jump.c (condjump_p): Mark as depreached.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This is the jump-optimization pass of the compiler.
24 It is run two or three times: once before cse, sometimes once after cse,
25 and once after reload (before final).
26
27 jump_optimize deletes unreachable code and labels that are not used.
28 It also deletes jumps that jump to the following insn,
29 and simplifies jumps around unconditional jumps and jumps
30 to unconditional jumps.
31
32 Each CODE_LABEL has a count of the times it is used
33 stored in the LABEL_NUSES internal field, and each JUMP_INSN
34 has one label that it refers to stored in the
35 JUMP_LABEL internal field. With this we can detect labels that
36 become unused because of the deletion of all the jumps that
37 formerly used them. The JUMP_LABEL info is sometimes looked
38 at by later passes.
39
40 Optionally, cross-jumping can be done. Currently it is done
41 only the last time (when after reload and before final).
42 In fact, the code for cross-jumping now assumes that register
43 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44
45 Jump optimization is done after cse when cse's constant-propagation
46 causes jumps to become unconditional or to be deleted.
47
48 Unreachable loops are not detected here, because the labels
49 have references and the insns appear reachable from the labels.
50 find_basic_blocks in flow.c finds and deletes such loops.
51
52 The subroutines delete_insn, redirect_jump, and invert_jump are used
53 from other passes as well. */
54
55 #include "config.h"
56 #include "system.h"
57 #include "rtl.h"
58 #include "tm_p.h"
59 #include "flags.h"
60 #include "hard-reg-set.h"
61 #include "regs.h"
62 #include "insn-config.h"
63 #include "insn-flags.h"
64 #include "insn-attr.h"
65 #include "recog.h"
66 #include "function.h"
67 #include "expr.h"
68 #include "real.h"
69 #include "except.h"
70 #include "toplev.h"
71
72 /* ??? Eventually must record somehow the labels used by jumps
73 from nested functions. */
74 /* Pre-record the next or previous real insn for each label?
75 No, this pass is very fast anyway. */
76 /* Condense consecutive labels?
77 This would make life analysis faster, maybe. */
78 /* Optimize jump y; x: ... y: jumpif... x?
79 Don't know if it is worth bothering with. */
80 /* Optimize two cases of conditional jump to conditional jump?
81 This can never delete any instruction or make anything dead,
82 or even change what is live at any point.
83 So perhaps let combiner do it. */
84
85 /* Vector indexed by uid.
86 For each CODE_LABEL, index by its uid to get first unconditional jump
87 that jumps to the label.
88 For each JUMP_INSN, index by its uid to get the next unconditional jump
89 that jumps to the same label.
90 Element 0 is the start of a chain of all return insns.
91 (It is safe to use element 0 because insn uid 0 is not used. */
92
93 static rtx *jump_chain;
94
95 /* Maximum index in jump_chain. */
96
97 static int max_jump_chain;
98
99 /* Set nonzero by jump_optimize if control can fall through
100 to the end of the function. */
101 int can_reach_end;
102
103 /* Indicates whether death notes are significant in cross jump analysis.
104 Normally they are not significant, because of A and B jump to C,
105 and R dies in A, it must die in B. But this might not be true after
106 stack register conversion, and we must compare death notes in that
107 case. */
108
109 static int cross_jump_death_matters = 0;
110
111 static int init_label_info PARAMS ((rtx));
112 static void delete_barrier_successors PARAMS ((rtx));
113 static void mark_all_labels PARAMS ((rtx, int));
114 static rtx delete_unreferenced_labels PARAMS ((rtx));
115 static void delete_noop_moves PARAMS ((rtx));
116 static int calculate_can_reach_end PARAMS ((rtx, int));
117 static int duplicate_loop_exit_test PARAMS ((rtx));
118 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
119 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
120 static int jump_back_p PARAMS ((rtx, rtx));
121 static int tension_vector_labels PARAMS ((rtx, int));
122 static void mark_jump_label PARAMS ((rtx, rtx, int, int));
123 static void delete_computation PARAMS ((rtx));
124 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
125 static void invert_exp_1 PARAMS ((rtx, rtx));
126 static void delete_from_jump_chain PARAMS ((rtx));
127 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
128 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
129 static void redirect_tablejump PARAMS ((rtx, rtx));
130 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
131 static int returnjump_p_1 PARAMS ((rtx *, void *));
132 static void delete_prior_computation PARAMS ((rtx, rtx));
133 \f
134 /* Main external entry point into the jump optimizer. See comments before
135 jump_optimize_1 for descriptions of the arguments. */
136 void
137 jump_optimize (f, cross_jump, noop_moves, after_regscan)
138 rtx f;
139 int cross_jump;
140 int noop_moves;
141 int after_regscan;
142 {
143 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
144 }
145
146 /* Alternate entry into the jump optimizer. This entry point only rebuilds
147 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
148 instructions. */
149 void
150 rebuild_jump_labels (f)
151 rtx f;
152 {
153 jump_optimize_1 (f, 0, 0, 0, 1, 0);
154 }
155
156 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
157 void
158 jump_optimize_minimal (f)
159 rtx f;
160 {
161 jump_optimize_1 (f, 0, 0, 0, 0, 1);
162 }
163 \f
164 /* Delete no-op jumps and optimize jumps to jumps
165 and jumps around jumps.
166 Delete unused labels and unreachable code.
167
168 If CROSS_JUMP is 1, detect matching code
169 before a jump and its destination and unify them.
170 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
171
172 If NOOP_MOVES is nonzero, delete no-op move insns.
173
174 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
175 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
176
177 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
178 and JUMP_LABEL field for jumping insns.
179
180 If `optimize' is zero, don't change any code,
181 just determine whether control drops off the end of the function.
182 This case occurs when we have -W and not -O.
183 It works because `delete_insn' checks the value of `optimize'
184 and refrains from actually deleting when that is 0.
185
186 If MINIMAL is nonzero, then we only perform trivial optimizations:
187
188 * Removal of unreachable code after BARRIERs.
189 * Removal of unreferenced CODE_LABELs.
190 * Removal of a jump to the next instruction.
191 * Removal of a conditional jump followed by an unconditional jump
192 to the same target as the conditional jump.
193 * Simplify a conditional jump around an unconditional jump.
194 * Simplify a jump to a jump.
195 * Delete extraneous line number notes.
196 */
197
198 static void
199 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
200 mark_labels_only, minimal)
201 rtx f;
202 int cross_jump;
203 int noop_moves;
204 int after_regscan;
205 int mark_labels_only;
206 int minimal;
207 {
208 register rtx insn, next;
209 int changed;
210 int old_max_reg;
211 int first = 1;
212 int max_uid = 0;
213 rtx last_insn;
214
215 cross_jump_death_matters = (cross_jump == 2);
216 max_uid = init_label_info (f) + 1;
217
218 /* If we are performing cross jump optimizations, then initialize
219 tables mapping UIDs to EH regions to avoid incorrect movement
220 of insns from one EH region to another. */
221 if (flag_exceptions && cross_jump)
222 init_insn_eh_region (f, max_uid);
223
224 if (! mark_labels_only)
225 delete_barrier_successors (f);
226
227 /* Leave some extra room for labels and duplicate exit test insns
228 we make. */
229 max_jump_chain = max_uid * 14 / 10;
230 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
231
232 mark_all_labels (f, cross_jump);
233
234 /* Keep track of labels used from static data;
235 they cannot ever be deleted. */
236
237 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
238 LABEL_NUSES (XEXP (insn, 0))++;
239
240 check_exception_handler_labels ();
241
242 /* Keep track of labels used for marking handlers for exception
243 regions; they cannot usually be deleted. */
244
245 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
246 LABEL_NUSES (XEXP (insn, 0))++;
247
248 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
249 notes and recompute LABEL_NUSES. */
250 if (mark_labels_only)
251 goto end;
252
253 if (! minimal)
254 exception_optimize ();
255
256 last_insn = delete_unreferenced_labels (f);
257
258 if (noop_moves)
259 delete_noop_moves (f);
260
261 /* If we haven't yet gotten to reload and we have just run regscan,
262 delete any insn that sets a register that isn't used elsewhere.
263 This helps some of the optimizations below by having less insns
264 being jumped around. */
265
266 if (optimize && ! reload_completed && after_regscan)
267 for (insn = f; insn; insn = next)
268 {
269 rtx set = single_set (insn);
270
271 next = NEXT_INSN (insn);
272
273 if (set && GET_CODE (SET_DEST (set)) == REG
274 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
275 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
276 /* We use regno_last_note_uid so as not to delete the setting
277 of a reg that's used in notes. A subsequent optimization
278 might arrange to use that reg for real. */
279 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
280 && ! side_effects_p (SET_SRC (set))
281 && ! find_reg_note (insn, REG_RETVAL, 0)
282 /* An ADDRESSOF expression can turn into a use of the internal arg
283 pointer, so do not delete the initialization of the internal
284 arg pointer yet. If it is truly dead, flow will delete the
285 initializing insn. */
286 && SET_DEST (set) != current_function_internal_arg_pointer)
287 delete_insn (insn);
288 }
289
290 /* Now iterate optimizing jumps until nothing changes over one pass. */
291 changed = 1;
292 old_max_reg = max_reg_num ();
293 while (changed)
294 {
295 changed = 0;
296
297 for (insn = f; insn; insn = next)
298 {
299 rtx reallabelprev;
300 rtx temp, temp1, temp2 = NULL_RTX;
301 rtx temp4 ATTRIBUTE_UNUSED;
302 rtx nlabel;
303 int this_is_simplejump, this_is_condjump;
304 int this_is_condjump_in_parallel;
305
306 next = NEXT_INSN (insn);
307
308 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
309 jump. Try to optimize by duplicating the loop exit test if so.
310 This is only safe immediately after regscan, because it uses
311 the values of regno_first_uid and regno_last_uid. */
312 if (after_regscan && GET_CODE (insn) == NOTE
313 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
314 && (temp1 = next_nonnote_insn (insn)) != 0
315 && simplejump_p (temp1))
316 {
317 temp = PREV_INSN (insn);
318 if (duplicate_loop_exit_test (insn))
319 {
320 changed = 1;
321 next = NEXT_INSN (temp);
322 continue;
323 }
324 }
325
326 if (GET_CODE (insn) != JUMP_INSN)
327 continue;
328
329 this_is_simplejump = simplejump_p (insn);
330 this_is_condjump = condjump_p (insn);
331 this_is_condjump_in_parallel = condjump_in_parallel_p (insn);
332
333 /* Tension the labels in dispatch tables. */
334
335 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
336 changed |= tension_vector_labels (PATTERN (insn), 0);
337 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
338 changed |= tension_vector_labels (PATTERN (insn), 1);
339
340 /* See if this jump goes to another jump and redirect if so. */
341 nlabel = follow_jumps (JUMP_LABEL (insn));
342 if (nlabel != JUMP_LABEL (insn))
343 changed |= redirect_jump (insn, nlabel);
344
345 if (! optimize || minimal)
346 continue;
347
348 /* If a dispatch table always goes to the same place,
349 get rid of it and replace the insn that uses it. */
350
351 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
352 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
353 {
354 int i;
355 rtx pat = PATTERN (insn);
356 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
357 int len = XVECLEN (pat, diff_vec_p);
358 rtx dispatch = prev_real_insn (insn);
359 rtx set;
360
361 for (i = 0; i < len; i++)
362 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
363 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
364 break;
365
366 if (i == len
367 && dispatch != 0
368 && GET_CODE (dispatch) == JUMP_INSN
369 && JUMP_LABEL (dispatch) != 0
370 /* Don't mess with a casesi insn.
371 XXX according to the comment before computed_jump_p(),
372 all casesi insns should be a parallel of the jump
373 and a USE of a LABEL_REF. */
374 && ! ((set = single_set (dispatch)) != NULL
375 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
376 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
377 {
378 redirect_tablejump (dispatch,
379 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
380 changed = 1;
381 }
382 }
383
384 /* If a jump references the end of the function, try to turn
385 it into a RETURN insn, possibly a conditional one. */
386 if (JUMP_LABEL (insn) != 0
387 && (next_active_insn (JUMP_LABEL (insn)) == 0
388 || GET_CODE (PATTERN (next_active_insn (JUMP_LABEL (insn))))
389 == RETURN))
390 changed |= redirect_jump (insn, NULL_RTX);
391
392 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
393
394 /* Detect jump to following insn. */
395 if (reallabelprev == insn && this_is_condjump)
396 {
397 next = next_real_insn (JUMP_LABEL (insn));
398 delete_jump (insn);
399 changed = 1;
400 continue;
401 }
402
403 /* Detect a conditional jump going to the same place
404 as an immediately following unconditional jump. */
405 else if (this_is_condjump
406 && (temp = next_active_insn (insn)) != 0
407 && simplejump_p (temp)
408 && (next_active_insn (JUMP_LABEL (insn))
409 == next_active_insn (JUMP_LABEL (temp))))
410 {
411 /* Don't mess up test coverage analysis. */
412 temp2 = temp;
413 if (flag_test_coverage && !reload_completed)
414 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
415 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
416 break;
417
418 if (temp2 == temp)
419 {
420 delete_jump (insn);
421 changed = 1;
422 continue;
423 }
424 }
425
426 /* Detect a conditional jump jumping over an unconditional jump. */
427
428 else if ((this_is_condjump || this_is_condjump_in_parallel)
429 && ! this_is_simplejump
430 && reallabelprev != 0
431 && GET_CODE (reallabelprev) == JUMP_INSN
432 && prev_active_insn (reallabelprev) == insn
433 && no_labels_between_p (insn, reallabelprev)
434 && simplejump_p (reallabelprev))
435 {
436 /* When we invert the unconditional jump, we will be
437 decrementing the usage count of its old label.
438 Make sure that we don't delete it now because that
439 might cause the following code to be deleted. */
440 rtx prev_uses = prev_nonnote_insn (reallabelprev);
441 rtx prev_label = JUMP_LABEL (insn);
442
443 if (prev_label)
444 ++LABEL_NUSES (prev_label);
445
446 if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
447 {
448 /* It is very likely that if there are USE insns before
449 this jump, they hold REG_DEAD notes. These REG_DEAD
450 notes are no longer valid due to this optimization,
451 and will cause the life-analysis that following passes
452 (notably delayed-branch scheduling) to think that
453 these registers are dead when they are not.
454
455 To prevent this trouble, we just remove the USE insns
456 from the insn chain. */
457
458 while (prev_uses && GET_CODE (prev_uses) == INSN
459 && GET_CODE (PATTERN (prev_uses)) == USE)
460 {
461 rtx useless = prev_uses;
462 prev_uses = prev_nonnote_insn (prev_uses);
463 delete_insn (useless);
464 }
465
466 delete_insn (reallabelprev);
467 changed = 1;
468 }
469
470 /* We can now safely delete the label if it is unreferenced
471 since the delete_insn above has deleted the BARRIER. */
472 if (prev_label && --LABEL_NUSES (prev_label) == 0)
473 delete_insn (prev_label);
474
475 next = NEXT_INSN (insn);
476 }
477
478 /* If we have an unconditional jump preceded by a USE, try to put
479 the USE before the target and jump there. This simplifies many
480 of the optimizations below since we don't have to worry about
481 dealing with these USE insns. We only do this if the label
482 being branch to already has the identical USE or if code
483 never falls through to that label. */
484
485 else if (this_is_simplejump
486 && (temp = prev_nonnote_insn (insn)) != 0
487 && GET_CODE (temp) == INSN
488 && GET_CODE (PATTERN (temp)) == USE
489 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
490 && (GET_CODE (temp1) == BARRIER
491 || (GET_CODE (temp1) == INSN
492 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
493 /* Don't do this optimization if we have a loop containing
494 only the USE instruction, and the loop start label has
495 a usage count of 1. This is because we will redo this
496 optimization everytime through the outer loop, and jump
497 opt will never exit. */
498 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
499 && temp2 == JUMP_LABEL (insn)
500 && LABEL_NUSES (temp2) == 1))
501 {
502 if (GET_CODE (temp1) == BARRIER)
503 {
504 emit_insn_after (PATTERN (temp), temp1);
505 temp1 = NEXT_INSN (temp1);
506 }
507
508 delete_insn (temp);
509 redirect_jump (insn, get_label_before (temp1));
510 reallabelprev = prev_real_insn (temp1);
511 changed = 1;
512 next = NEXT_INSN (insn);
513 }
514
515 #ifdef HAVE_trap
516 /* Detect a conditional jump jumping over an unconditional trap. */
517 if (HAVE_trap
518 && this_is_condjump && ! this_is_simplejump
519 && reallabelprev != 0
520 && GET_CODE (reallabelprev) == INSN
521 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
522 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
523 && prev_active_insn (reallabelprev) == insn
524 && no_labels_between_p (insn, reallabelprev)
525 && (temp2 = get_condition (insn, &temp4))
526 && can_reverse_comparison_p (temp2, insn))
527 {
528 rtx new = gen_cond_trap (reverse_condition (GET_CODE (temp2)),
529 XEXP (temp2, 0), XEXP (temp2, 1),
530 TRAP_CODE (PATTERN (reallabelprev)));
531
532 if (new)
533 {
534 emit_insn_before (new, temp4);
535 delete_insn (reallabelprev);
536 delete_jump (insn);
537 changed = 1;
538 continue;
539 }
540 }
541 /* Detect a jump jumping to an unconditional trap. */
542 else if (HAVE_trap && this_is_condjump
543 && (temp = next_active_insn (JUMP_LABEL (insn)))
544 && GET_CODE (temp) == INSN
545 && GET_CODE (PATTERN (temp)) == TRAP_IF
546 && (this_is_simplejump
547 || (temp2 = get_condition (insn, &temp4))))
548 {
549 rtx tc = TRAP_CONDITION (PATTERN (temp));
550
551 if (tc == const_true_rtx
552 || (! this_is_simplejump && rtx_equal_p (temp2, tc)))
553 {
554 rtx new;
555 /* Replace an unconditional jump to a trap with a trap. */
556 if (this_is_simplejump)
557 {
558 emit_barrier_after (emit_insn_before (gen_trap (), insn));
559 delete_jump (insn);
560 changed = 1;
561 continue;
562 }
563 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
564 XEXP (temp2, 1),
565 TRAP_CODE (PATTERN (temp)));
566 if (new)
567 {
568 emit_insn_before (new, temp4);
569 delete_jump (insn);
570 changed = 1;
571 continue;
572 }
573 }
574 /* If the trap condition and jump condition are mutually
575 exclusive, redirect the jump to the following insn. */
576 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
577 && ! this_is_simplejump
578 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
579 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
580 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
581 && redirect_jump (insn, get_label_after (temp)))
582 {
583 changed = 1;
584 continue;
585 }
586 }
587 #endif
588 else
589 {
590 /* Now that the jump has been tensioned,
591 try cross jumping: check for identical code
592 before the jump and before its target label. */
593
594 /* First, cross jumping of conditional jumps: */
595
596 if (cross_jump && condjump_p (insn))
597 {
598 rtx newjpos, newlpos;
599 rtx x = prev_real_insn (JUMP_LABEL (insn));
600
601 /* A conditional jump may be crossjumped
602 only if the place it jumps to follows
603 an opposing jump that comes back here. */
604
605 if (x != 0 && ! jump_back_p (x, insn))
606 /* We have no opposing jump;
607 cannot cross jump this insn. */
608 x = 0;
609
610 newjpos = 0;
611 /* TARGET is nonzero if it is ok to cross jump
612 to code before TARGET. If so, see if matches. */
613 if (x != 0)
614 find_cross_jump (insn, x, 2,
615 &newjpos, &newlpos);
616
617 if (newjpos != 0)
618 {
619 do_cross_jump (insn, newjpos, newlpos);
620 /* Make the old conditional jump
621 into an unconditional one. */
622 SET_SRC (PATTERN (insn))
623 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
624 INSN_CODE (insn) = -1;
625 emit_barrier_after (insn);
626 /* Add to jump_chain unless this is a new label
627 whose UID is too large. */
628 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
629 {
630 jump_chain[INSN_UID (insn)]
631 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
632 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
633 }
634 changed = 1;
635 next = insn;
636 }
637 }
638
639 /* Cross jumping of unconditional jumps:
640 a few differences. */
641
642 if (cross_jump && simplejump_p (insn))
643 {
644 rtx newjpos, newlpos;
645 rtx target;
646
647 newjpos = 0;
648
649 /* TARGET is nonzero if it is ok to cross jump
650 to code before TARGET. If so, see if matches. */
651 find_cross_jump (insn, JUMP_LABEL (insn), 1,
652 &newjpos, &newlpos);
653
654 /* If cannot cross jump to code before the label,
655 see if we can cross jump to another jump to
656 the same label. */
657 /* Try each other jump to this label. */
658 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
659 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
660 target != 0 && newjpos == 0;
661 target = jump_chain[INSN_UID (target)])
662 if (target != insn
663 && JUMP_LABEL (target) == JUMP_LABEL (insn)
664 /* Ignore TARGET if it's deleted. */
665 && ! INSN_DELETED_P (target))
666 find_cross_jump (insn, target, 2,
667 &newjpos, &newlpos);
668
669 if (newjpos != 0)
670 {
671 do_cross_jump (insn, newjpos, newlpos);
672 changed = 1;
673 next = insn;
674 }
675 }
676
677 /* This code was dead in the previous jump.c! */
678 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
679 {
680 /* Return insns all "jump to the same place"
681 so we can cross-jump between any two of them. */
682
683 rtx newjpos, newlpos, target;
684
685 newjpos = 0;
686
687 /* If cannot cross jump to code before the label,
688 see if we can cross jump to another jump to
689 the same label. */
690 /* Try each other jump to this label. */
691 for (target = jump_chain[0];
692 target != 0 && newjpos == 0;
693 target = jump_chain[INSN_UID (target)])
694 if (target != insn
695 && ! INSN_DELETED_P (target)
696 && GET_CODE (PATTERN (target)) == RETURN)
697 find_cross_jump (insn, target, 2,
698 &newjpos, &newlpos);
699
700 if (newjpos != 0)
701 {
702 do_cross_jump (insn, newjpos, newlpos);
703 changed = 1;
704 next = insn;
705 }
706 }
707 }
708 }
709
710 first = 0;
711 }
712
713 /* Delete extraneous line number notes.
714 Note that two consecutive notes for different lines are not really
715 extraneous. There should be some indication where that line belonged,
716 even if it became empty. */
717
718 {
719 rtx last_note = 0;
720
721 for (insn = f; insn; insn = NEXT_INSN (insn))
722 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
723 {
724 /* Delete this note if it is identical to previous note. */
725 if (last_note
726 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
727 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
728 {
729 delete_insn (insn);
730 continue;
731 }
732
733 last_note = insn;
734 }
735 }
736
737 /* CAN_REACH_END is persistent for each function. Once set it should
738 not be cleared. This is especially true for the case where we
739 delete the NOTE_FUNCTION_END note. CAN_REACH_END is cleared by
740 the front-end before compiling each function. */
741 if (! minimal && calculate_can_reach_end (last_insn, optimize != 0))
742 can_reach_end = 1;
743
744 end:
745 /* Clean up. */
746 free (jump_chain);
747 jump_chain = 0;
748 }
749 \f
750 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
751 notes whose labels don't occur in the insn any more. Returns the
752 largest INSN_UID found. */
753 static int
754 init_label_info (f)
755 rtx f;
756 {
757 int largest_uid = 0;
758 rtx insn;
759
760 for (insn = f; insn; insn = NEXT_INSN (insn))
761 {
762 if (GET_CODE (insn) == CODE_LABEL)
763 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
764 else if (GET_CODE (insn) == JUMP_INSN)
765 JUMP_LABEL (insn) = 0;
766 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
767 {
768 rtx note, next;
769
770 for (note = REG_NOTES (insn); note; note = next)
771 {
772 next = XEXP (note, 1);
773 if (REG_NOTE_KIND (note) == REG_LABEL
774 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
775 remove_note (insn, note);
776 }
777 }
778 if (INSN_UID (insn) > largest_uid)
779 largest_uid = INSN_UID (insn);
780 }
781
782 return largest_uid;
783 }
784
785 /* Delete insns following barriers, up to next label.
786
787 Also delete no-op jumps created by gcse. */
788
789 static void
790 delete_barrier_successors (f)
791 rtx f;
792 {
793 rtx insn;
794
795 for (insn = f; insn;)
796 {
797 if (GET_CODE (insn) == BARRIER)
798 {
799 insn = NEXT_INSN (insn);
800
801 never_reached_warning (insn);
802
803 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
804 {
805 if (GET_CODE (insn) == NOTE
806 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
807 insn = NEXT_INSN (insn);
808 else
809 insn = delete_insn (insn);
810 }
811 /* INSN is now the code_label. */
812 }
813
814 /* Also remove (set (pc) (pc)) insns which can be created by
815 gcse. We eliminate such insns now to avoid having them
816 cause problems later. */
817 else if (GET_CODE (insn) == JUMP_INSN
818 && GET_CODE (PATTERN (insn)) == SET
819 && SET_SRC (PATTERN (insn)) == pc_rtx
820 && SET_DEST (PATTERN (insn)) == pc_rtx)
821 insn = delete_insn (insn);
822
823 else
824 insn = NEXT_INSN (insn);
825 }
826 }
827
828 /* Mark the label each jump jumps to.
829 Combine consecutive labels, and count uses of labels.
830
831 For each label, make a chain (using `jump_chain')
832 of all the *unconditional* jumps that jump to it;
833 also make a chain of all returns.
834
835 CROSS_JUMP indicates whether we are doing cross jumping
836 and if we are whether we will be paying attention to
837 death notes or not. */
838
839 static void
840 mark_all_labels (f, cross_jump)
841 rtx f;
842 int cross_jump;
843 {
844 rtx insn;
845
846 for (insn = f; insn; insn = NEXT_INSN (insn))
847 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
848 {
849 if (GET_CODE (insn) == CALL_INSN
850 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
851 {
852 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
853 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
854 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
855 continue;
856 }
857
858 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
859 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
860 {
861 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
862 {
863 jump_chain[INSN_UID (insn)]
864 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
865 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
866 }
867 if (GET_CODE (PATTERN (insn)) == RETURN)
868 {
869 jump_chain[INSN_UID (insn)] = jump_chain[0];
870 jump_chain[0] = insn;
871 }
872 }
873 }
874 }
875
876 /* Delete all labels already not referenced.
877 Also find and return the last insn. */
878
879 static rtx
880 delete_unreferenced_labels (f)
881 rtx f;
882 {
883 rtx final = NULL_RTX;
884 rtx insn;
885
886 for (insn = f; insn; )
887 {
888 if (GET_CODE (insn) == CODE_LABEL
889 && LABEL_NUSES (insn) == 0
890 && LABEL_ALTERNATE_NAME (insn) == NULL)
891 insn = delete_insn (insn);
892 else
893 {
894 final = insn;
895 insn = NEXT_INSN (insn);
896 }
897 }
898
899 return final;
900 }
901
902 /* Delete various simple forms of moves which have no necessary
903 side effect. */
904
905 static void
906 delete_noop_moves (f)
907 rtx f;
908 {
909 rtx insn, next;
910
911 for (insn = f; insn; )
912 {
913 next = NEXT_INSN (insn);
914
915 if (GET_CODE (insn) == INSN)
916 {
917 register rtx body = PATTERN (insn);
918
919 /* Detect and delete no-op move instructions
920 resulting from not allocating a parameter in a register. */
921
922 if (GET_CODE (body) == SET
923 && (SET_DEST (body) == SET_SRC (body)
924 || (GET_CODE (SET_DEST (body)) == MEM
925 && GET_CODE (SET_SRC (body)) == MEM
926 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
927 && ! (GET_CODE (SET_DEST (body)) == MEM
928 && MEM_VOLATILE_P (SET_DEST (body)))
929 && ! (GET_CODE (SET_SRC (body)) == MEM
930 && MEM_VOLATILE_P (SET_SRC (body))))
931 delete_computation (insn);
932
933 /* Detect and ignore no-op move instructions
934 resulting from smart or fortuitous register allocation. */
935
936 else if (GET_CODE (body) == SET)
937 {
938 int sreg = true_regnum (SET_SRC (body));
939 int dreg = true_regnum (SET_DEST (body));
940
941 if (sreg == dreg && sreg >= 0)
942 delete_insn (insn);
943 else if (sreg >= 0 && dreg >= 0)
944 {
945 rtx trial;
946 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
947 sreg, NULL_PTR, dreg,
948 GET_MODE (SET_SRC (body)));
949
950 if (tem != 0
951 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
952 {
953 /* DREG may have been the target of a REG_DEAD note in
954 the insn which makes INSN redundant. If so, reorg
955 would still think it is dead. So search for such a
956 note and delete it if we find it. */
957 if (! find_regno_note (insn, REG_UNUSED, dreg))
958 for (trial = prev_nonnote_insn (insn);
959 trial && GET_CODE (trial) != CODE_LABEL;
960 trial = prev_nonnote_insn (trial))
961 if (find_regno_note (trial, REG_DEAD, dreg))
962 {
963 remove_death (dreg, trial);
964 break;
965 }
966
967 /* Deleting insn could lose a death-note for SREG. */
968 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
969 {
970 /* Change this into a USE so that we won't emit
971 code for it, but still can keep the note. */
972 PATTERN (insn)
973 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
974 INSN_CODE (insn) = -1;
975 /* Remove all reg notes but the REG_DEAD one. */
976 REG_NOTES (insn) = trial;
977 XEXP (trial, 1) = NULL_RTX;
978 }
979 else
980 delete_insn (insn);
981 }
982 }
983 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
984 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
985 NULL_PTR, 0,
986 GET_MODE (SET_DEST (body))))
987 {
988 /* This handles the case where we have two consecutive
989 assignments of the same constant to pseudos that didn't
990 get a hard reg. Each SET from the constant will be
991 converted into a SET of the spill register and an
992 output reload will be made following it. This produces
993 two loads of the same constant into the same spill
994 register. */
995
996 rtx in_insn = insn;
997
998 /* Look back for a death note for the first reg.
999 If there is one, it is no longer accurate. */
1000 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1001 {
1002 if ((GET_CODE (in_insn) == INSN
1003 || GET_CODE (in_insn) == JUMP_INSN)
1004 && find_regno_note (in_insn, REG_DEAD, dreg))
1005 {
1006 remove_death (dreg, in_insn);
1007 break;
1008 }
1009 in_insn = PREV_INSN (in_insn);
1010 }
1011
1012 /* Delete the second load of the value. */
1013 delete_insn (insn);
1014 }
1015 }
1016 else if (GET_CODE (body) == PARALLEL)
1017 {
1018 /* If each part is a set between two identical registers or
1019 a USE or CLOBBER, delete the insn. */
1020 int i, sreg, dreg;
1021 rtx tem;
1022
1023 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1024 {
1025 tem = XVECEXP (body, 0, i);
1026 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1027 continue;
1028
1029 if (GET_CODE (tem) != SET
1030 || (sreg = true_regnum (SET_SRC (tem))) < 0
1031 || (dreg = true_regnum (SET_DEST (tem))) < 0
1032 || dreg != sreg)
1033 break;
1034 }
1035
1036 if (i < 0)
1037 delete_insn (insn);
1038 }
1039 /* Also delete insns to store bit fields if they are no-ops. */
1040 /* Not worth the hair to detect this in the big-endian case. */
1041 else if (! BYTES_BIG_ENDIAN
1042 && GET_CODE (body) == SET
1043 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1044 && XEXP (SET_DEST (body), 2) == const0_rtx
1045 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1046 && ! (GET_CODE (SET_SRC (body)) == MEM
1047 && MEM_VOLATILE_P (SET_SRC (body))))
1048 delete_insn (insn);
1049 }
1050 insn = next;
1051 }
1052 }
1053
1054 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
1055 If so indicate that this function can drop off the end by returning
1056 1, else return 0.
1057
1058 CHECK_DELETED indicates whether we must check if the note being
1059 searched for has the deleted flag set.
1060
1061 DELETE_FINAL_NOTE indicates whether we should delete the note
1062 if we find it. */
1063
1064 static int
1065 calculate_can_reach_end (last, delete_final_note)
1066 rtx last;
1067 int delete_final_note;
1068 {
1069 rtx insn = last;
1070 int n_labels = 1;
1071
1072 while (insn != NULL_RTX)
1073 {
1074 int ok = 0;
1075
1076 /* One label can follow the end-note: the return label. */
1077 if (GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
1078 ok = 1;
1079 /* Ordinary insns can follow it if returning a structure. */
1080 else if (GET_CODE (insn) == INSN)
1081 ok = 1;
1082 /* If machine uses explicit RETURN insns, no epilogue,
1083 then one of them follows the note. */
1084 else if (GET_CODE (insn) == JUMP_INSN
1085 && GET_CODE (PATTERN (insn)) == RETURN)
1086 ok = 1;
1087 /* A barrier can follow the return insn. */
1088 else if (GET_CODE (insn) == BARRIER)
1089 ok = 1;
1090 /* Other kinds of notes can follow also. */
1091 else if (GET_CODE (insn) == NOTE
1092 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
1093 ok = 1;
1094
1095 if (ok != 1)
1096 break;
1097
1098 insn = PREV_INSN (insn);
1099 }
1100
1101 /* See if we backed up to the appropriate type of note. */
1102 if (insn != NULL_RTX
1103 && GET_CODE (insn) == NOTE
1104 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)
1105 {
1106 if (delete_final_note)
1107 delete_insn (insn);
1108 return 1;
1109 }
1110
1111 return 0;
1112 }
1113
1114 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1115 jump. Assume that this unconditional jump is to the exit test code. If
1116 the code is sufficiently simple, make a copy of it before INSN,
1117 followed by a jump to the exit of the loop. Then delete the unconditional
1118 jump after INSN.
1119
1120 Return 1 if we made the change, else 0.
1121
1122 This is only safe immediately after a regscan pass because it uses the
1123 values of regno_first_uid and regno_last_uid. */
1124
1125 static int
1126 duplicate_loop_exit_test (loop_start)
1127 rtx loop_start;
1128 {
1129 rtx insn, set, reg, p, link;
1130 rtx copy = 0, first_copy = 0;
1131 int num_insns = 0;
1132 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1133 rtx lastexit;
1134 int max_reg = max_reg_num ();
1135 rtx *reg_map = 0;
1136
1137 /* Scan the exit code. We do not perform this optimization if any insn:
1138
1139 is a CALL_INSN
1140 is a CODE_LABEL
1141 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1142 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1143 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1144 is not valid.
1145
1146 We also do not do this if we find an insn with ASM_OPERANDS. While
1147 this restriction should not be necessary, copying an insn with
1148 ASM_OPERANDS can confuse asm_noperands in some cases.
1149
1150 Also, don't do this if the exit code is more than 20 insns. */
1151
1152 for (insn = exitcode;
1153 insn
1154 && ! (GET_CODE (insn) == NOTE
1155 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1156 insn = NEXT_INSN (insn))
1157 {
1158 switch (GET_CODE (insn))
1159 {
1160 case CODE_LABEL:
1161 case CALL_INSN:
1162 return 0;
1163 case NOTE:
1164 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1165 a jump immediately after the loop start that branches outside
1166 the loop but within an outer loop, near the exit test.
1167 If we copied this exit test and created a phony
1168 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1169 before the exit test look like these could be safely moved
1170 out of the loop even if they actually may be never executed.
1171 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1172
1173 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1174 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1175 return 0;
1176
1177 if (optimize < 2
1178 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1179 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1180 /* If we were to duplicate this code, we would not move
1181 the BLOCK notes, and so debugging the moved code would
1182 be difficult. Thus, we only move the code with -O2 or
1183 higher. */
1184 return 0;
1185
1186 break;
1187 case JUMP_INSN:
1188 case INSN:
1189 /* The code below would grossly mishandle REG_WAS_0 notes,
1190 so get rid of them here. */
1191 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1192 remove_note (insn, p);
1193 if (++num_insns > 20
1194 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1195 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1196 return 0;
1197 break;
1198 default:
1199 break;
1200 }
1201 }
1202
1203 /* Unless INSN is zero, we can do the optimization. */
1204 if (insn == 0)
1205 return 0;
1206
1207 lastexit = insn;
1208
1209 /* See if any insn sets a register only used in the loop exit code and
1210 not a user variable. If so, replace it with a new register. */
1211 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1212 if (GET_CODE (insn) == INSN
1213 && (set = single_set (insn)) != 0
1214 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1215 || (GET_CODE (reg) == SUBREG
1216 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1217 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1218 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1219 {
1220 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1221 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1222 break;
1223
1224 if (p != lastexit)
1225 {
1226 /* We can do the replacement. Allocate reg_map if this is the
1227 first replacement we found. */
1228 if (reg_map == 0)
1229 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1230
1231 REG_LOOP_TEST_P (reg) = 1;
1232
1233 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1234 }
1235 }
1236
1237 /* Now copy each insn. */
1238 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1239 {
1240 switch (GET_CODE (insn))
1241 {
1242 case BARRIER:
1243 copy = emit_barrier_before (loop_start);
1244 break;
1245 case NOTE:
1246 /* Only copy line-number notes. */
1247 if (NOTE_LINE_NUMBER (insn) >= 0)
1248 {
1249 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1250 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1251 }
1252 break;
1253
1254 case INSN:
1255 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1256 if (reg_map)
1257 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1258
1259 mark_jump_label (PATTERN (copy), copy, 0, 0);
1260
1261 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1262 make them. */
1263 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1264 if (REG_NOTE_KIND (link) != REG_LABEL)
1265 {
1266 if (GET_CODE (link) == EXPR_LIST)
1267 REG_NOTES (copy)
1268 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1269 XEXP (link, 0),
1270 REG_NOTES (copy)));
1271 else
1272 REG_NOTES (copy)
1273 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1274 XEXP (link, 0),
1275 REG_NOTES (copy)));
1276 }
1277
1278 if (reg_map && REG_NOTES (copy))
1279 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1280 break;
1281
1282 case JUMP_INSN:
1283 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)), loop_start);
1284 if (reg_map)
1285 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1286 mark_jump_label (PATTERN (copy), copy, 0, 0);
1287 if (REG_NOTES (insn))
1288 {
1289 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1290 if (reg_map)
1291 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1292 }
1293
1294 /* If this is a simple jump, add it to the jump chain. */
1295
1296 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1297 && simplejump_p (copy))
1298 {
1299 jump_chain[INSN_UID (copy)]
1300 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1301 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1302 }
1303 break;
1304
1305 default:
1306 abort ();
1307 }
1308
1309 /* Record the first insn we copied. We need it so that we can
1310 scan the copied insns for new pseudo registers. */
1311 if (! first_copy)
1312 first_copy = copy;
1313 }
1314
1315 /* Now clean up by emitting a jump to the end label and deleting the jump
1316 at the start of the loop. */
1317 if (! copy || GET_CODE (copy) != BARRIER)
1318 {
1319 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1320 loop_start);
1321
1322 /* Record the first insn we copied. We need it so that we can
1323 scan the copied insns for new pseudo registers. This may not
1324 be strictly necessary since we should have copied at least one
1325 insn above. But I am going to be safe. */
1326 if (! first_copy)
1327 first_copy = copy;
1328
1329 mark_jump_label (PATTERN (copy), copy, 0, 0);
1330 if (INSN_UID (copy) < max_jump_chain
1331 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1332 {
1333 jump_chain[INSN_UID (copy)]
1334 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1335 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1336 }
1337 emit_barrier_before (loop_start);
1338 }
1339
1340 /* Now scan from the first insn we copied to the last insn we copied
1341 (copy) for new pseudo registers. Do this after the code to jump to
1342 the end label since that might create a new pseudo too. */
1343 reg_scan_update (first_copy, copy, max_reg);
1344
1345 /* Mark the exit code as the virtual top of the converted loop. */
1346 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1347
1348 delete_insn (next_nonnote_insn (loop_start));
1349
1350 /* Clean up. */
1351 if (reg_map)
1352 free (reg_map);
1353
1354 return 1;
1355 }
1356 \f
1357 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1358 eh-beg, eh-end notes between START and END out before START. Assume that
1359 END is not such a note. START may be such a note. Returns the value
1360 of the new starting insn, which may be different if the original start
1361 was such a note. */
1362
1363 rtx
1364 squeeze_notes (start, end)
1365 rtx start, end;
1366 {
1367 rtx insn;
1368 rtx next;
1369
1370 for (insn = start; insn != end; insn = next)
1371 {
1372 next = NEXT_INSN (insn);
1373 if (GET_CODE (insn) == NOTE
1374 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1375 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1376 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1377 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1378 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1379 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP
1380 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1381 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1382 {
1383 if (insn == start)
1384 start = next;
1385 else
1386 {
1387 rtx prev = PREV_INSN (insn);
1388 PREV_INSN (insn) = PREV_INSN (start);
1389 NEXT_INSN (insn) = start;
1390 NEXT_INSN (PREV_INSN (insn)) = insn;
1391 PREV_INSN (NEXT_INSN (insn)) = insn;
1392 NEXT_INSN (prev) = next;
1393 PREV_INSN (next) = prev;
1394 }
1395 }
1396 }
1397
1398 return start;
1399 }
1400 \f
1401 /* Compare the instructions before insn E1 with those before E2
1402 to find an opportunity for cross jumping.
1403 (This means detecting identical sequences of insns followed by
1404 jumps to the same place, or followed by a label and a jump
1405 to that label, and replacing one with a jump to the other.)
1406
1407 Assume E1 is a jump that jumps to label E2
1408 (that is not always true but it might as well be).
1409 Find the longest possible equivalent sequences
1410 and store the first insns of those sequences into *F1 and *F2.
1411 Store zero there if no equivalent preceding instructions are found.
1412
1413 We give up if we find a label in stream 1.
1414 Actually we could transfer that label into stream 2. */
1415
1416 static void
1417 find_cross_jump (e1, e2, minimum, f1, f2)
1418 rtx e1, e2;
1419 int minimum;
1420 rtx *f1, *f2;
1421 {
1422 register rtx i1 = e1, i2 = e2;
1423 register rtx p1, p2;
1424 int lose = 0;
1425
1426 rtx last1 = 0, last2 = 0;
1427 rtx afterlast1 = 0, afterlast2 = 0;
1428
1429 *f1 = 0;
1430 *f2 = 0;
1431
1432 while (1)
1433 {
1434 i1 = prev_nonnote_insn (i1);
1435
1436 i2 = PREV_INSN (i2);
1437 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1438 i2 = PREV_INSN (i2);
1439
1440 if (i1 == 0)
1441 break;
1442
1443 /* Don't allow the range of insns preceding E1 or E2
1444 to include the other (E2 or E1). */
1445 if (i2 == e1 || i1 == e2)
1446 break;
1447
1448 /* If we will get to this code by jumping, those jumps will be
1449 tensioned to go directly to the new label (before I2),
1450 so this cross-jumping won't cost extra. So reduce the minimum. */
1451 if (GET_CODE (i1) == CODE_LABEL)
1452 {
1453 --minimum;
1454 break;
1455 }
1456
1457 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1458 break;
1459
1460 /* Avoid moving insns across EH regions if either of the insns
1461 can throw. */
1462 if (flag_exceptions
1463 && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
1464 && !in_same_eh_region (i1, i2))
1465 break;
1466
1467 p1 = PATTERN (i1);
1468 p2 = PATTERN (i2);
1469
1470 /* If this is a CALL_INSN, compare register usage information.
1471 If we don't check this on stack register machines, the two
1472 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1473 numbers of stack registers in the same basic block.
1474 If we don't check this on machines with delay slots, a delay slot may
1475 be filled that clobbers a parameter expected by the subroutine.
1476
1477 ??? We take the simple route for now and assume that if they're
1478 equal, they were constructed identically. */
1479
1480 if (GET_CODE (i1) == CALL_INSN
1481 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1482 CALL_INSN_FUNCTION_USAGE (i2)))
1483 lose = 1;
1484
1485 #ifdef STACK_REGS
1486 /* If cross_jump_death_matters is not 0, the insn's mode
1487 indicates whether or not the insn contains any stack-like
1488 regs. */
1489
1490 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1491 {
1492 /* If register stack conversion has already been done, then
1493 death notes must also be compared before it is certain that
1494 the two instruction streams match. */
1495
1496 rtx note;
1497 HARD_REG_SET i1_regset, i2_regset;
1498
1499 CLEAR_HARD_REG_SET (i1_regset);
1500 CLEAR_HARD_REG_SET (i2_regset);
1501
1502 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1503 if (REG_NOTE_KIND (note) == REG_DEAD
1504 && STACK_REG_P (XEXP (note, 0)))
1505 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1506
1507 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1508 if (REG_NOTE_KIND (note) == REG_DEAD
1509 && STACK_REG_P (XEXP (note, 0)))
1510 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1511
1512 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1513
1514 lose = 1;
1515
1516 done:
1517 ;
1518 }
1519 #endif
1520
1521 /* Don't allow old-style asm or volatile extended asms to be accepted
1522 for cross jumping purposes. It is conceptually correct to allow
1523 them, since cross-jumping preserves the dynamic instruction order
1524 even though it is changing the static instruction order. However,
1525 if an asm is being used to emit an assembler pseudo-op, such as
1526 the MIPS `.set reorder' pseudo-op, then the static instruction order
1527 matters and it must be preserved. */
1528 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1529 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1530 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1531 lose = 1;
1532
1533 if (lose || GET_CODE (p1) != GET_CODE (p2)
1534 || ! rtx_renumbered_equal_p (p1, p2))
1535 {
1536 /* The following code helps take care of G++ cleanups. */
1537 rtx equiv1;
1538 rtx equiv2;
1539
1540 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1541 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1542 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1543 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1544 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1545 /* If the equivalences are not to a constant, they may
1546 reference pseudos that no longer exist, so we can't
1547 use them. */
1548 && CONSTANT_P (XEXP (equiv1, 0))
1549 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1550 {
1551 rtx s1 = single_set (i1);
1552 rtx s2 = single_set (i2);
1553 if (s1 != 0 && s2 != 0
1554 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1555 {
1556 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1557 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1558 if (! rtx_renumbered_equal_p (p1, p2))
1559 cancel_changes (0);
1560 else if (apply_change_group ())
1561 goto win;
1562 }
1563 }
1564
1565 /* Insns fail to match; cross jumping is limited to the following
1566 insns. */
1567
1568 #ifdef HAVE_cc0
1569 /* Don't allow the insn after a compare to be shared by
1570 cross-jumping unless the compare is also shared.
1571 Here, if either of these non-matching insns is a compare,
1572 exclude the following insn from possible cross-jumping. */
1573 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1574 last1 = afterlast1, last2 = afterlast2, ++minimum;
1575 #endif
1576
1577 /* If cross-jumping here will feed a jump-around-jump
1578 optimization, this jump won't cost extra, so reduce
1579 the minimum. */
1580 if (GET_CODE (i1) == JUMP_INSN
1581 && JUMP_LABEL (i1)
1582 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1583 --minimum;
1584 break;
1585 }
1586
1587 win:
1588 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1589 {
1590 /* Ok, this insn is potentially includable in a cross-jump here. */
1591 afterlast1 = last1, afterlast2 = last2;
1592 last1 = i1, last2 = i2, --minimum;
1593 }
1594 }
1595
1596 if (minimum <= 0 && last1 != 0 && last1 != e1)
1597 *f1 = last1, *f2 = last2;
1598 }
1599
1600 static void
1601 do_cross_jump (insn, newjpos, newlpos)
1602 rtx insn, newjpos, newlpos;
1603 {
1604 /* Find an existing label at this point
1605 or make a new one if there is none. */
1606 register rtx label = get_label_before (newlpos);
1607
1608 /* Make the same jump insn jump to the new point. */
1609 if (GET_CODE (PATTERN (insn)) == RETURN)
1610 {
1611 /* Remove from jump chain of returns. */
1612 delete_from_jump_chain (insn);
1613 /* Change the insn. */
1614 PATTERN (insn) = gen_jump (label);
1615 INSN_CODE (insn) = -1;
1616 JUMP_LABEL (insn) = label;
1617 LABEL_NUSES (label)++;
1618 /* Add to new the jump chain. */
1619 if (INSN_UID (label) < max_jump_chain
1620 && INSN_UID (insn) < max_jump_chain)
1621 {
1622 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1623 jump_chain[INSN_UID (label)] = insn;
1624 }
1625 }
1626 else
1627 redirect_jump (insn, label);
1628
1629 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1630 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1631 the NEWJPOS stream. */
1632
1633 while (newjpos != insn)
1634 {
1635 rtx lnote;
1636
1637 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1638 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1639 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1640 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1641 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1642 remove_note (newlpos, lnote);
1643
1644 delete_insn (newjpos);
1645 newjpos = next_real_insn (newjpos);
1646 newlpos = next_real_insn (newlpos);
1647 }
1648 }
1649 \f
1650 /* Return the label before INSN, or put a new label there. */
1651
1652 rtx
1653 get_label_before (insn)
1654 rtx insn;
1655 {
1656 rtx label;
1657
1658 /* Find an existing label at this point
1659 or make a new one if there is none. */
1660 label = prev_nonnote_insn (insn);
1661
1662 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1663 {
1664 rtx prev = PREV_INSN (insn);
1665
1666 label = gen_label_rtx ();
1667 emit_label_after (label, prev);
1668 LABEL_NUSES (label) = 0;
1669 }
1670 return label;
1671 }
1672
1673 /* Return the label after INSN, or put a new label there. */
1674
1675 rtx
1676 get_label_after (insn)
1677 rtx insn;
1678 {
1679 rtx label;
1680
1681 /* Find an existing label at this point
1682 or make a new one if there is none. */
1683 label = next_nonnote_insn (insn);
1684
1685 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1686 {
1687 label = gen_label_rtx ();
1688 emit_label_after (label, insn);
1689 LABEL_NUSES (label) = 0;
1690 }
1691 return label;
1692 }
1693 \f
1694 /* Return 1 if INSN is a jump that jumps to right after TARGET
1695 only on the condition that TARGET itself would drop through.
1696 Assumes that TARGET is a conditional jump. */
1697
1698 static int
1699 jump_back_p (insn, target)
1700 rtx insn, target;
1701 {
1702 rtx cinsn, ctarget;
1703 enum rtx_code codei, codet;
1704
1705 if (simplejump_p (insn) || ! condjump_p (insn)
1706 || simplejump_p (target)
1707 || target != prev_real_insn (JUMP_LABEL (insn)))
1708 return 0;
1709
1710 cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
1711 ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
1712
1713 codei = GET_CODE (cinsn);
1714 codet = GET_CODE (ctarget);
1715
1716 if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
1717 {
1718 if (! can_reverse_comparison_p (cinsn, insn))
1719 return 0;
1720 codei = reverse_condition (codei);
1721 }
1722
1723 if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
1724 {
1725 if (! can_reverse_comparison_p (ctarget, target))
1726 return 0;
1727 codet = reverse_condition (codet);
1728 }
1729
1730 return (codei == codet
1731 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1732 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1733 }
1734 \f
1735 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
1736 return non-zero if it is safe to reverse this comparison. It is if our
1737 floating-point is not IEEE, if this is an NE or EQ comparison, or if
1738 this is known to be an integer comparison. */
1739
1740 int
1741 can_reverse_comparison_p (comparison, insn)
1742 rtx comparison;
1743 rtx insn;
1744 {
1745 rtx arg0;
1746
1747 /* If this is not actually a comparison, we can't reverse it. */
1748 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1749 return 0;
1750
1751 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1752 /* If this is an NE comparison, it is safe to reverse it to an EQ
1753 comparison and vice versa, even for floating point. If no operands
1754 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
1755 always false and NE is always true, so the reversal is also valid. */
1756 || flag_fast_math
1757 || GET_CODE (comparison) == NE
1758 || GET_CODE (comparison) == EQ)
1759 return 1;
1760
1761 arg0 = XEXP (comparison, 0);
1762
1763 /* Make sure ARG0 is one of the actual objects being compared. If we
1764 can't do this, we can't be sure the comparison can be reversed.
1765
1766 Handle cc0 and a MODE_CC register. */
1767 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
1768 #ifdef HAVE_cc0
1769 || arg0 == cc0_rtx
1770 #endif
1771 )
1772 {
1773 rtx prev = prev_nonnote_insn (insn);
1774 rtx set;
1775
1776 /* First see if the condition code mode alone if enough to say we can
1777 reverse the condition. If not, then search backwards for a set of
1778 ARG0. We do not need to check for an insn clobbering it since valid
1779 code will contain set a set with no intervening clobber. But
1780 stop when we reach a label. */
1781 #ifdef REVERSIBLE_CC_MODE
1782 if (GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC
1783 && REVERSIBLE_CC_MODE (GET_MODE (arg0)))
1784 return 1;
1785 #endif
1786
1787 for (prev = prev_nonnote_insn (insn);
1788 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1789 prev = prev_nonnote_insn (prev))
1790 if ((set = single_set (prev)) != 0
1791 && rtx_equal_p (SET_DEST (set), arg0))
1792 {
1793 arg0 = SET_SRC (set);
1794
1795 if (GET_CODE (arg0) == COMPARE)
1796 arg0 = XEXP (arg0, 0);
1797 break;
1798 }
1799 }
1800
1801 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
1802 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
1803 return (GET_CODE (arg0) == CONST_INT
1804 || (GET_MODE (arg0) != VOIDmode
1805 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
1806 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
1807 }
1808
1809 /* Given an rtx-code for a comparison, return the code for the negated
1810 comparison. If no such code exists, return UNKNOWN.
1811
1812 WATCH OUT! reverse_condition is not safe to use on a jump that might
1813 be acting on the results of an IEEE floating point comparison, because
1814 of the special treatment of non-signaling nans in comparisons.
1815 Use can_reverse_comparison_p to be sure. */
1816
1817 enum rtx_code
1818 reverse_condition (code)
1819 enum rtx_code code;
1820 {
1821 switch (code)
1822 {
1823 case EQ:
1824 return NE;
1825 case NE:
1826 return EQ;
1827 case GT:
1828 return LE;
1829 case GE:
1830 return LT;
1831 case LT:
1832 return GE;
1833 case LE:
1834 return GT;
1835 case GTU:
1836 return LEU;
1837 case GEU:
1838 return LTU;
1839 case LTU:
1840 return GEU;
1841 case LEU:
1842 return GTU;
1843 case UNORDERED:
1844 return ORDERED;
1845 case ORDERED:
1846 return UNORDERED;
1847
1848 case UNLT:
1849 case UNLE:
1850 case UNGT:
1851 case UNGE:
1852 case UNEQ:
1853 case LTGT:
1854 return UNKNOWN;
1855
1856 default:
1857 abort ();
1858 }
1859 }
1860
1861 /* Similar, but we're allowed to generate unordered comparisons, which
1862 makes it safe for IEEE floating-point. Of course, we have to recognize
1863 that the target will support them too... */
1864
1865 enum rtx_code
1866 reverse_condition_maybe_unordered (code)
1867 enum rtx_code code;
1868 {
1869 /* Non-IEEE formats don't have unordered conditions. */
1870 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1871 return reverse_condition (code);
1872
1873 switch (code)
1874 {
1875 case EQ:
1876 return NE;
1877 case NE:
1878 return EQ;
1879 case GT:
1880 return UNLE;
1881 case GE:
1882 return UNLT;
1883 case LT:
1884 return UNGE;
1885 case LE:
1886 return UNGT;
1887 case LTGT:
1888 return UNEQ;
1889 case GTU:
1890 return LEU;
1891 case GEU:
1892 return LTU;
1893 case LTU:
1894 return GEU;
1895 case LEU:
1896 return GTU;
1897 case UNORDERED:
1898 return ORDERED;
1899 case ORDERED:
1900 return UNORDERED;
1901 case UNLT:
1902 return GE;
1903 case UNLE:
1904 return GT;
1905 case UNGT:
1906 return LE;
1907 case UNGE:
1908 return LT;
1909 case UNEQ:
1910 return LTGT;
1911
1912 default:
1913 abort ();
1914 }
1915 }
1916
1917 /* Similar, but return the code when two operands of a comparison are swapped.
1918 This IS safe for IEEE floating-point. */
1919
1920 enum rtx_code
1921 swap_condition (code)
1922 enum rtx_code code;
1923 {
1924 switch (code)
1925 {
1926 case EQ:
1927 case NE:
1928 case UNORDERED:
1929 case ORDERED:
1930 case UNEQ:
1931 case LTGT:
1932 return code;
1933
1934 case GT:
1935 return LT;
1936 case GE:
1937 return LE;
1938 case LT:
1939 return GT;
1940 case LE:
1941 return GE;
1942 case GTU:
1943 return LTU;
1944 case GEU:
1945 return LEU;
1946 case LTU:
1947 return GTU;
1948 case LEU:
1949 return GEU;
1950 case UNLT:
1951 return UNGT;
1952 case UNLE:
1953 return UNGE;
1954 case UNGT:
1955 return UNLT;
1956 case UNGE:
1957 return UNLE;
1958
1959 default:
1960 abort ();
1961 }
1962 }
1963
1964 /* Given a comparison CODE, return the corresponding unsigned comparison.
1965 If CODE is an equality comparison or already an unsigned comparison,
1966 CODE is returned. */
1967
1968 enum rtx_code
1969 unsigned_condition (code)
1970 enum rtx_code code;
1971 {
1972 switch (code)
1973 {
1974 case EQ:
1975 case NE:
1976 case GTU:
1977 case GEU:
1978 case LTU:
1979 case LEU:
1980 return code;
1981
1982 case GT:
1983 return GTU;
1984 case GE:
1985 return GEU;
1986 case LT:
1987 return LTU;
1988 case LE:
1989 return LEU;
1990
1991 default:
1992 abort ();
1993 }
1994 }
1995
1996 /* Similarly, return the signed version of a comparison. */
1997
1998 enum rtx_code
1999 signed_condition (code)
2000 enum rtx_code code;
2001 {
2002 switch (code)
2003 {
2004 case EQ:
2005 case NE:
2006 case GT:
2007 case GE:
2008 case LT:
2009 case LE:
2010 return code;
2011
2012 case GTU:
2013 return GT;
2014 case GEU:
2015 return GE;
2016 case LTU:
2017 return LT;
2018 case LEU:
2019 return LE;
2020
2021 default:
2022 abort ();
2023 }
2024 }
2025 \f
2026 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2027 truth of CODE1 implies the truth of CODE2. */
2028
2029 int
2030 comparison_dominates_p (code1, code2)
2031 enum rtx_code code1, code2;
2032 {
2033 if (code1 == code2)
2034 return 1;
2035
2036 switch (code1)
2037 {
2038 case EQ:
2039 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2040 || code2 == ORDERED)
2041 return 1;
2042 break;
2043
2044 case LT:
2045 if (code2 == LE || code2 == NE || code2 == ORDERED)
2046 return 1;
2047 break;
2048
2049 case GT:
2050 if (code2 == GE || code2 == NE || code2 == ORDERED)
2051 return 1;
2052 break;
2053
2054 case GE:
2055 case LE:
2056 if (code2 == ORDERED)
2057 return 1;
2058 break;
2059
2060 case LTGT:
2061 if (code2 == NE || code2 == ORDERED)
2062 return 1;
2063 break;
2064
2065 case LTU:
2066 if (code2 == LEU || code2 == NE)
2067 return 1;
2068 break;
2069
2070 case GTU:
2071 if (code2 == GEU || code2 == NE)
2072 return 1;
2073 break;
2074
2075 case UNORDERED:
2076 if (code2 == NE)
2077 return 1;
2078 break;
2079
2080 default:
2081 break;
2082 }
2083
2084 return 0;
2085 }
2086 \f
2087 /* Return 1 if INSN is an unconditional jump and nothing else. */
2088
2089 int
2090 simplejump_p (insn)
2091 rtx insn;
2092 {
2093 return (GET_CODE (insn) == JUMP_INSN
2094 && GET_CODE (PATTERN (insn)) == SET
2095 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2096 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2097 }
2098
2099 /* Return nonzero if INSN is a (possibly) conditional jump
2100 and nothing more.
2101
2102 Use this function is depreached, since we need to support
2103 branch and compare insns. Use nontrivial_condjump_p instead
2104 whenever possible.
2105 */
2106
2107 int
2108 condjump_p (insn)
2109 rtx insn;
2110 {
2111 register rtx x = PATTERN (insn);
2112
2113 if (GET_CODE (x) != SET
2114 || GET_CODE (SET_DEST (x)) != PC)
2115 return 0;
2116
2117 x = SET_SRC (x);
2118 if (GET_CODE (x) == LABEL_REF)
2119 return 1;
2120 else return (GET_CODE (x) == IF_THEN_ELSE
2121 && ((GET_CODE (XEXP (x, 2)) == PC
2122 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2123 || GET_CODE (XEXP (x, 1)) == RETURN))
2124 || (GET_CODE (XEXP (x, 1)) == PC
2125 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2126 || GET_CODE (XEXP (x, 2)) == RETURN))));
2127
2128 return 0;
2129 }
2130
2131 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2132 PARALLEL.
2133
2134 Use this function is depreached, since we need to support
2135 branch and compare insns. Use any_condjump_p instead
2136 whenever possible.
2137 */
2138
2139 int
2140 condjump_in_parallel_p (insn)
2141 rtx insn;
2142 {
2143 register rtx x = PATTERN (insn);
2144
2145 if (GET_CODE (x) != PARALLEL)
2146 return 0;
2147 else
2148 x = XVECEXP (x, 0, 0);
2149
2150 if (GET_CODE (x) != SET)
2151 return 0;
2152 if (GET_CODE (SET_DEST (x)) != PC)
2153 return 0;
2154 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2155 return 1;
2156 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2157 return 0;
2158 if (XEXP (SET_SRC (x), 2) == pc_rtx
2159 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2160 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2161 return 1;
2162 if (XEXP (SET_SRC (x), 1) == pc_rtx
2163 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2164 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2165 return 1;
2166 return 0;
2167 }
2168
2169 /* Return set of PC if available NULL otherwise. */
2170 rtx
2171 pc_set (insn)
2172 rtx insn;
2173 {
2174 rtx pat;
2175 if (GET_CODE (insn) != JUMP_INSN)
2176 return NULL;
2177 pat = PATTERN (insn);
2178 /* The set is allowed to appear eighter as insn pattern or the first in
2179 PARALLEL expression. */
2180 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2181 return pat;
2182 if (GET_CODE (pat) == PARALLEL)
2183 {
2184 rtx set = XVECEXP (pat, 0, 0);
2185 if (GET_CODE (set) == SET && GET_CODE (SET_DEST (set)) == PC)
2186 return set;
2187 }
2188 return NULL;
2189 }
2190
2191 /* Return true when insn in unconditional jump possibly boundled inside
2192 PARALLEL. */
2193 int
2194 any_uncondjump_p (insn)
2195 rtx insn;
2196 {
2197 rtx x = pc_set (insn);
2198 if (!x)
2199 return 0;
2200 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2201 return 0;
2202 return 1;
2203 }
2204
2205 /* Return true when insn is conditional jump. This function work for
2206 instructions containing PC sets in PARALLELs. The instruction may have
2207 various other effects so before removing the jump you must verify
2208 safe_to_remove_jump_p.
2209
2210 Note that unlike condjump_p it returns 0 for unconditionals jumps.
2211 */
2212 int
2213 any_condjump_p (insn)
2214 rtx insn;
2215 {
2216 rtx x = pc_set (insn);
2217 if (!x)
2218 return 0;
2219 if (XEXP (SET_SRC (x), 2) == pc_rtx
2220 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2221 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2222 return 1;
2223 if (XEXP (SET_SRC (x), 1) == pc_rtx
2224 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2225 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2226 return 1;
2227 return 0;
2228 }
2229
2230
2231 /* Return true when the condjump is safe to remove. */
2232 int
2233 safe_to_remove_jump_p (insn)
2234 rtx insn;
2235 {
2236 /* For non-single set insns we may remove set of the other registers. */
2237 if (!pc_set (insn) || !single_set (insn))
2238 return 0;
2239 return 1;
2240 }
2241
2242 /* Return the label of a conditional jump. */
2243
2244 rtx
2245 condjump_label (insn)
2246 rtx insn;
2247 {
2248 register rtx x = PATTERN (insn);
2249
2250 if (GET_CODE (x) == PARALLEL)
2251 x = XVECEXP (x, 0, 0);
2252 if (GET_CODE (x) != SET)
2253 return NULL_RTX;
2254 if (GET_CODE (SET_DEST (x)) != PC)
2255 return NULL_RTX;
2256 x = SET_SRC (x);
2257 if (GET_CODE (x) == LABEL_REF)
2258 return x;
2259 if (GET_CODE (x) != IF_THEN_ELSE)
2260 return NULL_RTX;
2261 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2262 return XEXP (x, 1);
2263 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2264 return XEXP (x, 2);
2265 return NULL_RTX;
2266 }
2267
2268 /* Return true if INSN is a (possibly conditional) return insn. */
2269
2270 static int
2271 returnjump_p_1 (loc, data)
2272 rtx *loc;
2273 void *data ATTRIBUTE_UNUSED;
2274 {
2275 rtx x = *loc;
2276 return x && GET_CODE (x) == RETURN;
2277 }
2278
2279 int
2280 returnjump_p (insn)
2281 rtx insn;
2282 {
2283 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2284 }
2285
2286 /* Return true if INSN is a jump that only transfers control and
2287 nothing more. */
2288
2289 int
2290 onlyjump_p (insn)
2291 rtx insn;
2292 {
2293 rtx set;
2294
2295 if (GET_CODE (insn) != JUMP_INSN)
2296 return 0;
2297
2298 set = single_set (insn);
2299 if (set == NULL)
2300 return 0;
2301 if (GET_CODE (SET_DEST (set)) != PC)
2302 return 0;
2303 if (side_effects_p (SET_SRC (set)))
2304 return 0;
2305
2306 return 1;
2307 }
2308
2309 #ifdef HAVE_cc0
2310
2311 /* Return 1 if X is an RTX that does nothing but set the condition codes
2312 and CLOBBER or USE registers.
2313 Return -1 if X does explicitly set the condition codes,
2314 but also does other things. */
2315
2316 int
2317 sets_cc0_p (x)
2318 rtx x ATTRIBUTE_UNUSED;
2319 {
2320 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2321 return 1;
2322 if (GET_CODE (x) == PARALLEL)
2323 {
2324 int i;
2325 int sets_cc0 = 0;
2326 int other_things = 0;
2327 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2328 {
2329 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2330 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2331 sets_cc0 = 1;
2332 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2333 other_things = 1;
2334 }
2335 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2336 }
2337 return 0;
2338 }
2339 #endif
2340 \f
2341 /* Follow any unconditional jump at LABEL;
2342 return the ultimate label reached by any such chain of jumps.
2343 If LABEL is not followed by a jump, return LABEL.
2344 If the chain loops or we can't find end, return LABEL,
2345 since that tells caller to avoid changing the insn.
2346
2347 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2348 a USE or CLOBBER. */
2349
2350 rtx
2351 follow_jumps (label)
2352 rtx label;
2353 {
2354 register rtx insn;
2355 register rtx next;
2356 register rtx value = label;
2357 register int depth;
2358
2359 for (depth = 0;
2360 (depth < 10
2361 && (insn = next_active_insn (value)) != 0
2362 && GET_CODE (insn) == JUMP_INSN
2363 && ((JUMP_LABEL (insn) != 0 && simplejump_p (insn))
2364 || GET_CODE (PATTERN (insn)) == RETURN)
2365 && (next = NEXT_INSN (insn))
2366 && GET_CODE (next) == BARRIER);
2367 depth++)
2368 {
2369 /* Don't chain through the insn that jumps into a loop
2370 from outside the loop,
2371 since that would create multiple loop entry jumps
2372 and prevent loop optimization. */
2373 rtx tem;
2374 if (!reload_completed)
2375 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2376 if (GET_CODE (tem) == NOTE
2377 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2378 /* ??? Optional. Disables some optimizations, but makes
2379 gcov output more accurate with -O. */
2380 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2381 return value;
2382
2383 /* If we have found a cycle, make the insn jump to itself. */
2384 if (JUMP_LABEL (insn) == label)
2385 return label;
2386
2387 tem = next_active_insn (JUMP_LABEL (insn));
2388 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2389 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2390 break;
2391
2392 value = JUMP_LABEL (insn);
2393 }
2394 if (depth == 10)
2395 return label;
2396 return value;
2397 }
2398
2399 /* Assuming that field IDX of X is a vector of label_refs,
2400 replace each of them by the ultimate label reached by it.
2401 Return nonzero if a change is made.
2402 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2403
2404 static int
2405 tension_vector_labels (x, idx)
2406 register rtx x;
2407 register int idx;
2408 {
2409 int changed = 0;
2410 register int i;
2411 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2412 {
2413 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2414 register rtx nlabel = follow_jumps (olabel);
2415 if (nlabel && nlabel != olabel)
2416 {
2417 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2418 ++LABEL_NUSES (nlabel);
2419 if (--LABEL_NUSES (olabel) == 0)
2420 delete_insn (olabel);
2421 changed = 1;
2422 }
2423 }
2424 return changed;
2425 }
2426 \f
2427 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2428 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2429 in INSN, then store one of them in JUMP_LABEL (INSN).
2430 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2431 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2432 Also, when there are consecutive labels, canonicalize on the last of them.
2433
2434 Note that two labels separated by a loop-beginning note
2435 must be kept distinct if we have not yet done loop-optimization,
2436 because the gap between them is where loop-optimize
2437 will want to move invariant code to. CROSS_JUMP tells us
2438 that loop-optimization is done with.
2439
2440 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2441 two labels distinct if they are separated by only USE or CLOBBER insns. */
2442
2443 static void
2444 mark_jump_label (x, insn, cross_jump, in_mem)
2445 register rtx x;
2446 rtx insn;
2447 int cross_jump;
2448 int in_mem;
2449 {
2450 register RTX_CODE code = GET_CODE (x);
2451 register int i;
2452 register const char *fmt;
2453
2454 switch (code)
2455 {
2456 case PC:
2457 case CC0:
2458 case REG:
2459 case SUBREG:
2460 case CONST_INT:
2461 case CONST_DOUBLE:
2462 case CLOBBER:
2463 case CALL:
2464 return;
2465
2466 case MEM:
2467 in_mem = 1;
2468 break;
2469
2470 case SYMBOL_REF:
2471 if (!in_mem)
2472 return;
2473
2474 /* If this is a constant-pool reference, see if it is a label. */
2475 if (CONSTANT_POOL_ADDRESS_P (x))
2476 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2477 break;
2478
2479 case LABEL_REF:
2480 {
2481 rtx label = XEXP (x, 0);
2482 rtx olabel = label;
2483 rtx note;
2484 rtx next;
2485
2486 /* Ignore remaining references to unreachable labels that
2487 have been deleted. */
2488 if (GET_CODE (label) == NOTE
2489 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2490 break;
2491
2492 if (GET_CODE (label) != CODE_LABEL)
2493 abort ();
2494
2495 /* Ignore references to labels of containing functions. */
2496 if (LABEL_REF_NONLOCAL_P (x))
2497 break;
2498
2499 /* If there are other labels following this one,
2500 replace it with the last of the consecutive labels. */
2501 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2502 {
2503 if (GET_CODE (next) == CODE_LABEL)
2504 label = next;
2505 else if (cross_jump && GET_CODE (next) == INSN
2506 && (GET_CODE (PATTERN (next)) == USE
2507 || GET_CODE (PATTERN (next)) == CLOBBER))
2508 continue;
2509 else if (GET_CODE (next) != NOTE)
2510 break;
2511 else if (! cross_jump
2512 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2513 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2514 /* ??? Optional. Disables some optimizations, but
2515 makes gcov output more accurate with -O. */
2516 || (flag_test_coverage && NOTE_LINE_NUMBER (next) > 0)))
2517 break;
2518 }
2519
2520 XEXP (x, 0) = label;
2521 if (! insn || ! INSN_DELETED_P (insn))
2522 ++LABEL_NUSES (label);
2523
2524 if (insn)
2525 {
2526 if (GET_CODE (insn) == JUMP_INSN)
2527 JUMP_LABEL (insn) = label;
2528
2529 /* If we've changed OLABEL and we had a REG_LABEL note
2530 for it, update it as well. */
2531 else if (label != olabel
2532 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2533 XEXP (note, 0) = label;
2534
2535 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2536 is one. */
2537 else if (! find_reg_note (insn, REG_LABEL, label))
2538 {
2539 /* This code used to ignore labels which refered to dispatch
2540 tables to avoid flow.c generating worse code.
2541
2542 However, in the presense of global optimizations like
2543 gcse which call find_basic_blocks without calling
2544 life_analysis, not recording such labels will lead
2545 to compiler aborts because of inconsistencies in the
2546 flow graph. So we go ahead and record the label.
2547
2548 It may also be the case that the optimization argument
2549 is no longer valid because of the more accurate cfg
2550 we build in find_basic_blocks -- it no longer pessimizes
2551 code when it finds a REG_LABEL note. */
2552 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2553 REG_NOTES (insn));
2554 }
2555 }
2556 return;
2557 }
2558
2559 /* Do walk the labels in a vector, but not the first operand of an
2560 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2561 case ADDR_VEC:
2562 case ADDR_DIFF_VEC:
2563 if (! INSN_DELETED_P (insn))
2564 {
2565 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2566
2567 for (i = 0; i < XVECLEN (x, eltnum); i++)
2568 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2569 cross_jump, in_mem);
2570 }
2571 return;
2572
2573 default:
2574 break;
2575 }
2576
2577 fmt = GET_RTX_FORMAT (code);
2578 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2579 {
2580 if (fmt[i] == 'e')
2581 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2582 else if (fmt[i] == 'E')
2583 {
2584 register int j;
2585 for (j = 0; j < XVECLEN (x, i); j++)
2586 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2587 }
2588 }
2589 }
2590
2591 /* If all INSN does is set the pc, delete it,
2592 and delete the insn that set the condition codes for it
2593 if that's what the previous thing was. */
2594
2595 void
2596 delete_jump (insn)
2597 rtx insn;
2598 {
2599 register rtx set = single_set (insn);
2600
2601 if (set && GET_CODE (SET_DEST (set)) == PC)
2602 delete_computation (insn);
2603 }
2604
2605 /* Verify INSN is a BARRIER and delete it. */
2606
2607 void
2608 delete_barrier (insn)
2609 rtx insn;
2610 {
2611 if (GET_CODE (insn) != BARRIER)
2612 abort ();
2613
2614 delete_insn (insn);
2615 }
2616
2617 /* Recursively delete prior insns that compute the value (used only by INSN
2618 which the caller is deleting) stored in the register mentioned by NOTE
2619 which is a REG_DEAD note associated with INSN. */
2620
2621 static void
2622 delete_prior_computation (note, insn)
2623 rtx note;
2624 rtx insn;
2625 {
2626 rtx our_prev;
2627 rtx reg = XEXP (note, 0);
2628
2629 for (our_prev = prev_nonnote_insn (insn);
2630 our_prev && (GET_CODE (our_prev) == INSN
2631 || GET_CODE (our_prev) == CALL_INSN);
2632 our_prev = prev_nonnote_insn (our_prev))
2633 {
2634 rtx pat = PATTERN (our_prev);
2635
2636 /* If we reach a CALL which is not calling a const function
2637 or the callee pops the arguments, then give up. */
2638 if (GET_CODE (our_prev) == CALL_INSN
2639 && (! CONST_CALL_P (our_prev)
2640 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2641 break;
2642
2643 /* If we reach a SEQUENCE, it is too complex to try to
2644 do anything with it, so give up. */
2645 if (GET_CODE (pat) == SEQUENCE)
2646 break;
2647
2648 if (GET_CODE (pat) == USE
2649 && GET_CODE (XEXP (pat, 0)) == INSN)
2650 /* reorg creates USEs that look like this. We leave them
2651 alone because reorg needs them for its own purposes. */
2652 break;
2653
2654 if (reg_set_p (reg, pat))
2655 {
2656 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2657 break;
2658
2659 if (GET_CODE (pat) == PARALLEL)
2660 {
2661 /* If we find a SET of something else, we can't
2662 delete the insn. */
2663
2664 int i;
2665
2666 for (i = 0; i < XVECLEN (pat, 0); i++)
2667 {
2668 rtx part = XVECEXP (pat, 0, i);
2669
2670 if (GET_CODE (part) == SET
2671 && SET_DEST (part) != reg)
2672 break;
2673 }
2674
2675 if (i == XVECLEN (pat, 0))
2676 delete_computation (our_prev);
2677 }
2678 else if (GET_CODE (pat) == SET
2679 && GET_CODE (SET_DEST (pat)) == REG)
2680 {
2681 int dest_regno = REGNO (SET_DEST (pat));
2682 int dest_endregno
2683 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
2684 ? HARD_REGNO_NREGS (dest_regno,
2685 GET_MODE (SET_DEST (pat))) : 1);
2686 int regno = REGNO (reg);
2687 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
2688 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
2689
2690 if (dest_regno >= regno
2691 && dest_endregno <= endregno)
2692 delete_computation (our_prev);
2693
2694 /* We may have a multi-word hard register and some, but not
2695 all, of the words of the register are needed in subsequent
2696 insns. Write REG_UNUSED notes for those parts that were not
2697 needed. */
2698 else if (dest_regno <= regno
2699 && dest_endregno >= endregno)
2700 {
2701 int i;
2702
2703 REG_NOTES (our_prev)
2704 = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (our_prev));
2705
2706 for (i = dest_regno; i < dest_endregno; i++)
2707 if (! find_regno_note (our_prev, REG_UNUSED, i))
2708 break;
2709
2710 if (i == dest_endregno)
2711 delete_computation (our_prev);
2712 }
2713 }
2714
2715 break;
2716 }
2717
2718 /* If PAT references the register that dies here, it is an
2719 additional use. Hence any prior SET isn't dead. However, this
2720 insn becomes the new place for the REG_DEAD note. */
2721 if (reg_overlap_mentioned_p (reg, pat))
2722 {
2723 XEXP (note, 1) = REG_NOTES (our_prev);
2724 REG_NOTES (our_prev) = note;
2725 break;
2726 }
2727 }
2728 }
2729
2730 /* Delete INSN and recursively delete insns that compute values used only
2731 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2732 If we are running before flow.c, we need do nothing since flow.c will
2733 delete dead code. We also can't know if the registers being used are
2734 dead or not at this point.
2735
2736 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2737 nothing other than set a register that dies in this insn, we can delete
2738 that insn as well.
2739
2740 On machines with CC0, if CC0 is used in this insn, we may be able to
2741 delete the insn that set it. */
2742
2743 static void
2744 delete_computation (insn)
2745 rtx insn;
2746 {
2747 rtx note, next;
2748 rtx set;
2749
2750 #ifdef HAVE_cc0
2751 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2752 {
2753 rtx prev = prev_nonnote_insn (insn);
2754 /* We assume that at this stage
2755 CC's are always set explicitly
2756 and always immediately before the jump that
2757 will use them. So if the previous insn
2758 exists to set the CC's, delete it
2759 (unless it performs auto-increments, etc.). */
2760 if (prev && GET_CODE (prev) == INSN
2761 && sets_cc0_p (PATTERN (prev)))
2762 {
2763 if (sets_cc0_p (PATTERN (prev)) > 0
2764 && ! side_effects_p (PATTERN (prev)))
2765 delete_computation (prev);
2766 else
2767 /* Otherwise, show that cc0 won't be used. */
2768 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2769 cc0_rtx, REG_NOTES (prev));
2770 }
2771 }
2772 #endif
2773
2774 #ifdef INSN_SCHEDULING
2775 /* ?!? The schedulers do not keep REG_DEAD notes accurate after
2776 reload has completed. The schedulers need to be fixed. Until
2777 they are, we must not rely on the death notes here. */
2778 if (reload_completed && flag_schedule_insns_after_reload)
2779 {
2780 delete_insn (insn);
2781 return;
2782 }
2783 #endif
2784
2785 /* The REG_DEAD note may have been omitted for a register
2786 which is both set and used by the insn. */
2787 set = single_set (insn);
2788 if (set && GET_CODE (SET_DEST (set)) == REG)
2789 {
2790 int dest_regno = REGNO (SET_DEST (set));
2791 int dest_endregno
2792 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
2793 ? HARD_REGNO_NREGS (dest_regno,
2794 GET_MODE (SET_DEST (set))) : 1);
2795 int i;
2796
2797 for (i = dest_regno; i < dest_endregno; i++)
2798 {
2799 if (! refers_to_regno_p (i, i + 1, SET_SRC (set), NULL_PTR)
2800 || find_regno_note (insn, REG_DEAD, i))
2801 continue;
2802
2803 note = gen_rtx_EXPR_LIST (REG_DEAD, (i < FIRST_PSEUDO_REGISTER
2804 ? gen_rtx_REG (reg_raw_mode[i], i)
2805 : SET_DEST (set)), NULL_RTX);
2806 delete_prior_computation (note, insn);
2807 }
2808 }
2809
2810 for (note = REG_NOTES (insn); note; note = next)
2811 {
2812 next = XEXP (note, 1);
2813
2814 if (REG_NOTE_KIND (note) != REG_DEAD
2815 /* Verify that the REG_NOTE is legitimate. */
2816 || GET_CODE (XEXP (note, 0)) != REG)
2817 continue;
2818
2819 delete_prior_computation (note, insn);
2820 }
2821
2822 delete_insn (insn);
2823 }
2824 \f
2825 /* Delete insn INSN from the chain of insns and update label ref counts.
2826 May delete some following insns as a consequence; may even delete
2827 a label elsewhere and insns that follow it.
2828
2829 Returns the first insn after INSN that was not deleted. */
2830
2831 rtx
2832 delete_insn (insn)
2833 register rtx insn;
2834 {
2835 register rtx next = NEXT_INSN (insn);
2836 register rtx prev = PREV_INSN (insn);
2837 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2838 register int dont_really_delete = 0;
2839
2840 while (next && INSN_DELETED_P (next))
2841 next = NEXT_INSN (next);
2842
2843 /* This insn is already deleted => return first following nondeleted. */
2844 if (INSN_DELETED_P (insn))
2845 return next;
2846
2847 if (was_code_label)
2848 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2849
2850 /* Don't delete user-declared labels. When optimizing, convert them
2851 to special NOTEs instead. When not optimizing, leave them alone. */
2852 if (was_code_label && LABEL_NAME (insn) != 0)
2853 {
2854 if (! optimize)
2855 dont_really_delete = 1;
2856 else if (! dont_really_delete)
2857 {
2858 const char *name = LABEL_NAME (insn);
2859 PUT_CODE (insn, NOTE);
2860 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2861 NOTE_SOURCE_FILE (insn) = name;
2862 dont_really_delete = 1;
2863 }
2864 }
2865 else
2866 /* Mark this insn as deleted. */
2867 INSN_DELETED_P (insn) = 1;
2868
2869 /* If this is an unconditional jump, delete it from the jump chain. */
2870 if (simplejump_p (insn))
2871 delete_from_jump_chain (insn);
2872
2873 /* If instruction is followed by a barrier,
2874 delete the barrier too. */
2875
2876 if (next != 0 && GET_CODE (next) == BARRIER)
2877 {
2878 INSN_DELETED_P (next) = 1;
2879 next = NEXT_INSN (next);
2880 }
2881
2882 /* Patch out INSN (and the barrier if any) */
2883
2884 if (! dont_really_delete)
2885 {
2886 if (prev)
2887 {
2888 NEXT_INSN (prev) = next;
2889 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2890 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2891 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2892 }
2893
2894 if (next)
2895 {
2896 PREV_INSN (next) = prev;
2897 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2898 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2899 }
2900
2901 if (prev && NEXT_INSN (prev) == 0)
2902 set_last_insn (prev);
2903 }
2904
2905 /* If deleting a jump, decrement the count of the label,
2906 and delete the label if it is now unused. */
2907
2908 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2909 {
2910 rtx lab = JUMP_LABEL (insn), lab_next;
2911
2912 if (--LABEL_NUSES (lab) == 0)
2913 {
2914 /* This can delete NEXT or PREV,
2915 either directly if NEXT is JUMP_LABEL (INSN),
2916 or indirectly through more levels of jumps. */
2917 delete_insn (lab);
2918
2919 /* I feel a little doubtful about this loop,
2920 but I see no clean and sure alternative way
2921 to find the first insn after INSN that is not now deleted.
2922 I hope this works. */
2923 while (next && INSN_DELETED_P (next))
2924 next = NEXT_INSN (next);
2925 return next;
2926 }
2927 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2928 && GET_CODE (lab_next) == JUMP_INSN
2929 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2930 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2931 {
2932 /* If we're deleting the tablejump, delete the dispatch table.
2933 We may not be able to kill the label immediately preceeding
2934 just yet, as it might be referenced in code leading up to
2935 the tablejump. */
2936 delete_insn (lab_next);
2937 }
2938 }
2939
2940 /* Likewise if we're deleting a dispatch table. */
2941
2942 if (GET_CODE (insn) == JUMP_INSN
2943 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2944 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2945 {
2946 rtx pat = PATTERN (insn);
2947 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2948 int len = XVECLEN (pat, diff_vec_p);
2949
2950 for (i = 0; i < len; i++)
2951 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2952 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2953 while (next && INSN_DELETED_P (next))
2954 next = NEXT_INSN (next);
2955 return next;
2956 }
2957
2958 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2959 prev = PREV_INSN (prev);
2960
2961 /* If INSN was a label and a dispatch table follows it,
2962 delete the dispatch table. The tablejump must have gone already.
2963 It isn't useful to fall through into a table. */
2964
2965 if (was_code_label
2966 && NEXT_INSN (insn) != 0
2967 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2968 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2969 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2970 next = delete_insn (NEXT_INSN (insn));
2971
2972 /* If INSN was a label, delete insns following it if now unreachable. */
2973
2974 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
2975 {
2976 register RTX_CODE code;
2977 while (next != 0
2978 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
2979 || code == NOTE || code == BARRIER
2980 || (code == CODE_LABEL && INSN_DELETED_P (next))))
2981 {
2982 if (code == NOTE
2983 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
2984 next = NEXT_INSN (next);
2985 /* Keep going past other deleted labels to delete what follows. */
2986 else if (code == CODE_LABEL && INSN_DELETED_P (next))
2987 next = NEXT_INSN (next);
2988 else
2989 /* Note: if this deletes a jump, it can cause more
2990 deletion of unreachable code, after a different label.
2991 As long as the value from this recursive call is correct,
2992 this invocation functions correctly. */
2993 next = delete_insn (next);
2994 }
2995 }
2996
2997 return next;
2998 }
2999
3000 /* Advance from INSN till reaching something not deleted
3001 then return that. May return INSN itself. */
3002
3003 rtx
3004 next_nondeleted_insn (insn)
3005 rtx insn;
3006 {
3007 while (INSN_DELETED_P (insn))
3008 insn = NEXT_INSN (insn);
3009 return insn;
3010 }
3011 \f
3012 /* Delete a range of insns from FROM to TO, inclusive.
3013 This is for the sake of peephole optimization, so assume
3014 that whatever these insns do will still be done by a new
3015 peephole insn that will replace them. */
3016
3017 void
3018 delete_for_peephole (from, to)
3019 register rtx from, to;
3020 {
3021 register rtx insn = from;
3022
3023 while (1)
3024 {
3025 register rtx next = NEXT_INSN (insn);
3026 register rtx prev = PREV_INSN (insn);
3027
3028 if (GET_CODE (insn) != NOTE)
3029 {
3030 INSN_DELETED_P (insn) = 1;
3031
3032 /* Patch this insn out of the chain. */
3033 /* We don't do this all at once, because we
3034 must preserve all NOTEs. */
3035 if (prev)
3036 NEXT_INSN (prev) = next;
3037
3038 if (next)
3039 PREV_INSN (next) = prev;
3040 }
3041
3042 if (insn == to)
3043 break;
3044 insn = next;
3045 }
3046
3047 /* Note that if TO is an unconditional jump
3048 we *do not* delete the BARRIER that follows,
3049 since the peephole that replaces this sequence
3050 is also an unconditional jump in that case. */
3051 }
3052 \f
3053 /* We have determined that INSN is never reached, and are about to
3054 delete it. Print a warning if the user asked for one.
3055
3056 To try to make this warning more useful, this should only be called
3057 once per basic block not reached, and it only warns when the basic
3058 block contains more than one line from the current function, and
3059 contains at least one operation. CSE and inlining can duplicate insns,
3060 so it's possible to get spurious warnings from this. */
3061
3062 void
3063 never_reached_warning (avoided_insn)
3064 rtx avoided_insn;
3065 {
3066 rtx insn;
3067 rtx a_line_note = NULL;
3068 int two_avoided_lines = 0;
3069 int contains_insn = 0;
3070
3071 if (! warn_notreached)
3072 return;
3073
3074 /* Scan forwards, looking at LINE_NUMBER notes, until
3075 we hit a LABEL or we run out of insns. */
3076
3077 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3078 {
3079 if (GET_CODE (insn) == CODE_LABEL)
3080 break;
3081 else if (GET_CODE (insn) == NOTE /* A line number note? */
3082 && NOTE_LINE_NUMBER (insn) >= 0)
3083 {
3084 if (a_line_note == NULL)
3085 a_line_note = insn;
3086 else
3087 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3088 != NOTE_LINE_NUMBER (insn));
3089 }
3090 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3091 contains_insn = 1;
3092 }
3093 if (two_avoided_lines && contains_insn)
3094 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3095 NOTE_LINE_NUMBER (a_line_note),
3096 "will never be executed");
3097 }
3098 \f
3099 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3100 NLABEL as a return. Accrue modifications into the change group. */
3101
3102 static void
3103 redirect_exp_1 (loc, olabel, nlabel, insn)
3104 rtx *loc;
3105 rtx olabel, nlabel;
3106 rtx insn;
3107 {
3108 register rtx x = *loc;
3109 register RTX_CODE code = GET_CODE (x);
3110 register int i;
3111 register const char *fmt;
3112
3113 if (code == LABEL_REF)
3114 {
3115 if (XEXP (x, 0) == olabel)
3116 {
3117 rtx n;
3118 if (nlabel)
3119 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3120 else
3121 n = gen_rtx_RETURN (VOIDmode);
3122
3123 validate_change (insn, loc, n, 1);
3124 return;
3125 }
3126 }
3127 else if (code == RETURN && olabel == 0)
3128 {
3129 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3130 if (loc == &PATTERN (insn))
3131 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3132 validate_change (insn, loc, x, 1);
3133 return;
3134 }
3135
3136 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3137 && GET_CODE (SET_SRC (x)) == LABEL_REF
3138 && XEXP (SET_SRC (x), 0) == olabel)
3139 {
3140 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3141 return;
3142 }
3143
3144 fmt = GET_RTX_FORMAT (code);
3145 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3146 {
3147 if (fmt[i] == 'e')
3148 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3149 else if (fmt[i] == 'E')
3150 {
3151 register int j;
3152 for (j = 0; j < XVECLEN (x, i); j++)
3153 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3154 }
3155 }
3156 }
3157
3158 /* Similar, but apply the change group and report success or failure. */
3159
3160 int
3161 redirect_exp (loc, olabel, nlabel, insn)
3162 rtx *loc;
3163 rtx olabel, nlabel;
3164 rtx insn;
3165 {
3166 redirect_exp_1 (loc, olabel, nlabel, insn);
3167 if (num_validated_changes () == 0)
3168 return 0;
3169
3170 return apply_change_group ();
3171 }
3172
3173 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3174 the modifications into the change group. Return false if we did
3175 not see how to do that. */
3176
3177 int
3178 redirect_jump_1 (jump, nlabel)
3179 rtx jump, nlabel;
3180 {
3181 int ochanges = num_validated_changes ();
3182 redirect_exp_1 (&PATTERN (jump), JUMP_LABEL (jump), nlabel, jump);
3183 return num_validated_changes () > ochanges;
3184 }
3185
3186 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3187 jump target label is unused as a result, it and the code following
3188 it may be deleted.
3189
3190 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3191 RETURN insn.
3192
3193 The return value will be 1 if the change was made, 0 if it wasn't
3194 (this can only occur for NLABEL == 0). */
3195
3196 int
3197 redirect_jump (jump, nlabel)
3198 rtx jump, nlabel;
3199 {
3200 register rtx olabel = JUMP_LABEL (jump);
3201
3202 if (nlabel == olabel)
3203 return 1;
3204
3205 if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
3206 return 0;
3207
3208 /* If this is an unconditional branch, delete it from the jump_chain of
3209 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3210 have UID's in range and JUMP_CHAIN is valid). */
3211 if (jump_chain && (simplejump_p (jump)
3212 || GET_CODE (PATTERN (jump)) == RETURN))
3213 {
3214 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3215
3216 delete_from_jump_chain (jump);
3217 if (label_index < max_jump_chain
3218 && INSN_UID (jump) < max_jump_chain)
3219 {
3220 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3221 jump_chain[label_index] = jump;
3222 }
3223 }
3224
3225 JUMP_LABEL (jump) = nlabel;
3226 if (nlabel)
3227 ++LABEL_NUSES (nlabel);
3228
3229 /* If we're eliding the jump over exception cleanups at the end of a
3230 function, move the function end note so that -Wreturn-type works. */
3231 if (olabel && NEXT_INSN (olabel)
3232 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3233 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3234 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3235
3236 if (olabel && --LABEL_NUSES (olabel) == 0)
3237 delete_insn (olabel);
3238
3239 return 1;
3240 }
3241
3242 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3243 Accrue the modifications into the change group. */
3244
3245 static void
3246 invert_exp_1 (x, insn)
3247 rtx x;
3248 rtx insn;
3249 {
3250 register RTX_CODE code;
3251 register int i;
3252 register const char *fmt;
3253
3254 code = GET_CODE (x);
3255
3256 if (code == IF_THEN_ELSE)
3257 {
3258 register rtx comp = XEXP (x, 0);
3259 register rtx tem;
3260
3261 /* We can do this in two ways: The preferable way, which can only
3262 be done if this is not an integer comparison, is to reverse
3263 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3264 of the IF_THEN_ELSE. If we can't do either, fail. */
3265
3266 if (can_reverse_comparison_p (comp, insn))
3267 {
3268 validate_change (insn, &XEXP (x, 0),
3269 gen_rtx_fmt_ee (reverse_condition (GET_CODE (comp)),
3270 GET_MODE (comp), XEXP (comp, 0),
3271 XEXP (comp, 1)),
3272 1);
3273 return;
3274 }
3275
3276 tem = XEXP (x, 1);
3277 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3278 validate_change (insn, &XEXP (x, 2), tem, 1);
3279 return;
3280 }
3281
3282 fmt = GET_RTX_FORMAT (code);
3283 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3284 {
3285 if (fmt[i] == 'e')
3286 invert_exp_1 (XEXP (x, i), insn);
3287 else if (fmt[i] == 'E')
3288 {
3289 register int j;
3290 for (j = 0; j < XVECLEN (x, i); j++)
3291 invert_exp_1 (XVECEXP (x, i, j), insn);
3292 }
3293 }
3294 }
3295
3296 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3297
3298 Return 1 if we can do so, 0 if we cannot find a way to do so that
3299 matches a pattern. */
3300
3301 int
3302 invert_exp (x, insn)
3303 rtx x;
3304 rtx insn;
3305 {
3306 invert_exp_1 (x, insn);
3307 if (num_validated_changes () == 0)
3308 return 0;
3309
3310 return apply_change_group ();
3311 }
3312
3313 /* Invert the condition of the jump JUMP, and make it jump to label
3314 NLABEL instead of where it jumps now. Accrue changes into the
3315 change group. Return false if we didn't see how to perform the
3316 inversion and redirection. */
3317
3318 int
3319 invert_jump_1 (jump, nlabel)
3320 rtx jump, nlabel;
3321 {
3322 int ochanges;
3323
3324 ochanges = num_validated_changes ();
3325 invert_exp_1 (PATTERN (jump), jump);
3326 if (num_validated_changes () == ochanges)
3327 return 0;
3328
3329 return redirect_jump_1 (jump, nlabel);
3330 }
3331
3332 /* Invert the condition of the jump JUMP, and make it jump to label
3333 NLABEL instead of where it jumps now. Return true if successful. */
3334
3335 int
3336 invert_jump (jump, nlabel)
3337 rtx jump, nlabel;
3338 {
3339 /* We have to either invert the condition and change the label or
3340 do neither. Either operation could fail. We first try to invert
3341 the jump. If that succeeds, we try changing the label. If that fails,
3342 we invert the jump back to what it was. */
3343
3344 if (! invert_exp (PATTERN (jump), jump))
3345 return 0;
3346
3347 if (redirect_jump (jump, nlabel))
3348 {
3349 /* An inverted jump means that a probability taken becomes a
3350 probability not taken. Subtract the branch probability from the
3351 probability base to convert it back to a taken probability. */
3352
3353 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3354 if (note)
3355 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3356
3357 return 1;
3358 }
3359
3360 if (! invert_exp (PATTERN (jump), jump))
3361 /* This should just be putting it back the way it was. */
3362 abort ();
3363
3364 return 0;
3365 }
3366
3367 /* Delete the instruction JUMP from any jump chain it might be on. */
3368
3369 static void
3370 delete_from_jump_chain (jump)
3371 rtx jump;
3372 {
3373 int index;
3374 rtx olabel = JUMP_LABEL (jump);
3375
3376 /* Handle unconditional jumps. */
3377 if (jump_chain && olabel != 0
3378 && INSN_UID (olabel) < max_jump_chain
3379 && simplejump_p (jump))
3380 index = INSN_UID (olabel);
3381 /* Handle return insns. */
3382 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3383 index = 0;
3384 else return;
3385
3386 if (jump_chain[index] == jump)
3387 jump_chain[index] = jump_chain[INSN_UID (jump)];
3388 else
3389 {
3390 rtx insn;
3391
3392 for (insn = jump_chain[index];
3393 insn != 0;
3394 insn = jump_chain[INSN_UID (insn)])
3395 if (jump_chain[INSN_UID (insn)] == jump)
3396 {
3397 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3398 break;
3399 }
3400 }
3401 }
3402 \f
3403 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3404
3405 If the old jump target label (before the dispatch table) becomes unused,
3406 it and the dispatch table may be deleted. In that case, find the insn
3407 before the jump references that label and delete it and logical successors
3408 too. */
3409
3410 static void
3411 redirect_tablejump (jump, nlabel)
3412 rtx jump, nlabel;
3413 {
3414 register rtx olabel = JUMP_LABEL (jump);
3415
3416 /* Add this jump to the jump_chain of NLABEL. */
3417 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3418 && INSN_UID (jump) < max_jump_chain)
3419 {
3420 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3421 jump_chain[INSN_UID (nlabel)] = jump;
3422 }
3423
3424 PATTERN (jump) = gen_jump (nlabel);
3425 JUMP_LABEL (jump) = nlabel;
3426 ++LABEL_NUSES (nlabel);
3427 INSN_CODE (jump) = -1;
3428
3429 if (--LABEL_NUSES (olabel) == 0)
3430 {
3431 delete_labelref_insn (jump, olabel, 0);
3432 delete_insn (olabel);
3433 }
3434 }
3435
3436 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3437 If we found one, delete it and then delete this insn if DELETE_THIS is
3438 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3439
3440 static int
3441 delete_labelref_insn (insn, label, delete_this)
3442 rtx insn, label;
3443 int delete_this;
3444 {
3445 int deleted = 0;
3446 rtx link;
3447
3448 if (GET_CODE (insn) != NOTE
3449 && reg_mentioned_p (label, PATTERN (insn)))
3450 {
3451 if (delete_this)
3452 {
3453 delete_insn (insn);
3454 deleted = 1;
3455 }
3456 else
3457 return 1;
3458 }
3459
3460 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3461 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3462 {
3463 if (delete_this)
3464 {
3465 delete_insn (insn);
3466 deleted = 1;
3467 }
3468 else
3469 return 1;
3470 }
3471
3472 return deleted;
3473 }
3474 \f
3475 /* Like rtx_equal_p except that it considers two REGs as equal
3476 if they renumber to the same value and considers two commutative
3477 operations to be the same if the order of the operands has been
3478 reversed.
3479
3480 ??? Addition is not commutative on the PA due to the weird implicit
3481 space register selection rules for memory addresses. Therefore, we
3482 don't consider a + b == b + a.
3483
3484 We could/should make this test a little tighter. Possibly only
3485 disabling it on the PA via some backend macro or only disabling this
3486 case when the PLUS is inside a MEM. */
3487
3488 int
3489 rtx_renumbered_equal_p (x, y)
3490 rtx x, y;
3491 {
3492 register int i;
3493 register RTX_CODE code = GET_CODE (x);
3494 register const char *fmt;
3495
3496 if (x == y)
3497 return 1;
3498
3499 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3500 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3501 && GET_CODE (SUBREG_REG (y)) == REG)))
3502 {
3503 int reg_x = -1, reg_y = -1;
3504 int word_x = 0, word_y = 0;
3505
3506 if (GET_MODE (x) != GET_MODE (y))
3507 return 0;
3508
3509 /* If we haven't done any renumbering, don't
3510 make any assumptions. */
3511 if (reg_renumber == 0)
3512 return rtx_equal_p (x, y);
3513
3514 if (code == SUBREG)
3515 {
3516 reg_x = REGNO (SUBREG_REG (x));
3517 word_x = SUBREG_WORD (x);
3518
3519 if (reg_renumber[reg_x] >= 0)
3520 {
3521 reg_x = reg_renumber[reg_x] + word_x;
3522 word_x = 0;
3523 }
3524 }
3525
3526 else
3527 {
3528 reg_x = REGNO (x);
3529 if (reg_renumber[reg_x] >= 0)
3530 reg_x = reg_renumber[reg_x];
3531 }
3532
3533 if (GET_CODE (y) == SUBREG)
3534 {
3535 reg_y = REGNO (SUBREG_REG (y));
3536 word_y = SUBREG_WORD (y);
3537
3538 if (reg_renumber[reg_y] >= 0)
3539 {
3540 reg_y = reg_renumber[reg_y];
3541 word_y = 0;
3542 }
3543 }
3544
3545 else
3546 {
3547 reg_y = REGNO (y);
3548 if (reg_renumber[reg_y] >= 0)
3549 reg_y = reg_renumber[reg_y];
3550 }
3551
3552 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3553 }
3554
3555 /* Now we have disposed of all the cases
3556 in which different rtx codes can match. */
3557 if (code != GET_CODE (y))
3558 return 0;
3559
3560 switch (code)
3561 {
3562 case PC:
3563 case CC0:
3564 case ADDR_VEC:
3565 case ADDR_DIFF_VEC:
3566 return 0;
3567
3568 case CONST_INT:
3569 return INTVAL (x) == INTVAL (y);
3570
3571 case LABEL_REF:
3572 /* We can't assume nonlocal labels have their following insns yet. */
3573 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3574 return XEXP (x, 0) == XEXP (y, 0);
3575
3576 /* Two label-refs are equivalent if they point at labels
3577 in the same position in the instruction stream. */
3578 return (next_real_insn (XEXP (x, 0))
3579 == next_real_insn (XEXP (y, 0)));
3580
3581 case SYMBOL_REF:
3582 return XSTR (x, 0) == XSTR (y, 0);
3583
3584 case CODE_LABEL:
3585 /* If we didn't match EQ equality above, they aren't the same. */
3586 return 0;
3587
3588 default:
3589 break;
3590 }
3591
3592 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3593
3594 if (GET_MODE (x) != GET_MODE (y))
3595 return 0;
3596
3597 /* For commutative operations, the RTX match if the operand match in any
3598 order. Also handle the simple binary and unary cases without a loop.
3599
3600 ??? Don't consider PLUS a commutative operator; see comments above. */
3601 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3602 && code != PLUS)
3603 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3604 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3605 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3606 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3607 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3608 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3609 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3610 else if (GET_RTX_CLASS (code) == '1')
3611 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3612
3613 /* Compare the elements. If any pair of corresponding elements
3614 fail to match, return 0 for the whole things. */
3615
3616 fmt = GET_RTX_FORMAT (code);
3617 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3618 {
3619 register int j;
3620 switch (fmt[i])
3621 {
3622 case 'w':
3623 if (XWINT (x, i) != XWINT (y, i))
3624 return 0;
3625 break;
3626
3627 case 'i':
3628 if (XINT (x, i) != XINT (y, i))
3629 return 0;
3630 break;
3631
3632 case 's':
3633 if (strcmp (XSTR (x, i), XSTR (y, i)))
3634 return 0;
3635 break;
3636
3637 case 'e':
3638 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3639 return 0;
3640 break;
3641
3642 case 'u':
3643 if (XEXP (x, i) != XEXP (y, i))
3644 return 0;
3645 /* fall through. */
3646 case '0':
3647 break;
3648
3649 case 'E':
3650 if (XVECLEN (x, i) != XVECLEN (y, i))
3651 return 0;
3652 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3653 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3654 return 0;
3655 break;
3656
3657 default:
3658 abort ();
3659 }
3660 }
3661 return 1;
3662 }
3663 \f
3664 /* If X is a hard register or equivalent to one or a subregister of one,
3665 return the hard register number. If X is a pseudo register that was not
3666 assigned a hard register, return the pseudo register number. Otherwise,
3667 return -1. Any rtx is valid for X. */
3668
3669 int
3670 true_regnum (x)
3671 rtx x;
3672 {
3673 if (GET_CODE (x) == REG)
3674 {
3675 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3676 return reg_renumber[REGNO (x)];
3677 return REGNO (x);
3678 }
3679 if (GET_CODE (x) == SUBREG)
3680 {
3681 int base = true_regnum (SUBREG_REG (x));
3682 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3683 return SUBREG_WORD (x) + base;
3684 }
3685 return -1;
3686 }
3687 \f
3688 /* Optimize code of the form:
3689
3690 for (x = a[i]; x; ...)
3691 ...
3692 for (x = a[i]; x; ...)
3693 ...
3694 foo:
3695
3696 Loop optimize will change the above code into
3697
3698 if (x = a[i])
3699 for (;;)
3700 { ...; if (! (x = ...)) break; }
3701 if (x = a[i])
3702 for (;;)
3703 { ...; if (! (x = ...)) break; }
3704 foo:
3705
3706 In general, if the first test fails, the program can branch
3707 directly to `foo' and skip the second try which is doomed to fail.
3708 We run this after loop optimization and before flow analysis. */
3709
3710 /* When comparing the insn patterns, we track the fact that different
3711 pseudo-register numbers may have been used in each computation.
3712 The following array stores an equivalence -- same_regs[I] == J means
3713 that pseudo register I was used in the first set of tests in a context
3714 where J was used in the second set. We also count the number of such
3715 pending equivalences. If nonzero, the expressions really aren't the
3716 same. */
3717
3718 static int *same_regs;
3719
3720 static int num_same_regs;
3721
3722 /* Track any registers modified between the target of the first jump and
3723 the second jump. They never compare equal. */
3724
3725 static char *modified_regs;
3726
3727 /* Record if memory was modified. */
3728
3729 static int modified_mem;
3730
3731 /* Called via note_stores on each insn between the target of the first
3732 branch and the second branch. It marks any changed registers. */
3733
3734 static void
3735 mark_modified_reg (dest, x, data)
3736 rtx dest;
3737 rtx x ATTRIBUTE_UNUSED;
3738 void *data ATTRIBUTE_UNUSED;
3739 {
3740 int regno;
3741 unsigned int i;
3742
3743 if (GET_CODE (dest) == SUBREG)
3744 dest = SUBREG_REG (dest);
3745
3746 if (GET_CODE (dest) == MEM)
3747 modified_mem = 1;
3748
3749 if (GET_CODE (dest) != REG)
3750 return;
3751
3752 regno = REGNO (dest);
3753 if (regno >= FIRST_PSEUDO_REGISTER)
3754 modified_regs[regno] = 1;
3755 else
3756 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3757 modified_regs[regno + i] = 1;
3758 }
3759
3760 /* F is the first insn in the chain of insns. */
3761
3762 void
3763 thread_jumps (f, max_reg, flag_before_loop)
3764 rtx f;
3765 int max_reg;
3766 int flag_before_loop;
3767 {
3768 /* Basic algorithm is to find a conditional branch,
3769 the label it may branch to, and the branch after
3770 that label. If the two branches test the same condition,
3771 walk back from both branch paths until the insn patterns
3772 differ, or code labels are hit. If we make it back to
3773 the target of the first branch, then we know that the first branch
3774 will either always succeed or always fail depending on the relative
3775 senses of the two branches. So adjust the first branch accordingly
3776 in this case. */
3777
3778 rtx label, b1, b2, t1, t2;
3779 enum rtx_code code1, code2;
3780 rtx b1op0, b1op1, b2op0, b2op1;
3781 int changed = 1;
3782 int i;
3783 int *all_reset;
3784
3785 /* Allocate register tables and quick-reset table. */
3786 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3787 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3788 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3789 for (i = 0; i < max_reg; i++)
3790 all_reset[i] = -1;
3791
3792 while (changed)
3793 {
3794 changed = 0;
3795
3796 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3797 {
3798 /* Get to a candidate branch insn. */
3799 if (GET_CODE (b1) != JUMP_INSN
3800 || ! condjump_p (b1) || simplejump_p (b1)
3801 || JUMP_LABEL (b1) == 0)
3802 continue;
3803
3804 bzero (modified_regs, max_reg * sizeof (char));
3805 modified_mem = 0;
3806
3807 bcopy ((char *) all_reset, (char *) same_regs,
3808 max_reg * sizeof (int));
3809 num_same_regs = 0;
3810
3811 label = JUMP_LABEL (b1);
3812
3813 /* Look for a branch after the target. Record any registers and
3814 memory modified between the target and the branch. Stop when we
3815 get to a label since we can't know what was changed there. */
3816 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3817 {
3818 if (GET_CODE (b2) == CODE_LABEL)
3819 break;
3820
3821 else if (GET_CODE (b2) == JUMP_INSN)
3822 {
3823 /* If this is an unconditional jump and is the only use of
3824 its target label, we can follow it. */
3825 if (simplejump_p (b2)
3826 && JUMP_LABEL (b2) != 0
3827 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3828 {
3829 b2 = JUMP_LABEL (b2);
3830 continue;
3831 }
3832 else
3833 break;
3834 }
3835
3836 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3837 continue;
3838
3839 if (GET_CODE (b2) == CALL_INSN)
3840 {
3841 modified_mem = 1;
3842 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3843 if (call_used_regs[i] && ! fixed_regs[i]
3844 && i != STACK_POINTER_REGNUM
3845 && i != FRAME_POINTER_REGNUM
3846 && i != HARD_FRAME_POINTER_REGNUM
3847 && i != ARG_POINTER_REGNUM)
3848 modified_regs[i] = 1;
3849 }
3850
3851 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3852 }
3853
3854 /* Check the next candidate branch insn from the label
3855 of the first. */
3856 if (b2 == 0
3857 || GET_CODE (b2) != JUMP_INSN
3858 || b2 == b1
3859 || ! condjump_p (b2)
3860 || simplejump_p (b2))
3861 continue;
3862
3863 /* Get the comparison codes and operands, reversing the
3864 codes if appropriate. If we don't have comparison codes,
3865 we can't do anything. */
3866 b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
3867 b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
3868 code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
3869 if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
3870 code1 = reverse_condition (code1);
3871
3872 b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
3873 b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
3874 code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
3875 if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
3876 code2 = reverse_condition (code2);
3877
3878 /* If they test the same things and knowing that B1 branches
3879 tells us whether or not B2 branches, check if we
3880 can thread the branch. */
3881 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3882 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3883 && (comparison_dominates_p (code1, code2)
3884 || (can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (b1)),
3885 0),
3886 b1)
3887 && comparison_dominates_p (code1, reverse_condition (code2)))))
3888
3889 {
3890 t1 = prev_nonnote_insn (b1);
3891 t2 = prev_nonnote_insn (b2);
3892
3893 while (t1 != 0 && t2 != 0)
3894 {
3895 if (t2 == label)
3896 {
3897 /* We have reached the target of the first branch.
3898 If there are no pending register equivalents,
3899 we know that this branch will either always
3900 succeed (if the senses of the two branches are
3901 the same) or always fail (if not). */
3902 rtx new_label;
3903
3904 if (num_same_regs != 0)
3905 break;
3906
3907 if (comparison_dominates_p (code1, code2))
3908 new_label = JUMP_LABEL (b2);
3909 else
3910 new_label = get_label_after (b2);
3911
3912 if (JUMP_LABEL (b1) != new_label)
3913 {
3914 rtx prev = PREV_INSN (new_label);
3915
3916 if (flag_before_loop
3917 && GET_CODE (prev) == NOTE
3918 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3919 {
3920 /* Don't thread to the loop label. If a loop
3921 label is reused, loop optimization will
3922 be disabled for that loop. */
3923 new_label = gen_label_rtx ();
3924 emit_label_after (new_label, PREV_INSN (prev));
3925 }
3926 changed |= redirect_jump (b1, new_label);
3927 }
3928 break;
3929 }
3930
3931 /* If either of these is not a normal insn (it might be
3932 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3933 have already been skipped above.) Similarly, fail
3934 if the insns are different. */
3935 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3936 || recog_memoized (t1) != recog_memoized (t2)
3937 || ! rtx_equal_for_thread_p (PATTERN (t1),
3938 PATTERN (t2), t2))
3939 break;
3940
3941 t1 = prev_nonnote_insn (t1);
3942 t2 = prev_nonnote_insn (t2);
3943 }
3944 }
3945 }
3946 }
3947
3948 /* Clean up. */
3949 free (modified_regs);
3950 free (same_regs);
3951 free (all_reset);
3952 }
3953 \f
3954 /* This is like RTX_EQUAL_P except that it knows about our handling of
3955 possibly equivalent registers and knows to consider volatile and
3956 modified objects as not equal.
3957
3958 YINSN is the insn containing Y. */
3959
3960 int
3961 rtx_equal_for_thread_p (x, y, yinsn)
3962 rtx x, y;
3963 rtx yinsn;
3964 {
3965 register int i;
3966 register int j;
3967 register enum rtx_code code;
3968 register const char *fmt;
3969
3970 code = GET_CODE (x);
3971 /* Rtx's of different codes cannot be equal. */
3972 if (code != GET_CODE (y))
3973 return 0;
3974
3975 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
3976 (REG:SI x) and (REG:HI x) are NOT equivalent. */
3977
3978 if (GET_MODE (x) != GET_MODE (y))
3979 return 0;
3980
3981 /* For floating-point, consider everything unequal. This is a bit
3982 pessimistic, but this pass would only rarely do anything for FP
3983 anyway. */
3984 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3985 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
3986 return 0;
3987
3988 /* For commutative operations, the RTX match if the operand match in any
3989 order. Also handle the simple binary and unary cases without a loop. */
3990 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3991 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3992 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
3993 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
3994 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
3995 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3996 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3997 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
3998 else if (GET_RTX_CLASS (code) == '1')
3999 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4000
4001 /* Handle special-cases first. */
4002 switch (code)
4003 {
4004 case REG:
4005 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4006 return 1;
4007
4008 /* If neither is user variable or hard register, check for possible
4009 equivalence. */
4010 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4011 || REGNO (x) < FIRST_PSEUDO_REGISTER
4012 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4013 return 0;
4014
4015 if (same_regs[REGNO (x)] == -1)
4016 {
4017 same_regs[REGNO (x)] = REGNO (y);
4018 num_same_regs++;
4019
4020 /* If this is the first time we are seeing a register on the `Y'
4021 side, see if it is the last use. If not, we can't thread the
4022 jump, so mark it as not equivalent. */
4023 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4024 return 0;
4025
4026 return 1;
4027 }
4028 else
4029 return (same_regs[REGNO (x)] == (int) REGNO (y));
4030
4031 break;
4032
4033 case MEM:
4034 /* If memory modified or either volatile, not equivalent.
4035 Else, check address. */
4036 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4037 return 0;
4038
4039 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4040
4041 case ASM_INPUT:
4042 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4043 return 0;
4044
4045 break;
4046
4047 case SET:
4048 /* Cancel a pending `same_regs' if setting equivalenced registers.
4049 Then process source. */
4050 if (GET_CODE (SET_DEST (x)) == REG
4051 && GET_CODE (SET_DEST (y)) == REG)
4052 {
4053 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4054 {
4055 same_regs[REGNO (SET_DEST (x))] = -1;
4056 num_same_regs--;
4057 }
4058 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4059 return 0;
4060 }
4061 else
4062 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4063 return 0;
4064
4065 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4066
4067 case LABEL_REF:
4068 return XEXP (x, 0) == XEXP (y, 0);
4069
4070 case SYMBOL_REF:
4071 return XSTR (x, 0) == XSTR (y, 0);
4072
4073 default:
4074 break;
4075 }
4076
4077 if (x == y)
4078 return 1;
4079
4080 fmt = GET_RTX_FORMAT (code);
4081 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4082 {
4083 switch (fmt[i])
4084 {
4085 case 'w':
4086 if (XWINT (x, i) != XWINT (y, i))
4087 return 0;
4088 break;
4089
4090 case 'n':
4091 case 'i':
4092 if (XINT (x, i) != XINT (y, i))
4093 return 0;
4094 break;
4095
4096 case 'V':
4097 case 'E':
4098 /* Two vectors must have the same length. */
4099 if (XVECLEN (x, i) != XVECLEN (y, i))
4100 return 0;
4101
4102 /* And the corresponding elements must match. */
4103 for (j = 0; j < XVECLEN (x, i); j++)
4104 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4105 XVECEXP (y, i, j), yinsn) == 0)
4106 return 0;
4107 break;
4108
4109 case 'e':
4110 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4111 return 0;
4112 break;
4113
4114 case 'S':
4115 case 's':
4116 if (strcmp (XSTR (x, i), XSTR (y, i)))
4117 return 0;
4118 break;
4119
4120 case 'u':
4121 /* These are just backpointers, so they don't matter. */
4122 break;
4123
4124 case '0':
4125 case 't':
4126 break;
4127
4128 /* It is believed that rtx's at this level will never
4129 contain anything but integers and other rtx's,
4130 except for within LABEL_REFs and SYMBOL_REFs. */
4131 default:
4132 abort ();
4133 }
4134 }
4135 return 1;
4136 }