cfgcleanup.c (try_crossjump_to_edge): Only skip past NOTE_INSN_BASIC_BLOCK.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
33
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "real.h"
52 #include "except.h"
53 #include "diagnostic.h"
54 #include "toplev.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58 #include "tree-pass.h"
59 #include "target.h"
60
61 /* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63 /* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
67
68 static void init_label_info (rtx);
69 static void mark_all_labels (rtx);
70 static void mark_jump_label_1 (rtx, rtx, bool, bool);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
74 \f
75 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
78 (e.g. cbranchsi4). */
79 void
80 rebuild_jump_labels (rtx f)
81 {
82 rtx insn;
83
84 timevar_push (TV_REBUILD_JUMP);
85 init_label_info (f);
86 mark_all_labels (f);
87
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
91
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
93 if (LABEL_P (XEXP (insn, 0)))
94 LABEL_NUSES (XEXP (insn, 0))++;
95 timevar_pop (TV_REBUILD_JUMP);
96 }
97 \f
98 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
102
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
105 */
106 unsigned int
107 cleanup_barriers (void)
108 {
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
111 {
112 next = NEXT_INSN (insn);
113 if (BARRIER_P (insn))
114 {
115 prev = prev_nonnote_insn (insn);
116 if (BARRIER_P (prev))
117 delete_insn (insn);
118 else if (prev != PREV_INSN (insn))
119 reorder_insns (insn, insn, prev);
120 }
121 }
122 return 0;
123 }
124
125 struct rtl_opt_pass pass_cleanup_barriers =
126 {
127 {
128 RTL_PASS,
129 "barriers", /* name */
130 NULL, /* gate */
131 cleanup_barriers, /* execute */
132 NULL, /* sub */
133 NULL, /* next */
134 0, /* static_pass_number */
135 TV_NONE, /* tv_id */
136 0, /* properties_required */
137 0, /* properties_provided */
138 0, /* properties_destroyed */
139 0, /* todo_flags_start */
140 TODO_dump_func /* todo_flags_finish */
141 }
142 };
143
144 \f
145 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
146 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
147 notes whose labels don't occur in the insn any more. */
148
149 static void
150 init_label_info (rtx f)
151 {
152 rtx insn;
153
154 for (insn = f; insn; insn = NEXT_INSN (insn))
155 {
156 if (LABEL_P (insn))
157 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
158
159 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
160 sticky and not reset here; that way we won't lose association
161 with a label when e.g. the source for a target register
162 disappears out of reach for targets that may use jump-target
163 registers. Jump transformations are supposed to transform
164 any REG_LABEL_TARGET notes. The target label reference in a
165 branch may disappear from the branch (and from the
166 instruction before it) for other reasons, like register
167 allocation. */
168
169 if (INSN_P (insn))
170 {
171 rtx note, next;
172
173 for (note = REG_NOTES (insn); note; note = next)
174 {
175 next = XEXP (note, 1);
176 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
177 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
178 remove_note (insn, note);
179 }
180 }
181 }
182 }
183
184 /* Mark the label each jump jumps to.
185 Combine consecutive labels, and count uses of labels. */
186
187 static void
188 mark_all_labels (rtx f)
189 {
190 rtx insn;
191 rtx prev_nonjump_insn = NULL;
192
193 for (insn = f; insn; insn = NEXT_INSN (insn))
194 if (INSN_P (insn))
195 {
196 mark_jump_label (PATTERN (insn), insn, 0);
197
198 /* If the previous non-jump insn sets something to a label,
199 something that this jump insn uses, make that label the primary
200 target of this insn if we don't yet have any. That previous
201 insn must be a single_set and not refer to more than one label.
202 The jump insn must not refer to other labels as jump targets
203 and must be a plain (set (pc) ...), maybe in a parallel, and
204 may refer to the item being set only directly or as one of the
205 arms in an IF_THEN_ELSE. */
206 if (! INSN_DELETED_P (insn)
207 && JUMP_P (insn)
208 && JUMP_LABEL (insn) == NULL)
209 {
210 rtx label_note = NULL;
211 rtx pc = pc_set (insn);
212 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
213
214 if (prev_nonjump_insn != NULL)
215 label_note
216 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
217
218 if (label_note != NULL && pc_src != NULL)
219 {
220 rtx label_set = single_set (prev_nonjump_insn);
221 rtx label_dest
222 = label_set != NULL ? SET_DEST (label_set) : NULL;
223
224 if (label_set != NULL
225 /* The source must be the direct LABEL_REF, not a
226 PLUS, UNSPEC, IF_THEN_ELSE etc. */
227 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
228 && (rtx_equal_p (label_dest, pc_src)
229 || (GET_CODE (pc_src) == IF_THEN_ELSE
230 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
231 || rtx_equal_p (label_dest,
232 XEXP (pc_src, 2))))))
233
234 {
235 /* The CODE_LABEL referred to in the note must be the
236 CODE_LABEL in the LABEL_REF of the "set". We can
237 conveniently use it for the marker function, which
238 requires a LABEL_REF wrapping. */
239 gcc_assert (XEXP (label_note, 0)
240 == XEXP (SET_SRC (label_set), 0));
241
242 mark_jump_label_1 (label_set, insn, false, true);
243 gcc_assert (JUMP_LABEL (insn)
244 == XEXP (SET_SRC (label_set), 0));
245 }
246 }
247 }
248 else if (! INSN_DELETED_P (insn))
249 prev_nonjump_insn = insn;
250 }
251 else if (LABEL_P (insn))
252 prev_nonjump_insn = NULL;
253
254 /* If we are in cfglayout mode, there may be non-insns between the
255 basic blocks. If those non-insns represent tablejump data, they
256 contain label references that we must record. */
257 if (current_ir_type () == IR_RTL_CFGLAYOUT)
258 {
259 basic_block bb;
260 rtx insn;
261 FOR_EACH_BB (bb)
262 {
263 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
264 if (INSN_P (insn))
265 {
266 gcc_assert (JUMP_TABLE_DATA_P (insn));
267 mark_jump_label (PATTERN (insn), insn, 0);
268 }
269
270 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
271 if (INSN_P (insn))
272 {
273 gcc_assert (JUMP_TABLE_DATA_P (insn));
274 mark_jump_label (PATTERN (insn), insn, 0);
275 }
276 }
277 }
278 }
279 \f
280 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
281 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
282 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
283 know whether it's source is floating point or integer comparison. Machine
284 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
285 to help this function avoid overhead in these cases. */
286 enum rtx_code
287 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
288 const_rtx arg1, const_rtx insn)
289 {
290 enum machine_mode mode;
291
292 /* If this is not actually a comparison, we can't reverse it. */
293 if (GET_RTX_CLASS (code) != RTX_COMPARE
294 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
295 return UNKNOWN;
296
297 mode = GET_MODE (arg0);
298 if (mode == VOIDmode)
299 mode = GET_MODE (arg1);
300
301 /* First see if machine description supplies us way to reverse the
302 comparison. Give it priority over everything else to allow
303 machine description to do tricks. */
304 if (GET_MODE_CLASS (mode) == MODE_CC
305 && REVERSIBLE_CC_MODE (mode))
306 {
307 #ifdef REVERSE_CONDITION
308 return REVERSE_CONDITION (code, mode);
309 #endif
310 return reverse_condition (code);
311 }
312
313 /* Try a few special cases based on the comparison code. */
314 switch (code)
315 {
316 case GEU:
317 case GTU:
318 case LEU:
319 case LTU:
320 case NE:
321 case EQ:
322 /* It is always safe to reverse EQ and NE, even for the floating
323 point. Similarly the unsigned comparisons are never used for
324 floating point so we can reverse them in the default way. */
325 return reverse_condition (code);
326 case ORDERED:
327 case UNORDERED:
328 case LTGT:
329 case UNEQ:
330 /* In case we already see unordered comparison, we can be sure to
331 be dealing with floating point so we don't need any more tests. */
332 return reverse_condition_maybe_unordered (code);
333 case UNLT:
334 case UNLE:
335 case UNGT:
336 case UNGE:
337 /* We don't have safe way to reverse these yet. */
338 return UNKNOWN;
339 default:
340 break;
341 }
342
343 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
344 {
345 const_rtx prev;
346 /* Try to search for the comparison to determine the real mode.
347 This code is expensive, but with sane machine description it
348 will be never used, since REVERSIBLE_CC_MODE will return true
349 in all cases. */
350 if (! insn)
351 return UNKNOWN;
352
353 /* These CONST_CAST's are okay because prev_nonnote_insn just
354 returns its argument and we assign it to a const_rtx
355 variable. */
356 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
357 prev != 0 && !LABEL_P (prev);
358 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
359 {
360 const_rtx set = set_of (arg0, prev);
361 if (set && GET_CODE (set) == SET
362 && rtx_equal_p (SET_DEST (set), arg0))
363 {
364 rtx src = SET_SRC (set);
365
366 if (GET_CODE (src) == COMPARE)
367 {
368 rtx comparison = src;
369 arg0 = XEXP (src, 0);
370 mode = GET_MODE (arg0);
371 if (mode == VOIDmode)
372 mode = GET_MODE (XEXP (comparison, 1));
373 break;
374 }
375 /* We can get past reg-reg moves. This may be useful for model
376 of i387 comparisons that first move flag registers around. */
377 if (REG_P (src))
378 {
379 arg0 = src;
380 continue;
381 }
382 }
383 /* If register is clobbered in some ununderstandable way,
384 give up. */
385 if (set)
386 return UNKNOWN;
387 }
388 }
389
390 /* Test for an integer condition, or a floating-point comparison
391 in which NaNs can be ignored. */
392 if (GET_CODE (arg0) == CONST_INT
393 || (GET_MODE (arg0) != VOIDmode
394 && GET_MODE_CLASS (mode) != MODE_CC
395 && !HONOR_NANS (mode)))
396 return reverse_condition (code);
397
398 return UNKNOWN;
399 }
400
401 /* A wrapper around the previous function to take COMPARISON as rtx
402 expression. This simplifies many callers. */
403 enum rtx_code
404 reversed_comparison_code (const_rtx comparison, const_rtx insn)
405 {
406 if (!COMPARISON_P (comparison))
407 return UNKNOWN;
408 return reversed_comparison_code_parts (GET_CODE (comparison),
409 XEXP (comparison, 0),
410 XEXP (comparison, 1), insn);
411 }
412
413 /* Return comparison with reversed code of EXP.
414 Return NULL_RTX in case we fail to do the reversal. */
415 rtx
416 reversed_comparison (const_rtx exp, enum machine_mode mode)
417 {
418 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
419 if (reversed_code == UNKNOWN)
420 return NULL_RTX;
421 else
422 return simplify_gen_relational (reversed_code, mode, VOIDmode,
423 XEXP (exp, 0), XEXP (exp, 1));
424 }
425
426 \f
427 /* Given an rtx-code for a comparison, return the code for the negated
428 comparison. If no such code exists, return UNKNOWN.
429
430 WATCH OUT! reverse_condition is not safe to use on a jump that might
431 be acting on the results of an IEEE floating point comparison, because
432 of the special treatment of non-signaling nans in comparisons.
433 Use reversed_comparison_code instead. */
434
435 enum rtx_code
436 reverse_condition (enum rtx_code code)
437 {
438 switch (code)
439 {
440 case EQ:
441 return NE;
442 case NE:
443 return EQ;
444 case GT:
445 return LE;
446 case GE:
447 return LT;
448 case LT:
449 return GE;
450 case LE:
451 return GT;
452 case GTU:
453 return LEU;
454 case GEU:
455 return LTU;
456 case LTU:
457 return GEU;
458 case LEU:
459 return GTU;
460 case UNORDERED:
461 return ORDERED;
462 case ORDERED:
463 return UNORDERED;
464
465 case UNLT:
466 case UNLE:
467 case UNGT:
468 case UNGE:
469 case UNEQ:
470 case LTGT:
471 return UNKNOWN;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Similar, but we're allowed to generate unordered comparisons, which
479 makes it safe for IEEE floating-point. Of course, we have to recognize
480 that the target will support them too... */
481
482 enum rtx_code
483 reverse_condition_maybe_unordered (enum rtx_code code)
484 {
485 switch (code)
486 {
487 case EQ:
488 return NE;
489 case NE:
490 return EQ;
491 case GT:
492 return UNLE;
493 case GE:
494 return UNLT;
495 case LT:
496 return UNGE;
497 case LE:
498 return UNGT;
499 case LTGT:
500 return UNEQ;
501 case UNORDERED:
502 return ORDERED;
503 case ORDERED:
504 return UNORDERED;
505 case UNLT:
506 return GE;
507 case UNLE:
508 return GT;
509 case UNGT:
510 return LE;
511 case UNGE:
512 return LT;
513 case UNEQ:
514 return LTGT;
515
516 default:
517 gcc_unreachable ();
518 }
519 }
520
521 /* Similar, but return the code when two operands of a comparison are swapped.
522 This IS safe for IEEE floating-point. */
523
524 enum rtx_code
525 swap_condition (enum rtx_code code)
526 {
527 switch (code)
528 {
529 case EQ:
530 case NE:
531 case UNORDERED:
532 case ORDERED:
533 case UNEQ:
534 case LTGT:
535 return code;
536
537 case GT:
538 return LT;
539 case GE:
540 return LE;
541 case LT:
542 return GT;
543 case LE:
544 return GE;
545 case GTU:
546 return LTU;
547 case GEU:
548 return LEU;
549 case LTU:
550 return GTU;
551 case LEU:
552 return GEU;
553 case UNLT:
554 return UNGT;
555 case UNLE:
556 return UNGE;
557 case UNGT:
558 return UNLT;
559 case UNGE:
560 return UNLE;
561
562 default:
563 gcc_unreachable ();
564 }
565 }
566
567 /* Given a comparison CODE, return the corresponding unsigned comparison.
568 If CODE is an equality comparison or already an unsigned comparison,
569 CODE is returned. */
570
571 enum rtx_code
572 unsigned_condition (enum rtx_code code)
573 {
574 switch (code)
575 {
576 case EQ:
577 case NE:
578 case GTU:
579 case GEU:
580 case LTU:
581 case LEU:
582 return code;
583
584 case GT:
585 return GTU;
586 case GE:
587 return GEU;
588 case LT:
589 return LTU;
590 case LE:
591 return LEU;
592
593 default:
594 gcc_unreachable ();
595 }
596 }
597
598 /* Similarly, return the signed version of a comparison. */
599
600 enum rtx_code
601 signed_condition (enum rtx_code code)
602 {
603 switch (code)
604 {
605 case EQ:
606 case NE:
607 case GT:
608 case GE:
609 case LT:
610 case LE:
611 return code;
612
613 case GTU:
614 return GT;
615 case GEU:
616 return GE;
617 case LTU:
618 return LT;
619 case LEU:
620 return LE;
621
622 default:
623 gcc_unreachable ();
624 }
625 }
626 \f
627 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
628 truth of CODE1 implies the truth of CODE2. */
629
630 int
631 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
632 {
633 /* UNKNOWN comparison codes can happen as a result of trying to revert
634 comparison codes.
635 They can't match anything, so we have to reject them here. */
636 if (code1 == UNKNOWN || code2 == UNKNOWN)
637 return 0;
638
639 if (code1 == code2)
640 return 1;
641
642 switch (code1)
643 {
644 case UNEQ:
645 if (code2 == UNLE || code2 == UNGE)
646 return 1;
647 break;
648
649 case EQ:
650 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
651 || code2 == ORDERED)
652 return 1;
653 break;
654
655 case UNLT:
656 if (code2 == UNLE || code2 == NE)
657 return 1;
658 break;
659
660 case LT:
661 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
662 return 1;
663 break;
664
665 case UNGT:
666 if (code2 == UNGE || code2 == NE)
667 return 1;
668 break;
669
670 case GT:
671 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
672 return 1;
673 break;
674
675 case GE:
676 case LE:
677 if (code2 == ORDERED)
678 return 1;
679 break;
680
681 case LTGT:
682 if (code2 == NE || code2 == ORDERED)
683 return 1;
684 break;
685
686 case LTU:
687 if (code2 == LEU || code2 == NE)
688 return 1;
689 break;
690
691 case GTU:
692 if (code2 == GEU || code2 == NE)
693 return 1;
694 break;
695
696 case UNORDERED:
697 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
698 || code2 == UNGE || code2 == UNGT)
699 return 1;
700 break;
701
702 default:
703 break;
704 }
705
706 return 0;
707 }
708 \f
709 /* Return 1 if INSN is an unconditional jump and nothing else. */
710
711 int
712 simplejump_p (const_rtx insn)
713 {
714 return (JUMP_P (insn)
715 && GET_CODE (PATTERN (insn)) == SET
716 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
717 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
718 }
719
720 /* Return nonzero if INSN is a (possibly) conditional jump
721 and nothing more.
722
723 Use of this function is deprecated, since we need to support combined
724 branch and compare insns. Use any_condjump_p instead whenever possible. */
725
726 int
727 condjump_p (const_rtx insn)
728 {
729 const_rtx x = PATTERN (insn);
730
731 if (GET_CODE (x) != SET
732 || GET_CODE (SET_DEST (x)) != PC)
733 return 0;
734
735 x = SET_SRC (x);
736 if (GET_CODE (x) == LABEL_REF)
737 return 1;
738 else
739 return (GET_CODE (x) == IF_THEN_ELSE
740 && ((GET_CODE (XEXP (x, 2)) == PC
741 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
742 || GET_CODE (XEXP (x, 1)) == RETURN))
743 || (GET_CODE (XEXP (x, 1)) == PC
744 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
745 || GET_CODE (XEXP (x, 2)) == RETURN))));
746 }
747
748 /* Return nonzero if INSN is a (possibly) conditional jump inside a
749 PARALLEL.
750
751 Use this function is deprecated, since we need to support combined
752 branch and compare insns. Use any_condjump_p instead whenever possible. */
753
754 int
755 condjump_in_parallel_p (const_rtx insn)
756 {
757 const_rtx x = PATTERN (insn);
758
759 if (GET_CODE (x) != PARALLEL)
760 return 0;
761 else
762 x = XVECEXP (x, 0, 0);
763
764 if (GET_CODE (x) != SET)
765 return 0;
766 if (GET_CODE (SET_DEST (x)) != PC)
767 return 0;
768 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
769 return 1;
770 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
771 return 0;
772 if (XEXP (SET_SRC (x), 2) == pc_rtx
773 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
774 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
775 return 1;
776 if (XEXP (SET_SRC (x), 1) == pc_rtx
777 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
778 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
779 return 1;
780 return 0;
781 }
782
783 /* Return set of PC, otherwise NULL. */
784
785 rtx
786 pc_set (const_rtx insn)
787 {
788 rtx pat;
789 if (!JUMP_P (insn))
790 return NULL_RTX;
791 pat = PATTERN (insn);
792
793 /* The set is allowed to appear either as the insn pattern or
794 the first set in a PARALLEL. */
795 if (GET_CODE (pat) == PARALLEL)
796 pat = XVECEXP (pat, 0, 0);
797 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
798 return pat;
799
800 return NULL_RTX;
801 }
802
803 /* Return true when insn is an unconditional direct jump,
804 possibly bundled inside a PARALLEL. */
805
806 int
807 any_uncondjump_p (const_rtx insn)
808 {
809 const_rtx x = pc_set (insn);
810 if (!x)
811 return 0;
812 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
813 return 0;
814 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
815 return 0;
816 return 1;
817 }
818
819 /* Return true when insn is a conditional jump. This function works for
820 instructions containing PC sets in PARALLELs. The instruction may have
821 various other effects so before removing the jump you must verify
822 onlyjump_p.
823
824 Note that unlike condjump_p it returns false for unconditional jumps. */
825
826 int
827 any_condjump_p (const_rtx insn)
828 {
829 const_rtx x = pc_set (insn);
830 enum rtx_code a, b;
831
832 if (!x)
833 return 0;
834 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
835 return 0;
836
837 a = GET_CODE (XEXP (SET_SRC (x), 1));
838 b = GET_CODE (XEXP (SET_SRC (x), 2));
839
840 return ((b == PC && (a == LABEL_REF || a == RETURN))
841 || (a == PC && (b == LABEL_REF || b == RETURN)));
842 }
843
844 /* Return the label of a conditional jump. */
845
846 rtx
847 condjump_label (const_rtx insn)
848 {
849 rtx x = pc_set (insn);
850
851 if (!x)
852 return NULL_RTX;
853 x = SET_SRC (x);
854 if (GET_CODE (x) == LABEL_REF)
855 return x;
856 if (GET_CODE (x) != IF_THEN_ELSE)
857 return NULL_RTX;
858 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
859 return XEXP (x, 1);
860 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
861 return XEXP (x, 2);
862 return NULL_RTX;
863 }
864
865 /* Return true if INSN is a (possibly conditional) return insn. */
866
867 static int
868 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
869 {
870 rtx x = *loc;
871
872 if (x == NULL)
873 return false;
874
875 switch (GET_CODE (x))
876 {
877 case RETURN:
878 case EH_RETURN:
879 return true;
880
881 case SET:
882 return SET_IS_RETURN_P (x);
883
884 default:
885 return false;
886 }
887 }
888
889 int
890 returnjump_p (rtx insn)
891 {
892 if (!JUMP_P (insn))
893 return 0;
894 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
895 }
896
897 /* Return true if INSN is a (possibly conditional) return insn. */
898
899 static int
900 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
901 {
902 return *loc && GET_CODE (*loc) == EH_RETURN;
903 }
904
905 int
906 eh_returnjump_p (rtx insn)
907 {
908 if (!JUMP_P (insn))
909 return 0;
910 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
911 }
912
913 /* Return true if INSN is a jump that only transfers control and
914 nothing more. */
915
916 int
917 onlyjump_p (const_rtx insn)
918 {
919 rtx set;
920
921 if (!JUMP_P (insn))
922 return 0;
923
924 set = single_set (insn);
925 if (set == NULL)
926 return 0;
927 if (GET_CODE (SET_DEST (set)) != PC)
928 return 0;
929 if (side_effects_p (SET_SRC (set)))
930 return 0;
931
932 return 1;
933 }
934
935 #ifdef HAVE_cc0
936
937 /* Return nonzero if X is an RTX that only sets the condition codes
938 and has no side effects. */
939
940 int
941 only_sets_cc0_p (const_rtx x)
942 {
943 if (! x)
944 return 0;
945
946 if (INSN_P (x))
947 x = PATTERN (x);
948
949 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
950 }
951
952 /* Return 1 if X is an RTX that does nothing but set the condition codes
953 and CLOBBER or USE registers.
954 Return -1 if X does explicitly set the condition codes,
955 but also does other things. */
956
957 int
958 sets_cc0_p (const_rtx x)
959 {
960 if (! x)
961 return 0;
962
963 if (INSN_P (x))
964 x = PATTERN (x);
965
966 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
967 return 1;
968 if (GET_CODE (x) == PARALLEL)
969 {
970 int i;
971 int sets_cc0 = 0;
972 int other_things = 0;
973 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
974 {
975 if (GET_CODE (XVECEXP (x, 0, i)) == SET
976 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
977 sets_cc0 = 1;
978 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
979 other_things = 1;
980 }
981 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
982 }
983 return 0;
984 }
985 #endif
986 \f
987 /* Find all CODE_LABELs referred to in X, and increment their use
988 counts. If INSN is a JUMP_INSN and there is at least one
989 CODE_LABEL referenced in INSN as a jump target, then store the last
990 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
991 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
992 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
993 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
994 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
995
996 Note that two labels separated by a loop-beginning note
997 must be kept distinct if we have not yet done loop-optimization,
998 because the gap between them is where loop-optimize
999 will want to move invariant code to. CROSS_JUMP tells us
1000 that loop-optimization is done with. */
1001
1002 void
1003 mark_jump_label (rtx x, rtx insn, int in_mem)
1004 {
1005 mark_jump_label_1 (x, insn, in_mem != 0,
1006 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1007 }
1008
1009 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1010 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1011 jump-target; when the JUMP_LABEL field of INSN should be set or a
1012 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1013 note. */
1014
1015 static void
1016 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1017 {
1018 RTX_CODE code = GET_CODE (x);
1019 int i;
1020 const char *fmt;
1021
1022 switch (code)
1023 {
1024 case PC:
1025 case CC0:
1026 case REG:
1027 case CONST_INT:
1028 case CONST_DOUBLE:
1029 case CLOBBER:
1030 case CALL:
1031 return;
1032
1033 case MEM:
1034 in_mem = true;
1035 break;
1036
1037 case SEQUENCE:
1038 for (i = 0; i < XVECLEN (x, 0); i++)
1039 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1040 XVECEXP (x, 0, i), 0);
1041 return;
1042
1043 case SYMBOL_REF:
1044 if (!in_mem)
1045 return;
1046
1047 /* If this is a constant-pool reference, see if it is a label. */
1048 if (CONSTANT_POOL_ADDRESS_P (x))
1049 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1050 break;
1051
1052 /* Handle operands in the condition of an if-then-else as for a
1053 non-jump insn. */
1054 case IF_THEN_ELSE:
1055 if (!is_target)
1056 break;
1057 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1058 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1059 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1060 return;
1061
1062 case LABEL_REF:
1063 {
1064 rtx label = XEXP (x, 0);
1065
1066 /* Ignore remaining references to unreachable labels that
1067 have been deleted. */
1068 if (NOTE_P (label)
1069 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1070 break;
1071
1072 gcc_assert (LABEL_P (label));
1073
1074 /* Ignore references to labels of containing functions. */
1075 if (LABEL_REF_NONLOCAL_P (x))
1076 break;
1077
1078 XEXP (x, 0) = label;
1079 if (! insn || ! INSN_DELETED_P (insn))
1080 ++LABEL_NUSES (label);
1081
1082 if (insn)
1083 {
1084 if (is_target
1085 /* Do not change a previous setting of JUMP_LABEL. If the
1086 JUMP_LABEL slot is occupied by a different label,
1087 create a note for this label. */
1088 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1089 JUMP_LABEL (insn) = label;
1090 else
1091 {
1092 enum reg_note kind
1093 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1094
1095 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1096 for LABEL unless there already is one. All uses of
1097 a label, except for the primary target of a jump,
1098 must have such a note. */
1099 if (! find_reg_note (insn, kind, label))
1100 add_reg_note (insn, kind, label);
1101 }
1102 }
1103 return;
1104 }
1105
1106 /* Do walk the labels in a vector, but not the first operand of an
1107 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1108 case ADDR_VEC:
1109 case ADDR_DIFF_VEC:
1110 if (! INSN_DELETED_P (insn))
1111 {
1112 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1113
1114 for (i = 0; i < XVECLEN (x, eltnum); i++)
1115 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1116 is_target);
1117 }
1118 return;
1119
1120 default:
1121 break;
1122 }
1123
1124 fmt = GET_RTX_FORMAT (code);
1125
1126 /* The primary target of a tablejump is the label of the ADDR_VEC,
1127 which is canonically mentioned *last* in the insn. To get it
1128 marked as JUMP_LABEL, we iterate over items in reverse order. */
1129 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1130 {
1131 if (fmt[i] == 'e')
1132 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1133 else if (fmt[i] == 'E')
1134 {
1135 int j;
1136
1137 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1138 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1139 is_target);
1140 }
1141 }
1142 }
1143
1144 \f
1145 /* Delete insn INSN from the chain of insns and update label ref counts
1146 and delete insns now unreachable.
1147
1148 Returns the first insn after INSN that was not deleted.
1149
1150 Usage of this instruction is deprecated. Use delete_insn instead and
1151 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1152
1153 rtx
1154 delete_related_insns (rtx insn)
1155 {
1156 int was_code_label = (LABEL_P (insn));
1157 rtx note;
1158 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1159
1160 while (next && INSN_DELETED_P (next))
1161 next = NEXT_INSN (next);
1162
1163 /* This insn is already deleted => return first following nondeleted. */
1164 if (INSN_DELETED_P (insn))
1165 return next;
1166
1167 delete_insn (insn);
1168
1169 /* If instruction is followed by a barrier,
1170 delete the barrier too. */
1171
1172 if (next != 0 && BARRIER_P (next))
1173 delete_insn (next);
1174
1175 /* If deleting a jump, decrement the count of the label,
1176 and delete the label if it is now unused. */
1177
1178 if (JUMP_P (insn) && JUMP_LABEL (insn))
1179 {
1180 rtx lab = JUMP_LABEL (insn), lab_next;
1181
1182 if (LABEL_NUSES (lab) == 0)
1183 /* This can delete NEXT or PREV,
1184 either directly if NEXT is JUMP_LABEL (INSN),
1185 or indirectly through more levels of jumps. */
1186 delete_related_insns (lab);
1187 else if (tablejump_p (insn, NULL, &lab_next))
1188 {
1189 /* If we're deleting the tablejump, delete the dispatch table.
1190 We may not be able to kill the label immediately preceding
1191 just yet, as it might be referenced in code leading up to
1192 the tablejump. */
1193 delete_related_insns (lab_next);
1194 }
1195 }
1196
1197 /* Likewise if we're deleting a dispatch table. */
1198
1199 if (JUMP_P (insn)
1200 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1201 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1202 {
1203 rtx pat = PATTERN (insn);
1204 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1205 int len = XVECLEN (pat, diff_vec_p);
1206
1207 for (i = 0; i < len; i++)
1208 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1209 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1210 while (next && INSN_DELETED_P (next))
1211 next = NEXT_INSN (next);
1212 return next;
1213 }
1214
1215 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1216 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1217 if (INSN_P (insn))
1218 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1219 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1220 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1221 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1222 && LABEL_P (XEXP (note, 0)))
1223 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1224 delete_related_insns (XEXP (note, 0));
1225
1226 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1227 prev = PREV_INSN (prev);
1228
1229 /* If INSN was a label and a dispatch table follows it,
1230 delete the dispatch table. The tablejump must have gone already.
1231 It isn't useful to fall through into a table. */
1232
1233 if (was_code_label
1234 && NEXT_INSN (insn) != 0
1235 && JUMP_P (NEXT_INSN (insn))
1236 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1237 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1238 next = delete_related_insns (NEXT_INSN (insn));
1239
1240 /* If INSN was a label, delete insns following it if now unreachable. */
1241
1242 if (was_code_label && prev && BARRIER_P (prev))
1243 {
1244 enum rtx_code code;
1245 while (next)
1246 {
1247 code = GET_CODE (next);
1248 if (code == NOTE)
1249 next = NEXT_INSN (next);
1250 /* Keep going past other deleted labels to delete what follows. */
1251 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1252 next = NEXT_INSN (next);
1253 else if (code == BARRIER || INSN_P (next))
1254 /* Note: if this deletes a jump, it can cause more
1255 deletion of unreachable code, after a different label.
1256 As long as the value from this recursive call is correct,
1257 this invocation functions correctly. */
1258 next = delete_related_insns (next);
1259 else
1260 break;
1261 }
1262 }
1263
1264 /* I feel a little doubtful about this loop,
1265 but I see no clean and sure alternative way
1266 to find the first insn after INSN that is not now deleted.
1267 I hope this works. */
1268 while (next && INSN_DELETED_P (next))
1269 next = NEXT_INSN (next);
1270 return next;
1271 }
1272 \f
1273 /* Delete a range of insns from FROM to TO, inclusive.
1274 This is for the sake of peephole optimization, so assume
1275 that whatever these insns do will still be done by a new
1276 peephole insn that will replace them. */
1277
1278 void
1279 delete_for_peephole (rtx from, rtx to)
1280 {
1281 rtx insn = from;
1282
1283 while (1)
1284 {
1285 rtx next = NEXT_INSN (insn);
1286 rtx prev = PREV_INSN (insn);
1287
1288 if (!NOTE_P (insn))
1289 {
1290 INSN_DELETED_P (insn) = 1;
1291
1292 /* Patch this insn out of the chain. */
1293 /* We don't do this all at once, because we
1294 must preserve all NOTEs. */
1295 if (prev)
1296 NEXT_INSN (prev) = next;
1297
1298 if (next)
1299 PREV_INSN (next) = prev;
1300 }
1301
1302 if (insn == to)
1303 break;
1304 insn = next;
1305 }
1306
1307 /* Note that if TO is an unconditional jump
1308 we *do not* delete the BARRIER that follows,
1309 since the peephole that replaces this sequence
1310 is also an unconditional jump in that case. */
1311 }
1312 \f
1313 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1314 NLABEL as a return. Accrue modifications into the change group. */
1315
1316 static void
1317 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1318 {
1319 rtx x = *loc;
1320 RTX_CODE code = GET_CODE (x);
1321 int i;
1322 const char *fmt;
1323
1324 if (code == LABEL_REF)
1325 {
1326 if (XEXP (x, 0) == olabel)
1327 {
1328 rtx n;
1329 if (nlabel)
1330 n = gen_rtx_LABEL_REF (Pmode, nlabel);
1331 else
1332 n = gen_rtx_RETURN (VOIDmode);
1333
1334 validate_change (insn, loc, n, 1);
1335 return;
1336 }
1337 }
1338 else if (code == RETURN && olabel == 0)
1339 {
1340 if (nlabel)
1341 x = gen_rtx_LABEL_REF (Pmode, nlabel);
1342 else
1343 x = gen_rtx_RETURN (VOIDmode);
1344 if (loc == &PATTERN (insn))
1345 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1346 validate_change (insn, loc, x, 1);
1347 return;
1348 }
1349
1350 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1351 && GET_CODE (SET_SRC (x)) == LABEL_REF
1352 && XEXP (SET_SRC (x), 0) == olabel)
1353 {
1354 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1355 return;
1356 }
1357
1358 if (code == IF_THEN_ELSE)
1359 {
1360 /* Skip the condition of an IF_THEN_ELSE. We only want to
1361 change jump destinations, not eventual label comparisons. */
1362 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1363 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1364 return;
1365 }
1366
1367 fmt = GET_RTX_FORMAT (code);
1368 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1369 {
1370 if (fmt[i] == 'e')
1371 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1372 else if (fmt[i] == 'E')
1373 {
1374 int j;
1375 for (j = 0; j < XVECLEN (x, i); j++)
1376 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1377 }
1378 }
1379 }
1380
1381 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1382 the modifications into the change group. Return false if we did
1383 not see how to do that. */
1384
1385 int
1386 redirect_jump_1 (rtx jump, rtx nlabel)
1387 {
1388 int ochanges = num_validated_changes ();
1389 rtx *loc;
1390
1391 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1392 loc = &XVECEXP (PATTERN (jump), 0, 0);
1393 else
1394 loc = &PATTERN (jump);
1395
1396 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1397 return num_validated_changes () > ochanges;
1398 }
1399
1400 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1401 jump target label is unused as a result, it and the code following
1402 it may be deleted.
1403
1404 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1405 RETURN insn.
1406
1407 The return value will be 1 if the change was made, 0 if it wasn't
1408 (this can only occur for NLABEL == 0). */
1409
1410 int
1411 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1412 {
1413 rtx olabel = JUMP_LABEL (jump);
1414
1415 if (nlabel == olabel)
1416 return 1;
1417
1418 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1419 return 0;
1420
1421 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1422 return 1;
1423 }
1424
1425 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1426 NLABEL in JUMP.
1427 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1428 count has dropped to zero. */
1429 void
1430 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1431 int invert)
1432 {
1433 rtx note;
1434
1435 gcc_assert (JUMP_LABEL (jump) == olabel);
1436
1437 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1438 moving FUNCTION_END note. Just sanity check that no user still worry
1439 about this. */
1440 gcc_assert (delete_unused >= 0);
1441 JUMP_LABEL (jump) = nlabel;
1442 if (nlabel)
1443 ++LABEL_NUSES (nlabel);
1444
1445 /* Update labels in any REG_EQUAL note. */
1446 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1447 {
1448 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1449 remove_note (jump, note);
1450 else
1451 {
1452 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1453 confirm_change_group ();
1454 }
1455 }
1456
1457 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1458 /* Undefined labels will remain outside the insn stream. */
1459 && INSN_UID (olabel))
1460 delete_related_insns (olabel);
1461 if (invert)
1462 invert_br_probabilities (jump);
1463 }
1464
1465 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1466 modifications into the change group. Return nonzero for success. */
1467 static int
1468 invert_exp_1 (rtx x, rtx insn)
1469 {
1470 RTX_CODE code = GET_CODE (x);
1471
1472 if (code == IF_THEN_ELSE)
1473 {
1474 rtx comp = XEXP (x, 0);
1475 rtx tem;
1476 enum rtx_code reversed_code;
1477
1478 /* We can do this in two ways: The preferable way, which can only
1479 be done if this is not an integer comparison, is to reverse
1480 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1481 of the IF_THEN_ELSE. If we can't do either, fail. */
1482
1483 reversed_code = reversed_comparison_code (comp, insn);
1484
1485 if (reversed_code != UNKNOWN)
1486 {
1487 validate_change (insn, &XEXP (x, 0),
1488 gen_rtx_fmt_ee (reversed_code,
1489 GET_MODE (comp), XEXP (comp, 0),
1490 XEXP (comp, 1)),
1491 1);
1492 return 1;
1493 }
1494
1495 tem = XEXP (x, 1);
1496 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1497 validate_change (insn, &XEXP (x, 2), tem, 1);
1498 return 1;
1499 }
1500 else
1501 return 0;
1502 }
1503
1504 /* Invert the condition of the jump JUMP, and make it jump to label
1505 NLABEL instead of where it jumps now. Accrue changes into the
1506 change group. Return false if we didn't see how to perform the
1507 inversion and redirection. */
1508
1509 int
1510 invert_jump_1 (rtx jump, rtx nlabel)
1511 {
1512 rtx x = pc_set (jump);
1513 int ochanges;
1514 int ok;
1515
1516 ochanges = num_validated_changes ();
1517 gcc_assert (x);
1518 ok = invert_exp_1 (SET_SRC (x), jump);
1519 gcc_assert (ok);
1520
1521 if (num_validated_changes () == ochanges)
1522 return 0;
1523
1524 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1525 in Pmode, so checking this is not merely an optimization. */
1526 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1527 }
1528
1529 /* Invert the condition of the jump JUMP, and make it jump to label
1530 NLABEL instead of where it jumps now. Return true if successful. */
1531
1532 int
1533 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1534 {
1535 rtx olabel = JUMP_LABEL (jump);
1536
1537 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1538 {
1539 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1540 return 1;
1541 }
1542 cancel_changes (0);
1543 return 0;
1544 }
1545
1546 \f
1547 /* Like rtx_equal_p except that it considers two REGs as equal
1548 if they renumber to the same value and considers two commutative
1549 operations to be the same if the order of the operands has been
1550 reversed. */
1551
1552 int
1553 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1554 {
1555 int i;
1556 const enum rtx_code code = GET_CODE (x);
1557 const char *fmt;
1558
1559 if (x == y)
1560 return 1;
1561
1562 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1563 && (REG_P (y) || (GET_CODE (y) == SUBREG
1564 && REG_P (SUBREG_REG (y)))))
1565 {
1566 int reg_x = -1, reg_y = -1;
1567 int byte_x = 0, byte_y = 0;
1568 struct subreg_info info;
1569
1570 if (GET_MODE (x) != GET_MODE (y))
1571 return 0;
1572
1573 /* If we haven't done any renumbering, don't
1574 make any assumptions. */
1575 if (reg_renumber == 0)
1576 return rtx_equal_p (x, y);
1577
1578 if (code == SUBREG)
1579 {
1580 reg_x = REGNO (SUBREG_REG (x));
1581 byte_x = SUBREG_BYTE (x);
1582
1583 if (reg_renumber[reg_x] >= 0)
1584 {
1585 subreg_get_info (reg_renumber[reg_x],
1586 GET_MODE (SUBREG_REG (x)), byte_x,
1587 GET_MODE (x), &info);
1588 if (!info.representable_p)
1589 return 0;
1590 reg_x = info.offset;
1591 byte_x = 0;
1592 }
1593 }
1594 else
1595 {
1596 reg_x = REGNO (x);
1597 if (reg_renumber[reg_x] >= 0)
1598 reg_x = reg_renumber[reg_x];
1599 }
1600
1601 if (GET_CODE (y) == SUBREG)
1602 {
1603 reg_y = REGNO (SUBREG_REG (y));
1604 byte_y = SUBREG_BYTE (y);
1605
1606 if (reg_renumber[reg_y] >= 0)
1607 {
1608 subreg_get_info (reg_renumber[reg_y],
1609 GET_MODE (SUBREG_REG (y)), byte_y,
1610 GET_MODE (y), &info);
1611 if (!info.representable_p)
1612 return 0;
1613 reg_y = info.offset;
1614 byte_y = 0;
1615 }
1616 }
1617 else
1618 {
1619 reg_y = REGNO (y);
1620 if (reg_renumber[reg_y] >= 0)
1621 reg_y = reg_renumber[reg_y];
1622 }
1623
1624 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1625 }
1626
1627 /* Now we have disposed of all the cases
1628 in which different rtx codes can match. */
1629 if (code != GET_CODE (y))
1630 return 0;
1631
1632 switch (code)
1633 {
1634 case PC:
1635 case CC0:
1636 case ADDR_VEC:
1637 case ADDR_DIFF_VEC:
1638 case CONST_INT:
1639 case CONST_DOUBLE:
1640 return 0;
1641
1642 case LABEL_REF:
1643 /* We can't assume nonlocal labels have their following insns yet. */
1644 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1645 return XEXP (x, 0) == XEXP (y, 0);
1646
1647 /* Two label-refs are equivalent if they point at labels
1648 in the same position in the instruction stream. */
1649 return (next_real_insn (XEXP (x, 0))
1650 == next_real_insn (XEXP (y, 0)));
1651
1652 case SYMBOL_REF:
1653 return XSTR (x, 0) == XSTR (y, 0);
1654
1655 case CODE_LABEL:
1656 /* If we didn't match EQ equality above, they aren't the same. */
1657 return 0;
1658
1659 default:
1660 break;
1661 }
1662
1663 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1664
1665 if (GET_MODE (x) != GET_MODE (y))
1666 return 0;
1667
1668 /* For commutative operations, the RTX match if the operand match in any
1669 order. Also handle the simple binary and unary cases without a loop. */
1670 if (targetm.commutative_p (x, UNKNOWN))
1671 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1672 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1673 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1674 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1675 else if (NON_COMMUTATIVE_P (x))
1676 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1677 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1678 else if (UNARY_P (x))
1679 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1680
1681 /* Compare the elements. If any pair of corresponding elements
1682 fail to match, return 0 for the whole things. */
1683
1684 fmt = GET_RTX_FORMAT (code);
1685 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1686 {
1687 int j;
1688 switch (fmt[i])
1689 {
1690 case 'w':
1691 if (XWINT (x, i) != XWINT (y, i))
1692 return 0;
1693 break;
1694
1695 case 'i':
1696 if (XINT (x, i) != XINT (y, i))
1697 return 0;
1698 break;
1699
1700 case 't':
1701 if (XTREE (x, i) != XTREE (y, i))
1702 return 0;
1703 break;
1704
1705 case 's':
1706 if (strcmp (XSTR (x, i), XSTR (y, i)))
1707 return 0;
1708 break;
1709
1710 case 'e':
1711 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1712 return 0;
1713 break;
1714
1715 case 'u':
1716 if (XEXP (x, i) != XEXP (y, i))
1717 return 0;
1718 /* Fall through. */
1719 case '0':
1720 break;
1721
1722 case 'E':
1723 if (XVECLEN (x, i) != XVECLEN (y, i))
1724 return 0;
1725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1726 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1727 return 0;
1728 break;
1729
1730 default:
1731 gcc_unreachable ();
1732 }
1733 }
1734 return 1;
1735 }
1736 \f
1737 /* If X is a hard register or equivalent to one or a subregister of one,
1738 return the hard register number. If X is a pseudo register that was not
1739 assigned a hard register, return the pseudo register number. Otherwise,
1740 return -1. Any rtx is valid for X. */
1741
1742 int
1743 true_regnum (const_rtx x)
1744 {
1745 if (REG_P (x))
1746 {
1747 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1748 return reg_renumber[REGNO (x)];
1749 return REGNO (x);
1750 }
1751 if (GET_CODE (x) == SUBREG)
1752 {
1753 int base = true_regnum (SUBREG_REG (x));
1754 if (base >= 0
1755 && base < FIRST_PSEUDO_REGISTER)
1756 {
1757 struct subreg_info info;
1758
1759 subreg_get_info (REGNO (SUBREG_REG (x)),
1760 GET_MODE (SUBREG_REG (x)),
1761 SUBREG_BYTE (x), GET_MODE (x), &info);
1762
1763 if (info.representable_p)
1764 return base + info.offset;
1765 }
1766 }
1767 return -1;
1768 }
1769
1770 /* Return regno of the register REG and handle subregs too. */
1771 unsigned int
1772 reg_or_subregno (const_rtx reg)
1773 {
1774 if (GET_CODE (reg) == SUBREG)
1775 reg = SUBREG_REG (reg);
1776 gcc_assert (REG_P (reg));
1777 return REGNO (reg);
1778 }