Makefile.in (final.o): Depend on BASIC_BLOCK_H.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This is the jump-optimization pass of the compiler.
24 It is run two or three times: once before cse, sometimes once after cse,
25 and once after reload (before final).
26
27 jump_optimize deletes unreachable code and labels that are not used.
28 It also deletes jumps that jump to the following insn,
29 and simplifies jumps around unconditional jumps and jumps
30 to unconditional jumps.
31
32 Each CODE_LABEL has a count of the times it is used
33 stored in the LABEL_NUSES internal field, and each JUMP_INSN
34 has one label that it refers to stored in the
35 JUMP_LABEL internal field. With this we can detect labels that
36 become unused because of the deletion of all the jumps that
37 formerly used them. The JUMP_LABEL info is sometimes looked
38 at by later passes.
39
40 Optionally, cross-jumping can be done. Currently it is done
41 only the last time (when after reload and before final).
42 In fact, the code for cross-jumping now assumes that register
43 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44
45 Jump optimization is done after cse when cse's constant-propagation
46 causes jumps to become unconditional or to be deleted.
47
48 Unreachable loops are not detected here, because the labels
49 have references and the insns appear reachable from the labels.
50 find_basic_blocks in flow.c finds and deletes such loops.
51
52 The subroutines delete_insn, redirect_jump, and invert_jump are used
53 from other passes as well. */
54
55 #include "config.h"
56 #include "system.h"
57 #include "rtl.h"
58 #include "tm_p.h"
59 #include "flags.h"
60 #include "hard-reg-set.h"
61 #include "regs.h"
62 #include "insn-config.h"
63 #include "insn-flags.h"
64 #include "insn-attr.h"
65 #include "recog.h"
66 #include "function.h"
67 #include "expr.h"
68 #include "real.h"
69 #include "except.h"
70 #include "toplev.h"
71
72 /* ??? Eventually must record somehow the labels used by jumps
73 from nested functions. */
74 /* Pre-record the next or previous real insn for each label?
75 No, this pass is very fast anyway. */
76 /* Condense consecutive labels?
77 This would make life analysis faster, maybe. */
78 /* Optimize jump y; x: ... y: jumpif... x?
79 Don't know if it is worth bothering with. */
80 /* Optimize two cases of conditional jump to conditional jump?
81 This can never delete any instruction or make anything dead,
82 or even change what is live at any point.
83 So perhaps let combiner do it. */
84
85 /* Vector indexed by uid.
86 For each CODE_LABEL, index by its uid to get first unconditional jump
87 that jumps to the label.
88 For each JUMP_INSN, index by its uid to get the next unconditional jump
89 that jumps to the same label.
90 Element 0 is the start of a chain of all return insns.
91 (It is safe to use element 0 because insn uid 0 is not used. */
92
93 static rtx *jump_chain;
94
95 /* Maximum index in jump_chain. */
96
97 static int max_jump_chain;
98
99 /* Set nonzero by jump_optimize if control can fall through
100 to the end of the function. */
101 int can_reach_end;
102
103 /* Indicates whether death notes are significant in cross jump analysis.
104 Normally they are not significant, because of A and B jump to C,
105 and R dies in A, it must die in B. But this might not be true after
106 stack register conversion, and we must compare death notes in that
107 case. */
108
109 static int cross_jump_death_matters = 0;
110
111 static int init_label_info PARAMS ((rtx));
112 static void delete_barrier_successors PARAMS ((rtx));
113 static void mark_all_labels PARAMS ((rtx, int));
114 static rtx delete_unreferenced_labels PARAMS ((rtx));
115 static void delete_noop_moves PARAMS ((rtx));
116 static int calculate_can_reach_end PARAMS ((rtx, int));
117 static int duplicate_loop_exit_test PARAMS ((rtx));
118 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
119 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
120 static int jump_back_p PARAMS ((rtx, rtx));
121 static int tension_vector_labels PARAMS ((rtx, int));
122 static void mark_jump_label PARAMS ((rtx, rtx, int, int));
123 static void delete_computation PARAMS ((rtx));
124 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
125 static void invert_exp_1 PARAMS ((rtx, rtx));
126 static void delete_from_jump_chain PARAMS ((rtx));
127 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
128 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
129 static void redirect_tablejump PARAMS ((rtx, rtx));
130 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
131 static int returnjump_p_1 PARAMS ((rtx *, void *));
132 static void delete_prior_computation PARAMS ((rtx, rtx));
133 \f
134 /* Main external entry point into the jump optimizer. See comments before
135 jump_optimize_1 for descriptions of the arguments. */
136 void
137 jump_optimize (f, cross_jump, noop_moves, after_regscan)
138 rtx f;
139 int cross_jump;
140 int noop_moves;
141 int after_regscan;
142 {
143 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
144 }
145
146 /* Alternate entry into the jump optimizer. This entry point only rebuilds
147 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
148 instructions. */
149 void
150 rebuild_jump_labels (f)
151 rtx f;
152 {
153 jump_optimize_1 (f, 0, 0, 0, 1, 0);
154 }
155
156 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
157 void
158 jump_optimize_minimal (f)
159 rtx f;
160 {
161 jump_optimize_1 (f, 0, 0, 0, 0, 1);
162 }
163 \f
164 /* Delete no-op jumps and optimize jumps to jumps
165 and jumps around jumps.
166 Delete unused labels and unreachable code.
167
168 If CROSS_JUMP is 1, detect matching code
169 before a jump and its destination and unify them.
170 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
171
172 If NOOP_MOVES is nonzero, delete no-op move insns.
173
174 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
175 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
176
177 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
178 and JUMP_LABEL field for jumping insns.
179
180 If `optimize' is zero, don't change any code,
181 just determine whether control drops off the end of the function.
182 This case occurs when we have -W and not -O.
183 It works because `delete_insn' checks the value of `optimize'
184 and refrains from actually deleting when that is 0.
185
186 If MINIMAL is nonzero, then we only perform trivial optimizations:
187
188 * Removal of unreachable code after BARRIERs.
189 * Removal of unreferenced CODE_LABELs.
190 * Removal of a jump to the next instruction.
191 * Removal of a conditional jump followed by an unconditional jump
192 to the same target as the conditional jump.
193 * Simplify a conditional jump around an unconditional jump.
194 * Simplify a jump to a jump.
195 * Delete extraneous line number notes.
196 */
197
198 static void
199 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
200 mark_labels_only, minimal)
201 rtx f;
202 int cross_jump;
203 int noop_moves;
204 int after_regscan;
205 int mark_labels_only;
206 int minimal;
207 {
208 register rtx insn, next;
209 int changed;
210 int old_max_reg;
211 int first = 1;
212 int max_uid = 0;
213 rtx last_insn;
214
215 cross_jump_death_matters = (cross_jump == 2);
216 max_uid = init_label_info (f) + 1;
217
218 /* If we are performing cross jump optimizations, then initialize
219 tables mapping UIDs to EH regions to avoid incorrect movement
220 of insns from one EH region to another. */
221 if (flag_exceptions && cross_jump)
222 init_insn_eh_region (f, max_uid);
223
224 if (! mark_labels_only)
225 delete_barrier_successors (f);
226
227 /* Leave some extra room for labels and duplicate exit test insns
228 we make. */
229 max_jump_chain = max_uid * 14 / 10;
230 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
231
232 mark_all_labels (f, cross_jump);
233
234 /* Keep track of labels used from static data;
235 they cannot ever be deleted. */
236
237 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
238 LABEL_NUSES (XEXP (insn, 0))++;
239
240 check_exception_handler_labels ();
241
242 /* Keep track of labels used for marking handlers for exception
243 regions; they cannot usually be deleted. */
244
245 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
246 LABEL_NUSES (XEXP (insn, 0))++;
247
248 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
249 notes and recompute LABEL_NUSES. */
250 if (mark_labels_only)
251 goto end;
252
253 if (! minimal)
254 exception_optimize ();
255
256 last_insn = delete_unreferenced_labels (f);
257
258 if (noop_moves)
259 delete_noop_moves (f);
260
261 /* If we haven't yet gotten to reload and we have just run regscan,
262 delete any insn that sets a register that isn't used elsewhere.
263 This helps some of the optimizations below by having less insns
264 being jumped around. */
265
266 if (optimize && ! reload_completed && after_regscan)
267 for (insn = f; insn; insn = next)
268 {
269 rtx set = single_set (insn);
270
271 next = NEXT_INSN (insn);
272
273 if (set && GET_CODE (SET_DEST (set)) == REG
274 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
275 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
276 /* We use regno_last_note_uid so as not to delete the setting
277 of a reg that's used in notes. A subsequent optimization
278 might arrange to use that reg for real. */
279 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
280 && ! side_effects_p (SET_SRC (set))
281 && ! find_reg_note (insn, REG_RETVAL, 0)
282 /* An ADDRESSOF expression can turn into a use of the internal arg
283 pointer, so do not delete the initialization of the internal
284 arg pointer yet. If it is truly dead, flow will delete the
285 initializing insn. */
286 && SET_DEST (set) != current_function_internal_arg_pointer)
287 delete_insn (insn);
288 }
289
290 /* Now iterate optimizing jumps until nothing changes over one pass. */
291 changed = 1;
292 old_max_reg = max_reg_num ();
293 while (changed)
294 {
295 changed = 0;
296
297 for (insn = f; insn; insn = next)
298 {
299 rtx reallabelprev;
300 rtx temp, temp1, temp2 = NULL_RTX;
301 rtx temp4 ATTRIBUTE_UNUSED;
302 rtx nlabel;
303 int this_is_simplejump, this_is_condjump;
304 int this_is_condjump_in_parallel;
305
306 next = NEXT_INSN (insn);
307
308 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
309 jump. Try to optimize by duplicating the loop exit test if so.
310 This is only safe immediately after regscan, because it uses
311 the values of regno_first_uid and regno_last_uid. */
312 if (after_regscan && GET_CODE (insn) == NOTE
313 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
314 && (temp1 = next_nonnote_insn (insn)) != 0
315 && simplejump_p (temp1))
316 {
317 temp = PREV_INSN (insn);
318 if (duplicate_loop_exit_test (insn))
319 {
320 changed = 1;
321 next = NEXT_INSN (temp);
322 continue;
323 }
324 }
325
326 if (GET_CODE (insn) != JUMP_INSN)
327 continue;
328
329 this_is_simplejump = simplejump_p (insn);
330 this_is_condjump = condjump_p (insn);
331 this_is_condjump_in_parallel = condjump_in_parallel_p (insn);
332
333 /* Tension the labels in dispatch tables. */
334
335 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
336 changed |= tension_vector_labels (PATTERN (insn), 0);
337 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
338 changed |= tension_vector_labels (PATTERN (insn), 1);
339
340 /* See if this jump goes to another jump and redirect if so. */
341 nlabel = follow_jumps (JUMP_LABEL (insn));
342 if (nlabel != JUMP_LABEL (insn))
343 changed |= redirect_jump (insn, nlabel);
344
345 if (! optimize || minimal)
346 continue;
347
348 /* If a dispatch table always goes to the same place,
349 get rid of it and replace the insn that uses it. */
350
351 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
352 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
353 {
354 int i;
355 rtx pat = PATTERN (insn);
356 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
357 int len = XVECLEN (pat, diff_vec_p);
358 rtx dispatch = prev_real_insn (insn);
359 rtx set;
360
361 for (i = 0; i < len; i++)
362 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
363 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
364 break;
365
366 if (i == len
367 && dispatch != 0
368 && GET_CODE (dispatch) == JUMP_INSN
369 && JUMP_LABEL (dispatch) != 0
370 /* Don't mess with a casesi insn.
371 XXX according to the comment before computed_jump_p(),
372 all casesi insns should be a parallel of the jump
373 and a USE of a LABEL_REF. */
374 && ! ((set = single_set (dispatch)) != NULL
375 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
376 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
377 {
378 redirect_tablejump (dispatch,
379 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
380 changed = 1;
381 }
382 }
383
384 /* If a jump references the end of the function, try to turn
385 it into a RETURN insn, possibly a conditional one. */
386 if (JUMP_LABEL (insn) != 0
387 && (next_active_insn (JUMP_LABEL (insn)) == 0
388 || GET_CODE (PATTERN (next_active_insn (JUMP_LABEL (insn))))
389 == RETURN))
390 changed |= redirect_jump (insn, NULL_RTX);
391
392 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
393
394 /* Detect jump to following insn. */
395 if (reallabelprev == insn && this_is_condjump)
396 {
397 next = next_real_insn (JUMP_LABEL (insn));
398 delete_jump (insn);
399 changed = 1;
400 continue;
401 }
402
403 /* Detect a conditional jump going to the same place
404 as an immediately following unconditional jump. */
405 else if (this_is_condjump
406 && (temp = next_active_insn (insn)) != 0
407 && simplejump_p (temp)
408 && (next_active_insn (JUMP_LABEL (insn))
409 == next_active_insn (JUMP_LABEL (temp))))
410 {
411 /* Don't mess up test coverage analysis. */
412 temp2 = temp;
413 if (flag_test_coverage && !reload_completed)
414 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
415 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
416 break;
417
418 if (temp2 == temp)
419 {
420 delete_jump (insn);
421 changed = 1;
422 continue;
423 }
424 }
425
426 /* Detect a conditional jump jumping over an unconditional jump. */
427
428 else if ((this_is_condjump || this_is_condjump_in_parallel)
429 && ! this_is_simplejump
430 && reallabelprev != 0
431 && GET_CODE (reallabelprev) == JUMP_INSN
432 && prev_active_insn (reallabelprev) == insn
433 && no_labels_between_p (insn, reallabelprev)
434 && simplejump_p (reallabelprev))
435 {
436 /* When we invert the unconditional jump, we will be
437 decrementing the usage count of its old label.
438 Make sure that we don't delete it now because that
439 might cause the following code to be deleted. */
440 rtx prev_uses = prev_nonnote_insn (reallabelprev);
441 rtx prev_label = JUMP_LABEL (insn);
442
443 if (prev_label)
444 ++LABEL_NUSES (prev_label);
445
446 if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
447 {
448 /* It is very likely that if there are USE insns before
449 this jump, they hold REG_DEAD notes. These REG_DEAD
450 notes are no longer valid due to this optimization,
451 and will cause the life-analysis that following passes
452 (notably delayed-branch scheduling) to think that
453 these registers are dead when they are not.
454
455 To prevent this trouble, we just remove the USE insns
456 from the insn chain. */
457
458 while (prev_uses && GET_CODE (prev_uses) == INSN
459 && GET_CODE (PATTERN (prev_uses)) == USE)
460 {
461 rtx useless = prev_uses;
462 prev_uses = prev_nonnote_insn (prev_uses);
463 delete_insn (useless);
464 }
465
466 delete_insn (reallabelprev);
467 changed = 1;
468 }
469
470 /* We can now safely delete the label if it is unreferenced
471 since the delete_insn above has deleted the BARRIER. */
472 if (prev_label && --LABEL_NUSES (prev_label) == 0)
473 delete_insn (prev_label);
474
475 next = NEXT_INSN (insn);
476 }
477
478 /* If we have an unconditional jump preceded by a USE, try to put
479 the USE before the target and jump there. This simplifies many
480 of the optimizations below since we don't have to worry about
481 dealing with these USE insns. We only do this if the label
482 being branch to already has the identical USE or if code
483 never falls through to that label. */
484
485 else if (this_is_simplejump
486 && (temp = prev_nonnote_insn (insn)) != 0
487 && GET_CODE (temp) == INSN
488 && GET_CODE (PATTERN (temp)) == USE
489 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
490 && (GET_CODE (temp1) == BARRIER
491 || (GET_CODE (temp1) == INSN
492 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
493 /* Don't do this optimization if we have a loop containing
494 only the USE instruction, and the loop start label has
495 a usage count of 1. This is because we will redo this
496 optimization everytime through the outer loop, and jump
497 opt will never exit. */
498 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
499 && temp2 == JUMP_LABEL (insn)
500 && LABEL_NUSES (temp2) == 1))
501 {
502 if (GET_CODE (temp1) == BARRIER)
503 {
504 emit_insn_after (PATTERN (temp), temp1);
505 temp1 = NEXT_INSN (temp1);
506 }
507
508 delete_insn (temp);
509 redirect_jump (insn, get_label_before (temp1));
510 reallabelprev = prev_real_insn (temp1);
511 changed = 1;
512 next = NEXT_INSN (insn);
513 }
514
515 #ifdef HAVE_trap
516 /* Detect a conditional jump jumping over an unconditional trap. */
517 if (HAVE_trap
518 && this_is_condjump && ! this_is_simplejump
519 && reallabelprev != 0
520 && GET_CODE (reallabelprev) == INSN
521 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
522 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
523 && prev_active_insn (reallabelprev) == insn
524 && no_labels_between_p (insn, reallabelprev)
525 && (temp2 = get_condition (insn, &temp4))
526 && can_reverse_comparison_p (temp2, insn))
527 {
528 rtx new = gen_cond_trap (reverse_condition (GET_CODE (temp2)),
529 XEXP (temp2, 0), XEXP (temp2, 1),
530 TRAP_CODE (PATTERN (reallabelprev)));
531
532 if (new)
533 {
534 emit_insn_before (new, temp4);
535 delete_insn (reallabelprev);
536 delete_jump (insn);
537 changed = 1;
538 continue;
539 }
540 }
541 /* Detect a jump jumping to an unconditional trap. */
542 else if (HAVE_trap && this_is_condjump
543 && (temp = next_active_insn (JUMP_LABEL (insn)))
544 && GET_CODE (temp) == INSN
545 && GET_CODE (PATTERN (temp)) == TRAP_IF
546 && (this_is_simplejump
547 || (temp2 = get_condition (insn, &temp4))))
548 {
549 rtx tc = TRAP_CONDITION (PATTERN (temp));
550
551 if (tc == const_true_rtx
552 || (! this_is_simplejump && rtx_equal_p (temp2, tc)))
553 {
554 rtx new;
555 /* Replace an unconditional jump to a trap with a trap. */
556 if (this_is_simplejump)
557 {
558 emit_barrier_after (emit_insn_before (gen_trap (), insn));
559 delete_jump (insn);
560 changed = 1;
561 continue;
562 }
563 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
564 XEXP (temp2, 1),
565 TRAP_CODE (PATTERN (temp)));
566 if (new)
567 {
568 emit_insn_before (new, temp4);
569 delete_jump (insn);
570 changed = 1;
571 continue;
572 }
573 }
574 /* If the trap condition and jump condition are mutually
575 exclusive, redirect the jump to the following insn. */
576 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
577 && ! this_is_simplejump
578 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
579 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
580 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
581 && redirect_jump (insn, get_label_after (temp)))
582 {
583 changed = 1;
584 continue;
585 }
586 }
587 #endif
588 else
589 {
590 /* Now that the jump has been tensioned,
591 try cross jumping: check for identical code
592 before the jump and before its target label. */
593
594 /* First, cross jumping of conditional jumps: */
595
596 if (cross_jump && condjump_p (insn))
597 {
598 rtx newjpos, newlpos;
599 rtx x = prev_real_insn (JUMP_LABEL (insn));
600
601 /* A conditional jump may be crossjumped
602 only if the place it jumps to follows
603 an opposing jump that comes back here. */
604
605 if (x != 0 && ! jump_back_p (x, insn))
606 /* We have no opposing jump;
607 cannot cross jump this insn. */
608 x = 0;
609
610 newjpos = 0;
611 /* TARGET is nonzero if it is ok to cross jump
612 to code before TARGET. If so, see if matches. */
613 if (x != 0)
614 find_cross_jump (insn, x, 2,
615 &newjpos, &newlpos);
616
617 if (newjpos != 0)
618 {
619 do_cross_jump (insn, newjpos, newlpos);
620 /* Make the old conditional jump
621 into an unconditional one. */
622 SET_SRC (PATTERN (insn))
623 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
624 INSN_CODE (insn) = -1;
625 emit_barrier_after (insn);
626 /* Add to jump_chain unless this is a new label
627 whose UID is too large. */
628 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
629 {
630 jump_chain[INSN_UID (insn)]
631 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
632 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
633 }
634 changed = 1;
635 next = insn;
636 }
637 }
638
639 /* Cross jumping of unconditional jumps:
640 a few differences. */
641
642 if (cross_jump && simplejump_p (insn))
643 {
644 rtx newjpos, newlpos;
645 rtx target;
646
647 newjpos = 0;
648
649 /* TARGET is nonzero if it is ok to cross jump
650 to code before TARGET. If so, see if matches. */
651 find_cross_jump (insn, JUMP_LABEL (insn), 1,
652 &newjpos, &newlpos);
653
654 /* If cannot cross jump to code before the label,
655 see if we can cross jump to another jump to
656 the same label. */
657 /* Try each other jump to this label. */
658 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
659 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
660 target != 0 && newjpos == 0;
661 target = jump_chain[INSN_UID (target)])
662 if (target != insn
663 && JUMP_LABEL (target) == JUMP_LABEL (insn)
664 /* Ignore TARGET if it's deleted. */
665 && ! INSN_DELETED_P (target))
666 find_cross_jump (insn, target, 2,
667 &newjpos, &newlpos);
668
669 if (newjpos != 0)
670 {
671 do_cross_jump (insn, newjpos, newlpos);
672 changed = 1;
673 next = insn;
674 }
675 }
676
677 /* This code was dead in the previous jump.c! */
678 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
679 {
680 /* Return insns all "jump to the same place"
681 so we can cross-jump between any two of them. */
682
683 rtx newjpos, newlpos, target;
684
685 newjpos = 0;
686
687 /* If cannot cross jump to code before the label,
688 see if we can cross jump to another jump to
689 the same label. */
690 /* Try each other jump to this label. */
691 for (target = jump_chain[0];
692 target != 0 && newjpos == 0;
693 target = jump_chain[INSN_UID (target)])
694 if (target != insn
695 && ! INSN_DELETED_P (target)
696 && GET_CODE (PATTERN (target)) == RETURN)
697 find_cross_jump (insn, target, 2,
698 &newjpos, &newlpos);
699
700 if (newjpos != 0)
701 {
702 do_cross_jump (insn, newjpos, newlpos);
703 changed = 1;
704 next = insn;
705 }
706 }
707 }
708 }
709
710 first = 0;
711 }
712
713 /* Delete extraneous line number notes.
714 Note that two consecutive notes for different lines are not really
715 extraneous. There should be some indication where that line belonged,
716 even if it became empty. */
717
718 {
719 rtx last_note = 0;
720
721 for (insn = f; insn; insn = NEXT_INSN (insn))
722 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
723 {
724 /* Delete this note if it is identical to previous note. */
725 if (last_note
726 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
727 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
728 {
729 delete_insn (insn);
730 continue;
731 }
732
733 last_note = insn;
734 }
735 }
736
737 /* CAN_REACH_END is persistent for each function. Once set it should
738 not be cleared. This is especially true for the case where we
739 delete the NOTE_FUNCTION_END note. CAN_REACH_END is cleared by
740 the front-end before compiling each function. */
741 if (! minimal && calculate_can_reach_end (last_insn, optimize != 0))
742 can_reach_end = 1;
743
744 end:
745 /* Clean up. */
746 free (jump_chain);
747 jump_chain = 0;
748 }
749 \f
750 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
751 notes whose labels don't occur in the insn any more. Returns the
752 largest INSN_UID found. */
753 static int
754 init_label_info (f)
755 rtx f;
756 {
757 int largest_uid = 0;
758 rtx insn;
759
760 for (insn = f; insn; insn = NEXT_INSN (insn))
761 {
762 if (GET_CODE (insn) == CODE_LABEL)
763 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
764 else if (GET_CODE (insn) == JUMP_INSN)
765 JUMP_LABEL (insn) = 0;
766 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
767 {
768 rtx note, next;
769
770 for (note = REG_NOTES (insn); note; note = next)
771 {
772 next = XEXP (note, 1);
773 if (REG_NOTE_KIND (note) == REG_LABEL
774 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
775 remove_note (insn, note);
776 }
777 }
778 if (INSN_UID (insn) > largest_uid)
779 largest_uid = INSN_UID (insn);
780 }
781
782 return largest_uid;
783 }
784
785 /* Delete insns following barriers, up to next label.
786
787 Also delete no-op jumps created by gcse. */
788
789 static void
790 delete_barrier_successors (f)
791 rtx f;
792 {
793 rtx insn;
794
795 for (insn = f; insn;)
796 {
797 if (GET_CODE (insn) == BARRIER)
798 {
799 insn = NEXT_INSN (insn);
800
801 never_reached_warning (insn);
802
803 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
804 {
805 if (GET_CODE (insn) == NOTE
806 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
807 insn = NEXT_INSN (insn);
808 else
809 insn = delete_insn (insn);
810 }
811 /* INSN is now the code_label. */
812 }
813
814 /* Also remove (set (pc) (pc)) insns which can be created by
815 gcse. We eliminate such insns now to avoid having them
816 cause problems later. */
817 else if (GET_CODE (insn) == JUMP_INSN
818 && GET_CODE (PATTERN (insn)) == SET
819 && SET_SRC (PATTERN (insn)) == pc_rtx
820 && SET_DEST (PATTERN (insn)) == pc_rtx)
821 insn = delete_insn (insn);
822
823 else
824 insn = NEXT_INSN (insn);
825 }
826 }
827
828 /* Mark the label each jump jumps to.
829 Combine consecutive labels, and count uses of labels.
830
831 For each label, make a chain (using `jump_chain')
832 of all the *unconditional* jumps that jump to it;
833 also make a chain of all returns.
834
835 CROSS_JUMP indicates whether we are doing cross jumping
836 and if we are whether we will be paying attention to
837 death notes or not. */
838
839 static void
840 mark_all_labels (f, cross_jump)
841 rtx f;
842 int cross_jump;
843 {
844 rtx insn;
845
846 for (insn = f; insn; insn = NEXT_INSN (insn))
847 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
848 {
849 if (GET_CODE (insn) == CALL_INSN
850 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
851 {
852 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
853 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
854 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
855 continue;
856 }
857
858 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
859 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
860 {
861 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
862 {
863 jump_chain[INSN_UID (insn)]
864 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
865 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
866 }
867 if (GET_CODE (PATTERN (insn)) == RETURN)
868 {
869 jump_chain[INSN_UID (insn)] = jump_chain[0];
870 jump_chain[0] = insn;
871 }
872 }
873 }
874 }
875
876 /* Delete all labels already not referenced.
877 Also find and return the last insn. */
878
879 static rtx
880 delete_unreferenced_labels (f)
881 rtx f;
882 {
883 rtx final = NULL_RTX;
884 rtx insn;
885
886 for (insn = f; insn; )
887 {
888 if (GET_CODE (insn) == CODE_LABEL
889 && LABEL_NUSES (insn) == 0
890 && LABEL_ALTERNATE_NAME (insn) == NULL)
891 insn = delete_insn (insn);
892 else
893 {
894 final = insn;
895 insn = NEXT_INSN (insn);
896 }
897 }
898
899 return final;
900 }
901
902 /* Delete various simple forms of moves which have no necessary
903 side effect. */
904
905 static void
906 delete_noop_moves (f)
907 rtx f;
908 {
909 rtx insn, next;
910
911 for (insn = f; insn; )
912 {
913 next = NEXT_INSN (insn);
914
915 if (GET_CODE (insn) == INSN)
916 {
917 register rtx body = PATTERN (insn);
918
919 /* Detect and delete no-op move instructions
920 resulting from not allocating a parameter in a register. */
921
922 if (GET_CODE (body) == SET
923 && (SET_DEST (body) == SET_SRC (body)
924 || (GET_CODE (SET_DEST (body)) == MEM
925 && GET_CODE (SET_SRC (body)) == MEM
926 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
927 && ! (GET_CODE (SET_DEST (body)) == MEM
928 && MEM_VOLATILE_P (SET_DEST (body)))
929 && ! (GET_CODE (SET_SRC (body)) == MEM
930 && MEM_VOLATILE_P (SET_SRC (body))))
931 delete_computation (insn);
932
933 /* Detect and ignore no-op move instructions
934 resulting from smart or fortuitous register allocation. */
935
936 else if (GET_CODE (body) == SET)
937 {
938 int sreg = true_regnum (SET_SRC (body));
939 int dreg = true_regnum (SET_DEST (body));
940
941 if (sreg == dreg && sreg >= 0)
942 delete_insn (insn);
943 else if (sreg >= 0 && dreg >= 0)
944 {
945 rtx trial;
946 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
947 sreg, NULL_PTR, dreg,
948 GET_MODE (SET_SRC (body)));
949
950 if (tem != 0
951 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
952 {
953 /* DREG may have been the target of a REG_DEAD note in
954 the insn which makes INSN redundant. If so, reorg
955 would still think it is dead. So search for such a
956 note and delete it if we find it. */
957 if (! find_regno_note (insn, REG_UNUSED, dreg))
958 for (trial = prev_nonnote_insn (insn);
959 trial && GET_CODE (trial) != CODE_LABEL;
960 trial = prev_nonnote_insn (trial))
961 if (find_regno_note (trial, REG_DEAD, dreg))
962 {
963 remove_death (dreg, trial);
964 break;
965 }
966
967 /* Deleting insn could lose a death-note for SREG. */
968 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
969 {
970 /* Change this into a USE so that we won't emit
971 code for it, but still can keep the note. */
972 PATTERN (insn)
973 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
974 INSN_CODE (insn) = -1;
975 /* Remove all reg notes but the REG_DEAD one. */
976 REG_NOTES (insn) = trial;
977 XEXP (trial, 1) = NULL_RTX;
978 }
979 else
980 delete_insn (insn);
981 }
982 }
983 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
984 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
985 NULL_PTR, 0,
986 GET_MODE (SET_DEST (body))))
987 {
988 /* This handles the case where we have two consecutive
989 assignments of the same constant to pseudos that didn't
990 get a hard reg. Each SET from the constant will be
991 converted into a SET of the spill register and an
992 output reload will be made following it. This produces
993 two loads of the same constant into the same spill
994 register. */
995
996 rtx in_insn = insn;
997
998 /* Look back for a death note for the first reg.
999 If there is one, it is no longer accurate. */
1000 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1001 {
1002 if ((GET_CODE (in_insn) == INSN
1003 || GET_CODE (in_insn) == JUMP_INSN)
1004 && find_regno_note (in_insn, REG_DEAD, dreg))
1005 {
1006 remove_death (dreg, in_insn);
1007 break;
1008 }
1009 in_insn = PREV_INSN (in_insn);
1010 }
1011
1012 /* Delete the second load of the value. */
1013 delete_insn (insn);
1014 }
1015 }
1016 else if (GET_CODE (body) == PARALLEL)
1017 {
1018 /* If each part is a set between two identical registers or
1019 a USE or CLOBBER, delete the insn. */
1020 int i, sreg, dreg;
1021 rtx tem;
1022
1023 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1024 {
1025 tem = XVECEXP (body, 0, i);
1026 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1027 continue;
1028
1029 if (GET_CODE (tem) != SET
1030 || (sreg = true_regnum (SET_SRC (tem))) < 0
1031 || (dreg = true_regnum (SET_DEST (tem))) < 0
1032 || dreg != sreg)
1033 break;
1034 }
1035
1036 if (i < 0)
1037 delete_insn (insn);
1038 }
1039 /* Also delete insns to store bit fields if they are no-ops. */
1040 /* Not worth the hair to detect this in the big-endian case. */
1041 else if (! BYTES_BIG_ENDIAN
1042 && GET_CODE (body) == SET
1043 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1044 && XEXP (SET_DEST (body), 2) == const0_rtx
1045 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1046 && ! (GET_CODE (SET_SRC (body)) == MEM
1047 && MEM_VOLATILE_P (SET_SRC (body))))
1048 delete_insn (insn);
1049 }
1050 insn = next;
1051 }
1052 }
1053
1054 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
1055 If so indicate that this function can drop off the end by returning
1056 1, else return 0.
1057
1058 CHECK_DELETED indicates whether we must check if the note being
1059 searched for has the deleted flag set.
1060
1061 DELETE_FINAL_NOTE indicates whether we should delete the note
1062 if we find it. */
1063
1064 static int
1065 calculate_can_reach_end (last, delete_final_note)
1066 rtx last;
1067 int delete_final_note;
1068 {
1069 rtx insn = last;
1070 int n_labels = 1;
1071
1072 while (insn != NULL_RTX)
1073 {
1074 int ok = 0;
1075
1076 /* One label can follow the end-note: the return label. */
1077 if (GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
1078 ok = 1;
1079 /* Ordinary insns can follow it if returning a structure. */
1080 else if (GET_CODE (insn) == INSN)
1081 ok = 1;
1082 /* If machine uses explicit RETURN insns, no epilogue,
1083 then one of them follows the note. */
1084 else if (GET_CODE (insn) == JUMP_INSN
1085 && GET_CODE (PATTERN (insn)) == RETURN)
1086 ok = 1;
1087 /* A barrier can follow the return insn. */
1088 else if (GET_CODE (insn) == BARRIER)
1089 ok = 1;
1090 /* Other kinds of notes can follow also. */
1091 else if (GET_CODE (insn) == NOTE
1092 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
1093 ok = 1;
1094
1095 if (ok != 1)
1096 break;
1097
1098 insn = PREV_INSN (insn);
1099 }
1100
1101 /* See if we backed up to the appropriate type of note. */
1102 if (insn != NULL_RTX
1103 && GET_CODE (insn) == NOTE
1104 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)
1105 {
1106 if (delete_final_note)
1107 delete_insn (insn);
1108 return 1;
1109 }
1110
1111 return 0;
1112 }
1113
1114 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1115 jump. Assume that this unconditional jump is to the exit test code. If
1116 the code is sufficiently simple, make a copy of it before INSN,
1117 followed by a jump to the exit of the loop. Then delete the unconditional
1118 jump after INSN.
1119
1120 Return 1 if we made the change, else 0.
1121
1122 This is only safe immediately after a regscan pass because it uses the
1123 values of regno_first_uid and regno_last_uid. */
1124
1125 static int
1126 duplicate_loop_exit_test (loop_start)
1127 rtx loop_start;
1128 {
1129 rtx insn, set, reg, p, link;
1130 rtx copy = 0, first_copy = 0;
1131 int num_insns = 0;
1132 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1133 rtx lastexit;
1134 int max_reg = max_reg_num ();
1135 rtx *reg_map = 0;
1136
1137 /* Scan the exit code. We do not perform this optimization if any insn:
1138
1139 is a CALL_INSN
1140 is a CODE_LABEL
1141 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1142 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1143 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1144 is not valid.
1145
1146 We also do not do this if we find an insn with ASM_OPERANDS. While
1147 this restriction should not be necessary, copying an insn with
1148 ASM_OPERANDS can confuse asm_noperands in some cases.
1149
1150 Also, don't do this if the exit code is more than 20 insns. */
1151
1152 for (insn = exitcode;
1153 insn
1154 && ! (GET_CODE (insn) == NOTE
1155 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1156 insn = NEXT_INSN (insn))
1157 {
1158 switch (GET_CODE (insn))
1159 {
1160 case CODE_LABEL:
1161 case CALL_INSN:
1162 return 0;
1163 case NOTE:
1164 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1165 a jump immediately after the loop start that branches outside
1166 the loop but within an outer loop, near the exit test.
1167 If we copied this exit test and created a phony
1168 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1169 before the exit test look like these could be safely moved
1170 out of the loop even if they actually may be never executed.
1171 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1172
1173 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1174 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1175 return 0;
1176
1177 if (optimize < 2
1178 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1179 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1180 /* If we were to duplicate this code, we would not move
1181 the BLOCK notes, and so debugging the moved code would
1182 be difficult. Thus, we only move the code with -O2 or
1183 higher. */
1184 return 0;
1185
1186 break;
1187 case JUMP_INSN:
1188 case INSN:
1189 /* The code below would grossly mishandle REG_WAS_0 notes,
1190 so get rid of them here. */
1191 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1192 remove_note (insn, p);
1193 if (++num_insns > 20
1194 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1195 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1196 return 0;
1197 break;
1198 default:
1199 break;
1200 }
1201 }
1202
1203 /* Unless INSN is zero, we can do the optimization. */
1204 if (insn == 0)
1205 return 0;
1206
1207 lastexit = insn;
1208
1209 /* See if any insn sets a register only used in the loop exit code and
1210 not a user variable. If so, replace it with a new register. */
1211 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1212 if (GET_CODE (insn) == INSN
1213 && (set = single_set (insn)) != 0
1214 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1215 || (GET_CODE (reg) == SUBREG
1216 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1217 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1218 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1219 {
1220 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1221 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1222 break;
1223
1224 if (p != lastexit)
1225 {
1226 /* We can do the replacement. Allocate reg_map if this is the
1227 first replacement we found. */
1228 if (reg_map == 0)
1229 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1230
1231 REG_LOOP_TEST_P (reg) = 1;
1232
1233 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1234 }
1235 }
1236
1237 /* Now copy each insn. */
1238 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1239 {
1240 switch (GET_CODE (insn))
1241 {
1242 case BARRIER:
1243 copy = emit_barrier_before (loop_start);
1244 break;
1245 case NOTE:
1246 /* Only copy line-number notes. */
1247 if (NOTE_LINE_NUMBER (insn) >= 0)
1248 {
1249 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1250 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1251 }
1252 break;
1253
1254 case INSN:
1255 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1256 if (reg_map)
1257 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1258
1259 mark_jump_label (PATTERN (copy), copy, 0, 0);
1260
1261 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1262 make them. */
1263 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1264 if (REG_NOTE_KIND (link) != REG_LABEL)
1265 {
1266 if (GET_CODE (link) == EXPR_LIST)
1267 REG_NOTES (copy)
1268 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1269 XEXP (link, 0),
1270 REG_NOTES (copy)));
1271 else
1272 REG_NOTES (copy)
1273 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1274 XEXP (link, 0),
1275 REG_NOTES (copy)));
1276 }
1277
1278 if (reg_map && REG_NOTES (copy))
1279 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1280 break;
1281
1282 case JUMP_INSN:
1283 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)), loop_start);
1284 if (reg_map)
1285 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1286 mark_jump_label (PATTERN (copy), copy, 0, 0);
1287 if (REG_NOTES (insn))
1288 {
1289 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1290 if (reg_map)
1291 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1292 }
1293
1294 /* If this is a simple jump, add it to the jump chain. */
1295
1296 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1297 && simplejump_p (copy))
1298 {
1299 jump_chain[INSN_UID (copy)]
1300 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1301 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1302 }
1303 break;
1304
1305 default:
1306 abort ();
1307 }
1308
1309 /* Record the first insn we copied. We need it so that we can
1310 scan the copied insns for new pseudo registers. */
1311 if (! first_copy)
1312 first_copy = copy;
1313 }
1314
1315 /* Now clean up by emitting a jump to the end label and deleting the jump
1316 at the start of the loop. */
1317 if (! copy || GET_CODE (copy) != BARRIER)
1318 {
1319 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1320 loop_start);
1321
1322 /* Record the first insn we copied. We need it so that we can
1323 scan the copied insns for new pseudo registers. This may not
1324 be strictly necessary since we should have copied at least one
1325 insn above. But I am going to be safe. */
1326 if (! first_copy)
1327 first_copy = copy;
1328
1329 mark_jump_label (PATTERN (copy), copy, 0, 0);
1330 if (INSN_UID (copy) < max_jump_chain
1331 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1332 {
1333 jump_chain[INSN_UID (copy)]
1334 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1335 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1336 }
1337 emit_barrier_before (loop_start);
1338 }
1339
1340 /* Now scan from the first insn we copied to the last insn we copied
1341 (copy) for new pseudo registers. Do this after the code to jump to
1342 the end label since that might create a new pseudo too. */
1343 reg_scan_update (first_copy, copy, max_reg);
1344
1345 /* Mark the exit code as the virtual top of the converted loop. */
1346 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1347
1348 delete_insn (next_nonnote_insn (loop_start));
1349
1350 /* Clean up. */
1351 if (reg_map)
1352 free (reg_map);
1353
1354 return 1;
1355 }
1356 \f
1357 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1358 eh-beg, eh-end notes between START and END out before START. Assume that
1359 END is not such a note. START may be such a note. Returns the value
1360 of the new starting insn, which may be different if the original start
1361 was such a note. */
1362
1363 rtx
1364 squeeze_notes (start, end)
1365 rtx start, end;
1366 {
1367 rtx insn;
1368 rtx next;
1369
1370 for (insn = start; insn != end; insn = next)
1371 {
1372 next = NEXT_INSN (insn);
1373 if (GET_CODE (insn) == NOTE
1374 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1375 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1376 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1377 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1378 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1379 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP
1380 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1381 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1382 {
1383 if (insn == start)
1384 start = next;
1385 else
1386 {
1387 rtx prev = PREV_INSN (insn);
1388 PREV_INSN (insn) = PREV_INSN (start);
1389 NEXT_INSN (insn) = start;
1390 NEXT_INSN (PREV_INSN (insn)) = insn;
1391 PREV_INSN (NEXT_INSN (insn)) = insn;
1392 NEXT_INSN (prev) = next;
1393 PREV_INSN (next) = prev;
1394 }
1395 }
1396 }
1397
1398 return start;
1399 }
1400 \f
1401 /* Compare the instructions before insn E1 with those before E2
1402 to find an opportunity for cross jumping.
1403 (This means detecting identical sequences of insns followed by
1404 jumps to the same place, or followed by a label and a jump
1405 to that label, and replacing one with a jump to the other.)
1406
1407 Assume E1 is a jump that jumps to label E2
1408 (that is not always true but it might as well be).
1409 Find the longest possible equivalent sequences
1410 and store the first insns of those sequences into *F1 and *F2.
1411 Store zero there if no equivalent preceding instructions are found.
1412
1413 We give up if we find a label in stream 1.
1414 Actually we could transfer that label into stream 2. */
1415
1416 static void
1417 find_cross_jump (e1, e2, minimum, f1, f2)
1418 rtx e1, e2;
1419 int minimum;
1420 rtx *f1, *f2;
1421 {
1422 register rtx i1 = e1, i2 = e2;
1423 register rtx p1, p2;
1424 int lose = 0;
1425
1426 rtx last1 = 0, last2 = 0;
1427 rtx afterlast1 = 0, afterlast2 = 0;
1428
1429 *f1 = 0;
1430 *f2 = 0;
1431
1432 while (1)
1433 {
1434 i1 = prev_nonnote_insn (i1);
1435
1436 i2 = PREV_INSN (i2);
1437 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1438 i2 = PREV_INSN (i2);
1439
1440 if (i1 == 0)
1441 break;
1442
1443 /* Don't allow the range of insns preceding E1 or E2
1444 to include the other (E2 or E1). */
1445 if (i2 == e1 || i1 == e2)
1446 break;
1447
1448 /* If we will get to this code by jumping, those jumps will be
1449 tensioned to go directly to the new label (before I2),
1450 so this cross-jumping won't cost extra. So reduce the minimum. */
1451 if (GET_CODE (i1) == CODE_LABEL)
1452 {
1453 --minimum;
1454 break;
1455 }
1456
1457 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1458 break;
1459
1460 /* Avoid moving insns across EH regions if either of the insns
1461 can throw. */
1462 if (flag_exceptions
1463 && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
1464 && !in_same_eh_region (i1, i2))
1465 break;
1466
1467 p1 = PATTERN (i1);
1468 p2 = PATTERN (i2);
1469
1470 /* If this is a CALL_INSN, compare register usage information.
1471 If we don't check this on stack register machines, the two
1472 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1473 numbers of stack registers in the same basic block.
1474 If we don't check this on machines with delay slots, a delay slot may
1475 be filled that clobbers a parameter expected by the subroutine.
1476
1477 ??? We take the simple route for now and assume that if they're
1478 equal, they were constructed identically. */
1479
1480 if (GET_CODE (i1) == CALL_INSN
1481 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1482 CALL_INSN_FUNCTION_USAGE (i2)))
1483 lose = 1;
1484
1485 #ifdef STACK_REGS
1486 /* If cross_jump_death_matters is not 0, the insn's mode
1487 indicates whether or not the insn contains any stack-like
1488 regs. */
1489
1490 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1491 {
1492 /* If register stack conversion has already been done, then
1493 death notes must also be compared before it is certain that
1494 the two instruction streams match. */
1495
1496 rtx note;
1497 HARD_REG_SET i1_regset, i2_regset;
1498
1499 CLEAR_HARD_REG_SET (i1_regset);
1500 CLEAR_HARD_REG_SET (i2_regset);
1501
1502 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1503 if (REG_NOTE_KIND (note) == REG_DEAD
1504 && STACK_REG_P (XEXP (note, 0)))
1505 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1506
1507 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1508 if (REG_NOTE_KIND (note) == REG_DEAD
1509 && STACK_REG_P (XEXP (note, 0)))
1510 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1511
1512 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1513
1514 lose = 1;
1515
1516 done:
1517 ;
1518 }
1519 #endif
1520
1521 /* Don't allow old-style asm or volatile extended asms to be accepted
1522 for cross jumping purposes. It is conceptually correct to allow
1523 them, since cross-jumping preserves the dynamic instruction order
1524 even though it is changing the static instruction order. However,
1525 if an asm is being used to emit an assembler pseudo-op, such as
1526 the MIPS `.set reorder' pseudo-op, then the static instruction order
1527 matters and it must be preserved. */
1528 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1529 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1530 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1531 lose = 1;
1532
1533 if (lose || GET_CODE (p1) != GET_CODE (p2)
1534 || ! rtx_renumbered_equal_p (p1, p2))
1535 {
1536 /* The following code helps take care of G++ cleanups. */
1537 rtx equiv1;
1538 rtx equiv2;
1539
1540 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1541 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1542 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1543 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1544 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1545 /* If the equivalences are not to a constant, they may
1546 reference pseudos that no longer exist, so we can't
1547 use them. */
1548 && CONSTANT_P (XEXP (equiv1, 0))
1549 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1550 {
1551 rtx s1 = single_set (i1);
1552 rtx s2 = single_set (i2);
1553 if (s1 != 0 && s2 != 0
1554 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1555 {
1556 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1557 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1558 if (! rtx_renumbered_equal_p (p1, p2))
1559 cancel_changes (0);
1560 else if (apply_change_group ())
1561 goto win;
1562 }
1563 }
1564
1565 /* Insns fail to match; cross jumping is limited to the following
1566 insns. */
1567
1568 #ifdef HAVE_cc0
1569 /* Don't allow the insn after a compare to be shared by
1570 cross-jumping unless the compare is also shared.
1571 Here, if either of these non-matching insns is a compare,
1572 exclude the following insn from possible cross-jumping. */
1573 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1574 last1 = afterlast1, last2 = afterlast2, ++minimum;
1575 #endif
1576
1577 /* If cross-jumping here will feed a jump-around-jump
1578 optimization, this jump won't cost extra, so reduce
1579 the minimum. */
1580 if (GET_CODE (i1) == JUMP_INSN
1581 && JUMP_LABEL (i1)
1582 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1583 --minimum;
1584 break;
1585 }
1586
1587 win:
1588 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1589 {
1590 /* Ok, this insn is potentially includable in a cross-jump here. */
1591 afterlast1 = last1, afterlast2 = last2;
1592 last1 = i1, last2 = i2, --minimum;
1593 }
1594 }
1595
1596 if (minimum <= 0 && last1 != 0 && last1 != e1)
1597 *f1 = last1, *f2 = last2;
1598 }
1599
1600 static void
1601 do_cross_jump (insn, newjpos, newlpos)
1602 rtx insn, newjpos, newlpos;
1603 {
1604 /* Find an existing label at this point
1605 or make a new one if there is none. */
1606 register rtx label = get_label_before (newlpos);
1607
1608 /* Make the same jump insn jump to the new point. */
1609 if (GET_CODE (PATTERN (insn)) == RETURN)
1610 {
1611 /* Remove from jump chain of returns. */
1612 delete_from_jump_chain (insn);
1613 /* Change the insn. */
1614 PATTERN (insn) = gen_jump (label);
1615 INSN_CODE (insn) = -1;
1616 JUMP_LABEL (insn) = label;
1617 LABEL_NUSES (label)++;
1618 /* Add to new the jump chain. */
1619 if (INSN_UID (label) < max_jump_chain
1620 && INSN_UID (insn) < max_jump_chain)
1621 {
1622 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1623 jump_chain[INSN_UID (label)] = insn;
1624 }
1625 }
1626 else
1627 redirect_jump (insn, label);
1628
1629 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1630 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1631 the NEWJPOS stream. */
1632
1633 while (newjpos != insn)
1634 {
1635 rtx lnote;
1636
1637 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1638 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1639 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1640 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1641 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1642 remove_note (newlpos, lnote);
1643
1644 delete_insn (newjpos);
1645 newjpos = next_real_insn (newjpos);
1646 newlpos = next_real_insn (newlpos);
1647 }
1648 }
1649 \f
1650 /* Return the label before INSN, or put a new label there. */
1651
1652 rtx
1653 get_label_before (insn)
1654 rtx insn;
1655 {
1656 rtx label;
1657
1658 /* Find an existing label at this point
1659 or make a new one if there is none. */
1660 label = prev_nonnote_insn (insn);
1661
1662 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1663 {
1664 rtx prev = PREV_INSN (insn);
1665
1666 label = gen_label_rtx ();
1667 emit_label_after (label, prev);
1668 LABEL_NUSES (label) = 0;
1669 }
1670 return label;
1671 }
1672
1673 /* Return the label after INSN, or put a new label there. */
1674
1675 rtx
1676 get_label_after (insn)
1677 rtx insn;
1678 {
1679 rtx label;
1680
1681 /* Find an existing label at this point
1682 or make a new one if there is none. */
1683 label = next_nonnote_insn (insn);
1684
1685 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1686 {
1687 label = gen_label_rtx ();
1688 emit_label_after (label, insn);
1689 LABEL_NUSES (label) = 0;
1690 }
1691 return label;
1692 }
1693 \f
1694 /* Return 1 if INSN is a jump that jumps to right after TARGET
1695 only on the condition that TARGET itself would drop through.
1696 Assumes that TARGET is a conditional jump. */
1697
1698 static int
1699 jump_back_p (insn, target)
1700 rtx insn, target;
1701 {
1702 rtx cinsn, ctarget;
1703 enum rtx_code codei, codet;
1704
1705 if (simplejump_p (insn) || ! condjump_p (insn)
1706 || simplejump_p (target)
1707 || target != prev_real_insn (JUMP_LABEL (insn)))
1708 return 0;
1709
1710 cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
1711 ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
1712
1713 codei = GET_CODE (cinsn);
1714 codet = GET_CODE (ctarget);
1715
1716 if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
1717 {
1718 if (! can_reverse_comparison_p (cinsn, insn))
1719 return 0;
1720 codei = reverse_condition (codei);
1721 }
1722
1723 if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
1724 {
1725 if (! can_reverse_comparison_p (ctarget, target))
1726 return 0;
1727 codet = reverse_condition (codet);
1728 }
1729
1730 return (codei == codet
1731 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1732 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1733 }
1734 \f
1735 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
1736 return non-zero if it is safe to reverse this comparison. It is if our
1737 floating-point is not IEEE, if this is an NE or EQ comparison, or if
1738 this is known to be an integer comparison. */
1739
1740 int
1741 can_reverse_comparison_p (comparison, insn)
1742 rtx comparison;
1743 rtx insn;
1744 {
1745 rtx arg0;
1746
1747 /* If this is not actually a comparison, we can't reverse it. */
1748 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1749 return 0;
1750
1751 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1752 /* If this is an NE comparison, it is safe to reverse it to an EQ
1753 comparison and vice versa, even for floating point. If no operands
1754 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
1755 always false and NE is always true, so the reversal is also valid. */
1756 || flag_fast_math
1757 || GET_CODE (comparison) == NE
1758 || GET_CODE (comparison) == EQ)
1759 return 1;
1760
1761 arg0 = XEXP (comparison, 0);
1762
1763 /* Make sure ARG0 is one of the actual objects being compared. If we
1764 can't do this, we can't be sure the comparison can be reversed.
1765
1766 Handle cc0 and a MODE_CC register. */
1767 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
1768 #ifdef HAVE_cc0
1769 || arg0 == cc0_rtx
1770 #endif
1771 )
1772 {
1773 rtx prev = prev_nonnote_insn (insn);
1774 rtx set;
1775
1776 /* First see if the condition code mode alone if enough to say we can
1777 reverse the condition. If not, then search backwards for a set of
1778 ARG0. We do not need to check for an insn clobbering it since valid
1779 code will contain set a set with no intervening clobber. But
1780 stop when we reach a label. */
1781 #ifdef REVERSIBLE_CC_MODE
1782 if (GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC
1783 && REVERSIBLE_CC_MODE (GET_MODE (arg0)))
1784 return 1;
1785 #endif
1786
1787 for (prev = prev_nonnote_insn (insn);
1788 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1789 prev = prev_nonnote_insn (prev))
1790 if ((set = single_set (prev)) != 0
1791 && rtx_equal_p (SET_DEST (set), arg0))
1792 {
1793 arg0 = SET_SRC (set);
1794
1795 if (GET_CODE (arg0) == COMPARE)
1796 arg0 = XEXP (arg0, 0);
1797 break;
1798 }
1799 }
1800
1801 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
1802 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
1803 return (GET_CODE (arg0) == CONST_INT
1804 || (GET_MODE (arg0) != VOIDmode
1805 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
1806 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
1807 }
1808
1809 /* Given an rtx-code for a comparison, return the code for the negated
1810 comparison. If no such code exists, return UNKNOWN.
1811
1812 WATCH OUT! reverse_condition is not safe to use on a jump that might
1813 be acting on the results of an IEEE floating point comparison, because
1814 of the special treatment of non-signaling nans in comparisons.
1815 Use can_reverse_comparison_p to be sure. */
1816
1817 enum rtx_code
1818 reverse_condition (code)
1819 enum rtx_code code;
1820 {
1821 switch (code)
1822 {
1823 case EQ:
1824 return NE;
1825 case NE:
1826 return EQ;
1827 case GT:
1828 return LE;
1829 case GE:
1830 return LT;
1831 case LT:
1832 return GE;
1833 case LE:
1834 return GT;
1835 case GTU:
1836 return LEU;
1837 case GEU:
1838 return LTU;
1839 case LTU:
1840 return GEU;
1841 case LEU:
1842 return GTU;
1843 case UNORDERED:
1844 return ORDERED;
1845 case ORDERED:
1846 return UNORDERED;
1847
1848 case UNLT:
1849 case UNLE:
1850 case UNGT:
1851 case UNGE:
1852 case UNEQ:
1853 case LTGT:
1854 return UNKNOWN;
1855
1856 default:
1857 abort ();
1858 }
1859 }
1860
1861 /* Similar, but we're allowed to generate unordered comparisons, which
1862 makes it safe for IEEE floating-point. Of course, we have to recognize
1863 that the target will support them too... */
1864
1865 enum rtx_code
1866 reverse_condition_maybe_unordered (code)
1867 enum rtx_code code;
1868 {
1869 /* Non-IEEE formats don't have unordered conditions. */
1870 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1871 return reverse_condition (code);
1872
1873 switch (code)
1874 {
1875 case EQ:
1876 return NE;
1877 case NE:
1878 return EQ;
1879 case GT:
1880 return UNLE;
1881 case GE:
1882 return UNLT;
1883 case LT:
1884 return UNGE;
1885 case LE:
1886 return UNGT;
1887 case LTGT:
1888 return UNEQ;
1889 case GTU:
1890 return LEU;
1891 case GEU:
1892 return LTU;
1893 case LTU:
1894 return GEU;
1895 case LEU:
1896 return GTU;
1897 case UNORDERED:
1898 return ORDERED;
1899 case ORDERED:
1900 return UNORDERED;
1901 case UNLT:
1902 return GE;
1903 case UNLE:
1904 return GT;
1905 case UNGT:
1906 return LE;
1907 case UNGE:
1908 return LT;
1909 case UNEQ:
1910 return LTGT;
1911
1912 default:
1913 abort ();
1914 }
1915 }
1916
1917 /* Similar, but return the code when two operands of a comparison are swapped.
1918 This IS safe for IEEE floating-point. */
1919
1920 enum rtx_code
1921 swap_condition (code)
1922 enum rtx_code code;
1923 {
1924 switch (code)
1925 {
1926 case EQ:
1927 case NE:
1928 case UNORDERED:
1929 case ORDERED:
1930 case UNEQ:
1931 case LTGT:
1932 return code;
1933
1934 case GT:
1935 return LT;
1936 case GE:
1937 return LE;
1938 case LT:
1939 return GT;
1940 case LE:
1941 return GE;
1942 case GTU:
1943 return LTU;
1944 case GEU:
1945 return LEU;
1946 case LTU:
1947 return GTU;
1948 case LEU:
1949 return GEU;
1950 case UNLT:
1951 return UNGT;
1952 case UNLE:
1953 return UNGE;
1954 case UNGT:
1955 return UNLT;
1956 case UNGE:
1957 return UNLE;
1958
1959 default:
1960 abort ();
1961 }
1962 }
1963
1964 /* Given a comparison CODE, return the corresponding unsigned comparison.
1965 If CODE is an equality comparison or already an unsigned comparison,
1966 CODE is returned. */
1967
1968 enum rtx_code
1969 unsigned_condition (code)
1970 enum rtx_code code;
1971 {
1972 switch (code)
1973 {
1974 case EQ:
1975 case NE:
1976 case GTU:
1977 case GEU:
1978 case LTU:
1979 case LEU:
1980 return code;
1981
1982 case GT:
1983 return GTU;
1984 case GE:
1985 return GEU;
1986 case LT:
1987 return LTU;
1988 case LE:
1989 return LEU;
1990
1991 default:
1992 abort ();
1993 }
1994 }
1995
1996 /* Similarly, return the signed version of a comparison. */
1997
1998 enum rtx_code
1999 signed_condition (code)
2000 enum rtx_code code;
2001 {
2002 switch (code)
2003 {
2004 case EQ:
2005 case NE:
2006 case GT:
2007 case GE:
2008 case LT:
2009 case LE:
2010 return code;
2011
2012 case GTU:
2013 return GT;
2014 case GEU:
2015 return GE;
2016 case LTU:
2017 return LT;
2018 case LEU:
2019 return LE;
2020
2021 default:
2022 abort ();
2023 }
2024 }
2025 \f
2026 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2027 truth of CODE1 implies the truth of CODE2. */
2028
2029 int
2030 comparison_dominates_p (code1, code2)
2031 enum rtx_code code1, code2;
2032 {
2033 if (code1 == code2)
2034 return 1;
2035
2036 switch (code1)
2037 {
2038 case EQ:
2039 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2040 || code2 == ORDERED)
2041 return 1;
2042 break;
2043
2044 case LT:
2045 if (code2 == LE || code2 == NE || code2 == ORDERED)
2046 return 1;
2047 break;
2048
2049 case GT:
2050 if (code2 == GE || code2 == NE || code2 == ORDERED)
2051 return 1;
2052 break;
2053
2054 case GE:
2055 case LE:
2056 if (code2 == ORDERED)
2057 return 1;
2058 break;
2059
2060 case LTGT:
2061 if (code2 == NE || code2 == ORDERED)
2062 return 1;
2063 break;
2064
2065 case LTU:
2066 if (code2 == LEU || code2 == NE)
2067 return 1;
2068 break;
2069
2070 case GTU:
2071 if (code2 == GEU || code2 == NE)
2072 return 1;
2073 break;
2074
2075 case UNORDERED:
2076 if (code2 == NE)
2077 return 1;
2078 break;
2079
2080 default:
2081 break;
2082 }
2083
2084 return 0;
2085 }
2086 \f
2087 /* Return 1 if INSN is an unconditional jump and nothing else. */
2088
2089 int
2090 simplejump_p (insn)
2091 rtx insn;
2092 {
2093 return (GET_CODE (insn) == JUMP_INSN
2094 && GET_CODE (PATTERN (insn)) == SET
2095 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2096 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2097 }
2098
2099 /* Return nonzero if INSN is a (possibly) conditional jump
2100 and nothing more. */
2101
2102 int
2103 condjump_p (insn)
2104 rtx insn;
2105 {
2106 register rtx x = PATTERN (insn);
2107
2108 if (GET_CODE (x) != SET
2109 || GET_CODE (SET_DEST (x)) != PC)
2110 return 0;
2111
2112 x = SET_SRC (x);
2113 if (GET_CODE (x) == LABEL_REF)
2114 return 1;
2115 else return (GET_CODE (x) == IF_THEN_ELSE
2116 && ((GET_CODE (XEXP (x, 2)) == PC
2117 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2118 || GET_CODE (XEXP (x, 1)) == RETURN))
2119 || (GET_CODE (XEXP (x, 1)) == PC
2120 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2121 || GET_CODE (XEXP (x, 2)) == RETURN))));
2122
2123 return 0;
2124 }
2125
2126 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2127 PARALLEL. */
2128
2129 int
2130 condjump_in_parallel_p (insn)
2131 rtx insn;
2132 {
2133 register rtx x = PATTERN (insn);
2134
2135 if (GET_CODE (x) != PARALLEL)
2136 return 0;
2137 else
2138 x = XVECEXP (x, 0, 0);
2139
2140 if (GET_CODE (x) != SET)
2141 return 0;
2142 if (GET_CODE (SET_DEST (x)) != PC)
2143 return 0;
2144 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2145 return 1;
2146 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2147 return 0;
2148 if (XEXP (SET_SRC (x), 2) == pc_rtx
2149 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2150 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2151 return 1;
2152 if (XEXP (SET_SRC (x), 1) == pc_rtx
2153 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2154 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2155 return 1;
2156 return 0;
2157 }
2158
2159 /* Return the label of a conditional jump. */
2160
2161 rtx
2162 condjump_label (insn)
2163 rtx insn;
2164 {
2165 register rtx x = PATTERN (insn);
2166
2167 if (GET_CODE (x) == PARALLEL)
2168 x = XVECEXP (x, 0, 0);
2169 if (GET_CODE (x) != SET)
2170 return NULL_RTX;
2171 if (GET_CODE (SET_DEST (x)) != PC)
2172 return NULL_RTX;
2173 x = SET_SRC (x);
2174 if (GET_CODE (x) == LABEL_REF)
2175 return x;
2176 if (GET_CODE (x) != IF_THEN_ELSE)
2177 return NULL_RTX;
2178 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2179 return XEXP (x, 1);
2180 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2181 return XEXP (x, 2);
2182 return NULL_RTX;
2183 }
2184
2185 /* Return true if INSN is a (possibly conditional) return insn. */
2186
2187 static int
2188 returnjump_p_1 (loc, data)
2189 rtx *loc;
2190 void *data ATTRIBUTE_UNUSED;
2191 {
2192 rtx x = *loc;
2193 return x && GET_CODE (x) == RETURN;
2194 }
2195
2196 int
2197 returnjump_p (insn)
2198 rtx insn;
2199 {
2200 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2201 }
2202
2203 /* Return true if INSN is a jump that only transfers control and
2204 nothing more. */
2205
2206 int
2207 onlyjump_p (insn)
2208 rtx insn;
2209 {
2210 rtx set;
2211
2212 if (GET_CODE (insn) != JUMP_INSN)
2213 return 0;
2214
2215 set = single_set (insn);
2216 if (set == NULL)
2217 return 0;
2218 if (GET_CODE (SET_DEST (set)) != PC)
2219 return 0;
2220 if (side_effects_p (SET_SRC (set)))
2221 return 0;
2222
2223 return 1;
2224 }
2225
2226 #ifdef HAVE_cc0
2227
2228 /* Return 1 if X is an RTX that does nothing but set the condition codes
2229 and CLOBBER or USE registers.
2230 Return -1 if X does explicitly set the condition codes,
2231 but also does other things. */
2232
2233 int
2234 sets_cc0_p (x)
2235 rtx x ATTRIBUTE_UNUSED;
2236 {
2237 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2238 return 1;
2239 if (GET_CODE (x) == PARALLEL)
2240 {
2241 int i;
2242 int sets_cc0 = 0;
2243 int other_things = 0;
2244 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2245 {
2246 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2247 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2248 sets_cc0 = 1;
2249 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2250 other_things = 1;
2251 }
2252 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2253 }
2254 return 0;
2255 }
2256 #endif
2257 \f
2258 /* Follow any unconditional jump at LABEL;
2259 return the ultimate label reached by any such chain of jumps.
2260 If LABEL is not followed by a jump, return LABEL.
2261 If the chain loops or we can't find end, return LABEL,
2262 since that tells caller to avoid changing the insn.
2263
2264 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2265 a USE or CLOBBER. */
2266
2267 rtx
2268 follow_jumps (label)
2269 rtx label;
2270 {
2271 register rtx insn;
2272 register rtx next;
2273 register rtx value = label;
2274 register int depth;
2275
2276 for (depth = 0;
2277 (depth < 10
2278 && (insn = next_active_insn (value)) != 0
2279 && GET_CODE (insn) == JUMP_INSN
2280 && ((JUMP_LABEL (insn) != 0 && simplejump_p (insn))
2281 || GET_CODE (PATTERN (insn)) == RETURN)
2282 && (next = NEXT_INSN (insn))
2283 && GET_CODE (next) == BARRIER);
2284 depth++)
2285 {
2286 /* Don't chain through the insn that jumps into a loop
2287 from outside the loop,
2288 since that would create multiple loop entry jumps
2289 and prevent loop optimization. */
2290 rtx tem;
2291 if (!reload_completed)
2292 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2293 if (GET_CODE (tem) == NOTE
2294 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2295 /* ??? Optional. Disables some optimizations, but makes
2296 gcov output more accurate with -O. */
2297 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2298 return value;
2299
2300 /* If we have found a cycle, make the insn jump to itself. */
2301 if (JUMP_LABEL (insn) == label)
2302 return label;
2303
2304 tem = next_active_insn (JUMP_LABEL (insn));
2305 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2306 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2307 break;
2308
2309 value = JUMP_LABEL (insn);
2310 }
2311 if (depth == 10)
2312 return label;
2313 return value;
2314 }
2315
2316 /* Assuming that field IDX of X is a vector of label_refs,
2317 replace each of them by the ultimate label reached by it.
2318 Return nonzero if a change is made.
2319 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2320
2321 static int
2322 tension_vector_labels (x, idx)
2323 register rtx x;
2324 register int idx;
2325 {
2326 int changed = 0;
2327 register int i;
2328 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2329 {
2330 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2331 register rtx nlabel = follow_jumps (olabel);
2332 if (nlabel && nlabel != olabel)
2333 {
2334 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2335 ++LABEL_NUSES (nlabel);
2336 if (--LABEL_NUSES (olabel) == 0)
2337 delete_insn (olabel);
2338 changed = 1;
2339 }
2340 }
2341 return changed;
2342 }
2343 \f
2344 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2345 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2346 in INSN, then store one of them in JUMP_LABEL (INSN).
2347 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2348 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2349 Also, when there are consecutive labels, canonicalize on the last of them.
2350
2351 Note that two labels separated by a loop-beginning note
2352 must be kept distinct if we have not yet done loop-optimization,
2353 because the gap between them is where loop-optimize
2354 will want to move invariant code to. CROSS_JUMP tells us
2355 that loop-optimization is done with.
2356
2357 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2358 two labels distinct if they are separated by only USE or CLOBBER insns. */
2359
2360 static void
2361 mark_jump_label (x, insn, cross_jump, in_mem)
2362 register rtx x;
2363 rtx insn;
2364 int cross_jump;
2365 int in_mem;
2366 {
2367 register RTX_CODE code = GET_CODE (x);
2368 register int i;
2369 register const char *fmt;
2370
2371 switch (code)
2372 {
2373 case PC:
2374 case CC0:
2375 case REG:
2376 case SUBREG:
2377 case CONST_INT:
2378 case CONST_DOUBLE:
2379 case CLOBBER:
2380 case CALL:
2381 return;
2382
2383 case MEM:
2384 in_mem = 1;
2385 break;
2386
2387 case SYMBOL_REF:
2388 if (!in_mem)
2389 return;
2390
2391 /* If this is a constant-pool reference, see if it is a label. */
2392 if (CONSTANT_POOL_ADDRESS_P (x))
2393 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2394 break;
2395
2396 case LABEL_REF:
2397 {
2398 rtx label = XEXP (x, 0);
2399 rtx olabel = label;
2400 rtx note;
2401 rtx next;
2402
2403 /* Ignore remaining references to unreachable labels that
2404 have been deleted. */
2405 if (GET_CODE (label) == NOTE
2406 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2407 break;
2408
2409 if (GET_CODE (label) != CODE_LABEL)
2410 abort ();
2411
2412 /* Ignore references to labels of containing functions. */
2413 if (LABEL_REF_NONLOCAL_P (x))
2414 break;
2415
2416 /* If there are other labels following this one,
2417 replace it with the last of the consecutive labels. */
2418 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2419 {
2420 if (GET_CODE (next) == CODE_LABEL)
2421 label = next;
2422 else if (cross_jump && GET_CODE (next) == INSN
2423 && (GET_CODE (PATTERN (next)) == USE
2424 || GET_CODE (PATTERN (next)) == CLOBBER))
2425 continue;
2426 else if (GET_CODE (next) != NOTE)
2427 break;
2428 else if (! cross_jump
2429 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2430 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2431 /* ??? Optional. Disables some optimizations, but
2432 makes gcov output more accurate with -O. */
2433 || (flag_test_coverage && NOTE_LINE_NUMBER (next) > 0)))
2434 break;
2435 }
2436
2437 XEXP (x, 0) = label;
2438 if (! insn || ! INSN_DELETED_P (insn))
2439 ++LABEL_NUSES (label);
2440
2441 if (insn)
2442 {
2443 if (GET_CODE (insn) == JUMP_INSN)
2444 JUMP_LABEL (insn) = label;
2445
2446 /* If we've changed OLABEL and we had a REG_LABEL note
2447 for it, update it as well. */
2448 else if (label != olabel
2449 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2450 XEXP (note, 0) = label;
2451
2452 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2453 is one. */
2454 else if (! find_reg_note (insn, REG_LABEL, label))
2455 {
2456 /* This code used to ignore labels which refered to dispatch
2457 tables to avoid flow.c generating worse code.
2458
2459 However, in the presense of global optimizations like
2460 gcse which call find_basic_blocks without calling
2461 life_analysis, not recording such labels will lead
2462 to compiler aborts because of inconsistencies in the
2463 flow graph. So we go ahead and record the label.
2464
2465 It may also be the case that the optimization argument
2466 is no longer valid because of the more accurate cfg
2467 we build in find_basic_blocks -- it no longer pessimizes
2468 code when it finds a REG_LABEL note. */
2469 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2470 REG_NOTES (insn));
2471 }
2472 }
2473 return;
2474 }
2475
2476 /* Do walk the labels in a vector, but not the first operand of an
2477 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2478 case ADDR_VEC:
2479 case ADDR_DIFF_VEC:
2480 if (! INSN_DELETED_P (insn))
2481 {
2482 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2483
2484 for (i = 0; i < XVECLEN (x, eltnum); i++)
2485 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2486 cross_jump, in_mem);
2487 }
2488 return;
2489
2490 default:
2491 break;
2492 }
2493
2494 fmt = GET_RTX_FORMAT (code);
2495 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2496 {
2497 if (fmt[i] == 'e')
2498 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2499 else if (fmt[i] == 'E')
2500 {
2501 register int j;
2502 for (j = 0; j < XVECLEN (x, i); j++)
2503 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2504 }
2505 }
2506 }
2507
2508 /* If all INSN does is set the pc, delete it,
2509 and delete the insn that set the condition codes for it
2510 if that's what the previous thing was. */
2511
2512 void
2513 delete_jump (insn)
2514 rtx insn;
2515 {
2516 register rtx set = single_set (insn);
2517
2518 if (set && GET_CODE (SET_DEST (set)) == PC)
2519 delete_computation (insn);
2520 }
2521
2522 /* Verify INSN is a BARRIER and delete it. */
2523
2524 void
2525 delete_barrier (insn)
2526 rtx insn;
2527 {
2528 if (GET_CODE (insn) != BARRIER)
2529 abort ();
2530
2531 delete_insn (insn);
2532 }
2533
2534 /* Recursively delete prior insns that compute the value (used only by INSN
2535 which the caller is deleting) stored in the register mentioned by NOTE
2536 which is a REG_DEAD note associated with INSN. */
2537
2538 static void
2539 delete_prior_computation (note, insn)
2540 rtx note;
2541 rtx insn;
2542 {
2543 rtx our_prev;
2544 rtx reg = XEXP (note, 0);
2545
2546 for (our_prev = prev_nonnote_insn (insn);
2547 our_prev && (GET_CODE (our_prev) == INSN
2548 || GET_CODE (our_prev) == CALL_INSN);
2549 our_prev = prev_nonnote_insn (our_prev))
2550 {
2551 rtx pat = PATTERN (our_prev);
2552
2553 /* If we reach a CALL which is not calling a const function
2554 or the callee pops the arguments, then give up. */
2555 if (GET_CODE (our_prev) == CALL_INSN
2556 && (! CONST_CALL_P (our_prev)
2557 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2558 break;
2559
2560 /* If we reach a SEQUENCE, it is too complex to try to
2561 do anything with it, so give up. */
2562 if (GET_CODE (pat) == SEQUENCE)
2563 break;
2564
2565 if (GET_CODE (pat) == USE
2566 && GET_CODE (XEXP (pat, 0)) == INSN)
2567 /* reorg creates USEs that look like this. We leave them
2568 alone because reorg needs them for its own purposes. */
2569 break;
2570
2571 if (reg_set_p (reg, pat))
2572 {
2573 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2574 break;
2575
2576 if (GET_CODE (pat) == PARALLEL)
2577 {
2578 /* If we find a SET of something else, we can't
2579 delete the insn. */
2580
2581 int i;
2582
2583 for (i = 0; i < XVECLEN (pat, 0); i++)
2584 {
2585 rtx part = XVECEXP (pat, 0, i);
2586
2587 if (GET_CODE (part) == SET
2588 && SET_DEST (part) != reg)
2589 break;
2590 }
2591
2592 if (i == XVECLEN (pat, 0))
2593 delete_computation (our_prev);
2594 }
2595 else if (GET_CODE (pat) == SET
2596 && GET_CODE (SET_DEST (pat)) == REG)
2597 {
2598 int dest_regno = REGNO (SET_DEST (pat));
2599 int dest_endregno
2600 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
2601 ? HARD_REGNO_NREGS (dest_regno,
2602 GET_MODE (SET_DEST (pat))) : 1);
2603 int regno = REGNO (reg);
2604 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
2605 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
2606
2607 if (dest_regno >= regno
2608 && dest_endregno <= endregno)
2609 delete_computation (our_prev);
2610
2611 /* We may have a multi-word hard register and some, but not
2612 all, of the words of the register are needed in subsequent
2613 insns. Write REG_UNUSED notes for those parts that were not
2614 needed. */
2615 else if (dest_regno <= regno
2616 && dest_endregno >= endregno)
2617 {
2618 int i;
2619
2620 REG_NOTES (our_prev)
2621 = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (our_prev));
2622
2623 for (i = dest_regno; i < dest_endregno; i++)
2624 if (! find_regno_note (our_prev, REG_UNUSED, i))
2625 break;
2626
2627 if (i == dest_endregno)
2628 delete_computation (our_prev);
2629 }
2630 }
2631
2632 break;
2633 }
2634
2635 /* If PAT references the register that dies here, it is an
2636 additional use. Hence any prior SET isn't dead. However, this
2637 insn becomes the new place for the REG_DEAD note. */
2638 if (reg_overlap_mentioned_p (reg, pat))
2639 {
2640 XEXP (note, 1) = REG_NOTES (our_prev);
2641 REG_NOTES (our_prev) = note;
2642 break;
2643 }
2644 }
2645 }
2646
2647 /* Delete INSN and recursively delete insns that compute values used only
2648 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2649 If we are running before flow.c, we need do nothing since flow.c will
2650 delete dead code. We also can't know if the registers being used are
2651 dead or not at this point.
2652
2653 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2654 nothing other than set a register that dies in this insn, we can delete
2655 that insn as well.
2656
2657 On machines with CC0, if CC0 is used in this insn, we may be able to
2658 delete the insn that set it. */
2659
2660 static void
2661 delete_computation (insn)
2662 rtx insn;
2663 {
2664 rtx note, next;
2665 rtx set;
2666
2667 #ifdef HAVE_cc0
2668 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2669 {
2670 rtx prev = prev_nonnote_insn (insn);
2671 /* We assume that at this stage
2672 CC's are always set explicitly
2673 and always immediately before the jump that
2674 will use them. So if the previous insn
2675 exists to set the CC's, delete it
2676 (unless it performs auto-increments, etc.). */
2677 if (prev && GET_CODE (prev) == INSN
2678 && sets_cc0_p (PATTERN (prev)))
2679 {
2680 if (sets_cc0_p (PATTERN (prev)) > 0
2681 && ! side_effects_p (PATTERN (prev)))
2682 delete_computation (prev);
2683 else
2684 /* Otherwise, show that cc0 won't be used. */
2685 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2686 cc0_rtx, REG_NOTES (prev));
2687 }
2688 }
2689 #endif
2690
2691 #ifdef INSN_SCHEDULING
2692 /* ?!? The schedulers do not keep REG_DEAD notes accurate after
2693 reload has completed. The schedulers need to be fixed. Until
2694 they are, we must not rely on the death notes here. */
2695 if (reload_completed && flag_schedule_insns_after_reload)
2696 {
2697 delete_insn (insn);
2698 return;
2699 }
2700 #endif
2701
2702 /* The REG_DEAD note may have been omitted for a register
2703 which is both set and used by the insn. */
2704 set = single_set (insn);
2705 if (set && GET_CODE (SET_DEST (set)) == REG)
2706 {
2707 int dest_regno = REGNO (SET_DEST (set));
2708 int dest_endregno
2709 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
2710 ? HARD_REGNO_NREGS (dest_regno,
2711 GET_MODE (SET_DEST (set))) : 1);
2712 int i;
2713
2714 for (i = dest_regno; i < dest_endregno; i++)
2715 {
2716 if (! refers_to_regno_p (i, i + 1, SET_SRC (set), NULL_PTR)
2717 || find_regno_note (insn, REG_DEAD, i))
2718 continue;
2719
2720 note = gen_rtx_EXPR_LIST (REG_DEAD, (i < FIRST_PSEUDO_REGISTER
2721 ? gen_rtx_REG (reg_raw_mode[i], i)
2722 : SET_DEST (set)), NULL_RTX);
2723 delete_prior_computation (note, insn);
2724 }
2725 }
2726
2727 for (note = REG_NOTES (insn); note; note = next)
2728 {
2729 next = XEXP (note, 1);
2730
2731 if (REG_NOTE_KIND (note) != REG_DEAD
2732 /* Verify that the REG_NOTE is legitimate. */
2733 || GET_CODE (XEXP (note, 0)) != REG)
2734 continue;
2735
2736 delete_prior_computation (note, insn);
2737 }
2738
2739 delete_insn (insn);
2740 }
2741 \f
2742 /* Delete insn INSN from the chain of insns and update label ref counts.
2743 May delete some following insns as a consequence; may even delete
2744 a label elsewhere and insns that follow it.
2745
2746 Returns the first insn after INSN that was not deleted. */
2747
2748 rtx
2749 delete_insn (insn)
2750 register rtx insn;
2751 {
2752 register rtx next = NEXT_INSN (insn);
2753 register rtx prev = PREV_INSN (insn);
2754 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2755 register int dont_really_delete = 0;
2756
2757 while (next && INSN_DELETED_P (next))
2758 next = NEXT_INSN (next);
2759
2760 /* This insn is already deleted => return first following nondeleted. */
2761 if (INSN_DELETED_P (insn))
2762 return next;
2763
2764 if (was_code_label)
2765 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2766
2767 /* Don't delete user-declared labels. When optimizing, convert them
2768 to special NOTEs instead. When not optimizing, leave them alone. */
2769 if (was_code_label && LABEL_NAME (insn) != 0)
2770 {
2771 if (! optimize)
2772 dont_really_delete = 1;
2773 else if (! dont_really_delete)
2774 {
2775 const char *name = LABEL_NAME (insn);
2776 PUT_CODE (insn, NOTE);
2777 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2778 NOTE_SOURCE_FILE (insn) = name;
2779 dont_really_delete = 1;
2780 }
2781 }
2782 else
2783 /* Mark this insn as deleted. */
2784 INSN_DELETED_P (insn) = 1;
2785
2786 /* If this is an unconditional jump, delete it from the jump chain. */
2787 if (simplejump_p (insn))
2788 delete_from_jump_chain (insn);
2789
2790 /* If instruction is followed by a barrier,
2791 delete the barrier too. */
2792
2793 if (next != 0 && GET_CODE (next) == BARRIER)
2794 {
2795 INSN_DELETED_P (next) = 1;
2796 next = NEXT_INSN (next);
2797 }
2798
2799 /* Patch out INSN (and the barrier if any) */
2800
2801 if (! dont_really_delete)
2802 {
2803 if (prev)
2804 {
2805 NEXT_INSN (prev) = next;
2806 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2807 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2808 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2809 }
2810
2811 if (next)
2812 {
2813 PREV_INSN (next) = prev;
2814 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2815 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2816 }
2817
2818 if (prev && NEXT_INSN (prev) == 0)
2819 set_last_insn (prev);
2820 }
2821
2822 /* If deleting a jump, decrement the count of the label,
2823 and delete the label if it is now unused. */
2824
2825 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2826 {
2827 rtx lab = JUMP_LABEL (insn), lab_next;
2828
2829 if (--LABEL_NUSES (lab) == 0)
2830 {
2831 /* This can delete NEXT or PREV,
2832 either directly if NEXT is JUMP_LABEL (INSN),
2833 or indirectly through more levels of jumps. */
2834 delete_insn (lab);
2835
2836 /* I feel a little doubtful about this loop,
2837 but I see no clean and sure alternative way
2838 to find the first insn after INSN that is not now deleted.
2839 I hope this works. */
2840 while (next && INSN_DELETED_P (next))
2841 next = NEXT_INSN (next);
2842 return next;
2843 }
2844 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2845 && GET_CODE (lab_next) == JUMP_INSN
2846 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2847 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2848 {
2849 /* If we're deleting the tablejump, delete the dispatch table.
2850 We may not be able to kill the label immediately preceeding
2851 just yet, as it might be referenced in code leading up to
2852 the tablejump. */
2853 delete_insn (lab_next);
2854 }
2855 }
2856
2857 /* Likewise if we're deleting a dispatch table. */
2858
2859 if (GET_CODE (insn) == JUMP_INSN
2860 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2861 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2862 {
2863 rtx pat = PATTERN (insn);
2864 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2865 int len = XVECLEN (pat, diff_vec_p);
2866
2867 for (i = 0; i < len; i++)
2868 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2869 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2870 while (next && INSN_DELETED_P (next))
2871 next = NEXT_INSN (next);
2872 return next;
2873 }
2874
2875 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2876 prev = PREV_INSN (prev);
2877
2878 /* If INSN was a label and a dispatch table follows it,
2879 delete the dispatch table. The tablejump must have gone already.
2880 It isn't useful to fall through into a table. */
2881
2882 if (was_code_label
2883 && NEXT_INSN (insn) != 0
2884 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2885 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2886 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2887 next = delete_insn (NEXT_INSN (insn));
2888
2889 /* If INSN was a label, delete insns following it if now unreachable. */
2890
2891 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
2892 {
2893 register RTX_CODE code;
2894 while (next != 0
2895 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
2896 || code == NOTE || code == BARRIER
2897 || (code == CODE_LABEL && INSN_DELETED_P (next))))
2898 {
2899 if (code == NOTE
2900 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
2901 next = NEXT_INSN (next);
2902 /* Keep going past other deleted labels to delete what follows. */
2903 else if (code == CODE_LABEL && INSN_DELETED_P (next))
2904 next = NEXT_INSN (next);
2905 else
2906 /* Note: if this deletes a jump, it can cause more
2907 deletion of unreachable code, after a different label.
2908 As long as the value from this recursive call is correct,
2909 this invocation functions correctly. */
2910 next = delete_insn (next);
2911 }
2912 }
2913
2914 return next;
2915 }
2916
2917 /* Advance from INSN till reaching something not deleted
2918 then return that. May return INSN itself. */
2919
2920 rtx
2921 next_nondeleted_insn (insn)
2922 rtx insn;
2923 {
2924 while (INSN_DELETED_P (insn))
2925 insn = NEXT_INSN (insn);
2926 return insn;
2927 }
2928 \f
2929 /* Delete a range of insns from FROM to TO, inclusive.
2930 This is for the sake of peephole optimization, so assume
2931 that whatever these insns do will still be done by a new
2932 peephole insn that will replace them. */
2933
2934 void
2935 delete_for_peephole (from, to)
2936 register rtx from, to;
2937 {
2938 register rtx insn = from;
2939
2940 while (1)
2941 {
2942 register rtx next = NEXT_INSN (insn);
2943 register rtx prev = PREV_INSN (insn);
2944
2945 if (GET_CODE (insn) != NOTE)
2946 {
2947 INSN_DELETED_P (insn) = 1;
2948
2949 /* Patch this insn out of the chain. */
2950 /* We don't do this all at once, because we
2951 must preserve all NOTEs. */
2952 if (prev)
2953 NEXT_INSN (prev) = next;
2954
2955 if (next)
2956 PREV_INSN (next) = prev;
2957 }
2958
2959 if (insn == to)
2960 break;
2961 insn = next;
2962 }
2963
2964 /* Note that if TO is an unconditional jump
2965 we *do not* delete the BARRIER that follows,
2966 since the peephole that replaces this sequence
2967 is also an unconditional jump in that case. */
2968 }
2969 \f
2970 /* We have determined that INSN is never reached, and are about to
2971 delete it. Print a warning if the user asked for one.
2972
2973 To try to make this warning more useful, this should only be called
2974 once per basic block not reached, and it only warns when the basic
2975 block contains more than one line from the current function, and
2976 contains at least one operation. CSE and inlining can duplicate insns,
2977 so it's possible to get spurious warnings from this. */
2978
2979 void
2980 never_reached_warning (avoided_insn)
2981 rtx avoided_insn;
2982 {
2983 rtx insn;
2984 rtx a_line_note = NULL;
2985 int two_avoided_lines = 0;
2986 int contains_insn = 0;
2987
2988 if (! warn_notreached)
2989 return;
2990
2991 /* Scan forwards, looking at LINE_NUMBER notes, until
2992 we hit a LABEL or we run out of insns. */
2993
2994 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
2995 {
2996 if (GET_CODE (insn) == CODE_LABEL)
2997 break;
2998 else if (GET_CODE (insn) == NOTE /* A line number note? */
2999 && NOTE_LINE_NUMBER (insn) >= 0)
3000 {
3001 if (a_line_note == NULL)
3002 a_line_note = insn;
3003 else
3004 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3005 != NOTE_LINE_NUMBER (insn));
3006 }
3007 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3008 contains_insn = 1;
3009 }
3010 if (two_avoided_lines && contains_insn)
3011 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3012 NOTE_LINE_NUMBER (a_line_note),
3013 "will never be executed");
3014 }
3015 \f
3016 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3017 NLABEL as a return. Accrue modifications into the change group. */
3018
3019 static void
3020 redirect_exp_1 (loc, olabel, nlabel, insn)
3021 rtx *loc;
3022 rtx olabel, nlabel;
3023 rtx insn;
3024 {
3025 register rtx x = *loc;
3026 register RTX_CODE code = GET_CODE (x);
3027 register int i;
3028 register const char *fmt;
3029
3030 if (code == LABEL_REF)
3031 {
3032 if (XEXP (x, 0) == olabel)
3033 {
3034 rtx n;
3035 if (nlabel)
3036 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3037 else
3038 n = gen_rtx_RETURN (VOIDmode);
3039
3040 validate_change (insn, loc, n, 1);
3041 return;
3042 }
3043 }
3044 else if (code == RETURN && olabel == 0)
3045 {
3046 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3047 if (loc == &PATTERN (insn))
3048 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3049 validate_change (insn, loc, x, 1);
3050 return;
3051 }
3052
3053 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3054 && GET_CODE (SET_SRC (x)) == LABEL_REF
3055 && XEXP (SET_SRC (x), 0) == olabel)
3056 {
3057 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3058 return;
3059 }
3060
3061 fmt = GET_RTX_FORMAT (code);
3062 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3063 {
3064 if (fmt[i] == 'e')
3065 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3066 else if (fmt[i] == 'E')
3067 {
3068 register int j;
3069 for (j = 0; j < XVECLEN (x, i); j++)
3070 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3071 }
3072 }
3073 }
3074
3075 /* Similar, but apply the change group and report success or failure. */
3076
3077 int
3078 redirect_exp (loc, olabel, nlabel, insn)
3079 rtx *loc;
3080 rtx olabel, nlabel;
3081 rtx insn;
3082 {
3083 redirect_exp_1 (loc, olabel, nlabel, insn);
3084 if (num_validated_changes () == 0)
3085 return 0;
3086
3087 return apply_change_group ();
3088 }
3089
3090 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3091 the modifications into the change group. Return false if we did
3092 not see how to do that. */
3093
3094 int
3095 redirect_jump_1 (jump, nlabel)
3096 rtx jump, nlabel;
3097 {
3098 int ochanges = num_validated_changes ();
3099 redirect_exp_1 (&PATTERN (jump), JUMP_LABEL (jump), nlabel, jump);
3100 return num_validated_changes () > ochanges;
3101 }
3102
3103 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3104 jump target label is unused as a result, it and the code following
3105 it may be deleted.
3106
3107 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3108 RETURN insn.
3109
3110 The return value will be 1 if the change was made, 0 if it wasn't
3111 (this can only occur for NLABEL == 0). */
3112
3113 int
3114 redirect_jump (jump, nlabel)
3115 rtx jump, nlabel;
3116 {
3117 register rtx olabel = JUMP_LABEL (jump);
3118
3119 if (nlabel == olabel)
3120 return 1;
3121
3122 if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
3123 return 0;
3124
3125 /* If this is an unconditional branch, delete it from the jump_chain of
3126 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3127 have UID's in range and JUMP_CHAIN is valid). */
3128 if (jump_chain && (simplejump_p (jump)
3129 || GET_CODE (PATTERN (jump)) == RETURN))
3130 {
3131 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3132
3133 delete_from_jump_chain (jump);
3134 if (label_index < max_jump_chain
3135 && INSN_UID (jump) < max_jump_chain)
3136 {
3137 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3138 jump_chain[label_index] = jump;
3139 }
3140 }
3141
3142 JUMP_LABEL (jump) = nlabel;
3143 if (nlabel)
3144 ++LABEL_NUSES (nlabel);
3145
3146 /* If we're eliding the jump over exception cleanups at the end of a
3147 function, move the function end note so that -Wreturn-type works. */
3148 if (olabel && NEXT_INSN (olabel)
3149 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3150 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3151 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3152
3153 if (olabel && --LABEL_NUSES (olabel) == 0)
3154 delete_insn (olabel);
3155
3156 return 1;
3157 }
3158
3159 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3160 Accrue the modifications into the change group. */
3161
3162 static void
3163 invert_exp_1 (x, insn)
3164 rtx x;
3165 rtx insn;
3166 {
3167 register RTX_CODE code;
3168 register int i;
3169 register const char *fmt;
3170
3171 code = GET_CODE (x);
3172
3173 if (code == IF_THEN_ELSE)
3174 {
3175 register rtx comp = XEXP (x, 0);
3176 register rtx tem;
3177
3178 /* We can do this in two ways: The preferable way, which can only
3179 be done if this is not an integer comparison, is to reverse
3180 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3181 of the IF_THEN_ELSE. If we can't do either, fail. */
3182
3183 if (can_reverse_comparison_p (comp, insn))
3184 {
3185 validate_change (insn, &XEXP (x, 0),
3186 gen_rtx_fmt_ee (reverse_condition (GET_CODE (comp)),
3187 GET_MODE (comp), XEXP (comp, 0),
3188 XEXP (comp, 1)),
3189 1);
3190 return;
3191 }
3192
3193 tem = XEXP (x, 1);
3194 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3195 validate_change (insn, &XEXP (x, 2), tem, 1);
3196 return;
3197 }
3198
3199 fmt = GET_RTX_FORMAT (code);
3200 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3201 {
3202 if (fmt[i] == 'e')
3203 invert_exp_1 (XEXP (x, i), insn);
3204 else if (fmt[i] == 'E')
3205 {
3206 register int j;
3207 for (j = 0; j < XVECLEN (x, i); j++)
3208 invert_exp_1 (XVECEXP (x, i, j), insn);
3209 }
3210 }
3211 }
3212
3213 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3214
3215 Return 1 if we can do so, 0 if we cannot find a way to do so that
3216 matches a pattern. */
3217
3218 int
3219 invert_exp (x, insn)
3220 rtx x;
3221 rtx insn;
3222 {
3223 invert_exp_1 (x, insn);
3224 if (num_validated_changes () == 0)
3225 return 0;
3226
3227 return apply_change_group ();
3228 }
3229
3230 /* Invert the condition of the jump JUMP, and make it jump to label
3231 NLABEL instead of where it jumps now. Accrue changes into the
3232 change group. Return false if we didn't see how to perform the
3233 inversion and redirection. */
3234
3235 int
3236 invert_jump_1 (jump, nlabel)
3237 rtx jump, nlabel;
3238 {
3239 int ochanges;
3240
3241 ochanges = num_validated_changes ();
3242 invert_exp_1 (PATTERN (jump), jump);
3243 if (num_validated_changes () == ochanges)
3244 return 0;
3245
3246 return redirect_jump_1 (jump, nlabel);
3247 }
3248
3249 /* Invert the condition of the jump JUMP, and make it jump to label
3250 NLABEL instead of where it jumps now. Return true if successful. */
3251
3252 int
3253 invert_jump (jump, nlabel)
3254 rtx jump, nlabel;
3255 {
3256 /* We have to either invert the condition and change the label or
3257 do neither. Either operation could fail. We first try to invert
3258 the jump. If that succeeds, we try changing the label. If that fails,
3259 we invert the jump back to what it was. */
3260
3261 if (! invert_exp (PATTERN (jump), jump))
3262 return 0;
3263
3264 if (redirect_jump (jump, nlabel))
3265 {
3266 /* An inverted jump means that a probability taken becomes a
3267 probability not taken. Subtract the branch probability from the
3268 probability base to convert it back to a taken probability. */
3269
3270 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3271 if (note)
3272 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3273
3274 return 1;
3275 }
3276
3277 if (! invert_exp (PATTERN (jump), jump))
3278 /* This should just be putting it back the way it was. */
3279 abort ();
3280
3281 return 0;
3282 }
3283
3284 /* Delete the instruction JUMP from any jump chain it might be on. */
3285
3286 static void
3287 delete_from_jump_chain (jump)
3288 rtx jump;
3289 {
3290 int index;
3291 rtx olabel = JUMP_LABEL (jump);
3292
3293 /* Handle unconditional jumps. */
3294 if (jump_chain && olabel != 0
3295 && INSN_UID (olabel) < max_jump_chain
3296 && simplejump_p (jump))
3297 index = INSN_UID (olabel);
3298 /* Handle return insns. */
3299 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3300 index = 0;
3301 else return;
3302
3303 if (jump_chain[index] == jump)
3304 jump_chain[index] = jump_chain[INSN_UID (jump)];
3305 else
3306 {
3307 rtx insn;
3308
3309 for (insn = jump_chain[index];
3310 insn != 0;
3311 insn = jump_chain[INSN_UID (insn)])
3312 if (jump_chain[INSN_UID (insn)] == jump)
3313 {
3314 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3315 break;
3316 }
3317 }
3318 }
3319 \f
3320 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3321
3322 If the old jump target label (before the dispatch table) becomes unused,
3323 it and the dispatch table may be deleted. In that case, find the insn
3324 before the jump references that label and delete it and logical successors
3325 too. */
3326
3327 static void
3328 redirect_tablejump (jump, nlabel)
3329 rtx jump, nlabel;
3330 {
3331 register rtx olabel = JUMP_LABEL (jump);
3332
3333 /* Add this jump to the jump_chain of NLABEL. */
3334 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3335 && INSN_UID (jump) < max_jump_chain)
3336 {
3337 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3338 jump_chain[INSN_UID (nlabel)] = jump;
3339 }
3340
3341 PATTERN (jump) = gen_jump (nlabel);
3342 JUMP_LABEL (jump) = nlabel;
3343 ++LABEL_NUSES (nlabel);
3344 INSN_CODE (jump) = -1;
3345
3346 if (--LABEL_NUSES (olabel) == 0)
3347 {
3348 delete_labelref_insn (jump, olabel, 0);
3349 delete_insn (olabel);
3350 }
3351 }
3352
3353 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3354 If we found one, delete it and then delete this insn if DELETE_THIS is
3355 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3356
3357 static int
3358 delete_labelref_insn (insn, label, delete_this)
3359 rtx insn, label;
3360 int delete_this;
3361 {
3362 int deleted = 0;
3363 rtx link;
3364
3365 if (GET_CODE (insn) != NOTE
3366 && reg_mentioned_p (label, PATTERN (insn)))
3367 {
3368 if (delete_this)
3369 {
3370 delete_insn (insn);
3371 deleted = 1;
3372 }
3373 else
3374 return 1;
3375 }
3376
3377 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3378 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3379 {
3380 if (delete_this)
3381 {
3382 delete_insn (insn);
3383 deleted = 1;
3384 }
3385 else
3386 return 1;
3387 }
3388
3389 return deleted;
3390 }
3391 \f
3392 /* Like rtx_equal_p except that it considers two REGs as equal
3393 if they renumber to the same value and considers two commutative
3394 operations to be the same if the order of the operands has been
3395 reversed.
3396
3397 ??? Addition is not commutative on the PA due to the weird implicit
3398 space register selection rules for memory addresses. Therefore, we
3399 don't consider a + b == b + a.
3400
3401 We could/should make this test a little tighter. Possibly only
3402 disabling it on the PA via some backend macro or only disabling this
3403 case when the PLUS is inside a MEM. */
3404
3405 int
3406 rtx_renumbered_equal_p (x, y)
3407 rtx x, y;
3408 {
3409 register int i;
3410 register RTX_CODE code = GET_CODE (x);
3411 register const char *fmt;
3412
3413 if (x == y)
3414 return 1;
3415
3416 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3417 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3418 && GET_CODE (SUBREG_REG (y)) == REG)))
3419 {
3420 int reg_x = -1, reg_y = -1;
3421 int word_x = 0, word_y = 0;
3422
3423 if (GET_MODE (x) != GET_MODE (y))
3424 return 0;
3425
3426 /* If we haven't done any renumbering, don't
3427 make any assumptions. */
3428 if (reg_renumber == 0)
3429 return rtx_equal_p (x, y);
3430
3431 if (code == SUBREG)
3432 {
3433 reg_x = REGNO (SUBREG_REG (x));
3434 word_x = SUBREG_WORD (x);
3435
3436 if (reg_renumber[reg_x] >= 0)
3437 {
3438 reg_x = reg_renumber[reg_x] + word_x;
3439 word_x = 0;
3440 }
3441 }
3442
3443 else
3444 {
3445 reg_x = REGNO (x);
3446 if (reg_renumber[reg_x] >= 0)
3447 reg_x = reg_renumber[reg_x];
3448 }
3449
3450 if (GET_CODE (y) == SUBREG)
3451 {
3452 reg_y = REGNO (SUBREG_REG (y));
3453 word_y = SUBREG_WORD (y);
3454
3455 if (reg_renumber[reg_y] >= 0)
3456 {
3457 reg_y = reg_renumber[reg_y];
3458 word_y = 0;
3459 }
3460 }
3461
3462 else
3463 {
3464 reg_y = REGNO (y);
3465 if (reg_renumber[reg_y] >= 0)
3466 reg_y = reg_renumber[reg_y];
3467 }
3468
3469 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3470 }
3471
3472 /* Now we have disposed of all the cases
3473 in which different rtx codes can match. */
3474 if (code != GET_CODE (y))
3475 return 0;
3476
3477 switch (code)
3478 {
3479 case PC:
3480 case CC0:
3481 case ADDR_VEC:
3482 case ADDR_DIFF_VEC:
3483 return 0;
3484
3485 case CONST_INT:
3486 return INTVAL (x) == INTVAL (y);
3487
3488 case LABEL_REF:
3489 /* We can't assume nonlocal labels have their following insns yet. */
3490 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3491 return XEXP (x, 0) == XEXP (y, 0);
3492
3493 /* Two label-refs are equivalent if they point at labels
3494 in the same position in the instruction stream. */
3495 return (next_real_insn (XEXP (x, 0))
3496 == next_real_insn (XEXP (y, 0)));
3497
3498 case SYMBOL_REF:
3499 return XSTR (x, 0) == XSTR (y, 0);
3500
3501 case CODE_LABEL:
3502 /* If we didn't match EQ equality above, they aren't the same. */
3503 return 0;
3504
3505 default:
3506 break;
3507 }
3508
3509 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3510
3511 if (GET_MODE (x) != GET_MODE (y))
3512 return 0;
3513
3514 /* For commutative operations, the RTX match if the operand match in any
3515 order. Also handle the simple binary and unary cases without a loop.
3516
3517 ??? Don't consider PLUS a commutative operator; see comments above. */
3518 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3519 && code != PLUS)
3520 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3521 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3522 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3523 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3524 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3525 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3526 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3527 else if (GET_RTX_CLASS (code) == '1')
3528 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3529
3530 /* Compare the elements. If any pair of corresponding elements
3531 fail to match, return 0 for the whole things. */
3532
3533 fmt = GET_RTX_FORMAT (code);
3534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3535 {
3536 register int j;
3537 switch (fmt[i])
3538 {
3539 case 'w':
3540 if (XWINT (x, i) != XWINT (y, i))
3541 return 0;
3542 break;
3543
3544 case 'i':
3545 if (XINT (x, i) != XINT (y, i))
3546 return 0;
3547 break;
3548
3549 case 's':
3550 if (strcmp (XSTR (x, i), XSTR (y, i)))
3551 return 0;
3552 break;
3553
3554 case 'e':
3555 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3556 return 0;
3557 break;
3558
3559 case 'u':
3560 if (XEXP (x, i) != XEXP (y, i))
3561 return 0;
3562 /* fall through. */
3563 case '0':
3564 break;
3565
3566 case 'E':
3567 if (XVECLEN (x, i) != XVECLEN (y, i))
3568 return 0;
3569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3570 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3571 return 0;
3572 break;
3573
3574 default:
3575 abort ();
3576 }
3577 }
3578 return 1;
3579 }
3580 \f
3581 /* If X is a hard register or equivalent to one or a subregister of one,
3582 return the hard register number. If X is a pseudo register that was not
3583 assigned a hard register, return the pseudo register number. Otherwise,
3584 return -1. Any rtx is valid for X. */
3585
3586 int
3587 true_regnum (x)
3588 rtx x;
3589 {
3590 if (GET_CODE (x) == REG)
3591 {
3592 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3593 return reg_renumber[REGNO (x)];
3594 return REGNO (x);
3595 }
3596 if (GET_CODE (x) == SUBREG)
3597 {
3598 int base = true_regnum (SUBREG_REG (x));
3599 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3600 return SUBREG_WORD (x) + base;
3601 }
3602 return -1;
3603 }
3604 \f
3605 /* Optimize code of the form:
3606
3607 for (x = a[i]; x; ...)
3608 ...
3609 for (x = a[i]; x; ...)
3610 ...
3611 foo:
3612
3613 Loop optimize will change the above code into
3614
3615 if (x = a[i])
3616 for (;;)
3617 { ...; if (! (x = ...)) break; }
3618 if (x = a[i])
3619 for (;;)
3620 { ...; if (! (x = ...)) break; }
3621 foo:
3622
3623 In general, if the first test fails, the program can branch
3624 directly to `foo' and skip the second try which is doomed to fail.
3625 We run this after loop optimization and before flow analysis. */
3626
3627 /* When comparing the insn patterns, we track the fact that different
3628 pseudo-register numbers may have been used in each computation.
3629 The following array stores an equivalence -- same_regs[I] == J means
3630 that pseudo register I was used in the first set of tests in a context
3631 where J was used in the second set. We also count the number of such
3632 pending equivalences. If nonzero, the expressions really aren't the
3633 same. */
3634
3635 static int *same_regs;
3636
3637 static int num_same_regs;
3638
3639 /* Track any registers modified between the target of the first jump and
3640 the second jump. They never compare equal. */
3641
3642 static char *modified_regs;
3643
3644 /* Record if memory was modified. */
3645
3646 static int modified_mem;
3647
3648 /* Called via note_stores on each insn between the target of the first
3649 branch and the second branch. It marks any changed registers. */
3650
3651 static void
3652 mark_modified_reg (dest, x, data)
3653 rtx dest;
3654 rtx x ATTRIBUTE_UNUSED;
3655 void *data ATTRIBUTE_UNUSED;
3656 {
3657 int regno;
3658 unsigned int i;
3659
3660 if (GET_CODE (dest) == SUBREG)
3661 dest = SUBREG_REG (dest);
3662
3663 if (GET_CODE (dest) == MEM)
3664 modified_mem = 1;
3665
3666 if (GET_CODE (dest) != REG)
3667 return;
3668
3669 regno = REGNO (dest);
3670 if (regno >= FIRST_PSEUDO_REGISTER)
3671 modified_regs[regno] = 1;
3672 else
3673 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3674 modified_regs[regno + i] = 1;
3675 }
3676
3677 /* F is the first insn in the chain of insns. */
3678
3679 void
3680 thread_jumps (f, max_reg, flag_before_loop)
3681 rtx f;
3682 int max_reg;
3683 int flag_before_loop;
3684 {
3685 /* Basic algorithm is to find a conditional branch,
3686 the label it may branch to, and the branch after
3687 that label. If the two branches test the same condition,
3688 walk back from both branch paths until the insn patterns
3689 differ, or code labels are hit. If we make it back to
3690 the target of the first branch, then we know that the first branch
3691 will either always succeed or always fail depending on the relative
3692 senses of the two branches. So adjust the first branch accordingly
3693 in this case. */
3694
3695 rtx label, b1, b2, t1, t2;
3696 enum rtx_code code1, code2;
3697 rtx b1op0, b1op1, b2op0, b2op1;
3698 int changed = 1;
3699 int i;
3700 int *all_reset;
3701
3702 /* Allocate register tables and quick-reset table. */
3703 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3704 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3705 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3706 for (i = 0; i < max_reg; i++)
3707 all_reset[i] = -1;
3708
3709 while (changed)
3710 {
3711 changed = 0;
3712
3713 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3714 {
3715 /* Get to a candidate branch insn. */
3716 if (GET_CODE (b1) != JUMP_INSN
3717 || ! condjump_p (b1) || simplejump_p (b1)
3718 || JUMP_LABEL (b1) == 0)
3719 continue;
3720
3721 bzero (modified_regs, max_reg * sizeof (char));
3722 modified_mem = 0;
3723
3724 bcopy ((char *) all_reset, (char *) same_regs,
3725 max_reg * sizeof (int));
3726 num_same_regs = 0;
3727
3728 label = JUMP_LABEL (b1);
3729
3730 /* Look for a branch after the target. Record any registers and
3731 memory modified between the target and the branch. Stop when we
3732 get to a label since we can't know what was changed there. */
3733 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3734 {
3735 if (GET_CODE (b2) == CODE_LABEL)
3736 break;
3737
3738 else if (GET_CODE (b2) == JUMP_INSN)
3739 {
3740 /* If this is an unconditional jump and is the only use of
3741 its target label, we can follow it. */
3742 if (simplejump_p (b2)
3743 && JUMP_LABEL (b2) != 0
3744 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3745 {
3746 b2 = JUMP_LABEL (b2);
3747 continue;
3748 }
3749 else
3750 break;
3751 }
3752
3753 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3754 continue;
3755
3756 if (GET_CODE (b2) == CALL_INSN)
3757 {
3758 modified_mem = 1;
3759 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3760 if (call_used_regs[i] && ! fixed_regs[i]
3761 && i != STACK_POINTER_REGNUM
3762 && i != FRAME_POINTER_REGNUM
3763 && i != HARD_FRAME_POINTER_REGNUM
3764 && i != ARG_POINTER_REGNUM)
3765 modified_regs[i] = 1;
3766 }
3767
3768 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3769 }
3770
3771 /* Check the next candidate branch insn from the label
3772 of the first. */
3773 if (b2 == 0
3774 || GET_CODE (b2) != JUMP_INSN
3775 || b2 == b1
3776 || ! condjump_p (b2)
3777 || simplejump_p (b2))
3778 continue;
3779
3780 /* Get the comparison codes and operands, reversing the
3781 codes if appropriate. If we don't have comparison codes,
3782 we can't do anything. */
3783 b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
3784 b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
3785 code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
3786 if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
3787 code1 = reverse_condition (code1);
3788
3789 b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
3790 b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
3791 code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
3792 if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
3793 code2 = reverse_condition (code2);
3794
3795 /* If they test the same things and knowing that B1 branches
3796 tells us whether or not B2 branches, check if we
3797 can thread the branch. */
3798 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3799 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3800 && (comparison_dominates_p (code1, code2)
3801 || (can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (b1)),
3802 0),
3803 b1)
3804 && comparison_dominates_p (code1, reverse_condition (code2)))))
3805
3806 {
3807 t1 = prev_nonnote_insn (b1);
3808 t2 = prev_nonnote_insn (b2);
3809
3810 while (t1 != 0 && t2 != 0)
3811 {
3812 if (t2 == label)
3813 {
3814 /* We have reached the target of the first branch.
3815 If there are no pending register equivalents,
3816 we know that this branch will either always
3817 succeed (if the senses of the two branches are
3818 the same) or always fail (if not). */
3819 rtx new_label;
3820
3821 if (num_same_regs != 0)
3822 break;
3823
3824 if (comparison_dominates_p (code1, code2))
3825 new_label = JUMP_LABEL (b2);
3826 else
3827 new_label = get_label_after (b2);
3828
3829 if (JUMP_LABEL (b1) != new_label)
3830 {
3831 rtx prev = PREV_INSN (new_label);
3832
3833 if (flag_before_loop
3834 && GET_CODE (prev) == NOTE
3835 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3836 {
3837 /* Don't thread to the loop label. If a loop
3838 label is reused, loop optimization will
3839 be disabled for that loop. */
3840 new_label = gen_label_rtx ();
3841 emit_label_after (new_label, PREV_INSN (prev));
3842 }
3843 changed |= redirect_jump (b1, new_label);
3844 }
3845 break;
3846 }
3847
3848 /* If either of these is not a normal insn (it might be
3849 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3850 have already been skipped above.) Similarly, fail
3851 if the insns are different. */
3852 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3853 || recog_memoized (t1) != recog_memoized (t2)
3854 || ! rtx_equal_for_thread_p (PATTERN (t1),
3855 PATTERN (t2), t2))
3856 break;
3857
3858 t1 = prev_nonnote_insn (t1);
3859 t2 = prev_nonnote_insn (t2);
3860 }
3861 }
3862 }
3863 }
3864
3865 /* Clean up. */
3866 free (modified_regs);
3867 free (same_regs);
3868 free (all_reset);
3869 }
3870 \f
3871 /* This is like RTX_EQUAL_P except that it knows about our handling of
3872 possibly equivalent registers and knows to consider volatile and
3873 modified objects as not equal.
3874
3875 YINSN is the insn containing Y. */
3876
3877 int
3878 rtx_equal_for_thread_p (x, y, yinsn)
3879 rtx x, y;
3880 rtx yinsn;
3881 {
3882 register int i;
3883 register int j;
3884 register enum rtx_code code;
3885 register const char *fmt;
3886
3887 code = GET_CODE (x);
3888 /* Rtx's of different codes cannot be equal. */
3889 if (code != GET_CODE (y))
3890 return 0;
3891
3892 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
3893 (REG:SI x) and (REG:HI x) are NOT equivalent. */
3894
3895 if (GET_MODE (x) != GET_MODE (y))
3896 return 0;
3897
3898 /* For floating-point, consider everything unequal. This is a bit
3899 pessimistic, but this pass would only rarely do anything for FP
3900 anyway. */
3901 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3902 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
3903 return 0;
3904
3905 /* For commutative operations, the RTX match if the operand match in any
3906 order. Also handle the simple binary and unary cases without a loop. */
3907 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3908 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3909 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
3910 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
3911 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
3912 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3913 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3914 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
3915 else if (GET_RTX_CLASS (code) == '1')
3916 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
3917
3918 /* Handle special-cases first. */
3919 switch (code)
3920 {
3921 case REG:
3922 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
3923 return 1;
3924
3925 /* If neither is user variable or hard register, check for possible
3926 equivalence. */
3927 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
3928 || REGNO (x) < FIRST_PSEUDO_REGISTER
3929 || REGNO (y) < FIRST_PSEUDO_REGISTER)
3930 return 0;
3931
3932 if (same_regs[REGNO (x)] == -1)
3933 {
3934 same_regs[REGNO (x)] = REGNO (y);
3935 num_same_regs++;
3936
3937 /* If this is the first time we are seeing a register on the `Y'
3938 side, see if it is the last use. If not, we can't thread the
3939 jump, so mark it as not equivalent. */
3940 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
3941 return 0;
3942
3943 return 1;
3944 }
3945 else
3946 return (same_regs[REGNO (x)] == (int) REGNO (y));
3947
3948 break;
3949
3950 case MEM:
3951 /* If memory modified or either volatile, not equivalent.
3952 Else, check address. */
3953 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
3954 return 0;
3955
3956 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
3957
3958 case ASM_INPUT:
3959 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
3960 return 0;
3961
3962 break;
3963
3964 case SET:
3965 /* Cancel a pending `same_regs' if setting equivalenced registers.
3966 Then process source. */
3967 if (GET_CODE (SET_DEST (x)) == REG
3968 && GET_CODE (SET_DEST (y)) == REG)
3969 {
3970 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
3971 {
3972 same_regs[REGNO (SET_DEST (x))] = -1;
3973 num_same_regs--;
3974 }
3975 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
3976 return 0;
3977 }
3978 else
3979 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
3980 return 0;
3981
3982 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
3983
3984 case LABEL_REF:
3985 return XEXP (x, 0) == XEXP (y, 0);
3986
3987 case SYMBOL_REF:
3988 return XSTR (x, 0) == XSTR (y, 0);
3989
3990 default:
3991 break;
3992 }
3993
3994 if (x == y)
3995 return 1;
3996
3997 fmt = GET_RTX_FORMAT (code);
3998 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3999 {
4000 switch (fmt[i])
4001 {
4002 case 'w':
4003 if (XWINT (x, i) != XWINT (y, i))
4004 return 0;
4005 break;
4006
4007 case 'n':
4008 case 'i':
4009 if (XINT (x, i) != XINT (y, i))
4010 return 0;
4011 break;
4012
4013 case 'V':
4014 case 'E':
4015 /* Two vectors must have the same length. */
4016 if (XVECLEN (x, i) != XVECLEN (y, i))
4017 return 0;
4018
4019 /* And the corresponding elements must match. */
4020 for (j = 0; j < XVECLEN (x, i); j++)
4021 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4022 XVECEXP (y, i, j), yinsn) == 0)
4023 return 0;
4024 break;
4025
4026 case 'e':
4027 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4028 return 0;
4029 break;
4030
4031 case 'S':
4032 case 's':
4033 if (strcmp (XSTR (x, i), XSTR (y, i)))
4034 return 0;
4035 break;
4036
4037 case 'u':
4038 /* These are just backpointers, so they don't matter. */
4039 break;
4040
4041 case '0':
4042 case 't':
4043 break;
4044
4045 /* It is believed that rtx's at this level will never
4046 contain anything but integers and other rtx's,
4047 except for within LABEL_REFs and SYMBOL_REFs. */
4048 default:
4049 abort ();
4050 }
4051 }
4052 return 1;
4053 }