Introduce LABEL_REF_LABEL
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "function.h"
49 #include "basic-block.h"
50 #include "expr.h"
51 #include "except.h"
52 #include "diagnostic-core.h"
53 #include "reload.h"
54 #include "predict.h"
55 #include "tree-pass.h"
56 #include "target.h"
57 #include "rtl-iter.h"
58
59 /* Optimize jump y; x: ... y: jumpif... x?
60 Don't know if it is worth bothering with. */
61 /* Optimize two cases of conditional jump to conditional jump?
62 This can never delete any instruction or make anything dead,
63 or even change what is live at any point.
64 So perhaps let combiner do it. */
65
66 static void init_label_info (rtx_insn *);
67 static void mark_all_labels (rtx_insn *);
68 static void mark_jump_label_1 (rtx, rtx, bool, bool);
69 static void mark_jump_label_asm (rtx, rtx);
70 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
71 static int invert_exp_1 (rtx, rtx);
72 \f
73 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
74 static void
75 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
76 {
77 rtx_insn_list *insn;
78
79 timevar_push (TV_REBUILD_JUMP);
80 init_label_info (f);
81 mark_all_labels (f);
82
83 /* Keep track of labels used from static data; we don't track them
84 closely enough to delete them here, so make sure their reference
85 count doesn't drop to zero. */
86
87 if (count_forced)
88 for (insn = forced_labels; insn; insn = insn->next ())
89 if (LABEL_P (insn->insn ()))
90 LABEL_NUSES (insn->insn ())++;
91 timevar_pop (TV_REBUILD_JUMP);
92 }
93
94 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
95 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
96 instructions and jumping insns that have labels as operands
97 (e.g. cbranchsi4). */
98 void
99 rebuild_jump_labels (rtx_insn *f)
100 {
101 rebuild_jump_labels_1 (f, true);
102 }
103
104 /* This function is like rebuild_jump_labels, but doesn't run over
105 forced_labels. It can be used on insn chains that aren't the
106 main function chain. */
107 void
108 rebuild_jump_labels_chain (rtx_insn *chain)
109 {
110 rebuild_jump_labels_1 (chain, false);
111 }
112 \f
113 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
114 non-fallthru insn. This is not generally true, as multiple barriers
115 may have crept in, or the BARRIER may be separated from the last
116 real insn by one or more NOTEs.
117
118 This simple pass moves barriers and removes duplicates so that the
119 old code is happy.
120 */
121 static unsigned int
122 cleanup_barriers (void)
123 {
124 rtx_insn *insn;
125 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
126 {
127 if (BARRIER_P (insn))
128 {
129 rtx_insn *prev = prev_nonnote_insn (insn);
130 if (!prev)
131 continue;
132
133 if (CALL_P (prev))
134 {
135 /* Make sure we do not split a call and its corresponding
136 CALL_ARG_LOCATION note. */
137 rtx_insn *next = NEXT_INSN (prev);
138
139 if (NOTE_P (next)
140 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
141 prev = next;
142 }
143
144 if (BARRIER_P (prev))
145 delete_insn (insn);
146 else if (prev != PREV_INSN (insn))
147 reorder_insns_nobb (insn, insn, prev);
148 }
149 }
150 return 0;
151 }
152
153 namespace {
154
155 const pass_data pass_data_cleanup_barriers =
156 {
157 RTL_PASS, /* type */
158 "barriers", /* name */
159 OPTGROUP_NONE, /* optinfo_flags */
160 TV_NONE, /* tv_id */
161 0, /* properties_required */
162 0, /* properties_provided */
163 0, /* properties_destroyed */
164 0, /* todo_flags_start */
165 0, /* todo_flags_finish */
166 };
167
168 class pass_cleanup_barriers : public rtl_opt_pass
169 {
170 public:
171 pass_cleanup_barriers (gcc::context *ctxt)
172 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
173 {}
174
175 /* opt_pass methods: */
176 virtual unsigned int execute (function *) { return cleanup_barriers (); }
177
178 }; // class pass_cleanup_barriers
179
180 } // anon namespace
181
182 rtl_opt_pass *
183 make_pass_cleanup_barriers (gcc::context *ctxt)
184 {
185 return new pass_cleanup_barriers (ctxt);
186 }
187
188 \f
189 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
190 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
191 notes whose labels don't occur in the insn any more. */
192
193 static void
194 init_label_info (rtx_insn *f)
195 {
196 rtx_insn *insn;
197
198 for (insn = f; insn; insn = NEXT_INSN (insn))
199 {
200 if (LABEL_P (insn))
201 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
202
203 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
204 sticky and not reset here; that way we won't lose association
205 with a label when e.g. the source for a target register
206 disappears out of reach for targets that may use jump-target
207 registers. Jump transformations are supposed to transform
208 any REG_LABEL_TARGET notes. The target label reference in a
209 branch may disappear from the branch (and from the
210 instruction before it) for other reasons, like register
211 allocation. */
212
213 if (INSN_P (insn))
214 {
215 rtx note, next;
216
217 for (note = REG_NOTES (insn); note; note = next)
218 {
219 next = XEXP (note, 1);
220 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
221 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
222 remove_note (insn, note);
223 }
224 }
225 }
226 }
227
228 /* A subroutine of mark_all_labels. Trivially propagate a simple label
229 load into a jump_insn that uses it. */
230
231 static void
232 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
233 {
234 rtx label_note, pc, pc_src;
235
236 pc = pc_set (jump_insn);
237 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
238 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
239
240 /* If the previous non-jump insn sets something to a label,
241 something that this jump insn uses, make that label the primary
242 target of this insn if we don't yet have any. That previous
243 insn must be a single_set and not refer to more than one label.
244 The jump insn must not refer to other labels as jump targets
245 and must be a plain (set (pc) ...), maybe in a parallel, and
246 may refer to the item being set only directly or as one of the
247 arms in an IF_THEN_ELSE. */
248
249 if (label_note != NULL && pc_src != NULL)
250 {
251 rtx label_set = single_set (prev_nonjump_insn);
252 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
253
254 if (label_set != NULL
255 /* The source must be the direct LABEL_REF, not a
256 PLUS, UNSPEC, IF_THEN_ELSE etc. */
257 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
258 && (rtx_equal_p (label_dest, pc_src)
259 || (GET_CODE (pc_src) == IF_THEN_ELSE
260 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
261 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
262 {
263 /* The CODE_LABEL referred to in the note must be the
264 CODE_LABEL in the LABEL_REF of the "set". We can
265 conveniently use it for the marker function, which
266 requires a LABEL_REF wrapping. */
267 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
268
269 mark_jump_label_1 (label_set, jump_insn, false, true);
270
271 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
272 }
273 }
274 }
275
276 /* Mark the label each jump jumps to.
277 Combine consecutive labels, and count uses of labels. */
278
279 static void
280 mark_all_labels (rtx_insn *f)
281 {
282 rtx_insn *insn;
283
284 if (current_ir_type () == IR_RTL_CFGLAYOUT)
285 {
286 basic_block bb;
287 FOR_EACH_BB_FN (bb, cfun)
288 {
289 /* In cfglayout mode, we don't bother with trivial next-insn
290 propagation of LABEL_REFs into JUMP_LABEL. This will be
291 handled by other optimizers using better algorithms. */
292 FOR_BB_INSNS (bb, insn)
293 {
294 gcc_assert (! INSN_DELETED_P (insn));
295 if (NONDEBUG_INSN_P (insn))
296 mark_jump_label (PATTERN (insn), insn, 0);
297 }
298
299 /* In cfglayout mode, there may be non-insns between the
300 basic blocks. If those non-insns represent tablejump data,
301 they contain label references that we must record. */
302 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
303 if (JUMP_TABLE_DATA_P (insn))
304 mark_jump_label (PATTERN (insn), insn, 0);
305 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
306 if (JUMP_TABLE_DATA_P (insn))
307 mark_jump_label (PATTERN (insn), insn, 0);
308 }
309 }
310 else
311 {
312 rtx_insn *prev_nonjump_insn = NULL;
313 for (insn = f; insn; insn = NEXT_INSN (insn))
314 {
315 if (INSN_DELETED_P (insn))
316 ;
317 else if (LABEL_P (insn))
318 prev_nonjump_insn = NULL;
319 else if (JUMP_TABLE_DATA_P (insn))
320 mark_jump_label (PATTERN (insn), insn, 0);
321 else if (NONDEBUG_INSN_P (insn))
322 {
323 mark_jump_label (PATTERN (insn), insn, 0);
324 if (JUMP_P (insn))
325 {
326 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
327 maybe_propagate_label_ref (insn, prev_nonjump_insn);
328 }
329 else
330 prev_nonjump_insn = insn;
331 }
332 }
333 }
334 }
335 \f
336 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
337 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
338 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
339 know whether it's source is floating point or integer comparison. Machine
340 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
341 to help this function avoid overhead in these cases. */
342 enum rtx_code
343 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
344 const_rtx arg1, const_rtx insn)
345 {
346 enum machine_mode mode;
347
348 /* If this is not actually a comparison, we can't reverse it. */
349 if (GET_RTX_CLASS (code) != RTX_COMPARE
350 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
351 return UNKNOWN;
352
353 mode = GET_MODE (arg0);
354 if (mode == VOIDmode)
355 mode = GET_MODE (arg1);
356
357 /* First see if machine description supplies us way to reverse the
358 comparison. Give it priority over everything else to allow
359 machine description to do tricks. */
360 if (GET_MODE_CLASS (mode) == MODE_CC
361 && REVERSIBLE_CC_MODE (mode))
362 {
363 #ifdef REVERSE_CONDITION
364 return REVERSE_CONDITION (code, mode);
365 #else
366 return reverse_condition (code);
367 #endif
368 }
369
370 /* Try a few special cases based on the comparison code. */
371 switch (code)
372 {
373 case GEU:
374 case GTU:
375 case LEU:
376 case LTU:
377 case NE:
378 case EQ:
379 /* It is always safe to reverse EQ and NE, even for the floating
380 point. Similarly the unsigned comparisons are never used for
381 floating point so we can reverse them in the default way. */
382 return reverse_condition (code);
383 case ORDERED:
384 case UNORDERED:
385 case LTGT:
386 case UNEQ:
387 /* In case we already see unordered comparison, we can be sure to
388 be dealing with floating point so we don't need any more tests. */
389 return reverse_condition_maybe_unordered (code);
390 case UNLT:
391 case UNLE:
392 case UNGT:
393 case UNGE:
394 /* We don't have safe way to reverse these yet. */
395 return UNKNOWN;
396 default:
397 break;
398 }
399
400 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
401 {
402 const_rtx prev;
403 /* Try to search for the comparison to determine the real mode.
404 This code is expensive, but with sane machine description it
405 will be never used, since REVERSIBLE_CC_MODE will return true
406 in all cases. */
407 if (! insn)
408 return UNKNOWN;
409
410 /* These CONST_CAST's are okay because prev_nonnote_insn just
411 returns its argument and we assign it to a const_rtx
412 variable. */
413 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
414 prev != 0 && !LABEL_P (prev);
415 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
416 {
417 const_rtx set = set_of (arg0, prev);
418 if (set && GET_CODE (set) == SET
419 && rtx_equal_p (SET_DEST (set), arg0))
420 {
421 rtx src = SET_SRC (set);
422
423 if (GET_CODE (src) == COMPARE)
424 {
425 rtx comparison = src;
426 arg0 = XEXP (src, 0);
427 mode = GET_MODE (arg0);
428 if (mode == VOIDmode)
429 mode = GET_MODE (XEXP (comparison, 1));
430 break;
431 }
432 /* We can get past reg-reg moves. This may be useful for model
433 of i387 comparisons that first move flag registers around. */
434 if (REG_P (src))
435 {
436 arg0 = src;
437 continue;
438 }
439 }
440 /* If register is clobbered in some ununderstandable way,
441 give up. */
442 if (set)
443 return UNKNOWN;
444 }
445 }
446
447 /* Test for an integer condition, or a floating-point comparison
448 in which NaNs can be ignored. */
449 if (CONST_INT_P (arg0)
450 || (GET_MODE (arg0) != VOIDmode
451 && GET_MODE_CLASS (mode) != MODE_CC
452 && !HONOR_NANS (mode)))
453 return reverse_condition (code);
454
455 return UNKNOWN;
456 }
457
458 /* A wrapper around the previous function to take COMPARISON as rtx
459 expression. This simplifies many callers. */
460 enum rtx_code
461 reversed_comparison_code (const_rtx comparison, const_rtx insn)
462 {
463 if (!COMPARISON_P (comparison))
464 return UNKNOWN;
465 return reversed_comparison_code_parts (GET_CODE (comparison),
466 XEXP (comparison, 0),
467 XEXP (comparison, 1), insn);
468 }
469
470 /* Return comparison with reversed code of EXP.
471 Return NULL_RTX in case we fail to do the reversal. */
472 rtx
473 reversed_comparison (const_rtx exp, enum machine_mode mode)
474 {
475 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
476 if (reversed_code == UNKNOWN)
477 return NULL_RTX;
478 else
479 return simplify_gen_relational (reversed_code, mode, VOIDmode,
480 XEXP (exp, 0), XEXP (exp, 1));
481 }
482
483 \f
484 /* Given an rtx-code for a comparison, return the code for the negated
485 comparison. If no such code exists, return UNKNOWN.
486
487 WATCH OUT! reverse_condition is not safe to use on a jump that might
488 be acting on the results of an IEEE floating point comparison, because
489 of the special treatment of non-signaling nans in comparisons.
490 Use reversed_comparison_code instead. */
491
492 enum rtx_code
493 reverse_condition (enum rtx_code code)
494 {
495 switch (code)
496 {
497 case EQ:
498 return NE;
499 case NE:
500 return EQ;
501 case GT:
502 return LE;
503 case GE:
504 return LT;
505 case LT:
506 return GE;
507 case LE:
508 return GT;
509 case GTU:
510 return LEU;
511 case GEU:
512 return LTU;
513 case LTU:
514 return GEU;
515 case LEU:
516 return GTU;
517 case UNORDERED:
518 return ORDERED;
519 case ORDERED:
520 return UNORDERED;
521
522 case UNLT:
523 case UNLE:
524 case UNGT:
525 case UNGE:
526 case UNEQ:
527 case LTGT:
528 return UNKNOWN;
529
530 default:
531 gcc_unreachable ();
532 }
533 }
534
535 /* Similar, but we're allowed to generate unordered comparisons, which
536 makes it safe for IEEE floating-point. Of course, we have to recognize
537 that the target will support them too... */
538
539 enum rtx_code
540 reverse_condition_maybe_unordered (enum rtx_code code)
541 {
542 switch (code)
543 {
544 case EQ:
545 return NE;
546 case NE:
547 return EQ;
548 case GT:
549 return UNLE;
550 case GE:
551 return UNLT;
552 case LT:
553 return UNGE;
554 case LE:
555 return UNGT;
556 case LTGT:
557 return UNEQ;
558 case UNORDERED:
559 return ORDERED;
560 case ORDERED:
561 return UNORDERED;
562 case UNLT:
563 return GE;
564 case UNLE:
565 return GT;
566 case UNGT:
567 return LE;
568 case UNGE:
569 return LT;
570 case UNEQ:
571 return LTGT;
572
573 default:
574 gcc_unreachable ();
575 }
576 }
577
578 /* Similar, but return the code when two operands of a comparison are swapped.
579 This IS safe for IEEE floating-point. */
580
581 enum rtx_code
582 swap_condition (enum rtx_code code)
583 {
584 switch (code)
585 {
586 case EQ:
587 case NE:
588 case UNORDERED:
589 case ORDERED:
590 case UNEQ:
591 case LTGT:
592 return code;
593
594 case GT:
595 return LT;
596 case GE:
597 return LE;
598 case LT:
599 return GT;
600 case LE:
601 return GE;
602 case GTU:
603 return LTU;
604 case GEU:
605 return LEU;
606 case LTU:
607 return GTU;
608 case LEU:
609 return GEU;
610 case UNLT:
611 return UNGT;
612 case UNLE:
613 return UNGE;
614 case UNGT:
615 return UNLT;
616 case UNGE:
617 return UNLE;
618
619 default:
620 gcc_unreachable ();
621 }
622 }
623
624 /* Given a comparison CODE, return the corresponding unsigned comparison.
625 If CODE is an equality comparison or already an unsigned comparison,
626 CODE is returned. */
627
628 enum rtx_code
629 unsigned_condition (enum rtx_code code)
630 {
631 switch (code)
632 {
633 case EQ:
634 case NE:
635 case GTU:
636 case GEU:
637 case LTU:
638 case LEU:
639 return code;
640
641 case GT:
642 return GTU;
643 case GE:
644 return GEU;
645 case LT:
646 return LTU;
647 case LE:
648 return LEU;
649
650 default:
651 gcc_unreachable ();
652 }
653 }
654
655 /* Similarly, return the signed version of a comparison. */
656
657 enum rtx_code
658 signed_condition (enum rtx_code code)
659 {
660 switch (code)
661 {
662 case EQ:
663 case NE:
664 case GT:
665 case GE:
666 case LT:
667 case LE:
668 return code;
669
670 case GTU:
671 return GT;
672 case GEU:
673 return GE;
674 case LTU:
675 return LT;
676 case LEU:
677 return LE;
678
679 default:
680 gcc_unreachable ();
681 }
682 }
683 \f
684 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
685 truth of CODE1 implies the truth of CODE2. */
686
687 int
688 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
689 {
690 /* UNKNOWN comparison codes can happen as a result of trying to revert
691 comparison codes.
692 They can't match anything, so we have to reject them here. */
693 if (code1 == UNKNOWN || code2 == UNKNOWN)
694 return 0;
695
696 if (code1 == code2)
697 return 1;
698
699 switch (code1)
700 {
701 case UNEQ:
702 if (code2 == UNLE || code2 == UNGE)
703 return 1;
704 break;
705
706 case EQ:
707 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
708 || code2 == ORDERED)
709 return 1;
710 break;
711
712 case UNLT:
713 if (code2 == UNLE || code2 == NE)
714 return 1;
715 break;
716
717 case LT:
718 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
719 return 1;
720 break;
721
722 case UNGT:
723 if (code2 == UNGE || code2 == NE)
724 return 1;
725 break;
726
727 case GT:
728 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
729 return 1;
730 break;
731
732 case GE:
733 case LE:
734 if (code2 == ORDERED)
735 return 1;
736 break;
737
738 case LTGT:
739 if (code2 == NE || code2 == ORDERED)
740 return 1;
741 break;
742
743 case LTU:
744 if (code2 == LEU || code2 == NE)
745 return 1;
746 break;
747
748 case GTU:
749 if (code2 == GEU || code2 == NE)
750 return 1;
751 break;
752
753 case UNORDERED:
754 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
755 || code2 == UNGE || code2 == UNGT)
756 return 1;
757 break;
758
759 default:
760 break;
761 }
762
763 return 0;
764 }
765 \f
766 /* Return 1 if INSN is an unconditional jump and nothing else. */
767
768 int
769 simplejump_p (const rtx_insn *insn)
770 {
771 return (JUMP_P (insn)
772 && GET_CODE (PATTERN (insn)) == SET
773 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
774 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
775 }
776
777 /* Return nonzero if INSN is a (possibly) conditional jump
778 and nothing more.
779
780 Use of this function is deprecated, since we need to support combined
781 branch and compare insns. Use any_condjump_p instead whenever possible. */
782
783 int
784 condjump_p (const rtx_insn *insn)
785 {
786 const_rtx x = PATTERN (insn);
787
788 if (GET_CODE (x) != SET
789 || GET_CODE (SET_DEST (x)) != PC)
790 return 0;
791
792 x = SET_SRC (x);
793 if (GET_CODE (x) == LABEL_REF)
794 return 1;
795 else
796 return (GET_CODE (x) == IF_THEN_ELSE
797 && ((GET_CODE (XEXP (x, 2)) == PC
798 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
799 || ANY_RETURN_P (XEXP (x, 1))))
800 || (GET_CODE (XEXP (x, 1)) == PC
801 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
802 || ANY_RETURN_P (XEXP (x, 2))))));
803 }
804
805 /* Return nonzero if INSN is a (possibly) conditional jump inside a
806 PARALLEL.
807
808 Use this function is deprecated, since we need to support combined
809 branch and compare insns. Use any_condjump_p instead whenever possible. */
810
811 int
812 condjump_in_parallel_p (const rtx_insn *insn)
813 {
814 const_rtx x = PATTERN (insn);
815
816 if (GET_CODE (x) != PARALLEL)
817 return 0;
818 else
819 x = XVECEXP (x, 0, 0);
820
821 if (GET_CODE (x) != SET)
822 return 0;
823 if (GET_CODE (SET_DEST (x)) != PC)
824 return 0;
825 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
826 return 1;
827 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
828 return 0;
829 if (XEXP (SET_SRC (x), 2) == pc_rtx
830 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
831 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
832 return 1;
833 if (XEXP (SET_SRC (x), 1) == pc_rtx
834 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
835 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
836 return 1;
837 return 0;
838 }
839
840 /* Return set of PC, otherwise NULL. */
841
842 rtx
843 pc_set (const rtx_insn *insn)
844 {
845 rtx pat;
846 if (!JUMP_P (insn))
847 return NULL_RTX;
848 pat = PATTERN (insn);
849
850 /* The set is allowed to appear either as the insn pattern or
851 the first set in a PARALLEL. */
852 if (GET_CODE (pat) == PARALLEL)
853 pat = XVECEXP (pat, 0, 0);
854 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
855 return pat;
856
857 return NULL_RTX;
858 }
859
860 /* Return true when insn is an unconditional direct jump,
861 possibly bundled inside a PARALLEL. */
862
863 int
864 any_uncondjump_p (const rtx_insn *insn)
865 {
866 const_rtx x = pc_set (insn);
867 if (!x)
868 return 0;
869 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
870 return 0;
871 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
872 return 0;
873 return 1;
874 }
875
876 /* Return true when insn is a conditional jump. This function works for
877 instructions containing PC sets in PARALLELs. The instruction may have
878 various other effects so before removing the jump you must verify
879 onlyjump_p.
880
881 Note that unlike condjump_p it returns false for unconditional jumps. */
882
883 int
884 any_condjump_p (const rtx_insn *insn)
885 {
886 const_rtx x = pc_set (insn);
887 enum rtx_code a, b;
888
889 if (!x)
890 return 0;
891 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
892 return 0;
893
894 a = GET_CODE (XEXP (SET_SRC (x), 1));
895 b = GET_CODE (XEXP (SET_SRC (x), 2));
896
897 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
898 || (a == PC
899 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
900 }
901
902 /* Return the label of a conditional jump. */
903
904 rtx
905 condjump_label (const rtx_insn *insn)
906 {
907 rtx x = pc_set (insn);
908
909 if (!x)
910 return NULL_RTX;
911 x = SET_SRC (x);
912 if (GET_CODE (x) == LABEL_REF)
913 return x;
914 if (GET_CODE (x) != IF_THEN_ELSE)
915 return NULL_RTX;
916 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
917 return XEXP (x, 1);
918 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
919 return XEXP (x, 2);
920 return NULL_RTX;
921 }
922
923 /* Return TRUE if INSN is a return jump. */
924
925 int
926 returnjump_p (const rtx_insn *insn)
927 {
928 if (JUMP_P (insn))
929 {
930 subrtx_iterator::array_type array;
931 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
932 {
933 const_rtx x = *iter;
934 switch (GET_CODE (x))
935 {
936 case RETURN:
937 case SIMPLE_RETURN:
938 case EH_RETURN:
939 return true;
940
941 case SET:
942 if (SET_IS_RETURN_P (x))
943 return true;
944 break;
945
946 default:
947 break;
948 }
949 }
950 }
951 return false;
952 }
953
954 /* Return true if INSN is a (possibly conditional) return insn. */
955
956 int
957 eh_returnjump_p (rtx_insn *insn)
958 {
959 if (JUMP_P (insn))
960 {
961 subrtx_iterator::array_type array;
962 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
963 if (GET_CODE (*iter) == EH_RETURN)
964 return true;
965 }
966 return false;
967 }
968
969 /* Return true if INSN is a jump that only transfers control and
970 nothing more. */
971
972 int
973 onlyjump_p (const rtx_insn *insn)
974 {
975 rtx set;
976
977 if (!JUMP_P (insn))
978 return 0;
979
980 set = single_set (insn);
981 if (set == NULL)
982 return 0;
983 if (GET_CODE (SET_DEST (set)) != PC)
984 return 0;
985 if (side_effects_p (SET_SRC (set)))
986 return 0;
987
988 return 1;
989 }
990
991 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
992 NULL or a return. */
993 bool
994 jump_to_label_p (const rtx_insn *insn)
995 {
996 return (JUMP_P (insn)
997 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
998 }
999
1000 #ifdef HAVE_cc0
1001
1002 /* Return nonzero if X is an RTX that only sets the condition codes
1003 and has no side effects. */
1004
1005 int
1006 only_sets_cc0_p (const_rtx x)
1007 {
1008 if (! x)
1009 return 0;
1010
1011 if (INSN_P (x))
1012 x = PATTERN (x);
1013
1014 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1015 }
1016
1017 /* Return 1 if X is an RTX that does nothing but set the condition codes
1018 and CLOBBER or USE registers.
1019 Return -1 if X does explicitly set the condition codes,
1020 but also does other things. */
1021
1022 int
1023 sets_cc0_p (const_rtx x)
1024 {
1025 if (! x)
1026 return 0;
1027
1028 if (INSN_P (x))
1029 x = PATTERN (x);
1030
1031 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1032 return 1;
1033 if (GET_CODE (x) == PARALLEL)
1034 {
1035 int i;
1036 int sets_cc0 = 0;
1037 int other_things = 0;
1038 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1039 {
1040 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1041 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1042 sets_cc0 = 1;
1043 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1044 other_things = 1;
1045 }
1046 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1047 }
1048 return 0;
1049 }
1050 #endif
1051 \f
1052 /* Find all CODE_LABELs referred to in X, and increment their use
1053 counts. If INSN is a JUMP_INSN and there is at least one
1054 CODE_LABEL referenced in INSN as a jump target, then store the last
1055 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1056 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1057 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1058 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1059 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1060 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1061
1062 Note that two labels separated by a loop-beginning note
1063 must be kept distinct if we have not yet done loop-optimization,
1064 because the gap between them is where loop-optimize
1065 will want to move invariant code to. CROSS_JUMP tells us
1066 that loop-optimization is done with. */
1067
1068 void
1069 mark_jump_label (rtx x, rtx insn, int in_mem)
1070 {
1071 rtx asmop = extract_asm_operands (x);
1072 if (asmop)
1073 mark_jump_label_asm (asmop, insn);
1074 else
1075 mark_jump_label_1 (x, insn, in_mem != 0,
1076 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1077 }
1078
1079 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1080 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1081 jump-target; when the JUMP_LABEL field of INSN should be set or a
1082 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1083 note. */
1084
1085 static void
1086 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1087 {
1088 RTX_CODE code = GET_CODE (x);
1089 int i;
1090 const char *fmt;
1091
1092 switch (code)
1093 {
1094 case PC:
1095 case CC0:
1096 case REG:
1097 case CLOBBER:
1098 case CALL:
1099 return;
1100
1101 case RETURN:
1102 case SIMPLE_RETURN:
1103 if (is_target)
1104 {
1105 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1106 JUMP_LABEL (insn) = x;
1107 }
1108 return;
1109
1110 case MEM:
1111 in_mem = true;
1112 break;
1113
1114 case SEQUENCE:
1115 {
1116 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1117 for (i = 0; i < seq->len (); i++)
1118 mark_jump_label (PATTERN (seq->insn (i)),
1119 seq->insn (i), 0);
1120 }
1121 return;
1122
1123 case SYMBOL_REF:
1124 if (!in_mem)
1125 return;
1126
1127 /* If this is a constant-pool reference, see if it is a label. */
1128 if (CONSTANT_POOL_ADDRESS_P (x))
1129 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1130 break;
1131
1132 /* Handle operands in the condition of an if-then-else as for a
1133 non-jump insn. */
1134 case IF_THEN_ELSE:
1135 if (!is_target)
1136 break;
1137 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1138 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1139 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1140 return;
1141
1142 case LABEL_REF:
1143 {
1144 rtx label = LABEL_REF_LABEL (x);
1145
1146 /* Ignore remaining references to unreachable labels that
1147 have been deleted. */
1148 if (NOTE_P (label)
1149 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1150 break;
1151
1152 gcc_assert (LABEL_P (label));
1153
1154 /* Ignore references to labels of containing functions. */
1155 if (LABEL_REF_NONLOCAL_P (x))
1156 break;
1157
1158 LABEL_REF_LABEL (x) = label;
1159 if (! insn || ! INSN_DELETED_P (insn))
1160 ++LABEL_NUSES (label);
1161
1162 if (insn)
1163 {
1164 if (is_target
1165 /* Do not change a previous setting of JUMP_LABEL. If the
1166 JUMP_LABEL slot is occupied by a different label,
1167 create a note for this label. */
1168 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1169 JUMP_LABEL (insn) = label;
1170 else
1171 {
1172 enum reg_note kind
1173 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1174
1175 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1176 for LABEL unless there already is one. All uses of
1177 a label, except for the primary target of a jump,
1178 must have such a note. */
1179 if (! find_reg_note (insn, kind, label))
1180 add_reg_note (insn, kind, label);
1181 }
1182 }
1183 return;
1184 }
1185
1186 /* Do walk the labels in a vector, but not the first operand of an
1187 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1188 case ADDR_VEC:
1189 case ADDR_DIFF_VEC:
1190 if (! INSN_DELETED_P (insn))
1191 {
1192 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1193
1194 for (i = 0; i < XVECLEN (x, eltnum); i++)
1195 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1196 is_target);
1197 }
1198 return;
1199
1200 default:
1201 break;
1202 }
1203
1204 fmt = GET_RTX_FORMAT (code);
1205
1206 /* The primary target of a tablejump is the label of the ADDR_VEC,
1207 which is canonically mentioned *last* in the insn. To get it
1208 marked as JUMP_LABEL, we iterate over items in reverse order. */
1209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1210 {
1211 if (fmt[i] == 'e')
1212 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1213 else if (fmt[i] == 'E')
1214 {
1215 int j;
1216
1217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1218 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1219 is_target);
1220 }
1221 }
1222 }
1223
1224 /* Worker function for mark_jump_label. Handle asm insns specially.
1225 In particular, output operands need not be considered so we can
1226 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1227 need to be considered targets. */
1228
1229 static void
1230 mark_jump_label_asm (rtx asmop, rtx insn)
1231 {
1232 int i;
1233
1234 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1235 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1236
1237 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1238 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1239 }
1240 \f
1241 /* Delete insn INSN from the chain of insns and update label ref counts
1242 and delete insns now unreachable.
1243
1244 Returns the first insn after INSN that was not deleted.
1245
1246 Usage of this instruction is deprecated. Use delete_insn instead and
1247 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1248
1249 rtx_insn *
1250 delete_related_insns (rtx uncast_insn)
1251 {
1252 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1253 int was_code_label = (LABEL_P (insn));
1254 rtx note;
1255 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1256
1257 while (next && INSN_DELETED_P (next))
1258 next = NEXT_INSN (next);
1259
1260 /* This insn is already deleted => return first following nondeleted. */
1261 if (INSN_DELETED_P (insn))
1262 return next;
1263
1264 delete_insn (insn);
1265
1266 /* If instruction is followed by a barrier,
1267 delete the barrier too. */
1268
1269 if (next != 0 && BARRIER_P (next))
1270 delete_insn (next);
1271
1272 /* If this is a call, then we have to remove the var tracking note
1273 for the call arguments. */
1274
1275 if (CALL_P (insn)
1276 || (NONJUMP_INSN_P (insn)
1277 && GET_CODE (PATTERN (insn)) == SEQUENCE
1278 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1279 {
1280 rtx_insn *p;
1281
1282 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1283 p && NOTE_P (p);
1284 p = NEXT_INSN (p))
1285 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1286 {
1287 remove_insn (p);
1288 break;
1289 }
1290 }
1291
1292 /* If deleting a jump, decrement the count of the label,
1293 and delete the label if it is now unused. */
1294
1295 if (jump_to_label_p (insn))
1296 {
1297 rtx lab = JUMP_LABEL (insn);
1298 rtx_jump_table_data *lab_next;
1299
1300 if (LABEL_NUSES (lab) == 0)
1301 /* This can delete NEXT or PREV,
1302 either directly if NEXT is JUMP_LABEL (INSN),
1303 or indirectly through more levels of jumps. */
1304 delete_related_insns (lab);
1305 else if (tablejump_p (insn, NULL, &lab_next))
1306 {
1307 /* If we're deleting the tablejump, delete the dispatch table.
1308 We may not be able to kill the label immediately preceding
1309 just yet, as it might be referenced in code leading up to
1310 the tablejump. */
1311 delete_related_insns (lab_next);
1312 }
1313 }
1314
1315 /* Likewise if we're deleting a dispatch table. */
1316
1317 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1318 {
1319 rtvec labels = table->get_labels ();
1320 int i;
1321 int len = GET_NUM_ELEM (labels);
1322
1323 for (i = 0; i < len; i++)
1324 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1325 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1326 while (next && INSN_DELETED_P (next))
1327 next = NEXT_INSN (next);
1328 return next;
1329 }
1330
1331 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1332 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1333 if (INSN_P (insn))
1334 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1335 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1336 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1337 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1338 && LABEL_P (XEXP (note, 0)))
1339 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1340 delete_related_insns (XEXP (note, 0));
1341
1342 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1343 prev = PREV_INSN (prev);
1344
1345 /* If INSN was a label and a dispatch table follows it,
1346 delete the dispatch table. The tablejump must have gone already.
1347 It isn't useful to fall through into a table. */
1348
1349 if (was_code_label
1350 && NEXT_INSN (insn) != 0
1351 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1352 next = delete_related_insns (NEXT_INSN (insn));
1353
1354 /* If INSN was a label, delete insns following it if now unreachable. */
1355
1356 if (was_code_label && prev && BARRIER_P (prev))
1357 {
1358 enum rtx_code code;
1359 while (next)
1360 {
1361 code = GET_CODE (next);
1362 if (code == NOTE)
1363 next = NEXT_INSN (next);
1364 /* Keep going past other deleted labels to delete what follows. */
1365 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1366 next = NEXT_INSN (next);
1367 /* Keep the (use (insn))s created by dbr_schedule, which needs
1368 them in order to track liveness relative to a previous
1369 barrier. */
1370 else if (INSN_P (next)
1371 && GET_CODE (PATTERN (next)) == USE
1372 && INSN_P (XEXP (PATTERN (next), 0)))
1373 next = NEXT_INSN (next);
1374 else if (code == BARRIER || INSN_P (next))
1375 /* Note: if this deletes a jump, it can cause more
1376 deletion of unreachable code, after a different label.
1377 As long as the value from this recursive call is correct,
1378 this invocation functions correctly. */
1379 next = delete_related_insns (next);
1380 else
1381 break;
1382 }
1383 }
1384
1385 /* I feel a little doubtful about this loop,
1386 but I see no clean and sure alternative way
1387 to find the first insn after INSN that is not now deleted.
1388 I hope this works. */
1389 while (next && INSN_DELETED_P (next))
1390 next = NEXT_INSN (next);
1391 return next;
1392 }
1393 \f
1394 /* Delete a range of insns from FROM to TO, inclusive.
1395 This is for the sake of peephole optimization, so assume
1396 that whatever these insns do will still be done by a new
1397 peephole insn that will replace them. */
1398
1399 void
1400 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1401 {
1402 rtx_insn *insn = from;
1403
1404 while (1)
1405 {
1406 rtx_insn *next = NEXT_INSN (insn);
1407 rtx_insn *prev = PREV_INSN (insn);
1408
1409 if (!NOTE_P (insn))
1410 {
1411 INSN_DELETED_P (insn) = 1;
1412
1413 /* Patch this insn out of the chain. */
1414 /* We don't do this all at once, because we
1415 must preserve all NOTEs. */
1416 if (prev)
1417 SET_NEXT_INSN (prev) = next;
1418
1419 if (next)
1420 SET_PREV_INSN (next) = prev;
1421 }
1422
1423 if (insn == to)
1424 break;
1425 insn = next;
1426 }
1427
1428 /* Note that if TO is an unconditional jump
1429 we *do not* delete the BARRIER that follows,
1430 since the peephole that replaces this sequence
1431 is also an unconditional jump in that case. */
1432 }
1433 \f
1434 /* A helper function for redirect_exp_1; examines its input X and returns
1435 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1436 static rtx
1437 redirect_target (rtx x)
1438 {
1439 if (x == NULL_RTX)
1440 return ret_rtx;
1441 if (!ANY_RETURN_P (x))
1442 return gen_rtx_LABEL_REF (Pmode, x);
1443 return x;
1444 }
1445
1446 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1447 NLABEL as a return. Accrue modifications into the change group. */
1448
1449 static void
1450 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1451 {
1452 rtx x = *loc;
1453 RTX_CODE code = GET_CODE (x);
1454 int i;
1455 const char *fmt;
1456
1457 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1458 || x == olabel)
1459 {
1460 x = redirect_target (nlabel);
1461 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1462 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1463 validate_change (insn, loc, x, 1);
1464 return;
1465 }
1466
1467 if (code == SET && SET_DEST (x) == pc_rtx
1468 && ANY_RETURN_P (nlabel)
1469 && GET_CODE (SET_SRC (x)) == LABEL_REF
1470 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1471 {
1472 validate_change (insn, loc, nlabel, 1);
1473 return;
1474 }
1475
1476 if (code == IF_THEN_ELSE)
1477 {
1478 /* Skip the condition of an IF_THEN_ELSE. We only want to
1479 change jump destinations, not eventual label comparisons. */
1480 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1481 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1482 return;
1483 }
1484
1485 fmt = GET_RTX_FORMAT (code);
1486 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1487 {
1488 if (fmt[i] == 'e')
1489 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1490 else if (fmt[i] == 'E')
1491 {
1492 int j;
1493 for (j = 0; j < XVECLEN (x, i); j++)
1494 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1495 }
1496 }
1497 }
1498
1499 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1500 the modifications into the change group. Return false if we did
1501 not see how to do that. */
1502
1503 int
1504 redirect_jump_1 (rtx jump, rtx nlabel)
1505 {
1506 int ochanges = num_validated_changes ();
1507 rtx *loc, asmop;
1508
1509 gcc_assert (nlabel != NULL_RTX);
1510 asmop = extract_asm_operands (PATTERN (jump));
1511 if (asmop)
1512 {
1513 if (nlabel == NULL)
1514 return 0;
1515 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1516 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1517 }
1518 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1519 loc = &XVECEXP (PATTERN (jump), 0, 0);
1520 else
1521 loc = &PATTERN (jump);
1522
1523 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1524 return num_validated_changes () > ochanges;
1525 }
1526
1527 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1528 jump target label is unused as a result, it and the code following
1529 it may be deleted.
1530
1531 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1532 in that case we are to turn the jump into a (possibly conditional)
1533 return insn.
1534
1535 The return value will be 1 if the change was made, 0 if it wasn't
1536 (this can only occur when trying to produce return insns). */
1537
1538 int
1539 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1540 {
1541 rtx olabel = JUMP_LABEL (jump);
1542
1543 if (!nlabel)
1544 {
1545 /* If there is no label, we are asked to redirect to the EXIT block.
1546 When before the epilogue is emitted, return/simple_return cannot be
1547 created so we return 0 immediately. After the epilogue is emitted,
1548 we always expect a label, either a non-null label, or a
1549 return/simple_return RTX. */
1550
1551 if (!epilogue_completed)
1552 return 0;
1553 gcc_unreachable ();
1554 }
1555
1556 if (nlabel == olabel)
1557 return 1;
1558
1559 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1560 return 0;
1561
1562 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1563 return 1;
1564 }
1565
1566 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1567 NLABEL in JUMP.
1568 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1569 count has dropped to zero. */
1570 void
1571 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1572 int invert)
1573 {
1574 rtx note;
1575
1576 gcc_assert (JUMP_LABEL (jump) == olabel);
1577
1578 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1579 moving FUNCTION_END note. Just sanity check that no user still worry
1580 about this. */
1581 gcc_assert (delete_unused >= 0);
1582 JUMP_LABEL (jump) = nlabel;
1583 if (!ANY_RETURN_P (nlabel))
1584 ++LABEL_NUSES (nlabel);
1585
1586 /* Update labels in any REG_EQUAL note. */
1587 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1588 {
1589 if (ANY_RETURN_P (nlabel)
1590 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1591 remove_note (jump, note);
1592 else
1593 {
1594 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1595 confirm_change_group ();
1596 }
1597 }
1598
1599 /* Handle the case where we had a conditional crossing jump to a return
1600 label and are now changing it into a direct conditional return.
1601 The jump is no longer crossing in that case. */
1602 if (ANY_RETURN_P (nlabel))
1603 CROSSING_JUMP_P (jump) = 0;
1604
1605 if (!ANY_RETURN_P (olabel)
1606 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1607 /* Undefined labels will remain outside the insn stream. */
1608 && INSN_UID (olabel))
1609 delete_related_insns (olabel);
1610 if (invert)
1611 invert_br_probabilities (jump);
1612 }
1613
1614 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1615 modifications into the change group. Return nonzero for success. */
1616 static int
1617 invert_exp_1 (rtx x, rtx insn)
1618 {
1619 RTX_CODE code = GET_CODE (x);
1620
1621 if (code == IF_THEN_ELSE)
1622 {
1623 rtx comp = XEXP (x, 0);
1624 rtx tem;
1625 enum rtx_code reversed_code;
1626
1627 /* We can do this in two ways: The preferable way, which can only
1628 be done if this is not an integer comparison, is to reverse
1629 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1630 of the IF_THEN_ELSE. If we can't do either, fail. */
1631
1632 reversed_code = reversed_comparison_code (comp, insn);
1633
1634 if (reversed_code != UNKNOWN)
1635 {
1636 validate_change (insn, &XEXP (x, 0),
1637 gen_rtx_fmt_ee (reversed_code,
1638 GET_MODE (comp), XEXP (comp, 0),
1639 XEXP (comp, 1)),
1640 1);
1641 return 1;
1642 }
1643
1644 tem = XEXP (x, 1);
1645 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1646 validate_change (insn, &XEXP (x, 2), tem, 1);
1647 return 1;
1648 }
1649 else
1650 return 0;
1651 }
1652
1653 /* Invert the condition of the jump JUMP, and make it jump to label
1654 NLABEL instead of where it jumps now. Accrue changes into the
1655 change group. Return false if we didn't see how to perform the
1656 inversion and redirection. */
1657
1658 int
1659 invert_jump_1 (rtx_insn *jump, rtx nlabel)
1660 {
1661 rtx x = pc_set (jump);
1662 int ochanges;
1663 int ok;
1664
1665 ochanges = num_validated_changes ();
1666 if (x == NULL)
1667 return 0;
1668 ok = invert_exp_1 (SET_SRC (x), jump);
1669 gcc_assert (ok);
1670
1671 if (num_validated_changes () == ochanges)
1672 return 0;
1673
1674 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1675 in Pmode, so checking this is not merely an optimization. */
1676 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1677 }
1678
1679 /* Invert the condition of the jump JUMP, and make it jump to label
1680 NLABEL instead of where it jumps now. Return true if successful. */
1681
1682 int
1683 invert_jump (rtx_insn *jump, rtx nlabel, int delete_unused)
1684 {
1685 rtx olabel = JUMP_LABEL (jump);
1686
1687 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1688 {
1689 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1690 return 1;
1691 }
1692 cancel_changes (0);
1693 return 0;
1694 }
1695
1696 \f
1697 /* Like rtx_equal_p except that it considers two REGs as equal
1698 if they renumber to the same value and considers two commutative
1699 operations to be the same if the order of the operands has been
1700 reversed. */
1701
1702 int
1703 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1704 {
1705 int i;
1706 const enum rtx_code code = GET_CODE (x);
1707 const char *fmt;
1708
1709 if (x == y)
1710 return 1;
1711
1712 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1713 && (REG_P (y) || (GET_CODE (y) == SUBREG
1714 && REG_P (SUBREG_REG (y)))))
1715 {
1716 int reg_x = -1, reg_y = -1;
1717 int byte_x = 0, byte_y = 0;
1718 struct subreg_info info;
1719
1720 if (GET_MODE (x) != GET_MODE (y))
1721 return 0;
1722
1723 /* If we haven't done any renumbering, don't
1724 make any assumptions. */
1725 if (reg_renumber == 0)
1726 return rtx_equal_p (x, y);
1727
1728 if (code == SUBREG)
1729 {
1730 reg_x = REGNO (SUBREG_REG (x));
1731 byte_x = SUBREG_BYTE (x);
1732
1733 if (reg_renumber[reg_x] >= 0)
1734 {
1735 subreg_get_info (reg_renumber[reg_x],
1736 GET_MODE (SUBREG_REG (x)), byte_x,
1737 GET_MODE (x), &info);
1738 if (!info.representable_p)
1739 return 0;
1740 reg_x = info.offset;
1741 byte_x = 0;
1742 }
1743 }
1744 else
1745 {
1746 reg_x = REGNO (x);
1747 if (reg_renumber[reg_x] >= 0)
1748 reg_x = reg_renumber[reg_x];
1749 }
1750
1751 if (GET_CODE (y) == SUBREG)
1752 {
1753 reg_y = REGNO (SUBREG_REG (y));
1754 byte_y = SUBREG_BYTE (y);
1755
1756 if (reg_renumber[reg_y] >= 0)
1757 {
1758 subreg_get_info (reg_renumber[reg_y],
1759 GET_MODE (SUBREG_REG (y)), byte_y,
1760 GET_MODE (y), &info);
1761 if (!info.representable_p)
1762 return 0;
1763 reg_y = info.offset;
1764 byte_y = 0;
1765 }
1766 }
1767 else
1768 {
1769 reg_y = REGNO (y);
1770 if (reg_renumber[reg_y] >= 0)
1771 reg_y = reg_renumber[reg_y];
1772 }
1773
1774 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1775 }
1776
1777 /* Now we have disposed of all the cases
1778 in which different rtx codes can match. */
1779 if (code != GET_CODE (y))
1780 return 0;
1781
1782 switch (code)
1783 {
1784 case PC:
1785 case CC0:
1786 case ADDR_VEC:
1787 case ADDR_DIFF_VEC:
1788 CASE_CONST_UNIQUE:
1789 return 0;
1790
1791 case LABEL_REF:
1792 /* We can't assume nonlocal labels have their following insns yet. */
1793 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1794 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1795
1796 /* Two label-refs are equivalent if they point at labels
1797 in the same position in the instruction stream. */
1798 return (next_real_insn (LABEL_REF_LABEL (x))
1799 == next_real_insn (LABEL_REF_LABEL (y)));
1800
1801 case SYMBOL_REF:
1802 return XSTR (x, 0) == XSTR (y, 0);
1803
1804 case CODE_LABEL:
1805 /* If we didn't match EQ equality above, they aren't the same. */
1806 return 0;
1807
1808 default:
1809 break;
1810 }
1811
1812 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1813
1814 if (GET_MODE (x) != GET_MODE (y))
1815 return 0;
1816
1817 /* MEMs referring to different address space are not equivalent. */
1818 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1819 return 0;
1820
1821 /* For commutative operations, the RTX match if the operand match in any
1822 order. Also handle the simple binary and unary cases without a loop. */
1823 if (targetm.commutative_p (x, UNKNOWN))
1824 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1825 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1826 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1827 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1828 else if (NON_COMMUTATIVE_P (x))
1829 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1830 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1831 else if (UNARY_P (x))
1832 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1833
1834 /* Compare the elements. If any pair of corresponding elements
1835 fail to match, return 0 for the whole things. */
1836
1837 fmt = GET_RTX_FORMAT (code);
1838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1839 {
1840 int j;
1841 switch (fmt[i])
1842 {
1843 case 'w':
1844 if (XWINT (x, i) != XWINT (y, i))
1845 return 0;
1846 break;
1847
1848 case 'i':
1849 if (XINT (x, i) != XINT (y, i))
1850 {
1851 if (((code == ASM_OPERANDS && i == 6)
1852 || (code == ASM_INPUT && i == 1)))
1853 break;
1854 return 0;
1855 }
1856 break;
1857
1858 case 't':
1859 if (XTREE (x, i) != XTREE (y, i))
1860 return 0;
1861 break;
1862
1863 case 's':
1864 if (strcmp (XSTR (x, i), XSTR (y, i)))
1865 return 0;
1866 break;
1867
1868 case 'e':
1869 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1870 return 0;
1871 break;
1872
1873 case 'u':
1874 if (XEXP (x, i) != XEXP (y, i))
1875 return 0;
1876 /* Fall through. */
1877 case '0':
1878 break;
1879
1880 case 'E':
1881 if (XVECLEN (x, i) != XVECLEN (y, i))
1882 return 0;
1883 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1884 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1885 return 0;
1886 break;
1887
1888 default:
1889 gcc_unreachable ();
1890 }
1891 }
1892 return 1;
1893 }
1894 \f
1895 /* If X is a hard register or equivalent to one or a subregister of one,
1896 return the hard register number. If X is a pseudo register that was not
1897 assigned a hard register, return the pseudo register number. Otherwise,
1898 return -1. Any rtx is valid for X. */
1899
1900 int
1901 true_regnum (const_rtx x)
1902 {
1903 if (REG_P (x))
1904 {
1905 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1906 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1907 return reg_renumber[REGNO (x)];
1908 return REGNO (x);
1909 }
1910 if (GET_CODE (x) == SUBREG)
1911 {
1912 int base = true_regnum (SUBREG_REG (x));
1913 if (base >= 0
1914 && base < FIRST_PSEUDO_REGISTER)
1915 {
1916 struct subreg_info info;
1917
1918 subreg_get_info (lra_in_progress
1919 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1920 GET_MODE (SUBREG_REG (x)),
1921 SUBREG_BYTE (x), GET_MODE (x), &info);
1922
1923 if (info.representable_p)
1924 return base + info.offset;
1925 }
1926 }
1927 return -1;
1928 }
1929
1930 /* Return regno of the register REG and handle subregs too. */
1931 unsigned int
1932 reg_or_subregno (const_rtx reg)
1933 {
1934 if (GET_CODE (reg) == SUBREG)
1935 reg = SUBREG_REG (reg);
1936 gcc_assert (REG_P (reg));
1937 return REGNO (reg);
1938 }