQ and NE, even for the floating
360 point. Similarly the unsigned comparisons are never used for
361 floating point so we can reverse them in the default way. */
362 return reverse_condition (code);
363 case ORDERED:
364 case UNORDERED:
365 case LTGT:
366 case UNEQ:
367 /* In case we already see unordered comparison, we can be sure to
368 be dealing with floating point so we don't need any more tests. */
369 return reverse_condition_maybe_unordered (code);
370 case UNLT:
371 case UNLE:
372 case UNGT:
373 case UNGE:
374 /* We don't have safe way to reverse these yet. */
375 return UNKNOWN;
376 default:
377 break;
378 }
379
380 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
381 {
382 const_rtx prev;
383 /* Try to search for the comparison to determine the real mode.
384 This code is expensive, but with sane machine description it
385 will be never used, since REVERSIBLE_CC_MODE will return true
386 in all cases. */
387 if (! insn)
388 return UNKNOWN;
389
390 /* These CONST_CAST's are okay because prev_nonnote_insn just
391 returns its argument and we assign it to a const_rtx
392 variable. */
393 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
394 prev != 0 && !LABEL_P (prev);
395 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
396 {
397 const_rtx set = set_of (arg0, prev);
398 if (set && GET_CODE (set) == SET
399 && rtx_equal_p (SET_DEST (set), arg0))
400 {
401 rtx src = SET_SRC (set);
402
403 if (GET_CODE (src) == COMPARE)
404 {
405 rtx comparison = src;
406 arg0 = XEXP (src, 0);
407 mode = GET_MODE (arg0);
408 if (mode == VOIDmode)
409 mode = GET_MODE (XEXP (comparison, 1));
410 break;
411 }
412 /* We can get past reg-reg moves. This may be useful for model
413 of i387 comparisons that first move flag registers around. */
414 if (REG_P (src))
415 {
416 arg0 = src;
417 continue;
418 }
419 }
420 /* If register is clobbered in some ununderstandable way,
421 give up. */
422 if (set)
423 return UNKNOWN;
424 }
425 }
426
427 /* Test for an integer condition, or a floating-point comparison
428 in which NaNs can be ignored. */
429 if (CONST_INT_P (arg0)
430 || (GET_MODE (arg0) != VOIDmode
431 && GET_MODE_CLASS (mode) != MODE_CC
432 && !HONOR_NANS (mode)))
433 return reverse_condition (code);
434
435 return UNKNOWN;
436 }
437
438 /* A wrapper around the previous function to take COMPARISON as rtx
439 expression. This simplifies many callers. */
440 enum rtx_code
441 reversed_comparison_code (const_rtx comparison, const_rtx insn)
442 {
443 if (!COMPARISON_P (comparison))
444 return UNKNOWN;
445 return reversed_comparison_code_parts (GET_CODE (comparison),
446 XEXP (comparison, 0),
447 XEXP (comparison, 1), insn);
448 }
449
450 /* Return comparison with reversed code of EXP.
451 Return NULL_RTX in case we fail to do the reversal. */
452 rtx
453 reversed_comparison (const_rtx exp, enum machine_mode mode)
454 {
455 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
456 if (reversed_code == UNKNOWN)
457 return NULL_RTX;
458 else
459 return simplify_gen_relational (reversed_code, mode, VOIDmode,
460 XEXP (exp, 0), XEXP (exp, 1));
461 }
462
463 \f
464 /* Given an rtx-code for a comparison, return the code for the negated
465 comparison. If no such code exists, return UNKNOWN.
466
467 WATCH OUT! reverse_condition is not safe to use on a jump that might
468 be acting on the results of an IEEE floating point comparison, because
469 of the special treatment of non-signaling nans in comparisons.
470 Use reversed_comparison_code instead. */
471
472 enum rtx_code
473 reverse_condition (enum rtx_code code)
474 {
475 switch (code)
476 {
477 case EQ:
478 return NE;
479 case NE:
480 return EQ;
481 case GT:
482 return LE;
483 case GE:
484 return LT;
485 case LT:
486 return GE;
487 case LE:
488 return GT;
489 case GTU:
490 return LEU;
491 case GEU:
492 return LTU;
493 case LTU:
494 return GEU;
495 case LEU:
496 return GTU;
497 case UNORDERED:
498 return ORDERED;
499 case ORDERED:
500 return UNORDERED;
501
502 case UNLT:
503 case UNLE:
504 case UNGT:
505 case UNGE:
506 case UNEQ:
507 case LTGT:
508 return UNKNOWN;
509
510 default:
511 gcc_unreachable ();
512 }
513 }
514
515 /* Similar, but we're allowed to generate unordered comparisons, which
516 makes it safe for IEEE floating-point. Of course, we have to recognize
517 that the target will support them too... */
518
519 enum rtx_code
520 reverse_condition_maybe_unordered (enum rtx_code code)
521 {
522 switch (code)
523 {
524 case EQ:
525 return NE;
526 case NE:
527 return EQ;
528 case GT:
529 return UNLE;
530 case GE:
531 return UNLT;
532 case LT:
533 return UNGE;
534 case LE:
535 return UNGT;
536 case LTGT:
537 return UNEQ;
538 case UNORDERED:
539 return ORDERED;
540 case ORDERED:
541 return UNORDERED;
542 case UNLT:
543 return GE;
544 case UNLE:
545 return GT;
546 case UNGT:
547 return LE;
548 case UNGE:
549 return LT;
550 case UNEQ:
551 return LTGT;
552
553 default:
554 gcc_unreachable ();
555 }
556 }
557
558 /* Similar, but return the code when two operands of a comparison are swapped.
559 This IS safe for IEEE floating-point. */
560
561 enum rtx_code
562 swap_condition (enum rtx_code code)
563 {
564 switch (code)
565 {
566 case EQ:
567 case NE:
568 case UNORDERED:
569 case ORDERED:
570 case UNEQ:
571 case LTGT:
572 return code;
573
574 case GT:
575 return LT;
576 case GE:
577 return LE;
578 case LT:
579 return GT;
580 case LE:
581 return GE;
582 case GTU:
583 return LTU;
584 case GEU:
585 return LEU;
586 case LTU:
587 return GTU;
588 case LEU:
589 return GEU;
590 case UNLT:
591 return UNGT;
592 case UNLE:
593 return UNGE;
594 case UNGT:
595 return UNLT;
596 case UNGE:
597 return UNLE;
598
599 default:
600 gcc_unreachable ();
601 }
602 }
603
604 /* Given a comparison CODE, return the corresponding unsigned comparison.
605 If CODE is an equality comparison or already an unsigned comparison,
606 CODE is returned. */
607
608 enum rtx_code
609 unsigned_condition (enum rtx_code code)
610 {
611 switch (code)
612 {
613 case EQ:
614 case NE:
615 case GTU:
616 case GEU:
617 case LTU:
618 case LEU:
619 return code;
620
621 case GT:
622 return GTU;
623 case GE:
624 return GEU;
625 case LT:
626 return LTU;
627 case LE:
628 return LEU;
629
630 default:
631 gcc_unreachable ();
632 }
633 }
634
635 /* Similarly, return the signed version of a comparison. */
636
637 enum rtx_code
638 signed_condition (enum rtx_code code)
639 {
640 switch (code)
641 {
642 case EQ:
643 case NE:
644 case GT:
645 case GE:
646 case LT:
647 case LE:
648 return code;
649
650 case GTU:
651 return GT;
652 case GEU:
653 return GE;
654 case LTU:
655 return LT;
656 case LEU:
657 return LE;
658
659 default:
660 gcc_unreachable ();
661 }
662 }
663 \f
664 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
665 truth of CODE1 implies the truth of CODE2. */
666
667 int
668 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
669 {
670 /* UNKNOWN comparison codes can happen as a result of trying to revert
671 comparison codes.
672 They can't match anything, so we have to reject them here. */
673 if (code1 == UNKNOWN || code2 == UNKNOWN)
674 return 0;
675
676 if (code1 == code2)
677 return 1;
678
679 switch (code1)
680 {
681 case UNEQ:
682 if (code2 == UNLE || code2 == UNGE)
683 return 1;
684 break;
685
686 case EQ:
687 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
688 || code2 == ORDERED)
689 return 1;
690 break;
691
692 case UNLT:
693 if (code2 == UNLE || code2 == NE)
694 return 1;
695 break;
696
697 case LT:
698 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
699 return 1;
700 break;
701
702 case UNGT:
703 if (code2 == UNGE || code2 == NE)
704 return 1;
705 break;
706
707 case GT:
708 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
709 return 1;
710 break;
711
712 case GE:
713 case LE:
714 if (code2 == ORDERED)
715 return 1;
716 break;
717
718 case LTGT:
719 if (code2 == NE || code2 == ORDERED)
720 return 1;
721 break;
722
723 case LTU:
724 if (code2 == LEU || code2 == NE)
725 return 1;
726 break;
727
728 case GTU:
729 if (code2 == GEU || code2 == NE)
730 return 1;
731 break;
732
733 case UNORDERED:
734 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
735 || code2 == UNGE || code2 == UNGT)
736 return 1;
737 break;
738
739 default:
740 break;
741 }
742
743 return 0;
744 }
745 \f
746 /* Return 1 if INSN is an unconditional jump and nothing else. */
747
748 int
749 simplejump_p (const_rtx insn)
750 {
751 return (JUMP_P (insn)
752 && GET_CODE (PATTERN (insn)) == SET
753 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
754 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
755 }
756
757 /* Return nonzero if INSN is a (possibly) conditional jump
758 and nothing more.
759
760 Use of this function is deprecated, since we need to support combined
761 branch and compare insns. Use any_condjump_p instead whenever possible. */
762
763 int
764 condjump_p (const_rtx insn)
765 {
766 const_rtx x = PATTERN (insn);
767
768 if (GET_CODE (x) != SET
769 || GET_CODE (SET_DEST (x)) != PC)
770 return 0;
771
772 x = SET_SRC (x);
773 if (GET_CODE (x) == LABEL_REF)
774 return 1;
775 else
776 return (GET_CODE (x) == IF_THEN_ELSE
777 && ((GET_CODE (XEXP (x, 2)) == PC
778 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
779 || ANY_RETURN_P (XEXP (x, 1))))
780 || (GET_CODE (XEXP (x, 1)) == PC
781 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
782 || ANY_RETURN_P (XEXP (x, 2))))));
783 }
784
785 /* Return nonzero if INSN is a (possibly) conditional jump inside a
786 PARALLEL.
787
788 Use this function is deprecated, since we need to support combined
789 branch and compare insns. Use any_condjump_p instead whenever possible. */
790
791 int
792 condjump_in_parallel_p (const_rtx insn)
793 {
794 const_rtx x = PATTERN (insn);
795
796 if (GET_CODE (x) != PARALLEL)
797 return 0;
798 else
799 x = XVECEXP (x, 0, 0);
800
801 if (GET_CODE (x) != SET)
802 return 0;
803 if (GET_CODE (SET_DEST (x)) != PC)
804 return 0;
805 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
806 return 1;
807 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
808 return 0;
809 if (XEXP (SET_SRC (x), 2) == pc_rtx
810 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
811 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
812 return 1;
813 if (XEXP (SET_SRC (x), 1) == pc_rtx
814 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
815 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
816 return 1;
817 return 0;
818 }
819
820 /* Return set of PC, otherwise NULL. */
821
822 rtx
823 pc_set (const_rtx insn)
824 {
825 rtx pat;
826 if (!JUMP_P (insn))
827 return NULL_RTX;
828 pat = PATTERN (insn);
829
830 /* The set is allowed to appear either as the insn pattern or
831 the first set in a PARALLEL. */
832 if (GET_CODE (pat) == PARALLEL)
833 pat = XVECEXP (pat, 0, 0);
834 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
835 return pat;
836
837 return NULL_RTX;
838 }
839
840 /* Return true when insn is an unconditional direct jump,
841 possibly bundled inside a PARALLEL. */
842
843 int
844 any_uncondjump_p (const_rtx insn)
845 {
846 const_rtx x = pc_set (insn);
847 if (!x)
848 return 0;
849 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
850 return 0;
851 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
852 return 0;
853 return 1;
854 }
855
856 /* Return true when insn is a conditional jump. This function works for
857 instructions containing PC sets in PARALLELs. The instruction may have
858 various other effects so before removing the jump you must verify
859 onlyjump_p.
860
861 Note that unlike condjump_p it returns false for unconditional jumps. */
862
863 int
864 any_condjump_p (const_rtx insn)
865 {
866 const_rtx x = pc_set (insn);
867 enum rtx_code a, b;
868
869 if (!x)
870 return 0;
871 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
872 return 0;
873
874 a = GET_CODE (XEXP (SET_SRC (x), 1));
875 b = GET_CODE (XEXP (SET_SRC (x), 2));
876
877 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
878 || (a == PC
879 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
880 }
881
882 /* Return the label of a conditional jump. */
883
884 rtx
885 condjump_label (const_rtx insn)
886 {
887 rtx x = pc_set (insn);
888
889 if (!x)
890 return NULL_RTX;
891 x = SET_SRC (x);
892 if (GET_CODE (x) == LABEL_REF)
893 return x;
894 if (GET_CODE (x) != IF_THEN_ELSE)
895 return NULL_RTX;
896 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
897 return XEXP (x, 1);
898 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
899 return XEXP (x, 2);
900 return NULL_RTX;
901 }
902
903 /* Return true if INSN is a (possibly conditional) return insn. */
904
905 static int
906 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
907 {
908 rtx x = *loc;
909
910 if (x == NULL)
911 return false;
912
913 switch (GET_CODE (x))
914 {
915 case RETURN:
916 case SIMPLE_RETURN:
917 case EH_RETURN:
918 return true;
919
920 case SET:
921 return SET_IS_RETURN_P (x);
922
923 default:
924 return false;
925 }
926 }
927
928 /* Return TRUE if INSN is a return jump. */
929
930 int
931 returnjump_p (rtx insn)
932 {
933 if (!JUMP_P (insn))
934 return 0;
935 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
936 }
937
938 /* Return true if INSN is a (possibly conditional) return insn. */
939
940 static int
941 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
942 {
943 return *loc && GET_CODE (*loc) == EH_RETURN;
944 }
945
946 int
947 eh_returnjump_p (rtx insn)
948 {
949 if (!JUMP_P (insn))
950 return 0;
951 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
952 }
953
954 /* Return true if INSN is a jump that only transfers control and
955 nothing more. */
956
957 int
958 onlyjump_p (const_rtx insn)
959 {
960 rtx set;
961
962 if (!JUMP_P (insn))
963 return 0;
964
965 set = single_set (insn);
966 if (set == NULL)
967 return 0;
968 if (GET_CODE (SET_DEST (set)) != PC)
969 return 0;
970 if (side_effects_p (SET_SRC (set)))
971 return 0;
972
973 return 1;
974 }
975
976 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
977 NULL or a return. */
978 bool
979 jump_to_label_p (rtx insn)
980 {
981 return (JUMP_P (insn)
982 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
983 }
984
985 #ifdef HAVE_cc0
986
987 /* Return nonzero if X is an RTX that only sets the condition codes
988 and has no side effects. */
989
990 int
991 only_sets_cc0_p (const_rtx x)
992 {
993 if (! x)
994 return 0;
995
996 if (INSN_P (x))
997 x = PATTERN (x);
998
999 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1000 }
1001
1002 /* Return 1 if X is an RTX that does nothing but set the condition codes
1003 and CLOBBER or USE registers.
1004 Return -1 if X does explicitly set the condition codes,
1005 but also does other things. */
1006
1007 int
1008 sets_cc0_p (const_rtx x)
1009 {
1010 if (! x)
1011 return 0;
1012
1013 if (INSN_P (x))
1014 x = PATTERN (x);
1015
1016 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1017 return 1;
1018 if (GET_CODE (x) == PARALLEL)
1019 {
1020 int i;
1021 int sets_cc0 = 0;
1022 int other_things = 0;
1023 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1024 {
1025 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1026 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1027 sets_cc0 = 1;
1028 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1029 other_things = 1;
1030 }
1031 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1032 }
1033 return 0;
1034 }
1035 #endif
1036 \f
1037 /* Find all CODE_LABELs referred to in X, and increment their use
1038 counts. If INSN is a JUMP_INSN and there is at least one
1039 CODE_LABEL referenced in INSN as a jump target, then store the last
1040 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1041 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1042 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1043 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1044 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1045 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1046
1047 Note that two labels separated by a loop-beginning note
1048 must be kept distinct if we have not yet done loop-optimization,
1049 because the gap between them is where loop-optimize
1050 will want to move invariant code to. CROSS_JUMP tells us
1051 that loop-optimization is done with. */
1052
1053 void
1054 mark_jump_label (rtx x, rtx insn, int in_mem)
1055 {
1056 rtx asmop = extract_asm_operands (x);
1057 if (asmop)
1058 mark_jump_label_asm (asmop, insn);
1059 else
1060 mark_jump_label_1 (x, insn, in_mem != 0,
1061 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1062 }
1063
1064 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1065 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1066 jump-target; when the JUMP_LABEL field of INSN should be set or a
1067 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1068 note. */
1069
1070 static void
1071 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1072 {
1073 RTX_CODE code = GET_CODE (x);
1074 int i;
1075 const char *fmt;
1076
1077 switch (code)
1078 {
1079 case PC:
1080 case CC0:
1081 case REG:
1082 case CONST_INT:
1083 case CONST_DOUBLE:
1084 case CLOBBER:
1085 case CALL:
1086 return;
1087
1088 case RETURN:
1089 if (is_target)
1090 {
1091 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1092 JUMP_LABEL (insn) = x;
1093 }
1094 return;
1095
1096 case MEM:
1097 in_mem = true;
1098 break;
1099
1100 case SEQUENCE:
1101 for (i = 0; i < XVECLEN (x, 0); i++)
1102 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1103 XVECEXP (x, 0, i), 0);
1104 return;
1105
1106 case SYMBOL_REF:
1107 if (!in_mem)
1108 return;
1109
1110 /* If this is a constant-pool reference, see if it is a label. */
1111 if (CONSTANT_POOL_ADDRESS_P (x))
1112 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1113 break;
1114
1115 /* Handle operands in the condition of an if-then-else as for a
1116 non-jump insn. */
1117 case IF_THEN_ELSE:
1118 if (!is_target)
1119 break;
1120 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1121 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1122 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1123 return;
1124
1125 case LABEL_REF:
1126 {
1127 rtx label = XEXP (x, 0);
1128
1129 /* Ignore remaining references to unreachable labels that
1130 have been deleted. */
1131 if (NOTE_P (label)
1132 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1133 break;
1134
1135 gcc_assert (LABEL_P (label));
1136
1137 /* Ignore references to labels of containing functions. */
1138 if (LABEL_REF_NONLOCAL_P (x))
1139 break;
1140
1141 XEXP (x, 0) = label;
1142 if (! insn || ! INSN_DELETED_P (insn))
1143 ++LABEL_NUSES (label);
1144
1145 if (insn)
1146 {
1147 if (is_target
1148 /* Do not change a previous setting of JUMP_LABEL. If the
1149 JUMP_LABEL slot is occupied by a different label,
1150 create a note for this label. */
1151 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1152 JUMP_LABEL (insn) = label;
1153 else
1154 {
1155 enum reg_note kind
1156 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1157
1158 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1159 for LABEL unless there already is one. All uses of
1160 a label, except for the primary target of a jump,
1161 must have such a note. */
1162 if (! find_reg_note (insn, kind, label))
1163 add_reg_note (insn, kind, label);
1164 }
1165 }
1166 return;
1167 }
1168
1169 /* Do walk the labels in a vector, but not the first operand of an
1170 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1171 case ADDR_VEC:
1172 case ADDR_DIFF_VEC:
1173 if (! INSN_DELETED_P (insn))
1174 {
1175 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1176
1177 for (i = 0; i < XVECLEN (x, eltnum); i++)
1178 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1179 is_target);
1180 }
1181 return;
1182
1183 default:
1184 break;
1185 }
1186
1187 fmt = GET_RTX_FORMAT (code);
1188
1189 /* The primary target of a tablejump is the label of the ADDR_VEC,
1190 which is canonically mentioned *last* in the insn. To get it
1191 marked as JUMP_LABEL, we iterate over items in reverse order. */
1192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1193 {
1194 if (fmt[i] == 'e')
1195 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1196 else if (fmt[i] == 'E')
1197 {
1198 int j;
1199
1200 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1201 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1202 is_target);
1203 }
1204 }
1205 }
1206
1207 /* Worker function for mark_jump_label. Handle asm insns specially.
1208 In particular, output operands need not be considered so we can
1209 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1210 need to be considered targets. */
1211
1212 static void
1213 mark_jump_label_asm (rtx asmop, rtx insn)
1214 {
1215 int i;
1216
1217 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1218 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1219
1220 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1221 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1222 }
1223 \f
1224 /* Delete insn INSN from the chain of insns and update label ref counts
1225 and delete insns now unreachable.
1226
1227 Returns the first insn after INSN that was not deleted.
1228
1229 Usage of this instruction is deprecated. Use delete_insn instead and
1230 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1231
1232 rtx
1233 delete_related_insns (rtx insn)
1234 {
1235 int was_code_label = (LABEL_P (insn));
1236 rtx note;
1237 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1238
1239 while (next && INSN_DELETED_P (next))
1240 next = NEXT_INSN (next);
1241
1242 /* This insn is already deleted => return first following nondeleted. */
1243 if (INSN_DELETED_P (insn))
1244 return next;
1245
1246 delete_insn (insn);
1247
1248 /* If instruction is followed by a barrier,
1249 delete the barrier too. */
1250
1251 if (next != 0 && BARRIER_P (next))
1252 delete_insn (next);
1253
1254 /* If deleting a jump, decrement the count of the label,
1255 and delete the label if it is now unused. */
1256
1257 if (jump_to_label_p (insn))
1258 {
1259 rtx lab = JUMP_LABEL (insn), lab_next;
1260
1261 if (LABEL_NUSES (lab) == 0)
1262 /* This can delete NEXT or PREV,
1263 either directly if NEXT is JUMP_LABEL (INSN),
1264 or indirectly through more levels of jumps. */
1265 delete_related_insns (lab);
1266 else if (tablejump_p (insn, NULL, &lab_next))
1267 {
1268 /* If we're deleting the tablejump, delete the dispatch table.
1269 We may not be able to kill the label immediately preceding
1270 just yet, as it might be referenced in code leading up to
1271 the tablejump. */
1272 delete_related_insns (lab_next);
1273 }
1274 }
1275
1276 /* Likewise if we're deleting a dispatch table. */
1277
1278 if (JUMP_TABLE_DATA_P (insn))
1279 {
1280 rtx pat = PATTERN (insn);
1281 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1282 int len = XVECLEN (pat, diff_vec_p);
1283
1284 for (i = 0; i < len; i++)
1285 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1286 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1287 while (next && INSN_DELETED_P (next))
1288 next = NEXT_INSN (next);
1289 return next;
1290 }
1291
1292 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1293 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1294 if (INSN_P (insn))
1295 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1296 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1297 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1298 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1299 && LABEL_P (XEXP (note, 0)))
1300 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1301 delete_related_insns (XEXP (note, 0));
1302
1303 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1304 prev = PREV_INSN (prev);
1305
1306 /* If INSN was a label and a dispatch table follows it,
1307 delete the dispatch table. The tablejump must have gone already.
1308 It isn't useful to fall through into a table. */
1309
1310 if (was_code_label
1311 && NEXT_INSN (insn) != 0
1312 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1313 next = delete_related_insns (NEXT_INSN (insn));
1314
1315 /* If INSN was a label, delete insns following it if now unreachable. */
1316
1317 if (was_code_label && prev && BARRIER_P (prev))
1318 {
1319 enum rtx_code code;
1320 while (next)
1321 {
1322 code = GET_CODE (next);
1323 if (code == NOTE)
1324 next = NEXT_INSN (next);
1325 /* Keep going past other deleted labels to delete what follows. */
1326 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1327 next = NEXT_INSN (next);
1328 else if (code == BARRIER || INSN_P (next))
1329 /* Note: if this deletes a jump, it can cause more
1330 deletion of unreachable code, after a different label.
1331 As long as the value from this recursive call is correct,
1332 this invocation functions correctly. */
1333 next = delete_related_insns (next);
1334 else
1335 break;
1336 }
1337 }
1338
1339 /* I feel a little doubtful about this loop,
1340 but I see no clean and sure alternative way
1341 to find the first insn after INSN that is not now deleted.
1342 I hope this works. */
1343 while (next && INSN_DELETED_P (next))
1344 next = NEXT_INSN (next);
1345 return next;
1346 }
1347 \f
1348 /* Delete a range of insns from FROM to TO, inclusive.
1349 This is for the sake of peephole optimization, so assume
1350 that whatever these insns do will still be done by a new
1351 peephole insn that will replace them. */
1352
1353 void
1354 delete_for_peephole (rtx from, rtx to)
1355 {
1356 rtx insn = from;
1357
1358 while (1)
1359 {
1360 rtx next = NEXT_INSN (insn);
1361 rtx prev = PREV_INSN (insn);
1362
1363 if (!NOTE_P (insn))
1364 {
1365 INSN_DELETED_P (insn) = 1;
1366
1367 /* Patch this insn out of the chain. */
1368 /* We don't do this all at once, because we
1369 must preserve all NOTEs. */
1370 if (prev)
1371 NEXT_INSN (prev) = next;
1372
1373 if (next)
1374 PREV_INSN (next) = prev;
1375 }
1376
1377 if (insn == to)
1378 break;
1379 insn = next;
1380 }
1381
1382 /* Note that if TO is an unconditional jump
1383 we *do not* delete the BARRIER that follows,
1384 since the peephole that replaces this sequence
1385 is also an unconditional jump in that case. */
1386 }
1387 \f
1388 /* A helper function for redirect_exp_1; examines its input X and returns
1389 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1390 static rtx
1391 redirect_target (rtx x)
1392 {
1393 if (x == NULL_RTX)
1394 return ret_rtx;
1395 if (!ANY_RETURN_P (x))
1396 return gen_rtx_LABEL_REF (Pmode, x);
1397 return x;
1398 }
1399
1400 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1401 NLABEL as a return. Accrue modifications into the change group. */
1402
1403 static void
1404 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1405 {
1406 rtx x = *loc;
1407 RTX_CODE code = GET_CODE (x);
1408 int i;
1409 const char *fmt;
1410
1411 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1412 || x == olabel)
1413 {
1414 x = redirect_target (nlabel);
1415 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1416 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1417 validate_change (insn, loc, x, 1);
1418 return;
1419 }
1420
1421 if (code == SET && SET_DEST (x) == pc_rtx
1422 && ANY_RETURN_P (nlabel)
1423 && GET_CODE (SET_SRC (x)) == LABEL_REF
1424 && XEXP (SET_SRC (x), 0) == olabel)
1425 {
1426 validate_change (insn, loc, nlabel, 1);
1427 return;
1428 }
1429
1430 if (code == IF_THEN_ELSE)
1431 {
1432 /* Skip the condition of an IF_THEN_ELSE. We only want to
1433 change jump destinations, not eventual label comparisons. */
1434 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1435 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1436 return;
1437 }
1438
1439 fmt = GET_RTX_FORMAT (code);
1440 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1441 {
1442 if (fmt[i] == 'e')
1443 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1444 else if (fmt[i] == 'E')
1445 {
1446 int j;
1447 for (j = 0; j < XVECLEN (x, i); j++)
1448 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1449 }
1450 }
1451 }
1452
1453 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1454 the modifications into the change group. Return false if we did
1455 not see how to do that. */
1456
1457 int
1458 redirect_jump_1 (rtx jump, rtx nlabel)
1459 {
1460 int ochanges = num_validated_changes ();
1461 rtx *loc, asmop;
1462
1463 gcc_assert (nlabel != NULL_RTX);
1464 asmop = extract_asm_operands (PATTERN (jump));
1465 if (asmop)
1466 {
1467 if (nlabel == NULL)
1468 return 0;
1469 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1470 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1471 }
1472 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1473 loc = &XVECEXP (PATTERN (jump), 0, 0);
1474 else
1475 loc = &PATTERN (jump);
1476
1477 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1478 return num_validated_changes () > ochanges;
1479 }
1480
1481 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1482 jump target label is unused as a result, it and the code following
1483 it may be deleted.
1484
1485 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1486 in that case we are to turn the jump into a (possibly conditional)
1487 return insn.
1488
1489 The return value will be 1 if the change was made, 0 if it wasn't
1490 (this can only occur when trying to produce return insns). */
1491
1492 int
1493 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1494 {
1495 rtx olabel = JUMP_LABEL (jump);
1496
1497 gcc_assert (nlabel != NULL_RTX);
1498
1499 if (nlabel == olabel)
1500 return 1;
1501
1502 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1503 return 0;
1504
1505 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1506 return 1;
1507 }
1508
1509 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1510 NLABEL in JUMP.
1511 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1512 count has dropped to zero. */
1513 void
1514 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1515 int invert)
1516 {
1517 rtx note;
1518
1519 gcc_assert (JUMP_LABEL (jump) == olabel);
1520
1521 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1522 moving FUNCTION_END note. Just sanity check that no user still worry
1523 about this. */
1524 gcc_assert (delete_unused >= 0);
1525 JUMP_LABEL (jump) = nlabel;
1526 if (!ANY_RETURN_P (nlabel))
1527 ++LABEL_NUSES (nlabel);
1528
1529 /* Update labels in any REG_EQUAL note. */
1530 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1531 {
1532 if (ANY_RETURN_P (nlabel)
1533 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1534 remove_note (jump, note);
1535 else
1536 {
1537 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1538 confirm_change_group ();
1539 }
1540 }
1541
1542 if (!ANY_RETURN_P (olabel)
1543 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1544 /* Undefined labels will remain outside the insn stream. */
1545 && INSN_UID (olabel))
1546 delete_related_insns (olabel);
1547 if (invert)
1548 invert_br_probabilities (jump);
1549 }
1550
1551 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1552 modifications into the change group. Return nonzero for success. */
1553 static int
1554 invert_exp_1 (rtx x, rtx insn)
1555 {
1556 RTX_CODE code = GET_CODE (x);
1557
1558 if (code == IF_THEN_ELSE)
1559 {
1560 rtx comp = XEXP (x, 0);
1561 rtx tem;
1562 enum rtx_code reversed_code;
1563
1564 /* We can do this in two ways: The preferable way, which can only
1565 be done if this is not an integer comparison, is to reverse
1566 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1567 of the IF_THEN_ELSE. If we can't do either, fail. */
1568
1569 reversed_code = reversed_comparison_code (comp, insn);
1570
1571 if (reversed_code != UNKNOWN)
1572 {
1573 validate_change (insn, &XEXP (x, 0),
1574 gen_rtx_fmt_ee (reversed_code,
1575 GET_MODE (comp), XEXP (comp, 0),
1576 XEXP (comp, 1)),
1577 1);
1578 return 1;
1579 }
1580
1581 tem = XEXP (x, 1);
1582 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1583 validate_change (insn, &XEXP (x, 2), tem, 1);
1584 return 1;
1585 }
1586 else
1587 return 0;
1588 }
1589
1590 /* Invert the condition of the jump JUMP, and make it jump to label
1591 NLABEL instead of where it jumps now. Accrue changes into the
1592 change group. Return false if we didn't see how to perform the
1593 inversion and redirection. */
1594
1595 int
1596 invert_jump_1 (rtx jump, rtx nlabel)
1597 {
1598 rtx x = pc_set (jump);
1599 int ochanges;
1600 int ok;
1601
1602 ochanges = num_validated_changes ();
1603 if (x == NULL)
1604 return 0;
1605 ok = invert_exp_1 (SET_SRC (x), jump);
1606 gcc_assert (ok);
1607
1608 if (num_validated_changes () == ochanges)
1609 return 0;
1610
1611 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1612 in Pmode, so checking this is not merely an optimization. */
1613 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1614 }
1615
1616 /* Invert the condition of the jump JUMP, and make it jump to label
1617 NLABEL instead of where it jumps now. Return true if successful. */
1618
1619 int
1620 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1621 {
1622 rtx olabel = JUMP_LABEL (jump);
1623
1624 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1625 {
1626 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1627 return 1;
1628 }
1629 cancel_changes (0);
1630 return 0;
1631 }
1632
1633 \f
1634 /* Like rtx_equal_p except that it considers two REGs as equal
1635 if they renumber to the same value and considers two commutative
1636 operations to be the same if the order of the operands has been
1637 reversed. */
1638
1639 int
1640 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1641 {
1642 int i;
1643 const enum rtx_code code = GET_CODE (x);
1644 const char *fmt;
1645
1646 if (x == y)
1647 return 1;
1648
1649 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1650 && (REG_P (y) || (GET_CODE (y) == SUBREG
1651 && REG_P (SUBREG_REG (y)))))
1652 {
1653 int reg_x = -1, reg_y = -1;
1654 int byte_x = 0, byte_y = 0;
1655 struct subreg_info info;
1656
1657 if (GET_MODE (x) != GET_MODE (y))
1658 return 0;
1659
1660 /* If we haven't done any renumbering, don't
1661 make any assumptions. */
1662 if (reg_renumber == 0)
1663 return rtx_equal_p (x, y);
1664
1665 if (code == SUBREG)
1666 {
1667 reg_x = REGNO (SUBREG_REG (x));
1668 byte_x = SUBREG_BYTE (x);
1669
1670 if (reg_renumber[reg_x] >= 0)
1671 {
1672 subreg_get_info (reg_renumber[reg_x],
1673 GET_MODE (SUBREG_REG (x)), byte_x,
1674 GET_MODE (x), &info);
1675 if (!info.representable_p)
1676 return 0;
1677 reg_x = info.offset;
1678 byte_x = 0;
1679 }
1680 }
1681 else
1682 {
1683 reg_x = REGNO (x);
1684 if (reg_renumber[reg_x] >= 0)
1685 reg_x = reg_renumber[reg_x];
1686 }
1687
1688 if (GET_CODE (y) == SUBREG)
1689 {
1690 reg_y = REGNO (SUBREG_REG (y));
1691 byte_y = SUBREG_BYTE (y);
1692
1693 if (reg_renumber[reg_y] >= 0)
1694 {
1695 subreg_get_info (reg_renumber[reg_y],
1696 GET_MODE (SUBREG_REG (y)), byte_y,
1697 GET_MODE (y), &info);
1698 if (!info.representable_p)
1699 return 0;
1700 reg_y = info.offset;
1701 byte_y = 0;
1702 }
1703 }
1704 else
1705 {
1706 reg_y = REGNO (y);
1707 if (reg_renumber[reg_y] >= 0)
1708 reg_y = reg_renumber[reg_y];
1709 }
1710
1711 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1712 }
1713
1714 /* Now we have disposed of all the cases
1715 in which different rtx codes can match. */
1716 if (code != GET_CODE (y))
1717 return 0;
1718
1719 switch (code)
1720 {
1721 case PC:
1722 case CC0:
1723 case ADDR_VEC:
1724 case ADDR_DIFF_VEC:
1725 case CONST_INT:
1726 case CONST_DOUBLE:
1727 return 0;
1728
1729 case LABEL_REF:
1730 /* We can't assume nonlocal labels have their following insns yet. */
1731 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1732 return XEXP (x, 0) == XEXP (y, 0);
1733
1734 /* Two label-refs are equivalent if they point at labels
1735 in the same position in the instruction stream. */
1736 return (next_real_insn (XEXP (x, 0))
1737 == next_real_insn (XEXP (y, 0)));
1738
1739 case SYMBOL_REF:
1740 return XSTR (x, 0) == XSTR (y, 0);
1741
1742 case CODE_LABEL:
1743 /* If we didn't match EQ equality above, they aren't the same. */
1744 return 0;
1745
1746 default:
1747 break;
1748 }
1749
1750 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1751
1752 if (GET_MODE (x) != GET_MODE (y))
1753 return 0;
1754
1755 /* MEMs refering to different address space are not equivalent. */
1756 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1757 return 0;
1758
1759 /* For commutative operations, the RTX match if the operand match in any
1760 order. Also handle the simple binary and unary cases without a loop. */
1761 if (targetm.commutative_p (x, UNKNOWN))
1762 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1763 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1764 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1765 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1766 else if (NON_COMMUTATIVE_P (x))
1767 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1768 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1769 else if (UNARY_P (x))
1770 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1771
1772 /* Compare the elements. If any pair of corresponding elements
1773 fail to match, return 0 for the whole things. */
1774
1775 fmt = GET_RTX_FORMAT (code);
1776 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1777 {
1778 int j;
1779 switch (fmt[i])
1780 {
1781 case 'w':
1782 if (XWINT (x, i) != XWINT (y, i))
1783 return 0;
1784 break;
1785
1786 case 'i':
1787 if (XINT (x, i) != XINT (y, i))
1788 {
1789 if (((code == ASM_OPERANDS && i == 6)
1790 || (code == ASM_INPUT && i == 1))
1791 && locator_eq (XINT (x, i), XINT (y, i)))
1792 break;
1793 return 0;
1794 }
1795 break;
1796
1797 case 't':
1798 if (XTREE (x, i) != XTREE (y, i))
1799 return 0;
1800 break;
1801
1802 case 's':
1803 if (strcmp (XSTR (x, i), XSTR (y, i)))
1804 return 0;
1805 break;
1806
1807 case 'e':
1808 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1809 return 0;
1810 break;
1811
1812 case 'u':
1813 if (XEXP (x, i) != XEXP (y, i))
1814 return 0;
1815 /* Fall through. */
1816 case '0':
1817 break;
1818
1819 case 'E':
1820 if (XVECLEN (x, i) != XVECLEN (y, i))
1821 return 0;
1822 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1823 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1824 return 0;
1825 break;
1826
1827 default:
1828 gcc_unreachable ();
1829 }
1830 }
1831 return 1;
1832 }
1833 \f
1834 /* If X is a hard register or equivalent to one or a subregister of one,
1835 return the hard register number. If X is a pseudo register that was not
1836 assigned a hard register, return the pseudo register number. Otherwise,
1837 return -1. Any rtx is valid for X. */
1838
1839 int
1840 true_regnum (const_rtx x)
1841 {
1842 if (REG_P (x))
1843 {
1844 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1845 return reg_renumber[REGNO (x)];
1846 return REGNO (x);
1847 }
1848 if (GET_CODE (x) == SUBREG)
1849 {
1850 int base = true_regnum (SUBREG_REG (x));
1851 if (base >= 0
1852 && base < FIRST_PSEUDO_REGISTER)
1853 {
1854 struct subreg_info info;
1855
1856 subreg_get_info (REGNO (SUBREG_REG (x)),
1857 GET_MODE (SUBREG_REG (x)),
1858 SUBREG_BYTE (x), GET_MODE (x), &info);
1859
1860 if (info.representable_p)
1861 return base + info.offset;
1862 }
1863 }
1864 return -1;
1865 }
1866
1867 /* Return regno of the register REG and handle subregs too. */
1868 unsigned int
1869 reg_or_subregno (const_rtx reg)
1870 {
1871 if (GET_CODE (reg) == SUBREG)
1872 reg = SUBREG_REG (reg);
1873 gcc_assert (REG_P (reg));
1874 return REGNO (reg);
1875 }