flow.c (commit_one_edge_insertion): Be prepared for a return insn to be inserted...
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This is the jump-optimization pass of the compiler.
24 It is run two or three times: once before cse, sometimes once after cse,
25 and once after reload (before final).
26
27 jump_optimize deletes unreachable code and labels that are not used.
28 It also deletes jumps that jump to the following insn,
29 and simplifies jumps around unconditional jumps and jumps
30 to unconditional jumps.
31
32 Each CODE_LABEL has a count of the times it is used
33 stored in the LABEL_NUSES internal field, and each JUMP_INSN
34 has one label that it refers to stored in the
35 JUMP_LABEL internal field. With this we can detect labels that
36 become unused because of the deletion of all the jumps that
37 formerly used them. The JUMP_LABEL info is sometimes looked
38 at by later passes.
39
40 Optionally, cross-jumping can be done. Currently it is done
41 only the last time (when after reload and before final).
42 In fact, the code for cross-jumping now assumes that register
43 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44
45 Jump optimization is done after cse when cse's constant-propagation
46 causes jumps to become unconditional or to be deleted.
47
48 Unreachable loops are not detected here, because the labels
49 have references and the insns appear reachable from the labels.
50 find_basic_blocks in flow.c finds and deletes such loops.
51
52 The subroutines delete_insn, redirect_jump, and invert_jump are used
53 from other passes as well. */
54
55 #include "config.h"
56 #include "system.h"
57 #include "rtl.h"
58 #include "tm_p.h"
59 #include "flags.h"
60 #include "hard-reg-set.h"
61 #include "regs.h"
62 #include "insn-config.h"
63 #include "insn-flags.h"
64 #include "insn-attr.h"
65 #include "recog.h"
66 #include "function.h"
67 #include "expr.h"
68 #include "real.h"
69 #include "except.h"
70 #include "toplev.h"
71
72 /* ??? Eventually must record somehow the labels used by jumps
73 from nested functions. */
74 /* Pre-record the next or previous real insn for each label?
75 No, this pass is very fast anyway. */
76 /* Condense consecutive labels?
77 This would make life analysis faster, maybe. */
78 /* Optimize jump y; x: ... y: jumpif... x?
79 Don't know if it is worth bothering with. */
80 /* Optimize two cases of conditional jump to conditional jump?
81 This can never delete any instruction or make anything dead,
82 or even change what is live at any point.
83 So perhaps let combiner do it. */
84
85 /* Vector indexed by uid.
86 For each CODE_LABEL, index by its uid to get first unconditional jump
87 that jumps to the label.
88 For each JUMP_INSN, index by its uid to get the next unconditional jump
89 that jumps to the same label.
90 Element 0 is the start of a chain of all return insns.
91 (It is safe to use element 0 because insn uid 0 is not used. */
92
93 static rtx *jump_chain;
94
95 /* Maximum index in jump_chain. */
96
97 static int max_jump_chain;
98
99 /* Set nonzero by jump_optimize if control can fall through
100 to the end of the function. */
101 int can_reach_end;
102
103 /* Indicates whether death notes are significant in cross jump analysis.
104 Normally they are not significant, because of A and B jump to C,
105 and R dies in A, it must die in B. But this might not be true after
106 stack register conversion, and we must compare death notes in that
107 case. */
108
109 static int cross_jump_death_matters = 0;
110
111 static int init_label_info PARAMS ((rtx));
112 static void delete_barrier_successors PARAMS ((rtx));
113 static void mark_all_labels PARAMS ((rtx, int));
114 static rtx delete_unreferenced_labels PARAMS ((rtx));
115 static void delete_noop_moves PARAMS ((rtx));
116 static int calculate_can_reach_end PARAMS ((rtx, int));
117 static int duplicate_loop_exit_test PARAMS ((rtx));
118 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
119 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
120 static int jump_back_p PARAMS ((rtx, rtx));
121 static int tension_vector_labels PARAMS ((rtx, int));
122 static void mark_jump_label PARAMS ((rtx, rtx, int, int));
123 static void delete_computation PARAMS ((rtx));
124 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
125 static void invert_exp_1 PARAMS ((rtx, rtx));
126 static void delete_from_jump_chain PARAMS ((rtx));
127 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
128 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
129 static void redirect_tablejump PARAMS ((rtx, rtx));
130 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
131 static int returnjump_p_1 PARAMS ((rtx *, void *));
132 static void delete_prior_computation PARAMS ((rtx, rtx));
133 \f
134 /* Main external entry point into the jump optimizer. See comments before
135 jump_optimize_1 for descriptions of the arguments. */
136 void
137 jump_optimize (f, cross_jump, noop_moves, after_regscan)
138 rtx f;
139 int cross_jump;
140 int noop_moves;
141 int after_regscan;
142 {
143 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
144 }
145
146 /* Alternate entry into the jump optimizer. This entry point only rebuilds
147 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
148 instructions. */
149 void
150 rebuild_jump_labels (f)
151 rtx f;
152 {
153 jump_optimize_1 (f, 0, 0, 0, 1, 0);
154 }
155
156 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
157 void
158 jump_optimize_minimal (f)
159 rtx f;
160 {
161 jump_optimize_1 (f, 0, 0, 0, 0, 1);
162 }
163 \f
164 /* Delete no-op jumps and optimize jumps to jumps
165 and jumps around jumps.
166 Delete unused labels and unreachable code.
167
168 If CROSS_JUMP is 1, detect matching code
169 before a jump and its destination and unify them.
170 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
171
172 If NOOP_MOVES is nonzero, delete no-op move insns.
173
174 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
175 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
176
177 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
178 and JUMP_LABEL field for jumping insns.
179
180 If `optimize' is zero, don't change any code,
181 just determine whether control drops off the end of the function.
182 This case occurs when we have -W and not -O.
183 It works because `delete_insn' checks the value of `optimize'
184 and refrains from actually deleting when that is 0.
185
186 If MINIMAL is nonzero, then we only perform trivial optimizations:
187
188 * Removal of unreachable code after BARRIERs.
189 * Removal of unreferenced CODE_LABELs.
190 * Removal of a jump to the next instruction.
191 * Removal of a conditional jump followed by an unconditional jump
192 to the same target as the conditional jump.
193 * Simplify a conditional jump around an unconditional jump.
194 * Simplify a jump to a jump.
195 * Delete extraneous line number notes.
196 */
197
198 static void
199 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
200 mark_labels_only, minimal)
201 rtx f;
202 int cross_jump;
203 int noop_moves;
204 int after_regscan;
205 int mark_labels_only;
206 int minimal;
207 {
208 register rtx insn, next;
209 int changed;
210 int old_max_reg;
211 int first = 1;
212 int max_uid = 0;
213 rtx last_insn;
214
215 cross_jump_death_matters = (cross_jump == 2);
216 max_uid = init_label_info (f) + 1;
217
218 /* If we are performing cross jump optimizations, then initialize
219 tables mapping UIDs to EH regions to avoid incorrect movement
220 of insns from one EH region to another. */
221 if (flag_exceptions && cross_jump)
222 init_insn_eh_region (f, max_uid);
223
224 if (! mark_labels_only)
225 delete_barrier_successors (f);
226
227 /* Leave some extra room for labels and duplicate exit test insns
228 we make. */
229 max_jump_chain = max_uid * 14 / 10;
230 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
231
232 mark_all_labels (f, cross_jump);
233
234 /* Keep track of labels used from static data; we don't track them
235 closely enough to delete them here, so make sure their reference
236 count doesn't drop to zero. */
237
238 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
239 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
240 LABEL_NUSES (XEXP (insn, 0))++;
241
242 check_exception_handler_labels ();
243
244 /* Keep track of labels used for marking handlers for exception
245 regions; they cannot usually be deleted. */
246
247 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
248 LABEL_NUSES (XEXP (insn, 0))++;
249
250 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
251 notes and recompute LABEL_NUSES. */
252 if (mark_labels_only)
253 goto end;
254
255 if (! minimal)
256 exception_optimize ();
257
258 last_insn = delete_unreferenced_labels (f);
259
260 if (noop_moves)
261 delete_noop_moves (f);
262
263 /* If we haven't yet gotten to reload and we have just run regscan,
264 delete any insn that sets a register that isn't used elsewhere.
265 This helps some of the optimizations below by having less insns
266 being jumped around. */
267
268 if (optimize && ! reload_completed && after_regscan)
269 for (insn = f; insn; insn = next)
270 {
271 rtx set = single_set (insn);
272
273 next = NEXT_INSN (insn);
274
275 if (set && GET_CODE (SET_DEST (set)) == REG
276 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
277 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
278 /* We use regno_last_note_uid so as not to delete the setting
279 of a reg that's used in notes. A subsequent optimization
280 might arrange to use that reg for real. */
281 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
282 && ! side_effects_p (SET_SRC (set))
283 && ! find_reg_note (insn, REG_RETVAL, 0)
284 /* An ADDRESSOF expression can turn into a use of the internal arg
285 pointer, so do not delete the initialization of the internal
286 arg pointer yet. If it is truly dead, flow will delete the
287 initializing insn. */
288 && SET_DEST (set) != current_function_internal_arg_pointer)
289 delete_insn (insn);
290 }
291
292 /* Now iterate optimizing jumps until nothing changes over one pass. */
293 changed = 1;
294 old_max_reg = max_reg_num ();
295 while (changed)
296 {
297 changed = 0;
298
299 for (insn = f; insn; insn = next)
300 {
301 rtx reallabelprev;
302 rtx temp, temp1, temp2 = NULL_RTX;
303 rtx temp4 ATTRIBUTE_UNUSED;
304 rtx nlabel;
305 int this_is_simplejump, this_is_condjump;
306 int this_is_condjump_in_parallel;
307
308 next = NEXT_INSN (insn);
309
310 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
311 jump. Try to optimize by duplicating the loop exit test if so.
312 This is only safe immediately after regscan, because it uses
313 the values of regno_first_uid and regno_last_uid. */
314 if (after_regscan && GET_CODE (insn) == NOTE
315 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
316 && (temp1 = next_nonnote_insn (insn)) != 0
317 && simplejump_p (temp1))
318 {
319 temp = PREV_INSN (insn);
320 if (duplicate_loop_exit_test (insn))
321 {
322 changed = 1;
323 next = NEXT_INSN (temp);
324 continue;
325 }
326 }
327
328 if (GET_CODE (insn) != JUMP_INSN)
329 continue;
330
331 this_is_simplejump = simplejump_p (insn);
332 this_is_condjump = condjump_p (insn);
333 this_is_condjump_in_parallel = condjump_in_parallel_p (insn);
334
335 /* Tension the labels in dispatch tables. */
336
337 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
338 changed |= tension_vector_labels (PATTERN (insn), 0);
339 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
340 changed |= tension_vector_labels (PATTERN (insn), 1);
341
342 /* See if this jump goes to another jump and redirect if so. */
343 nlabel = follow_jumps (JUMP_LABEL (insn));
344 if (nlabel != JUMP_LABEL (insn))
345 changed |= redirect_jump (insn, nlabel);
346
347 if (! optimize || minimal)
348 continue;
349
350 /* If a dispatch table always goes to the same place,
351 get rid of it and replace the insn that uses it. */
352
353 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
354 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
355 {
356 int i;
357 rtx pat = PATTERN (insn);
358 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
359 int len = XVECLEN (pat, diff_vec_p);
360 rtx dispatch = prev_real_insn (insn);
361 rtx set;
362
363 for (i = 0; i < len; i++)
364 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
365 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
366 break;
367
368 if (i == len
369 && dispatch != 0
370 && GET_CODE (dispatch) == JUMP_INSN
371 && JUMP_LABEL (dispatch) != 0
372 /* Don't mess with a casesi insn.
373 XXX according to the comment before computed_jump_p(),
374 all casesi insns should be a parallel of the jump
375 and a USE of a LABEL_REF. */
376 && ! ((set = single_set (dispatch)) != NULL
377 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
378 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
379 {
380 redirect_tablejump (dispatch,
381 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
382 changed = 1;
383 }
384 }
385
386 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
387
388 /* Detect jump to following insn. */
389 if (reallabelprev == insn && this_is_condjump)
390 {
391 next = next_real_insn (JUMP_LABEL (insn));
392 delete_jump (insn);
393 changed = 1;
394 continue;
395 }
396
397 /* Detect a conditional jump going to the same place
398 as an immediately following unconditional jump. */
399 else if (this_is_condjump
400 && (temp = next_active_insn (insn)) != 0
401 && simplejump_p (temp)
402 && (next_active_insn (JUMP_LABEL (insn))
403 == next_active_insn (JUMP_LABEL (temp))))
404 {
405 /* Don't mess up test coverage analysis. */
406 temp2 = temp;
407 if (flag_test_coverage && !reload_completed)
408 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
409 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
410 break;
411
412 if (temp2 == temp)
413 {
414 delete_jump (insn);
415 changed = 1;
416 continue;
417 }
418 }
419
420 /* Detect a conditional jump jumping over an unconditional jump. */
421
422 else if ((this_is_condjump || this_is_condjump_in_parallel)
423 && ! this_is_simplejump
424 && reallabelprev != 0
425 && GET_CODE (reallabelprev) == JUMP_INSN
426 && prev_active_insn (reallabelprev) == insn
427 && no_labels_between_p (insn, reallabelprev)
428 && simplejump_p (reallabelprev))
429 {
430 /* When we invert the unconditional jump, we will be
431 decrementing the usage count of its old label.
432 Make sure that we don't delete it now because that
433 might cause the following code to be deleted. */
434 rtx prev_uses = prev_nonnote_insn (reallabelprev);
435 rtx prev_label = JUMP_LABEL (insn);
436
437 if (prev_label)
438 ++LABEL_NUSES (prev_label);
439
440 if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
441 {
442 /* It is very likely that if there are USE insns before
443 this jump, they hold REG_DEAD notes. These REG_DEAD
444 notes are no longer valid due to this optimization,
445 and will cause the life-analysis that following passes
446 (notably delayed-branch scheduling) to think that
447 these registers are dead when they are not.
448
449 To prevent this trouble, we just remove the USE insns
450 from the insn chain. */
451
452 while (prev_uses && GET_CODE (prev_uses) == INSN
453 && GET_CODE (PATTERN (prev_uses)) == USE)
454 {
455 rtx useless = prev_uses;
456 prev_uses = prev_nonnote_insn (prev_uses);
457 delete_insn (useless);
458 }
459
460 delete_insn (reallabelprev);
461 changed = 1;
462 }
463
464 /* We can now safely delete the label if it is unreferenced
465 since the delete_insn above has deleted the BARRIER. */
466 if (prev_label && --LABEL_NUSES (prev_label) == 0)
467 delete_insn (prev_label);
468
469 next = NEXT_INSN (insn);
470 }
471
472 /* If we have an unconditional jump preceded by a USE, try to put
473 the USE before the target and jump there. This simplifies many
474 of the optimizations below since we don't have to worry about
475 dealing with these USE insns. We only do this if the label
476 being branch to already has the identical USE or if code
477 never falls through to that label. */
478
479 else if (this_is_simplejump
480 && (temp = prev_nonnote_insn (insn)) != 0
481 && GET_CODE (temp) == INSN
482 && GET_CODE (PATTERN (temp)) == USE
483 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
484 && (GET_CODE (temp1) == BARRIER
485 || (GET_CODE (temp1) == INSN
486 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
487 /* Don't do this optimization if we have a loop containing
488 only the USE instruction, and the loop start label has
489 a usage count of 1. This is because we will redo this
490 optimization everytime through the outer loop, and jump
491 opt will never exit. */
492 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
493 && temp2 == JUMP_LABEL (insn)
494 && LABEL_NUSES (temp2) == 1))
495 {
496 if (GET_CODE (temp1) == BARRIER)
497 {
498 emit_insn_after (PATTERN (temp), temp1);
499 temp1 = NEXT_INSN (temp1);
500 }
501
502 delete_insn (temp);
503 redirect_jump (insn, get_label_before (temp1));
504 reallabelprev = prev_real_insn (temp1);
505 changed = 1;
506 next = NEXT_INSN (insn);
507 }
508
509 #ifdef HAVE_trap
510 /* Detect a conditional jump jumping over an unconditional trap. */
511 if (HAVE_trap
512 && this_is_condjump && ! this_is_simplejump
513 && reallabelprev != 0
514 && GET_CODE (reallabelprev) == INSN
515 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
516 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
517 && prev_active_insn (reallabelprev) == insn
518 && no_labels_between_p (insn, reallabelprev)
519 && (temp2 = get_condition (insn, &temp4))
520 && can_reverse_comparison_p (temp2, insn))
521 {
522 rtx new = gen_cond_trap (reverse_condition (GET_CODE (temp2)),
523 XEXP (temp2, 0), XEXP (temp2, 1),
524 TRAP_CODE (PATTERN (reallabelprev)));
525
526 if (new)
527 {
528 emit_insn_before (new, temp4);
529 delete_insn (reallabelprev);
530 delete_jump (insn);
531 changed = 1;
532 continue;
533 }
534 }
535 /* Detect a jump jumping to an unconditional trap. */
536 else if (HAVE_trap && this_is_condjump
537 && (temp = next_active_insn (JUMP_LABEL (insn)))
538 && GET_CODE (temp) == INSN
539 && GET_CODE (PATTERN (temp)) == TRAP_IF
540 && (this_is_simplejump
541 || (temp2 = get_condition (insn, &temp4))))
542 {
543 rtx tc = TRAP_CONDITION (PATTERN (temp));
544
545 if (tc == const_true_rtx
546 || (! this_is_simplejump && rtx_equal_p (temp2, tc)))
547 {
548 rtx new;
549 /* Replace an unconditional jump to a trap with a trap. */
550 if (this_is_simplejump)
551 {
552 emit_barrier_after (emit_insn_before (gen_trap (), insn));
553 delete_jump (insn);
554 changed = 1;
555 continue;
556 }
557 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
558 XEXP (temp2, 1),
559 TRAP_CODE (PATTERN (temp)));
560 if (new)
561 {
562 emit_insn_before (new, temp4);
563 delete_jump (insn);
564 changed = 1;
565 continue;
566 }
567 }
568 /* If the trap condition and jump condition are mutually
569 exclusive, redirect the jump to the following insn. */
570 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
571 && ! this_is_simplejump
572 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
573 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
574 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
575 && redirect_jump (insn, get_label_after (temp)))
576 {
577 changed = 1;
578 continue;
579 }
580 }
581 #endif
582 else
583 {
584 /* Now that the jump has been tensioned,
585 try cross jumping: check for identical code
586 before the jump and before its target label. */
587
588 /* First, cross jumping of conditional jumps: */
589
590 if (cross_jump && condjump_p (insn))
591 {
592 rtx newjpos, newlpos;
593 rtx x = prev_real_insn (JUMP_LABEL (insn));
594
595 /* A conditional jump may be crossjumped
596 only if the place it jumps to follows
597 an opposing jump that comes back here. */
598
599 if (x != 0 && ! jump_back_p (x, insn))
600 /* We have no opposing jump;
601 cannot cross jump this insn. */
602 x = 0;
603
604 newjpos = 0;
605 /* TARGET is nonzero if it is ok to cross jump
606 to code before TARGET. If so, see if matches. */
607 if (x != 0)
608 find_cross_jump (insn, x, 2,
609 &newjpos, &newlpos);
610
611 if (newjpos != 0)
612 {
613 do_cross_jump (insn, newjpos, newlpos);
614 /* Make the old conditional jump
615 into an unconditional one. */
616 SET_SRC (PATTERN (insn))
617 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
618 INSN_CODE (insn) = -1;
619 emit_barrier_after (insn);
620 /* Add to jump_chain unless this is a new label
621 whose UID is too large. */
622 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
623 {
624 jump_chain[INSN_UID (insn)]
625 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
626 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
627 }
628 changed = 1;
629 next = insn;
630 }
631 }
632
633 /* Cross jumping of unconditional jumps:
634 a few differences. */
635
636 if (cross_jump && simplejump_p (insn))
637 {
638 rtx newjpos, newlpos;
639 rtx target;
640
641 newjpos = 0;
642
643 /* TARGET is nonzero if it is ok to cross jump
644 to code before TARGET. If so, see if matches. */
645 find_cross_jump (insn, JUMP_LABEL (insn), 1,
646 &newjpos, &newlpos);
647
648 /* If cannot cross jump to code before the label,
649 see if we can cross jump to another jump to
650 the same label. */
651 /* Try each other jump to this label. */
652 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
653 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
654 target != 0 && newjpos == 0;
655 target = jump_chain[INSN_UID (target)])
656 if (target != insn
657 && JUMP_LABEL (target) == JUMP_LABEL (insn)
658 /* Ignore TARGET if it's deleted. */
659 && ! INSN_DELETED_P (target))
660 find_cross_jump (insn, target, 2,
661 &newjpos, &newlpos);
662
663 if (newjpos != 0)
664 {
665 do_cross_jump (insn, newjpos, newlpos);
666 changed = 1;
667 next = insn;
668 }
669 }
670
671 /* This code was dead in the previous jump.c! */
672 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
673 {
674 /* Return insns all "jump to the same place"
675 so we can cross-jump between any two of them. */
676
677 rtx newjpos, newlpos, target;
678
679 newjpos = 0;
680
681 /* If cannot cross jump to code before the label,
682 see if we can cross jump to another jump to
683 the same label. */
684 /* Try each other jump to this label. */
685 for (target = jump_chain[0];
686 target != 0 && newjpos == 0;
687 target = jump_chain[INSN_UID (target)])
688 if (target != insn
689 && ! INSN_DELETED_P (target)
690 && GET_CODE (PATTERN (target)) == RETURN)
691 find_cross_jump (insn, target, 2,
692 &newjpos, &newlpos);
693
694 if (newjpos != 0)
695 {
696 do_cross_jump (insn, newjpos, newlpos);
697 changed = 1;
698 next = insn;
699 }
700 }
701 }
702 }
703
704 first = 0;
705 }
706
707 /* Delete extraneous line number notes.
708 Note that two consecutive notes for different lines are not really
709 extraneous. There should be some indication where that line belonged,
710 even if it became empty. */
711
712 {
713 rtx last_note = 0;
714
715 for (insn = f; insn; insn = NEXT_INSN (insn))
716 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
717 {
718 /* Delete this note if it is identical to previous note. */
719 if (last_note
720 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
721 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
722 {
723 delete_insn (insn);
724 continue;
725 }
726
727 last_note = insn;
728 }
729 }
730
731 /* CAN_REACH_END is persistent for each function. Once set it should
732 not be cleared. This is especially true for the case where we
733 delete the NOTE_FUNCTION_END note. CAN_REACH_END is cleared by
734 the front-end before compiling each function. */
735 if (! minimal && calculate_can_reach_end (last_insn, optimize != 0))
736 can_reach_end = 1;
737
738 end:
739 /* Clean up. */
740 free (jump_chain);
741 jump_chain = 0;
742 }
743 \f
744 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
745 notes whose labels don't occur in the insn any more. Returns the
746 largest INSN_UID found. */
747 static int
748 init_label_info (f)
749 rtx f;
750 {
751 int largest_uid = 0;
752 rtx insn;
753
754 for (insn = f; insn; insn = NEXT_INSN (insn))
755 {
756 if (GET_CODE (insn) == CODE_LABEL)
757 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
758 else if (GET_CODE (insn) == JUMP_INSN)
759 JUMP_LABEL (insn) = 0;
760 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
761 {
762 rtx note, next;
763
764 for (note = REG_NOTES (insn); note; note = next)
765 {
766 next = XEXP (note, 1);
767 if (REG_NOTE_KIND (note) == REG_LABEL
768 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
769 remove_note (insn, note);
770 }
771 }
772 if (INSN_UID (insn) > largest_uid)
773 largest_uid = INSN_UID (insn);
774 }
775
776 return largest_uid;
777 }
778
779 /* Delete insns following barriers, up to next label.
780
781 Also delete no-op jumps created by gcse. */
782
783 static void
784 delete_barrier_successors (f)
785 rtx f;
786 {
787 rtx insn;
788
789 for (insn = f; insn;)
790 {
791 if (GET_CODE (insn) == BARRIER)
792 {
793 insn = NEXT_INSN (insn);
794
795 never_reached_warning (insn);
796
797 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
798 {
799 if (GET_CODE (insn) == NOTE
800 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
801 insn = NEXT_INSN (insn);
802 else
803 insn = delete_insn (insn);
804 }
805 /* INSN is now the code_label. */
806 }
807
808 /* Also remove (set (pc) (pc)) insns which can be created by
809 gcse. We eliminate such insns now to avoid having them
810 cause problems later. */
811 else if (GET_CODE (insn) == JUMP_INSN
812 && GET_CODE (PATTERN (insn)) == SET
813 && SET_SRC (PATTERN (insn)) == pc_rtx
814 && SET_DEST (PATTERN (insn)) == pc_rtx)
815 insn = delete_insn (insn);
816
817 else
818 insn = NEXT_INSN (insn);
819 }
820 }
821
822 /* Mark the label each jump jumps to.
823 Combine consecutive labels, and count uses of labels.
824
825 For each label, make a chain (using `jump_chain')
826 of all the *unconditional* jumps that jump to it;
827 also make a chain of all returns.
828
829 CROSS_JUMP indicates whether we are doing cross jumping
830 and if we are whether we will be paying attention to
831 death notes or not. */
832
833 static void
834 mark_all_labels (f, cross_jump)
835 rtx f;
836 int cross_jump;
837 {
838 rtx insn;
839
840 for (insn = f; insn; insn = NEXT_INSN (insn))
841 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
842 {
843 if (GET_CODE (insn) == CALL_INSN
844 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
845 {
846 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
847 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
848 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
849 continue;
850 }
851
852 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
853 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
854 {
855 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
856 {
857 jump_chain[INSN_UID (insn)]
858 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
859 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
860 }
861 if (GET_CODE (PATTERN (insn)) == RETURN)
862 {
863 jump_chain[INSN_UID (insn)] = jump_chain[0];
864 jump_chain[0] = insn;
865 }
866 }
867 }
868 }
869
870 /* Delete all labels already not referenced.
871 Also find and return the last insn. */
872
873 static rtx
874 delete_unreferenced_labels (f)
875 rtx f;
876 {
877 rtx final = NULL_RTX;
878 rtx insn;
879
880 for (insn = f; insn; )
881 {
882 if (GET_CODE (insn) == CODE_LABEL
883 && LABEL_NUSES (insn) == 0
884 && LABEL_ALTERNATE_NAME (insn) == NULL)
885 insn = delete_insn (insn);
886 else
887 {
888 final = insn;
889 insn = NEXT_INSN (insn);
890 }
891 }
892
893 return final;
894 }
895
896 /* Delete various simple forms of moves which have no necessary
897 side effect. */
898
899 static void
900 delete_noop_moves (f)
901 rtx f;
902 {
903 rtx insn, next;
904
905 for (insn = f; insn; )
906 {
907 next = NEXT_INSN (insn);
908
909 if (GET_CODE (insn) == INSN)
910 {
911 register rtx body = PATTERN (insn);
912
913 /* Detect and delete no-op move instructions
914 resulting from not allocating a parameter in a register. */
915
916 if (GET_CODE (body) == SET
917 && (SET_DEST (body) == SET_SRC (body)
918 || (GET_CODE (SET_DEST (body)) == MEM
919 && GET_CODE (SET_SRC (body)) == MEM
920 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
921 && ! (GET_CODE (SET_DEST (body)) == MEM
922 && MEM_VOLATILE_P (SET_DEST (body)))
923 && ! (GET_CODE (SET_SRC (body)) == MEM
924 && MEM_VOLATILE_P (SET_SRC (body))))
925 delete_computation (insn);
926
927 /* Detect and ignore no-op move instructions
928 resulting from smart or fortuitous register allocation. */
929
930 else if (GET_CODE (body) == SET)
931 {
932 int sreg = true_regnum (SET_SRC (body));
933 int dreg = true_regnum (SET_DEST (body));
934
935 if (sreg == dreg && sreg >= 0)
936 delete_insn (insn);
937 else if (sreg >= 0 && dreg >= 0)
938 {
939 rtx trial;
940 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
941 sreg, NULL_PTR, dreg,
942 GET_MODE (SET_SRC (body)));
943
944 if (tem != 0
945 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
946 {
947 /* DREG may have been the target of a REG_DEAD note in
948 the insn which makes INSN redundant. If so, reorg
949 would still think it is dead. So search for such a
950 note and delete it if we find it. */
951 if (! find_regno_note (insn, REG_UNUSED, dreg))
952 for (trial = prev_nonnote_insn (insn);
953 trial && GET_CODE (trial) != CODE_LABEL;
954 trial = prev_nonnote_insn (trial))
955 if (find_regno_note (trial, REG_DEAD, dreg))
956 {
957 remove_death (dreg, trial);
958 break;
959 }
960
961 /* Deleting insn could lose a death-note for SREG. */
962 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
963 {
964 /* Change this into a USE so that we won't emit
965 code for it, but still can keep the note. */
966 PATTERN (insn)
967 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
968 INSN_CODE (insn) = -1;
969 /* Remove all reg notes but the REG_DEAD one. */
970 REG_NOTES (insn) = trial;
971 XEXP (trial, 1) = NULL_RTX;
972 }
973 else
974 delete_insn (insn);
975 }
976 }
977 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
978 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
979 NULL_PTR, 0,
980 GET_MODE (SET_DEST (body))))
981 {
982 /* This handles the case where we have two consecutive
983 assignments of the same constant to pseudos that didn't
984 get a hard reg. Each SET from the constant will be
985 converted into a SET of the spill register and an
986 output reload will be made following it. This produces
987 two loads of the same constant into the same spill
988 register. */
989
990 rtx in_insn = insn;
991
992 /* Look back for a death note for the first reg.
993 If there is one, it is no longer accurate. */
994 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
995 {
996 if ((GET_CODE (in_insn) == INSN
997 || GET_CODE (in_insn) == JUMP_INSN)
998 && find_regno_note (in_insn, REG_DEAD, dreg))
999 {
1000 remove_death (dreg, in_insn);
1001 break;
1002 }
1003 in_insn = PREV_INSN (in_insn);
1004 }
1005
1006 /* Delete the second load of the value. */
1007 delete_insn (insn);
1008 }
1009 }
1010 else if (GET_CODE (body) == PARALLEL)
1011 {
1012 /* If each part is a set between two identical registers or
1013 a USE or CLOBBER, delete the insn. */
1014 int i, sreg, dreg;
1015 rtx tem;
1016
1017 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1018 {
1019 tem = XVECEXP (body, 0, i);
1020 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1021 continue;
1022
1023 if (GET_CODE (tem) != SET
1024 || (sreg = true_regnum (SET_SRC (tem))) < 0
1025 || (dreg = true_regnum (SET_DEST (tem))) < 0
1026 || dreg != sreg)
1027 break;
1028 }
1029
1030 if (i < 0)
1031 delete_insn (insn);
1032 }
1033 /* Also delete insns to store bit fields if they are no-ops. */
1034 /* Not worth the hair to detect this in the big-endian case. */
1035 else if (! BYTES_BIG_ENDIAN
1036 && GET_CODE (body) == SET
1037 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1038 && XEXP (SET_DEST (body), 2) == const0_rtx
1039 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1040 && ! (GET_CODE (SET_SRC (body)) == MEM
1041 && MEM_VOLATILE_P (SET_SRC (body))))
1042 delete_insn (insn);
1043 }
1044 insn = next;
1045 }
1046 }
1047
1048 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
1049 If so indicate that this function can drop off the end by returning
1050 1, else return 0.
1051
1052 CHECK_DELETED indicates whether we must check if the note being
1053 searched for has the deleted flag set.
1054
1055 DELETE_FINAL_NOTE indicates whether we should delete the note
1056 if we find it. */
1057
1058 static int
1059 calculate_can_reach_end (last, delete_final_note)
1060 rtx last;
1061 int delete_final_note;
1062 {
1063 rtx insn = last;
1064 int n_labels = 1;
1065
1066 while (insn != NULL_RTX)
1067 {
1068 int ok = 0;
1069
1070 /* One label can follow the end-note: the return label. */
1071 if (GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
1072 ok = 1;
1073 /* Ordinary insns can follow it if returning a structure. */
1074 else if (GET_CODE (insn) == INSN)
1075 ok = 1;
1076 /* If machine uses explicit RETURN insns, no epilogue,
1077 then one of them follows the note. */
1078 else if (GET_CODE (insn) == JUMP_INSN
1079 && GET_CODE (PATTERN (insn)) == RETURN)
1080 ok = 1;
1081 /* A barrier can follow the return insn. */
1082 else if (GET_CODE (insn) == BARRIER)
1083 ok = 1;
1084 /* Other kinds of notes can follow also. */
1085 else if (GET_CODE (insn) == NOTE
1086 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
1087 ok = 1;
1088
1089 if (ok != 1)
1090 break;
1091
1092 insn = PREV_INSN (insn);
1093 }
1094
1095 /* See if we backed up to the appropriate type of note. */
1096 if (insn != NULL_RTX
1097 && GET_CODE (insn) == NOTE
1098 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)
1099 {
1100 if (delete_final_note)
1101 delete_insn (insn);
1102 return 1;
1103 }
1104
1105 return 0;
1106 }
1107
1108 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1109 jump. Assume that this unconditional jump is to the exit test code. If
1110 the code is sufficiently simple, make a copy of it before INSN,
1111 followed by a jump to the exit of the loop. Then delete the unconditional
1112 jump after INSN.
1113
1114 Return 1 if we made the change, else 0.
1115
1116 This is only safe immediately after a regscan pass because it uses the
1117 values of regno_first_uid and regno_last_uid. */
1118
1119 static int
1120 duplicate_loop_exit_test (loop_start)
1121 rtx loop_start;
1122 {
1123 rtx insn, set, reg, p, link;
1124 rtx copy = 0, first_copy = 0;
1125 int num_insns = 0;
1126 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1127 rtx lastexit;
1128 int max_reg = max_reg_num ();
1129 rtx *reg_map = 0;
1130
1131 /* Scan the exit code. We do not perform this optimization if any insn:
1132
1133 is a CALL_INSN
1134 is a CODE_LABEL
1135 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1136 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1137 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1138 is not valid.
1139
1140 We also do not do this if we find an insn with ASM_OPERANDS. While
1141 this restriction should not be necessary, copying an insn with
1142 ASM_OPERANDS can confuse asm_noperands in some cases.
1143
1144 Also, don't do this if the exit code is more than 20 insns. */
1145
1146 for (insn = exitcode;
1147 insn
1148 && ! (GET_CODE (insn) == NOTE
1149 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1150 insn = NEXT_INSN (insn))
1151 {
1152 switch (GET_CODE (insn))
1153 {
1154 case CODE_LABEL:
1155 case CALL_INSN:
1156 return 0;
1157 case NOTE:
1158 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1159 a jump immediately after the loop start that branches outside
1160 the loop but within an outer loop, near the exit test.
1161 If we copied this exit test and created a phony
1162 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1163 before the exit test look like these could be safely moved
1164 out of the loop even if they actually may be never executed.
1165 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1166
1167 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1168 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1169 return 0;
1170
1171 if (optimize < 2
1172 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1173 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1174 /* If we were to duplicate this code, we would not move
1175 the BLOCK notes, and so debugging the moved code would
1176 be difficult. Thus, we only move the code with -O2 or
1177 higher. */
1178 return 0;
1179
1180 break;
1181 case JUMP_INSN:
1182 case INSN:
1183 /* The code below would grossly mishandle REG_WAS_0 notes,
1184 so get rid of them here. */
1185 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1186 remove_note (insn, p);
1187 if (++num_insns > 20
1188 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1189 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1190 return 0;
1191 break;
1192 default:
1193 break;
1194 }
1195 }
1196
1197 /* Unless INSN is zero, we can do the optimization. */
1198 if (insn == 0)
1199 return 0;
1200
1201 lastexit = insn;
1202
1203 /* See if any insn sets a register only used in the loop exit code and
1204 not a user variable. If so, replace it with a new register. */
1205 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1206 if (GET_CODE (insn) == INSN
1207 && (set = single_set (insn)) != 0
1208 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1209 || (GET_CODE (reg) == SUBREG
1210 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1211 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1212 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1213 {
1214 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1215 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1216 break;
1217
1218 if (p != lastexit)
1219 {
1220 /* We can do the replacement. Allocate reg_map if this is the
1221 first replacement we found. */
1222 if (reg_map == 0)
1223 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1224
1225 REG_LOOP_TEST_P (reg) = 1;
1226
1227 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1228 }
1229 }
1230
1231 /* Now copy each insn. */
1232 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1233 {
1234 switch (GET_CODE (insn))
1235 {
1236 case BARRIER:
1237 copy = emit_barrier_before (loop_start);
1238 break;
1239 case NOTE:
1240 /* Only copy line-number notes. */
1241 if (NOTE_LINE_NUMBER (insn) >= 0)
1242 {
1243 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1244 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1245 }
1246 break;
1247
1248 case INSN:
1249 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1250 if (reg_map)
1251 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1252
1253 mark_jump_label (PATTERN (copy), copy, 0, 0);
1254
1255 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1256 make them. */
1257 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1258 if (REG_NOTE_KIND (link) != REG_LABEL)
1259 {
1260 if (GET_CODE (link) == EXPR_LIST)
1261 REG_NOTES (copy)
1262 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1263 XEXP (link, 0),
1264 REG_NOTES (copy)));
1265 else
1266 REG_NOTES (copy)
1267 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1268 XEXP (link, 0),
1269 REG_NOTES (copy)));
1270 }
1271
1272 if (reg_map && REG_NOTES (copy))
1273 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1274 break;
1275
1276 case JUMP_INSN:
1277 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)), loop_start);
1278 if (reg_map)
1279 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1280 mark_jump_label (PATTERN (copy), copy, 0, 0);
1281 if (REG_NOTES (insn))
1282 {
1283 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1284 if (reg_map)
1285 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1286 }
1287
1288 /* If this is a simple jump, add it to the jump chain. */
1289
1290 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1291 && simplejump_p (copy))
1292 {
1293 jump_chain[INSN_UID (copy)]
1294 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1295 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1296 }
1297 break;
1298
1299 default:
1300 abort ();
1301 }
1302
1303 /* Record the first insn we copied. We need it so that we can
1304 scan the copied insns for new pseudo registers. */
1305 if (! first_copy)
1306 first_copy = copy;
1307 }
1308
1309 /* Now clean up by emitting a jump to the end label and deleting the jump
1310 at the start of the loop. */
1311 if (! copy || GET_CODE (copy) != BARRIER)
1312 {
1313 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1314 loop_start);
1315
1316 /* Record the first insn we copied. We need it so that we can
1317 scan the copied insns for new pseudo registers. This may not
1318 be strictly necessary since we should have copied at least one
1319 insn above. But I am going to be safe. */
1320 if (! first_copy)
1321 first_copy = copy;
1322
1323 mark_jump_label (PATTERN (copy), copy, 0, 0);
1324 if (INSN_UID (copy) < max_jump_chain
1325 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1326 {
1327 jump_chain[INSN_UID (copy)]
1328 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1329 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1330 }
1331 emit_barrier_before (loop_start);
1332 }
1333
1334 /* Now scan from the first insn we copied to the last insn we copied
1335 (copy) for new pseudo registers. Do this after the code to jump to
1336 the end label since that might create a new pseudo too. */
1337 reg_scan_update (first_copy, copy, max_reg);
1338
1339 /* Mark the exit code as the virtual top of the converted loop. */
1340 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1341
1342 delete_insn (next_nonnote_insn (loop_start));
1343
1344 /* Clean up. */
1345 if (reg_map)
1346 free (reg_map);
1347
1348 return 1;
1349 }
1350 \f
1351 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1352 eh-beg, eh-end notes between START and END out before START. Assume that
1353 END is not such a note. START may be such a note. Returns the value
1354 of the new starting insn, which may be different if the original start
1355 was such a note. */
1356
1357 rtx
1358 squeeze_notes (start, end)
1359 rtx start, end;
1360 {
1361 rtx insn;
1362 rtx next;
1363
1364 for (insn = start; insn != end; insn = next)
1365 {
1366 next = NEXT_INSN (insn);
1367 if (GET_CODE (insn) == NOTE
1368 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1369 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1370 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1371 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1372 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1373 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP
1374 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1375 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1376 {
1377 if (insn == start)
1378 start = next;
1379 else
1380 {
1381 rtx prev = PREV_INSN (insn);
1382 PREV_INSN (insn) = PREV_INSN (start);
1383 NEXT_INSN (insn) = start;
1384 NEXT_INSN (PREV_INSN (insn)) = insn;
1385 PREV_INSN (NEXT_INSN (insn)) = insn;
1386 NEXT_INSN (prev) = next;
1387 PREV_INSN (next) = prev;
1388 }
1389 }
1390 }
1391
1392 return start;
1393 }
1394 \f
1395 /* Compare the instructions before insn E1 with those before E2
1396 to find an opportunity for cross jumping.
1397 (This means detecting identical sequences of insns followed by
1398 jumps to the same place, or followed by a label and a jump
1399 to that label, and replacing one with a jump to the other.)
1400
1401 Assume E1 is a jump that jumps to label E2
1402 (that is not always true but it might as well be).
1403 Find the longest possible equivalent sequences
1404 and store the first insns of those sequences into *F1 and *F2.
1405 Store zero there if no equivalent preceding instructions are found.
1406
1407 We give up if we find a label in stream 1.
1408 Actually we could transfer that label into stream 2. */
1409
1410 static void
1411 find_cross_jump (e1, e2, minimum, f1, f2)
1412 rtx e1, e2;
1413 int minimum;
1414 rtx *f1, *f2;
1415 {
1416 register rtx i1 = e1, i2 = e2;
1417 register rtx p1, p2;
1418 int lose = 0;
1419
1420 rtx last1 = 0, last2 = 0;
1421 rtx afterlast1 = 0, afterlast2 = 0;
1422
1423 *f1 = 0;
1424 *f2 = 0;
1425
1426 while (1)
1427 {
1428 i1 = prev_nonnote_insn (i1);
1429
1430 i2 = PREV_INSN (i2);
1431 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1432 i2 = PREV_INSN (i2);
1433
1434 if (i1 == 0)
1435 break;
1436
1437 /* Don't allow the range of insns preceding E1 or E2
1438 to include the other (E2 or E1). */
1439 if (i2 == e1 || i1 == e2)
1440 break;
1441
1442 /* If we will get to this code by jumping, those jumps will be
1443 tensioned to go directly to the new label (before I2),
1444 so this cross-jumping won't cost extra. So reduce the minimum. */
1445 if (GET_CODE (i1) == CODE_LABEL)
1446 {
1447 --minimum;
1448 break;
1449 }
1450
1451 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1452 break;
1453
1454 /* Avoid moving insns across EH regions if either of the insns
1455 can throw. */
1456 if (flag_exceptions
1457 && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
1458 && !in_same_eh_region (i1, i2))
1459 break;
1460
1461 p1 = PATTERN (i1);
1462 p2 = PATTERN (i2);
1463
1464 /* If this is a CALL_INSN, compare register usage information.
1465 If we don't check this on stack register machines, the two
1466 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1467 numbers of stack registers in the same basic block.
1468 If we don't check this on machines with delay slots, a delay slot may
1469 be filled that clobbers a parameter expected by the subroutine.
1470
1471 ??? We take the simple route for now and assume that if they're
1472 equal, they were constructed identically. */
1473
1474 if (GET_CODE (i1) == CALL_INSN
1475 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1476 CALL_INSN_FUNCTION_USAGE (i2)))
1477 lose = 1;
1478
1479 #ifdef STACK_REGS
1480 /* If cross_jump_death_matters is not 0, the insn's mode
1481 indicates whether or not the insn contains any stack-like
1482 regs. */
1483
1484 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1485 {
1486 /* If register stack conversion has already been done, then
1487 death notes must also be compared before it is certain that
1488 the two instruction streams match. */
1489
1490 rtx note;
1491 HARD_REG_SET i1_regset, i2_regset;
1492
1493 CLEAR_HARD_REG_SET (i1_regset);
1494 CLEAR_HARD_REG_SET (i2_regset);
1495
1496 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1497 if (REG_NOTE_KIND (note) == REG_DEAD
1498 && STACK_REG_P (XEXP (note, 0)))
1499 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1500
1501 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1502 if (REG_NOTE_KIND (note) == REG_DEAD
1503 && STACK_REG_P (XEXP (note, 0)))
1504 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1505
1506 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1507
1508 lose = 1;
1509
1510 done:
1511 ;
1512 }
1513 #endif
1514
1515 /* Don't allow old-style asm or volatile extended asms to be accepted
1516 for cross jumping purposes. It is conceptually correct to allow
1517 them, since cross-jumping preserves the dynamic instruction order
1518 even though it is changing the static instruction order. However,
1519 if an asm is being used to emit an assembler pseudo-op, such as
1520 the MIPS `.set reorder' pseudo-op, then the static instruction order
1521 matters and it must be preserved. */
1522 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1523 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1524 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1525 lose = 1;
1526
1527 if (lose || GET_CODE (p1) != GET_CODE (p2)
1528 || ! rtx_renumbered_equal_p (p1, p2))
1529 {
1530 /* The following code helps take care of G++ cleanups. */
1531 rtx equiv1;
1532 rtx equiv2;
1533
1534 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1535 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1536 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1537 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1538 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1539 /* If the equivalences are not to a constant, they may
1540 reference pseudos that no longer exist, so we can't
1541 use them. */
1542 && CONSTANT_P (XEXP (equiv1, 0))
1543 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1544 {
1545 rtx s1 = single_set (i1);
1546 rtx s2 = single_set (i2);
1547 if (s1 != 0 && s2 != 0
1548 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1549 {
1550 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1551 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1552 if (! rtx_renumbered_equal_p (p1, p2))
1553 cancel_changes (0);
1554 else if (apply_change_group ())
1555 goto win;
1556 }
1557 }
1558
1559 /* Insns fail to match; cross jumping is limited to the following
1560 insns. */
1561
1562 #ifdef HAVE_cc0
1563 /* Don't allow the insn after a compare to be shared by
1564 cross-jumping unless the compare is also shared.
1565 Here, if either of these non-matching insns is a compare,
1566 exclude the following insn from possible cross-jumping. */
1567 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1568 last1 = afterlast1, last2 = afterlast2, ++minimum;
1569 #endif
1570
1571 /* If cross-jumping here will feed a jump-around-jump
1572 optimization, this jump won't cost extra, so reduce
1573 the minimum. */
1574 if (GET_CODE (i1) == JUMP_INSN
1575 && JUMP_LABEL (i1)
1576 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1577 --minimum;
1578 break;
1579 }
1580
1581 win:
1582 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1583 {
1584 /* Ok, this insn is potentially includable in a cross-jump here. */
1585 afterlast1 = last1, afterlast2 = last2;
1586 last1 = i1, last2 = i2, --minimum;
1587 }
1588 }
1589
1590 if (minimum <= 0 && last1 != 0 && last1 != e1)
1591 *f1 = last1, *f2 = last2;
1592 }
1593
1594 static void
1595 do_cross_jump (insn, newjpos, newlpos)
1596 rtx insn, newjpos, newlpos;
1597 {
1598 /* Find an existing label at this point
1599 or make a new one if there is none. */
1600 register rtx label = get_label_before (newlpos);
1601
1602 /* Make the same jump insn jump to the new point. */
1603 if (GET_CODE (PATTERN (insn)) == RETURN)
1604 {
1605 /* Remove from jump chain of returns. */
1606 delete_from_jump_chain (insn);
1607 /* Change the insn. */
1608 PATTERN (insn) = gen_jump (label);
1609 INSN_CODE (insn) = -1;
1610 JUMP_LABEL (insn) = label;
1611 LABEL_NUSES (label)++;
1612 /* Add to new the jump chain. */
1613 if (INSN_UID (label) < max_jump_chain
1614 && INSN_UID (insn) < max_jump_chain)
1615 {
1616 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1617 jump_chain[INSN_UID (label)] = insn;
1618 }
1619 }
1620 else
1621 redirect_jump (insn, label);
1622
1623 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1624 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1625 the NEWJPOS stream. */
1626
1627 while (newjpos != insn)
1628 {
1629 rtx lnote;
1630
1631 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1632 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1633 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1634 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1635 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1636 remove_note (newlpos, lnote);
1637
1638 delete_insn (newjpos);
1639 newjpos = next_real_insn (newjpos);
1640 newlpos = next_real_insn (newlpos);
1641 }
1642 }
1643 \f
1644 /* Return the label before INSN, or put a new label there. */
1645
1646 rtx
1647 get_label_before (insn)
1648 rtx insn;
1649 {
1650 rtx label;
1651
1652 /* Find an existing label at this point
1653 or make a new one if there is none. */
1654 label = prev_nonnote_insn (insn);
1655
1656 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1657 {
1658 rtx prev = PREV_INSN (insn);
1659
1660 label = gen_label_rtx ();
1661 emit_label_after (label, prev);
1662 LABEL_NUSES (label) = 0;
1663 }
1664 return label;
1665 }
1666
1667 /* Return the label after INSN, or put a new label there. */
1668
1669 rtx
1670 get_label_after (insn)
1671 rtx insn;
1672 {
1673 rtx label;
1674
1675 /* Find an existing label at this point
1676 or make a new one if there is none. */
1677 label = next_nonnote_insn (insn);
1678
1679 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1680 {
1681 label = gen_label_rtx ();
1682 emit_label_after (label, insn);
1683 LABEL_NUSES (label) = 0;
1684 }
1685 return label;
1686 }
1687 \f
1688 /* Return 1 if INSN is a jump that jumps to right after TARGET
1689 only on the condition that TARGET itself would drop through.
1690 Assumes that TARGET is a conditional jump. */
1691
1692 static int
1693 jump_back_p (insn, target)
1694 rtx insn, target;
1695 {
1696 rtx cinsn, ctarget;
1697 enum rtx_code codei, codet;
1698
1699 if (simplejump_p (insn) || ! condjump_p (insn)
1700 || simplejump_p (target)
1701 || target != prev_real_insn (JUMP_LABEL (insn)))
1702 return 0;
1703
1704 cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
1705 ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
1706
1707 codei = GET_CODE (cinsn);
1708 codet = GET_CODE (ctarget);
1709
1710 if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
1711 {
1712 if (! can_reverse_comparison_p (cinsn, insn))
1713 return 0;
1714 codei = reverse_condition (codei);
1715 }
1716
1717 if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
1718 {
1719 if (! can_reverse_comparison_p (ctarget, target))
1720 return 0;
1721 codet = reverse_condition (codet);
1722 }
1723
1724 return (codei == codet
1725 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1726 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1727 }
1728 \f
1729 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
1730 return non-zero if it is safe to reverse this comparison. It is if our
1731 floating-point is not IEEE, if this is an NE or EQ comparison, or if
1732 this is known to be an integer comparison. */
1733
1734 int
1735 can_reverse_comparison_p (comparison, insn)
1736 rtx comparison;
1737 rtx insn;
1738 {
1739 rtx arg0;
1740
1741 /* If this is not actually a comparison, we can't reverse it. */
1742 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1743 return 0;
1744
1745 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1746 /* If this is an NE comparison, it is safe to reverse it to an EQ
1747 comparison and vice versa, even for floating point. If no operands
1748 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
1749 always false and NE is always true, so the reversal is also valid. */
1750 || flag_fast_math
1751 || GET_CODE (comparison) == NE
1752 || GET_CODE (comparison) == EQ)
1753 return 1;
1754
1755 arg0 = XEXP (comparison, 0);
1756
1757 /* Make sure ARG0 is one of the actual objects being compared. If we
1758 can't do this, we can't be sure the comparison can be reversed.
1759
1760 Handle cc0 and a MODE_CC register. */
1761 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
1762 #ifdef HAVE_cc0
1763 || arg0 == cc0_rtx
1764 #endif
1765 )
1766 {
1767 rtx prev = prev_nonnote_insn (insn);
1768 rtx set;
1769
1770 /* First see if the condition code mode alone if enough to say we can
1771 reverse the condition. If not, then search backwards for a set of
1772 ARG0. We do not need to check for an insn clobbering it since valid
1773 code will contain set a set with no intervening clobber. But
1774 stop when we reach a label. */
1775 #ifdef REVERSIBLE_CC_MODE
1776 if (GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC
1777 && REVERSIBLE_CC_MODE (GET_MODE (arg0)))
1778 return 1;
1779 #endif
1780
1781 for (prev = prev_nonnote_insn (insn);
1782 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1783 prev = prev_nonnote_insn (prev))
1784 if ((set = single_set (prev)) != 0
1785 && rtx_equal_p (SET_DEST (set), arg0))
1786 {
1787 arg0 = SET_SRC (set);
1788
1789 if (GET_CODE (arg0) == COMPARE)
1790 arg0 = XEXP (arg0, 0);
1791 break;
1792 }
1793 }
1794
1795 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
1796 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
1797 return (GET_CODE (arg0) == CONST_INT
1798 || (GET_MODE (arg0) != VOIDmode
1799 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
1800 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
1801 }
1802
1803 /* Given an rtx-code for a comparison, return the code for the negated
1804 comparison. If no such code exists, return UNKNOWN.
1805
1806 WATCH OUT! reverse_condition is not safe to use on a jump that might
1807 be acting on the results of an IEEE floating point comparison, because
1808 of the special treatment of non-signaling nans in comparisons.
1809 Use can_reverse_comparison_p to be sure. */
1810
1811 enum rtx_code
1812 reverse_condition (code)
1813 enum rtx_code code;
1814 {
1815 switch (code)
1816 {
1817 case EQ:
1818 return NE;
1819 case NE:
1820 return EQ;
1821 case GT:
1822 return LE;
1823 case GE:
1824 return LT;
1825 case LT:
1826 return GE;
1827 case LE:
1828 return GT;
1829 case GTU:
1830 return LEU;
1831 case GEU:
1832 return LTU;
1833 case LTU:
1834 return GEU;
1835 case LEU:
1836 return GTU;
1837 case UNORDERED:
1838 return ORDERED;
1839 case ORDERED:
1840 return UNORDERED;
1841
1842 case UNLT:
1843 case UNLE:
1844 case UNGT:
1845 case UNGE:
1846 case UNEQ:
1847 case LTGT:
1848 return UNKNOWN;
1849
1850 default:
1851 abort ();
1852 }
1853 }
1854
1855 /* Similar, but we're allowed to generate unordered comparisons, which
1856 makes it safe for IEEE floating-point. Of course, we have to recognize
1857 that the target will support them too... */
1858
1859 enum rtx_code
1860 reverse_condition_maybe_unordered (code)
1861 enum rtx_code code;
1862 {
1863 /* Non-IEEE formats don't have unordered conditions. */
1864 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1865 return reverse_condition (code);
1866
1867 switch (code)
1868 {
1869 case EQ:
1870 return NE;
1871 case NE:
1872 return EQ;
1873 case GT:
1874 return UNLE;
1875 case GE:
1876 return UNLT;
1877 case LT:
1878 return UNGE;
1879 case LE:
1880 return UNGT;
1881 case LTGT:
1882 return UNEQ;
1883 case GTU:
1884 return LEU;
1885 case GEU:
1886 return LTU;
1887 case LTU:
1888 return GEU;
1889 case LEU:
1890 return GTU;
1891 case UNORDERED:
1892 return ORDERED;
1893 case ORDERED:
1894 return UNORDERED;
1895 case UNLT:
1896 return GE;
1897 case UNLE:
1898 return GT;
1899 case UNGT:
1900 return LE;
1901 case UNGE:
1902 return LT;
1903 case UNEQ:
1904 return LTGT;
1905
1906 default:
1907 abort ();
1908 }
1909 }
1910
1911 /* Similar, but return the code when two operands of a comparison are swapped.
1912 This IS safe for IEEE floating-point. */
1913
1914 enum rtx_code
1915 swap_condition (code)
1916 enum rtx_code code;
1917 {
1918 switch (code)
1919 {
1920 case EQ:
1921 case NE:
1922 case UNORDERED:
1923 case ORDERED:
1924 case UNEQ:
1925 case LTGT:
1926 return code;
1927
1928 case GT:
1929 return LT;
1930 case GE:
1931 return LE;
1932 case LT:
1933 return GT;
1934 case LE:
1935 return GE;
1936 case GTU:
1937 return LTU;
1938 case GEU:
1939 return LEU;
1940 case LTU:
1941 return GTU;
1942 case LEU:
1943 return GEU;
1944 case UNLT:
1945 return UNGT;
1946 case UNLE:
1947 return UNGE;
1948 case UNGT:
1949 return UNLT;
1950 case UNGE:
1951 return UNLE;
1952
1953 default:
1954 abort ();
1955 }
1956 }
1957
1958 /* Given a comparison CODE, return the corresponding unsigned comparison.
1959 If CODE is an equality comparison or already an unsigned comparison,
1960 CODE is returned. */
1961
1962 enum rtx_code
1963 unsigned_condition (code)
1964 enum rtx_code code;
1965 {
1966 switch (code)
1967 {
1968 case EQ:
1969 case NE:
1970 case GTU:
1971 case GEU:
1972 case LTU:
1973 case LEU:
1974 return code;
1975
1976 case GT:
1977 return GTU;
1978 case GE:
1979 return GEU;
1980 case LT:
1981 return LTU;
1982 case LE:
1983 return LEU;
1984
1985 default:
1986 abort ();
1987 }
1988 }
1989
1990 /* Similarly, return the signed version of a comparison. */
1991
1992 enum rtx_code
1993 signed_condition (code)
1994 enum rtx_code code;
1995 {
1996 switch (code)
1997 {
1998 case EQ:
1999 case NE:
2000 case GT:
2001 case GE:
2002 case LT:
2003 case LE:
2004 return code;
2005
2006 case GTU:
2007 return GT;
2008 case GEU:
2009 return GE;
2010 case LTU:
2011 return LT;
2012 case LEU:
2013 return LE;
2014
2015 default:
2016 abort ();
2017 }
2018 }
2019 \f
2020 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2021 truth of CODE1 implies the truth of CODE2. */
2022
2023 int
2024 comparison_dominates_p (code1, code2)
2025 enum rtx_code code1, code2;
2026 {
2027 if (code1 == code2)
2028 return 1;
2029
2030 switch (code1)
2031 {
2032 case EQ:
2033 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2034 || code2 == ORDERED)
2035 return 1;
2036 break;
2037
2038 case LT:
2039 if (code2 == LE || code2 == NE || code2 == ORDERED)
2040 return 1;
2041 break;
2042
2043 case GT:
2044 if (code2 == GE || code2 == NE || code2 == ORDERED)
2045 return 1;
2046 break;
2047
2048 case GE:
2049 case LE:
2050 if (code2 == ORDERED)
2051 return 1;
2052 break;
2053
2054 case LTGT:
2055 if (code2 == NE || code2 == ORDERED)
2056 return 1;
2057 break;
2058
2059 case LTU:
2060 if (code2 == LEU || code2 == NE)
2061 return 1;
2062 break;
2063
2064 case GTU:
2065 if (code2 == GEU || code2 == NE)
2066 return 1;
2067 break;
2068
2069 case UNORDERED:
2070 if (code2 == NE)
2071 return 1;
2072 break;
2073
2074 default:
2075 break;
2076 }
2077
2078 return 0;
2079 }
2080 \f
2081 /* Return 1 if INSN is an unconditional jump and nothing else. */
2082
2083 int
2084 simplejump_p (insn)
2085 rtx insn;
2086 {
2087 return (GET_CODE (insn) == JUMP_INSN
2088 && GET_CODE (PATTERN (insn)) == SET
2089 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2090 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2091 }
2092
2093 /* Return nonzero if INSN is a (possibly) conditional jump
2094 and nothing more.
2095
2096 Use this function is deprecated, since we need to support combined
2097 branch and compare insns. Use any_condjump_p instead whenever possible. */
2098
2099 int
2100 condjump_p (insn)
2101 rtx insn;
2102 {
2103 register rtx x = PATTERN (insn);
2104
2105 if (GET_CODE (x) != SET
2106 || GET_CODE (SET_DEST (x)) != PC)
2107 return 0;
2108
2109 x = SET_SRC (x);
2110 if (GET_CODE (x) == LABEL_REF)
2111 return 1;
2112 else return (GET_CODE (x) == IF_THEN_ELSE
2113 && ((GET_CODE (XEXP (x, 2)) == PC
2114 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2115 || GET_CODE (XEXP (x, 1)) == RETURN))
2116 || (GET_CODE (XEXP (x, 1)) == PC
2117 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2118 || GET_CODE (XEXP (x, 2)) == RETURN))));
2119
2120 return 0;
2121 }
2122
2123 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2124 PARALLEL.
2125
2126 Use this function is deprecated, since we need to support combined
2127 branch and compare insns. Use any_condjump_p instead whenever possible. */
2128
2129 int
2130 condjump_in_parallel_p (insn)
2131 rtx insn;
2132 {
2133 register rtx x = PATTERN (insn);
2134
2135 if (GET_CODE (x) != PARALLEL)
2136 return 0;
2137 else
2138 x = XVECEXP (x, 0, 0);
2139
2140 if (GET_CODE (x) != SET)
2141 return 0;
2142 if (GET_CODE (SET_DEST (x)) != PC)
2143 return 0;
2144 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2145 return 1;
2146 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2147 return 0;
2148 if (XEXP (SET_SRC (x), 2) == pc_rtx
2149 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2150 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2151 return 1;
2152 if (XEXP (SET_SRC (x), 1) == pc_rtx
2153 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2154 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2155 return 1;
2156 return 0;
2157 }
2158
2159 /* Return set of PC, otherwise NULL. */
2160
2161 rtx
2162 pc_set (insn)
2163 rtx insn;
2164 {
2165 rtx pat;
2166 if (GET_CODE (insn) != JUMP_INSN)
2167 return NULL_RTX;
2168 pat = PATTERN (insn);
2169
2170 /* The set is allowed to appear either as the insn pattern or
2171 the first set in a PARALLEL. */
2172 if (GET_CODE (pat) == PARALLEL)
2173 pat = XVECEXP (pat, 0, 0);
2174 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2175 return pat;
2176
2177 return NULL_RTX;
2178 }
2179
2180 /* Return true when insn is an unconditional direct jump,
2181 possibly bundled inside a PARALLEL. */
2182
2183 int
2184 any_uncondjump_p (insn)
2185 rtx insn;
2186 {
2187 rtx x = pc_set (insn);
2188 if (!x)
2189 return 0;
2190 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2191 return 0;
2192 return 1;
2193 }
2194
2195 /* Return true when insn is a conditional jump. This function works for
2196 instructions containing PC sets in PARALLELs. The instruction may have
2197 various other effects so before removing the jump you must verify
2198 safe_to_remove_jump_p.
2199
2200 Note that unlike condjump_p it returns false for unconditional jumps. */
2201
2202 int
2203 any_condjump_p (insn)
2204 rtx insn;
2205 {
2206 rtx x = pc_set (insn);
2207 enum rtx_code a, b;
2208
2209 if (!x)
2210 return 0;
2211 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2212 return 0;
2213
2214 a = GET_CODE (XEXP (SET_SRC (x), 1));
2215 b = GET_CODE (XEXP (SET_SRC (x), 2));
2216
2217 return ((b == PC && (a == LABEL_REF || a == RETURN))
2218 || (a == PC && (b == LABEL_REF || b == RETURN)));
2219 }
2220
2221 /* Return the label of a conditional jump. */
2222
2223 rtx
2224 condjump_label (insn)
2225 rtx insn;
2226 {
2227 rtx x = pc_set (insn);
2228
2229 if (!x)
2230 return NULL_RTX;
2231 x = SET_SRC (x);
2232 if (GET_CODE (x) == LABEL_REF)
2233 return x;
2234 if (GET_CODE (x) != IF_THEN_ELSE)
2235 return NULL_RTX;
2236 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2237 return XEXP (x, 1);
2238 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2239 return XEXP (x, 2);
2240 return NULL_RTX;
2241 }
2242
2243 /* Return true if INSN is a (possibly conditional) return insn. */
2244
2245 static int
2246 returnjump_p_1 (loc, data)
2247 rtx *loc;
2248 void *data ATTRIBUTE_UNUSED;
2249 {
2250 rtx x = *loc;
2251 return x && GET_CODE (x) == RETURN;
2252 }
2253
2254 int
2255 returnjump_p (insn)
2256 rtx insn;
2257 {
2258 if (GET_CODE (insn) != JUMP_INSN)
2259 return 0;
2260 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2261 }
2262
2263 /* Return true if INSN is a jump that only transfers control and
2264 nothing more. */
2265
2266 int
2267 onlyjump_p (insn)
2268 rtx insn;
2269 {
2270 rtx set;
2271
2272 if (GET_CODE (insn) != JUMP_INSN)
2273 return 0;
2274
2275 set = single_set (insn);
2276 if (set == NULL)
2277 return 0;
2278 if (GET_CODE (SET_DEST (set)) != PC)
2279 return 0;
2280 if (side_effects_p (SET_SRC (set)))
2281 return 0;
2282
2283 return 1;
2284 }
2285
2286 #ifdef HAVE_cc0
2287
2288 /* Return 1 if X is an RTX that does nothing but set the condition codes
2289 and CLOBBER or USE registers.
2290 Return -1 if X does explicitly set the condition codes,
2291 but also does other things. */
2292
2293 int
2294 sets_cc0_p (x)
2295 rtx x ATTRIBUTE_UNUSED;
2296 {
2297 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2298 return 1;
2299 if (GET_CODE (x) == PARALLEL)
2300 {
2301 int i;
2302 int sets_cc0 = 0;
2303 int other_things = 0;
2304 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2305 {
2306 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2307 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2308 sets_cc0 = 1;
2309 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2310 other_things = 1;
2311 }
2312 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2313 }
2314 return 0;
2315 }
2316 #endif
2317 \f
2318 /* Follow any unconditional jump at LABEL;
2319 return the ultimate label reached by any such chain of jumps.
2320 If LABEL is not followed by a jump, return LABEL.
2321 If the chain loops or we can't find end, return LABEL,
2322 since that tells caller to avoid changing the insn.
2323
2324 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2325 a USE or CLOBBER. */
2326
2327 rtx
2328 follow_jumps (label)
2329 rtx label;
2330 {
2331 register rtx insn;
2332 register rtx next;
2333 register rtx value = label;
2334 register int depth;
2335
2336 for (depth = 0;
2337 (depth < 10
2338 && (insn = next_active_insn (value)) != 0
2339 && GET_CODE (insn) == JUMP_INSN
2340 && ((JUMP_LABEL (insn) != 0 && simplejump_p (insn))
2341 || GET_CODE (PATTERN (insn)) == RETURN)
2342 && (next = NEXT_INSN (insn))
2343 && GET_CODE (next) == BARRIER);
2344 depth++)
2345 {
2346 /* Don't chain through the insn that jumps into a loop
2347 from outside the loop,
2348 since that would create multiple loop entry jumps
2349 and prevent loop optimization. */
2350 rtx tem;
2351 if (!reload_completed)
2352 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2353 if (GET_CODE (tem) == NOTE
2354 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2355 /* ??? Optional. Disables some optimizations, but makes
2356 gcov output more accurate with -O. */
2357 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2358 return value;
2359
2360 /* If we have found a cycle, make the insn jump to itself. */
2361 if (JUMP_LABEL (insn) == label)
2362 return label;
2363
2364 tem = next_active_insn (JUMP_LABEL (insn));
2365 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2366 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2367 break;
2368
2369 value = JUMP_LABEL (insn);
2370 }
2371 if (depth == 10)
2372 return label;
2373 return value;
2374 }
2375
2376 /* Assuming that field IDX of X is a vector of label_refs,
2377 replace each of them by the ultimate label reached by it.
2378 Return nonzero if a change is made.
2379 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2380
2381 static int
2382 tension_vector_labels (x, idx)
2383 register rtx x;
2384 register int idx;
2385 {
2386 int changed = 0;
2387 register int i;
2388 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2389 {
2390 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2391 register rtx nlabel = follow_jumps (olabel);
2392 if (nlabel && nlabel != olabel)
2393 {
2394 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2395 ++LABEL_NUSES (nlabel);
2396 if (--LABEL_NUSES (olabel) == 0)
2397 delete_insn (olabel);
2398 changed = 1;
2399 }
2400 }
2401 return changed;
2402 }
2403 \f
2404 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2405 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2406 in INSN, then store one of them in JUMP_LABEL (INSN).
2407 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2408 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2409 Also, when there are consecutive labels, canonicalize on the last of them.
2410
2411 Note that two labels separated by a loop-beginning note
2412 must be kept distinct if we have not yet done loop-optimization,
2413 because the gap between them is where loop-optimize
2414 will want to move invariant code to. CROSS_JUMP tells us
2415 that loop-optimization is done with.
2416
2417 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2418 two labels distinct if they are separated by only USE or CLOBBER insns. */
2419
2420 static void
2421 mark_jump_label (x, insn, cross_jump, in_mem)
2422 register rtx x;
2423 rtx insn;
2424 int cross_jump;
2425 int in_mem;
2426 {
2427 register RTX_CODE code = GET_CODE (x);
2428 register int i;
2429 register const char *fmt;
2430
2431 switch (code)
2432 {
2433 case PC:
2434 case CC0:
2435 case REG:
2436 case SUBREG:
2437 case CONST_INT:
2438 case CONST_DOUBLE:
2439 case CLOBBER:
2440 case CALL:
2441 return;
2442
2443 case MEM:
2444 in_mem = 1;
2445 break;
2446
2447 case SYMBOL_REF:
2448 if (!in_mem)
2449 return;
2450
2451 /* If this is a constant-pool reference, see if it is a label. */
2452 if (CONSTANT_POOL_ADDRESS_P (x))
2453 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2454 break;
2455
2456 case LABEL_REF:
2457 {
2458 rtx label = XEXP (x, 0);
2459 rtx olabel = label;
2460 rtx note;
2461 rtx next;
2462
2463 /* Ignore remaining references to unreachable labels that
2464 have been deleted. */
2465 if (GET_CODE (label) == NOTE
2466 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2467 break;
2468
2469 if (GET_CODE (label) != CODE_LABEL)
2470 abort ();
2471
2472 /* Ignore references to labels of containing functions. */
2473 if (LABEL_REF_NONLOCAL_P (x))
2474 break;
2475
2476 /* If there are other labels following this one,
2477 replace it with the last of the consecutive labels. */
2478 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2479 {
2480 if (GET_CODE (next) == CODE_LABEL)
2481 label = next;
2482 else if (cross_jump && GET_CODE (next) == INSN
2483 && (GET_CODE (PATTERN (next)) == USE
2484 || GET_CODE (PATTERN (next)) == CLOBBER))
2485 continue;
2486 else if (GET_CODE (next) != NOTE)
2487 break;
2488 else if (! cross_jump
2489 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2490 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2491 /* ??? Optional. Disables some optimizations, but
2492 makes gcov output more accurate with -O. */
2493 || (flag_test_coverage && NOTE_LINE_NUMBER (next) > 0)))
2494 break;
2495 }
2496
2497 XEXP (x, 0) = label;
2498 if (! insn || ! INSN_DELETED_P (insn))
2499 ++LABEL_NUSES (label);
2500
2501 if (insn)
2502 {
2503 if (GET_CODE (insn) == JUMP_INSN)
2504 JUMP_LABEL (insn) = label;
2505
2506 /* If we've changed OLABEL and we had a REG_LABEL note
2507 for it, update it as well. */
2508 else if (label != olabel
2509 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2510 XEXP (note, 0) = label;
2511
2512 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2513 is one. */
2514 else if (! find_reg_note (insn, REG_LABEL, label))
2515 {
2516 /* This code used to ignore labels which refered to dispatch
2517 tables to avoid flow.c generating worse code.
2518
2519 However, in the presense of global optimizations like
2520 gcse which call find_basic_blocks without calling
2521 life_analysis, not recording such labels will lead
2522 to compiler aborts because of inconsistencies in the
2523 flow graph. So we go ahead and record the label.
2524
2525 It may also be the case that the optimization argument
2526 is no longer valid because of the more accurate cfg
2527 we build in find_basic_blocks -- it no longer pessimizes
2528 code when it finds a REG_LABEL note. */
2529 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2530 REG_NOTES (insn));
2531 }
2532 }
2533 return;
2534 }
2535
2536 /* Do walk the labels in a vector, but not the first operand of an
2537 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2538 case ADDR_VEC:
2539 case ADDR_DIFF_VEC:
2540 if (! INSN_DELETED_P (insn))
2541 {
2542 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2543
2544 for (i = 0; i < XVECLEN (x, eltnum); i++)
2545 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2546 cross_jump, in_mem);
2547 }
2548 return;
2549
2550 default:
2551 break;
2552 }
2553
2554 fmt = GET_RTX_FORMAT (code);
2555 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2556 {
2557 if (fmt[i] == 'e')
2558 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2559 else if (fmt[i] == 'E')
2560 {
2561 register int j;
2562 for (j = 0; j < XVECLEN (x, i); j++)
2563 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2564 }
2565 }
2566 }
2567
2568 /* If all INSN does is set the pc, delete it,
2569 and delete the insn that set the condition codes for it
2570 if that's what the previous thing was. */
2571
2572 void
2573 delete_jump (insn)
2574 rtx insn;
2575 {
2576 register rtx set = single_set (insn);
2577
2578 if (set && GET_CODE (SET_DEST (set)) == PC)
2579 delete_computation (insn);
2580 }
2581
2582 /* Verify INSN is a BARRIER and delete it. */
2583
2584 void
2585 delete_barrier (insn)
2586 rtx insn;
2587 {
2588 if (GET_CODE (insn) != BARRIER)
2589 abort ();
2590
2591 delete_insn (insn);
2592 }
2593
2594 /* Recursively delete prior insns that compute the value (used only by INSN
2595 which the caller is deleting) stored in the register mentioned by NOTE
2596 which is a REG_DEAD note associated with INSN. */
2597
2598 static void
2599 delete_prior_computation (note, insn)
2600 rtx note;
2601 rtx insn;
2602 {
2603 rtx our_prev;
2604 rtx reg = XEXP (note, 0);
2605
2606 for (our_prev = prev_nonnote_insn (insn);
2607 our_prev && (GET_CODE (our_prev) == INSN
2608 || GET_CODE (our_prev) == CALL_INSN);
2609 our_prev = prev_nonnote_insn (our_prev))
2610 {
2611 rtx pat = PATTERN (our_prev);
2612
2613 /* If we reach a CALL which is not calling a const function
2614 or the callee pops the arguments, then give up. */
2615 if (GET_CODE (our_prev) == CALL_INSN
2616 && (! CONST_CALL_P (our_prev)
2617 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2618 break;
2619
2620 /* If we reach a SEQUENCE, it is too complex to try to
2621 do anything with it, so give up. */
2622 if (GET_CODE (pat) == SEQUENCE)
2623 break;
2624
2625 if (GET_CODE (pat) == USE
2626 && GET_CODE (XEXP (pat, 0)) == INSN)
2627 /* reorg creates USEs that look like this. We leave them
2628 alone because reorg needs them for its own purposes. */
2629 break;
2630
2631 if (reg_set_p (reg, pat))
2632 {
2633 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2634 break;
2635
2636 if (GET_CODE (pat) == PARALLEL)
2637 {
2638 /* If we find a SET of something else, we can't
2639 delete the insn. */
2640
2641 int i;
2642
2643 for (i = 0; i < XVECLEN (pat, 0); i++)
2644 {
2645 rtx part = XVECEXP (pat, 0, i);
2646
2647 if (GET_CODE (part) == SET
2648 && SET_DEST (part) != reg)
2649 break;
2650 }
2651
2652 if (i == XVECLEN (pat, 0))
2653 delete_computation (our_prev);
2654 }
2655 else if (GET_CODE (pat) == SET
2656 && GET_CODE (SET_DEST (pat)) == REG)
2657 {
2658 int dest_regno = REGNO (SET_DEST (pat));
2659 int dest_endregno
2660 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
2661 ? HARD_REGNO_NREGS (dest_regno,
2662 GET_MODE (SET_DEST (pat))) : 1);
2663 int regno = REGNO (reg);
2664 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
2665 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
2666
2667 if (dest_regno >= regno
2668 && dest_endregno <= endregno)
2669 delete_computation (our_prev);
2670
2671 /* We may have a multi-word hard register and some, but not
2672 all, of the words of the register are needed in subsequent
2673 insns. Write REG_UNUSED notes for those parts that were not
2674 needed. */
2675 else if (dest_regno <= regno
2676 && dest_endregno >= endregno)
2677 {
2678 int i;
2679
2680 REG_NOTES (our_prev)
2681 = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (our_prev));
2682
2683 for (i = dest_regno; i < dest_endregno; i++)
2684 if (! find_regno_note (our_prev, REG_UNUSED, i))
2685 break;
2686
2687 if (i == dest_endregno)
2688 delete_computation (our_prev);
2689 }
2690 }
2691
2692 break;
2693 }
2694
2695 /* If PAT references the register that dies here, it is an
2696 additional use. Hence any prior SET isn't dead. However, this
2697 insn becomes the new place for the REG_DEAD note. */
2698 if (reg_overlap_mentioned_p (reg, pat))
2699 {
2700 XEXP (note, 1) = REG_NOTES (our_prev);
2701 REG_NOTES (our_prev) = note;
2702 break;
2703 }
2704 }
2705 }
2706
2707 /* Delete INSN and recursively delete insns that compute values used only
2708 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2709 If we are running before flow.c, we need do nothing since flow.c will
2710 delete dead code. We also can't know if the registers being used are
2711 dead or not at this point.
2712
2713 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2714 nothing other than set a register that dies in this insn, we can delete
2715 that insn as well.
2716
2717 On machines with CC0, if CC0 is used in this insn, we may be able to
2718 delete the insn that set it. */
2719
2720 static void
2721 delete_computation (insn)
2722 rtx insn;
2723 {
2724 rtx note, next;
2725 rtx set;
2726
2727 #ifdef HAVE_cc0
2728 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2729 {
2730 rtx prev = prev_nonnote_insn (insn);
2731 /* We assume that at this stage
2732 CC's are always set explicitly
2733 and always immediately before the jump that
2734 will use them. So if the previous insn
2735 exists to set the CC's, delete it
2736 (unless it performs auto-increments, etc.). */
2737 if (prev && GET_CODE (prev) == INSN
2738 && sets_cc0_p (PATTERN (prev)))
2739 {
2740 if (sets_cc0_p (PATTERN (prev)) > 0
2741 && ! side_effects_p (PATTERN (prev)))
2742 delete_computation (prev);
2743 else
2744 /* Otherwise, show that cc0 won't be used. */
2745 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2746 cc0_rtx, REG_NOTES (prev));
2747 }
2748 }
2749 #endif
2750
2751 #ifdef INSN_SCHEDULING
2752 /* ?!? The schedulers do not keep REG_DEAD notes accurate after
2753 reload has completed. The schedulers need to be fixed. Until
2754 they are, we must not rely on the death notes here. */
2755 if (reload_completed && flag_schedule_insns_after_reload)
2756 {
2757 delete_insn (insn);
2758 return;
2759 }
2760 #endif
2761
2762 /* The REG_DEAD note may have been omitted for a register
2763 which is both set and used by the insn. */
2764 set = single_set (insn);
2765 if (set && GET_CODE (SET_DEST (set)) == REG)
2766 {
2767 int dest_regno = REGNO (SET_DEST (set));
2768 int dest_endregno
2769 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
2770 ? HARD_REGNO_NREGS (dest_regno,
2771 GET_MODE (SET_DEST (set))) : 1);
2772 int i;
2773
2774 for (i = dest_regno; i < dest_endregno; i++)
2775 {
2776 if (! refers_to_regno_p (i, i + 1, SET_SRC (set), NULL_PTR)
2777 || find_regno_note (insn, REG_DEAD, i))
2778 continue;
2779
2780 note = gen_rtx_EXPR_LIST (REG_DEAD, (i < FIRST_PSEUDO_REGISTER
2781 ? gen_rtx_REG (reg_raw_mode[i], i)
2782 : SET_DEST (set)), NULL_RTX);
2783 delete_prior_computation (note, insn);
2784 }
2785 }
2786
2787 for (note = REG_NOTES (insn); note; note = next)
2788 {
2789 next = XEXP (note, 1);
2790
2791 if (REG_NOTE_KIND (note) != REG_DEAD
2792 /* Verify that the REG_NOTE is legitimate. */
2793 || GET_CODE (XEXP (note, 0)) != REG)
2794 continue;
2795
2796 delete_prior_computation (note, insn);
2797 }
2798
2799 delete_insn (insn);
2800 }
2801 \f
2802 /* Delete insn INSN from the chain of insns and update label ref counts.
2803 May delete some following insns as a consequence; may even delete
2804 a label elsewhere and insns that follow it.
2805
2806 Returns the first insn after INSN that was not deleted. */
2807
2808 rtx
2809 delete_insn (insn)
2810 register rtx insn;
2811 {
2812 register rtx next = NEXT_INSN (insn);
2813 register rtx prev = PREV_INSN (insn);
2814 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2815 register int dont_really_delete = 0;
2816
2817 while (next && INSN_DELETED_P (next))
2818 next = NEXT_INSN (next);
2819
2820 /* This insn is already deleted => return first following nondeleted. */
2821 if (INSN_DELETED_P (insn))
2822 return next;
2823
2824 if (was_code_label)
2825 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2826
2827 /* Don't delete user-declared labels. When optimizing, convert them
2828 to special NOTEs instead. When not optimizing, leave them alone. */
2829 if (was_code_label && LABEL_NAME (insn) != 0)
2830 {
2831 if (! optimize)
2832 dont_really_delete = 1;
2833 else if (! dont_really_delete)
2834 {
2835 const char *name = LABEL_NAME (insn);
2836 PUT_CODE (insn, NOTE);
2837 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2838 NOTE_SOURCE_FILE (insn) = name;
2839 dont_really_delete = 1;
2840 }
2841 }
2842 else
2843 /* Mark this insn as deleted. */
2844 INSN_DELETED_P (insn) = 1;
2845
2846 /* If this is an unconditional jump, delete it from the jump chain. */
2847 if (simplejump_p (insn))
2848 delete_from_jump_chain (insn);
2849
2850 /* If instruction is followed by a barrier,
2851 delete the barrier too. */
2852
2853 if (next != 0 && GET_CODE (next) == BARRIER)
2854 {
2855 INSN_DELETED_P (next) = 1;
2856 next = NEXT_INSN (next);
2857 }
2858
2859 /* Patch out INSN (and the barrier if any) */
2860
2861 if (! dont_really_delete)
2862 {
2863 if (prev)
2864 {
2865 NEXT_INSN (prev) = next;
2866 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2867 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2868 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2869 }
2870
2871 if (next)
2872 {
2873 PREV_INSN (next) = prev;
2874 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2875 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2876 }
2877
2878 if (prev && NEXT_INSN (prev) == 0)
2879 set_last_insn (prev);
2880 }
2881
2882 /* If deleting a jump, decrement the count of the label,
2883 and delete the label if it is now unused. */
2884
2885 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2886 {
2887 rtx lab = JUMP_LABEL (insn), lab_next;
2888
2889 if (--LABEL_NUSES (lab) == 0)
2890 {
2891 /* This can delete NEXT or PREV,
2892 either directly if NEXT is JUMP_LABEL (INSN),
2893 or indirectly through more levels of jumps. */
2894 delete_insn (lab);
2895
2896 /* I feel a little doubtful about this loop,
2897 but I see no clean and sure alternative way
2898 to find the first insn after INSN that is not now deleted.
2899 I hope this works. */
2900 while (next && INSN_DELETED_P (next))
2901 next = NEXT_INSN (next);
2902 return next;
2903 }
2904 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2905 && GET_CODE (lab_next) == JUMP_INSN
2906 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2907 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2908 {
2909 /* If we're deleting the tablejump, delete the dispatch table.
2910 We may not be able to kill the label immediately preceeding
2911 just yet, as it might be referenced in code leading up to
2912 the tablejump. */
2913 delete_insn (lab_next);
2914 }
2915 }
2916
2917 /* Likewise if we're deleting a dispatch table. */
2918
2919 if (GET_CODE (insn) == JUMP_INSN
2920 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2921 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2922 {
2923 rtx pat = PATTERN (insn);
2924 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2925 int len = XVECLEN (pat, diff_vec_p);
2926
2927 for (i = 0; i < len; i++)
2928 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2929 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2930 while (next && INSN_DELETED_P (next))
2931 next = NEXT_INSN (next);
2932 return next;
2933 }
2934
2935 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2936 prev = PREV_INSN (prev);
2937
2938 /* If INSN was a label and a dispatch table follows it,
2939 delete the dispatch table. The tablejump must have gone already.
2940 It isn't useful to fall through into a table. */
2941
2942 if (was_code_label
2943 && NEXT_INSN (insn) != 0
2944 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2945 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2946 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2947 next = delete_insn (NEXT_INSN (insn));
2948
2949 /* If INSN was a label, delete insns following it if now unreachable. */
2950
2951 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
2952 {
2953 register RTX_CODE code;
2954 while (next != 0
2955 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
2956 || code == NOTE || code == BARRIER
2957 || (code == CODE_LABEL && INSN_DELETED_P (next))))
2958 {
2959 if (code == NOTE
2960 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
2961 next = NEXT_INSN (next);
2962 /* Keep going past other deleted labels to delete what follows. */
2963 else if (code == CODE_LABEL && INSN_DELETED_P (next))
2964 next = NEXT_INSN (next);
2965 else
2966 /* Note: if this deletes a jump, it can cause more
2967 deletion of unreachable code, after a different label.
2968 As long as the value from this recursive call is correct,
2969 this invocation functions correctly. */
2970 next = delete_insn (next);
2971 }
2972 }
2973
2974 return next;
2975 }
2976
2977 /* Advance from INSN till reaching something not deleted
2978 then return that. May return INSN itself. */
2979
2980 rtx
2981 next_nondeleted_insn (insn)
2982 rtx insn;
2983 {
2984 while (INSN_DELETED_P (insn))
2985 insn = NEXT_INSN (insn);
2986 return insn;
2987 }
2988 \f
2989 /* Delete a range of insns from FROM to TO, inclusive.
2990 This is for the sake of peephole optimization, so assume
2991 that whatever these insns do will still be done by a new
2992 peephole insn that will replace them. */
2993
2994 void
2995 delete_for_peephole (from, to)
2996 register rtx from, to;
2997 {
2998 register rtx insn = from;
2999
3000 while (1)
3001 {
3002 register rtx next = NEXT_INSN (insn);
3003 register rtx prev = PREV_INSN (insn);
3004
3005 if (GET_CODE (insn) != NOTE)
3006 {
3007 INSN_DELETED_P (insn) = 1;
3008
3009 /* Patch this insn out of the chain. */
3010 /* We don't do this all at once, because we
3011 must preserve all NOTEs. */
3012 if (prev)
3013 NEXT_INSN (prev) = next;
3014
3015 if (next)
3016 PREV_INSN (next) = prev;
3017 }
3018
3019 if (insn == to)
3020 break;
3021 insn = next;
3022 }
3023
3024 /* Note that if TO is an unconditional jump
3025 we *do not* delete the BARRIER that follows,
3026 since the peephole that replaces this sequence
3027 is also an unconditional jump in that case. */
3028 }
3029 \f
3030 /* We have determined that INSN is never reached, and are about to
3031 delete it. Print a warning if the user asked for one.
3032
3033 To try to make this warning more useful, this should only be called
3034 once per basic block not reached, and it only warns when the basic
3035 block contains more than one line from the current function, and
3036 contains at least one operation. CSE and inlining can duplicate insns,
3037 so it's possible to get spurious warnings from this. */
3038
3039 void
3040 never_reached_warning (avoided_insn)
3041 rtx avoided_insn;
3042 {
3043 rtx insn;
3044 rtx a_line_note = NULL;
3045 int two_avoided_lines = 0;
3046 int contains_insn = 0;
3047
3048 if (! warn_notreached)
3049 return;
3050
3051 /* Scan forwards, looking at LINE_NUMBER notes, until
3052 we hit a LABEL or we run out of insns. */
3053
3054 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3055 {
3056 if (GET_CODE (insn) == CODE_LABEL)
3057 break;
3058 else if (GET_CODE (insn) == NOTE /* A line number note? */
3059 && NOTE_LINE_NUMBER (insn) >= 0)
3060 {
3061 if (a_line_note == NULL)
3062 a_line_note = insn;
3063 else
3064 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3065 != NOTE_LINE_NUMBER (insn));
3066 }
3067 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3068 contains_insn = 1;
3069 }
3070 if (two_avoided_lines && contains_insn)
3071 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3072 NOTE_LINE_NUMBER (a_line_note),
3073 "will never be executed");
3074 }
3075 \f
3076 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3077 NLABEL as a return. Accrue modifications into the change group. */
3078
3079 static void
3080 redirect_exp_1 (loc, olabel, nlabel, insn)
3081 rtx *loc;
3082 rtx olabel, nlabel;
3083 rtx insn;
3084 {
3085 register rtx x = *loc;
3086 register RTX_CODE code = GET_CODE (x);
3087 register int i;
3088 register const char *fmt;
3089
3090 if (code == LABEL_REF)
3091 {
3092 if (XEXP (x, 0) == olabel)
3093 {
3094 rtx n;
3095 if (nlabel)
3096 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3097 else
3098 n = gen_rtx_RETURN (VOIDmode);
3099
3100 validate_change (insn, loc, n, 1);
3101 return;
3102 }
3103 }
3104 else if (code == RETURN && olabel == 0)
3105 {
3106 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3107 if (loc == &PATTERN (insn))
3108 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3109 validate_change (insn, loc, x, 1);
3110 return;
3111 }
3112
3113 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3114 && GET_CODE (SET_SRC (x)) == LABEL_REF
3115 && XEXP (SET_SRC (x), 0) == olabel)
3116 {
3117 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3118 return;
3119 }
3120
3121 fmt = GET_RTX_FORMAT (code);
3122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3123 {
3124 if (fmt[i] == 'e')
3125 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3126 else if (fmt[i] == 'E')
3127 {
3128 register int j;
3129 for (j = 0; j < XVECLEN (x, i); j++)
3130 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3131 }
3132 }
3133 }
3134
3135 /* Similar, but apply the change group and report success or failure. */
3136
3137 int
3138 redirect_exp (loc, olabel, nlabel, insn)
3139 rtx *loc;
3140 rtx olabel, nlabel;
3141 rtx insn;
3142 {
3143 redirect_exp_1 (loc, olabel, nlabel, insn);
3144 if (num_validated_changes () == 0)
3145 return 0;
3146
3147 return apply_change_group ();
3148 }
3149
3150 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3151 the modifications into the change group. Return false if we did
3152 not see how to do that. */
3153
3154 int
3155 redirect_jump_1 (jump, nlabel)
3156 rtx jump, nlabel;
3157 {
3158 int ochanges = num_validated_changes ();
3159 redirect_exp_1 (&PATTERN (jump), JUMP_LABEL (jump), nlabel, jump);
3160 return num_validated_changes () > ochanges;
3161 }
3162
3163 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3164 jump target label is unused as a result, it and the code following
3165 it may be deleted.
3166
3167 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3168 RETURN insn.
3169
3170 The return value will be 1 if the change was made, 0 if it wasn't
3171 (this can only occur for NLABEL == 0). */
3172
3173 int
3174 redirect_jump (jump, nlabel)
3175 rtx jump, nlabel;
3176 {
3177 register rtx olabel = JUMP_LABEL (jump);
3178
3179 if (nlabel == olabel)
3180 return 1;
3181
3182 if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
3183 return 0;
3184
3185 /* If this is an unconditional branch, delete it from the jump_chain of
3186 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3187 have UID's in range and JUMP_CHAIN is valid). */
3188 if (jump_chain && (simplejump_p (jump)
3189 || GET_CODE (PATTERN (jump)) == RETURN))
3190 {
3191 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3192
3193 delete_from_jump_chain (jump);
3194 if (label_index < max_jump_chain
3195 && INSN_UID (jump) < max_jump_chain)
3196 {
3197 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3198 jump_chain[label_index] = jump;
3199 }
3200 }
3201
3202 JUMP_LABEL (jump) = nlabel;
3203 if (nlabel)
3204 ++LABEL_NUSES (nlabel);
3205
3206 /* If we're eliding the jump over exception cleanups at the end of a
3207 function, move the function end note so that -Wreturn-type works. */
3208 if (olabel && NEXT_INSN (olabel)
3209 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3210 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3211 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3212
3213 if (olabel && --LABEL_NUSES (olabel) == 0)
3214 delete_insn (olabel);
3215
3216 return 1;
3217 }
3218
3219 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3220 Accrue the modifications into the change group. */
3221
3222 static void
3223 invert_exp_1 (x, insn)
3224 rtx x;
3225 rtx insn;
3226 {
3227 register RTX_CODE code;
3228 register int i;
3229 register const char *fmt;
3230
3231 code = GET_CODE (x);
3232
3233 if (code == IF_THEN_ELSE)
3234 {
3235 register rtx comp = XEXP (x, 0);
3236 register rtx tem;
3237
3238 /* We can do this in two ways: The preferable way, which can only
3239 be done if this is not an integer comparison, is to reverse
3240 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3241 of the IF_THEN_ELSE. If we can't do either, fail. */
3242
3243 if (can_reverse_comparison_p (comp, insn))
3244 {
3245 validate_change (insn, &XEXP (x, 0),
3246 gen_rtx_fmt_ee (reverse_condition (GET_CODE (comp)),
3247 GET_MODE (comp), XEXP (comp, 0),
3248 XEXP (comp, 1)),
3249 1);
3250 return;
3251 }
3252
3253 tem = XEXP (x, 1);
3254 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3255 validate_change (insn, &XEXP (x, 2), tem, 1);
3256 return;
3257 }
3258
3259 fmt = GET_RTX_FORMAT (code);
3260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3261 {
3262 if (fmt[i] == 'e')
3263 invert_exp_1 (XEXP (x, i), insn);
3264 else if (fmt[i] == 'E')
3265 {
3266 register int j;
3267 for (j = 0; j < XVECLEN (x, i); j++)
3268 invert_exp_1 (XVECEXP (x, i, j), insn);
3269 }
3270 }
3271 }
3272
3273 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3274
3275 Return 1 if we can do so, 0 if we cannot find a way to do so that
3276 matches a pattern. */
3277
3278 int
3279 invert_exp (x, insn)
3280 rtx x;
3281 rtx insn;
3282 {
3283 invert_exp_1 (x, insn);
3284 if (num_validated_changes () == 0)
3285 return 0;
3286
3287 return apply_change_group ();
3288 }
3289
3290 /* Invert the condition of the jump JUMP, and make it jump to label
3291 NLABEL instead of where it jumps now. Accrue changes into the
3292 change group. Return false if we didn't see how to perform the
3293 inversion and redirection. */
3294
3295 int
3296 invert_jump_1 (jump, nlabel)
3297 rtx jump, nlabel;
3298 {
3299 int ochanges;
3300
3301 ochanges = num_validated_changes ();
3302 invert_exp_1 (PATTERN (jump), jump);
3303 if (num_validated_changes () == ochanges)
3304 return 0;
3305
3306 return redirect_jump_1 (jump, nlabel);
3307 }
3308
3309 /* Invert the condition of the jump JUMP, and make it jump to label
3310 NLABEL instead of where it jumps now. Return true if successful. */
3311
3312 int
3313 invert_jump (jump, nlabel)
3314 rtx jump, nlabel;
3315 {
3316 /* We have to either invert the condition and change the label or
3317 do neither. Either operation could fail. We first try to invert
3318 the jump. If that succeeds, we try changing the label. If that fails,
3319 we invert the jump back to what it was. */
3320
3321 if (! invert_exp (PATTERN (jump), jump))
3322 return 0;
3323
3324 if (redirect_jump (jump, nlabel))
3325 {
3326 /* An inverted jump means that a probability taken becomes a
3327 probability not taken. Subtract the branch probability from the
3328 probability base to convert it back to a taken probability. */
3329
3330 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3331 if (note)
3332 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3333
3334 return 1;
3335 }
3336
3337 if (! invert_exp (PATTERN (jump), jump))
3338 /* This should just be putting it back the way it was. */
3339 abort ();
3340
3341 return 0;
3342 }
3343
3344 /* Delete the instruction JUMP from any jump chain it might be on. */
3345
3346 static void
3347 delete_from_jump_chain (jump)
3348 rtx jump;
3349 {
3350 int index;
3351 rtx olabel = JUMP_LABEL (jump);
3352
3353 /* Handle unconditional jumps. */
3354 if (jump_chain && olabel != 0
3355 && INSN_UID (olabel) < max_jump_chain
3356 && simplejump_p (jump))
3357 index = INSN_UID (olabel);
3358 /* Handle return insns. */
3359 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3360 index = 0;
3361 else return;
3362
3363 if (jump_chain[index] == jump)
3364 jump_chain[index] = jump_chain[INSN_UID (jump)];
3365 else
3366 {
3367 rtx insn;
3368
3369 for (insn = jump_chain[index];
3370 insn != 0;
3371 insn = jump_chain[INSN_UID (insn)])
3372 if (jump_chain[INSN_UID (insn)] == jump)
3373 {
3374 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3375 break;
3376 }
3377 }
3378 }
3379 \f
3380 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3381
3382 If the old jump target label (before the dispatch table) becomes unused,
3383 it and the dispatch table may be deleted. In that case, find the insn
3384 before the jump references that label and delete it and logical successors
3385 too. */
3386
3387 static void
3388 redirect_tablejump (jump, nlabel)
3389 rtx jump, nlabel;
3390 {
3391 register rtx olabel = JUMP_LABEL (jump);
3392
3393 /* Add this jump to the jump_chain of NLABEL. */
3394 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3395 && INSN_UID (jump) < max_jump_chain)
3396 {
3397 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3398 jump_chain[INSN_UID (nlabel)] = jump;
3399 }
3400
3401 PATTERN (jump) = gen_jump (nlabel);
3402 JUMP_LABEL (jump) = nlabel;
3403 ++LABEL_NUSES (nlabel);
3404 INSN_CODE (jump) = -1;
3405
3406 if (--LABEL_NUSES (olabel) == 0)
3407 {
3408 delete_labelref_insn (jump, olabel, 0);
3409 delete_insn (olabel);
3410 }
3411 }
3412
3413 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3414 If we found one, delete it and then delete this insn if DELETE_THIS is
3415 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3416
3417 static int
3418 delete_labelref_insn (insn, label, delete_this)
3419 rtx insn, label;
3420 int delete_this;
3421 {
3422 int deleted = 0;
3423 rtx link;
3424
3425 if (GET_CODE (insn) != NOTE
3426 && reg_mentioned_p (label, PATTERN (insn)))
3427 {
3428 if (delete_this)
3429 {
3430 delete_insn (insn);
3431 deleted = 1;
3432 }
3433 else
3434 return 1;
3435 }
3436
3437 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3438 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3439 {
3440 if (delete_this)
3441 {
3442 delete_insn (insn);
3443 deleted = 1;
3444 }
3445 else
3446 return 1;
3447 }
3448
3449 return deleted;
3450 }
3451 \f
3452 /* Like rtx_equal_p except that it considers two REGs as equal
3453 if they renumber to the same value and considers two commutative
3454 operations to be the same if the order of the operands has been
3455 reversed.
3456
3457 ??? Addition is not commutative on the PA due to the weird implicit
3458 space register selection rules for memory addresses. Therefore, we
3459 don't consider a + b == b + a.
3460
3461 We could/should make this test a little tighter. Possibly only
3462 disabling it on the PA via some backend macro or only disabling this
3463 case when the PLUS is inside a MEM. */
3464
3465 int
3466 rtx_renumbered_equal_p (x, y)
3467 rtx x, y;
3468 {
3469 register int i;
3470 register RTX_CODE code = GET_CODE (x);
3471 register const char *fmt;
3472
3473 if (x == y)
3474 return 1;
3475
3476 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3477 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3478 && GET_CODE (SUBREG_REG (y)) == REG)))
3479 {
3480 int reg_x = -1, reg_y = -1;
3481 int word_x = 0, word_y = 0;
3482
3483 if (GET_MODE (x) != GET_MODE (y))
3484 return 0;
3485
3486 /* If we haven't done any renumbering, don't
3487 make any assumptions. */
3488 if (reg_renumber == 0)
3489 return rtx_equal_p (x, y);
3490
3491 if (code == SUBREG)
3492 {
3493 reg_x = REGNO (SUBREG_REG (x));
3494 word_x = SUBREG_WORD (x);
3495
3496 if (reg_renumber[reg_x] >= 0)
3497 {
3498 reg_x = reg_renumber[reg_x] + word_x;
3499 word_x = 0;
3500 }
3501 }
3502
3503 else
3504 {
3505 reg_x = REGNO (x);
3506 if (reg_renumber[reg_x] >= 0)
3507 reg_x = reg_renumber[reg_x];
3508 }
3509
3510 if (GET_CODE (y) == SUBREG)
3511 {
3512 reg_y = REGNO (SUBREG_REG (y));
3513 word_y = SUBREG_WORD (y);
3514
3515 if (reg_renumber[reg_y] >= 0)
3516 {
3517 reg_y = reg_renumber[reg_y];
3518 word_y = 0;
3519 }
3520 }
3521
3522 else
3523 {
3524 reg_y = REGNO (y);
3525 if (reg_renumber[reg_y] >= 0)
3526 reg_y = reg_renumber[reg_y];
3527 }
3528
3529 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3530 }
3531
3532 /* Now we have disposed of all the cases
3533 in which different rtx codes can match. */
3534 if (code != GET_CODE (y))
3535 return 0;
3536
3537 switch (code)
3538 {
3539 case PC:
3540 case CC0:
3541 case ADDR_VEC:
3542 case ADDR_DIFF_VEC:
3543 return 0;
3544
3545 case CONST_INT:
3546 return INTVAL (x) == INTVAL (y);
3547
3548 case LABEL_REF:
3549 /* We can't assume nonlocal labels have their following insns yet. */
3550 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3551 return XEXP (x, 0) == XEXP (y, 0);
3552
3553 /* Two label-refs are equivalent if they point at labels
3554 in the same position in the instruction stream. */
3555 return (next_real_insn (XEXP (x, 0))
3556 == next_real_insn (XEXP (y, 0)));
3557
3558 case SYMBOL_REF:
3559 return XSTR (x, 0) == XSTR (y, 0);
3560
3561 case CODE_LABEL:
3562 /* If we didn't match EQ equality above, they aren't the same. */
3563 return 0;
3564
3565 default:
3566 break;
3567 }
3568
3569 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3570
3571 if (GET_MODE (x) != GET_MODE (y))
3572 return 0;
3573
3574 /* For commutative operations, the RTX match if the operand match in any
3575 order. Also handle the simple binary and unary cases without a loop.
3576
3577 ??? Don't consider PLUS a commutative operator; see comments above. */
3578 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3579 && code != PLUS)
3580 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3581 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3582 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3583 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3584 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3585 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3586 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3587 else if (GET_RTX_CLASS (code) == '1')
3588 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3589
3590 /* Compare the elements. If any pair of corresponding elements
3591 fail to match, return 0 for the whole things. */
3592
3593 fmt = GET_RTX_FORMAT (code);
3594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3595 {
3596 register int j;
3597 switch (fmt[i])
3598 {
3599 case 'w':
3600 if (XWINT (x, i) != XWINT (y, i))
3601 return 0;
3602 break;
3603
3604 case 'i':
3605 if (XINT (x, i) != XINT (y, i))
3606 return 0;
3607 break;
3608
3609 case 's':
3610 if (strcmp (XSTR (x, i), XSTR (y, i)))
3611 return 0;
3612 break;
3613
3614 case 'e':
3615 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3616 return 0;
3617 break;
3618
3619 case 'u':
3620 if (XEXP (x, i) != XEXP (y, i))
3621 return 0;
3622 /* fall through. */
3623 case '0':
3624 break;
3625
3626 case 'E':
3627 if (XVECLEN (x, i) != XVECLEN (y, i))
3628 return 0;
3629 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3630 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3631 return 0;
3632 break;
3633
3634 default:
3635 abort ();
3636 }
3637 }
3638 return 1;
3639 }
3640 \f
3641 /* If X is a hard register or equivalent to one or a subregister of one,
3642 return the hard register number. If X is a pseudo register that was not
3643 assigned a hard register, return the pseudo register number. Otherwise,
3644 return -1. Any rtx is valid for X. */
3645
3646 int
3647 true_regnum (x)
3648 rtx x;
3649 {
3650 if (GET_CODE (x) == REG)
3651 {
3652 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3653 return reg_renumber[REGNO (x)];
3654 return REGNO (x);
3655 }
3656 if (GET_CODE (x) == SUBREG)
3657 {
3658 int base = true_regnum (SUBREG_REG (x));
3659 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3660 return SUBREG_WORD (x) + base;
3661 }
3662 return -1;
3663 }
3664 \f
3665 /* Optimize code of the form:
3666
3667 for (x = a[i]; x; ...)
3668 ...
3669 for (x = a[i]; x; ...)
3670 ...
3671 foo:
3672
3673 Loop optimize will change the above code into
3674
3675 if (x = a[i])
3676 for (;;)
3677 { ...; if (! (x = ...)) break; }
3678 if (x = a[i])
3679 for (;;)
3680 { ...; if (! (x = ...)) break; }
3681 foo:
3682
3683 In general, if the first test fails, the program can branch
3684 directly to `foo' and skip the second try which is doomed to fail.
3685 We run this after loop optimization and before flow analysis. */
3686
3687 /* When comparing the insn patterns, we track the fact that different
3688 pseudo-register numbers may have been used in each computation.
3689 The following array stores an equivalence -- same_regs[I] == J means
3690 that pseudo register I was used in the first set of tests in a context
3691 where J was used in the second set. We also count the number of such
3692 pending equivalences. If nonzero, the expressions really aren't the
3693 same. */
3694
3695 static int *same_regs;
3696
3697 static int num_same_regs;
3698
3699 /* Track any registers modified between the target of the first jump and
3700 the second jump. They never compare equal. */
3701
3702 static char *modified_regs;
3703
3704 /* Record if memory was modified. */
3705
3706 static int modified_mem;
3707
3708 /* Called via note_stores on each insn between the target of the first
3709 branch and the second branch. It marks any changed registers. */
3710
3711 static void
3712 mark_modified_reg (dest, x, data)
3713 rtx dest;
3714 rtx x ATTRIBUTE_UNUSED;
3715 void *data ATTRIBUTE_UNUSED;
3716 {
3717 int regno;
3718 unsigned int i;
3719
3720 if (GET_CODE (dest) == SUBREG)
3721 dest = SUBREG_REG (dest);
3722
3723 if (GET_CODE (dest) == MEM)
3724 modified_mem = 1;
3725
3726 if (GET_CODE (dest) != REG)
3727 return;
3728
3729 regno = REGNO (dest);
3730 if (regno >= FIRST_PSEUDO_REGISTER)
3731 modified_regs[regno] = 1;
3732 else
3733 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3734 modified_regs[regno + i] = 1;
3735 }
3736
3737 /* F is the first insn in the chain of insns. */
3738
3739 void
3740 thread_jumps (f, max_reg, flag_before_loop)
3741 rtx f;
3742 int max_reg;
3743 int flag_before_loop;
3744 {
3745 /* Basic algorithm is to find a conditional branch,
3746 the label it may branch to, and the branch after
3747 that label. If the two branches test the same condition,
3748 walk back from both branch paths until the insn patterns
3749 differ, or code labels are hit. If we make it back to
3750 the target of the first branch, then we know that the first branch
3751 will either always succeed or always fail depending on the relative
3752 senses of the two branches. So adjust the first branch accordingly
3753 in this case. */
3754
3755 rtx label, b1, b2, t1, t2;
3756 enum rtx_code code1, code2;
3757 rtx b1op0, b1op1, b2op0, b2op1;
3758 int changed = 1;
3759 int i;
3760 int *all_reset;
3761
3762 /* Allocate register tables and quick-reset table. */
3763 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3764 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3765 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3766 for (i = 0; i < max_reg; i++)
3767 all_reset[i] = -1;
3768
3769 while (changed)
3770 {
3771 changed = 0;
3772
3773 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3774 {
3775 /* Get to a candidate branch insn. */
3776 if (GET_CODE (b1) != JUMP_INSN
3777 || ! condjump_p (b1) || simplejump_p (b1)
3778 || JUMP_LABEL (b1) == 0)
3779 continue;
3780
3781 bzero (modified_regs, max_reg * sizeof (char));
3782 modified_mem = 0;
3783
3784 bcopy ((char *) all_reset, (char *) same_regs,
3785 max_reg * sizeof (int));
3786 num_same_regs = 0;
3787
3788 label = JUMP_LABEL (b1);
3789
3790 /* Look for a branch after the target. Record any registers and
3791 memory modified between the target and the branch. Stop when we
3792 get to a label since we can't know what was changed there. */
3793 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3794 {
3795 if (GET_CODE (b2) == CODE_LABEL)
3796 break;
3797
3798 else if (GET_CODE (b2) == JUMP_INSN)
3799 {
3800 /* If this is an unconditional jump and is the only use of
3801 its target label, we can follow it. */
3802 if (simplejump_p (b2)
3803 && JUMP_LABEL (b2) != 0
3804 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3805 {
3806 b2 = JUMP_LABEL (b2);
3807 continue;
3808 }
3809 else
3810 break;
3811 }
3812
3813 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3814 continue;
3815
3816 if (GET_CODE (b2) == CALL_INSN)
3817 {
3818 modified_mem = 1;
3819 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3820 if (call_used_regs[i] && ! fixed_regs[i]
3821 && i != STACK_POINTER_REGNUM
3822 && i != FRAME_POINTER_REGNUM
3823 && i != HARD_FRAME_POINTER_REGNUM
3824 && i != ARG_POINTER_REGNUM)
3825 modified_regs[i] = 1;
3826 }
3827
3828 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3829 }
3830
3831 /* Check the next candidate branch insn from the label
3832 of the first. */
3833 if (b2 == 0
3834 || GET_CODE (b2) != JUMP_INSN
3835 || b2 == b1
3836 || ! condjump_p (b2)
3837 || simplejump_p (b2))
3838 continue;
3839
3840 /* Get the comparison codes and operands, reversing the
3841 codes if appropriate. If we don't have comparison codes,
3842 we can't do anything. */
3843 b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
3844 b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
3845 code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
3846 if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
3847 code1 = reverse_condition (code1);
3848
3849 b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
3850 b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
3851 code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
3852 if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
3853 code2 = reverse_condition (code2);
3854
3855 /* If they test the same things and knowing that B1 branches
3856 tells us whether or not B2 branches, check if we
3857 can thread the branch. */
3858 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3859 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3860 && (comparison_dominates_p (code1, code2)
3861 || (can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (b1)),
3862 0),
3863 b1)
3864 && comparison_dominates_p (code1, reverse_condition (code2)))))
3865
3866 {
3867 t1 = prev_nonnote_insn (b1);
3868 t2 = prev_nonnote_insn (b2);
3869
3870 while (t1 != 0 && t2 != 0)
3871 {
3872 if (t2 == label)
3873 {
3874 /* We have reached the target of the first branch.
3875 If there are no pending register equivalents,
3876 we know that this branch will either always
3877 succeed (if the senses of the two branches are
3878 the same) or always fail (if not). */
3879 rtx new_label;
3880
3881 if (num_same_regs != 0)
3882 break;
3883
3884 if (comparison_dominates_p (code1, code2))
3885 new_label = JUMP_LABEL (b2);
3886 else
3887 new_label = get_label_after (b2);
3888
3889 if (JUMP_LABEL (b1) != new_label)
3890 {
3891 rtx prev = PREV_INSN (new_label);
3892
3893 if (flag_before_loop
3894 && GET_CODE (prev) == NOTE
3895 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3896 {
3897 /* Don't thread to the loop label. If a loop
3898 label is reused, loop optimization will
3899 be disabled for that loop. */
3900 new_label = gen_label_rtx ();
3901 emit_label_after (new_label, PREV_INSN (prev));
3902 }
3903 changed |= redirect_jump (b1, new_label);
3904 }
3905 break;
3906 }
3907
3908 /* If either of these is not a normal insn (it might be
3909 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3910 have already been skipped above.) Similarly, fail
3911 if the insns are different. */
3912 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3913 || recog_memoized (t1) != recog_memoized (t2)
3914 || ! rtx_equal_for_thread_p (PATTERN (t1),
3915 PATTERN (t2), t2))
3916 break;
3917
3918 t1 = prev_nonnote_insn (t1);
3919 t2 = prev_nonnote_insn (t2);
3920 }
3921 }
3922 }
3923 }
3924
3925 /* Clean up. */
3926 free (modified_regs);
3927 free (same_regs);
3928 free (all_reset);
3929 }
3930 \f
3931 /* This is like RTX_EQUAL_P except that it knows about our handling of
3932 possibly equivalent registers and knows to consider volatile and
3933 modified objects as not equal.
3934
3935 YINSN is the insn containing Y. */
3936
3937 int
3938 rtx_equal_for_thread_p (x, y, yinsn)
3939 rtx x, y;
3940 rtx yinsn;
3941 {
3942 register int i;
3943 register int j;
3944 register enum rtx_code code;
3945 register const char *fmt;
3946
3947 code = GET_CODE (x);
3948 /* Rtx's of different codes cannot be equal. */
3949 if (code != GET_CODE (y))
3950 return 0;
3951
3952 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
3953 (REG:SI x) and (REG:HI x) are NOT equivalent. */
3954
3955 if (GET_MODE (x) != GET_MODE (y))
3956 return 0;
3957
3958 /* For floating-point, consider everything unequal. This is a bit
3959 pessimistic, but this pass would only rarely do anything for FP
3960 anyway. */
3961 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3962 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
3963 return 0;
3964
3965 /* For commutative operations, the RTX match if the operand match in any
3966 order. Also handle the simple binary and unary cases without a loop. */
3967 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3968 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3969 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
3970 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
3971 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
3972 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3973 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3974 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
3975 else if (GET_RTX_CLASS (code) == '1')
3976 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
3977
3978 /* Handle special-cases first. */
3979 switch (code)
3980 {
3981 case REG:
3982 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
3983 return 1;
3984
3985 /* If neither is user variable or hard register, check for possible
3986 equivalence. */
3987 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
3988 || REGNO (x) < FIRST_PSEUDO_REGISTER
3989 || REGNO (y) < FIRST_PSEUDO_REGISTER)
3990 return 0;
3991
3992 if (same_regs[REGNO (x)] == -1)
3993 {
3994 same_regs[REGNO (x)] = REGNO (y);
3995 num_same_regs++;
3996
3997 /* If this is the first time we are seeing a register on the `Y'
3998 side, see if it is the last use. If not, we can't thread the
3999 jump, so mark it as not equivalent. */
4000 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4001 return 0;
4002
4003 return 1;
4004 }
4005 else
4006 return (same_regs[REGNO (x)] == (int) REGNO (y));
4007
4008 break;
4009
4010 case MEM:
4011 /* If memory modified or either volatile, not equivalent.
4012 Else, check address. */
4013 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4014 return 0;
4015
4016 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4017
4018 case ASM_INPUT:
4019 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4020 return 0;
4021
4022 break;
4023
4024 case SET:
4025 /* Cancel a pending `same_regs' if setting equivalenced registers.
4026 Then process source. */
4027 if (GET_CODE (SET_DEST (x)) == REG
4028 && GET_CODE (SET_DEST (y)) == REG)
4029 {
4030 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4031 {
4032 same_regs[REGNO (SET_DEST (x))] = -1;
4033 num_same_regs--;
4034 }
4035 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4036 return 0;
4037 }
4038 else
4039 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4040 return 0;
4041
4042 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4043
4044 case LABEL_REF:
4045 return XEXP (x, 0) == XEXP (y, 0);
4046
4047 case SYMBOL_REF:
4048 return XSTR (x, 0) == XSTR (y, 0);
4049
4050 default:
4051 break;
4052 }
4053
4054 if (x == y)
4055 return 1;
4056
4057 fmt = GET_RTX_FORMAT (code);
4058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4059 {
4060 switch (fmt[i])
4061 {
4062 case 'w':
4063 if (XWINT (x, i) != XWINT (y, i))
4064 return 0;
4065 break;
4066
4067 case 'n':
4068 case 'i':
4069 if (XINT (x, i) != XINT (y, i))
4070 return 0;
4071 break;
4072
4073 case 'V':
4074 case 'E':
4075 /* Two vectors must have the same length. */
4076 if (XVECLEN (x, i) != XVECLEN (y, i))
4077 return 0;
4078
4079 /* And the corresponding elements must match. */
4080 for (j = 0; j < XVECLEN (x, i); j++)
4081 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4082 XVECEXP (y, i, j), yinsn) == 0)
4083 return 0;
4084 break;
4085
4086 case 'e':
4087 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4088 return 0;
4089 break;
4090
4091 case 'S':
4092 case 's':
4093 if (strcmp (XSTR (x, i), XSTR (y, i)))
4094 return 0;
4095 break;
4096
4097 case 'u':
4098 /* These are just backpointers, so they don't matter. */
4099 break;
4100
4101 case '0':
4102 case 't':
4103 break;
4104
4105 /* It is believed that rtx's at this level will never
4106 contain anything but integers and other rtx's,
4107 except for within LABEL_REFs and SYMBOL_REFs. */
4108 default:
4109 abort ();
4110 }
4111 }
4112 return 1;
4113 }